
Decentralized Information Flow Control on a
ASACHlSETTS INSTITutT

OF TECHNci..Y

J MUG
1 RZ P I

l IR~r RIF i

Cluster

by

Nft.,n Tovi ,nhn C', liff-r

MASS

LNC'; 1 ~"~

) -ir

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

@ Massachusetts Institute of Technology 2007. All rights reserved.

Author........
Department of Elec ral Engineering and Computer Science

August 20, 2007

j I I

Certified by......
Robert Tappan Morris

Associate Professor
Thesis Supervisor

Accepted by - -. -
Arthur C. Smith

Chairman, Department Committee on Graduate Students

ARCHIVESMASAHSET INSTITUTE _
MASSACHUSETTS INSTITUTE

OF TECOHNOi OGY

NOV 1 3 2008

~c ~r ri\i~sJ LI~UVC~II IUVI VVIIVII VII~IVL

Decentralized Information Flow Control on a Cluster

by

Natan Tsvi Cohen Cliffer

Submitted to the Department of Electrical Engineering and Computer Science
on August 20, 2007, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Information flow control security models can prevent programs from divulging sen-
sitive information in unexpected ways. There has been significant work on tracking
information flow between processes in the same computer at the operating system
level. I present a modification to the Flume information flow control system for
OpenBSD that allows information flow to be tracked between programs on different
computers, as long as the system software on all involved computers is maintained by
the same trusted entity. This allows the benefits of Flume to be applied to computer
systems that take the cluster approach to scaling.

Thesis Supervisor: Robert Tappan Morris
Title: Associate Professor

Acknowledgments

I would like to thank Robert Tappan Morris for his advice on this thesis and the entire

project. I would also like to thank Maxwell Krohn and Alex Yip for their constant

advice and other help, and Frans Kaashoek, Micah Broadsky, Austin Clements, and

Russel Cox for useful input and motivational support.

Contents

1 Introduction 13

2 Background 15

2.1 Information Flow Control and DIFC 15

2.2 The Flume M odel 17

3 Goals 19

3.1 M otivation .. . 19

3.2 Assum ptions 21

3.3 Challenges .. . 21

4 Abstraction 23

4.1 Nam ing 24

4.2 Flow control concerns 26

4.3 Rules 27

4.3.1 Socket creation 27

4.3.2 Connection to a socket 28

4.3.3 Acceptance of a connection on a socket 28

4.3.4 Sending to a socket 29

4.3.5 Receiving from a socket 29

4.4 Example 29

5 Implementation 33

5.1 Overall Structure 33

7

5.2 Providing a socket interface 34

5.3 Multiplexing Network Connections 35

5.4 Security and Authentication 38

5.4.1 Trusted network 39

5.4.2 Untrusted network 40

5.5 Limitations 41

5.5.1 Resource exhaustion 41

5.5.2 Communication outside the system 42

6 Evaluation 45

6.1 Test Setup .. . 45

6.2 Benchm arks 46

6.3 Results and Discussion 47

7 Conclusion 51

List of Figures

5-1 Anatomy of a Flume connection. The thin arrows represent connected

file descriptor pairs; the thick arrows represent messages 36

6-1 Round trip time comparison 47

6-2 Setup time comparison 48

6-3 Throughput comparison 49

List of Tables

4.1 Comparison of point-to-point and rendezvous sockets and their rules. 30

5.1 The network server's RPCs 38

Chapter 1

Introduction

Many computer services are designed to scale by running on a cluster, a group of com-

puters administrated by the provider of the service that work together to provide the

service with higher availability, the ability to handle more users at once, and/or im-

proved service characteristics for each user[5]. Often, the same services have security

policies about which information can be provided to which users.

Decentralized Information Flow Control (DIFC) is a model by which applications

can specify which kinds of information can be sent where[10]. Current implementa-

tions of DIFC operate at either the programming language level with fine granularity

[12], or at the operating system level with process granularity [3] [16], or even as a user

space reference monitor, also with process granularity [7]. Flume has the advantage

of providing DIFC abstractions in an otherwise nearly standard POSIX environment,

so it is an attractive choice for developing flow-controlled versions of existing systems.

Flume, however, previously could only provide clustered applications if the parts of

the cluster communicated over a shared filesystem, which is indirect and relatively

slow, and does not fit the needs of many clustered applications.

This paper describes a set of abstractions in Flume for network communication

between confined processes that is inspired by POSIX network sockets, and still pre-

serves the information flow properties of Flume. To achieve both goals, Flume in-

corporates two different kinds of socket abstractions: point-to-point sockets, which

behave very similarly to their POSIX cousins once connected but have strong re-

strictions on their naming, and rendezvous sockets, which have weaker restrictions on

naming, but differ from POSIX behavior in important ways. The combination al-

lows a privileged server process to send information to other processes with a variety

of different security policies, without the clients or the server needing to know the

other's policy a priori.

The added socket abstractions were implemented as a cooperation between the

Flume reference monitor, and an outboard network server. The reference monitor

forwards information between connections with checks to ensure ongoing communi-

cation is consistent with the flow control rules; the outboard network server matches

up TCP connections with the logical Flume socket abstractions they are intended for

and keeps track of addressing information.

Enforcing flow control rules with a user space reference monitor imposes some

overhead on both the speed of data flow between processes and the total amount

of information exchanged. Experimentation shows that the latency and throughput

overheads are sufficiently small for many applications, though creating new connec-

tions is particularly expensive. The total extra amount of information on the network

is constant for every new connection opened; it does not grow with the amount of

information sent along the connection.

Chapter 2

Background

2.1 Information Flow Control and DIFC

A major problem in computer security is protecting information from getting into

the wrong hands. Typical computer systems interact with more than one category

of information, each category requiring specific rules on which users or programs can

access it (examples [2] [8]).

One of the methods proposed to help protect information security is mandatory

access control, where the environment in which a program runs limits the information

the program can divulge to other programs to a set of information the program is

deemed to be allowed to divulge. These restrictions can be enforced as a part of a

programming language such as Jif [12], by the operating system as in SELinux[14],

or by a user-level reference monitor working closely with the operating system, as in

Flume[7].

The models provided to describe security limitations also vary. Centralized manda-

tory access control systems like SELinux require a system administrator to explicitly

set the categories of information each program is allowed to access[14]. Centralized

access control like this is useful for containing established systems where the infor-

mation flows and principals are well known a priori.

This paper focuses on extending Flume, which uses a Decentralized Information

Flow Control (DIFC) model. In a DIFC model, the allowed information flows are

defined by the applications themselves[10]. Each application can create tags that

represent categories of information, and define rules for how information with a tag

it owns may propagate[10].

A DIFC security model implementations include the security-typed programming

language Jif [12], custom operating systems such as Asbestos and HiStar [3] [16], and

the mostly user-level Flume[7].

In Jif, all computation is expressed in an extension to Java where the type system

is extended so programs can be statically checked for confirmation to the security

model. This has the advantage of providing provable information hygiene behavior

of the system at a fine-grained level, within the abstraction of the Jif virtual machine

[12]. Jif also has the advantage of a system for distributed computing that preserves

information flow control[15]. However, a lot of software that could benefit from a

DIFC model is implemented in other languages, and might not be suitable for porting

to Jif.

Asbestos and HiStar allow arbitrary programs to execute, subject to operating-

system level restrictions on communication with other processes. They provide coarser-

grained information flow controls, monitoring the flow of information between pro-

cesses in the operating system [3] [16]. Flume is a similar system, but runs in user

space under OpenBSD, allowing stock OpenBSD code to be run with a minimum

of modification, as long as it links against the Flume libraries [7]. In these DIFC

implementations, systems typically consist of a set of more-trusted processes that set

up the flow control policy, and a set of less-trusted workers which do the body of the

computation and forward results for declassification by the more-trusted processes [3]

[16]. The goal in splitting the work this way is the principle of least privilege; each

part of the system should be allowed to do no more than is required to accomplish

its task [13].

2.2 The Flume Model

The Flume DIFC model describes the allowable flow of information between pro-

cesses through endpoints, which each have a tuple of labels describing the allowable

flows. Labels, in turn, are made up of tags, which describe individual categories of

information.

A Flume process is more general that the standard use of the term in computer

science; it includes both operating system processes and any other abstraction that

can store and divulge information. Specifically, files in Flume are modeled in the same

way as processes. Writing to a file is modeled as "sending" to the file, and reading

from the file is modeled as "receiving" from it.

Any way Flume process can interact with another is marked by an endpoint.

Endpoints may be readable, writable, or both.

Each endpoint and each process have labels, which are sets of tags, are opaque

identifiers allocated by the system at the request of any process. Tags are generally

used to represent types or properties of information-for example, "Alice's financial

information" or "written by Bob". Each process and or endpoint p has a tuple of two

types of label: a secrecy label, S(p), and an integrity label, I(p). Processes use tags

to represent categories of secrets or categories of integrity, depending on what labels

the process puts the tags in.

Additionally, each process p has an ownership label O(p), which contains the set

of label change capabilities belonging to the process. For each tag t E T there is a

corresponding add capability c+(t), which allows the process holding the capability

to add the tag to its labels, and a remove capability c-(t), which allows the process

holding the capability to remove the tag from its labels. When a process creates

a new tag, it receives both of these capabilities with respect to that tag, and may

also optionally grant either or both of these capabilities to all other processes (the

tag can become default-addable or default-removable. Any process may also send any

capability it owns to another process (along a legal communication channel), to be

placed in the second process's ownership label. The set of add capabilities can be

referred to as 0+ (p), and the set of remove capabilities as O-(p).

For a process p to send information on a writable endpoint e, e must have in S(e)

at least all the secrets p has and cannot remove from S(p), and p must have or be able

to add to I(p) all categories of integrity e has in I(e). In other words, the condition

for p to safely send information on e is:

S(p) - S(e) O-(p) A I(e) - I(p) C O+(p)

Correspondingly, the condition for p to receive data from e is:

S(e) - S(p) c O+(p) A I(p) - I(e) C O-(p)

For information to flow between processes, the rule is that it must be able to flow

in the correct direction between each process and the corresponding endpoint, and

between the endpoints. The rule for information flowing between endpoints is similar

to the rules above: if information is to flow from endpoint e to f, e must have a

subset of f's secrets, and a superset of f's integrity:

S(e) C S(f) A I(f) C I(e)

As proven in [7], this enforces that all information flows such that no secrets are

divulged to processes that have not added all the secrecy labels their source has and

cannot declassify, and that no information comes to an integritous process without

coming from a source that is able to vouch for that level of integrity.

For further information about the Flume view of DIFC, see [7]. In the rest of this

paper, label tuple will refer to the pair of S and I labels associated with a particular

endpoint or process.

Chapter 3

Goals

3.1 Motivation

Many of the projected applications of DIFC are networked services-computer sys-

tems that should be constantly available to multiple users. Flume uses FlumeWiki as

an application example[7], and Asbestos uses the OKWS web server as its example[3].

Indeed, the concept of information flow control naturally lends itself to situations with

multiple users interacting with a shared computing resource. Networked services of-

ten require the ability to scale by orders of magnitude, as a dedicated user base slowly

grows[4], or as a flash crowd temporarily causes a spike in traffic[l].

One of the most effective ways of dealing with such scaling requirements is dis-

tributing the responsibility for the service among several PC-class computers in a

cluster[5]. Under the architecture described in [5], software components are divided

into several classes (in a somewhat simplified model):

Front ends which accept requests from the outside world and forward back re-

sponses.

Workers which accept jobs from the front ends, and do the bulk of the work.

Customization Database which stores persistent information the workers may

need to query.

Load Balancer (in [5], the Manager, which allocates work among the instances of

the software components.

Each of these components can be separated off onto different processors, commu-

nicating over a network.

Though Flume currently supports some kinds of clustering by providing the ability

to share file servers, none of the current operating system-based DIFC systems allow a

safe and information-tracked way to scale a service with communication requirements

that can not be fully served by a shared file system. Without information tracking

over network connections, the worker components in the example system design would

have to be trusted as declassifiers for all secrets they own, as they would have to talk

to the database server over the network. Alternately, the database server would have

to be on the same physical machine as all of the workers, which would limit the

amount the service could scale. Similarly, either workers and front ends would have

to be on the same machine, or the workers would have to be able to declassify their

information themselves, instead of following the more secure plan of allowing the front

ends to declassify the information.

Flume cluster sockets solve this problem by allowing the reference monitors on

the source and destination computers to cooperate to enforce Flume information flow

constraints between processes. The database server can label outgoing data just as it

would for local communication, and the two reference monitors will ensure that only

processes with the appropriate labels will see the information. Similarly, the front

ends can be in charge of declassifying the information, allowing the worker processes

that feed information to them to run without the requirement for declassification-level

trust.

More generally, Flume is used for complex systems composed of many interacting

processes sending messages to each other. When such a system needs to scale, the

processes are often distributed among several different computers. This suggests

that for Flume systems to scale transparently, Flume needs to support controlling

information flows over network connections.

3.2 Assumptions

There are limitations on the security model any networking extension to Flume can

provide. It is currently not possible to conclusively verify whether or not an unknown

computer across the network is faithfully obeying all of Flume's constraints. This

means that any information-tracked network extension to Flume must only allow

information-tracked exchanges of information between computers that are trusted

to be validly running Flume, and to have no other compromising software loaded.

Exactly how this trust is established is beyond the scope of this document, but I will

assume that the administrator of all the computers can be treated as a single entity,

who can be responsible for out-of-band key propagation so the reference monitors can

authenticate with each other.

3.3 Challenges

The main challenge the Flume networking extension faces is covert channels, ways

processes can communicate with each other using aspects of the system that are not

normally used for communication, but that are difficult for the system to control

[11]. The most important goal of an information-tracked networking addition is the

elimination of covert channels between any pair of processes confined by the Flume

system. One challenge involved in this process is the naming of these connection

points. A flat naming scheme like the port number of a POSIX Internet domain socket

does not suffice; taking up a name in this space is tantamount to communicating that

name to all other processes using the namespace. This is because a successful name

reservation attempt informs the process making the attempt that all other processes

able to make that attempt have not yet done so, if the attempt succeeds. It also

informs all other processes that some process has now made the request to reserve

that name, because any future legal request to reserve that name will now behave

differently. This is a bidirectional channel, since attempting to take a name is a

method both of sending and receiving information, at a rate of one bit per name

(whether the name is taken or not).

In general, if a process can reserve a name for itself in such a way that subsequent

attempts by other processes to reserve the same name will behave differently, the pro-

cess reserving the name must have the same secrecy and integrity labels as any other

process that can attempt to reserve the name. Since this namespace communication

is bidirectional, any namespace must be partitioned according to the complete label

tuple for the privilege of reserving names.

This limitation also suggests another problem: if the namespace is completely

partitioned along label tuple lines, two processes that wish to communicate with each

other must first know the exact set of labels at which to rendezvous. Communicating

this information requires a channel that does not require taking up a name in a

namespace.

Chapter 4 describes the way the networking extension to Flume instantiates such

a partitioned namespace, as well as a solution to the problem of two processes safely

rendezvousing at a name in the absence of each of them having prior full information

about the label tuple of the other.

Unfortunately, Flume sockets do not currently deal with all sources of covert

channels. As with any computer system, bandwidth is a limited resource, and Flume

shares it among all processes, which presents an open covert channel. Also, timing

attacks could be used for a confined process to convey information to an unconfined

process that can listen to the network. These limitations are discussed further in

chapter 5.5.

Chapter 4

Abstraction

Flume sockets, for secure communication between Flume processes on different com-

puters, were designed with two major goals in mind. First of all, the abstraction

should be easy to use, and as consistent as possible with standard POSIX utilities

and other Flumeprimitives. Second, the abstraction should minimize the chances of

a process forming a covert channel. To this end, two complimentary kinds of sockets

are available, each using slightly different semantics. Point-to-point (p-to-p) Flume

sockets allow information-tracked one-to-one communication streams between pro-

cesses. However, restrictions in the creation of point-to-point Flume sockets make

rendezvous between a client process (one that connects to an established server) and

a server process (one that listens for connections to a given socket name) difficult, so

another form of socket is available: Flume rendezvous sockets. Rendezvous sockets

are one-way and may duplicate information to multiple receivers, but allow a form

of one-way rendezvous that would be difficult to reconcile with Flume information-

tracking rules otherwise. A summary and comparison of the rules for p-to-p and

rendezvous sockets is found in figure 4.3.5.

The general model of (successful) Flume socket connection is that a confined

server process creates a listening server socket, which is represented by a unique

file descriptor and intrinsically bound to a name n. The server process must also

call listen on this socket, to specify the number of simultaneous requests to queue.

Then a client process, possibly on a different host, may connect to the server socket by

giving a name c that the server socket answers to. For p-to-p sockets, c must be equal

to n for c to answer to n. For rendezvous sockets the rules are more complicated,

and covered in section 4.1. The server process can now accept the connection, which

creates a connected server socket, represented by its own unique file descriptor and

associated with n. On the client process side, the connection operation produces a

connected client socket, represented by a different unique file descriptor and associated

with c. The two processes can now communicate with each other by writing to and

reading from their respective file descriptors, though some such reads and writes may

not be allowed by the DIFC rules (see 4.3.5).

4.1 Naming

Namespaces are one tricky area with respect to covert channels in information flow

control systems. To deal with the communication implicit in reserving a part of a

namespace, names must be allocated randomly, allocation of names must be limited

by the process's labels, or multiple objects must be able to be meaningfully named

the same thing. The second option corresponds to p-to-p Flume sockets, and the

third option corresponds to Flume rendezvous sockets.

Point-to-point Flume sockets are named by a triple of elements: the name of the

computer the server is on, a port number to differentiate between similar sockets,

and a label tuple associated with the socket. The label tuple is part of the name of

the socket, and also governs access to the socket. A process can only create a p-to-p

Flume server socket with a label tuple it can have bidirectional communication with,

thus side-stepping the chance for a naming covert channel.

Incorporating the label tuple in the name of a resource is in fact a general way to

avoid this problem if you are willing to accept the creation restriction on the names,

and is used in other forms in other parts of Flume: the integrity namespace for the

file system is another instance of this pattern, albeit in a somewhat more complicated

form.

Unfortunately, this restriction on naming creates problems for a server of many

clients, each with a different set of secrets. Using only p-to-p Flume sockets, the server

would have to anticipate the label tuple of each requested connection to arrange a

socket to be listening there, or each client would have to know the tags of the entire

set of secrets the server has the right to declassify, to put all those tags in the name of

the socket to connect to. The client, having just a subset of these labels, would then

be able to send the server an address of a less-tainted socket on which to connect.

Neither of these plans are elegant, so a slightly different abstraction is useful for

arranging rendezvous at a p-to-p Flume socket that does not require the database

client process to know the exact set of secrets the server knows.

Because only one p-to-p listening server socket can exist with a given name at

a time and connections to p-to-p sockets refer to specific complete names, any con-

nection attempt unambiguously refers to only the one listening server socket. The

connection formed will have only two endpoints involved: the connected client socket,

and the one connected server socket. This connection generally behaves like a con-

nected POSIX stream socket, but is also subject to DIFC rules that may restrict one

or both directions of information flow at any given time.

Flume rendezvous sockets are also created with a specific host, port, and label

tuple triple, but any number of Flume rendezvous sockets can be created with the

same triple, which is the third way listed above of avoiding creating a namespace-

based covert channel.

A connection to a rendezvous listening server socket allows all sockets on the

specified host and port that are allowed to receive the information accept the connec-

tion. The resulting connection is one way-the client may send to the servers, but

the servers may not send to the clients. It is also multicast-every connected server

socket associated with the same connected client socket gets its own copy of the in-

formation. In this way, Flume rendezvous sockets somewhat resemble a broadcast

datagram model. They allow a confined server process to bind to a rendezvous socket

with all its secrets, yet still receive from confined client processes sending with respect

to their specific secrecy labels. If two-way communication is needed between server

and client, the clients can send to the rendezvous socket the name of the p-to-p Flume

socket where the client would like the server to listen, and then reconnect to the new

socket. This is the expected use of rendezvous sockets, from which they derive their

name.

Rendezvous sockets differ from a datagram model in that they do guarantee order

of received messages.

4.2 Flow control concerns

To a first approximation, p-to-p Flume sockets implement the Flume DIFC rules as

endpoints with the labels given in their names. The DIFC rules govern which ways

information can be sent, based on the processes' labels at any given time. However,

there are some details that require further definition from this rule.

When a process successfully connects to a socket on which a server is listening, the

server's side becomes readable, and an accept () call will not block. This transmits

the fact that some process tried to connect to the server. Therefore, even if the

client only intends to read from a socket once connected, it still may not connect to

a socket it does not have the ability to write. For the same reason, a server may not

bind a socket to an address it does not have the ability to receive data from. This

combines with the namespace restriction to require a process to be able to both send

to and receive from a socket to bind to it. These constraints apply to both p-to-p

and rendezvous Flume sockets.

Another possible source of a covert channel is the status of a connect call. With

standard POSIX sockets, an attempt to connect will fail if there is no such socket

bound at the other end. However, Flume sockets can only afford this luxury some

of the time-the return code of the POSIX-style connect () request transmits infor-

mation from the server to the process that called connect () (the client), which may

have a label such that it can only send to the socket. specifically, it transmits the

information of whether or not the server has created the socket in question. There-

fore, requests to connect to a p-to-p Flume socket must only return a value that

depends on the server's status if the client is allowed to receive information from the

socket. If the client is only allowed to send such information, the connection request

will only fail if the physical connection between the two hosts is down. If there is no

server listening, any information the client sends is discarded, and the client is given

no indication of this fact. All Flume rendezvous sockets are one-way, and thus all

connection attempts succeed according to the clients, and the resulting sockets are

always writable.

When a one-way connection is formed, the servers at the other end might accept

a connection but be late in reading data. In the absence of a two-way connection,

Flume stream sockets do not guarantee delivery, as doing so would essentially require

an infinite queue. Instead, once the queue fills all further information sent is discarded

until the server processes start consuming information.

4.3 Rules

To fulfill all of the above constraints, the Flume sockets follow rules for all their

operations. In the following formal rules, a process p can send to a socket named with

s if S(p) - S(s) 9 O-(p) A I(s) - I(p) C O+(p), can receive from s if S(s) - S(p) C

O+(p) A I(p) - I(s) O-(p), and can have bidirectional communication with s if

S(p)-S(s) g O-(p)AI(s)-I(p) g O+(p)AS(s)-S(p) C O+(p)AI(p)-I(s) C O-(p).

In all cases s refers to the socket name, which includes a label tuple. This label tuple

is guaranteed to be the same as any endpoint that refers to that socket.

4.3.1 Socket creation

For Flume sockets, creating the socket is equivalent to the combination of a POSIX-

style call to socket and bind. For simplicity, the RPCs provided to the RM combine

these two operations for the purposes of creating server sockets. socket and bind

can still be modeled as separate in the library a confined process uses to access Flume

functionality-the current Python Flume library separates them this way.

A process p may create a p-to-p listening server socket named with s if p can

have bidirectional communication with s, and no socket already exists with the same

address, port, and label tuple as s. A failure by p to create the socket s due to the s

already existing is only indicated as an existence error if p has permission to create

S.

A process p may create a rendezvous listening server socket named with s if p can

receive from s. This creation may succeed regardless of how many identically-named

sockets are in play.

If p is not allowed to create the socket, then the creation attempt will indicate a

permission error.

4.3.2 Connection to a socket

Like the case for creating sockets, the Flume RPC for connect simultaneously allocates

a socket and attempts to connect it. The functionality of socket and connect may

again be separated in the library, but for this section connect refers to the Flume

RPC.

A process p may connect to a socket named with s any time p can send to s. For

p-to-p sockets, s will successfully connect only to sockets that match all elements of

the name s. For rendezvous sockets, s will connect to any sockets n that match the

host and port of s such that n's label can receive from s's label.

If s is a p-to-p socket and p may have bidirectional communication with s, p will be

returned a value that reflects whether s exists at the remote host and there is a process

listening. Otherwise, p will not be returned a value containing this information; the

connection attempt will appear to succeed, and the RM will discard all information

written to the resultant "fake" socket end.

4.3.3 Acceptance of a connection on a socket

A process p may accept a connection on a socket named with s at any time p can

receive from s. The new socket's label tuple is identical to that of s.

4.3.4 Sending to a socket

A process p may send to a p-to-p socket named with s any time p can send to s. p

may send to a rendezvous socket named with s if p can send to s and p is the process

that connected to s, not the process that created it. If the send "succeeds" but the

process on the other side of the socket cannot receive the information according to

4.3.5, the information is silently discarded by the RM on the foreign host. The call

to write the socket fails with a permission error if the process is not allowed to write

to the socket, and returns the number of bytes written otherwise.

4.3.5 Receiving from a socket

A process p may receive from a p-to-p socket named with s any time p can receive

from s. p may receive from a rendezvous socket named with s if p can receive from s

and p is the process that created s, not the process that connected to it.

4.4 Example

As an example of how both p-to-p and rendezvous Flume sockets can be used, consider

a web service set up with multiple computers acting as HTTP server front ends, and

one database server supplying them with dynamic information, some of which contains

secrets belonging to particular people signed in to the web front ends at the time.

As in previously described Flume systems [7], the web servers would be designed to

spawn alternate processes to deal with particular logged-in users, and the alternate

processes would limit themselves to the tags associated with those users except at the

very last stage where the raw HTML response will be sent to a declassifying process

to be sent back to the web browser.

So far, this scenario is very similar to the FlumeWiki example used in [7]. How-

ever, when the information that the server needs to query is not stored in flat files

on a shared disk, some way of allowing the web servers to query the shared store

of information is required. In this scenario, there is a single database server trusted

Point-to-Point Sock- Rendezvous Sockets
ets

Client Side one one
Server Side one many
Directionality Bidirectional, labels per- Always client - server.

mitting
Namespace Each socket takes a Any number of sockets

unique (host, port, label can be bound to the
tuple) triple in the same (host, port, la-
namespace. Allocation bel tuple) triple. Each
is only allowed to a socket gets all incom-
process that can send ing information dupli-
and receive to the label cated to it.
tuple

A listening server If c = n If c and n have the same
socket named with host and port, and c's la-
n answers to a con- bel tuple can send to n's.
nection to the name
c
Process p can bind to p can have bidirectional p can receive from s
socket with label tu- communication with s
ple s
Process p can con- p can send to s p can send to s
nect to socket with
label s
connect to a socket p can have bidirectional never
with label s returns p communication with s
a meaningful value
Process p can accept p can receive from s p can receive from s
a connection on a
socket with label s
Process p can send to p can send to s p can send to s and p
socket with label s connected to s
Process p can receive p can receive from s p can receive from s and
from socket with la- p created and listened on
bel s s

Table 4.1: Comparison of point-to-point and rendezvous sockets and their rules

with declassification capabilities for all secrets, which feeds information to the var-

ious worker processes on other computers. A worker process may be trusted with

declassification capabilities for the specific secrets with which it deals, or it may be

trusted with no declassification capabilities, and instead communicate with a sepa-

rate front-end process that does have the capability to declassify the few secrets it

will see. This structure greatly decreases the amount of code that could improperly

leak information to only the database server and front end, making it easier to be

confident the application as a whole has no data leaks.

The database server Pd initially binds a single rendezvous socket to port r, with the

secrecy label Ss consisting of all the secrets in its database. Since any client process

of the database server is expected to have a secrecy label CssubsetSs consisting of

a subset of this, any client will be able to connect to this socket and send the label

C at which it would like to meet for two-way communication (information can flow

from less-secrecy to more-secrecy contexts). The database server then binds a p-to-p

Flume socket to this label at port y with the labels C as requested by the client, and

the client connects to this new port. The socket at y : C is now two-way, because the

database server has the capability to remove all but the correct tags from its secrecy

label.

Because this two-step rendezvous procedure (and Flume socket connection in gen-

eral) is somewhat expensive, the front end should keep a persistent connection to the

database server open for all its requests, to save on overhead.

Chapter 5

Implementation

5.1 Overall Structure

Flume is implemented as a user-space reference monitor which proxies programs'

requests to the operating system. Confined processes run under systrace, which limits

their system calls to "safe" operations, as well as requests to the reference monitor.

The reference monitor keeps track of processes' labels, and executes requests in a safe

manner based on those labels. Additionally, the reference monitor stores the label

information that must be persistent across reference monitor restarts with an identity

database or IDD. Confined processes are linked against a special version of libc that

replaces the system calls for the unsafe standard operating system functions with safe

calls to the reference monitor.

The logical reference monitor itself consists of several processes: the main reference

monitor process itself (which we will from now on refer to as the RM), and various

servers that handle specific modular aspects of the reference monitor's interaction

with the outside world. For example, each file system that a confined process can

access is represented to the RM as one file server process. Each of these servers, both

subsidiary and main RM, is implemented as an asynchronous RPC server using the

Libasync/Tame software library in C and C++.

The RM itself handles requests for information about labels, proxying direct con-

nections between processes in an information-tracked way, and delegating appropri-

ate requests to the secondary servers. See [7] for more information about the overall

structure of Flume.

The networking extension to Flume consists of two main parts: a generalization

of the file descriptor proxying code and adapters to provide an interface for network

sockets in the main RM, and a specialized server for multiplexing network connections.

The networking extension also contains additions to the Flume version of libc to

interface with the reference monitor, and some setup of optional ssh tunnels to provide

security against adversaries able to access the local cluster network directly.

5.2 Providing a socket interface

When a confined process wishes to form an information-tracked network connection,

it does so by a series of RPCs to the Flume reference monitor, rather than directly

making system calls (which are prohibited to confined processes). We shall investigate

each side of a connection independently, the server's listening socket, and the client's

outgoing connection request.

To create a socket for listening, a process specifies the address on which it wishes to

listen in a socket creation request to the RM. If the address is allowable according the

the rules established in the Flume socket semantics defined in section 4.2, the reference

monitor creates a socket pair with which to proxy the connection, and forwards the

request to register a socket on to the network server. If there are no problems at the

network server end, the RM responds to the RPC to create a socket with one of the

ends of the socket pair it created, reserving the other end in a structure representing

the socket end to use later.

The reference monitor includes several types of socket end structures. The socket

ends are divided as to whether they are meant for communication or listening for

sub-connections, and by method of connection. This paper deals with both listening

and communication socket ends, but is specific to the socket ends intended for com-

munication over the network. Each socket end has a unique opaque handle, which

a confined process can use to refer to the socket end in a way that does not convey

information to the confined process.

When the server process requests to listen on the newly created server socket,

the RM looks up the appropriate socket end in a table of sockets, and starts an

asynchronous listening loop on the socket end. The listen loop continually makes

RPCs to the network server for the next incoming connection on that given socket.

For each new connection, the listen loop creates a new socket pair with which to talk to

the client, then starts up a proxy loop between one end of this new socket pair and the

incoming connection file descriptor. The proxy loop essentially repeats information

by reading from each side and writing to the other, but filters the information sent

based on the current status of the process's label as compared to the socket's label.

To allow the confined process to retrieve the proxied file descriptor for the new

connection, the RM sends the opaque handle corresponding to the socket end to

the process over the listening socket. Over on the process's side, the libc has been

modified so that an accept() on a Flume socket reads the opaque handle from the

socket, then sends an RPC to the RM to retrieve the corresponding file handle.

To connect to a socket as a client, the process also specifies the address it would

like to connect to in an RPC to the RM. The RM then ensures this connection attempt

is legal, and makes its own connection RPC to the network server. If the connection

RPC is successful, it returns a file descriptor for the connection to the foreign server.

The RM then creates a new socket pair, connects one end to the new outgoing file

descriptor in a proxy loop, and sends the other end of the new socket pair back to

the client process in the response to the RPC.

5.3 Multiplexing Network Connections

The Flume network server is a distinct process that is in charge of multiplexing

listening network connections for the reference monitor. It maintains and listens on a

network port for incoming connections from any other Flume computer, and redirects

the incoming connection to the appropriate location based on the Flume address. It

also acts as an RPC server to the RM, allowing the RM to specify which logical Flume

SwU
(a) The server binds and listens to a socket

(b) The client connects to the socket

(c) The server accepts the connection

Figure 5-1: Anatomy of a Flume connection. The thin arrows represent connected
file descriptor pairs; the thick arrows represent messages

sockets are bound to which Flume socket addresses, and allowing the RM to request
socket connections on behalf of confined processes.

The network server keeps a bidirectional mapping of Flume address of computers
against their IP-level network addresses. Client programs only need specify the Flume
domain address of a computer to which they wish to connect. Additionally, the
network server keeps a mapping of server socket handle to the address on which the
socket is listening, and separate mappings for the converse: one set of mappings of

specific address to point-to-point listening Flume socket end handle, and another set

of mappings from only the port number to a set of handles that represent all Flume

rendezvous sockets listening on that port at all. Finally, the network server keeps

a queue structure for every listening socket, in which is stored file descriptors for

incoming connections.

The network server accepts five kinds of RPC from the RM. In the lifecycle of a

connection, the RM first request the network server will receive will be a bind. This

request takes in the opaque handle the RM has decided corresponds to a particular

socket end, and associates it in the network server with a given address, whether p-

to-p or rendezvous. Second, the RM sends the network server a request to listen, at

which the network server sets up the incoming connection queue for that particular

socket. The bind and listen calls could be combined into one call, but POSIX

tradition specifies that the socket namespace is taken up (bind) at a different time

than the length of the listen queue is specified (listen). The RM will automatically

at this point make a accept request to the network server, even though the confined

process has not specified an accept RPC. This accept call will return to the RM when

an incoming connection is formed.

Finally, the RM may send a connect RPC to the network server, specifying that

the network server should make a connection attempt to a foreign server, and send

along the addressing information for the Flume socket required at the other end as

the first thing on the new socket. If the connection attempt does not succeed, or

sending the addressing information fails for some reason, the network server signals a

connection error to the RM, which the RM will report back to the confined process.

Alternately, if the connection attempt succeeds, but the foreign network server cannot

find the addressed socket, the local network server replies to the RM that the socket

was not found. The RM may or may not inform the confined process of this, based

on the rules in section 4.2.

The RPCs the network server accepts are summarized in table 5.3.

When a request for a new connection comes in over the outward listening link,

the network server first executes a challenge-response authentication (see section 5.4),

bind Sets up a mapping between a socket end number
and an address

listen Sets up a connection queue for a given socket end
number

accept Call only once listen is called on an open socket;
returns the next connection attempt

connect Requests a connection with a socket bound to a
foreign server

close Tears down the structures corresponding to a par-
ticular server socket end.

Table 5.1: The network server's RPCs

then reads and decodes the addressing information that is the next thing over the

new file descriptor, and looks up the socket or set of sockets for that address. If the

address is for a p-to-p Flume socket, the network server enqueues the file descriptor

in that socket's queue. If the address is for a rendezvous socket, the network server

first constructs a new socket pair for each listener on that port that can read the

incoming connection's label tuple, and connects one end of each of these new socket

pairs to the incoming socket with a repeater loop. This allows each listening process

to receive information from the foreign client independently of all the others. The

network server enqueues the receiving end of each of these new socket pairs in one of

the listening file descriptors' queues.

5.4 Security and Authentication

To ensure that information between confined processes on different computers is al-

ways properly tracked, the Flume system must ensure that the following security

criteria are fulfilled:

* No process other than another network server approved by the cluster's admin-

istrator may connect to a network server as a peer.

* All connections between Flume confined processes with any secrecy or integrity

are set up through the network servers.

* Once a connection is set up through the network servers, the flow of the con-

nection remains between the file descriptors through which the connection was

initially set up (no TCP hijacking type attacks occur [9]).

* Nobody except the designated endpoints of a connection is allowed to know

what information is passed along that connection.

The methods for this depend on the security model for the network on which the

Flume cluster is running. Depending on whether or not ssh tunnels are being used,

Flume sockets are designed for two different threat models.

5.4.1 Trusted network

On a trusted network, all the computers with unlimited access to the network the

Flume cluster sits on are administrated by the same principal. All processes with root

access to any of these computers are trusted not to compromise the above criteria, and

all non-root processes are restricted from having raw access to the network below the

transport layer. Within the local network, each computer is assigned an address, and

all messages are faithfully delivered to the computer to which they are addressed. The

local network itself may be connected to other outside networks, but the connection

method must ensure that no communication internal to the local network leaks to

the outside world, and must firewall off the ports used by the Flume network servers

from the outside world.

Given a trusted network, relatively simple security measures suffice. In the simple

case, the only measure that needs to be taken is an authentication step to ensure

that a connection attempt is made by a proper Flume network server, rather than

a Flume-confined process that has clean enough labels to have TCP access to the

network.

To this end, as soon as the outward-listening socket in a network server gets a

connection, it will send a random challenge to the connecting network server. The

connecting network server concatenates the challenge to a shared secret, and sends a

cryptographic hash of the concatenation back to the challenger. The challenger can

then compare the response to its own calculation of the hash of the concatenation

of the challenge and the shared secret, and allow the connection only if they are the

same. The distribution of the shared key is performed out-of-band by the system

administrator. When a network server connects out to another, the reliability of

addressing on the local network ensures that the process it is connecting to is a

valid network server. On the other side, the authentication step assures the listening

network server that the incoming connector is valid.

System call interposition ensures that confined processes cannot access the net-

work except through the network servers. The fact that all processes that can access

the network in a low-level way are trusted in the trusted network scenario ensures

that the Flume connections act as exclusive streams without any snooping; there can

be no TCP hijacking or snooping without low-level network access.

A simpler and lower-overhead scheme might involve sending the shared secret over

the connection, but such a scheme is more sensitive to misconfiguration errors. If a

good network server improperly tried to connect to an adversarial network server just

once in this case, the adversarial server could pretend to be good, without detection,

and the shared key would have to be changed across the whole system. With the a

challenge-response scheme, the bad server could pretend to be good temporarily, but

the good server could be reconfigured with an accurate server list without revoking

the system-wide key.

5.4.2 Untrusted network

Flume sockets can also be configured for a wider network, one in which there may

be arbitrary untrusted computers along the path between any two Flume servers.

The untrusted computers can insert whatever packets they like on the network. The

Flume servers themselves still must be as trusted as they are in the trusted network

scenario.

In the untrusted network case, the network servers can set up a logical secure

network by establishing encrypted ssh tunnels between all the servers at startup

time. The administrator arranges ssh keys so that only valid Flume servers can

make this kind of ssh connection to each other, and sets up local firewalls on each

computer so no other computers can connect to the port on which the network server

is listening.

The ssh arrangement creates the same guarantees the trusted network does: the

participating computers are all addressed accurately, and the ssh connection is en-

crypted so it cannot be listened in on or hijacked. Given these properties, the same

authentication routine ensures that all the desired criteria are met.

This arrangement requires an O(n 2) connection cost in the number of nodes,

however, so relatively large clusters of Flume nodes are advised to establish a secure

local network. Future versions of the Flume networking extension could establish

these tunnels on-demand, with provisions to stay open for some fixed time after they

are no longer needed, then close. This would occasionally require a longer setup time

for a Flume connection, but would allow the system to amortize the cost of protecting

the network across all connection attempts, rather than paying the maximum such

cost up-front at startup time.

5.5 Limitations

Unfortunately, there are still some ways confined processes can covertly communicate

with each other against the flow control rules using Flume sockets, or even commu-

nicate information outside the system against the rules. These channels are difficult

to use, however, and may or may not be a concern for specific deployments of Flume.

This section describes limitations in the design; performance issues will be evaluated

in section 6.

5.5.1 Resource exhaustion

In distributed information flow control, any shared limited resource is a possible

source of covert channels[l]. Unfortunately, bandwidth is a shared limited resource.

One pair of processes could modulate the amount of bandwidth they take up. If

the bandwidth varied from negligible amounts to a large proportion of the available

bandwidth of the system, a second pair of processes could use information about the

rate at which they can send to each other to deduce something about how the first pair

of processes is modulating its bandwidth use. This would convey information from

the first pair of processes to the second, regardless of information flow constraints.

Techniques to ameliorate this resource exhaustion channel typically include spec-

ifying quotas on the use of the resource-in this case, rate limits on transmissions.

With an unlimited number of processes competing for a limited resource, however,

such measures are imperfect. They either allow the number of shares of the resource

to hit a maximum, or they start allocating detectably imperfect shares of the resource

if too many processes request shares. Since any limitation on the number of processes

would count as another limited shared resource, a complete solution to this problem

is unlikely. However, for the specific case of network bandwidth, the problem may

be less critical than it sounds, because available network bandwidth is prone to large

random (from the standpoint of processes) variation in the total amount available,

which would add noise to any attempt at a network bandwidth-based covert channel.

Due to the absence of any controls on other resource exhaustion channels in Flume,

rate limiting Flume network connections is a relatively low priority. It is not currently

implemented.

5.5.2 Communication outside the system

Unfortunately, covert channels of the second kind, to listeners outside the system, can

be extremely difficult and inefficient to avoid, especially against an adversary with

access to intermediate network points between the two Flume computers. Specifically,

a listener could pick up information from a pair of confined processes with secrets

communicating with each other by measuring the amount of traffic between the two

hosts. Furthermore, if a process with some secret information is actively trying to

transmit this information to an adversary that is unconstrained by Flume and can

sniff the intervening network, the rogue Flume process does not need to succeed in

connecting to a foreign socket, it can just modulate the timing of its attempts to do

so.

Some methods for network anonymity are applicable to decreasing the bandwidth

of these channels or eliminating them. For example, the Flume system could delay

some incoming packets and insert chaff (meaningless packets) to other servers to

decrease the amount of information that can be sent in timing channels. In [6], He et.

al. discuss the presence of theoretical bounds on the amount of chaff needed to keep a

timing channel from being distinguished from a Poisson process, if the packets in the

"wheat" (not chaff) channel can be rearranged subject to a bound on delay before

being sent. However, this approach requires committing to a certain constant rate of

data exchange between hosts all the time, and requests to send data past the amount

that can be safely hidden in the chaff still expose timing information to the outside.

Furthermore, if these requests are not satisfied, the slowdown in communication can

be detected by processes within the system, and exploited as a resource exhaustion

covert channel (the bandwidth resource exhaustion covert channel exists anyway, but

attempting to hide information well in chaff makes it much easier to hit).

The presence of these channels out of the Flume system, however, does not negate

the usefulness of a networking addition to Flume. Many Flume deployments, such

as a cluster of computers handling different parts of serving a website, will not have

to worry about external adversaries with access to sniffing the cluster's network, if

the local area network is properly secured. Even if a Flume cluster is widely geo-

graphically distributed, many use cases would provide enough traffic between nodes

that a traffic-shaping covert channel out of the system would be low-bandwidth and

unreliable. Finally, some deployments of Flume may only have the goal of reducing

the chances of an accidental information leak; such deployments would not need to

worry about traffic-shaping covert channels; such channels would require significant

code complexity to work at all, and would be extremely unlikely to arise accidentally.

Chapter 6

Evaluation

To evaluate the performance of the network modifications to Flume, I compared

network benchmarking python scripts running under Flume to the same scripts using

normal network sockets running without any kind of flow control or monitoring. I

ran tests of the round trip time on an established connection, the time to set up and

perform one round trip on a new connection, and the time to send 1 MB (1020 bytes)

over an established connection. I ran these tests both with and without ssh tunneling

to add encryption, both because the ssh tunnel is an optional feature of Flume, and

to compare the performance of unencrypted Flume to that of another protocol that

proxies network connections.

6.1 Test Setup

To test the network code, I installed OpenBSD with Flume on two computers: one

AMD AthlonTMMP 1900+ at 1.6 GHz with 1GB of RAM, which ran the server half

of the benchmarks, and one AMD AthlonTMat 1.22 GHz with 384 MB of RAM, which

ran the client half. The benchmarks used the MIT Parallel and Distributed Operating

Systems group's office network, during a low-traffic time. The network path between

the two computers contains two ethernet switches, and no routers.

The benchmarks were run as a python script that optionally runs under Flume

and uses Flume network calls instead of the standard system calls. Other than the

choice of network library and the particular addresses to use, running the benchmark

script has identical functionality with or without Flume. Experimentation with the

command-line ping utility suggests python imposes little additional time overhead

to the benchmarks, as the average round trip time as measured by ping is 0.314

ms, which is comparable to the average round trip time as measured by the python

benchmark for round trip time of 0.430ms.

The Flume reference monitors on the two machines were run with all possible log-

ging turned off, to better mimic a production environment and improve performance.

6.2 Benchmarks

I measured three different network properties:

Latency The server set up a socket on a port and listened on it. The client connected

to the server, and the server and client each sent the other 64 bytes to prime

the connection. Then, 256 times (in series), the server started a timer and sent

the client 64 bytes. Upon receipt of the bytes the client sent 64 bytes to the

server. When the server received all 64 bytes, it stopped the timer, recorded

the elapsed time, and started the next trial on the same connection.

Connection Setup Time The server set up a socket on a port and listened on

it. 256 times, the client started a timer, connected to the socket, and sent

64 bytes. The server received the client's message, and sent it's own 64 byte

message back to the client. Upon receipt, the client stopped the timer, recorded

the elapsed time, closed the current connection, and began the next trial with

a fresh connection.

Throughput The server set up a socket on a port and listened on it. The client

connected to the server and sent 1MB of data to prime the connection. Then,

256 times, the server started a timer and received 1MB more information from

the client on the same connection, then stopped the timer and recorded the

information before starting the next trial.

I ran each of these benchmarks:

* Using native network primitives, without Flume

* Under Flume, using a point-to-point Flume socket with a blank label tuple,

without setting Flume to use encryption.

* Using native network primitives, without Flume, over a ssh tunnel.

* Under Flume, using a point-to-point Flume socket with a blank label set, with

Flume set to use ssh tunneling encryption.

6.3 Results and Discussion

Round Trip Time

2.50E-03

2.00E-03

1.50E-03

1.00E-03

5.00E-04

O.OOE+00
Raw Flume ssh Flume + ssh

Figure 6-1: Round trip time comparison

...- _ . _ _ _ _ - - _-..

T... -------
....................

...........
.....

.... I

-- -- --- ---

.....

I

~~---~- --
.....
.....

........
--

................... __ ------

I

.......... ...

The latency tests give the benchmark running under Flume a round trip time

averaging 1.34 ms, which comes in at roughly a factor of three worse than the uncon-

fined test without encryption at 0.430 ms. Comparatively, the unconfined test with

ssh tunnel encryption has an average round trip time of 0.800, which is roughly a

factor of two worse than the trial without the ssh tunnel. This result makes sense,

as the ssh tunnel includes one proxy loop that must read from one computer and

write to the network between the server and the client. Flume, however, contains two

such proxy loops. If each proxy loop adds roughly another factor to the round trip

time overhead, the results from this benchmark make qualitative sense. The average

round trip time of Flume acting through an ssh tunnel is 2.06 ms, very close to what

you would get if you simply added the times for the ssh round trip and the Flume

round trip together.

Setup Time

3.50E-01

3.00E-01

2.50E-01

2.00E-01

1.50E-01

1.00E-01

5.00E-02

0.00E+00
Raw Flume ssh Flume+ssh

Figure 6-2: Setup time comparison

Time to send 1MB

------- ~~-- -- ___ ---

Raw Flume

FT-- _T

Flume+ssh

Figure 6-3: Throughput comparison

I predict that a wider or busier network between the client and server would

decrease the effect of the round trip time overhead, as network transit time begins to

dominate the time taken by the proxy loops.

The setup time tests show that Flume is currently unsuited for tasks where quick

connection setups are important. The 201 ms average connection setup time for

Flume is almost a factor of 250 worse than the equivalent operation without any

encumbrance. Interestingly, the time for the benchmark to run under Flume, using

ssh, and using both are comparable, to the point that it is difficult to say whether

any is reliably faster than another. I am not entirely sure why Flume does not seem

to pay the full extra cost for using the ssh tunnel, because it does internally make a

new underlying connection for each Flume connection requested.

It is possible the setup cost could be reduced by making certain optimizations

49

1.4U

1.20-

1.00.

0.80

I 0.60

0.40

0.20

0.00

--

tl-- 11"

......... ..

--------

I

....... ...

----- ~~'

in the reference monitor and network server. For example, setting up a connection

currently requires a few requests to the IDD to look up the canonical versions of labels.

If the results of these requests were cached, the setup cost might be significantly

reduced.

Because of the long setup delay, along with the fact that the two-step rendezvous

process can be onerous, I recommend that designers of clustered systems using Flume

currently try to keep their connections between computers alive, instead of making a

new connection for every new request.

The throughput tests give comparable performance for all the scenarios. Without

using ssh, 1MB takes an average of 1.22 seconds to transfer, regardless of whether

the program doing so is under Flume. With ssh, the time to transfer the data is

only 0.02 (without Flume) to 0.06 seconds (with Flume) longer. This difference is

less than the standard deviation of the results, which is on the order of magnitude of

0.1 for all the scenarios.

The good throughput performance suggests Flume is not going to hurt applica-

tions where the important factor in the clustered service is the throughput between

machines. It also suggests that the buffer size used in the Flume proxy loops, 64KB,

is large enough to avoid impacting performance.

Figures 6-1, 6-2, and 6-3 show the relative average performance of the three re-

spective scenarios, with error bars corresponding to the standard deviation of the

measured times.

Chapter 7

Conclusion

To make computer services that use Decentralized Information Flow Control tech-

niques to increase their privacy and security more scalable, I have implemented an

extension to the Flume reference monitor that allows programs on different comput-

ers to communicate in a way that preserves the information flow control properties

of the system. Using this system, information does not need to be declassified before

crossing the boundary between computers to another process running under Flume.

The abstractions used by the extension to Flume are used in a similar way to most

applications of POSIX stream sockets and should be relatively easy to use for people

familiar with socket programming. Though connection and socket setup operations

involving the Flume networking extension are expensive, the other operations impose

a reasonably small amount of overhead on communication. Clustered systems that

do not rely on fast connection setup are therefore reasonable to implement in a Flume

environment for added information security.

Bibliography

[1] Stephen Adler. The Slashdot effect, an analysis of three
internet publications. Linux Gazette, 38, March 1999.
http://ldp.dvo.ru/LDP/LGNET/issue38/adlerl.html.

[2] AFS user guide. http://www.openafs.org/pages/doc/UserGuide/auusg007.htm.

[3] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazieres, Frans Kaashoek, and Robert Morris.
Labels and event processes in the Asbestos operating system. In SOSP '05:
Proceedings of the Twentieth ACM Symposium on Operating Systems Principles,
pages 17-30, New York, NY, USA, 2005. ACM Press.

[4] Brad Fitzpatrick et al. Clustering livejournal, 2001.
http://www.livejournal.com/misc/clusterlj/.

[5] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul
Gauthier. Cluster-based scalable network services. In Symposium on Operating
Systems Principles, pages 78-91, 1997.

[6] Ting He, Parvathinathan Venkitasubramaniam, and Lang Tong. Packet schedul-
ing against stepping-stone attacks with chaff. In Proceedings of IEEE MILCOM.
Cornell University, October 2006.

[7] Maxwell Krohn, Alex Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. Information flow control for standard OS
abstractions. In SOSP '07: Proceedings of the Twenty-First ACM Symposium
on Operating Systems Principles. ACM Press, 2007. forthcoming.

[8] MoinMoin HelpOnAccessControlLists
http://moinmoin.wikiwikiweb.de/HelpOnAccessControlLists.

[9] Robert T. Morris. A weakness in the 4.2BSD UNIX TCP/IP software. 1984.
AT&T Bell Laboratories.

[10] Andrew C. Myers and Barbara Liskov. Complete, safe information flow with de-
centralized labels. In RSP: 19th IEEE Computer Society Symposium on Research
in Security and Privacy, 1998.

[11] Norman E. Proctor and Peter G. Neumann. Architectural implications of covert
channels. In Proceedings of the Fifteenth National Computer Security Conference,
pages 28-43, October 1992.

[12] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow secu-
rity. IEEE Journal on Selected Areas in Communications, 21, January 2003.

[13] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63:1278-1308, 1975.

[14] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing SELinux as
a Linux security module. 2001. NAI Labs report #01-043.

[15] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers.
Untrusted hosts and confidentiality: secure program partitioning. In SOSP '01:
Proceedings of the 18th A CM Symposium on Operating Systems Principles. ACM
Press, October 2001.

[16] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazieres.
Making information flow explicit in HiStar. In Proceedings of the 7th Sympo-
sium on Operating Systems Design and Implementation, November 2006.

