
A Generalized Binding Framework for the Low

Level Reader Protocol (LLRP)

by

Dimitrios Poulopoulos
S.B., E.E.C.S. MIT, 2007

MASSACHULETT1 T TU

N-
NOV 1 3 208

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2008

@Dimitrios Poulopoulos, MMVIII. All rights reserved.
The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document
in whole or in part

Author
Departm entof ElectrihAEa ngi-Keering and Computer Science

June 2008

Certiied bCertified by.
A bel Sanchez

Research Scientist, Laboratory of Manufacturing and Productivity
Tlesis Supervisor

Accepted by..........................
Arthur C. Smith

Chairman, Department Committee on Graduate Students

MA SSACHU$ETTS INSTITUTE
OF TECKNOLCWf01

NOV 13 2008_ _ _j-na-asarimni~mmBARKER

2

A Generalized Binding Framework for the Low Level Reader

Protocol (LLRP)

by

Dimitrios Poulopoulos

S.B., E.E.C.S. MIT, 2007

Submitted to the Department of Electrical Engineering and Computer Science
on June 2008, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This Master of Engineering Thesis describes the design, implementation and testing
of an XML binding framework for the RFID Low Level Reader Protocol (LLRP).
LLRP is a recently released protocol which standardizes the interface between RFID
readers and RFID middleware. The proposed framework serializes wire objects to the
schema of the LLRP binary messages and parameters. The framework also validates
the produced XML elements against the LLRP data model. The framework includes
a data serialization mechanism on the reader's side and allows for easy and efficient
data updates as an RFID Network simulator.

Thesis Supervisor: Abel Sanchez
Title: Research Scientist, Laboratory of Manufacturing and Productivity

3

4

Acknowledgments

This essay was improved by conversations with a large number of people who helped

me debug it. I would like to thank Dr. Abel Sanchez for giving me the opportunity to

work with the Auto-ID Labs over the last year. I have learned a lot during this time,

and I was very fortunate to have his precious guidance. I would also like to thank my

labmate Ane Fabo for her valuable feedback and Fivos Constantinou who helped me

with some of the design decisions of my project. Next, I would like to thank Caroline

Huber for her consistent support and encouragement. Finally, I would like to thank

my parents for financial and psychological support.

5

6

Contents

1 Introduction 11

1.1 Radio Frequency Identification . 11

1.1.1 G eneral . 11

1.1.2 RFID Tags . 12

1.1.3 RFID Readers . 14

1.1.4 Applications of RFID Technology 15

1.2 Overview of the EPC Network and its Protocol Stack 16

1.3 Organization of this Thesis . 18

2 Background 21

2.1 Previous Work on LLRP . 21

2.2 LLRP Messages . 22

2.3 LLRP Parameters . 24

2.4 Current LLRP Client . 25

2.5 Characteristics of the Binding Framework 26

3 The Binding Framework 27

3.1 The Big Picture . 27

3.2 LLRP Schema . 28

3.3 Serialization . 30

3.3.1 Top Level Messages . 32

3.3.2 Parameters . 34

3.3.3 SimpleTypes . 35

7

3.4 Validation . 35

3.5 Testing . 36

3.5.1 Message Tests . 36

3.5.2 Test Manager . 36

4 Discussion and Future Work 39

4.1 Discussion . 39

4.2 Future Work . 40

4.2.1 Optional Fields . 40

4.2.2 Graphical User Interface . 40

4.2.3 Auto-generated Message & Parameter Constructor Classes 41

5 Conclusions 43

A Design Details 45

A.1 Casing Conventions . 45

A.2 Namespaces . 45

A.3 Class Diagrams . 51

A.3.1 Messages . 51

A.3.2 Parameters . 52

A.3.3 Simpletypes . 53

A.3.4 Tests . 53

B Validation Class 55

8

List of Figures

1-1 RFID system .

2-1 Structure of a frame exchanged between and a client

implementing the LLRP interface.

The Big Picture of the LLRP Binding Framework . .

Message header attribute group

Parameter header attribute group

Definition of ADD-ROSPEC message

Definition of ROSpec parameter

Definition of ROSpecState parameter

Serialization Process

The constructor class for an ADD-ROSPEC message

The constructor class for a ROSpec parameter

The constructor class for a ROSpecState simpletype .

A simple test case for ADD-ROSPECTest simpletype

The XML view of ADD-ROSPEC

Class Diagram for the Message-generator classes . . .

Class Diagram for the Parameter-generator classes . .

Class Diagram for the Simple Types

Class Diagram for the Test Classes

and a reader

. . . . 22

. . . . 28

. . . . 29

. . . . 29

. . . . 30

. . . . 30

. . . . 31

. . . . 31

. . . . 33

. . . . 34

. . . . 35

. . . . 36

. . . . 37

. . . . 51

. . . . 52

. . . . 53

. . . . 53

9

17

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

3-12

A-i

A-2

A-3

A-4

10

Chapter 1

Introduction

1.1 Radio Frequency Identification

1.1.1 General

Radio Frequency Identification (RFID) is an emerging technology which continues

to be more widely adopted in numerous applications, such as access control, prod-

uct identification and tracking. RFID technology has important applications in the

supply chain of products in industry. RFID tagged products are identified by unique

Electronic Product Codes (EPCs) as they move through the supply chain. To fur-

ther enhance the manufacturing process, a mechanism is needed to record business

events and data associated with a product. This mechanism needs to be able to main-

tain static data for a product, such as product type, date of manufacture, expiration

date, etc. It should also keep track of transactional data, which include records of a

product's location at a given time, or information relating a product with a specific

business transaction. Finally, this mechanism should allow product discovery and

offer a way to query data that is generated by others. This mechanism is currently

being designed and standardized, with the goal of creating the EPCGlobal network.

[1]

11

1.1.2 RFID Tags

To identify a product, the EPC is stored in a microchip attached to an antenna

and attached to the product. The device, which consists of the microchip and the

antenna, is known as RFID tag. The tag is capable of transmitting an RF signal

containing the EPC number to a device called reader or interrogator. The reader

extracts the information from the modulated signal and delivers the data to the

system or application that makes use of it.

An RFID system consists of a number of readers covering a certain area of space

in which the presence of tagged items needs to be controlled. The information of the

tags is delivered to some host system, which keeps track of all items that are in the

area of interest. This information may be stored or processed, and it may help to

make business decisions or automate processes, depending on the application.

RFID Tags come in various form factors and can be easily attached to a variety of

materials. They are classified according to the manner in which they get the power

necessary to transmit the information. [6]

Passive Tags

Passive tags draw power from the reader. The reader generates an electromagnetic

field around its antenna, which is captured by the tag. This electromagnetic field

induces a voltage between the two terminals of the tag's antenna. This signal is the

only power source of the tag. It must be enough to switch on the IC that retrieves

the identification information from memory and to transmit a response back to the

reader. This response is an amplitude modulated electromagnetic wave, according to

the digital information stored in the tag memory. There are two basic mechanisms of

generating this AM response signal: inductive coupling and backscatter.

Backscatter tags basically reflect part of the signal received back to the reader.

Some of the power received is used to run the circuitry that retrieves the data stored

in memory and controls the modulation according to that data. The rest of the energy

is just reflected back to the reader. Amplitude modulation of the response wave is

12

performed by controlling the amount of energy that is reflected.

Passive tags do not need any maintenance, and they last for years once attached

to a product. Due to their low cost and longer read-range than the ones that work

under inductive coupling principle, passive backscatter tags are the ones considered

for supply chain applications or in general, low-price items labeling. Actually, the

EPCGlobal protocol that standardizes the interaction between tags and readers, refers

exclusively to this type of tags (UHF Class 1 Generation 2).

In the following chapters, when talking of RFID tags, we will be referring to

passive backscatter tags (unless otherwise specified).

Semi-passive Tags

Semi-passive tags backscatter the wave coming from the reader, just as passive tags

do. The difference is that they have an onboard power source to run the circuitry.

This allows a higher proportion of the incoming signal to be reflected, and so, a longer

read range is achieved.

Active Tags

Active tags are able to transmit the information by themselves without requiring

energy from the readers. Active tags are sophisticated wireless devices, much big-

ger in size and more expensive. Usually, they have further functionality than just

transmitting the identification number of the item to which they are attached. The

memory has higher capacity and stores data of sensors built onboard. Active tags

can transmit this information as far as several dozens of meters.

Active RFID solutions are being used to track valuable assets in the healthcare,

manufacturing and logistics markets. But their cost, their size and their need for

maintenance, make this solutions not suitable for supply chain applications. [7]

13

1.1.3 RFID Readers

An RFID reader is a device capable of getting the EPC data stored in a tag's memory

when the tag is located close enough to its antenna. As already explained, for passive

backscatter tags, the reader broadcasts an RF signal and captures the AM wave

reflected back by each of the tags. By properly demodulating this response wave, the

reader must be able to extract the EPC data transmitted by the tag.

The region of space around the reader's antenna, in which the broadcasted signal

is powerful enough for a tag to generate a response that can be detected back by the

reader, is known as the field of view (FOV) of the reader.

The read range is typically is about 5 meters and requires no line of sight between

the tag and the reader. Electromagnetic radiation can go through most obstacles

with little attenuation, except through conductor materials. Metallic objects totally

reflect waves, affecting the FOV and causing interferences when the reflections reach

back to the reader's antenna. The only possible solution is to carefully choose the

location of readers and tags. Metallic objects should be avoided between them, but

notice that the reflections can also increase the amount of power received by the tag

when the layout is properly designed.

Metallic objects are not the only cause of interference in RFID systems. When

various readers cover the same area, tags are not capable of resolving which requests

they should be answering to. The layout of the system also plays an important role in

avoiding this type of interference. However, there are more sophisticated mechanisms

to keep this problem under control. These mechanisms basically consist of algorithms

that dynamically adapt the power transmitted by the different devices, as well as

scheduling the transmissions to occur separately in time.

When different tags transmit simultaneously, the reader may not be able to decode

the information coming from each of the tags. If the reader has the ability to manage

tags' transmissions, this type of interference can be avoided. And so, readers and tags

must exchange control commands, as well as the identification information itself or

the signals that carry power for tags' operation. This problem reveals the necessity

14

of a radio protocol of certain complexity.

RFID readers achieve high read rates. A reader located at the entrance of a ware-

house is capable of reading all the tags inside a truck in the time it takes the vehicle to

cross the entrance. This is clearly one of the big advantages of RFID technology, ver-

sus the optical systems used today. Other advantages are the longer read range and

that no line of sight is required. In addition, the memory capacity of the tags allows

storing much more information than a regular bar code can contain. RFID technology

allows item level identification, meaning that a serial number identifies the specific

item, not just the type or family of products to which it belongs. However, the cost

and complexity of RFID systems is not negligible nowadays. Will RFID eventually

substitute the bar code system? It is hard to argue about this view, however both

bar codes and RFID tags will coexist for a long period of time. [6]

1.1.4 Applications of RFID Technology

RFID is not a new technology. It has been used in many applications for more than

ten years now. Applications of automated identification are manifold.

Automatic payment in motorways is a popular example. Users are identified and

charged directly to their accounts when crossing the toll gate. The United States

Department of Defense has been using RFID for tracking its containers since 1994

and losses have been cut by 90%. Airlines are starting to substitute barcodes with

RFID tags for baggage handling. RFID systems are more robust as tags can be

correctly detected even if they get wet or dirty or even if they are not directly facing

the reader's antenna. This allows more reliable tracking of every piece of luggage,

reducing losses. Higher read rates speed up the process of loading the bags into the

hold of the plane or looking for the ones that need to be taken out. RFID based

anti-theft systems were introduced about a decade ago and today are used almost

everywhere. A plastic anti-theft tag is attached to the item, and if it is not removed

or disabled by the cashier at the moment of payment, it fires an alarm when detected

by the readers at the exit of the store.

The point of mentioning the previous examples was just to make the reader think

15

of the very wide variety of businesses in which RFID can be useful. Due to its

characteristics, RFID increases reliability and speeds up processes in many Auto-ID

applications in which barcodes are still being used (e.g. baggage handling). Moreover,

it opens a new range of possibilities, such as the automatic toll payment. [6]

1.2 Overview of the EPC Network and its Proto-

col Stack

EPCGlobal is the organization that leads the development of all the standards for

RFID systems. All of them are open and can be downloaded for free from their

website. It is a not-for-profit organization, entrusted by industry, with the aim of

establishing and supporting RFID technology in the supply chain.

For supply chain applications, in which the same item may be read by many

different organizations and recognized as "the same thing", it is of vital importance

to agree in a universal numbering system. Such a system is not necessary in a "closed"

RFID application, e.g. automatic toll payment, as anybody but the corresponding

company is going to capture and use that information. But when it is about tracking

items all through the supply chain, each item's ID must be recognized by all parties

from the manufacturer to the retailer. The universal serial number that identifies

each product is called EPC (Electronic Product Code). [6]

The protocol that defines the communication between tags and readers is UHF

Class 1 Generation 2. There is another protocol (HF Gen 2), still in development,

which will standardize that same interface for a different frequency range. Today

there are many tag and reader manufacturers. Using a standard air protocol assures

every device will be able to read every tag. [5]

The main purpose of an RFID reader is to capture the tag data in its field-of-view.

Readers are not designed for storing or processing that data. They just deliver it to

some higher level system (it might be a physical device or a piece of software) that

has those functions.

16

An RFID reader may not be continuously looking for tags in its field of view. The

reader may "read" only when receiving a certain command or just "read" periodically.

In conclusion, that higher level system, which collects data, will also be in charge of

configuring and controlling readers' operations.

The Low Level Reader Protocol (LLRP) standardizes the interface between read-

ers and higher level RFID systems, often referred to as RFID middleware [5]. Tags,

readers and the intermediate software form the ID system are depicted in Figure 1-1.

RFID Middleware

1 1

RFID Readers

RFID Tags

Figure 1-1: RFID system. Readers and tags exchange information embedded in RF
signals. Readers extract the digital information and deliver it to the host system in
a binary format.

As already mentioned in the introduction, for supply chain management purposes,

systems of manufacturers, distributors and retailers must be interconnected. That

way, maximum benefit can be derived from all data generated. But as we pointed out

earlier, this requires a standard way of storing and exchanging information. EPCIS

17

(EPC Information Services) is the main EPCGlobal standard for sharing information

generated by RFID systems.

The interconnection of all these systems forms a great network, the EPC Network,

sometimes also called the "Internet of Things." A simplified diagram of the network

is shown above. Through the EPC network, manufacturers, distributors and retailers

can access the data generated by the ID systems of any other company with which

they do business. All that information that is exchanged is encoded into XML files,

following the schemas defined by the EPCIS standard.

Somewhere in that network there is a record for each time an item has been

detected in a certain location. Let's say we have access to the network and we

are looking for a specific item. We do have its EPC number, but do not know to

which final ID system we need to address our request. Just as the Domain Name

System (DNS) does when we are looking for a webpage without its IP, we need a

higher level entity that handles our request and redirects it to its destination. Let's

consider now that we are interested in every location a certain item has been detected.

The response to our request comprises information not from one, but from several

databases in the network. The aim of the discovery layer is to handle these types of

queries, which require a higher level centralized system connected to all other nodes

in the network.[3]

In the following sections of this chapter I will explain in greater detail some of the

interfaces that I just introduced. From the lowest level (the numbering system and

the air protocol) to the highest level standard relevant to this project (EPCIS).

1.3 Organization of this Thesis

Chapter 2 gives some background on LLRP, specifically the previous work in message

and parameter encoding. Also, Chapter 2 describes the high level characteristics of the

proposed framework. The XML serialization and validation processes are described in

Chapter 3. Chapter 3 ends with explaining how the testing was performed. Chapter

4 describes the advantages of the XML binding and some future work that would

18

improve the project. Finally, Chapter 5 contains a discussion of the conclusions we

reached implementing the Binding Framework of the LLRP Library.

19

20

Chapter 2

Background

2.1 Previous Work on LLRP

LLRP is an application layer, message-oriented protocol, which standardizes the for-

mats and procedures of communication between Clients and Readers. Using the

LLRP interface the Client can retrieve and change the Reader configuration, control-

ling in this way the Readers operation. The functionality provided by the interface

is summarized below:

" Allows Clients to retrieve Reader device Capabilities

" Allows Clients to control Readers to inventory, read or write tags and execute

other access commands

" Allows Clients to control the Reader device operation (e.g. Power levels, spec-

trum utilization, etc.)

" Provides robust status reporting and error handling

" Allows future expansions for support of additional air protocols

" Allows Reader vendors to define custom vendor-specific extensions

Using LLRP, clients and readers exchange protocol data units (PDUs) called mes-

sages. LLRP specification is a collection of messages for different purposes. The

21

communication between clients and readers is fundamentally of a request-response

type. The specification defines what the requests are and the expected response from

the reader for each of them. The messages contain fields and parameters with further

details of the requested or performed LLRP operation. There are a few messages that

the reader can send by itself, basically reports and certain events notifications. [5]

Messages are encoded into a binary stream and sent over a TCP connection.

Figure 2-1 shows the structure of a frame exchanged between a client and reader im-

plementing the LLRP interface. Link (802.11, Ethernet), network (IP) and transport

(TCP) layer information is added to the LLRP Message so that it can be sent over

the network.

Figure 2-1: Structure of a frame exchanged between and a client and a reader imple-

menting the LLRP interface.

Any client or reader can be addressed given its network end point: IP address

and port number. Although it is not compulsory, the specification sets 5084 as the

default port number both for the client and the reader. Notice that the exchange of

LLRP messages occurs over a TCP channel, which is a connection-oriented transport

protocol. As a consequence, the first step in any client-reader communication is

always connection establishment.

2.2 LLRP Messages

LLRP messages are the protocol data units by which a Client controls Reader

operation. A Client can send messages to perform one of the following:

9 Query Reader Capabilities

22

o Control the Reader's air protocol inventory and RF operations

" Control the tag access operations performed by the Reader

" Query/Set Reader configuration, and close the LLRP connection

Messages sent by a Client can change a Readers state and, since state consistency

is essential for the system to function properly, all Client messages must be acknowl-

edged from the Reader. Consequently, Reader messages are primarily responses to

Client messages. Additionally, Readers can send the following messages:

" Reports from Reader to Client. Reports include Reader device status, tag data,

RF analysis report

" Errors. Reader responds with a generic error message when it receives an un-

supported message type

An LLRP compliant Client must be capable of sending all Client messages defined

in the LLRP specification and receive all Reader messages. Similarly, LLRP compli-

ant Readers must handle Client messages properly and be able to send all Reader

messages. As defined in the LLRP specification a Message contains the following:

" Version Value

" Message Type

" Message ID

" A variable number of optional or mandatory Parameters

This implementation defines all LLRP messages using an object model and can,

therefore, be used to implement both Client and Reader logic. Each message is

implemented as a concrete class, which implements the ILlrpMessage interface. The

structure of the Message classes, which is common for all Messages, is described below:

23

Each LLRP Message class contains the appropriate Parameters, as defined in the

LLRP specification. Parameters are objects which implement the ILlrpParameter in-

terface. A valid Message can be constructed by passing in all the mandatory and/or

optional Parameters to the Message constructor. To ensure data encapsulation, Pa-

rameters are defined as private member variables and are made accessible as public

properties. Properties are a built-in mechanism in C#, which allows access to the data

fields through get/set methods. Message Parameters can be accessed and modified

at any time after a Message is constructed.[9]

In addition to Parameters, Message classes contain a private member variable of

type MessageEncoding. The MessageEncoding class represents the binary encoding

of the Message and provides methods for accessing and setting the Message header

information, i.e. version value, Message type and Message ID.

2.3 LLRP Parameters

LLRP Parameters are the mechanism by which Messages communicate the details

of LLRP operation. As defined in the LLRP specification each Parameter contains

the following:

9 Parameter Type

9 Individual Fields or Sub-parameters

The structure of LLRP Parameters in this implementation is similar to LLRP Mes-

sages. Each LLRP Parameter is implemented as a concrete class which implements

the ILlrpParameter interface. Similar to Messages, Parameters contain the appropri-

ate fields or sub-Parameters and provide the same construction and access methods.

There are two different encodings for LLRP Parameters, thus two classes to repre-

sent the binary encoding: TLVEncoding and TVEncoding. All Parameters include a

field of one of the two encoding types. Both Parameter encoding classes implement

24

the ParameterEncoding interface. All LLRP Parameters implement the ILlrpParam-

eter interface, which defines a single method called GetParameterEncoding(. The

GetParameterEncoding() method returns an object of type ParameterEncoding.[9]

2.4 Current LLRP Client

The Client implementation provides functionality for both initiating and accepting

a connection. The Client can start listening for a connection on a port that is specified

by the user. The GUI also allows a user to specify the IP address and port number

of a Reader and attempt to initiate a connection. In order to establish a connection

the specified Reader must be listening for incoming connections.

After a TCP connection is established the Reader must reply with a status report

Message. The report must include a ConnectionAttemptEvent Parameter and should

indicate connection success if the TCP connection was established successfully.

The Client implementation uses asynchronous operations to communicate with

Readers. When the Client is set to listen for incoming connections it starts an asyn-

chronous listen operation, using the build-in asynchronous operations of the TcpLis-

tener class, which are provided by the .NET framework. The asynchronous listen

operation specifies a Callback method, which is called upon a connection attempt.

The OnConnect(callback method is called once a TCP connection between the

Client and a Reader is established. The Client then starts an asynchronous Read

operation, waiting for a ReaderEventNotification Message from the Reader. If this

operation times out, an incorrect Message is received, or the status report indicates

an unsuccessful connection, then the TCP Connection is terminated.

An LLRP Client would normally connect to and control the operation of multiple

Readers. This implementation, however, currently only supports a single Reader. The

GUI allows the user to initiate a connection to only a single Reader. Additionally, if

25

the Client is in listening mode, once the Client accepts a connection it stops listening

and ignores any other connection attempts.[91

2.5 Characteristics of the Binding Framework

Our framework serializes top-level objects according to the specifications of the LLRP

binary messages and parameters. It also validates the produced XML elements against

the LLRP data model. The use of this framework provides a data serialization mecha-

nism at the reader's side and allows for easy and efficient data update when simulating

the RFID Network. As RFID technology continues to be more widely adopted, it be-

comes imperative to standardize the way information is stored at the reader's side.

A standard interface will allow RFID systems to be designed without dependence on

vendor proprietary interfaces and will simplify their implementation. It is envisioned

that LLRP will soon be adopted as the standard Reader - Client interface.

The implementation of the proposed framework was oriented towards reducing

the complexity of LLRP, which primarily lies in the binary nested format used for

representing LLRP Messages and Parameters. Our system uses the nested object

model that is used to represent all the Messages an Parameters defined in the LLRP

Specification. A Serialization module converts Message and Parameter binary objects

to XML format, abstracting in this way the low level details of the LLRP interface.

26

Chapter 3

The Binding Framework

In this Chapter we describe the design and implementation of the XML binding frame-

work for the LLRP Protocol. This framework serializes top-level objects according

to the schema of the LLRP binary messages and parameters. It also validates the

produced XML elements by checking that they conform to the LLRP schema. In

the following sections we present the big picture of the system, and we describe the

serialization procedure followed by a way to validate the results.

3.1 The Big Picture

In Figure 3-1 we see the big picture of the system. The LLRP client and the reader

exchange messages in binary format. The binary messages are fed in the system

(XML Serialization box in Figure 3-1). The system also takes an LLRP schema as

an input (xsd file) and outputs an XML object (XElement)that corresponds to the

encoded message or parameter. After the XML object is created, it is fed in the

validation unit in order to make sure that it conforms to the LLRP schema.

27

Top-Leval
Message/Parameter
ninWary

Top-Level

Messae/Pagrmet"r

m Bimryxsd File

Figure 3-1: The Big Picture of the LLRP Binding Framework

3.2 LLRP Schema

For the purposes of our implementation we use the LLRP schema from the LLRP

toolkit [8]. This is a W3C XML Schema that describes an XML format for a high-

level, platform independent encoding of LLRP binary messages. XML-aware editors

are able to use this schema to facilitate editing of XML messages. Instance documents

can be archived in revision control systems, exchanged between developers, or used as

part of a document-oriented API or web service for accessing LLRP readers. LLRP-

XML instance documents or fragments are also ideal for quoting in tutorials and other

documentation such as test plans.

According to the schema, every message is an XML root node with the name of

the corresponding message as a header name. Every top-level message must have

the MessageID as a required attribute and the Version as an optional attribute.

The message header attribute group, headerAttrs, is shown in in Figure 3-2. The

MessagelD must be of type "unsigned integer" (a 32-bit unsigned integer, encoded

using 4 bytes) and the Version must be of type "unsigned short integer" (a 16-

28

<xs:attributeGroup name="headerAttrs">

<xs:attribute name="MessageID" type ="xs:unsignedInt"

use="required"/>

<xs:attribute name="Version" type="xs:unsignedShort" />

<!-- overrides for negative testing only -- >
<xs:attribute name="Reserved" type ="xs:unsignedInt"/>

<xs:attribute name="Length" type ="xs:unsignedShort"/>

<xs:attribute name="TypeID" type ="xs:unsignedShort"/>

</xs:attributeGroup>

Figure 3-2: Message header attribute group

<xs:attributeGroup name="paramAttrs">

<!-- overrides for negative testing only -- >
<xs:attribute name="Reserved" type ="xs:unsignedInt"/>

<xs:attribute name="Length" type ="xs:unsignedShort"/>

<xs:attribute name="TypeID" type ="xs:unsignedShort"/>

</xs:attributeGroup>

Figure 3-3: Parameter header attribute group

bit unsigned integer, encoded using 2 bytes). The attributes Reserved, Length, and

TypeID are used for negative testing and are not included in our implementation.

In the same fashion, every high level parameter must have a parameter header

attribute group which is called paramAttrs. Figure 3-3 shows the declaration of the

parameter attributes.

All the messages are defined as top-level elements in the schema. An example of a

top-level element is the ADD-ROSPEC message. The definition of this message in the

schema is shown in Figure 3-4. As every message, this element has a header attribute

group. The only element that this message contains is the ROSpec parameter. The

definition of this parameter is shown in Figure 3-5. To define this parameter we need

the values of the ROSpecID and Priority variables. Also we need the parameters

CurrentState, ROBoundarySpec, AISpec, RFSurveySpec, which are also defined in

the schema. The parameters that contain other parameters in their body appear in

the schema as complextypes. The parameters that do not contain nested parameters

29

<xs :complexType name="ADD_ROSPEC">

<xs:sequence>
<xs:element name="ROSpec" type="llrp:ROSpec" />

</xs:sequence>

<xs:attributeGroup ref="llrp:headerAttrs"/>

</xs: complexType>

Figure 3-4: Definition of ADD-ROSPEC message

<xs: complexType name="ROSpec ">
<xs:sequence>

<xs:element name="ROSpecID" type="xs:unsignedInt" />
<xs:element name="Priority" type="xs:unsignedByte" />
<xs:element name="CurrentState" type="llrp:ROSpecState" />
<xs:element name="ROBoundarySpec" type="llrp:ROBoundarySpec" />
<xs: choice maxOccurs="unbounded" >
<xs:element name="AISpec" type="llrp:AISpec"/>

<xs:element name="RFSurveySpec" type="llrp:RFSurveySpec'"/>

<xs:element name="Custom" type="llrp: Custom" minOccurs="O"
maxOccurs="unbounded" />

<xs:any namespace="##other" processContents="lax" minOccurs="O"
maxOccurs="unbounded"/>

</xs: choice>

<xs:element name="ROReportSpec" type="llrp:ROReportSpec" minOccurs="O" />
</xs:sequence>
<xs:attributeGroup ref="llrp:paramAttrs"/>

</xs: complexType>

Figure 3-5: Definition of ROSpec parameter

appear as simpletypes. Simpletypes usually contain an enumeration. An example of a

simpletype parameter is ROSpecState, and its definition is shown in Figure 3-6. This

parameter has an element of type string which can take one of the values "Disabled,"

"Active," or "Inactive."

3.3 Serialization

For every type of top-level message or parameter we have an XElement constructor

class. All these classes contain a Serialize method which takes a MessageEncoding or

ParameterEncoding as an argument. In this method, we retrieve the sub-elements of

30

<xs:simpleType name="ROSpecState">

<xs:restriction base="xs:string">

<xs:enumeration value="Disabled"/>

<xs:enumeration value="Active"/>
<xs:enumeration value="Inactive"/>

</xs:restriction>

</xs:simpleType>

Figure 3-6: Definition of ROSpecState parameter

the "encoding," and we create an XElement following the schema and using Xml.Linq.

As we saw in the big picture in Figure 3-1, our system takes an encoded message or

parameter as an input. This MessageEncoding or ParameterEncoding object is passed

to the LLRPFactory class which redirects this encoded message or parameter to the

corresponding top-level constructor class. The high level design of the Serialization

Process is shown in Figure 3-7.

Object-
STop-Level Ge,,esageancov
Mesme/ by W0
IrParameter

GetLLSPtement(I
6#tillrpftramietcN

Rut rsive o a

serializeo xnlemant

Top Level Messages

Serializes) Sernalize() Serialize()
Low Level Parameter
Constructorse
Simpletypes

Figure 3-7: Serialization Process

One detail that makes the Serialization complicated is the fact that every message

or parameter might contain nested messages or parameters. Our design treats these

31

cases effectively as our top-level constructor classes call the serialize methods of each

other repeatedly until all the levels of nested messages or parameters are serialized

(Figure 3-7). All the Serialize methods return an object of type XElement. Conse-

quently, the nested messages or parameters are constructed independently and the

returned XElement object is appended in the appropriate XML node of the higher

level message/parameter.

3.3.1 Top Level Messages

As we mentioned in the previous section, there is a separate constructor class for every

type of message. The name of each constructor class is the name of the corresponding

class concatenated with "_XML " (See Appendix A.2 for more details). As an example,

we present the constructor class for an ADD-ROSPEC message.

As we saw in Figure 3-4, ADD-ROSPEC contains a ROSpec parameter. As we

see in the code of Figure 3-8, we extract the ROSpec parameter and then give a

call to the Serialize method of ROSpec-XML in order to get the nested XElement

roSpec. This roSpec is then added to the root of our initial XElement which is the

XML encoding for the ADD-ROSPEC message. The class diagram for the messages

is shown in Appendix A.3.1.

32

public class ADDROSPECXML

{
public static XElement Serialize(MessageEncoding encoding)

{
XNamespace ns =

"http://www.llrp.org/ltk/schema/core/encoding/xml/1.0";
XElement root = new XElement(ns + "ADDROSPEC");

ADDROSPEC message = new ADDROSPEC(encoding);
ROSpec param = message.ROSpecParameter;

XElement roSpec = ROSpecXML.Serialize(
(TLVParameterEncoding)param.GetParameterEncoding());

root.Add(roSpec);

XAttribute id = new XAttribute("MessageID", encoding.MessageID);
root.Add(id);

Validator v = new Validatoro;

v.Run(xe);

return root;

}
}

Figure 3-8: The constructor class for an ADD..ROSPEC message

33

3.3.2 Parameters

The parameters are also constructed separately. There is a different constructor class

for every type of parameter which contains a Serialize (ParameterEncoding encod-

ing) method and returns an XElement object. In Figure 3-9 we see an example of

constructor class (ROSpecXML). The class diagram for the parameters is shown in

Appendix A.3.2.

public class ROSpecXML

{
public static XElement Serialize(TLVParameterEncoding encoding)

{
XNamespace ns =

"http: //www.llrp.org/ltk/schema/core/encoding/xml/1.0";

XElement root = new XElement(ns + "ROSpec");

ROSpec param = new ROSpec(encoding);

XElement roSpecID = new XElement(ns + "ROSpecID");

roSpecID.Value = param.ROSpecID.ToStringo;

XElement priority = new XElement(ns + "Priority");
priority.Value = param.Priority.ToStringo;

XElement currentState = ROSpecStateXML.Serialize(encoding);

XElement roBoundarySpec = ROBoundarySpecXML. Serialize(encoding);

root . Add(roSpecID);

root.Add(priority);
root.Add(currentState);

root.Add(roBoundarySpec);

return root;

}
}

Figure 3-9: The constructor class for a ROSpec parameter

34

3.3.3 SimpleTypes

The parameters that do not contain nested parameters appear as simpletypes. We

already saw an example of the simpleType parameter ROSpecState in Figure 3-6.

All the simpletypes have their own constructor classes. The Serialize() method of

these classes works in the same fashion as the Serialize() method of the parameters.

The only difference is that this method cannot be called outside the higher level

constructor classes. This is because the simple types just add complexity to the

messages or parameters but cannot exist by themselves as objects of a certain type.

An example of the ROSpecState simpletype constructor class is shown in Figure 3-10.

The class diagram for the simpletypes is shown in Appendix A.3.3.

private static XElement Serialize(TLVParameterEncoding encoding)
{

XNamespace ns =

"http: //www. llrp. org/ltk/schema/core/encoding/xml/1. 0";
XElement root = new XElement(ns + "CurrentState");

ROSpec param = new ROSpec(encoding);
State data = (State) param.CurrentState;

root.Value = data.ToStringo;
return root;

}

Figure 3-10: The constructor class for a ROSpecState simpletype

3.4 Validation

The validation mechanism provides a way to test whether the XML objects created

by our serialization methods are valid. The validator contains a Run() method that

takes an XElement object as an argument. The validator takes an xsd file with the

LLRP schema and checks whether the input conforms to the schema. The code for

the validation unit is shown in Appendix B. The validator also serves for debugging

purposes as it can validate any complex type of message or parameter.

35

3.5 Testing

3.5.1 Message Tests

All messages are tested in individual unit tests. In these units tests we create new

instances of messages, assign them random values, encode them in binary, and then

serialize them to XML. The test passes if the resulted XElement that corresponds to

the message passes the validation procedure that we described earlier. Figure 3-11

illustrates a template code for testing the ADD-ROSPECXML constructor class.

class ADDROSPECTest
{

public boolean void Run()

{
ADDROSPEC myMsg = new ADDROSPEC();
MessageEncoding me = myMsg.GetMessageEncodingo;

XElement xe = LLRPFactory.GetLLRPElement(me);

Validator v = new Validatoro;
return(v.Run(xe));

}
}

Figure 3-11: A simple test case for ADDROSPECTest simpletype

As we see in Figure 3-11, a new instance of type ADDROSPEC is created. The

message is then encoded and passed to the LLRPFactory module. The XML object is

stored in xe and the validator runs against it. The test passes if the validator returns

true. The XML view of xe is shown in Figure 3-12.

3.5.2 Test Manager

We input all the test cases in a test Module and run tests against all message types.

The test manager reports if there are any types of messages with corresponding XML

objects that do not conform to the schema.

Testing of the individual parameters is not necessary because they are contained

36

<ADDROSPEC Version="1" MessageID="1">
<ROSpec>

<ROSpecID>1</ROSpecID>
<Priority>O</Priority>
<CurrentState>Disabled</CurrentState>
<ROBoundarySpec>

</ROSpecStartTrigger>
<ROSpecStopTrigger>

<ROSpecStopTriggerType>Duration</ROSpecStopTriggerType>

<DurationTriggerValue>0</DurationTriggerValue>
</ROSpecStopTrigger>

</ROBoundarySpec>

<AISpec>
<AntennaIDs>1 2 3 4</AntennaIDs>

<AISpecStopTrigger>

<AISpecStopTriggerType>Null</AISpecStopTriggerType>
<DurationTrigger>O</DurationTrigger>

</AISpecStopTrigger>

<InventoryParameterSpec>
<InventoryParameterSpecID>1</InventoryParameterSpecID>

<ProtocolID>EPCGlobalClasslGen2</ProtocolID>
</InventoryParameterSpec>

</AISpec>

</ROSpec>
</ADDROSPEC>

Figure 3-12: The XML view of ADDROSPEC

37

in messages and are being tested when the message is being tested. Note that the

validation procedure is being processed at the end of the serialization process of any

parameter or message, and so our testing is restricted to high-level testing, in the

sense that top-level elements are being tested.

38

Chapter 4

Discussion and Future Work

4.1 Discussion

Developing the XML Binding Framework for the Low Level Reader Protocol (LLRP)

involved crucial design decisions. Below are the advantages of handling the received

data in XML:

Ease of Implementation

The object model allows for an easy to develop and robust Framework. Using

the abstraction of the LLRP Library [9], we managed to create a mechanism that

decrypts the binary encoded messages easily and produces an XML object. Using

Xml.Lirnq Library we managed to serialize nested messages and parameters in an

efficient way. Every nested parameter is just another XElement node which is inserted

in the appropriate node of the larger XElement tree structure.

Advantages of XML Serializing

The structured nature of an LLRP message or parameter allows for an easy XML

serialization process. When parsing XML, less expertise are needed, and, as such,

broader adoption is enabled. The use of XPath or XQuery would also allow fast

searching through an XML encoded Message and could allow Messages to be pre-

processed before converting the XML into the object model. Converting a message at

39

the reader's side into XML allows for a better view of the object and easy to modify

data for testing/debugging purposes.

Error handling

In our implementation, we made sure that all the mandatory fields are being

checked, and all the levels of nested parameters are validated against the schema.

"Bad" encodings are treated in a user friendly manner, and the validation describes

the exact misinterpretation of the schema.

4.2 Future Work

4.2.1 Optional Fields

Some of the optional fields are not included in the parameter constructor classes.

These are the parameters under the AirProtocolSpcic namespace. The implementa-

tion of these optional fields will complete our implementation.

4.2.2 Graphical User Interface

The goal of this implementation was simply to illustrate how the LLRP library can

be used to develop a Serialization Framework. As a future extension a GUI could

provide us with a better view of the messages being passed from the tags to the read-

ers. Additional functionality could include handling multiple Readers and providing

ways to automate Reader control. Readers can be controlled to send status reports

either periodically or triggered by some event. These reports can include the XML

objects out of the messages, the readers handle. The Client could provide logic to

automatically process Reader responses and perform different actions depending on

Reader status.

40

4.2.3 Auto-generated Message & Parameter Constructor Classes

Using the LLRP schema it would be possible to create a module that would auto-

matically generate all Message and Parameter classes, since the class structure is

similar across Messages and Parameters. This would make the implementation of an

LLRP library simpler and more robust. Possible future changes in the LLRP speci-

fication would be reflected in the schema and would not require any changes in the

code. Moreover, the auto-generation module could be modified to provide Parameter

Range checking and improved error checking without the need to tediously go through

each Message and Parameter class.

41

42

Chapter 5

Conclusions

This Master of Engineering Thesis describes the design, implementation and testing

of an XML binding framework for the Low Level Reader Protocol (LLRP). This

framework serializes top-level objects according to the schema of the LLRP binary

messages and parameters. It also validates the produced XML elements by checking

that they conform to the LLRP schema. The use of this framework provides a data

serialization mechanism at the reader's side and allows for easy and efficient data

update when simulating the RFID Network. As RFID technology continues to be

more widely adopted, it becomes imperative to standardize the way information is

stored at the reader's side. A standard interface will allow RFID systems to be

designed without dependence on vendor proprietary interfaces and will simplify their

implementation. It is envisioned that LLRP will soon be adopted as the standard

Reader - Client interface.

The implementation described in this Thesis was oriented towards reducing the

complexity of LLRP, which primarily lies in the binary nested format used for repre-

senting LLRP Messages and Parameters. Our system uses the nested object model

that is used to represent all the Messages an Parameters defined in the LLRP Spec-

ification. A Serialization module converts Message and Parameter binary objects to

XML format, abstracting in this way the low level details of the LLRP interface. This

LLRPXML library can be a useful toolkit in developing LLRP applications, without

requiring the investment of too much time and effort in dealing with data handling

43

as all messages and parameters will be converted to XML and then edited/updated

in the XML environment.

44

Appendix A

Design Details

A.1 Casing Conventions

The following conventions are used for naming the various classes of the LLRP library:

ALLCAPS_ UNDERSCORE type is used for LLRP message names (Top-Level

Elements), e.g. GET-READERCAPABILITIES

Camel casing is used for LLRP Parameter and data field names. e.g. ROSpec

Interfaces use camel casing and are prefixed with an "I," e.g. IConfigGetParameter.

In this Binding Framework we name all the classes that construct the XML Se-

rialization with the name of the class of the corresponding object appended with

"XML."

A.2 Namespaces

LLRPXML.Messages.AccessOperation

Messages that query Reader Capabilities.

" GETREADERCAPABILITIES

" GETREADERCAPABILITIES.RESPONSE

45

LLRPXML.Messages.ReaderOperation

Messages that control the Readers air protocol inventory and RF operations.

" ADDROSPEC

" ADD-ROSPEC-RESPONSE

" DELETEROSPEC

" DELETE-ROSPECRESPONSE

" START-ROSPEC

" START-ROSPEC-RESPONSE

" STOP-ROSPEC

" STOPROSPEC-RESPONSE

" ENABLE-ROSPEC

" ENABLEROSPECRESPONSE

" DISABLE-ROSPEC

" DISABLEROSPECRESPONSE

" GETLROSPECS

* GETROSPECSRESPONSE

LLRP-XML.Messages.AccessOperation

Messages that control the tag access operations performed by the Reader.

* ADD-ACCESSSPEC

" ADD-ACCESSSPECRESPONSE

" DELETEACCESSPEC

46

" DELETEACCESSSPECRESPONSE

* ENABLEACCESSSPEC

" ENABLEACCESSSPEC-RESPONSE

" DISABLE-ROSPEC

" DISABLEROSPECRESPONSE

" GETACCESSSPECS

" GETACCESSSPECSRESPONSE

LLRPXML.Messages.ReaderDeviceConfiguration

Messages that query/set Reader configuration, and close LLRP connection.

" GETREADERCONFIG

" GETREADERCONFIGRESPONSE

" SETREADERCONFIG

" SETREADERCONFIGRESPONSE

" CLOSE-CONNECTION

" CLOSE-CONNECTIONRESPONSE

" DISABLEROSPEC

" DISABLEROSPECRESPONSE

" GETACCESSSPECS

" GET-ACCESSSPECS-RESPONSE

47

LLRP_-XML.Messages.ReportsNotificationsKeepalives

Messages that carry different reports from the Reader to the Client. Reports include

Reader device status, tag data, RF analysis report.

" GET-REPORT

" ROACCESSREPORT

" READEREVENTNOTIFICATION

" KEEPALIVE

" KEEPALIVEACK

" ENABLEEVENTSANDREPORTS

LLRPXML.Messages.CustomExtension

Messages that contain vendor defined content.

* CUSTOMMESSAGE

LLRPXML.Messages.Errors

Generic error messages.

* ERROR..MESSAGE

LLRPXML.Parameters.ReaderOperation

Parameters for Messages that control the Readers air protocol Inventory and RF

operations.

LLRPXML.Parameters.AccessOperation

Parameters for Messages that control the tag access operations performed by the

Reader.

48

LLRP-XML.Parameters.ReaderDeviceConfiguration

Parameters for Messages that query/set Reader configuration, and close LLRP con-

nection.

LLRPXML.Parameters.ReportsNotificationsKeepalives

Parameters for Messages that carry different reports from the Reader to the Client.

LLRPXML.Parameters.ReportsNotificationsKeepalives.ReaderEventNotificationData

Parameters for Messages that carry different event notification reports from the

Reader to the Client.

LLRPXML.Parameters.ReportsNotificationsKeepalives.TagReportData

Parameters for Messages that carry different tag data reports from the Reader to the

Client.

LLRPXML.Parameters.ReaderDeviceCapabilities

Parameters for Messages that query Reader capabilities.

LLRP-XML.Parameters.ReaderDeviceCapabilities.GeneralDeviceCapabilities

Parameters for Messages that query general device capabilities of a Reader.

LLRP-XML.Parameters.ReaderDeviceCapabilities.RegulatoryCapabilities

Parameters for Messages that query regulatory device capabilities of a Reader.

LLRPXML.Parameters.General

General Parameters.

LLRP _XML.Parameters.AirProtocolSpecific.C 1G2

Parameters for the C1G2 air protocol.

LLRPXML.Parameters. CustomExtension

Parameters for Messages that contain vendor defined content.

49

LLRPXML.Parameters.Errors

Parameters for generic error Messages

50

A.3 Class Diagrams

A.3.1 Messages

I - 1 L

Figure A-1: Class Diagram for the Message-generator classes

51

A.3.2 Parameters

.. -

.r4fa- M4, y O'f-', ff

f4 , AVVIV.%W

4),
zic,

Ai Wi 0-

Po-

--- -- ------

Now,,

4v 1414-

Figure A-2: Class Diagram for the Parameter-generator classes

52

A.3.3 Simpletypes

Figure A-3: Class Diagram for the Simple Types

A.3.4 Tests

j

Figure A4: Class Diagram for the Test Classes

53

54

Appendix B

Validation Class

Validator.cs

using System; using System.Collections.Generic;

using System.Text;

using System.Xml.Linq;

using System.Xml.Schema;

using System.IO;

using System.Xml;

using System.Web;

namespace LLRPXML.XMLFactory {

class Validator

{

private bool error = false;

private bool warning = false;

private string help = string.Empty;

private List<string> helpLinks = new List<string>();

private string message = string.Empty;

private string messageHtml = string.Empty;

private DateTime testEndTime = System.DateTime.Now;

55

private DateTime testStartTime System.DateTime.Now;

private string xmlTagAndPayload = string.Empty;

private string xmlTagAndPayloadInHtmlForm = string.Empty;

private string xmlTagName = string.Empty;

private string schemaPath ="C:\\Users\\net\\Documents\\Visual Studio

2008\\Dimpoul\\LTK\\Definitions\\Core\\";

// <summary>

/// This test passes if and only if the document is

// valid as an EPCISDocument according to the schema

// that is specified in Section 3.2 (llrp-lxO.xsd)

/ </summary>

public void Run(XElement epcisDocument)

{

try

{

testStartTime = System.DateTime.Now;

help = "EPCISDocument schema validation failed. " +

"This test passes if and only if the document is " +

"valid either as an EPCISDocument according to " +

"the schema that is specified in Section 9.5 of " +

"the EPCIS 1.0.1 spec, or as an EPCISQueryDocument " +

"according to the schema specified in Section 11.1 " +

"of the EPCIS 1.0.1 spec.";

helpLinks.Add("http: //www.epcglobalinc. org/");

helpLinks.Add("http: //www.epcglobalinc. org/standards/epcis");

message = "EPCISDocument schema validation failed. ";

if (epcisDocument == null) return;

56

XmlSchemaSet epcisSchemaSet = new XmlSchemaSetO;

epcisSchemaSet.Add(schemaPath + "llrpdef.xsd");

epcisSchemaSet.Add(schemaPath + "llrp-lxO.xsd");

SchemaValidation schemaValidation =

new SchemaValidation(epcisSchemaSet);

if (schemaValidation.Validate(epcisDocument.ToStringo) == false)

{

System.Console.WriteLine("Validation did not succeed");

error = true;

messageHtml = message + schemaValidation.ErrorMsg + ".

xmlTagName = "EPCISDocument";

}

else

f

System.Console.WriteLine("Validation passed");

}

testEndTime = System.DateTime.Now;

}

catch (Exception e)

error = true;

System.Console.WriteLine("An exception occured");

messageHtml = e.Message;

}

}

/// <summary>

57

// The name of the tag being validated

// </summary>

public string XmlTagName { get { return xmlTagName; } }

/// <summary>

// The name of the tag being validated and the payload

/// </summary>

public string XmlTagAndPayload { get { return xmlTagAndPayload; } }

// <summary>

// The name of the tag being validated and the payload

/// - formatted in Html

// </summary>

public string XmlTagAndPayloadInHtmlForm

{ get { return xmlTagAndPayloadInHtmlForm; } }

// <summary>

// The message formatted in Html

// </summary>

public string MessageHtml { get { return messageHtml; } }

// <summary>

// Error value is true if validation produces error

// </summary>

public bool Error { get { return error; } }

// <summary>

// Warning value is true if validation produces warning

// </summary>

public bool Warning { get { return warning; } }

58

// <summary>

// Clock time at test start

// </summary>

public DateTime TestStartTime { get { return testStartTime; } }

/// <summary>

// Clock time at test end

// </summary>

public DateTime TestEndTime { get { return testEndTime; } }

// <summary>

// Validation message

// </summary>

public string Message { get { return message; } }

// <summary>

// Help message

// </summary>

public string Help { get { return help; } }

// <summary>

// Links to help resources

// </summary>

public List<string> HelpLinks { get { return helpLinks; } }

private class SchemaValidation

{

private XmlSchemaSet epcisSchemaSet;

private StringReader epcisEventDataReader;

59

private XmlReaderSettings validationSettings;

private bool errorsFound = false;

private StringBuilder errorDetail = new StringBuildero;

private string errorMsg = string.Empty;

public string ErrorMsg { get { return errorMsg; } }

public SchemaValidation(XmlSchemaSet schemaSet)

{ epcisSchemaSet = schemaSet; }

public bool Validate(string epcisEventData)

{

epcisEventDataReader = new StringReader(epcisEventData);

validationSettings = new XmlReaderSettingso;

validationSettings. Schemas. Add(epcisSchemaSet);

validationSettings.ValidationType = ValidationType.Schema;

validationSettings.ValidationFlags

I= XmlSchemaValidationFlags.ProcessInlineSchema;

validationSettings.ValidationFlags

J= XmlSchemaValidationFlags.ReportValidationWarnings;

validationSettings.ValidationEventHandler +=

new ValidationEventHandler(ValidationCallback);

XmlDocument docXml = new XmlDocumento;

XmlReader validator =

XmlReader. Create (epcisEventDataReader, validationSettings);

docXml.Load(validator);

validator.Close();

60

if (errorsFound)

{

System.Console.WriteLine("Errors Found");

errorMsg = errorDetail.ToStringo;

return false;

}

else

return true;

}

private void ValidationCallback(object sender,

ValidationEventArgs args)

string singleError = String.Empty;

if (args.Severity == XmlSeverityType.Warning)

singleError = "WARNING: ";

else if (args.Severity == XmlSeverityType.Error)

{

singleError = "ERROR: ";

errorsFound = true;

}

singleError += args.Message;

errorDetail.AppendLine(singleError);

Console.WriteLine(singleError);

}

}

}

}

61

62

Bibliography

[1] EPCGlobal, The EPCGlobal Architecture Framework., EPC Global Standard

Specification, July 2006.

[2] EPCGlobal, The application Level Events (ALE) Specification, Version 1.0 EPC

Global Standard Specification, 2005.

[3] EPCGlobal, Object Naming Service (ONS), Version 1.0 EPC Global Standard

Specification, 2005.

[4] EPCGlobal, EPC Information Services (EPCIS), Version 1.0 EPC Global Stan-

dard Specification, April 2007.

[5] EPCGlobal, Low Level Reader Protocol (LLRP), Version 1.0 EPC Global Stan-

dard Specification, April 2007.

[6] Ane Fabo, Design and Implementation of an Application for Management and

Control of RFID readers, May 2008

[7] Sam Polniak, The RFID Case Study Book

[8] John R. Hogerhuis, http://sourceforge.net/projects/llrp-toolkit/, LLRP Toolkit,

2007

[9] Fivos Constantinou, An Object-Oriented Implementation of a Low Level Reader

Protocol (LLRP) Library, MIT June 2007

63

