
Practical Mobile Proactive Secret Sharing

by

David Dryjanski

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

@ Massachusetts Institute of Technology 2008. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

May 23, 2008

C ertified by
Barbara Liskov

Ford Professor of Engineering

-- -Th
/

Thesis Supervisor

Accepted by...................
Terry P. Orlando

Chairman, Department Committee on Graduate Students
MASSACHUSETTS INSTITUTE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
OF TECHN,-, ., Y i.....

NOV 132008 i IV

LI3RARIES i-,

Practical Mobile Proactive Secret Sharing

by

David Dryjanski

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2008, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Secret sharing schemes are needed to store and protect secrets in large scale dis-
tributed systems. These schemes protect a secret by dividing the it into shares and
distributing the shares to multiple shareholders. This way the compromise of a single
shareholder does not reveal the secret. Many new secret sharing schemes, such as
Proactive Secret Sharing, have been developed to combat the increasing threat from
malicious nodes and keep systems secure. However, most of these schemes can be
compromised over time, since share transfer and redistribution are static: the set
of shareholders is fixed. Mobile Proactive Secret Sharing (MPSS) is a new protocol
with dynamic redistribution that can adapt to Byzantine faults and remain secure for
the duration of long-lived systems. This thesis describes the simulation, testing, and
evaluation of the MPSS protocol to better understand the performance trade-offs and
practicality of secret sharing protocols operating in Byzantine faulty environments.
The thesis evaluates the original MPSS scheme and the MPSS scheme with verifi-
able accusations in a distributed setting, finds that both schemes are practical, and
explores the performance trade-offs between the two schemes.

Thesis Supervisor: Barbara Liskov
Title: Ford Professor of Engineering

Acknowledgments

I would like to thank my advisor, Barbara Liskov, for giving me the opportunity

and challenge of working on this thesis. I owe David Schultz much of my gratitude

for developing the MPSS protocol, and always being helpful and providing effective

guidance for all of my research needs. I would also like to thank Ben Vandiver for

specifically aiding me in creating shell scripts for a distributed system, and James

Cowling for his expertise in Emulab. I would further like to thank the rest of the

members of the Programming Methodology Group (PMG) and other colleagues at

the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL): Daniel

Myers, Daniel Ports, Dorothy Curtis, Evan Jones, Liuba Shrira, Raluca Ada Popa,

Winnie Cheng, and Yoyo Zhou for providing a great research environment. Finally, I

would like to thank my family and friends for their love and support throughout my

entire educational career.

Contents

1 Introduction 11

1.1 Motivation for MPSS 11

1.2 Contributions 13

2 Background and Assumptions 15

2.1 Background 15

2.2 Assumptions 17

2.2.1 Network Assumptions 17

2.2.2 Cryptographic Assumptions 18

2.2.3 Adversarial Assumptions 18

2.2.4 Epoch Assumptions 18

3 MPSS Protocol 21

3.1 Original MPSS Scheme 21

3.1.1 Proposal Selection 22

3.1.2 Agreement 22

3.1.3 Share Transfer. 24

3.1.4 Protocol Objects and Messages 24

3.1.5 State Machine 26

3.2 MPSS with Verifiable Accusations 30

4 Evaluation 33

4.1 Implementation 33

7

4.1.1 Pragmatic Development 33

4.1.2 Development Methodology 34

4.1.3 Development Environment 35

4.2 Experimental Framework 35

4.2.1 Local Testbed 35

4.2.2 Emulab Testbed 36

4.3 Evaluation Results 38

4.3.1 Performance Metrics 38

4.3.2 Validation Metrics 39

4.3.3 Evaluation 42

5 Conclusion 49

5.1 Discussion 49

5.2 Future Work 49

A MPSS Validation Metrics 51

A.1 Message Behavior 51

A.2 Bandwidth Requirement 52

B MPSSVA Validation Metrics 55

B.1 Message Behavior 55

B.2 Bandwidth Requirement 56

B.3 Protocol Duration 56

List of Figures

3-1 Proposal Selection Algorithm (PSA) Pseudocode 23

3-2 MPSS FSM Diagram 27

3-3 Timeline of the MPSS protocol 29

3-4 PSA for Verifiable Accusations (PSAVA) Pseudocode 31

4-1 Low latency network topology test for f = 2. 37

4-2 A sample geographic distribution of data centers across the U.S. with

ping times 37

4-3 High latency network topology for f = 2 38

4-4 MPSS and MPSSVA Cryptographic Space Requirements 39

4-5 MPSS Messages Sizes (bytes) for f = 1 to 7.......... 40

4-6 MPSSVA Messages Sizes (bytes) for f = 1 to 7. 40

4-7 MPSS Messages Computation Formulas 41

4-8 MPSS and MPSSVA System Parameters 43

4-9 MPSS vs. MPSSVA Messages Sent Comparison at the Primary . . . 43

4-10 MPSS vs. MPSSVA Bytes Sent Comparison at the Primary. 44

4-11 MPSS vs. MPSSVA Duration Comparison (low latency) 45

4-12 MPSS vs. MPSSVA Duration Comparison (high latency) 46

Chapter 1

Introduction

Secret sharing schemes are needed to store and protect secrets in large scale dis-

tributed systems. These schemes protect a secret by dividing the it into shares and

distributing the shares to multiple shareholders. This way the compromise of a single

shareholder does not reveal the secret. Many new secret sharing schemes, such as

Proactive Secret Sharing, have been developed to combat the increasing threat from

malicious nodes and keep systems secure. However, most of these schemes can be

compromised over time, since share transfer and redistribution are static: the set

of shareholders is fixed. Mobile Proactive Secret Sharing (MPSS) is a new protocol

with dynamic redistribution that can adapt to Byzantine faults and remain secure for

the duration of long-lived systems. This thesis describes the simulation, testing, and

evaluation of the MPSS protocol to better understand the performance trade-offs and

practicality of secret sharing protocols operating in Byzantine faulty environments.

The thesis evaluates the original MPSS scheme and the MPSS scheme with verifi-

able accusations in a distributed setting, finds that both schemes are practical, and

explores the performance trade-offs between the two schemes.

1.1 Motivation for MPSS

This section identifies a motivating scenario for MPSS. The scenario we consider is a

company trying to protect a digital secret, namely a private key (e.g. the private key

that a certificate authority like Verisign, Inc. uses to sign its certificates). Companies

use their private keys to authentically distribute their software, to digitally sign their

documents, and to act as the basis for the company's digital identity. Therefore,

companies must protect their private keys or else they face disastrous consequences.

Furthermore, these companies have disparate data centers around the world which

all need access to private keys to perform company tasks. What is the best solution

for this company?

Using standard public key cryptography, where you generate a public/private key

pair to each key server is one solution. However, this solution presents a serious

key management problem: each key server is a single point of failure. Consider

the situation when a data center's key server is compromised; now the attacker has

full access to all of the company's operations. To recover from such an attack, the

company would have to regenerate its public/private key pair and reissue certificates

using the new key. This is a time intensive process that would have to occur on a

regular basis in order to prevent attacks.

Fortunately, these problems are solved by using MPSS. The secret sharing aspect

of MPSS protects a secret by distributing shares of the secret (i.e., the private key

of the public/private pair) to several nodes in the system, such that an attacker

would have to compromise more than a threshold, f, of nodes to gain access to the

secret. Instead of distributing the secret to the nodes, only cryptographic shares of the

secret are distributed. MPSS is proactive, performing share regeneration periodically,

in system-wide intervals called epochs, so that long-lived systems can remain secure

indefinitely. The secret is never revealed, provided that no more than f shareholders

are corrupted in a given epoch. Finally, MPSS can change the threshold for obtaining

the secret and change the shareholder membership of the secret. MPSS's mobility

enables it to adapt to security vulnerabilities by modifying shareholder membership

and increasing the system's threshold. MPSS provides a more resilient, secure, and

sustainable system for protecting secrets than previous solutions.

1.2 Contributions

The technique and protocol for MPSS were defined by Schultz and Liskov [Sch07]; the

contribution in this thesis is to implement an MPSS system, explore optimizations,

and measure performance in order to ascertain the true practicality of MPSS. The

thesis makes the following contributions:

1. MPSS Implementation - Implement a system that simulates the protocol and

design specifications in [SchO7].

2. MPSS Evaluation - Run experiments on the system to compare the behavior

of the system to the original intentions of MPSS.

3. MPSS Scalability - Run performance tests on the system to analyze the scala-

bility and practicality of MPSS.

4. MPSS Trade-offs - Explore the performance trade-offs of the original MPSS

scheme and the scheme that utilizes verifiable accusations.

We found that our implemented MPSS system matched expected performance of

the original MPSS protocol and was indeed scalable.

The thesis is organized as follows. Chapter 2 describes related work and the as-

sumptions of our system. Chapter 3 details the MPSS protocol. The implementation

and evaluation results of the system are discussed in Chapter 4. We conclude in

Chapter 5.

Chapter 2

Background and Assumptions

The first part of this chapter discusses the relevant theory and schemes that eventually

led to MPSS. The last part of the chapter discusses the assumptions we make about

the environment in which MPSS operates.

2.1 Background

Secret sharing, originally developed by Adi Shamir in 1975 [Sha79], is an algorithm

that provides information theoretical security to protect a given secret. The algorithm

creates a set of N shares for a secret that, alone, resemble random bits of information.

A threshold, f, is defined such that when more than f of the N shares are combined,

the algorithm can recover the secret, but with up to f shares, no information is

exposed. The algorithm works by generating a random degree-f polynomial, where

each share is a point on the polynomial. The secret is the value of the polynomial at

zero. When enough shares are combined, the points are interpolated to compute the

polynomial, which is then evaluated at zero to determine the secret. Even f shares

reveal nothing about the secret since there is a degree of freedom for the last, defining

point on the polynomial.

In the original proposal for secret sharing, there is one trusted node, known as the

dealer, which runs the secret sharing algorithm to distribute and recombine the shares

of the secret; the nodes that receive shares are known as shareholders. Verifiable

Secret Sharing (VSS), as described by Feldman et al. [Fel87], extends secret sharing by

allowing a semi-trusted dealer. A semi-trusted dealer cannot reveal the actual secret,

but it may trick other nodes by giving false shares. VSS adds extra commitment

information to each share, so that receiving nodes can verify the validity of their

share.

Although secret sharing adds security to a system by forcing attackers to compro-

mise more than f machines, over long periods of time, an attacker can accumulate

enough shares to eventually discover the secret. Proactive Secret Sharing (PSS) was

first described by Ostrovsky and Yung in 1991 [OY91], as an adaptation of secret

sharing to be able to handle compromises in a system over time. Their model oper-

ates under the assumption that nodes in their system can be infected by an adversary

at a certain rate, but nodes can also be restored to their correct state at an equal rate.

Under the original secret sharing scheme, over time, enough infected nodes will learn

all of the shares, allowing the adversary to recover the secret. Ostrovsky and Yung's

scheme introduces a refresh protocol with a system wide epoch that recomputes the

shares of the secret at the start of each epoch. Therefore, as long as the duration for

each epoch is less than the time for an adversary's rate of infection to infect more

than t nodes in the system, the secret can be preserved.

Ostrovsky and Yung proved that it was theoretically possible to build a PSS

system. However, Ostrovsky and Yung's PSS scheme is inefficient and impractical

due to its dependence on secure, multi-party computation, which is expensive, and

its assumption of a synchronous network. Herzberg et al. [HJKY95] improved upon

the scheme by making an efficient PSS protocol for synchronous networks. Although

impractical for real systems, these two works proved that it was possible to define a

PSS scheme, which has led to much of the follow-on work for secret sharing schemes.

Mobile Proactive Secret Sharing enhances PSS by preserving secrecy in asyn-

chronous networks even if nodes cannot be fully restored to a correct state. The

MPSS scheme gives the system the ability to change the number of shareholders,

redefine the set of shareholders to the secret, and adjust the threshold of the secret.

Now if the adversary suddenly increases the fraction of infected nodes, the system can

increase the threshold (i.e. number of shares of the secret) and increase the number

of shareholders to prevent the adversary from accessing the secret. MPSS eliminates

the assumption made by PSS that compromised nodes can be recovered back to their

correct states. The assumption is faulty due to the fact that it may be impossible

to determine if the node can ever be trusted again. Instead, MPSS makes a stronger

security guarantee by providing security even if nodes have been compromised. MPSS

uses the Byzantine Fault Tolerance (BFT) algorithm [CL02] [CL99], in order to reach

system-wide agreement amongst non-faulty nodes. BFT guarantees the liveness and

safety of a system with 3f + 1 nodes as long as there are no more than f faulty nodes.

Thus, MPSS can guarantee correctness as long as the number of faulty nodes is no

larger than the threshold and by allowing the system to change the shareholders of

the secret.

A variant of MPSS, that is also explored in the thesis, is the scheme that uses

Verifiable Accusations. MPSS with Verifiable Accusations (MPSSVA) allows nodes

to verifiably accuse malicious nodes when detecting invalid data. A node receiving an

accusation can then verify cryptographically whether or not the accusation is justified.

The ability to verify optimizes certain parts of the protocol, when compared to MPSS.

The trade-off when using MPSSVA is the cryptographic overhead for producing and

analyzing Verifiable Accusations, and the extra storage space needed to append to

protocol messages.

2.2 Assumptions

2.2.1 Network Assumptions

MPSS operates under realistic network conditions, in which adversaries may exist.

This translates to the familiar asynchronous network security model, where messages

are sent peer to peer and can be delayed, reordered, or lost. We assume an adversary

can have complete control over the network and can decide to reorder the messages,

modify messages, and even create new messages. Under these conditions our protocol

will be correct, but in order to terminate and ensure liveness, our protocol requires the

network to have the property of strong eventual delivery. Strong eventual delivery

ensures that the maximum delay in message delivery for messages repeatedly sent

from uncorrupted nodes is bounded (with some unknown bound), and while that

bound can change over time, it does not increase exponentially indefinitely.

2.2.2 Cryptographic Assumptions

We use cryptography to both hide secret information and also to ensure that mes-

sages come from specific nodes. We require the following cryptographic assumptions:

We require collision-resistant hash functions such that it is infeasible for an adversary

to find a Y where hash(Y) = hash(X). SHA-256 is an example of a hash function

that is widely believed to be collision resistant and this is what our implementation

uses. Public Key Encryption and Decryption algorithms, such as RSA, make it in-

feasible for an adversary to decrypt information without the proper private key pairs.

Verifiable Secret Sharing is computationally secure under the Discrete Logarithm As-

sumption. MPSS uses forward-secure encryption and forward-secure signing, which

is computationally secure under the Bilinear Diffe-Hellman Assumption [BF01].

2.2.3 Adversarial Assumptions

We assume there exists a powerful adversary that is computationally bounded in

polynomial time, and can monitor all network traffic and corrupt nodes at a reasonable

rate. Once a node is corrupted, that node is corrupted forever and the adversary

automatically learns all of the information from that node. A corrupted node is

completely controlled by the adversary and can deviate from the protocol, send fake

messages, or even act like an honest node.

2.2.4 Epoch Assumptions

MPSS progresses in a series of epochs, such that a share during an epoch e is only

valid for that epoch. At the end of each epoch all share information is completely

erased before moving to the next epoch. We assume that an adversary can corrupt

no more than f nodes in a given epoch.

Chapter 3

MPSS Protocol

This chapter describes the original MPSS scheme and the MPSS scheme with Verifi-

able Accusations [Sch07]. For full descriptions of the protocols, we refer the reader to

[SchO7], as this chapter describes the protocols only in enough detail for the purposes

of this thesis. In the protocol, all messages are signed by the sender and encrypted for

the recipient using a forward-secure signature and forward-secure encryption scheme

respectively. We define a Participant to be a node in the protocol that owns a share

of the polynomial for the current epoch. We define the Primary to be the Participant

that coordinates the protocol. In the text, we write each message type of the protocol

in bold font with a MSG prefix.

3.1 Original MPSS Scheme

The MPSS protocol is composed of three main stages: proposal selection, agreement,

and share transfer. Proposal selection is the process by which all of the current

shareholders generate and select a new secret sharing polynomial for the next epoch.

Once a selection has been made, the agreement stage of the protocol commences, and

completes when a majority of non-faulty shareholders reach agreement on the selected

polynomial. The final stage of the protocol is the share transfer of the polynomial

from the group of existing shareholders to the new group of shareholders for the next

epoch. This section continues with a description of these stages in more detail.

3.1.1 Proposal Selection

During proposal selection, each node in the system proposes a group of 3f + 2 poly-

nomials of degree f, where f is the current threshold, by broadcasting a MSGPRO-

POSAL containing its proposals. These messages contain Feldman commitments

to the proposed polynomials; their details can be found in [Sch07]. Upon receiv-

ing 2f + 1 valid MSGPROPOSAL's, the Primary combines these proposals into a

proposal set, and broadcasts the MSGPROPOSALSET to all of the participants.

Each node inspects the MSGPROPOSALSET and sends a MSGPROPOSAL-

RESPONSE to the Primary with a list of the proposals it finds to be invalid (i.e.

corrupt). The Primary runs the online Proposal Selection Algorithm (PSA), shown

in Figure 3-1, as each MSGPROPOSALRESPONSE arrives until it satisfies the

PSA stop condition.

The PSA deterministically selects a subset of the original proposal set that is

guaranteed to contain at least one honest proposal. It accomplishes this by removing

any proposal from a node that has been accused and also a proposal from an accuser

node (since it cannot tell which node is bad). Each MSGPROPOSALRESPONSE

can only remove at most two proposals (the accuser and the accusee). Since at most

f nodes can be malicious, they can remove at most 2f proposals, and thus, there will

be at least one honest proposal left in the set.

At this point, the Primary has selected a final proposal set that it can use to

create a new polynomial to share the secret. The polynomial is created by linearly

combining the selected proposed polynomials; and has the property that each node

sees only a part of this polynomial and learns nothing about the rest of the polynomial

(more information can be found in [Sch07]).

3.1.2 Agreement

Once proposals have been selected, the Primary initiates a BFT [CL02] agreement for

its selected proposals. The value to be agreed upon by the participants is the resultant

set of selected proposals. Thus, the Primary sends its initial proposal set and the

Figure 3-1: Proposal Selection Algorithm (PSA) Pseudocode

1. d - 0, satisfied +- 0, rejected +- 0

2. props +- set of all proposals in MsgProposalSet

3. foreach MsgProposalResponse R from distinct node i

4. if i E rejected

5. continue

6. if 3j E R.BadSet such that j E props

7. props - props - {i,j}, rejected +- rejected U {i,j}

8. satisfied -- satisfied - {j}

9. d d+1

10. else

11. satisfied <-- satisfied U {i}

12. if Isatisfiedi = 2f + 1- d

13. stop

in-order set of MSGPROPOSALRESPONSE's it has received to participants.

A node votes by running the PSA on these inputs and determining if the output

equates to the Primary's selection. The BFT protocol operates with the standard

MSGBFTPREPREPARE, MSGBFTPREPARE, and MSGBFTCOMMIT

messages. A node can participate in the BFT phase even if it did not agree with the

selected proposals. If agreement is reached the protocol moves into the share transfer

stage. Otherwise, the Primary is faulty and a view change occurs forcing a restart of

the protocol with a new Primary.

3.1.3 Share Transfer

Upon reaching agreement, the Primary and all Participants send MSGNEWPOLY

messages based on the new polynomial to all Participants of the next epoch. When

a Participant from the current epoch receives at least f + 1 MSGNEWPOLY ac-

knowledgments, it deletes all of its current secret sharing information and progresses

into the new epoch, since at least one honest node has received the new polynomial.

A new Participant computes its own share when it has received f + 1 valid MS-

GNEWPOLY from old Participants; it holds on to these messages for the duration

of the next epoch in case some other new Participant never received the message.

3.1.4 Protocol Objects and Messages

Now we describe the different objects needed to run the protocol. There are underly-

ing secret sharing information objects such as the proposal polynomial and commit-

ments, and the protocol message objects. Here we describe the functionality and role

of these objects in the system.

Protocol Objects

Proposal - A sender node creates a proposal object for every Participant in the

protocol. For each Participant's proposal there is a set of 3f + 2 points, the

Participant's point on each of the 3f +2 polynomials the sender node generated.

Each proposal is encrypted for its intended Participant. The object is O(f) in

size.

Commitment - A commitment object provides the information necessary for a node

to verify that the proposal was generated properly and unmaliciously. Commit-

ments are essential for the protocol to generate secure shares and a trusted

polynomial. There is one commitment object for each of the 3f + 2 polynomials

generated by the sender. Each commitment is composed of f + 1 points per

proposal point for a total of (3f + 2)(f + 1) = 3f 2 + 5f + 3 points.

AgreementValue - This object is used during the BFT agreement phase of the

protocol as the value to be agreed upon by all of the participants. The Agree-

mentValue consists of a hash of the proposal set and the ordered set of responses

that the Primary used as input to the PSA to select the final set of proposals.

A shareholder can then rerun the PSA with these inputs to verify the Primary

reached the same set of proposals. The size of an AgreementValue is O(f2).

Protocol Messages

MSGPROPOSAL - This message contains the proposal for the share generation

polynomial for every node in the system along with the commitments to the

polynomials. The size of this message is O(f 2).

MSGPROPOSALSET - This message sent by the Primary contains the hashes of

2f + 1 MSGPROPOSAL's the Primary received along with the identifiers of

their senders. The size of a proposal set message is O(f).

MSGPROPOSALRESPONSE - This message is the Participant response to a

MSGPROPOSALSET, where the Participant identifies the proposals it be-

lieves are invalid along with a hash of the original MSGPROPOSALSET. A

node votes on what the Primary sent, so the size of the message is O(f).

MSGBFTPREPREPARE - The Primary sends this message when it has selected

a set of proposals for the rest of the Participants to agree on. The message

consists of the AgreementValue that other nodes must vote on. As noted earlier

an AgreementValue has a size of O(f 2), so the size of a MSGBFTPREPRE-

PARE is also O(f 2).

MSGBFTPREPARE - This message is a vote that contains a hash of the Agree-

mentValue. Size is 0(1).

MSGBFTCOMMIT - This message commits to the hash of the AgreementValue

in the final round of BFT agreement. Size is 0(1).

MSGNEWPOLY - Much like a MSGPROPOSAL, this message contains points

on the new polynomial that will be used to generate the new shares for each

member in the new group. The polynomial is a linear combination of all the

polynomials that were agreed to in the AgreementValue object and commit-

ments, such that recipients of a MSGNEWPOLY can only generate their

own shares and nothing else. The message size is equivalent to a MSGPRO-

POSAL, O(f 2).

3.1.5 State Machine

We can describe the protocol as a finite state machine for a better understanding

of MPSS (a diagram is shown in Figure 3-2). We only cover the transitions for

the normal case of the protocol and we leave out transitions that would occur from

message reordering and faulty nodes.

The Participant node maintains a state for each stage of the protocol in which it

participates.

WAIT - This is the beginning state, where the Participant waits until the Primary

sends a MSGSTARTPROTOCOL. The MSGSTARTPROTOCOL is a

message artifact from our implementation that synchronizes the initiation of

the protocol, but the protocol does not necessarily have to start in this manner.

The Participant then broadcasts its MSGPROPOSAL to initiate the MPSS

protocol and transitions to the PROPOSALSENT state once it has sent all of

the messages.

PROPOSALSENT - In this state the node is idle until it receives a MSGPRO-

POSALSET from the Primary, in which case it validates the message, sends

a MSGPROPOSALRESPONSE to the Primary, and moves into the PRO-

POSAL_RESPONSE-SENT state.

Primary Participant
-I

I I
I I
I I

COMMITSENT

I I
ivesj2F+1 MsgBFTommit's,
broqdcasts the MsyNewPoly.

I I END
I I

------------ -------- I..........................

Figure 3-2: MPSS FSM Diagram

PROPOSALRESPONSE_SENT - The Participant waits for a MSGBFTPREPRE-

PARE to begin the BFT agreement phase of MPSS. Upon receiving the mes-

sage, the Participant runs the PSA to verify that the polynomial value be-

ing agreed on is indeed a valid value. If satisfied, the Participant will broad-

cast a MSGBFTPREPARE to all shareholders and transition to the PRE-

PARESENT state. If unsatisfied, or if the node never receives a MSGBFT-

PREPREPARE, the node can still progress to the COMMIT-SENT or END

states if it receives 2f + 1 MSGBFTPREPARE's or MSGBFTCOMMIT's

respectively.

PREPARESENT - In this state the Participant waits until it receives 2f + 1,

distinct MSGBFTPREPARE messages, including its own, so that it can

broadcast a MSGBFTCOMMIT to all of the Participants and move into the

COMMITSENT state. Similar to the PROPOSALRESPONSESENT state,

the node can proceed to the END state if it receives 2f + 1 MSGBFTCOM-

MIT's before it receives 2f + 1 MSGBFTPREPARE's.

COMMIT_SENT - Once a node has received 2f + 1 MSGBFTCOMMIT's, the

protocol has agreed on a new share distribution polynomial, and the node can

broadcast the MSGNEWPOLY to the members of the new group. When the

node receives f + 1 acknowledgments, it can transition to the END state.

END - The terminating state of the protocol.

The Primary node acts as both a Primary and a Participant throughout the

protocol. Here is the Primary State Machine:

PROPOSAL_WAIT - This is the initial state of the Primary when the protocol

begins. The Primary broadcasts a MSGSTARTPROTOCOL to all share-

holders to start sending MSGPROPOSAL's. Upon receiving 2f + 1 MSG-

PROPOSAL's, the Primary collects all the proposals into a proposal set and

broadcasts a MSGPROPOSALSET message to all of the shareholders, mov-

ing into the PROPOSALSETSENT state.

PROPOSAL_SETSENT - The Primary runs the online PSA as it receives MS-

GPROPOSALRESPONSE messages. Once the stop condition is reached,

the Primary broadcasts a MSGBFTPREPREPARE message to all of the

shareholders to begin the BFT agreement phase and moves into the PREPRE-

PARESENT state.

PREPREPARESENT - The Primary immediately sends a MSGBFTPRE-

PARE to all participants and moves to the PREPARESENT state, whereupon

it progresses through the rest of the protocol states like a Participant.

Figure 3-3: Timeline of the MPSS protocol

Figure 3-3 illustrates how the Primary and Participant state machines interact to

form the underpinnings of the protocol. Although this timeline shows the ideal pro-

gression of the protocol, nodes that are behind can still participate in the agreement

and share transfer stages.

3.2 MPSS with Verifiable Accusations

A variant of MPSS, which is also explored in the thesis, is the scheme that uses

Verifiable Accusations.

The goal of the MPSS with Verifiable Accusations (MPSSVA) scheme is to make

the proposal selection process more efficient. Under the original MPSS scheme, a node

had no way of determining whether incoming MSGPROPOSALRESPONSE's

were honest or malicious. Therefore both the accuser and the accused nodes' propos-

als were removed from the selection process to ensure security. MPSSVA improves

upon this process by including verifiable accusations in the MSGPROPOSAL-

RESPONSE, which allows other nodes to cryptographically verify the claims and

accurately identify whether the accuser or the accused node is malicious. In order

to implement this scheme, some protocol objects and methods must be modified and

augmented to make use of verifiable accusations:

Proposal - The proposal object must now use forward-secure, identity-based encryp-

tion to encrypt the contained information, the details of which can be found in

[Sch07]. The message size increases due to the encryption scheme.

Accusation - An accusation object consists of an accusation against a node along

with the identity based authentication key of the accuser node.

AccusationSet - An accusation set contains all of the accusations from a particular

node.

MSGPROPOSALRESPONSEACCUSE - This is the MSGPROPOSALRE-

SPONSE object for MPSSVA with an AccusationSet. The functionality of

this message remains the same.

PROPOSALWAIT (Primary State) - The duration of the time the Primary

spends in this state can be shortened with verifiable accusations. The primary

only needs to receive f + 1 MSGPROPOSAL's instead of the original 2f + 1,

to create the proposal set object and move into the PROPOSALSETSENT

state.

Figure 3-4: PSA for Verifiable Accusations (PSAVA) Pseudocode

1. responses +- 0

2. props -- set of all proposals in MsgProposalSet

3. foreach MsgProposalResponse R from distinct node i

4. foreach accusationj E R.AccusationSet

5. if accusation,j is valid

6. props - props - {j}

7. else

8. props - props - {i}

9. responses - responses + 1

10. if responses 2 2f + 1

11. stop

Proposal Selection Algorithm with Verifiable Accusations (PSAVA) - The

proposal selection algorithm becomes almost trivial, since each valid accusation

in a MSGPROPOSALRESPONSEACCUSE results in exactly one exclu-

sion, the algorithm acts as a counter for at least 2f +1 responses to select a final

set of proposals to generate the new polynomial. This version of the algorithm

may require fewer node responses than the original algorithm. Since exclusions

will only remove the faulty nodes, the algorithm may converge on the selection

more quickly.

Chapter 4

Evaluation

To implement and evaluate the MPSS protocol we built a system that adheres to

the protocol specifications outlined in the MPSS [SchO7] design. Then we evaluated

the system's performance using values of f in the range of 1 to 7. Throughout the

evaluation process we are only interested in the performance for the "normal" (i.e.

non-faulty) behavior of the system, since this will be the most common case for the

system in practice. We used this approach to evaluate the original MPSS scheme as

well as MPSSVA.

4.1 Implementation

4.1.1 Pragmatic Development

MPSS is a system that intertwines state-of-the-art cryptography, Byzantine fault tol-

erance, and distributed systems. Due to the complexity of these components, we

chose to focus our efforts on the most significant aspects of the protocol and imple-

ment the rest through simulation. For example, MPSS relies on several cryptographic

tools for which efficient designs have been proposed only recently, such as forward-

secure signatures and forward-secure identity-based encryption. To the best of our

knowledge, no implementations of these are publicly available. Rather than build-

ing prototypes that may not be entirely correct or reflective of the performance of

a production implementation, we chose to simulate these methods using time delays

proportional to the number of operations (i.e. modular multiplications and exponen-

tiations) required, and incorporated the space requirement of the encryption scheme

into the message sizes.

We focused our implementation on the MPSS redistribution protocol, focusing

more on the Byzantine fault tolerance and distributed systems aspects, rather than

the cryptographic and mathematical details of the system.

4.1.2 Development Methodology

The development methodology was an iterative process that used the concepts and

protocol designs from Schultz's thesis [Sch07l to build a high level system, then incor-

porate the lower level details of the protocol, validated the behavior of the protocol,

and finally optimized for performance. Unit testing was performed at each of these

steps to ensure correctness of the system. The goal of building a modular, skeletal

implementation was to to ease the future development of the different MPSS schemes.

This methodology led to a better system design by decoupling components and in-

creasing the robustness of the system as a whole.

Our protocol can run over either TCP or UDP. TCP is not the right choice in

practice because it has several properties that are unneeded baggage for MPSS (e.g.,

message ordering and retransmission of messages is not relevant). However, we ran

our tests using TCP instead of UDP because our UDP implementation has other

issues, e.g., for large broadcasts, it fills the kernel's network buffer space, resulting in

dropped packets.

An important aspect of developing the MPSS system was to make it easily con-

figurable to deploy and run on multiple machines under different environments and

different settings. The flexibility of the system facilitated diverse performance testing

which resulted in a strong evaluation of the system.

Scaling the system involved progressively increasing the number of nodes in the

protocol from f = 1 to f = 7, and from local machines to more distributed and

diverse environments, such as Emulab [WLS+02]. We scaled to a maximum of f = 7

because previous work [Che04] has shown that it is unlikely that a larger value of

f will be needed in practice. Emulab was essential to scale the system to these

dimensions, since our local PMG computer lab did not have the resources necessary

for large values of f.

4.1.3 Development Environment

MPSS was implemented under the following development environments. Within the

Programming Methodology Group, we used Fedora Core 6, Linux based machines

with processors of at least 600MHz. All machines were connected in a 1Gb/sec

Ethernet Local Area Network (LAN). MPSS itself was developed in C++, using the

GNU C++ Compiler Version 4.1.1. MPSS used the following external C++ libraries:

Botan, the BSD-licensed cryptography library version 1.6.4, and NTL version 5.4.2.,

a C++ library for number theory developed by Victor Shoupe. Python version 2.4.4

was used to write the scripts necessary run the protocol on remote machines and

collect the protocols performance results in an automated fashion. GNU Profiler was

used to examine the performance of the system and identify possible optimizations.

GNUPlot version 4.0 was used to graph the performance measurements.

4.2 Experimental Framework

We evaluated our system using two testing frameworks: a local testbed and an Emulab

testbed. We tested locally during development to assess and validate the behavior of

the system for small values of f, and to be able to rapidly prototype the system. The

Emulab testbed was used for real performance testing of the system as we scaled to

large values of f.

4.2.1 Local Testbed

The first set of evaluations was performed under the local PMG environment. The

PMG environment consists of 10 Linux based PCs running Fedora Core 6 with a

range of 600MHz 2.0GHz of processing power connected to each other on a 1Gb/sec

Ethernet LAN. None of these machines were purely dedicated, since they are all

shared by members in PMG. Since there were not enough physical machines to test

MPSSs scalability up to f = 7, getting the necessary number of nodes required using

multiple ports per machine. A variety of environment setups were used to gage the

correlation of physical nodes to performance. The local testbed was mainly used to

get rough estimates on the practicality and performance of the system. Small tweaks

and changes to the protocol could be analyzed quickly on a real system, and most of

the testing of the protocol was performed on this testbed before scaling to the upper

extremes.

4.2.2 Emulab Testbed

To evaluate MPSS in a more realistic setting where nodes may be distributed across

the world with different bandwidth and network delays, we used the Emulab Total

Network Testbed [WLS+02]. Emulab is a service provided by the University of Utah

that allows researchers to develop, debug, and test distributed programs in a simulated

network environment. The researcher is able to configure the network topology and

behavior, such as throughput and latency, in order to test under desired settings.

The researcher can also specify the machine types to use in the experiment. We set

up the environment with homogeneous 3.0GHz machines with 2GB of RAM. Once

an experiment is active on the Emulab network, the researcher has full root access

to the deployed machines, and is free to run the program of his or her choosing.

Using Emulab, we were able to get performance results for f = 7 with dedicated

machines and configure the network to resemble a realistic scenario for MPSS. We

ran performance tests on two different network topologies for each value of f:

Low Latency - All machines were simulated to be connected to a high throughput

(100Mb/s), low latency LAN. This test resembles a system where all nodes

reside in a single, high speed data center. Although unrealistic, this topology

allows us to examine the behavior of the protocol under near-optimal conditions.

rep(O7 p

1 10.1.1.3rep(pc380M)

110.10.1.1.5.

rSpSreppp(pcc3S10.1.1.7

4 10.1.1.4

repp5(pc6i(pc)

10.1.1.6

Figure 4-1: Low latency network topology test for f = 2.

0

/5ms

lork

Los

Figure 4-2: A sample geographic distribution of data centers across the U.S. with

ping times.

High Latency - Nodes are located in data centers with geographic distribution and

data independence from each other, such that there is delayed communication.

All nodes are operating with high bandwidth (100Mb/s) connections with vary-

ing latencies, ranging from 5ms to 100ms delays. This deployment is of most

interest since it represents the most realistic scenario for an MPSS system,

where nodes are spatially distributed from each other, Figure 4-2 shows an ex-

ample. We consider the spatial distribution of nodes to be uniform, and that

the Primary is located near the geographic center of the network.

rep5
1'

rep1(pc3009
10.1.1.2

rep4(pc30e)
10.~ .1.5

c0.1.1.6 10Mb

10ibc 100rec r
10msec 1OOb 1

9) / 95msec

10,b 10Mb r
4qec 45mnec

rep3pc3088)
10.1.1.4 rep6(pc3@S8)

10.1.1.7

2(pc3090)
0.1.1.3

ep7(pc3088)
10.1.1.8

Figure 4-3: High latency network topology for f = 2.

4.3 Evaluation Results

4.3.1 Performance Metrics

To determine the practicality and scalability of MPSS, we identified a set of key

performance metrics that the protocol evaluation must reflect: network throughput,

protocol duration, and maximum load on each node. Network throughput is impor-

tant because it is the real cost of running the protocol. Making sure the protocol's

duration is minimal is important because a protocol that takes too long is not viable

in practice. Additionally, the longer the protocol takes to complete the more feasible

it becomes for an adversary to discover the secret within a given epoch. By evaluating

each of these metrics while scaling the protocol from f = 1 to f = 7, we can assess

the true practicality of the system under realistic scenarios.

4.3.2 Validation Metrics

During the testing of MPSS we created validation metrics to ensure appropriate

system behavior. We generated benchmarks to compare the protocol's performance

to its theoretical expectations. To do so, we formulated f-dependent relationships for

the different performance metrics, namely number of messages in the protocol, total

data throughput, and protocol duration. Each validation metric is based on ideal

system behavior, where we define ideal behavior for the system as operating with

the minimum amount of message passing. Our analysis is based on the specifications

from [Sch07] for the Primary node and the derivations for the message behavior and

bandwidth requirements for MPSS and MPSSVA can be found in Appendix A and

Appendix B respectively. Below we show the message sizes with ".s"for both schemes,

and present our protocol duration analysis.

Message Sizes

To compute message size, the space requirement of the cryptographic scheme must

be taken into account. Figure 4-4 shows the cryptographic space costs for MPSS and

MPSSVA, and Figures 4-5 and 4-6 display the message sizes for each scheme for the

different values of f.

Parameter MPSS MPSSVA
Encryption Space 768 bytes 1088 bytes
Signature Space 1024 bytes 768 bytes

Figure 4-4: MPSS and MPSSVA Cryptographic Space Requirements

Message f= 1 f = 2 f=3 f =4 f =5 f =6 f =7

MSGSTARTPROTOCOL.s 8 8 8 8 8 8 8

MSGPROPOSAL.s 6408 13128 22152 33480 47112 63048 81288

MSGPROPOSALSET.s 1160 1240 1320 1400 1480 1560 1640

MSGPROPOSALRESPONSE.s 1072 1072 1072 1072 1072 1072 1072

MSGBFTPREPREPARE.s 4372 6596 8820 11044 13268 15492 17716

MSGBFTPREPARE.s 1036 1036 1036 1036 1036 1036 1036

MSGBFTCOMMIT.s 1036 1036 1036 1036 1036 1036 1036

MSGNEWPOLY.s 3328 5824 9472 14272 20224 27328 35584

Figure 4-5: MPSS Messages Sizes (bytes) for f = 1 to 7.

Message f = 1 f = 2 f = 3 f =4 f =5 f =6 f =7

MSGSTARTPROTOCOL.s 8 8 8 8 8 8 8

MSGPROPOSAL.s 7432 15112 25096 37384 51976 68872 88072

MSGPROPOSALSET.s 864 904 944 984 1024 1064 1104

MSGPROPOSALRESPONSE.s 816 816 816 816 816 816 816

MSGBFTPREPREPARE.s 3052 4724 6396 8068 9740 11412 13084

MSGBFTPREPARE.s 780 780 780 780 780 780 780

MSGBFTCOMMIT.s 780 780 780 780 780 780 780

MSGNEWPOLY.s 3072 5568 9216 14016 19968 27072 35328

Figure 4-6: MPSSVA Messages Sizes (bytes) for f = 1 to 7.

Protocol Duration

The duration of the protocol is an accumulation of the computation time for each

message and the travel time for each message across the network. To generate a

formula we first need to define the computations required for each type of message.

We have 4 types of computations: encryption(E), decryption(D), message signing(S),

and signature verification(V). Other computations such as generating the proposals,

generating commitments, and validating message objects are not taken into account

in this model. The table below denotes the computations necessary for sending and

receiving each message. It is important to note that the encryption and signature of a

message needs to be performed only once before broadcasting that message, however

the decryption and verification of a message must be done for each incoming message.

Figure 4-7: MPSS Messages Computation Formulas

Using the relationships from message behavior and data throughput, we can find

the total computation time for the Primary (we use ".cs" and ".cr" to denote send

and receive computation time, respectively).

Comp. Time = Computations to Send + Computations to Receive

= ((3f + 1)MSGPROPOSAL.cs + (1)MSGPROPOSALSET.cs

+(1)MSGPROPOSALRESPONSE.cs + (3f + 1)MSGNEWPOLY.cs)

+((2f + 1)MSGPROPOSAL.cr + (1)MSGPROPOSALSET.cr

+(2f + 1)MSGPROPOSALRESPONSE.cr)

= (((3f + 1)E + S) + (S) + (S) + ((3f + 1)E + S))

+(((2f + 1)(D + V)) + (V) + ((2f + 1)V))

= 2(3f + 1)E + 4S + (2f + 1)D + (2(2f + 1) + 1)V

S(6f + 2)E + 4S + (2f + 1)D + (4f + 3)V

The transit time for all the messages is shown below:

Message Sending Receiving
MSGPROPOSAL (3f+1)E+S D+V
MSGPROPOSALSET S V
MSGPROPOSALRESPONSE S V
MSGNEWPOLY (3f+1)E+S D+V

Transit Time - Bytes Sent + Bytes Received Data ThroughputTransit Time + LatencyBandwidth Bandwidth

Therefore, the total protocol duration can be calculated:

Protocol Duration = Computation Time + Transit Time
Data Throughput

= (6f + 2)E + 4S + (2f + 1)D + (4f + 3)V + a
Bandwidth

+Latency

Using the models above with the appropriate system environment parameters

yield reasonable performance benchmarks for our MPSS system. We also use the

same approach to generate benchmarks for MPSSVA: The analysis can be found in

Appendix B. We ran environment tests to estimate the computation parameters:

E,D,S, and V and their respective space requirements. The results are shown in

Figure 4-8.

4.3.3 Evaluation

Based on the metrics we identified, we tested MPSS's performance by computing

the number of messages sent over the network, the total amount of bytes sent and

received by nodes in the protocol, and the total duration of the protocol. For each

test, we ran the system without malicious nodes in order to discern standard behavior

of the system. We ran each of these tests at least 10 times for each value of f. We

emphasized the performance of the Primary node since it handles the highest load in

the system.

We ran the same tests for MPSSVA in order to compare the differences between

MPSS and MPSSVA. It should be noted that our implemented MPSS and MPSSVA

systems simulated many of the advanced forward-secure encryption, forward-secure

signature, and commitment generation techniques. However, since none of the tech-

niques have production implementations, we approximated the overhead of these

schemes to the best of our knowledge. Hence, we only claim the performance our

systems to be on the same order of magnitude of complete implementations. Figure

4-8 denotes the different system parameters we used for MPSS and MPSSVA.

Figure 4-8: MPSS and MPSSVA System Parameters

The legend for each graph is located in its top right corner. The rest of this section

describes the results of our analysis.

Message Behavior

Messages Sent vs. F

1 2 3 4 5
Size of F

Figure 4-9: MPSS vs. MPSSVA Messages Sent Comparison at the Primary

Parameter MPSS MPSSVA
E 12ms 17ms
D 12ms 17ms
S 10ms 10ms
V 2ms 2ms

Figure 4-9 shows the number of

MPSSVA grows linearly with f.

ber of messages in both schemes.

messages received by the Primary.

messages sent by the Primary in MPSS and in

As expected, the Primary sends the same num-

Similar results can be found for the number of

Bandwidth Requirement

Figure 4-10 shows that MPSSVA requires more bandwidth than the original MPSS

scheme. This is due to the verifiable accusation cryptographic overhead, which in-

creases message size. The important thing to note is that bandwidth utilization grows

on the order of O(f 2), resulting from the quadratic growth of MSGPROPOSAL

message size. At f = 7, the Primary is sending close to 2MB of data in the protocol.

1.5

0.5

Bytes Sent vs. F (Emulab 3.0GHz)

Primary (MPSS)
Primary (MPSSVA) --- x---

X

I I I I

4

Size of F

Figure 4-10: MPSS vs. MPSSVA Bytes Sent Comparison at the Primary.

Protocol Duration

We tested the total time it takes to run the protocol from the Primary's perspective.

We measured the duration of the protocol as being the time from when the Primary

initiates the protocol to the share transfer of the polynomial to the new group of

shareholders. We compared the latency of MPSS and MPSSVA under the two differ-

ent network topologies. The goal of the tests is to show that the protocol terminates

in a reasonable amount of time and determine whether verifiable accusations is useful.

MPSSVA might be more expensive because of cryptographic costs and larger message

sizes, but it might be faster because the Primary does not have to wait for as many

MSGPROPOSAL's.

Time vs. F (Emulab 3.0GHz)
1400

1200

1000

1 2 3 4 5 6 7
Size of F

Figure 4-11: MPSS vs. MPSSVA Duration Comparison (low latency)

Figure 4-11 shows the performance of MPSS and MPSSVA in the low latency

topology. MPSS clearly outperforms MPSSVA in this scenario. Since there is no

latency in the network, the cryptographic overhead is the major difference between

the two schemes. MPSSVA has more expensive encryption and decryption costs,

resulting in slower performance. As f increases, we see the gap between MPSS and

MPSSVA increase as well, due to the linear increase in the number of cryptographic

computations.

Based on the system parameters, not all of the overhead shown in Figure 4-11

is due to cryptographic overhead. Some of the overhead is due to the time required

to send all of the messages. For instance, for MPSS at f = 7, subtracting the cryp-

tographic overhead, 568ms, from the total duration, 1051ms, results in 483ms of

bandwidth cost, or 33Mb/s. The effective bandwidth is less than expected, operat-

ing between 25Mb/s and 33Mb/s; presumably caused by the Emulab network using

shared links between the nodes.

Figure 4-12 shows the results of MPSS and MPSSVA in the high latency topology,

a more realistic network. We found that MPSS performs slightly better than MPSSVA

when f is small. Verifiable accusations do not seem to have a significant impact on

the protocol, so in practice MPSS should suffice.

Due to the prolonged duration of the protocol under this topology, the number

of test runs was reduced, accounting for some of the measurement variations in the

graph (e.g., there is an anomaly at f = 4 that is not fundamental to the protocol).

4000

3500

3000

2500

2000

1500

1000

500

0

Time vs. F (Emulab 3.0GHz)

MPSS
MPSSVA --- x---

-e

4
Size of F

Figure 4-12: MPSS vs. MPSSVA Duration Comparison (high latency)

Within the parameters of our scenario MPSS performs well, running in under 4

seconds for the largest values of f. The bandwidth is also reasonable for the protocol,

considering how infrequently it is run. MPSS's short protocol duration, reasonable

data consumption, and low resource intensity make it a practical system.

Chapter 5

Conclusion

5.1 Discussion

We have presented implementations of MPSS and MPSSVA and evaluated their per-

formance in both a high-speed LAN and also in a deployment resembling the Internet.

Our results show that we were able to scale these systems to the desired values of f,

in order to ascertain the practicality of these systems. We showed that MPSS per-

forms at least as well as MPSSVA in both latency and bandwidth for every network

topology that we examined, but both systems are scalable and would be practical for

a real usage scenario.

5.2 Future Work

To gain more insight into MPSS and other secret sharing schemes, more implementa-

tion and evaluation of these schemes is necessary. For MPSS in particular, we focused

on implementing the redistribution protocol and simulated the cryptographic aspects

of the system. A logical next step would be to implement the entire MPSS system

with all of the cryptographic elements. We only focused on analyzing MPSS perfor-

mance under normal, non-faulty behavior. Future analysis should focus on MPSS's

performance with faulty nodes.

Appendix A

MPSS Validation Metrics

Here are the calculations for the MPSS Validation benchmarks.

A.1 Message Behavior

The Primary's message behavior can be divided into its message sending behavior

and its message receiving behavior. Our analysis assumes the primary sends mes-

sages to itself, e.g., it sends itself the start command, and also the proposal. Our

implementation works this way, but clearly it could be improved to avoid these mes-

sages. Under ideal circumstances the Primary will broadcast to 3f + 1 nodes, so the

message sending behavior can be characterized as follows:

Msgs Sent = (3f + 1)MSGSTARTPROTOCOL's + (3f + 1)MSGPROPOSAL's

+(1)MSGPROPOSALSET + (1)MSGPROPOSALRESPONSE

+(3f + 1)MSGBFTPREPREPARE's + (3f + 1)MSGBFTPREPARE's

+(3f + 1)MSGBFTCOMMIT's + (3f + 1)MSGNEWPOLY's

= (3f+1)+(3f+1)+1+1+(3f+1)+(3f+1)+(3f+1)+(3f+1)

= 6*(3f+1)+2

= 18f + 8

For messages received, we use the same analysis. Since it is operating ideally, only

2f + 1 nodes are required to continue to different stages in the protocol. We get the

following relationship for messages received:

Msgs Rec = (1)MSGSTARTPROTOCOL's + (2f + 1)MSGPROPOSAL's

+(1)MSGPROPOSALSET + (2f + 1)MSGPROPOSALRESPONSE's

+(1)MSGBFTPREPREPARE + (2f + 1)MSGBFTPREPARE's

+(2f + 1)MSGBFTCOMMIT's

= 1+ (2f + 1) + 1+ 1 + (2f+1)+(2f+1)+(2f + 1)

= 4*(2f+1)+3

= 8f+7

A.2 Bandwidth Requirement

Data throughput is calculated in a similar manner to the messages in the previous

section. The only difference is that the size of the message is taken into account (we

use ".s" to denote message size). The actual size of each message is dependent on the

value of f and the cryptographic overhead; Figure 4-5 shows the different message

sizes for each value of f. Therefore, we get the following results for bytes sent and

received from the Primary:

Bytes Sent = (3f + 1)MSGSTARTPROTOCOL.s + (3f + 1)MSGPROPOSAL.s

+(1)MSGPROPOSALSET.s + (1)MSGPROPOSALRESPONSE.s

+(3f + 1)MSGBFTPREPREPARE.s + (3f + 1)MSGBFTPREPARE.s

+(3f + 1)MSGBFTCOMMIT.s + (3f + 1)MSGNEWPOLY.s

Bytes Rec = (1)MSGSTARTPROTOCOL.s + (2f + 1)MSGPROPOSAL.s

+(1)MSGPROPOSALSET.s + (2f + 1)MSGPROPOSALRESPONSE.s

+(1)MSGBFTPREPREPARE.s + (2f + 1)MSGBFTPREPARE.s

+(2f + 1)MSGBFTCOMMIT.s

Appendix B

MPSSVA Validation Metrics

Here are the calculations for the MPSSVA Validation benchmarks.

B.1 Message Behavior

= (3F + 1)MSGSTARTPROTOCOL's + (3F + 1)MSGPROPOSAL's

+(1)MSGPROPOSALSET + (1)MSGPROPOSALRESPONSEACCUSE

+(3F + 1)MSGBFTPREPREPARE's + (3F + 1)MSGBFTPREPARE's

+(3F + 1)MSGBFTCOMMIT's + (3F + 1)MSGNEWPOLY's

= (3F+1)+(3F+1)+1+1+(3F+1)+(3F+1)+(3F+1)+(3F+1)

= 6*(3F+1)+2

= 18F + 8

(1)MSGSTARTPROTOCOL's + (F + 1)MSGPROPOSAL's

+(1)MSGPROPOSALSET + (2F + 1)MSGPROPOSALRESPONSE's

+(1)MSGBFTPREPREPARE + (2F + 1)MSGBFTPREPARE's

Msgs Sent

Msgs Rec

+(2F + 1)MSGBFTCOMMIT's

= 1+(F+1)+1+1+(2F+1)+(2F+1)+(2F+1)

= 3*(2F+1)+(F+1)+3

= 7F+7

B.2 Bandwidth Requirement

Bytes Sent = (3F + 1)MSGSTARTPROTOCOL.s + (3F + 1)MSGPROPOSAL.s

+(1)MSGPROPOSALSET.s + (1)MSGPROPOSALRESPONSE.s

+(3F + 1)MSGBFTPREPREPARE.s + (3F + 1)MSGBFTPREPARE.s

+(3F + 1)MSGBFTCOMMIT.s + (3F + 1)MSGNEWPOLY.s

Bytes Rec = (1)MSGSTARTPROTOCOL.s + (F + 1)MSGPROPOSAL.s

+(1)MSGPROPOSALSET.s + (2F + 1)MSGPROPOSALRESPONSE.s

+(1)MSGBFTPREPREPARE.s + (2F + 1)MSGBFTPREPARE.s

+(2F + 1)MSGBFTCOMMIT.s

B.3 Protocol Duration

Comp. Time = Computations to Send + Computations to Receive

= ((3F + 1)MSGPROPOSAL.cs + (1)MSGPROPOSALSET.cs

+(1)MSGPROPOSALRESPONSE.cs + (3F + 1)MSGNEWPOLY.cs)

+((F + 1)MSGPROPOSAL.cr + (1)MSGPROPOSALSET.cr

+(2F + 1)MSGPROPOSALRESPONSE.cr)

= (((3F + 1)E + S) + (S) + (S) + ((3F + 1)E + S))

+(((F + 1)(D + V)) + (V) + ((2F + 1)V))

= 2(3F + 1)E+4S+(F+ 1)D + ((F+1)+(2F+1) + 1)V

= (6F+6)E+4S+(F+1)D+(3F+2)V

Protocol Duration = Computation Time + Travel Time
Data Throughput

= (6F+6)E+4S+(F + 1)D+(3F+2)V +
NetworkSpeed

Bibliography

[BF01] D. Boneh and M. Franklin. Identity-based encryption from the weil pair-
ing. In Joe Kilian, editor, Advances in Cryptology-CRYPTO 2001, Lecture
Notes in Computer Science, pages 213-229. Springer-Verlag, 19-23 August
2001.

[Che04] Kathryn Chen. Authentication in a reconfigurable byzantine fault tolerant
system. Master's thesis, Massachusetts Institute of Technology, July 2004.

[CL99] M. Castro and B. Liskov. A correctness proof for a practical
byzantine-fault-tolerant replication algorithm. In Technical Memo
MIT/LCS/TM590. MIT Laboratory for Computer Science, 1999.

[CL02] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and
proactive recovery. In ACM Transactions on Computer Systems, pages
398-461, November 2002.

[Fel87] P. Feldman. A practical scheme for non-interactive verifiable secret shar-
ing. In Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing, pages 427-437, New York City, 25-27 May 1987.

[HJKY95] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret
sharing, or how to cope with perpetual leakage. In Don Coppersmith,
editor, Advances in Cryptology-Crypto '95, volume 963 of Lecture Notes
in Computer Science, pages 457-469. Springer-Verlag, 27-31 August 1995.

[OY91] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In
Proceedings of the 10th (ACM) Symposium on the Principles of Distributed
Computing, pages 51-61, 1991.

[RR78] L. Adleman R. Rivest, A. Shamir. A method for obtaining digital sig-
natures and public-key cryptosystems. In Communications of the ACM,
pages 120-126, 1978.

[SchO7] David Schultz. Mobile proactive secret sharing. Master's thesis, Mas-
sachusetts Institute of Technology, January 2007.

[Sha79] A. Shamir. How to share a secret. In Communications of the (ACM),
pages 612-613, 1979.

[WLS+02] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar.
An integrated experimental environment for distributed systems and net-
works. In Proc. of the Fifth Symposium on Operating Systems Design and
Implementation, pages 255-270, Boston, MA, December 2002. USENIX
Association.

