
Inky: Internet Keywords with User Feedback

by

Victoria H. Chou

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2008

@ Victoria H. Chou, MMVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

A uthor v.. . . :
Department of Electrical Engineering and Computer Science

February 1, 2008

Certified by- -.
Robert C. Miller

......-- . .
Associate Professor

S Thesis Supervisor

Accepted by

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

LIBRARIES

..j.... - . -- -.=-. .. • . - . -

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

ARCHIV S

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

NOV 13 2008
k~--111

Inky: Internet Keywords with User Feedback

by

Victoria H. Chou

Submitted to the Department of Electrical Engineering and Computer Science
on February 1, 2008, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The web today is accessed primarily through graphical user interfaces although some
of its functionality can be more efficiently invoked through a command line interface.
This thesis presents Inky, a sloppy command line for the web. This interface accepts
commands that may be out of order, have missing arguments, contain synonyms or
is otherwise sloppy and determines possible interpretations. It then presents these
interpretations to the user, who can then pick one to execute. The interpretations
are presented to the user as she types, providing responsive feedback on the state
of the system. Inky uses specification files that indicate how to recognize a type or
function in a command, how to display it to the user, and how to translate it into
code. It also contains an interaction window and a keyword engine that determines
the completions. This thesis argues that this interaction style is better for some func-
tionality than the standard website interface. It also explores whether the sloppiness
and feedback are useful in counteracting the negative effects of traditional command
line interfaces.

Thesis Supervisor: Robert C. Miller
Title: Associate Professor

Acknowledgments

I would like to thank Rob Miller for being an incredible research advisor. Thank you

for sharing your time and attention and for pulling me out of directional and technical

doldrums with your high inspiration and deep technical expertise.

I would also like to thank Greg Little, Max Goldman, Darris Hupp, Kevin Su,

and the other members of the User Interface Design group (and anyone else who sat

through one of my design discussions) for your invaluable help, your scintillating con-

versations, and your willingness to subject yourselves to bad early prototypes. Thank

you to my summer buddies, Lydia Chilton, Mariko Medlock, Prannay Budhraja, and

Brandon Pung for making the summer productive and enjoyable.

Thank you, Maria Rebelo, for providing delicious snacks to us poor hungry grad

students.

Finally, I'd like to thank my parents, Thomas Chou and Kuei-lin Tai, and my

brother, Victor. Thank you for always being supportive of my academic endeavors

and for providing constant love and encouragement.

Contents

1 Introduction 13

2 Related Work 19

2.1 Unix Shell 19

2.2 YubNub . 20

2.3 Search Fields . 21

2.4 Sloppy Commands 21

2.5 Koala 22

2.6 Quicksilver 23

3 User Interface Design 25

3.1 Overview of the Layout 25

3.2 Startup .. . 26

3.3 User Inputs 27

3.4 User Feedback 28

3.5 Executing Commands 31

4 Implementation 35

4.1 Overview 35

4.2 Representation of Types 36

4.2.1 Internal Representation 37

4.2.2 XML Specification for Types 38

4.3 Representation of Functions 42

7

4.3.1 Internal Representation

4.3.2 XML Specification for Functions

4.4 Keyword Engine

4.4.1 Parsing Specified Types and Functions

4.4.2 Command Interpretation Algorithm .

4.4.3 Post-processing

5 Evaluation

5.1 Field Study

5.1.1 Learnability

5.1.2 Suggestions

5.1.3 Synonyms

5.1.4 Order Independence

5.1.5 Accuracy

5.2 Keyword Engine Performance

6 Conclusion

6.1 Future Work

6.1.1 Improved Reminder Feature

6.1.2 Front-end for XML Editing

6.1.3 Hierarchy of Functions

6.1.4 Directed User Study

6.1.5 Algorithm Improvements

57

57

58

59

59

60

61

62

List of Figures

1-1 A comparison of a website's UI versus the information actually needed

for the functionality. 14

1-2 The Inky web command line interface. 15

2-1 The Quicksilver interface. 24

3-1 Inky's input and feedback areas. 26

3-2 Inky's display upon start up 26

3-3 Inky's feedback as input progresses. 29

3-4 Examples of argument feedback. 30

3-5 How Inky commands are selected and executed in run and submit modes. 34

4-1 A block diagram of Inky's major components. 36

4-2 Inky's command matrix. 50

4-3 Inky enumerates the possible arguments and sums up the score vectors. 52

5-1 Processing time versus command length for different sets of types and

functions. 63

List of Tables

3.1 Examples of different kinds of arguments. 31

5.1 Time in milliseconds it took to process commands of different lengths

with different numbers of types and functions defined. 63

Chapter 1

Introduction

While the web is primarily a graphical user interface, some of its functionality can

be more efficiently achieved through a command line interface. Users often go to a

website to do a simple action they know how to do. For example, visitors to a travel

website would know what kind of reservation they want to make, what times they

want to travel, and where they want to go. Having been to such sites before, they

also already know what information the site needs in order to provide the service the

users want.

Under these conditions, the fastest way a user could convey this information would

be to simply type it out for the website. Unfortunately, most websites only offer a

menu or form based interface to access those services. As a result, even expert users

are forced to parse the website's UI and painstakingly fill in each field (Figure 1-1).

To alleviate this problem, this thesis presents Inky, a command line interface for

the web. It consists of a front-end window that can be invoked from a user's web

browser. Users type keywords into the window that express what they want to do.

For example, to search for flights from San Francisco to New York, some keywords

might be flight, san francisco, new york, search, etc. These keywords, which

form a keyword command, are processed by a back-end engine that creates possible

interpretations of the command along with executable code for the interpretations.

From the front-end, users can then execute the code corresponding to their desired in-

terpretation. The window also provides feedback on the interpreter's state by showing

Webafte Ul for maldng a reservation

BM Di

DEW14 2Ia A1200

baabwjiFlhu :1I F Mc arneomcu).ant tu eas.,

cet Rwn 261 Use CnmlOtck r ?adt mor the one mom

Conf Reun 346
Cmn RmM 397
CoAf Rown 0407
CowI Rmo 0451
Co# RAhow C451
COwftOMCS3

0o1 Coni Roomn G631.
Con Room C725
co Room C825
Coot Room C925
Sam. RmD 4 (Star
Sem iRm C449f*til KS v
Sew Room 0507

adeo Conkmwre Room 262

4v one r 0y r weedy r Cty Yewny r nM. ww dq cay

MWM bWbaWE 4 1)wJ ~2M0
Itapa Dc (or-madoe r uraw rc d TtueaY r edwey r iwthu rsdy F, r sturC y

" a Or

Actual Inormatlo Entered *

Impoftant Meeting
9.00 am
Conf Room GW31

SDate. Duraon, nd peat Type use
heir dehul v~luA of today. I hour
and none.

Figure 1-1: A comparison of a website's UI

for the functionality.
versus the information actually needed

- -

users the top interpretations for the command as they enter it.

Inky

jemail vikki@mit.edu

M email vkkmitedu about

M view email

Figure 1-2: The Inky web command line interface.

By providing a command language for web functionality, Inky increases a user's

efficiency by letting him bypass a website's interface. Instead of having to enter
information into multiple fields or even having to go through multiple pages of fields,
a user can just type all the information he has into Inky's command line. To get
to the form shown in Figure 1-1, a user would only have to type reserve g925 9am
important meeting. Even if a user just wants to go to a website and enter something

into a single text box, the user has to remember the URL of the website or search
for it with a search engine or through a list of bookmarks. With Inky, he just has
to type in a word that relates to the website and what he wants to enter into that
site's form, skipping the intermediate step. For example, if the user needed to define
some term, instead of having to enter http://www. dictionary. reference. com into
an address bar, waiting for the page to load, locating the site's search box, and
submitting fastidious to it, a user could just type define fastidious into Inky
and wait for the resulting page to load.

Using a command language also means users can communicate commands to oth-
ers more easily as they will only have to send the others a single string instead of a
list of things to do through a website's GUI.

Inky lets users create custom functions that could be an improvement over ex-
isting website functionality. Inky's custom functions are written in Chickenscratch,
an extension to JavaScript that includes functions useful for manipulating webpages
(such as entering text into a text field, clicking buttons, inserting content) and web

: j ----------; ;- --i-:

1

browsing (such as going to a website, opening a new tab, fetching a website in the

background, etc) [1]. Through a custom function, Inky can access functionality that

would require many steps in the original website. For example, if a website's directory

search required the user to search for either first name, last name, or office number,

a user could write a custom function that did all three searches and combined the re-

sults on a new page. He can then call that function from Inky with a single command.

Since Inky's functions are related to websites, supporting Chickenscratch instead of

just JavaScript makes it easier for users to write new functions.

Inky mitigates some of the classic pitfalls of command line interfaces. From a us-

ability standpoint, command line interfaces are frowned upon because they force users

to remember what they need to type. In contrast, graphical user interfaces display

what functionality they have so users only need to recall what they want to do and

how to navigate to it from the presented options [2]. Inky gets around this by being a

sloppy command line and by displaying rich feedback to the user. For example, to get

to the form shown in Figure 1-1, a user could type reserve g925 9am important

meeting. He could also type book g925 9:00 am important meeting or 9am g925

important meeting reservation or even just 9am important meeting g925. This

is because Inky accepts commands that use synonyms, have different keyword order-

ings, or are missing keywords. Synonyms for making a reservation include reserve,

book, and reservation while synonyms for the time 9 am include 9am and 9:00

am. Ordering does not matter so reserve g925 9am important meeting and 9am

g925 important meeting reservation will both make a reservation at 9 am for

room g925. Finally, even though 9am important meeting g925 does not contain a

keyword for making a reservation, it works because Inky knows that the only func-

tionality that requires a time, a room, and a description is making a reservation.

Thus, Inky can still correctly interpret the command. Because Inky accepts these im-

precise, or sloppy, commands, Inky is a sloppy command line. Accepting these sloppy

commands greatly decreases a user's mental burden since the user doesn't have to

remember exact names or orderings for commands.

Inky provides feedback that displays possible command completions as the user

types. It also displays descriptions for any arguments the user still needs to provide

for each interpretation. Thus, users only need to recognize an interpretation from

the feedback and read off the missing arguments. This again reduces a user's mental

burden as she doesn't have to remember all of a function's arguments or a function's

name. The feedback also helps prevent errors as it describes what will happen when a

command is executed. This kind of visibility of the system's state is missing in most

other command line interfaces. Inky's sloppiness and rich visual feedback differentiate

it from previous web-related command lines.

Inky has been implemented as a Firefox extension built on top of Chickenfoot

[1]. It contains a keyword interpreter that takes sloppy commands and returns possi-

ble command interpretations. A command interpretation includes a way to visually

present the interpretation to the user and executable Chickenscratch code for the

interpretation. Inky also contains XML files that describe the functions a user can

call and the types that those functions use.

The rest of this thesis details the design and implementation of Inky. Chapter

2 describes related work in the area of command line and keyword interfaces. The

design of Inky's user interface is discussed in Chapter 3. Chapter 4 details the imple-

mentation of Inky's keyword engine, how the system defines types and functions, and

how types and functions are specified as XML. Design considerations for the XML

files are also discussed in that chapter. Chapter 5 presents data from evaluations of

Inky and discusses some of the ramifications of the results. Chapter 6 concludes with

future work that can be done on this project as well as a review of its contributions.

Chapter 2

Related Work

This chapter presents various existing command line and keyword interfaces. How

these interfaces relate to Inky is also discussed.

2.1 Unix Shell

The Unix shell is an example of a standard command line interface that reads in text

and converts it into calls to functions or programs [3]. In its command language,

a one-word name of the function always appears first, followed by any number of

arguments to that function. The shell then finds the correct function and executes

it, passing the arguments it received to the function. These functions usually require

the arguments to have been typed in a specific order. The Unix shell also let users

chain commands together by passing the output of one command as inputs to the

next command. However, these command chains are linear so a later command can

only use the output from a single previous command. The Unix command line is a

very efficient way to access a lot of powerful functionality. However, it is difficult for

novices to use since one needs to know the exact name of a function to call it, as

well as what arguments it needs and in what order. When it is given an incorrect

command, the shell simply tells the reader that the command could not be found,

making it hard for users to recover from that error. If users call a command with the

wrong arguments, the shell could give other error messages or even run a command

that was different from what the user intended. Inky tries to alleviate these problems

by showing users the state of the interpreter and by giving the users suggestions for

alternate commands.

2.2 YubNub

YubNub is a social command line for the web [4]. Its main site has a single text box

where users can enter in a command as well as some example commands. YubNub also

has a Firefox plugin that puts an equivalent text box at the bottom of users' Firefox

windows. YubNub's functionality is similar to that of many traditional command

lines. Like a Unix command, a YubNub command consists of a function's name

followed by arguments to that function. While the arguments do not have to be

typed in order, if a function has multiple arguments, the user has to specify the name

and value of each argument. For example, xe is a function that calculates an exchange

rate. It takes in a number, a starting currency, and an exchange currency. A command

that calls that function is xe -amount 1 -from USD -to EUR. Arguments can also

have default values and the results of function calls can be passed as arguments into

other function calls.

To help novices learn how to use YubNub, there are extensive lists of example

commands on its main site. It also supports the functions is, which brings users to

a webpage that lists all the YubNub commands, and man which takes in a function

name and displays what that function does and some example calls for that function.

Inky is more flexible than YubNub since it can take in sloppy commands. However, to

get this added flexibility, users have to define synonyms and types in Inky. Inky also

provides access to more powerful functionality since the backend uses Chickenscratch

instead of HTTP requests. Finally, like the traditional command lines it is based on,

YubNub does not provide users with any feedback on what their command will do

when it is executed.

2.3 Search Fields

Text search fields provide functionality based on text it is given. In many cases, the

search field used represents some function and the text typed in it represents the

argument. For example, if one goes to Dictionary.com and types fastidious in their

search box, one is effectively calling a get definition function on the argument

fastidious.

Firefox's Smart Keywords [5] builds off this by letting users associate keywords

with certain text fields. Afterwards, users can type that keyword into the Firefox

address bar followed by the text to put into that search box. This gives users a quick

way to access the search box's functionality. Keywords can also be associated with

bookmarks or bookmarklets [6]. Smart Keywords still requires users to remember

what keyword they chose for each function. It also cannot deal with functions that

take in multiple arguments, such as forms with multiple text fields.

Specific functionality from keywords is also becoming available from Google search

boxes [7]. For example, typing weather and then a zipcode or a city and a state will

bring up a small box at the top of the search results that display the location's current

weather and the forecast for the next three days. Google also provides information

about stocks from a stock symbol, maps from an address, and travel information

given a flight or an airport code followed by the word airport. Google searches are

very flexible in that it can correct for some unordered commands and commands with

synonyms or misspellings. If a user wants specific information that is not provided

through Google, the list of search results it returns may include a link to another

website that has the information the user wants.

2.4 Sloppy Commands

One of Inky's primary features is its ability to take in sloppy commands. An imple-

mentation of this was done as keyword commands in Chickenfoot and in Microsoft

Word [8]. Keyword commands have no syntax so the ordering of its keywords does not

matter. Commands can also have synonyms and nested functions. This work showed

that keyword commands are intuitive and could be useful in the web domain. It also

exposed that misinterpreted commands were a major issue. Inky attempts to solve

this by making the state of the interpreter more visible to users. In Chickenfoot's

keyword commands, context played a role in how commands were interpreted. As a

result, some misinterpretations happened because the website context changed. Inky

generally will not have that problem as its commands are independent of context.

Another implementation of sloppy commands translated keywords into Java code

[9]. This work gave algorithms for translating Keyword Commands into Java code

and evaluated the algorithms. The new algorithms worked for APIs of over 2000

functions whereas previous implementations were limited to 20 or so functions or to

a constrained context. Inky's engine for translating commands into code uses a slight

variation the bottom-up algorithm presented in this work. The few changes make the

algorithm a bit slower but help it provide more accurate interpretations.

2.5 Koala

Sloppy commands for the web appear in Koala [10]. Koala lets users create scripts of

sloppy commands that can be played back or shared with others. These commands

are all tied in to actions on webpages such as scrolling, clicking buttons and links,

and entering text.

Koala gives the user feedback on the interpreter by displaying a green box around

the website element that an action would be performed on and bolding the part of

the command that was used by the interpreter. It also provided the user with a list of

alternate interpretations in text form. If none of those interpretations were correct,

the user could edit the command or specify that a certain command needed to be

done by a human.

As Inky is made to execute only one command at a time, users cannot easily

write scripts for Inky as they can for Koala. However, since Inky commands are

only typed once and not read in from some source, it can give visual feedback to

the user dynamically as the user types. This dynamic feedback is primarily textual

and is similar to the feedback provided for the alternate interpretations in Koala.

Inky also provides this feedback for the primary interpretation. It has been shown

that providing a user with sentences describing the state of a configuration makes

users more confident about what they are doing and perhaps lets users work more

quickly and accurately [11]. As arguments in an Inky command are effectively a way

to configure a function, it makes sense to use a similar approach in Inky as the users

type the original command.

Inky has to translate commands into Chickenscratch and store the Chickenscratch

code in its interpretations. In contrast, the human-readable text is the script in

Koala and no other information is stored. Inky provides access to a wider range of

functionality than Koala as it isn't limited to standard website actions.

2.6 Quicksilver

Application launchers and shortcut applications are other examples of text-driven

user interfaces. These programs take keywords for files or applications and open

them. Several also have rich user feedback.

One such application is Quicksilver, a shortcut application [12]. Users start by

giving it some subject, which can be a folder, an application, or a file. Then users

provide an action to do on that subject. Finally, if the action requires an object, the

user will provide that as well. For example, if the chosen subject were an HTML file,

acceptable actions might be to view the webpage in a web browser or edit it in an

editing program. If one were renaming a file, the object would be the new filename.

Quicksilver does subsequence matching for all its arguments and is case-insensitive.

For example, one could type inky, iky, or even ny to indicate the file Inky. doc. This

allows users to type in shorter names for subjects, actions, or objects and thus be

more efficient. It also makes the keywords robust against some spelling errors.

Quicksilver also provides rich, dynamic feedback to the user. As the user types

in a subject, action, or object, Quicksilver shows the current best match along with

the possible other matches for what has been typed so far. As a result, as soon as

the user has typed enough for the top match to be what he wants, he knows he can

move on to the next argument, saving time and typing. Quicksilver also limits and

biases the possible matches based on what arguments it already has. Once the user

has chosen a subject, the action field has a default action for that subject along with

a list of possible actions that can be done on that subject (Figure 2-1). This way,

if the user simply wanted to perform the default action, he wouldn't have to type

anything extra. Furthermore, if he cannot remember the name of his desired action,

he can just select it from the list of possibilities.

Figure 2-1: The Quicksilver interface.

By providing a list of possible subjects and actions, Quicksilver allows users to

recognize what they want to do instead of having to recall it. While it still requires

some small amount of syntax (subject, action, object), there are labels in each box

specifying what goes where. Its subsequence matching further reduces a user's mental

load by limiting what he has to remember in his head. However, subsequence match-

ing does not help users who remember a different name for a subject that is not a

derivative of the correct name. For example, if there were a program that looked up

people's addresses called "Address Finder", location lookup would not match that

application in Quicksilver.

Quicksilver supports plug-ins that add new subjects and actions.

Chapter 3

User Interface Design

The goal of Inky is to provide access to website-related functionality with the effi-

ciency of a command line interface while mitigating the traditional pitfalls of that

interaction style. Inky models website-related functionality as functions and Inky

users should be able to specify a function to call as well as any arguments that func-

tion needs to run. In order to deliver this efficiency, Inky can be used entirely from

the keyboard, although it also accepts mouse input. Inky displays visual cues that

teach new users how to execute commands. It also finds and displays possible com-

mand interpretations to the user so the state of the system and the consequences of

a command are visible to the user. The flexible nature of the keyword language also

makes it easier for novices and infrequent users to use the interface.

3.1 Overview of the Layout

Inky appears in a browser as a pop up window. It is designed to be compact so that

users can view websites behind it and reposition it if it is blocking anything they need

to see.

Inky has two main areas: a text field for a user to input commands and a feedback

area that displays the state of the command interpreter to the user (Figure 3-1).

Clicking on the browser dismisses Inky, as does hitting the Esc key, since Inky

assumes that the user wanted to cancel the command. Since Inky is easy to start up,

Inplt k

limail vikklamitedu

M view emaii

Figure 3-1: Inky's input and feedback areas.

if such a dismissal was an error, it would be easy to undo.

3.2 Startup

Users type in a keyboard shortcut in order to start up Inky. Although it is cus-

tomizable, the default shortcut is Ctrl+Space, which can be typed with one hand

and is consistent with other keyword interfaces such as Spotlight in Mac OS X and

Quicksilver. New users can also start up Inky through the Tools menu.

The startup screen asks the user to type in a command and gives an example

of such a command (Figure 3-2). This example command changes each time the

window pops up. It also changes whenever the text field is blank after the user has

typed something. As a result, this example command teaches new users how to get

started and also slowly teaches them what commands are available to them.

Sinky

Please type in a command.

e.g. see csail reservations may 3 2007

Figure 3-2: Inky's display upon start up.

-

~..~ -* I~--- ------ -------~ ~.~~~~...-I----- -- -~; ;;-- I- --------------- ----------~-------~; - - ; :-- . -~----------- -;- -- ; ; -~--~ fl 4 1-

3.3 User Inputs

Users input text commands into a text field in order to access website functionality.

On startup, the focus is on the text field so that users can start typing immediately.

As they type, their command is sent to the keyword engine.

Commands contain function keywords that indicate the website functionality the

users want to access as well as argument keywords that indicate what arguments to

give to that function. For example, in order to reserve the room D463 at 3pm through

the CSAIL web form, a user might type reserve D463 3pm. The reserve keyword

indicates that the user wants to make a reservation through the CSAIL web form and

D463 and 3pm are arguments to that function.

To make commands easier for novice and infrequent users to call, the order of the

keywords entered does not matter. For example, reserve D463 3pm and D463 3pm

reserve will result in the same interpretations. Keywords that represent arguments

to a function can be switched around and interspersed with keywords specifying the

function to be called. The order of the entered command only matters when the

user is calling a function where two or more of its arguments could use the same

set of keywords. For example, in the command reserve D463 3pm 1 2 2007 it is

unclear if 1 is the month and 2 is the date or vice versa. Thus the function has two

arguments that could use the same set of keywords. This might also happen if the

function requires two arguments of the same type such as find flights SFO LAX.

Here, the user wants to search for flights between SFO and LAX. The function that

looks for flights requires two airports, but the user did not indicate which airport was

the starting airport and which was the destination. Under these circumstances, the

system will give a higher rank to the interpretation that uses the keywords in left

to right order for its arguments. However, the other orderings are still considered

valid interpretations. How users choose alternate interpretations to run is discussed

in the "Executing Commands" section of this chapter. Making the commands order

independent makes the system easier for novice and infrequent users as they won't

need to memorize argument orderings in order to access the desired functionality.

Inky commands can also use synonyms for both function keywords and argument

keywords. To reserve D463 at 3pm, the user could also have typed make reservation

32-D463 3:00pm or star room 15:00 csail reserve. Here, "Star Room" is an

alternate name for room D463, which is also referred to as 32-D463. Keywords for

the time of the reservation and for the reservation function also have synonyms. These

synonyms make Inky easier for novice and infrequent users to call functions since they

do not need to remember exact names for functions or formats for function inputs.

Finally, given certain arguments, the system can guess what function the user is

trying to call. For example, if the csail reservation function is the only one that uses

both a time and a room, just typing 32-D463 15:00 would be enough to call the

csail reservation function with those arguments. This improves the efficiency of Inky

users.

3.4 User Feedback

Inky displays a list of command interpretations to improve system visibility and allow

users to recognize commands once they have recalled enough for the system to guess

what they are trying to do. An interpretation displays a function, the arguments

a user has already filled in, any arguments a user can still fill in, and whether the

function has a persistent side effect. These interpretations are updated as the user

types in order to give continuous feedback (Figure 3-3). In order to provide these

updated interpretations, the whole command is reinterpreted each time the user adds

or removes a character. Words that do not fit into any interpretation, such as partially

completed words at the end of a command, are ignored.

Each interpretation has visual cues that indicate its functionality and the argu-

ments that have been found for it. A small icon indicating which website the function

comes from appears next to the interpretation for quick scanning. The icon is fol-

lowed by some text describing the function and what the function does with each of

its arguments.

To the right of the description are some buttons that run the interpretation's cor-

> email

M view emai

> email vikkiemit.edu

M email vikki@mit.edu about Lh (attach ud E j []

> email vikkifmait.edu movie at 3pm today

M email vikki@mit.edu about "movie at 3pm today" (attach) end Email

Figure 3-3: Inky's feedback as input progresses.

responding code. Most interpretations only have a "Go" button after the description.

However, functions with persistent, difficult-to-undo side effects have an extra button

with the name of the side effect on it. For example, in Figure 3-3, since emailing has

the persistent side effect of sending an email, a button with that label appears by

that interpretation. Since viewing emails does not have a side effect, no such button

appears by that interpretation. The extra side effect button stands out to the users,

drawing their attention so they think more before calling such a function. It is enabled

only after a users has entered in all the required arguments to execute the function's

side effect. In Figure 3-3, the "Send Email" button is enabled only after the user

entered an email address and a subject line. We discuss what the "Go" button and

side effect buttons do in the "Executing Commands" section of this chapter.

Inky displays feedback for each argument in a function indicating whether it has

been filled in, whether it has a default, and whether it is required or optional. If

a user has typed in a keyword for an argument, a version of the entered argument

appears in the user feedback. This is usually exactly what the user typed, but can

also be a standardized version of what the user typed. For example, if the command

was reserve star room 15:00 the user feedback might be "reserve D463 at 15:00".

Inky changed star room to "D463" to indicate that it parsed star room as a room

and knows that it corresponds to room D463.

If a user has not yet typed in a keyword for an argument, the name of the argument

appears as white text in a dark box. The name is usually a word or phrase that

describes what argument is missing. This way, users can see if they are missing an

argument and what argument they still need. If a missing argument has a default

value, the name of the default value appears normally and there is only a faint outline

against it. The less noticeable visual cue indicates to users that while they do not need

to add in an argument, they could change the default with an appropriate keyword

if they chose to. In Figure 3-4, name, email, office, etc is a missing argument

while month is an argument with the default value of this month.

For functions with persistent side effects, Inky makes a distinction between ar-

guments that are required for the side effect to take place and those that are not.

Required arguments that have not already been filled in by the user appear with a

red star next to them. In Figure 3-4, room and description are required arguments.

Arguments with defaults are not required arguments since the function should simply

use the default value.

B reserve * on this month this date, this year at this time (repeats never) for *

4 directory lookup

Figure 3-4: Examples of argument feedback.

Functions without persistent side effects do not have required arguments in Inky.

The reasoning behind this is discussed in the "Executing Commands" section of this

chapter.

For both types of functions, Inky separates out optional arguments that users

generally won't want to fill in. These are grouped, usually at the end of the line, with

parentheses around them. This way, users can more easily ignore these rarely used

functions but can still access them see any defaults they have if they want to change

them.

In summary, arguments in Inky can be either required (but only for functions

with persistent side effects) or optional. Optional arguments can then either have a

default or not. Independently, optional arguments could also be rarely used or not.

Examples of different kinds of arguments are shown in Table 3.1.

By providing visual feedback on how a user's command is interpreted, Inky makes

Table 3.1: Examples of different kinds of arguments.

the system state more visible to the users. Knowledge of the system state also reduces

the possibility that a user would enter and execute an incorrect command. Finally,

by listing several possible interpretations, the system allows the user to recognize a

correct interpretation and possibly discover new functions that partially match the

function they wanted to call.

3.5 Executing Commands

Users run a command by hitting Enter or an appropriate button on the Inky interface.

By default, Inky assumes that the top suggestion is the correct interpretation. How-

ever, the user can use the arrow keys or the mouse to select a different interpretation

from the suggestions (Figure 3-5).

The system differentiates functions that have persistent side effects from those

that do not. A persistent side effect is loosely defined as a side effect that cannot

be easily undone (e.g. sending an email, buying a book) or that changes the state of

some system with persistent memory (e.g. making a room reservation, uploading a

photo to an online gallery).

For functions without side effects, hitting Enter will run the function with the

given arguments. Users can also run the command by hitting the Go button next

to the correct interpretation. Since there are no side effects and users running these

commands just want to view information, these commands can run with as many

or as few arguments as the user chooses to give it. If the function is missing some

desired arguments, the website behind the function will fill in defaults for the missing

arguments or prompt users for what it needs. By delegating these tasks to the web-

site, Inky is able to access defaults that are stored by websites in difficult-to-access

formats. AccuWeather.com stores a user's default city for weather forecasts using

HTTP cookies. By letting the website deal with this default, a user can look up

the weather in their default area just by executing the command weather. Letting

the website handle certain missing arguments also allows them to use private infor-

mation to determine what arguments are actually necessary. For example, if a user

executes the command travelocity flights june 30 july 7, they will be taken

to the Travelocity website's flight search form. The website will then prompt the user

for a departure airport and an arrival airport. However, if Travelocity stored a user's

most common departure and arrival airports, it would fill in those fields in the form

as defaults and not prompt the user. A website's personal prompt may also include

useful UI elements that are not available through Inky. If a user wanted to look

at Travelocity flights between SFO and LAX but wasn't sure what dates he wanted

to fly on, he could execute the command travelocity SFO LAX. Travelocity would

prompt him for departure and return dates with a calendar widget that will give him

more information on when certain dates are and when there are flights that can be

booked.

Functions with side effects have two modes of execution: a view mode and a

submit mode. Running a function with side effects in the view mode means that

the user wants to set up the form that will cause the side effect, but not actually

submit the request. This is done by hitting Enter or pushing the Go button next

to the correct interpretation. For example, when a user runs email vikki@mit. edu

remember to buy milk today, he will be taken to an e-mail form with the To field

and the Subject field filled in. He can then press the Send button to send the e-mail.

In this execution mode, Inky deals with missing arguments the same way it deals

with them for commands without side effects.

Running a command in submit mode means that the user actually wants to make

the command's side effect happen. This is done by typing Ctrl+Enter or pushing

the button with the side effect's name next to the correct interpretation. Users can

only run a command in this mode if keywords for all the required arguments for

the function have been entered. Running email vikki@mit. edu remember to buy

milk today in submit mode will actually send an e-mail to vikki@mit.edu with the

subject "Remember to buy milk today". Users will still see the site after the side

effect so any confirmation pages would still be visible.

Separating command executions that commit side effects from those that do not

discourages Inky users from making errors that would be difficult to reverse. Since

the default execution methods always execute the command in a view mode, it is

more difficult for a user to unknowingly cause a persistent side effect. However, by

making it possible for users to execute in a submit mode, Inky increases the efficiency

of users who know the system and want to commit a given side effect.

eme vAIMddItaedu someLhk

M er oil vikkimit.ed (cn uLs) ' ji

Arrow up Arrow down

Vmail vikkidmit.edu sumetink

,M c-rri vt kini.cd+, 'i o e k' 1 "d UAW CO

BMe, erral vtkemvkeds aboixsmtr n

---- ---
Arro 'Upf Arrowdow

at vtckiet edu matunk

M vv'"'il OWbrte.W abut sl :,Ldi M; X .-tu r

rM aiil vikkimiLed abu * Ech -9)!j

M viw emani [Cel

Enter will go to counpe screen.
tr+Enter vill send th eMnal.

Entr wll go to cnpose screen.
Ctu+lEntr wiN do noirNg.

Enter will go to Inbax screen.
Cti+Enter wll do notldng.

Figure 3-5: How Inky commands are selected and executed in run and submit modes.

I

Chapter 4

Implementation

Inky is a Firefox extension built on top of Chickenfoot and created with Chickenfoot's

extension packager. The application includes the Inky window discussed above, a

back end keyword interpreter, and XML files specifying the functions and types in

the system.

4.1 Overview

This section provides an overview of Inky's components, which are discussed in more

detail later in the chapter.

The three main parts of Inky are the Inky window, the keyword interpreter, and

the files that specify the system's types and functions.

The Inky extension adds a Chickenfoot trigger that opens an Inky window when

the user types the correct keyboard shortcut (Ctrl+Spacebar). The window is imple-

mented with JavaScript and CSS. This window passes a user's commands down to

the keyword interpreter and displays the resulting interpretations to the user. Once

a user has chosen to execute a particular interpretation, the Inky window runs that

interpretation's corresponding Chickenscratch function in the Chickenfoot environ-

ment, with respect to the currently visible tab. This part of the system also takes

care of running other functions used for keyword interpretation that need to be run

in the Chickenfoot environment.

The keyword interpreter takes in a command from the user and returns an ordered

list of possible interpretations of that command. To do this, it evaluates whether each

type and function it knows about is likely to exist in a given command. It goes through

multiple cycles of evaluation in case the command has nested function calls. Finally,
if no good solution is found, it tries some variations of the given command in an

attempt to find a suitable interpretation. The interpreter is implemented in Java.

The functions and types that the keyword interpreter understands are specified

in human-editable XML files.

Funcetin defJWon fIs
I I- r, r'1

(email vikki rikdu

A-I

Type deflUonn fbs

Figure 4-1: A block diagram of Inky's major components.

4.2 Representation of Types

The system uses the notion of types to help it interpret commands. A type represents

a class of thing that can be used or created by a function. For example, a day of the

week, an airport, or an age are all examples of types. A type has a name so that

functions can specify that they use it. The system also needs to be able to recognize

whether part of a command matches a type. For example, the system should know

that may, april, and march match the month type. Given a command fragment

that matches a particular type, the system also needs to be able to translate the

string both into a version that is readable to humans and into the version that will

ultimately be passed as an argument to the Chickenscratch function that uses the

I- -

type. Given may, the system might want to change it to "May" for the user so that

it is correctly capitalized and 5 for the code so that the function reads it correctly.

Inky comes with some predefined utilty types. These include email address, string,

state, time, zip code, month, and day of the week.

VOID is a special type in the system that represents the absence of a type. It is

used as the output type of functions that do not have a return value.

4.2.1 Internal Representation

In the keyword interpreter, all the functionality related to a particular type is stored

in a Type object. Each Type object stores the type's name, a ScoreDeterminer, a

Generator for code, and a Generator for human-readable feedback.

A ScoreDeterminer takes in an input string and outputs a collection of ScoreVec-

tors. Each ScoreVector represents a possible occurrence of the Type in the input

string. It also indicates which words in the input string this occurrence uses.

For example, say a user wanted to recognize different soft drinks and some options

were coca cola, pepsi, sprite, and 7up. She would create a Type with the name "soft

drink". If she passed the string I like coca cola more than pepsi to its Score-

Determiner, she would get a ScoreVector of 0,0,1,1,0,0,0 for the recognized occurrence

of coca cola and another of 0,0,0,0,0,0,1 for the recognized occurrence of pepsi.

It is necessary for the ScoreDeterminer to return a list of ScoreVectors or else it

would be difficult to determine whether a string contained a single instance of a type

that happened to span multiple words or whether each word was a separate instance

of that type.

A Generator for a Type takes in a string that is assumed to be an occurrence of

that Type and translates it into a different string representation of that Type. To

get the input string for a Generator, the system takes the original command and a

ScoreVector given by the Type's ScoreDeterminer and concatenates all the tokens

that got a positive score.

VOID is a special static Type with no ScoreDeterminer or Generators.

4.2.2 XML Specification for Types

Types are specified in XML files. A type XML file starts and ends with the

webCommandMappingTypes tag. Each file contains zero or more type elements. A

type element has two attributes: a name and a category.

Standard Types

Most types have a category of standard. Types of this category specify a members

element that describes the type's ScoreDeterminer, a codeRep element that describes

the code Generator, and a userLang element that describes the type's human-readable

feedback Generator.

The members element specifies the type's ScoreDeterminer and contains a category

attribute whose value is enum, contains, regex, or js.

* enum - If the category is enum the members element will have a body at-

tribute that contains a comma-separated list of all the possible members of

the type. Each of these members corresponds to exactly one possible in-

stance of the type. For example, the ScoreDeterminer created by <members

category="enum" body="am,pm">, given the command foo am pm, should re-

turn ScoreVectors of 0,1,0 and 0,0,1.

* regex - If the category is regex the members element will have a body at-

tribute that contains a regular expression that matches an instance of the

type. For example, the ScoreDeterminer for an email address is given by

<members category="regex" body="\w*Q\w*\. \w*"/>. If it is given the com-

mand vikki@mit.edu rcm@mit.edu, it should return ScoreVectors of 0,1 and

1,0.

* j s - If the category is j s it means the ScoreDeterminer is a custom one written

in JavaScript. The text content of the members element will contain a CDATA

block with the JavaScript function in it. This function takes in an input string

and outputs an appropriate list of ScoreVectors. The function can also be

written in ChickenScratch and is run in the Chickenfoot environment. Thus, if

a type needed to access some web service to recognize its members, it would be

able to do so.

The codeRep and userLang elements specify the type's code Generator and user

feedback Generator, respectively. They each have a category attribute which could

be self, map, or js.

* self - A self generator would concatenate each of the recognized tokens in the

given ScoreVector into a string. For example, if a self generator got the com-

mand reserve g925 3 pm and the ScoreVector 0,0,1,1, it would concatenate

the last two words into the string 3 pm.

* map - A map generator has an ins attribute that is a comma-separated list of

possible unique inputs and an outs attribute that is a corresponding comma-

separated list of outputs. The generator, given the input string and a ScoreVec-

tor would then extract the "self" string and see if it matched any of the unique

inputs. This matching is case-insensitive. If it did, it would return the cor-

responding output. For example, if the generator corresponding to <userLang

category="map" ins="coca cola, pepsi, sprite" outs="sodaA, sodaB, sodaC">

got the command buy Coca cola and the ScoreVector 0,1,1 it would return

sodaA.

* js - For a js generator, the element's text content would be a CDATA block

with a JavaScript or Chickenscratch function that defined the generator. The

function would take in an input string and a ScoreVector and output an appro-

priate string. For example, in the city type, there is a j s generator that removes

the comma that people sometimes put after cities. The codeRep element for

that type was defined as:

<codeRep category="js" >
<! [CDATA [
function(inputWords) {

// remove commas and quotation marks

inputWords = inputWords.replace(/"/,"");
return inputWords.replace(/,/ig ,"");

}
]]>
</codeRep>

While all types need to have a unique ScoreDeterminer, most types use a self

code generator and a self user feedback generator. As a result, these are considered

the default code and feedback generators if the codeRep or userLang elements are

missing. Here are some examples of standard type elements:

<type name="time" category="standard">
<members category="regex"

body="(([1-9]110111112) ?(amlpm))I(([1-9]110111112):[0-5][0-93 ?
(ampm) I ((? [1-9] 12[0-4]) : [0-5] [0-9])"/>

<codeRep category="js">
<!--puts the input into 24hour time format-->
<![CDATA[
function(inputWords){

// get time from sides of the colon
var colonInd = inputWords.index0f(":");

var hours = 0;

var minutes = 0;

if (colonInd > 0) {
hours = parseInt(inputWords.substring(Math.max(0, colonInd-2),

colonInd), 10);
minutes = parseInt(inputWords.substring(colonInd+1,

Math.min(inputWords.length, colonInd+3)), 10);
} else {

// parseInt automatically ignores letters
hours = parseInt(inputWords, 10);

}

// if pm exists, increment the hour by 12.
if (inputWords.index0f('pm') != -1 && hours < 12) {

hours = hours + 12;

}

// format the string correctly
if (hours < 10) {

hours = "O"+hours;

}

if (minutes < 10) {
minutes = "O"+minutes;

}
return (hours + ":" + minutes);

]]>
</codeRep>
<userLang category=" self "/>

</type>

<type name=" zipcode" category="standard">
<members category="regex" body=" [0-9] {5}"/>
</type>

Simple Map Types

Another possible value for a type's category attribute is simpleMap. A simpleMap

type is a type that has a set number of abstract members that can be recognized

in many ways. One could define a simpleMap type as a standard type with enum

members and map code and user feedback generators. However, the format for them

here makes it easier for editors to edit, add, and remove members of the type.

A simpleMap type contains zero or more item elements. Each element contains

three attributes: codeRep, members, and userLang. Each item element represents an

abstract member of this type. The codeRep is how that member should be expressed

in code and the userLang is how that member should be shown to users. There

is exactly one way for an abstract member to be translated into code and exactly

one way for it to be translated into a user-readable format. However, there should

be multiple ways to recognize this member. As a result, the members attribute is a

comma-separated list of ways to recognize this item and acts as an enumeration of

ways to get this item.

Here is an example of a simpleMap specification:

<type name="room" category="simpleMap">
<item codeRep="1" members="261" userLang="261"/>
<item codeRep="2" members="346" userLang="346"/>
<item codeRep="12" members="G449,patil,kiva,patil/kiva" userLang="G449"/>

<item codeRep="13" members="D463,star" userLang="D463"/>
<item codeRep="14" members="262,video conference" userLang="262"/>
</type>

Intermediary Types

The final possible value for a type's category attribute is intermediary. These types

are types that are never recognized directly from a token but are instead output types

of functions that are then used in other functions. For example, the system includes

an intermediary type named "full date". It is defined with <type name="full

date" category=" intermediary"/>. This type corresponds to the JavaScript Date

object. The system contains functions with an output type of "full date" that create

these Date objects. These Date objects are then used by functions in the system that

have an input with type "full date".

4.3 Representation of Functions

The system uses the notion of functions to represent a piece of website related func-

tionality. The system needs to be able to recognize when a user's command corre-

sponds to a particular function call. To that end, the system needs to know keywords

that cue a function as well as the argument types of the function. Inky also needs to

know how to display the function to the user and how to execute the function.

Functions the users execute must have a return type of VOID. This is because the

web-based functionality provided by Inky should result in some change in the browser

or website. As a result, executable Inky functions cause some action to happen and

do not return a value.

While functions the users execute must have a return type of VOID, Inky also

accepts functions with other return types. These functions are used to create interme-

diate arguments to a final executable function. This makes it easier for users to define

argument types that are variations of existing types. For example, say a function has

a date argument. There is already a date type, but the user wants the function to

accept the token today as well. To support this, the user could create a new function

with a return type of date that had the keyword today and that returned an appro-

priate representation of the corresponding date. If there was an executable function

that needed the date to be in a special form, the user could create a new function with

no keywords that took in a date and returned the date in the special form. Since

the code for these functions is evaluated in the Chickenfoot environment, allowing

intermediate functions also lets users define intermediate arguments that access the

browsing environment.

4.3.1 Internal Representation

In the keyword interpreter, a function is stored as a Function object. Each Function

object stores the function's output Type, an ordered list of input Arguments, a Score-

Determiner, the Chickenscratch body, whether it has a side effect, and data related

to displaying the function to users.

Each Argument object stores the Type of the argument; whether it is required,

optional without a default, or optional with a default; and how it should be displayed

to the user when it is not filled in. By default, this display is the name of the type of

the argument. However, it could also be a more descriptive name for the argument

or the name of the argument's default. For example, if a function had an argument

whose type was Date, the argument's displayed name might be "starting date". If

that argument's default was always the current date, the displayed name might be

"today".

The Function's ScoreDeterminer is used to mark keywords that indicate the Func-

tion might be called. It works the same way a Type's ScoreDeterminer works: by

taking in an input string and returning a collection of ScoreVectors. This time, each

ScoreVector represents a possible call to the function.

Each Function is also tied to a Chickenscratch function. The Chickenscratch

function is what gets executed in the Chickenfoot environment, with respect to the

current visible tab, when the user chooses to run an interpretation. In order to

avoid namespace collisions when the JavaScript is run, the JavaScript functions are

anonymous.

A Function stores variables that are related to how it is displayed to users. Ex-

ecutable Functions (those that have a return type of VOID) might include the URL

of an icon that goes with the function. If the function has a side effect, it also stores

the name of the side effect. Finally, all Functions store a FunctionUserLangGenerator

that, given a list of found arguments, outputs HTML for a user-readable version of

the function. The FunctionUserLangGenerator is created from a template that spec-

ifies the format of the output string and where each argument should go in it. If the

FunctionUserLangGenerator for a function that makes reservations got the arguments

G925 and tomorrow, it would output HTML that rendered as follows:

reserve G925 tomorrow (at =) (repeats t) for 7

4.3.2 XML Specification for Functions

Functions are specified in XML files that start and end with the

webCommandMappingFunctions tag. Each file contains zero or more function ele-

ments. Every function element has a returnType attribute, which is the name of

the type it returns and a keywords attribute, which specify keywords for the function.

It can also have a sideEffect attribute that says whether the function has a side

effect (the default is false), a sideEffectName attribute that names the side effect,

an example attribute with a sample command using the function, and/or an icon

attribute with the URL of an icon for the function.

A function element's keywords attribute will contain a comma-separated list

of possible keywords for the function. These keywords are used to create a Score-

Determiner that will output ScoreVectors that mark subsets of the possible key-

words. For example, a ScoreDeterminer made for a function with the attribute

keywords="read,view,mail,email", given the command read mail mail should

return the ScoreVectors 1,1,0 (one function call consumes read and the first mail);

1,0,1 (one function call consumes read and the second mail); 1,0,0 (only read is

consumed); 0,1,0 (only the first mail is consumed) and 0,0,1 (only the second mail

is consumed). Note that the ScoreVector 0,1,1 isn't produced. Even though both

the second and third tokens are in the list of keywords, because they are the same

keyword, they are not part of the same function call.

Creating a function's ScoreDeterminer in this manner makes sense since there are

usually several keywords that match a function call and users are likely to use the

same keywords twice if they want to call a function twice. Furthermore, since all

functions that return VOID are executable functions that can only be called once in

a single command, it makes sense for a single function call to consume all keywords

for it. This also makes it easy to define synonyms for function keywords since they

just get listed in the body attribute of the members element. For example, a function

that looked up a name in the CSAIL directory might have the keywords csail, dir,

lookup, and find. Given find rcm csail, the ScoreDeterminer would return 1,0,1,

correctly consuming both keywords for the call. It would also return 1,0,0 and 0,0,1

in case it made sense for either find or csail to cue another function call instead.

The command csail dir lookup rcm would also be recognized correctly.

A function element also contains a userLang element. This element's body

contains a template for the text that will be shown to the user for this function.

An input element appears in the text wherever feedback for that argument should

appear. Each input element contains a type attribute that names the type of the

argument. It also contains a category attribute that can be required if the argument

is a required argument, optional if the argument is an optional argument without a

default, or default if the argument is an optional argument that does have a default.

It could also have a defaultName attribute, which is how the argument should be

displayed if it is not filled in. If there is no defaultName attribute, the argument will

be displayed as its type's name until it is filled in. Any arguments that are rarely

used by a user should be grouped towards the end with parentheses around them.
Here is an example userLang element:

<userLang>
email
<input type="email address" category="required"/>
about
<input type="subject line" category="required"/>
(attach <input type="file name" category="optional" defaultName="file"/>)

</userLang>

Formatting the userLang element this way makes it easy to tell what the feedback

will look like and where each argument goes. Looking at the element, one can tell that

the feedback will have the word "email", followed by feedback for the email address

argument, followed by "about", followed by the subject line argument, etc.

Finally, function elements have a code element that includes the relevant JavaScript

or Chickenscratch code for the function in a CDATA block. This function's arguments

should be in the same order the arguments were described in the userLang element.

For functions that have persistent side effects, the last argument of the JavaScript

function should be a run mode that can be either "view" or "submit". The JavaScript

function should set up but not do the side effect when that last argument is "view"

and set up and do the side effect if the last argument is "submit".

Here are some examples of function elements:

<function returnType="void" sideEffect="true"
sideEffectName="Send Email"
example="email joe@joeuser.com my subject line"
icon="https://mail.google.com/mail/images/favicon.ico"
keywords="send,attach, email,mail,e-mail">

<userLang>
email <input type="email address" category="required"/>
about <input type="subject line" category="required" />
(attach <input type="file name" category="optional" defaultName="file"/>)
</userLang>
<code>
<! [CDATA [
function(email, subject, filename, runMode) {

go('http://mail.google.com/mail/h/');
// wait for login
if (location.pathname.index0f("mail") == -1) {

alert("Please log in.");
}
while (location.pathname.index0f("mail") == -1) {

sleep(.2);
}

click("Compose Mail");
if (email != null) {

enter("To", email);

}
if (filename != null) {

enter("Attachments:", filename);

}
if (subject != null) {

enter("Subject:", subject)
}

if (runMode == "view") {
return;

}

click('first send')

}
]]>
</code>
</function>

<function returnType="void" sideEffect="false"
example="weather 02139"
icon="http://www.accuweather.com/favicon.ico"
keywords="weather,forecast,temperature">

<userLang>
get weather
(for
<input type="zipcode" category="default"

defaultName="last zipcode you looked up"/>

</userLang>
<code>
<![CDATA[
function(zip){

if (zip != null) {

var href = 'http://www.accuweather.com/'+
'us-city-list.asp?zipcode=\%s&u=1&partner=accuweather';

href = href.replace(/\%s/,zip);
go(href);
return;

} else { // use default if it is there
go('http://www.accuweather.com/');

click('first go');
}

]I>
</code>
</function>

4.4 Keyword Engine

The keyword engine does the bulk of the work determining what interpretations can be

made from a command. On setup, it takes in a set of defined Types and Functions. It

can then take in a command, determine which Types the command contains keywords

for, and finally determine a list of callable Functions (with corresponding arguments)

for that command. This list is passed up to the front-end UI layer, which displays

these possible interpretations to the user and executes them.

4.4.1 Parsing Specified Types and Functions

To define the Types and Functions in the Keyword Engine, one simply gives it the

paths to XML files that define the types and functions. These XML files have been

described above.

The keyword engine places all the types in a table that maps from the type's

name to a Type object. Since there is only one namespace, if two different types with

the same name are defined in the type XML files, the second type's definition will

override the first type's definition.

The functions in the XML files will have access to any type that was defined in

any of the type files.

4.4.2 Command Interpretation Algorithm

Inky uses a variant of the bottom-up algorithm described in "Keyword Programming

in Java" to determine how a command should be interpreted [9].

The algorithm has three stages. In the first stage, it determines which basic types

might exist in the command. In the second stage, it determines what new types can

be created using functions. In the final stage, it determines what executable functions

can be called from all the types it has access to.

Inky uses a CommandMatrix to implement the algorithm (Figure 4-2). It is given

a set of Types and Functions along with the command to interpret. Each row of the

CommandMatrix will contain a set of Types and lists of interpretations that would

evaluate to each Type. This is implemented as a map from Type to PossibilityHeap. A

PossibilityHeap is a collection of Possibilitys ordered by their score. Each Possibility

represents an interpretation of part of the command that, when evaluated, would

result in the key Type.

A Possibility stores a ScoreVector indicating which tokens it uses, the Type it

evaluates to, the JavaScript code that corresponds to it, and HTML that describes

how it should appear to the end user.

The first row of the CommandMatrix contains all the basic Types that probably

exist in the command and their corresponding Possibilitys. To populate this first row,

the algorithm iterates through all the Types (except VOID) and, using the Type's

ScoreDeterminer, gets all the ScoreVectors for that type with the given command.

If there is at least one good ScoreVector, it creates a PossibilityHeap and puts that

into the first row with the Type as the key. A good ScoreVector is one that explains

at least one token. Then, for each good ScoreVector for that type, it creates a

corresponding Possibility and puts that into the PossibilityHeap. As a result, the

keys of the first row will be the basic Types that are in the command and the values

will be PossibilityHeaps where each Possibility evaluates to the key Type.

The intermediate rows of the CommandMatrix contain all the basic Types that

exist in the command along with Types that can be created by calling intermediate

Functions. Intermediate Functions are Functions whose return type is not VOID. For

each intermediate row of the CommandMatrix, the algorithm looks at the previous

row to determine what Types it already has access to. Then, for each Function that

does not return VOID, it determines if that Function can be called. To do that, it

looks at each of the Function's Arguments, ignoring any optional arguments, and sees

whether that Argument's Type is available from the previous row. If the Function

Defined Types: A, B, C

Defned Functions:
fund : A -> B
func2 : B -> C
func3: A, C -> VOID

Input: someAl someA2

Final:
f a=3 , sauuwAt, funu2 iunct iu.Ia

func3 (someAl, func2 (funcl (someA2))

func3 (someA2, func2 (funcl (someAl))

fttMC3(. SeA2, fenei(f Unel 4 SeeAe I EM

Figure 4-2: Inky's command matrix.

Type A Column Type B Column Type C Colim

Row 0 someAl

someA2

Row 1 sotreA1 fundl (someAl)

soceA fund (sore A2) EQ

Row 2 someAl func (someAl) E func2 (fund (someAl))

soweA2 funcl (sore A2) E func2 (1 (I someA2))

has multiple Arguments of the same Type, it checks that the previous row has at

least that many ways to make that Type. If the Function has no Arguments, it is

callable only if the command contained at least one of the Function's keywords. This

prevents functions with no Arguments from always being callable and thus making

certain Types available when they should not be.

If a Function can be called, Possibilitys for calling that Function are created. To

do this, the CommandMatrix gets ScoreVectors from the Function's ScoreDeterminer

that indicate where this Function's keywords appear in the command. Then it takes

the top ScoreVectors and tries to find good Possibilitys for each of the Function's

Arguments. If no good ScoreVector for the keywords is found, it uses a ScoreVec-

tor of all Os. A good Possibility for an Argument is one that does not use a token

already used by the Function or any other Argument. To find good Argument Pos-

sibilitys, the algorithm enumerates all the possible ways to obtain the Function's

Arguments from Possibilitys in the previous row. Any enumeration that uses the

same token twice, or that uses a token that is used as a Function keyword is elimi-

nated. The algorithm determines which tokens the Possibilitys use by looking at their

ScoreVectors. Finally, it makes a new Possibility for each of the leftover enumera-

tions and Function ScoreVectors. The new Possibility's ScoreVector is obtained by

summing up the ScoreVectors of the Possibilitys in the enumeration and then adding

the ScoreVector for the Function's keywords. This process is shown in Figure 4-3.

The Possibility's Type is simply the Function's return Type. The JavaScript code

and HTML are obtained through the Function's code Generator and FunctionUser-

LangGenerator, respectively. These take in the list of Possibilitys for the Arguments,

get the code/HTML from them, and place the code/HTML in the correct place with

respect to the Function's code/HTML. Once the algorithm has the Possibilitys for a

Function, it adds them to the PossibilityHeap in the current row for the Type that

the Function returns. After it processes all the Functions, it adds all the Possibilitys

from the previous row to the current row. This makes it possible for the next row

to access those Possibilitys. The CommandMatrix currently creates two intermediate

rows, but this number is easily adjustable.

Input: fly SF NYC

Function: (,x, va s)

Departure
Airport

Arrival Airport

NYC
w n"

SFO

fly

NYC SF
w I wlw- l

Figure 4-3: Inky enumerates the possible arguments and sums up the score vectors.

Function

Once the algorithm is done with the intermediate rows, it determines what exe-

cutable functions can be called. These are defined as functions that return VOID.

The goal is to create RunPossibilitys for each way to call an executable function. A

RunPossibility is like a Possibility except it contains code for different run modes

and a side effect name. It also stores a pointer to the Function, which is used in

post-processing. The method for obtaining and creating these RunPossibilitys is very

similar to that for creating Possibilitys for Functions in the intermediate rows. The

differences come from the fact that executable functions can be called in either a

view mode (does not cause persistent side effects) or a submit mode (does cause

side effects). A function can be called in view mode if the command contains any

function keywords or if it has keywords for any of the arguments. A function can

be called in submit mode only if the command contains all the required arguments.

Once it is determined which (if any) modes a function can be called in, the algorithm

creates ScoreVectors for that function in the manner described previously and uses

those ScoreVectors to create RunPossibilitys. It then adds JavaScript code for each

possible execution mode to the RunPossibility.

Finally, the CommandMatrix returns a list of the RunPossibilitys, ordered by

score, for post-processing.

The algorithm differs from that discussed in [9] in the way it uses ScoreVectors

(which they call Explanation Vectors). For example, it does not let two different

functions calls or type instances try to explain the same token. When determining

how well a function call would work with certain arguments, their algorithm would

simply add all the ScoreVectors together. When this algorithm does this, it looks

at each of the ScoreVectors and sees whether any two have a non-zero argument for

the same token. If so, it rejects that possible function call with those arguments.

This prevents it from getting interpretations that double-count tokens. For example,

before implementing this change, find flight SFO returned an interpretation that

searched for flights with SFO as both the departure and arrival airport.

The algorithm also creates separate ScoreVectors for each recognized instance of a

type or function call instead of splitting the explanation value between all the tokens.

While this decreases the efficiency of the system by creating more ScoreVectors to

process, it is only an issue when one type can be found multiple times or when one

function is called multiple times. In return for the slight decrease in efficiency, the

algorithm gains the ability to distinguish separate instances of a type or function call.

This lets it enumerate possible arguments to a function more accurately, especially

when the function takes in multiple arguments of the same type.

Code for a parsed result is generated as the command is parsed, along with the

HTML feedback for the user. In contrast, this is done as a separate step at the end

in Keyword Commands.

4.4.3 Post-processing

After a command has been processed, if the top resulting RunProbability has tokens

that are unaccounted for, the algorithm does some post-processing to try to account

for those tokens. Like Koala's algorithm [10], it tries to account for these tokens by

extracting arguments from them.

It focuses its efforts on determining whether or not the tokens that are unaccounted

for are supposed to be a string. Many functions take in a generic string. It makes

sense for the generic string type to have quotation marks around it so that users can

delineate where the string is and so that all commands wouldn't automatically match

the string type. However, end users, especially novice ones, might not know that

they should place quotation marks around such phrases. As a result, these phrases

are not recognized as string arguments to the function. For example, the Google

search function takes in a string. However, google firefly tv show would not be

recognized as the function call google ("firefly tv show") since the last three

tokens don't have quotation marks around them.

To deal with these occurrences, the algorithm looks at the top RunPossibility for

the command. If the RunPossibility has tokens that are unaccounted for and the

original command had no quotation marks in it, the algorithm sees if it can get a

string argument from the unexplained tokens.

It goes through each RunPossibility and finds the longest unexplained substrings.

For example, if the original command was send blake an email blake@email. com

some subject, the top RunPossibility's ScoreVector would be 1,0,0,1,1,0,0 since the

email function has send and email as keywords and takes in an email address. The

longest unexplained substrings are blake an and some subject. For each of these

substrings found, the algorithm produces a version of the command where the sub-

string is enclosed by quotation marks (send "blake an" email blake@email. com

some subject and send blake an email blake@email.com "some subject"). This

turns the substrings into something that would be recognized as a string object.

The algorithm then creates a CommandMatrix with all the defined Types. How-

ever, instead of having all the Functions, it is restricted to the executable Function

tied to the current RunPossibility and the intermediate Functions. This means it does

not have access to any other executable Function in the system. The new versions of

the command are processed with this CommandMatrix and any resulting RunPossi-

bility that has a score higher than or equal to the original top RunPossibility's score

is added to the ordered list of RunPossibilitys returned to the user. In this case,

both new commands would get a higher score than the original command since two

more tokens would be explained as the subject line of the email to send. The user

would then select the interpretation that had some subject as the subject line and

not blake an.

It is necessary to remove all the executable Functions from the new Command-

Matrix except for the current RunPossibility's executable function. Without this

restriction, tokens that should have been arguments would disappear into a string

and the list of suggestions provided to the user would be inundated with improbable

interpretations. For example, consider the command email rcm@mit .edu should

we meet?. This command would start out with two interpretations: sending an

email to rcm@mit.edu, which gets a ScoreVector of 1,1,0,0,0 and reading one's email,

which gets a ScoreVector of 1,0,0,0,0. The algorithm would then process email

rcm@mit. edu "should we meet" through a CommandMatrix, which would produce

the correct RunPossibility. However, it would also process email "rcm@mit.edu

something" through the CommandMatrix. If the CommandMatrix is not limited,

this will produce interpretations that include sending an email with the subject

"rcm@mit.edu should we meet" and no email address. Even though this interpre-

tation is missing an email address, it still explains more tokens than merely checking

email, so it would get a higher score. In fact, any interpretation that involved a func-

tion that just took in a string would be scored more highly than the viewing email

interpretation since the string explains three tokens while the view email function

would only explain one. Limiting the functions in the post-processing CommandMa-

trix solves this problem.

Chapter 5

Evaluation

Inky's interface was evaluated through a field study. The purpose of the field study

was to determine how Inky might be used in day-to-day activities and whether it

successfully met the design goals.

The performance of the Keyword Engine was also tested to determine if it was fast

enough for the desired responsiveness and to see how it scaled for longer commands

and more functions and types.

5.1 Field Study

A field study was conducted to see how users would utilize Inky. There were a total

of 7 users, all members of CSAIL who regularly use Firefox. From the data gathered,

Inky's learnability, the importance of synonym support, the importance of order-

independence in commands, the importance of suggestions, and Inky's accuracy were

evaluated.

For this field study, two different versions of Inky were released. The first, InkyA,

provided all user feedback in the same standard order. This meant that, for both

the example functions on startup and for the suggestions, the name of the function

always appeared first and was followed by each of its arguments in the same order.

The other version that was released, InkyB, provided mixed feedback. Sometimes the

feedback had the function keywords at the front. Other times it was in the middle or

at the end. The order of the arguments in the feedback could also change between

the startup example and the suggestions.

Each user went to a website that gave instructions on how to download either

InkyA or InkyB and install it. The website also told each user the keyboard shortcut

used to start Inky and the fact that the user should type into the Inky textbox.

After a week, users submitted the log Inky had been keeping of all their keystrokes

in the Inky textbox. From this data, 131 commands that were typed into the textbox

were submitted.

The results, which are discussed below in detail, were that Inky was fairly learn-

able. Its suggestions were important but the number of suggestions given should be

reduced. Its support of synonyms is vital. Order independence is useful, but Inky

could provide a more limited version of it without detracting from the user experience.

Inky has reasonable accuracy.

5.1.1 Learnability

To test Inky's learnability, users received it with no instructions other than the key-

board shortcut to bring up the Inky screen and the fact that they should type some-

thing. The study aimed to determine if users could figure out what functions Inky

had and how to use them solely from the startup screen and the user feedback.

Out of the 7 users, 4 noticed the startup suggestions right away and learned

commands through them. 2 users never noticed the suggestions and 1 user noticed

it after he tried a few invalid commands. All users successfully executed at least one

command.

2 of the 7 users executed a command in submit mode.

3 of the 7 users realized they could execute a lower-ranked suggestion using the

arrow keys.

From these findings it can be concluded that, while Inky is moderately learnable,

new users could probably use a bit more instruction. It is unclear whether so few

users utilized submit mode because they did not know what it was or because they

honestly did not want to do a persistent action. A startup guide for Inky should

include some information about the user feedback panel.

5.1.2 Suggestions

This study also wanted to determine whether the suggestions were useful and how

many suggestions Inky should display to the user.

4 of 7 users used the arrow keys to browse the suggestions. Of these, 3 looked at

all five provided suggestions while 1 only looked at the first and second suggestions.

Out of the 39 commands executed by these four users, 35 used the first suggestion

while 4 used the second suggestion.

The results imply that Inky should display fewer suggestions to the users. In a

post-study interview, users mentioned that the suggestions were too similar and it was

easier for them to change the command until the top suggestion was correct rather

than scroll down for more suggestions. It would be incorrect to eliminate suggestions

entirely as having at least two suggestions allowed users to execute their desired

function even though their command was a better match for a different function.

However, Inky should decrease the number of suggestions made and differentiate

them more.

5.1.3 Synonyms

The study also demonstrated whether it was important to support synonyms in the

functions and types. The startup screen and feedback provided used specific terms

for specific functionality. If the users typed in commands that were valid but deviated

from these terms, it is an indication that they wanted synonym support.

The study included 95 examples of user commands that were correctly interpreted

by the system. Of these, 16 used a synonym for a function keyword. Of the 36 user

commands that were not correctly interpreted by the system, 11 used a synonym that

was not defined in the system. After adding those synonyms to the system, those

commands were interpreted correctly.

These example commands give strong evidence that synonym support is crucial

to the system. With synonyms, the system could correctly interpret about 80% of

the commands in the study. Without synonyms, this would drop to about 61%.

The user commands gathered also stress the importance of defining good synonyms

for one's functions. For example, users expected the keyword search to be a synonym

for the Google search function and lookup to be a synonym for the directory function.

Since those were not defined in the function file, those commands were not correctly

interpreted.

5.1.4 Order Independence

Since supporting order independence plays a large part in how the keyword engine

was implemented, it was useful to see if it actually improved the user experience.

Not supporting order independence would make the engine significantly faster. Since

the feedback provided to the user contains the function keywords and arguments in

a particular order, it is not completely unreasonable to expect the user to type her

command in the same order.

The study collected a total of 89 commands that had some ordering information.

Commands that were a single word long or were for functions that Inky does not

support are not counted. 13 of these commands had an ordering that was inconsistent

with the feedback Inky gave them.

From users of InkyA, which always had the function keywords at the start and

the arguments in a consistent order in the feedback, 3 out of 60 commands did not

match the order of the feedback. In all 3 of these cases, the user typed in the

function keywords in a different order from the feedback. To illustrate, one of Inky's

examples is see csail reservations tomorrow. In one case, the user typed csail

see tomorrow instead. However, all the function keywords still appeared before all

the argument keywords.

From users of InkyB, which had function keywords in different places and also

reordered the arguments in different areas of feedback, 10 out of 29 commands did

not match the order of the feedback. 7 of these commands had the function keywords

at the start of the command whereas the feedback Inky gave them had them in the

middle or end of the command. 6 of the commands had the arguments in an order

that was inconsistent with the feedback. (3 commands satisfied both qualities.)

The data suggests that users will naturally want to put function keywords before

argument keywords in a command. However, it should be possible for different func-

tion keywords to be reordered amongst themselves. It is also important for Inky to

support order independence among the arguments.

5.1.5 Accuracy

This field study also tried to judge the accuracy of Inky's keyword engine.

There were a total of 131 commands.

95 commands were interpreted correctly by Inky. If the correct interpretation of a

command appears in the list of suggestions Inky provides, that command is considered

to have been interpreted correctly. The users executed 55 of the correctly interpreted

commands. However, in 5 of these cases, the user executed Inky's first suggestion

instead of the correct interpretation.

11 commands were not interpreted correctly because Inky did not have the correct

synonyms defined. These synonyms have since been added to Inky and the commands

are interpreted correctly.

4 commands included misspelled function or argument keywords that prevented

the interpreter from correctly guessing the function call.

21 of these commands were for functions that are not in the system. For example,

Inky did not have any functions for buying food or storing notes so commands in this

category include find an apartment near and order food.

The conclusion is that Inky's keyword engine is considerably accurate for its list of

defined functions and within the list of suggestions it provides. However, since users

often only look at the first interpretation, the keyword engine could be improved such

that its first suggestion was more accurate. Changing the engine such that it could

correct spelling errors would improve its accuracy. It might also be useful to change

the engine to provide some default action for commands that ask for unsupported

functionality. For most of the unsupported commands, Inky could have suggested

running them through a search engine to provide reasonable functionality. For exam-

ple, searching for "order food" in a search engine will probably bring up a website for

ordering food online.

5.2 Keyword Engine Performance

To test the performance of the keyword engine, tests were run using the commands

acquired from the field study as well as randomly generated commands.

Each of the commands acquired in the field study were processed with the keyword

engine. The average time it took to process a command was 15 milliseconds. The

maximum processing time was 55 milliseconds and the minimum processing time was

4 milliseconds.

To determine how the keyword engine scaled, its performance was measured with

commands of different lengths and with different numbers of types and functions. To

generate commands of different lengths, a word bank was created using words from

commands acquired in the field study.

Command lengths between 1 and 30 were tested. For each length, twenty com-

mands of that length were generated by randomly choosing words from the word

bank and stringing them together into a command. The processing times for those

twenty commands were then averaged. Table 5.1 and Figure 5-1 show how the time

to process a command changed with respect to the length of the command and the

number of types and functions defined.

Inky aimed to provide instantaneous feedback to the user. According to [13],

users do not notice delays of about 150 milliseconds for keyboard interactions. The

times it took to process the commands from the field study were all well below this

threshold. Furthermore, using all the functions and types currently defined in the

system, processing commands of up to 30 words still did not produce a noticeable

delay. Thus, Inky succeeds in providing instantaneous feedback to the user.

Adding types and functions increases the time it takes to process a command, but

not by unreasonable amounts. The number of types were doubled and the number of

Command gma - 3 types, cal -9 types, a -1 types,
L 2 functions 14 functions 47 functions

16 6.68 15.83 46.93

17 6.52 18.33 46.66

18 6.19 17.81 49.42

19 5.51 23.32 46.70

20 8.23 17.18 51.37

21 8.41 20.06 53.45

22 8.77 21.73 54.02

23 8.01 20.82 53.98

24 8.56 20.64 56.03

25 6.80 21.98 55.60

26 8.86 22.44 57.66

27 7.86 21.99 56.65

28 7.04 27.51 60.19

29 7.70 22.29 61.99

30 6.39 25.44 63.68

Table 5.1: Time in milliseconds it took to process commands of different lengths with
different numbers of types and functions defined.

Figure 5-1: Processing time versus command length for different sets of types and
functions.

Command gma - 3 types, csal -9 types, al - 16 types,
Length 2 functions 14 functions 47 functions

1 16.31 4.28 24.08

2 6.65 12.82 47.67

3 7.10 11.71 46.28

4 5.20 10.60 38.89

5 5.37 12.56 42.06

6 4.11 13.56 38.49

7 5.60 12.59 42.53

8 5.19 15.49 39.69

9 6.21 14.30 44.08

10 4.92 10.97 39.47

11 6.33 14.86 41.72

12 6.11 18.01 40.97

13 5.63 14.35 44.45

14 6.60 15.12 47.04

15 6.41 18.48 46.11

Processing Time vs. Words in Command

70.00

60.00

50.00

40.00

S30.00

20.00

10.00

0.00

all - 16 types, 47 functions
-0- csafl - 9 types, 14 functions

-s- gmail - 3 types, 2 functions

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Words in Command

functions were tripled between the csail set and the complete set. The time it took

to process a command approximately tripled between the sets as well.

Chapter 6

Conclusion

Inky allows users to access website functionality in a command line-like interface

while mitigating the traditional pitfalls of such interfaces. As a Firefox plugin, it is

easily accessible to the user and has an area for users to type commands. It displays

dynamic feedback to the user about the state of the interpreter and gives the user

hints on how to complete her command.

The sloppiness of Inky commands and the feedback it provides on the state of

the interpreter are Inky's distinguishing features. Since Inky's command are sloppy,

it accepts synonyms of function and type names and allows a user to type them in

any order. Inky's feedback indicates what command the user is trying to call, the

arguments a user has already filled in, and the arguments a user still needs to fill in.

It provides several suggestions when a command is ambiguous. Inky also defines a

separation between commands with persistent side effects and those without.

By storing its supported functions and types in human-readable XML files, Inky

also makes it easy for users to add to the system.

From informal user tests, there is strong evidence that Inky is a learnable interface

that can accurately interpret a user's command. There is also evidence that sloppiness

is important to the interface.

6.1 Future Work

From the user studies and interviews with users, it is clear that there are many ways

that Inky can be extended to improve the system. Improvements can be made to the

front-end to make it more memorable. There is also significant room for improvement

in function and type definition. Finally, it would be good to do some more user tests

and increase the accuracy of the keyword engine.

6.1.1 Improved Reminder Feature

Users in the field study often forgot that Inky existed. As a result, they would fall

back on their old, less efficient ways of accessing web functionality. Inky should

remind users that it exists in an unobtrusive manner.

To do this, one might add in a reminder feature like that in Smart Bookmarks [141

that would display a drop down message when a user visits a page that corresponds

to a command. The message will include a sample command that they would have

been able to run to get to the same page, in the manner of other self-disclosing tools

[11]. In order to make the reminder less annoying to the user, Inky should keep track

of how many times the user has executed each type of command. Then, when the

user goes to a page corresponding to that command, Inky would only pop up the

reminder probabilistically. This probability would be inversely proportional to how

often the user has called that command. This will prevent the reminders from coming

up when a user who knows about the Inky command just wants to manually access

a webpage.

6.1.2 Front-end for XML Editing

While XML is designed to be a human-readable format, Inky should include a better

interface for editing its function and type files. This would make it easier for end

users to customize Inky and for website owners to create downloadable Inky files for

their users.

To do this, a sidebar that Inky can bring up for editing these files could be created.

Since Inky functions do not have names, users would specify a function to edit by

typing a command. This would bring up feedback similar to that in Inky, but with

fewer visual cues for the arguments. Users can then click on the function they want to

edit to enter a function-editing window. For feedback that includes multiple function

calls, users would click on the function keywords of the function they wanted to edit.

The function-editing window will have fields that let users edit the function's

keywords, arguments, and JavaScript body. An advanced editing button will open

fields that edit the function's icon, example, side effect name, how to translate it to

a user-readable format, and its arguments. The argument-editing area of the window

will include a button that will pop up a type-editing window for that type. To edit

a type, users can also specify a type name and the file it comes from. Inky should

also provide a testing area so that users can see how Inky would interpret commands

with their changes before they save the changes.

It would also be good for users who are not familiar with JavaScript or Chicken-

scratch to be able to create their own functions more easily. One idea is to incorporate

work done in Smart Bookmarks [14]. Users could then essentially save parameterized

bookmarks, create arguments for each parameter, add in some synonyms for calling

that bookmark, and call it through Inky. This would prevent users from having to

stop and fill in the parameters each time the bookmark ran.

The interface for editing functions could be somehow integrated with Inky so that

users could quickly add something when Inky gave incorrect interpretations.

6.1.3 Hierarchy of Functions

To make function files easier to create, Inky could impose a function hierarchy on

the system. This way, functions can be grouped by domain name and subdomain

name. This kind of hierarchy will allow Inky to automatically detect things like the

favicon URL and basic keywords that should go with the function. With a hierarchy,

users won't have to specify that every CSAIL function has "csail" as a keyword or

that every Google Calendar function has both "google" and "calendar" as keywords.

This function hierarchy could also make the interpreter's algorithm more efficient.

For example, when a keyword specific to part of the hierarchy appears, it could limit

or at least heavily bias its search towards functions in that subtree. This hierarchy

would only be imposed on callable functions.

6.1.4 Directed User Study

While the field study evaluated Inky on its own merits, it would be useful to con-

duct a directed user study in order to compare Inky to traditional ways of accessing

web functionality. In such a study, users should be asked to access functionality

both through traditional methods and through Inky. The experimenter should then

compare how much time each method took and the overall user experience for each

method. User tasks should include at least one task that corresponds to a single

argument function, one task that corresponds to a multiple argument function, and

one task that corresponds to a custom Chickenscratch function.

6.1.5 Algorithm Improvements

The algorithm could be improved such that it was faster and so that the correct

interpretation appeared in the top two or three suggestions. There are several ways

to do this.

One improvement would be to have the algorithm weight functions based on how

likely they are to be called. This weighting would be a combination of some default

likelihood of being called and data gathered from the user. The default likelihood

would be specified in the XML files and would be the XML author's best guess as to

how often their function should be called. For example, one would expect someone to

look at room reservations more often than they would actually reserve rooms. One

would also expect people to use a generic search engine more often than they would

use an image or synonym search engine. To make the weightings more personalized,

Inky will also gather data on how often a user calls each function. Functions that

were used more often would be given more weight, as it is likely that the user wanted

to call that same function again.

Another improvement would be to limit or bias the algorithm's search. As the

user studies showed, there is a high probability that any function keywords would

appear at the start of the command. If the function hierarchy were implemented,

that would further limit the search space. This would allow the engine to run faster

and perhaps display more relevant suggestions with less information. The command

matrix could also store the results of past commands that had been processed and use

that information if a previous command were a substring of a new command. That

way, the whole command wouldn't have to be reprocessed every time the user added

a new character, allowing the user to get more instantaneous feedback.

Bibliography

[1] M. Bolin. End-user programming for the web. Meng thesis, Massachusetts
Institute of Technology, 2005.

[2] R.C. Miller. Lecture 6: Models & metaphors.
http://groups.csail.mit.edu/graphics/classes/6.831/lectures/L6.pdf, September
2004.

[3] D.M. Ritchie and K. Thompson. The UNIX time-sharing system. The Bell
System Technical Journal, 57(6), July-August 1978.

[4] YubNub - a (social) command line for the web. http://www.yubnub.org.

[5] Mozilla firefox - smart keywords. http://www.mozilla.org/products/firefox/smart-
keywords.html.

[6] A. Pash. Hack attack: Firefox and the art of keyword bookmark-
ing. http://lifehacker.com/software/bookmarks/hack-attack-firefox-and-the-
art-of-keyword-bookmarking-196779.php.

[7) Google help : Search features. http://www.google.com/help/features.html.

[8] G. Little and R.C. Miller. Translating keyword commands into executable code.
In Proceedings of the 19th annual ACM symposium on User interface software
and technology, pages 135-144, Montreux, Switzerland, 2006. UIST.

[9] G. Little and R.C. Miller. Keyword programming in java. In Proceedings of
the twenty-second IEEE/ACM international conference on Automated software
engineering, pages 84-93, Atlanta, Georgia, 2007. ASE.

[10] G. Little, T. Lau, A. Cypher, J. Lin, E. Haber, and E. Kandogan. Koala: Cap-
ture, share, automate, personalize business processes on the web. In Proceedings
of the SIGCHI conference on Human factors in computing systems, pages 943-
946, San Jose, CA, April 2007. CHI.

[11] J.O. Wobbrock. In your own words: Using full sentences as feedback. Extended
Abstracts of the ACM Conference on Human Factors in Computing Systems
(CHI '02), pages 886-867, 20-25 April 2002.

[12] quicksilver:whatisquicksilver. http://docs.blacktree.com/quicksilver/whatis-quicksilver.

[13] J.R. Darowski and E.V. Munson. Is 100 milliseconds too fast? Extended Abstracts
of the ACM Conference on Human Factors in Computing Systems (CHI '01),
pages 317 - 318, 2001.

[14] D. Hupp. Smart bookmarks: Automatic retroactive macro recording on the web.
Meng thesis, Massachusetts Institute of Technology, 2007.

[15] Java 2 platform standard edition 5.0 api specification.
http://java.sun.com/j2se/1.5.0/docs/api/.

[16] Chickenfoot. http://groups.csail.mit.edu/uid/chickenfoot.

[17] Javascript - mozilla developer center. http://developer.mozilla.org/en/docs/JavaScript.

