Compiling and Optimizing Spreadsheets for FPGA and Multicore Execution
by
Amir Hirsch

S.B., EEE.C.S. M.LT, 2006; S.B., Mathematics M.L.T., 2006

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

MASSACHUSETTS INSTITUTE
OF TECHNOILOGY
September 2007
NOv 13 2008
© Amir Hirsch. All rights reserved.
LIBRARIES

The author hereby grants to M.L.T. permission to reproduce and
to distribute publicly paper and electronic copies of this thesis document in whole and in part in
any medium now known or hereafter created.

—
Author <

Department Electr al Englneerlng and Computer Science

September 4, 2007
Certified by

Saman Amarasinghe
Profes lectrigal Englg/erzng‘ d Computer Science
//5 /4&hes;§;$uperv1sor

_ C— Arthur C. Smith
Professor of Electrical Engineering
Department Committee on Graduate Theses

Accepted by

Chairman,

BARKER

i —— Room 14-0551
o —— 77 Massachusetts Avenue

M ITL.b N Cambridge, MA 02139
Ph: 817.253.2800
I rarles Email: docs@mit.edu

Document Services http:/flibraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

The 1mages contained in this document are of
the best quality available.

Compiling and Optimizing Spreadsheets for FPGA and Multicore Execution
by
Amir Hirsch

Submitted September 4, 2007 to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical
Engineering and Computer Science at the Massachusetts Institute of Technology

Abstract

A major barrier to developing systems on multicore and FPGA chips is an easy-to-use
development environment. This thesis presents the RhoZeta spreadsheet compiler and Catalyst
optimization system for programming multiprocessors and FPGAs. Any spreadsheet frontend
may be extended to work with RhoZeta’s multiple interpreters and behavioral abstraction
mechanisms. RhoZeta synchronizes a variety of cell interpreters acting on a global memory
space. RhoZeta can also compile a group of cells to multithreaded C or Verilog. The result is an
easy-to-use interface for programming multicore microprocessors and FPGAs. A spreadsheet
environment presents parallelism and locality issues of modern hardware directly to the user and
allows for a simple global memory synchronization model. Catalyst is a spreadsheet graph
rewriting system based on performing behaviorally invariant guarded atomic actions while a
system is being interpreted by RhoZeta. A number of optimization macros were developed to
perform speculation, resource sharing and propagation of static assignments through a circuit.
Parallelization of a 64-bit serial leading-zero-counter is demonstrated with Catalyst. Fault
tolerance macros were also developed in Catalyst to protect against dynamic faults and to offset
costs associated with testing semiconductors for static defects. A model for partitioning, placing
and profiling spreadsheet execution in a heterogeneous hardware environment is also discussed.
The RhoZeta system has been used to design several multithreaded and FPGA applications
including a RISC emulator and a MIDI controlled modular synthesizer.

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

Throughout my time at MIT I have had the opportunity to learn from many of the greatest
minds in my field. I am extremely grateful to Saman Amarasinghe for encouraging me to pursue
multidimensional simulated annealing as a method of locality optimization and for his feedback
during the development of this work. I also want to thank all of the members of the compilers
group for our discussions of research topics and for their excellent papers on software
optimizations for reconfigurable computing.

This thesis would not have gotten started without Chris Terman meeting with me weekly
while I developed a thesis proposal. I am grateful to Anantha Chandrakasan for starting me down
the path of FPGA research and giving me the opportunity to teach 6.111. I would also like to
thank Gerry Sussman, Hal Abelson and Chris Hanson for taking me on as a UROP after my
freshman year and for teaching me electronic circuit design, constraint propagation, pattern
matching, rule systems and circuit simulation. [am also grateful to Professor Arvind, whose
class on multithreaded parallelism and guarded atomic actions changed my perspective on
automating dynamic dataflow management. Lambda is a powerful wand.

[want to thank Prasanna Sundarajan and Dave Bennett of Xilinx for having me intern on .

the CHiMPs compiler and introducing me to the idea of RISC emulator pipelining and GOPs/$
as an economic efficiency metric for heterogeneous supercomputing.

I also want to thank my fraternity brothers at Theta Delta Chi for their support; I know
you’re all sick of hearing me talk about FPGAs already. 1 especially want to thank Joe Presbrey
for knowing how to make computers do things repeatedly, for challenging me to translate the
cubes synthesizer to Python, and for staying up late all those nights with me hacking the
Playstation 3 and figuring out how to make spreadsheets dispatch a graphics processor.

Finally, I would like to thank my family for being with me through it all. My parents for
raising a tinkerer; my brother for being a counterpoint to my geekiness; my grandmother for
making me chicken soup and teaching me mathematics when I was too sick to go to school; my
grandfather for showing me that it is most important to work hard and be good to people.

L3

Contents

Front Matter
Abstract
Acknowledgements
Contents

List of Figures

List of Tables

Chapter 1 Reconfigurable Computing: A Paradigm Shift

1.1

12

1.3

Reconfigurable Computing as a Spreadsheet

1.1.1 An FPGA is a Hardware Spreadsheet

1.1.2 The Increasing Importance of Locality

1.1.3 Fault Tolerance and Granularity

1.1.4 Programming Multicore Processors and FPGAs the Same Way
A Few Examples

1.2.1 Building a 74LS163 in Excel

1.2.2 Infinite Impulse Response Filter

1.2.3 ARISCCPU

Design Principles and Efficiency Economics

1.3.1 Typing: Dynamic When Possible, Static When Necessary
1.3.2 Optimizing VLIW Architectures

1.3.3 Static Optimizations

1.3.4 Contributions

1.3.5 Roadmap

Chapter 2 RhoZeta: Compiling Spreadsheets to Multicore and FPGA

2.1

2.2

23
24

RhoZeta Interpreter Overview

2.1.1 Frontend Application and Ul Bridge

2.1.2 Cell Managers: Threads for Interpreting Spreadsheets
2.1.3 Execution Policies: How to Interpret a Group of Cells
2.1.4 Behavioral Lambda in a Spreadsheet

2.1.5 Translating and Combining Execution Policies

2.1.6 Conclusions on the RhoZeta Spreadsheet Interpreter
Cubes: A MIDI-Controlled Modular Synthesizer in a Spreadsheet
2.2.1 Sound Synthesis in a Spreadsheet

2.2.2 Changing the Circuit with the Power On

2.2.3 Multithreaded Execution in C

2.2.4 Compilation of Spreadsheet Cells for Cell SPE
Compilation to Verilog

Dynamic Low Level Compilation

2.4.1 Primitive Languages for Reconfigurable Arrays

2.4.2 Reconfiguration Macros and Reflection

2.4.3 Conclusions and Looking Forward

NN R N e

10
11
13
14
15
15
18
21
24
24
25
25
26
26

28
29
31
31
33
36
43
47
47
48
53
54
57
60
63
63
65
67

Chapter 3 Catalyst: Optimization of Spreadsheet Architecture
3.1 Behavioral Invariance
3.1.1 Catalyst: Guarded Atomic-Actions for Graph Rewriting
3.1.2 Speculation as a Parallelization Primitive
3.1.3 Redundant Resource Sharing
3.2 Optimizing Legacy Architecture
3.3 Pipeline Resource Sharing
3.4 Fault and Defect Tolerance
3.4.1 Randomly Guarded Atomic Actors
3.4.2 Error Correction as a Data Type
3.4.3 Static Defect Detection and Self-Testing

4 Efficiency, Heterogeneity and Locality Optimizations
4.1 GOPs per Dollar

4.2 Heterogeneous Load Balancing

4.3 Generalized Locality Optimization

4.4 Conclusions and Future Work

Bibliography

69
70
70
76
79
81
85
87
88
90
91

93
94
97
98
100

102

List of Figures

Chapter 1 Reconfigurable Computing: A Paradigm Shift
1-1 Mealy State Machine Cell Model

1-2 The Increasing Importance of Locality

1-3 Defect Tolerance and Granularity

1-4 Impulse Response and Magnitude Response of IIR Filter

Chapter 2 RhoZeta: Compiling Spreadsheets to Multicore and FPGA

2-1 Overview of the RhoZeta spreadsheet system

2-2 Circularly Referent Asynchronous Execution

2-3 Mealy State Machine Diagram of Lambda Abstraction
2-4 Blocking Assignments as Mealy Cells

2-5 Converting Blocking to Non-blocking

2-6 Square, Saw and Sine Wave

2-7 Cubes Synthesizer Render by GPU

2-8 Global Memory Synchronization Model

2-9 Partitioning on a Cell Processor

2-10 A Hybrid Reconfigurable Architecture

Chapter 3 Catalyst: Optimization of Spreadshect Architecture
3-1 Simple Boolean Reduction Rules

3-2 Temperature Simulation of Adder Benchmarks

3-3 Speculation Rewrite Rule

3-4 Cancerous Speculation

3-5 Redundant Resource Sharing

3-6 Instruction Set Emulator Pipelining

3-7 Handling Branches in an Emulator Pipeline

3-8 Multi-process Resource Sharing

3-9 Pipeline Resource Sharing Reduces Area

3-10 N-way Modular Redundancy

3-11 Ring Oscillator Structures for Interconnect Variance

Chapter 4 Efficiency, Heterogeneity and Locality Optimizations
4-1 Turning a 32-bit adder into an 8-bit adder

4-2 Optimizing Low Entropy Signals

4-3 Simple Locality Example

11
12
13
20

30
36
42
43
44
50
52
56
58
67

73
75
78
79
80
33
84
85
87
89
92

96
97
99

List of Tables

Chapter 1 Reconfigurable Computing: A Paradigm Shift
1-1 Simple Counter

1-27741.S163 in a Spreadsheet

1-31IR Filter

1-4RISC CPU

1-5Lambda in a Spreadsheet

Chapter 2 RhoZeta: Compiling Spreadsheets to Multicore and FPGA

2-1 Scheduler Sheet

2-2 Non Blocking Execution Policy

2-3 Reading Order Execution

2-4 Asynchronous Ring Oscillator and Register
2-5 Abstracting an Impulse Generator

2-6 Recursive delay by Function

2-7 Mixed Execution Policies

2-8 Interpretation of Mixed Execution Policies
2-9 Converting Non-blocking to Blocking
2-10 Multiple Oscillators

2-11 Type Declarations

2-12 Memory State Machine

2-13 A Simple Synthesizer

2-14 Leading Zero Counter

2-15 Lookup Table Programmable Cell

2-16 Offset-MUX Tile

2-17 Crossbar

Chapter 3 Catalyst: Optimization of Spreadsheet Architecture
3-1 Activity of Two Adder Benchmarks

3-2 Results for Leading Zero Counter Optimization

3-3 Square-root Round-Robin Resource Sharing

3-4 NMR with a Majority Voter

12
17
19
23
25

33
34
35
36
37
38
39
40
45
49
53
55
58
61
65
65
66

74
81
86
89

Chapter 1

Reconfigurable Computing: A Paradigm Shift

What is a von Neumann computer? When von Neumann
and others conceived it over thirty years ago, it was an
elegant, practical, and unifying idea that simplified a
number of engineering and programming problems that
existed then. Although the conditions that produced its
architecture have changed radically, we nevertheless still
identify the notion of "computer” with this thirty year
old concept.

John Backus, “Can Programming Be Liberated from the von Neumann Style?” Turing Award Lecture, 1977

Reconfigurable computing is a different paradigm from traditional von Neumann
computing. In the von Neumann model, a single instruction stream dictates how a global
memory space is modified one address at a time. In contrast, each cell in a reconfigurable array
changes its state based on the state of other cells. By working concurrently in groups, cells can
produce arbitrary functionality with high speed and efficiency. While single-threaded
performance will not increase beyond practical clock limits, many algorithms may be redesigned
to improve with more and faster cells, and will continue to appreciate speedups as physical cell
density increases. This parallel model of computing akin to hardware design, is effectively a
spreadsheet and requires a system capable of spawning concurrent processes to assume the
behavior of a collection of cells.

Historically, computer programs have been written in one-dimensional instruction stream
languages such as C. This programming model matched the von Neumann hardware abstraction:
since each instruction is executed one at a time by a central processor unit it makes sense to

describe programs in an instruction stream. Modern processors have evolved beyond single-issue

instruction stream processors and more accurately resemble two-dimensional arrays of
processing elements. Despite this hardware evolution, parallel hardware has inherited the one-
dimensional von Neumann programming model and most programming environments require
the programmer to incorporate thread synchronization code into an instruction stream.

A spreadsheet is a better hardware abstraction for modern parallel processors. A
spreadsheet programming environment presents parallelism and locality directly to the user. In
order to use a spreadsheet to program modern hardware, a number of backend extensions have to
be built to compile and optimize spreadsheets for hardware execution. This thesis presents
RhoZeta and Catalyst, a spreadsheet compiler and optimization system for FPGA, GPU, and
multicore processors. The RhoZeta interpreter and compiler described in chapters two provide a
spreadsheet abstraction mechanism and several execution models with simple synchronization
semantics. The Catalyst optimization sysiem presented in chapter three dynamically modifies
spreadsheet structures by performing guarded atomic actions on a sheet.

1.1.1 An FPGA is a Hardware Spreadsheet

An FPGA is the hardware equivalent of a spreadsheet. Just as a spreadsheet is an array of
cells containing formulas and values, FPGAs are physically arrays of cells containing logic
functions and memory. Figure 1-1 shows a Mealy state machine cell. A Mealy cell consists of a
state register and a next state and output function. When the cell iterates, the next state and
output are determined as a combinatorial function of the current state and inputs. The output
value reported to a cell’s precedents is not necessarily stored in a register and may be a
combinatorial function of the state and current inputs. In some cases, a cell can have both
registered and combinatorial outputs so dependent cells can read from the current state or the

output of the next-state function.

10

A spreadsheet is a software idealization of the FPGA hardware environment. Where a
spreadsheet cell may have an arbitrarily defined function and value type, each cell in hardware
has a fixed set of operations and memory data types. A spreadsheet compiler must map a
spreadsheet definition to fixed structures available in the hardware array. In addition to dynamic
types and arbitrary functions, the idealized spreadsheet has no routing constraints so each cell
may refer to other cells at arbitrary distances without additional cost. Physical hardware has
strict routing constraints and the overhead required to transmit a signal is strongly dependent on
the distance between communicating cells. Though these issues do not affect programs in single

core CPUs, with sufficiently many cores, processor arrays resemble their FPGA counterparts.

Precedents
N\ \l \l

Teubts deias

Figure 1-1 A programmable array of Mealy state machines is a model that applies to spreadsheet cells,
multiprocessor cells and FPGA cells alike. A spreadsheet cell has dynamic type and arbitrary functionality.
An FPGA cell has strictly typed memory and finite functionality.
1.1.2 The Increasing Importance of Locality
A spreadsheet model presents two-dimensional locality directly to the developer. The
distance between physical cells is the primary metric for the cost of a function. Currently,
toolchains for FPGAs and ASICs optimize a circuit graph for locality to minimize power and
increase processing speed. Locality optimizations are not exclusive to ASIC and FPGA

domains, they will be increasingly important in chip multiprocessors as the number of cores in

such chips increases. In processor arrays, efficient placement of communicating processes will

11

result in decreased power and time required to transmit information between execution cores.
Figure 1-2 shows that the ratio of distance between the worst and best case placement of two

communicating threads in a 2-D tile array will grow as the square-root of the number of tiles.

Figure 1-2 The ratio of interconnect length between optimized and worst case placement of two
communicating threads increases as the square root of the number of cores in a tiled-array.

Figure 1-2 is the simplest case of two communicating threads; locality issues are
compounded by the number of simultaneously communicating cells. Shrinking wires increase in
resistance, and thus our ability to create fast connections between ever more cores over long
distances is limited [1]. Three-dimensional wafer-stacking technologies increase the transistor
density of computer chips and offer a partial solution to the interconnect bottleneck [2]. Locality
optimizations for three-dimensional semiconductor devices and issues relating to process locality

on multicore chips increase the need for generalized locality optimization. Chapter four provides

12

a general method of approaching the problem of mapping a process graph to a subset of the
integer lattice zZE.
1.1.3 Fault Tolerance and Granularity

Fault tolerance is built into the structure of a tiled array; a defect may destroy a single cell
without destroying the entire system. As we continue to decrease the sizes of transistors and
wires, the occurrence and severity of destructive fabrication defects increases [3]. Additionally,
cosmic rays are more likely to flip a bit when they hit a smaller transistor so we will continue to
see an increase in the number of dynamic faults on a chip [4]. To achieve fault tolerance, error
detection and correction techniques may be employed including error correction codes, tracking
and managing defective sites and using redundant components that are redundant. The
complexity of testing semiconductors for defects increases as the number of components
increases. Mass-producing defect tolerant architectures decreases time-to-market, increases
yield, and decreases testing costs for new semiconductor technologies. To accommodate for
yield costs, the eight-core Cell processor was shipped in the Playstation 3 with only seven
functional cores. FPGA manufacturers have developed methods to sell partially-defective chips

as ASICs and it is common to sell chips at multiple speed grades due to process variance.

Figure 1-3 Under common defect profiles, the coarse grained array loses a quarter of all of its
cores while the fine-grained array loses a sixteenth. An OS should manage component defects.

13

The granularity of tiles in a physical array strongly determines its susceptibility to
defects. Figure 1-3 shows how susceptibility to destructive defects decreases as the number of
cells on a chip increases. Each cell in a fine-grained array consumes very little in real-estate;
there 1s little cost in a few defective FPGA cells among a million; software must be able to detect
and route around them. In coarse-grained arrays, totally defective components are more costly,
so measures must be taken to decrease the impact of defects. It may be possible to ignore a
defect simply by disabling certain registers and instructions in a particular CPU. Error detection
and correction provide protection from dynamic faults as well as static defects. Chapter three
shows how to incorporate fault tolerance into spreadsheet architectures using a macro.

1.1.4 Programming Multicore Processors and FPGAs the Same Way

The structural symmetry and the similar optimizations required for a chip multi-processor
and an FPGA suggest that a sofiware design paradigm for multi-core could inherit a
methodology from FPGA design. Researchers have investigated stream programming or
software pipelining as an effective design paradigm for multicore architectures [5], [6]. Software
pipelining is writing software as a pipelined hardware circuit. There have also been several
commercial and academic compilers for C-like sequential imperative into a dataflow structure
suitable for FPGA execution [7], [8], [9], [10], [11]. These FPGA compilers, like the stream
programming counterparts, are generally unable to offer a solution for compiling and running
legacy code on parallel architectures. In order to achieve legacy compatibility, RhoZeta
interprets and optimizes machine code in a hardware emulator. Section 1.2.3 presents a RISC
ISA emulator in a spreadsheet and chapter three discusses methods of compiling and optimizing
a spreadsheet containing an ISA emulator and a static instruction ROM into pipelined state

machines.

14

The dataflow paradigm is commonly represented by a spreadsheet containing cells with
formulas and values. By using a spreadsheet frontend, we inherit a design tool that has been
thoroughly developed for visually creating structural circuits and analyzing data. Both Excel and
Calc are integrated with extension tools (COM and UNO respectively) that allow users to extend
the interpreter and create transformation macros. Unfortunately, ordinary spreadsheets usually
offer one mode to interpret the cells. RhoZeta allows a variety of cell interpretation strategies
similar to Verilog’s blocking, non-blocking and asynchronous assignments. RhoZeta can also
compile spreadsheets for a heterogeneous collection of architectures including multicore
processors, FPGAs and GPUs for graphical output. RhoZeta is implemented in Python and
inherits its dynamically typed object system, allowing for powerful abstraction mechanisms to be
built into a spreadsheet.

1.2 A Few Examples

In order to motivate this system, it is useful to consider a few simple examples. This
section presents a simple counter, an iIR filter, and a RISC CPU emulator. The counter provides
a simple introduction to circular reference in a spreadsheet. The IIR filter demonstrates how the
interpretation method used by the spreadsheet program affects the correctness and efficiency of
the system. The RISC emulator demonstrates the universality of this programming paradigm and
motivates a spreadsheet to FPGA compiler. The demos in this section run in Excel, but not in
Calc since Calc does not natively support circular reference. Each cell’s name is in bold above its
formulas. Chapter 2 will show how we extend these application frontends with our own
spreadsheet interpreter system.

1.2.1 Building a 74L.S163 in Excel

Traditionally, circular references in a spreadsheet are problematic and tools exist to detect

15

and remove them. A counter demonstrates the use of intentional circular reference in a
spreadsheet. Table 1-1 shows the formulas for a simple counter. The value in A1 will increment
after iteration of the spreadsheet. When the value in cell Al reaches 100, it will return to 0 on
the next iteration. If we repeatedly iterate this spreadsheet then the value in cell A1l is the same

after 101 iterations.

Table 1-1. A simple counter demonstrates circular reference in a spreadsheet
- =IF(A1>=Bl, 0, Al+1) 10

Table 1-2 extends this simple counter to behave like the 74LS163 synchronous counter
with a loadable register and ripple-carry-output. Since this spreadsheet runs in Excel, iteration of
the sheet is interpreted as blocking-assignments' performed in reading-order (left to right, top to
bottoin). Due to this interpretation, the series of conditions for determining Qout (Qout is cel!
A6) are executed in the correct order and the formula for the ripple-carry-out (RCO)V must be
after Qout. Section 2.1.3 describes the Execution Policy abstraction which instructs a Cell

Manager how to interpret a collection of cells.

' A collection of blocking assignments are processed and assigned immediately as they are read. This is in contrast
with non-blocking assignments which read their values before any cells are assigned. Transformations between
all of the execution policies are provided in 2.1.4.

16

Table 1-2. 74LS163 implemented in a spreadsheet. The name of each cell is above in bold. In
Excel, iterated assignments are executed in reading order from left to right, top to bottom,
resulting in “priority-if” statements in the logic for Qout..

LD
FALSE TRUE |TRUE |FALSE
IF(AND(T,P),Qout+1,Qout)
MAX
15
RCO
=AND(T,Qout=MAX)

Listing 1-1 is the result of direct translation of the 74L.S163 spreadsheet to Verilog. Itis
provided here to show how to simply translate between Excel and Verilog. The cell MAX is not
inferred as a parameter because the direct translation infers cells having no dependencies as
inputs and having no dependents as outputs. Unnamed cells become reg objects” and acquire the
obvious cell name: A3, A4, and A5. A type propagation system can infer that all of the unknown
types in the spreadsheet are the same numeric type since Verilog requires assignments and
comparison operators to have the same static type. In Chapter two, we will add directives to the

spreadsheet compiler to define static types in order to add compatibility with Verilog and C.

2 A Verilog reg is not necessarily a physical registers and is only a container for a value. A synthesis tool
must interpret whether a data storage element is a wire, register or latch.

17

Listing 1-1: Verilog Code for a 74LS163 Synchronous Counter with Synchronous Reset as
produced using an Excel VBA macro for transformation. Note that the type of Qout and D is
unknown, but are known to be the same numeric type.

module counter74LS163(clk,D,LD, T, P, Reset,MAX, Qout, RCO)
input clk;

input <%nl%> D;

input LD;

input T;

input P;

input Reset;

output reg <%nl%> Qout;

input <%nl%> MAX = 15;

output reg RCO;

reg <%nl%> A3;
reg <%$nl%> A4;

reg <%nl%$> AS5;

always @ posedge (clk) begin

A2 = (T && P) ? Qout + 1 : Qout;
A3 = (Qout == MAX) ? 0 : AZ2;
Ad = LD ? D : A3;

Qout = Reset ? 0 A4;
RCO = (T && (Qout == MAX));
end

1.2.2 Infinite Impulse Response Filter

An infinite impulse response filter produces an output signal as a linear combination of
the previous inputs and outputs. In order to implement an IIR filter, as in Table 1-3, we must
have a shift-register structure to store the previous values of the input and output signals. Since
Excel iterates in reading order, we can have a cell take on a value from the cell below it or to its
right to introduce a one iteration delay between values in the table. If we instead make each cell
dependent on the cell above or to the left, after iteration all cells in a chain would have the same
value. In the naive software interpretation, each data item would move from one address to
another address each cycle, when this structure might be more efficiently implemented in
software as a circular buffer. Also, a naive interpreter might execute A1>=B1 more than once per
iteration for both cells A1 and A2. Chapter 3 demonstrates how to allocate memory structures

with the RhoZeta compiler and how resource sharing is managed.

18

Table 1-3 An IIR filter in a spreadsheet. By making each cell assume the value below or right of

it, the cells behave as a shift register when iterated. Since spreadsheets automatically replicate
formulas and update graphs of the data after iteration, this is an easy way to make oscilloscopes

and view impulse responses. Cell A2 is an impulse generator based on the counter in the

previous section.

|=IF(A1>=B1, 0, Al+1)

\100 ‘
: =IF(A1>=B1,1,0) ‘ ‘ =D3
ix{n—l] ‘ x[n] = impulse train =D4
| =xn ‘=A2 =D5
|a_1 ‘a_ﬂ =D6
‘-.3 ‘.5 =D7
2*a 2 ‘=xn_1*a_1 ‘=xn*aO =D§ §
o ywen B P
_|om | R
b_1 =DI1
; 8 Yn =yn
|=yn_2*b 2 =yn_1*b 1 =SUM(A7:C7,A12:B12)

Direct translation of the filter from Excel’s reading order blocking assignments to Verilog

follows as in the counter demo. The coefficients are again interpreted as inputs with an unknown

numeric type since they have no dependencies. To make this synthesizable Verilog, it may also

be necessary to define the mathematical operators for your choice of numeric type. The IIR filter

was extended in Excel to have coefficients generated by a pole-zero specification and to produce

various plots of the system response. Plot of the impulse train response and frequency transfer

function are shown in Figure 1-4. The impulse train response is generated by extending column

D of Table 1-3. The frequency response is generated by evaluating the Z transform.

19

Magnitude Response

[H(e"jw)|

® P $

R RN R YIS R
SLEPFFLELFESEL PP E L L L E PP P P8P 0P PP S

Figure 1-4: The impulse train response (above) and magnitude response (below) of the IIR filter.
The magnitude of the frequency response is computed by evaluating the Z-transform of the
system along the unit circle from 0 to pi radians using complex math functions.

20

1.2.3 ARISC CPU

Table 1-4 is a spreadsheet that executes a reduced instruction set. The first row contains
the RESET signal and a constant spacebar character. The instruction decoder (A2:F4, light blue)
contains a program counter, an instruction fetch from memory and an argument decoder. The
argument decoder finds space characters in the instruction text string in order to parse a string
into the left and right side of the space. In order to avoid parsing errors for short instructions
(those with less than three spaces), spaces are concatenated to the instruction when it is read.
The ReadArg block (B5:D6, red) associates register names with their value using the VLOOKUP
function which can be thought of as generating a “case” statement. The ALU (C7:D14 orange)
also uses VLOOKUP to associate the opcode with a function in the ALU. Each register
(C15:D24, grey) is set to zero on reset and writes back the ALU output if its address is specified
in argl of the instruction. Memory (E5:F24, green) is implemented the same way as the register
file except that when it is reset it assumes the value of the cell immediately to the right. This
memory structure would be inefficient if the interpreter evaluated every cell each cycle. An
efficient memory macro will be introduced in chapter two as well as a number of other
interpreter extensions.

The spreadsheet in Table 1-4 is designed around Excel’s function set and is not meant to
compile to a hardware description language. This example demonstrates a useful testing tool for
CPU design and assembly level coding. Since the spreadsheet can be iterated while designed,
such circuits can be built interactively. Adding opcodes and registers is trivial, though
VLOOKUP requires the ALU table be sorted. It is also possible to pipeline in this structure by
altering the order of the ceils. Copying the sheet 10 times creates a multi-core processor model

and the ALU can easily be made into a SIMD or VLIW unit too. This example motivates the

21

need for functions in the spreadsheet language intended for building and compiling such
structures to physical hardware and FPGA. To provide FPGA compatibility for programs written
for instruction stream executers we can emulate them. Chapter three will demonstrate how to

create a pipeline of instruction set emulators.

22

Table 1-4 A reduced instruction set CPU designed to run in Excel. This system cannot compile into an
HDL directly. The spreadsheet language must be extended to support a better type and object system
to make this easier to design and synthesize.

16

23

A B c D E F
1 Reset: 0 Space: (D1 has a " ")
2 PC Inst arg0 argl | arg2 arg3
3 =IF (reset, =CONCATENATE (=LEFT (inst, =RIGHT (inst, =RIGHT (inst, =RIGHT (inst,
0, nextpc) OFFSET (MEM, PC, SEARCH (space, LEN(inst) - LEN(D3) - LEN(E3) -
0), space, space, inst) - 1) SEARCH (space, | SEARCH (space, SEARCH (space,
space, space) inst)) D3)) E3))
4 =LEFT (D3, =LEFT (E3, =LEFT (F3,
SEARCH(space, D3) - | SEARCH(space, E3) SEARCH (space,
1) T BaYEad)
5 STC
6 | =ReadArgl
7] ltﬂd&
8 =arg2
9 Waddx :
10 | =VALUE (IF (arg0

b ngmn,

staddr,
IF (ar_gj) =
FSTCT e

_stcaddr, 0)))

‘»{

3

ResetValues

0is

TMOVC R1 443

MOVC R2 23451

MOVC R3 12312

4,
C W ()~
,write,E24))

1.3 Design Principles and Efficiency Economics

The design of a complex system must be driven by a set of principles. Spreadsheet tools dictate
the syntax required for point-and-click formula replication, but we are free to modify the interpreter as
we please. Ordinary spreadsheets do not allow abstraction mechanisms within the sheet. We will
implement a behavioral lambda which allows the user to capture the behavior of a set of cells.
Spreadsheets do not ordinarily support higher order procedures, but using Python gives us these for
free. Compiling higher order procedures to Verilog follows a substitution model and requires structural
recursion to be resolved before attempting to program a device. RhoZeta does not aim for elegant style
in the emitted C and Verilog, but rather behavioral correctness and predictable timing performance for
a given spreadsheet. Transformational macros presented in chapter 3 and 4 are useful for improving the
efficiency and fault tolerance of the emitted code, but ultimately, optimizing a piece of code 1s
complicated by the various architectural tradeoffs between power, area, and speed. Chapter four
explores the efficiency metric “Giga-Ops per Dollar” or GOps/$ as a metric of computational
efficiency as well as a motif for analyzing and optimizing architectures under various cost functions.
1.3.1 Typing: Dynamic When Possible, Static When Necessary

Dynamic types permit rapid prototyping and fast design space exploration, but lower level
languages often require strictly casted types. Spreadsheets have a somewhat dynamic type system with
some strange quirks. Since we are reading the spreadsheet into Python, we immediately inherit its
object system and dynamic typing. Dynamically typed spreadsheet cells allow RhoZeta to store lambda
objects in a cell so that we can apply cell Al to B1 and C1 as in Table 1-5. We may also create a
structure and declare its output behavior as a function of its input cells, as shown by cell A4 of Table 1-
5. By adding lambda to the language we have the ability to create sheets that contain state machine
macros defined within the sheet. To compile spreadsheets, translation macros convert a sheet to a type

sensitive language. By constraining some cell type declarations and propagating the effect through the

24

dataflow network, we can quickly explore the performance of various numeric types.

Table 1-5. Adding lambda to spreadsheets. A1(B1,C1) means apply SUM to the cells Bl and C1. Cell
A2 contains the factorial function defined as a recursive function. Cell A4 contains the function f(x,y)
=x*x +y so for example A4(4,4) = 20. Section 2.1.4 explains abstraction methods more in depth.

| =A1(BL,C1)
o =lambda((x),if(x=0,1,x*A2(x-1))) —A2(D1)
| —lambda((B4,C4),D5) 2 5 _B4*B4
=D4+C4

1.3.2 Optimizing VLIW Architectures

For some systems it may be necessary to map a spreadsheet to a constrained area, but it may be
the case that a one clock-cycle per iteration direct translation of a spreadsheet will not fit in an FPGA.
To solve this, an FPGA will be configured as a multicore-VLIW processor with a finite set of pipelined
functional blocks and memories. Even though iteration will take many clock cycles, pipelining results
in a clock speed that is often much faster than is possible using a direct translation. If the instruction
sequence to be performed by a core is static, then all unnecessary arithmetic and control hardware may
be removed and the core reduces to a simpler state machine. At a more fundamental level than
configuring an FPGA as a VLIW, the configuration file of an FPGA can be thought of as a single long
instruction specifying a sequence of look-up-table operations to be performed and stored every clock
cycle. Many FPGAs are limited by the rate and methods at which their very-long “instructions” can
change, though some allow for partial, dynamic, and self-reconfiguration.
1.3.3 Static Optimization

Never dedicate hardware to perform optimizations that could be done in software.

If a computer is designed to execute long instruction words specifying a set of operations to

dispatch each cycle, then we could get rid of scheduling optimizations in hardware. Out-of-order

25

superscalar dispatches, branch predicting program counter logic, reorder buffers and any other complex
instruction decoding are unnecessary for performing functions with a static execution schedule. Such
controllers could be replaced with simpler state machines that can be optimized for the branching
schedule of a given program. In cases where it makes sense, we can replace branching state machines
with speculative pipelines and a multiplexer. In cases where complex instruction dispatching is
necessary, the logic of even the most complex super-scalar scoreboard could be emulated. If we design
functions with deterministic system timing, then we can maximize computational area and minimize
scheduling overhead by leaving as much of the scheduling to the compiler as possible.
1.3.4 Contribution
The major contribution of this thesis is a simple model for parallel computing based on a
spreadsheet. This model is easy to comprehend and allows for rapid development of dynamic dataflow
applications. To extend the spreadsheet as a more complete development environment this thesis
contributes:
e An abstraction mechanism to capture the behavior of a set of cells
e Compilation of a spreadsheet to Python, Verilog, and C/OpenGL
e Conversion macros between non-blocking, blocking and asynchronous spreadsheets
s A spreadsheet optimization system which achieved a nearly 45% reduction in delay for a
serially-defined 64-bit leading zero-counter
e A model for automatic pipelining of arbitrary instruction set emulators
e Fault and defect tolerance macros
e An economic model for heterogeneous load-balancing and locality optimization
1.3.5 Roadmap
This chapter introduced some of the ideas in the remaining chapters and provides examples

motivating a spreadsheet compiler for FPGA and chip multiprocessors. Chapter two will explain the

26

details of the RhoZeta interpreter and compiler and how it works in conjunction with Calc and Excel.
Chapter three will explore various optimization macros including how a state machine model can be
constructed and optimized from an emulator with a static set of instructions as well as demonstrate
various methods for detecting and tolerating faults. Chapter four will explain the GOPs/$ metric for
computational efficiency and discuss issues related to locality optimization and heterogeneous

partitioning of spreadsheet computation.

27

Chapter 2

RhoZeta: Compiling Spreadsheets to Multicore and FPGA

Programs must be written for people to read, and only incidentally for machines to execute.
--Abclson and Sussman SICP

This chapter presents the RhoZeta spreadsheet interpreter and compiler. Section 2.1
provides an overview of the Python objects used to describe sheet interpreters, behavioral
lambdas and macro transformations. Section 2.2 will expand on the premise and show how to
read sheets into C and compile to multithreaded code. By binding cells to MIDI, Audio and
OpenGL graphics objects we construct a synthesizer called Cubes. Section 2.3 will demonstrate
how to produce a Verilog structure from the same sheet. Section 2.4 will discuss a model of
low-level compilation and management for statically typed tiled arrays and will demonstrate a

design of a crossbar programmable self-reconfigurable array in a spreadsheet.

Computation on spreadsheet structures has been widely studied. There have already been
a Fourier synthesizer [12] and a drum machine [13] built in a spreadsheet. Previous works have
discussed LISP-extended, object-oriented, and Python sheets [14], [15], [16]. My experience
with SIAG [17] (scheme-in-a-grid) was a motivating tool for this work and led to my developing
my own spreadsheet to allow me to make modular synthesizers. An early implementation of
RhoZeta was developed in Scheme by extending the circuit simulator in SICP 3.3.4 [18] to allow
for dynamically typed symbols to travel on wires. Metaprogramming with spreadsheets has been
done before too [19] and there has also been an example of using spreadsheets for FPGA

compilation [20]. RhoZeta extends the spreadsheet metaprogramming model with a behavioral

28

abstraction mechanism and compiles to multiple types modern parallel hardware. Representing
recursive behavioral lambdas in a spreadsheet is a non-trivial task [21]. The current
implementation of RhoZeta presented in sections 2.1-2.3 is good for rapidly designing dataflow
functions in a spreadsheet, though it does not yet have the low-level completeness of the
hardware OS model presented in section 2.4. The thread synchronization methodology presented
in 2.2.3 1s based on a master-slave multiprocessor architecture built for a sample-based

synthesizer [22].
2.1 RhoZeta Interpreter Overview

The RhoZeta system consists of a client spreadsheet application bridged to the RhoZeta
server which interprets sheets of cells. Since OpenOffice Calc provides an interface to Python
via the “Universal NetWork Objects” (UNO) interface, it is straightforward to create a networked
Python controller for a Calc spreadsheet. Bindings to RhoZeta from Excel are built using
win32com and an XMLRPC client to connect to the server. Similar bindings to RhoZeta have
been made from a Javascript/HTML frontend. Figure 2-1 shows a high-level block diagram of
the client and the partitioning of the server. The block diagram shows a set of hardware devices
controlled through a layer of macros and scripts built beneath the main Python interpreter. In
addition to the statically compiled sheets, the interpreter can also dynamically interpret
spreadsheets and perform transformation macros to allow rapid prototyping and design
exploration. It is generally not possible for the synchronizer to trace the state of cells in threads
running in a statically compiled mode since cells may map to inaccessible system registers

though OpenGL bindings will allow us to render data as graphics in a GPU.

29

30

c
=
24

@
c

- §

o

Figure 2-1 An overview of the RhoZeta spreadsheet system. The client application is responsible for
managing a spreadsheet user interface and maintaining a socket connection with the server. The server
interprets spreadsheets and compiles them with various hardware specific macros. When the client
requests, the server synchronizes cell information with a client UI.

2.1.1 Frontend Application and Ul Bridge

Any spreadsheet application may be a client for RhoZeta. The duty of the Ul Bridge in
the client is to notify the server of spreadsheet events invoked by the user and to synchronize the
spreadsheet user interface with the values computed on the server. The client requests updates
from the server and notifies the server of any modifications to cells made by the user. When the
server receives an update request for a region of the spreadsheet from a client, a Remote
Synchronizer object reports the current value of the requested cells. The client may transmit
event notifications and request remote synchronization of a range of cells on a timer callback or
when the user invokes an event. Usually, the frontend synchronizer informs the client of cells
that are visible in the users’ window. The User-Interface (UI) Bridge has been built on top of
UNO for Calc and COM for Excel. A Ul Bridge was also built using an HTML coded browser-
based Emacs editor' connected via AJAX to a Python command line interpreter. The OpenGL
demos in Section 2.2 shows how a Ul can be designed in a spreadsheet and rendered into a

window on a GPU.

2.1.2 Cell Managers: Threads for Interpreting Spreadsheets

The server stores a document model with sheets of Mealy state machine cell objects
containing a state register and a next-state and output function. The server will compute the state
and output values of the cells. All data entered by the user is parsed and evaluated as a formula
(not just stored as a text string), a leading = sign will be used to indicate a next state
computation. The parser translates ranges entered as “A3:B4” into lists of cell names. When a

cell manager is initialized it must be provided with a list of cells and a mode of interpreting the

! DistributedAjax.com. An Emacs Ul has splitting panes and an AJAX link to a command-line interpreter on the
server {(enabling remote Scheme scripting). The server interpreter can also pipe responses into the Javascript
interpreter in the client’s browser to display stuff or farm spare cycles at high traffic websites (hence distributed).

31

user-entered formulas. All cells with next state computations will be initialized to have null
value. An execution policy specifies how to compute and commit the next values for a table of
cells. Cell managers respond to a step signal by computing and storing cell values according to
their execution policy. Step signals are akin to an activity lists in Verilog and may be bound to
the cell value-change event of any set of cells. This forms a structure for creating event

callbacks, since cells may be bound to a keyboard, mouse, or even specific pins on an FPGA.

A schedule sheet for each RhoZeta document specifies how each cell is interpreted and
dictates the synchronization between cell managers. The FIFO scheduler shown in Table 2-1,
spawns cell managers and listens to the setValue() method for each step signal. When setValue()
changes the value of a step signal cell, a notification for the set of dependent cell managers is
inserted in the FIFO. If a step notice for a cell manager is already in the FIFO then no new
notice will be added. When multiple cell managers respond to the same step signal, the scheduler
dispatches threads for the compute and commit phases of the execution policy separately. This is
so synchronized cell managers can read from the same set of values before any values are
overwritten. This simple FIFO is efficient for sequentially interpreting asynchronously
scheduled events with equal priority and for synchronizing multiple cell managers.
Asynchronously evaluated cells are their own cell manager with a step signal attached to all
precedents and a step function assigning its own value. An asynchronous circuit with this FIFO
scheduler has the property that propagation delay is strictly determined by the number of cells in
the worst case signal path. To provide a more precise semantic for synchronized events we will

use execution policies.

32

Table 2-1: A scheduler sheet. The FIFOSchedule function takes in a cell manager specification
table and tells all cells attached to step signals to insert a step request into a queue when their
value changes.

Cell Manager ID Cell Range Execution Policy Step Signal

ClockGenerator Table3 Asynchronous

2.1.3 Execution Policies: How to Interpret a Group of Cells

An execution policy specifies the mode of interpretation for a cell manager to apply to a
set of cells. We have already examined the execution policy of Excel, which iterates in reading
order, as though committing assignments immediately after reading and processing operands.
Listing 2-1 provides Python code for the reading order assignment interpretation. Another useful
mode is non-blocking assignments in which all values are computed using values from the
previous state before any next state is committed. Non-blocking assignments provide simple
semantics for concurrent actions and they are mobile in the sense that their spatial arrangement
does not affect the sheet behavior. This will be important when we perform locality
optimizations to minimize communication overhead between cells. An implementation of a non-
blocking assignment interpreter is presented in Listing 2-2. In order to synchronize events when
multiple execution policies respond to the same events and have overlapping data dependency,
we have partitioned the step function into compute and commit phases so that we may dispatch
multiple threads simultaneously. We may also translate sheets between execution polices and

merge multiple sheets together. This will be explained further in section 2.1.5.

33

Listing 2-1: Reading Order Assignments Execution Policy. The cells are sorted in reading order
when the execution policy is initialized and the NextValue dictionary is used to resolve values
belonging to the cell manager while each cell is computed to emulate being assigned as they are
computed. We cannot actually assign values as we are computing them since we must commit in
a synchronous manner during a compute-commit cycle. We may step in the obvious way.

class ReadingOrderAssignments (ExecutionPolicy) :
def __init_ (self,cells):
self.Cells = ReadingOrderSort (cells);

def compute (self):
for cell in self.Cells:
cell.setNextValue(eval (cell.Formula, self.Cells.NextValueDict))
def commit (self):
self.Cells.setValues(self.Cells.NextValues)
def step(self):
for cell in self.Cells
cell.setValue(eval (cell.Formula))

Listing 2-2: Non-blocking Assignments. Non-blocking assignments compute next values from
current registered values only. The NextValues list is computed by a list comprehension which is
a syntactic convenience for map.

class NonBlockingAssignments (ExecutionPolicy) :
def _ _init__ (self,cells):
self.Cells = cells
def compute(self):
self.Cells.setNextValues([eval(cell.Formula) for cell in self.Cells])
def conmit (self):
for cell in self.Cells:
cell.setValue(cell.NextValues)
def step(self):
self.Cells.setValues([eval (cell.Formula) for cell in self.Cells])

Table 2-2: A non-blocking execution policy reads all values before assignments are made, so
Row 2 would be a shift register. A blocking assignment interpretation results in Row 2 not
working as a shift register.

A useful execution policy for running Python scripts is Reading Order Execution, which
is similar to reading order assignments, except that the evaluation: eval (cell.Formula)
is replaced by execution exec (cell.Formula). This allows us to execute Python macros
right in the spreadsheet. Table 2-3 shows how to define this execution policy within a

spreadsheet. Calling exec modifies state beyond just cells in our spreadsheet and violates of the

34

functional dataflow style, though it demonstrates the meta-programming methodology we will
use to connect to lower-level compiled objects and to develop optimization macros. Another
way to achieve the same effect as readjng- order execution is to write cells into a file and execute

the script. This is precisely what we will do to create and run Verilog and C.

Table 2-3: The reading order execution policy runs a spreadsheet as a thread of Python code.
This does not support the compute-commit synchronization interface and is not intended for
synchronized execution, though running multiple reading order execution threads on a
spreadsheet allows for a visual sandbox to test multithreaded algorithms.

e “amit (RElE cetdR]:

e : df sep(se]_f) : : i ¢ :

exec (L NElEcal] .011+c11 5 Formul tm)

The asynchronous event-based execution policy is the most traditional way to think of a
spreadsheet: a cell recalculates when its precedents change. This is implemented by creating an
individual cell manager for every cell with step signal bound to all direct precedents of that cell.
Asynchronous cells are their own managers. Their execution order is entirely dependent on the
scheduler. Without circular reference, an asynchronous execution policy is equivalent to a
combinatorial circuit. Of course there isn’t any reason there couldn’t be a circular reference for
example, cross coupled NAND gates can make an SR-latch, or two muxes make a register as in
Table 2-4. Figure 2-2 demonstrates the order in which the asynchronous cells are evaluated.
Better yet, non-convergent circular reference can be used to create ring oscillators to clock our
register. Like non-blocking assignments, asynchronous assignments are mobile and can be

moved anywhere in the spreadsheet without affecting the implied system behavior.

35

Table 2-4: Using the asynchronous execution policy we can produce a ring-oscillator and two
registers. Al is our clock. Row 2 is falling-edge triggered, row 3 is rising-edge triggered. Section
3.4 will show how an asynchronous ring oscillator and a counter can detect faulty circuits and
measure the communication lags between points in a hardware topology.

A B C D

1 | =AND(CE,NOT(C1)) =NOT (B1) CE

=MUX (NOT (Al) ,B2,C2) |1

Figure 2-2 Demonstrating the evaluation of the circularly referent asynchronous clock and register. Green cells are
0, Blue cells are 1, white cells have null value, red cells are currently being evaluated, red cells with a red border
take on a new value. To start the circuit, a clock enable signal, CE and register inputs, are set in step 1. Cells Al, B2
and B3 react in phase 2. Assuming Al evaluates first in phase 2 then B2 and C2 will not be notified by Al since
they are already in the queue for phase 2. In phase 2, Cell Al is assigned to 1 and B2 is assigned to 0 so all of their
dependents (B1, B2, C2 C3,) will evaluate in phase 3. Only B1 is assigned a new value in phase 3, so C1 is evaluated
in phase 4. In phase 5 the clock will fall and a similar chain reaction will ensue.

2.1.4 Behavioral Lambdas in a Spreadsheet

In chapter one, we introduced the notion of assigning a cell to a lambda object without
fully explaining the mechanism for resolving closures or managing internal state. Our lambda

operator is used to capture the behavior of a Mealy state machine expressed in a set of cells.

36

Lambda merges the behavior of a set of cells to a behavior than fits in a single cell. Thus
RhoZeta’s lambda is like a Verilog module abstraction with a single output expression per
module (though the output may be a list of multiple outputs). The lambda function requires a list
of names to rebind and an expression to evaluate in place of the lambda definition. For example,
the impulse generator in Table 2-5 has “Period” as its argument and “counter=0 as its lambda
expression; when the ImpulseGen macro is expanded in row 4, preserving reading order
semantics, Period is bound to “10” and the lambda cell’s formula is substituted with “counter=0”
with “counter” bound to the spawned copy in A4. Evaluation of ImpulseGen in C3 causes a step

of row 4 and returns the value of C4.

Table 2-5: An ImpulseGen lambda is created in cell C2. When the lambda is applied in C3, it creates
hidden state, represented as the italic, bold formulas in row 4. Evaluating ImpulseGen(10) steps row 4
and returns the value of C4.

(RESET, 0,
IF (Counter =
Period,

0,
Counter+1)

L 4 =IF(RESET,0, 10 =A4=0
IF(A4=B4, 0 A4+1))

Lambda application is thought of as cloning the cell manager at the lambda definition,
modifying the bound cells’ formulas to the passed arguments, stepping the execution policy
whenever the application is evaluated and returning the value in the cell containing the lambda
expression. This interpretation of lambda allows for structural recursion as in the delay by
example of Table 2-6. As delay by unfolds, new hidden states are created until the base case is
reached. Whenever a lambda deﬁnitioﬁ contains a parameter name that does not correspond to a

cell, then a cell will be spawned before everything else in the reading order. If the delay length

37

parameter, n, in C5 were to increase, then the lambda would continue to unfold and no state
would be lost; if C5 were to decrease, then an IF statement at a lesser delay would resolve to a
value and we would lose the state deeper in the pipeline. IF statements with lambdas as
conditional inputs remove the internal lambda states when they resolve to a non-lambda value.

Recursive lambda invocation must be bound within an IF statements or it will unroll infinitely.

Table 2-6: The “delay_by” lambda is created using a recursive call. Rows 6,7 and 8 are the hidden states
spawned by each call. Recursive macros like this must be unrolled entirely to compile to C or Verilog.

lay_by(n,in)

=lambda((n, In),

if (n=0, In,
delay by (n-1,

delayedbyl)))

3;"&%%@;’;@? e o rw"“ e | =ImpulseGen(TER e =
4 =IF(Table5IRESET,O0, 12 =A4=0
IF(A4=84, 0 A4+1))
6 =C5-1 =C6 =delay by(A6,B6)
8 =C7-1 =C8 =B7 = JF(B5-2=0, C8, ...)

If no state dependencies exist in the formula for the lambda expression, then a
combinatorial function is inferred. This is the case with stateless blocking assignments that have
no dependencies on a previous iteration (no-down-right dependencies). Free variables retain a
binding to the cells where the lambda is defined. For example, the RESET signal of the impulse
generator of Table 2-6 is still bound to the RESET cell of Table 2-5 where ImpulseGen was
defined. Free variables may be bound like any Python function call with optional arguments;
cell A4 of Table 2-7 assigns the MAX parameter of a counter to 31. This is a natural way to

create objects or functions with default parameters.

38

Table 2-7: An example of mixing execution policies and using lambda across mixed modes.
Row 2 is reading order blocking and row 4 is non-blocking. The counter is abstracted in a
lambda object, which takes an increment parameter and returns the CNT of a counter.

—IF(RESET, 0,
IF (INC, IF(CNT=MAX, 0, CNT)
CNT+1),

=COUNTER(A3,
MAX=31)
If a lambda is used in a different execution policy than its definition environment, as in

=A4 —B4 =C4

Table 2-7 (a shift register going to the right is the tell-tale sign of non-blocking mode), then we
need a natural way to resolve the issue of stepping the internal state when applying a lambda
defined in a different execution policy. One implementation of this requires construction of a
new cell manager and modification of its state during lambda evaluation. Even though it is
invoked within a non-blocking assignment, the counter from Table 2-7 is captured as reading
order blocking assignments so that the reference to CNT in the lambda expression, in cell E2,
refers to the value of CNT evaluated at that point during a step. When A4 is first evaluated, a
cell manager with a reading order execution policy is spawned with all of the lambda’s ancestors
in the same reading order as the lambda definition. The MAX signal is assigned an optional
parameter and the Reset signal remains bound to the place the function was defined. After the
initial construction, the cell manager is stepped each time the COUNTER() call is evaluated and

the count is returned.

39

Table 2-8: The expansion of the COUNTER call in Table 2.7. The third row is allocated to store
the state required for cell A4. The cells in the third row evaluate in reading order and return E3
whenever A4 is evaluated in its non-blocking execution policy.

L¥ ={ Reading Order
Blocking Step
(A3:E3) and return
the value of E3}

By constructing and modifying state when we apply a lambda, we nave implemented a
monadic lambda in Python. We have defined a class cailed Lambda witha call function
interface. When a lambda is defined, all of the ancestors of the lambda expression are collected
into a prototype cell manager and the execution policy is recorded. When the call method is
invoked, the calling cell is asked to step the cell manager for its internal state. A new cell
manager is copied from the prototype if the cell manager does not exist. This cell manager is

stepped and the output value is returned. Figure 2-3 shows a diagram of this process.

For an asynchronously defined lambda, stepping the spawned cell manager will evaluate
and return the lambda expression, though the cell manager will respond asynchronously to
changes in its inputs and thus will settle to a value without requiring this additional step signal.
Asynchronously defined lambdas still have propagation delays, if we use such lambdas in non-
blocking or blocking assignments, we will need to disable the step signal of the assignment until

the asynchronous cells are idle and thus the combinatorial circuit has stabilized. The idle()

40

function applied to a cell or set of cells returns true when the cells have no ancestors in the FIFO
schedule queue. When we invoke an asynchronous lambda, we can use idle to control a clock
enable signal of an asynchronous ring oscillator as in Table 2-4 thus allowing the asynchronous

cell function to settle before a non-blocking step occurs.

This implementation of lambda is useful and convenient; though it has the unfortunate
property that the state of the created cell manager is updated between and during cell evaluation
cycles. For compilation of such structures to static code, we shall require hidden cell manager
objects to be flattened-out and converted to the same execution policy as the invoking
environment so that there is no longer hidden state. To do this we will require transformations

among asynchronous, blocking and non-blocking modes.

41

Al
Input

B1
=F(A1,A2)

A2
=G(A2,B1)

B2
=H(A1,A2,B2)

A 4

B3
=lambda((A1),B2+1)

Bind input cell to the
passed argument

definition with B2 +1

PR

The spawned cell
manager is stepped
to evaluate the
lambda application

Figure 2-3: State machine diagram of lambda definition and application. Applying a lambda replicates
the cell manager of the lambda definition and rebinds the input cell. Evaluation of lambda requires the

internal cell manager to be stepped.

42

2.1.5 Translating and Combining Execution Policies

When we introduced the non-blocking execution policy, we showed it implemented by
storing a list of next values to assign to the cells. Another way to implement multiple non-
blocking and blocking cell managers sharing a step signal is by merging sheets together while
preserving synchronization semantics. Figure 2-4 shows a pair of blocking-assigned cells as a
state machine with a state register and a combinatorial next state formula. In blocking
assignments, whenever a cell reads from a cell before it in the reading order, it is reading values
from the output of the next state logic function. Whenever a cell reads from itself or later in the

reading order, it is reading the data stored in the state register from the previous iteration.

NextValue \

A cell reading its

| own values reads
from the output
of its state
register

Reading cells later
in the sheet, reads
from the output of
the state register

Reading from
earlier cells, takes
the output of their
next state logic .

Figure 2-4 Understanding blocking assignments. In a blocking interpretation, whenever a cell refers to
itself or cells after it in the reading order, it reads the cell value out of its state register. Whenever a cell
refers to cells earlier in the reading order, it will read its value from the output of its combinatorial next
state logic. In non-blocking assignment interpretation all cells read from the stored value output of the
state registers. Converting blocking to non-blocking will merge together formulas so that they are only
read from the output of state registers.

43

Conversion of the blocking assignment of Figure 2-4 to a non-blocking policy requires
that we replicate the Al formula and compose it with the A2 formula. This conversion is shown
in Figure 2-5. Merging the two combinatorial formulas into a new combinatorial formula is done
using argument substitution to produce a cell with an equivalent step response, though following

a non-blocking sheet interpretation.

NextValue

Figure 2-5 Conversion of the blocking assignments in Figure 2.3 to a non-blocking mode. A2 was
dependent on the NextValue signal, so the blocking formula for Al is replicated in A2s non
blocking formula so that all dependencies are on the output of state registers.

To perform the inverse conversion, converting non-blocking assignments into reading
order blocking assignments, we create cells to hold the current value and compute the next
values from these. Table 2-9 demonstrates this conversion. The first row of Table 2-9 is the non-
blocking interpreted shift register. The third through sixth row produces equivalent step
behavior when following a reading order blocking interpretation. Earlier in Table 2-2, we

showed the same shift register could be implemented in blocking mode using assignments from

44

right to left and thus using only four cells. We will have to apply optimizations to these
assignment chains to recover the efficiency of having fewer cells. These optimizations will be

explored further in chapter three and four.

Table 2-9: Conversion from non-blocking assignments to blocking assignments. Row 1 is a
non-blocking shift-register. Row 3 to 6 is the same shift register transformed to blocking
assignments. A “current” and a “next” cell are created for each cell of the original. The next cell
assignments on row 4 are computed before the current values are assigned on row 6. The next
formulas are the original equations from row 1, with all references changed to read the current
cell value. All current values are assigned in row 6 to the result of the next calculation.

—D lNext

Converting ﬁon-blocking and blocking execution policies to asynchronous requires state
registers to be implemented as sequential circuits with circular reference as in the registers of
Table 2-4. The step signal from the non-blocking or blocking policies can be used to clock the
asynchronous register. Ordinarily our step signals are not edge-sensitive since they may not even
be Boolean typed. A dual-edged register can be used to maintain behavioral equivalence.
Alternatively, posedge() and negedge() functions can divide a clock signal by two so that steps
occur only on rising edges, though posedge(clock) creates a different step signal than clock, so
we must use only one if we want to maintain synchronization of cell managers as built into the
scheduling FIFO. It is also possible to modify the scheduler to manage predicated step

sensitivity. We shall explore the use of such “guarded atomic actions” in the next chapters.

45

The conversion from asynchronous execution to blocking or non-blocking mode is
trivial: an asynchronous sheet may iterate in any order and step when any cell changes. This
conversion introduces different delay semantics than the scheduler so non-convergent circular
referent structures may translate awkwardly, such as the ring oscillator of Table 2-4. Purely
combinatorial circuits without circular reference are directed acyclic graphs and can be directly
converted to a sheet of blocking assignments with no previous-iteration dependencies by using a
topological sort instead of a reading-order sort. By topologically sorting and converting sheets to
blocking assignments, we may extract pure-functional, stateless, lambdas out of sheets defined as
pipelines. This allows us to avoid the use of the idle() predicate to enable a clock for

combinatorial asynchronous circuits.

In order to merge two sheets together that share a step signal, we must take care to
preserve synchronization semantics. Since the interpretation of non-blocking and asynchronous
policies is independent of cell locality, it is possible to simply merge two sheets in any order.
Synchronized blocking assignment cell managers have a dependency on reading order so
merging two blocking cell managers with shared dependencies requires care. Whenever blocking
assignments have a dependency in another blocking cell manager, these values must be read
from the previous iteration to preserve the synchronization semantics of independent blocking
assignments. Any such dependency may be resolved by preserving a copy of the previous state
values using the “current/next” transformations of Table 2-7. By creating a new cell to hold the
value from the previous iteration, we can merge separate blocking assignment cell managers into

one blocking assignment.

46

2.1.6 Conclusions on the RhoZeta Spreadsheet Interpreter

The RhoZeta spreadsheet interpreter is designed to be an easy to use simulator of
synthesizable Verilog with options for interpreting a set of cells. So far we have introduced
event-based asynchronous, non-blocking and blocking assignments and showed how execution
policies can be transformed to other execution policies. We have also introduced the lambda
operator which captures the behavior of a set of cells and showed how to resolve lambda
application by creating internal cell managers. Transformations between blocking, non-blocking
and asynchronous assignment modes allow us to convert the internal state-machine spawned by a
lambda and merge all sheets into one sheet for compilation. In the next two sections we will
explore execution policies which dispatch compilation scripts for C and Verilog and execute
multithreaded executable code on a duai-core and an audio callback in a Cell SPE. In section 2-4

we will explore a motif for building structures with static cells.

2.2 Cubes: a MIDI-Controlled Modular Synthesizer in a Spreadsheet

Before there was a spreadsheet compiler there was a synthesizer called cubes. Cubes was
originally a C program built in Linux using JACK for Audio, ALSA for MIDI, and OpenGL for
GPU graphics. The structure of cubes was gutted piece by piece until the only C code remaining
was a dynamic linker controlled from a Python script. The first execution policy compiled a
spreadsheet to C as blocking assignments and dynamically linked the callback functions for the
JACK and OpenGL threads. A generic pthread dispatcher for synchronized blocking
assignments was also built using the same technique. When the Playstation 3 came out with
Linux compatibility, a port was made to execute the blocking assignment callback in a Cell SPE

thread to perform the audio callback. The Cell processor does not use its SPE’s with the pthread

47

structure and an efficient global memory synchronization protocol is still not established.

Compiling RhoZeta cell managers for the Cell will be discussed in 2.2.4.

Cubes was a simple square-wave software-synthesizer. In addition to producing sound
from MIDI events, the MIDI controllers can be linked to the variables of an OpenGL scene
consisting of a 2-D array of cubes each with a modifiable height parameter. Every variable in the
program was eventually replaced with a global variable linked to a cube height value and all of
the code looked like as in Listing 2-3. The audio callback occurs 48000 times per second, but
the render callback occurs as rapidly as possible. Thus the cube height values at any time update
much more rapidly than they are rendered. The height of the cubes in the array controls the
parameters of the program: filter parameters, oscillator effects, echo and even the color, position,
rotation and lighting of the cubes. Using a MIDI controller or a keyboard, the user can select and
modify the height of a cube or link it to a MIDI controller. Note-on and note-off MIDI signals

procuce a procedurally generated square wave.

Listing 2-3: Square Wave Generator: (cubes.c). The original decomposition of the cubes
synthesizer resembled this structure. The audio callback executes this code and reads
cubes[3][0] for playback. All cubes are floating point typed.

void squarewave () {

if (cubes{1]1[0]) { cubes[1l]1[2] = 0 } //if reset i =0

if (cubes[1]{2] > cubes[1l]I[1]) //if i > period
cubes[1][2] = cubes[1]1[2] - cubes[1l](1l]; //i = i - period

else
cubes[1][2] = cubes{1]I[2] + 1; //else i = i + 1

if (cubes[1]1[2] »>= (cubes[l][1l] * cubes[11(31)) // if i >= period*pw
cubes[3]1[0] = 1; // sq = 1’

else
cubes[3][0] = -1; // else sq = -1

}

2.2.1 Sound Synthesis in a Spreadsheet
Every synthesizer starts with a MIDI thread and an audio callback. A MIDI event polling

thread processes MIDI events into a global arrays of controller values (CV[num][chan]) and note

48

velocities (NV[num][chan]). Note on and note off signals add or remove note numbers from the
global activenotes linked-list. Without dynamic recursion we cannot spawn an oscillator for
each active note, so the synthesizer must have fixed polyphony. An audio callback provides a
buffer of input samples and requires output to be written to a buffer of output samples. The
JACK server is invoked with the sample rate, the number of buffers and the number of samples
per buffer. Usually a buffer is 32, 64 or 256 samples, and 2 to 4 buffers provide data to a sound
card. At a sample rate of 48 kHz, a 256 sample latency introduced by 4 frames of 64 samples is
only 5.3 ms, and is unnoticeable. The JACK client must provide a callback function that is
passed a variable with the number of samples needed to fill the output buffer. The type of the

inputs and outputs are PCM samples of floating point or integer formats.

Table 2-10: A square wave, a saw wave, and a sin wave. This implementation of these oscillators will
generate alias noise. The execution policy of Audio_Out captures the finite state machine lambda((),Saw)
and compiles it to a synthesizer callback that gets dynamically linked to a running JACK client.

1o [so =IF(reset,0, 0.75
. IF(i >=period,i-period,i+1))

oo i
4| =IF(i>= period * pw, 1,-1) | =2"({/(period) -05) | =SN(2*P1 *i/ (period) -

The buffer callback model is too high-level from a sound synthesis perspective. We
would prefer to think of our synthesis callback like a cell manager that is stepped every sample
period and whose outputs are written to the audio buffer. We create a global state-modifying
function that is iterated to provide the number of samples required. An example of such a
stateful oscillator with square, saw and sin waves, is shown in Table 2-10. A graph of these

waveforms is provided in Figure 2-6. When the Audio_Out function call is executed the implied

49

instruction is to “compile in reading-order, as floating point cells and return sq to audio
callback.” An audio out execution call can be added to the FIFOSchedule and be set to update

whenever the audio sheet is changed.

1.5

0.5

0 T T T T T T T
14 7 13 26 19 22 25§28 31 34 3740 43 46 49 52 55 58 g1 64 67 70 73 76}79 82 85 88431 94 97

-1.5

Figure 2-6: The square, saw, and sin waves generated in Table 2-8 as rendered by Excel.

The code emitted by compiling audio_out of Table 2-8 creates the same function as
Listing 2-3, except that a global state pointer (void * cubes) is passed as an argument to the
function and the function returns a floating point output corresponding to the square wave
output. The pointer must be passed in because the dynamically linked object is compiled without
a global context so to resolve the variable cubes we must provide it with a pointer to the cubes
array. Cell names are used instead of “cubes[x][y]” references in the actual function. A

“#define” preprocessor macro assigns names to locations in the cubes array (this was easier than

50

parsing and translating all the variable names in the code). Cell formulas are converted to a semi-
colon delimited listing of cell assignments. A preprocessor in Python finds “IF” functions and
converts them to the proper C syntax (for example, = becomes ==). Before compiling and
dynamically linking the code it is wrapped with the necessary preprocessor directives, function

prelude and coda. Listing 2-4 shows what this code structure looks like.

Listing 2-4: An example of the emitted code from Audio_Out(sq). I have added spaces and tabs to make
it readable.

#define reset cubes[0][0]
#define i cubes[1][0]

float * audio_out (float * cubes) {
if (reset) { 1 = 0 }

else { 1f (i»period) { i = i - period; }
else { i =1+ 1; }}
if (i>=period*pw)) { sq = 1; }
else { sgq = -1; }

return sqg; }

A reading order C execution policy was created for the OpenGL rendering callback in addition to
the audio callback so that a list of rendering instructions and transformation matrices could be
built into a spreadsheet and dynamically linked to the GPU render callback. OpenGL also
provides global variables for mouse and keyboard events. Physics equations can be built in so
that a spring-like response to note velocity can be observed and used to envelope the filter and

the audio-out can be graphed as an oscilloscope as in Figure 2-7.

51

Figure 2-7 Cubes synthesizer with an oscilloscope. Each rendered cell’s height corresponds to a MIDI Note
Velocity. The oscilloscope is generated using a memory macro.

Currently, there is no RhoZeta execution policy capable of dynamic recursion” in C or
Verilog compiled code since this generally requires dynamic state management which is the duty
of an OS. Application of a lambda in the current C implementation issues a fault which must be
handled by Python. All lambda applications must be flattened using the transformations from the
previous sections and recompiled in C. A function compiler execution policy, though not yet

developed, could produce a C functions out of GCD in Table 2-11; such code in a spreadsheet is

*When we evaluate a lambda we must spawn a new set of cells if they don’t already exist. The current cubes cell
abstraction does not permit a cell to contain this hidden state. The current attempt traps to a dynamic allocation
function which allocates cells for lambda application from a global cell space. This flattens all stateful lambdas
upon application. We must also free this state when the recursive path is no longer followed.

52

equivalent to a C function under change of syntax. For any C execution policy, types may be
specified as in the square and GCD function definition with a preprocessor statically typing the
bindings. The audio_out and openGL execution policies implicitly bind variables automatically
for us. Without such type definitions, every variable is interpreted as a void pointer and type
casts are required in the cell equations in order to use floating point arithmetic. This structure has
a limitation that void pointers on a 32-bit architecture cannot cast adjacent cells to 64-bit floating

point types. A better type system could simply infer everything using type propagation.

Table 2-11: Type declarations are processed in the obvious way. Currently square flattens out correctly,
but GCD does not yet compile to C since we reject any recursive function invocations in static mode.
Type properties could also be inferred from the spreadsheet interface or the Python object system. To
propagate types through monadic lambdas, Haskell’s type system could be used.

a 10 |8 |=if(B4=0,A4, gcd(B4, A4%B4)) |
.;‘ %ﬁ} B ; “.:

2.2.2 Changing the Circuit with the Power On

It is possible to put the execution policy responsible for compiling and linking OpenGL
and audio callback functions in the FIFOscheduler and having it re-execute whenever the tables
are modified, for example when an IIR filter is added to the audio signal path, or when links to
MIDI controllers are added. Since the compilation and dynamic linking of short code executes
fast, it has the effect of modifying the synthesizer circuit in the spreadsheet while the power is
on. However, since we must flatten all stateful recursion into one sheet when we compile, this
model for dynamic update does not scale well as our audio pipelines get more complex. An

implementation of the FIFO event scheduler and lambda application are required to have a truly

53

self-contained dynamic C or Verilog environment. The question is where to draw the boundaries
between dynamic and static execution. Ultimately if high performance pipelined functions
executing on multiprocessors is the goal, static threads with bounded space and synchronized
timing are necessary. These statically compiled cell managers should be thought of as static
dataflow cores or kernels, and an OS must manage the global and local context each core is
processing. The thread dispatcher described in the next section was a first attempt to use

pthread_join to synchronize multiple sheets.

2.2.3 Multithreaded Execution in C

In addition to audio and OpenGL callbacks, a multi-threaded execution policy in C was
created to synchronize multiple blocking assignments. The current multithreaded framework
uses a dynamically linked thread dispatcher with a global memory space. Local state for each
cell manager thread is allocated and freed when the dispatcher is linked or closed. A compute
thread for each cell manager is spawned using pthread create to compute the next state function
in local space for each cell manager. When all threads are terminated (checked with
pthread join), the dispatch issues another thread to commit the local state to the global current
values. This is an exact translation to C of how Python creates threads for the compute and
commit phases of the synchronized assignments. The cell manager knows it’s offset in global
memory and commits its local data there. The current system does not respond to events and the
compute-commit dispatcher loops forever until Python re-links it. Additional cell managers can
be added by re-linking the dispatch function. Simple tests have been done to make sure that
synchronized blocking assignment semantics are preserved by multithreading and that there are

no memory leaks.

54

By requiring structural recursions to be unrolled, we have a fixed number of cells to
execute. One may think the emitted C code has the property that it executes in static space.
However, since our compilation macro is a syntactic effect, it is possible to have a cell contain a
malloc call to allocate memory and write to it using memcpy as in Table 2-12. A lambda macro
captures this state-machine for reuse. This was used to create an echo effect and the oscilloscope
shown in the screenshot in Figure 2-7. Before the audio callback and OpenGL callbacks are
updated to reference the allocated space, a delay buffer must be allocated and a pointer stored in
a specific cell by executing a C thread as shown in Listing 2-5. The audio callback fills the delay
buffer with a sample and the OpenGL buffer renders a point for the last 300 samples in the delay
buffer. This approach could be used to generate state structures for dynamic stateful lambda
recursion, though this is a work-around rather than a solution to the “memory/cell allocation”

problem.

Table 2-12: A memory state machine. Running this thread allocates a buffer for 96000 floating point samples and
stores it in cell A2. Cell Al is a state register and frees memory on reset. The implementation of free returns 0 after
executing the traditional free and ignores null pointers. Care must be taken to avoid segmentation faults and memory
must be freed to avoid memory leaks. Read before write semantics apply and the written data may be modified after
read, though addresses must change because of reading order interpretation.

B |[C
—IF(State Ofree(AZ),IF(State—l (ﬂoat *) 0
, malloc C1*31zeof float A2

=IF(State-

(For reuse)

“—lambda((C1,B1,B2,B3), A3)

4 —IF(State—Z memcpy(B3 ADB2. 1), 0)

55

Listing 2-5: The cell manager for this buffer turned into the C code. Formatting and comments were
added.

#define RESETcubes[0][0] //global closure

#define Row 10

#define Col 10 //where the application flattened to in the global sheet
#define Rows 4

#define Cols 3

#define Statelocal[0][0] //local state for everything that is written
#define Bl cubes([0] [1] //input of lambda application read from global space

void * MemoryCompute (void * cubes, void * local) { //function prelude

if (RESET) { State = 0; } else { if (State==0) { State = 1; } else { State = 2; }}

if (State==0) { A2 = free(A2); }

else { if (State ==1) { A2 = (float *)malloc(Cl * sizeof(float)); } else { A2 = A2; }

pthread_exit (NULL) //thread coda }

void * MemoryCommit (void * cubes, wvoid * local) {
int: iy
for (1 = 0; i < Rows; i++) {
for (7 = 0; j < Cols; j++) (
cubes [Row+i] [Col+j] = local[il[jl;}}}

Figure 2-8: The synchronization model used for multiple blocking assignments requires values to be
committed to shared global memory after each commit step. The cell manager threads should be thought
of as stateless combinatorial functions acting on global memory.

This synchronization protocol requires a thread to commit local state to global memory
each commit phase. This is the fundamental semantic of the language, and allows the compute

phase to be “stateless” as if the local state just represented values on a wire and commit

56

represented the synchronized latching of a set of registers in a global address space as depicted in
Figure 2-8. The effect of committing local state to global memory may not be costly if a memory
subsystem is designed to distribute global memory shared by multiple cores efficiently. It may be
necessary to synchronize data with off-chip memory when multiple processors must
communicate over shared global memory. An efficient system is required to handle memory
synchronization between threads in the Cell processor in which direct communication between

cores is optimal.
2.2.4 Compilation of Spreadsheet Cells for Cell SPE

A script to produce SPE cores from the oscillator cells in Table 2-8 was produced while
learning the SPE thread API’. The SPE uses mic_get to get the nextvalue array, iterates the
audio generation function and produce several samples of audio output. The audio output and the
current cell state is transferred back to the JACK callback in the PPE using mfc_put before the
SPE thread terminates. A similar framework for launching and synchronizing threads from a

spreadsheet on the Cell is still under development.

Committing all internal state of a SPE core to global memory in the PPE each step is
wasteful in chip multiprocessor arrays. If a cell manager only synchronized values for cells with
external dependencies, then we would be more efficient with global memory bandwidth. On the
cell processor, it is possible to use the element interconnect bus (EIB) to transfer data directly
between SPEs. When we write code like Table 2-13, an OS should locate the square wave
generator and the IIR filter in separate SPEs directly streaming data from core to core over the

EIB as shown in Figure 2-9. The EIB is a ring, so for most acceleration applications on the Cell

* The SPE code was derived from the demos of the IAP Playstation 3 programming course.

57

it is more efficient for each core to stream packets of data directly to other cores over the EIB as

soon as the data is ready and independent of global data synchronization.

Table 2-13 Specifying a Synthesizer with a sawtooth wave oscillator and an IIR Filter.

er(Al,Cutoft=MIDICV[1][1])

Rambus:Fl

Figure 2-9 Stepping a square wave oscillator 64 times in a SPE takes under 200ns at 3.2 GHz. If
properly vectorized, four oscillators can be stepped at once in one SPE. We extrapolate that it is possible
to generate polyphony of over 26000 square oscillators per SPE at 48 kHz sample rate. (Cell Graphic
Source: Wikipedia)

For most multiprocessor architectures it is good to think in terms of streaming kernels
executing some component of a larger non-blocking assignment pipeline with coarse-grained
synchronization. If a pipeline is a directed acyclic graph with latency slack as in the synthesizer

58

in Table 2-11, then the pipeline may be buffered without affecting the pipeline output. This
allows globally asynchronous pipelines to share data in larger bursts that occur less frequently.
Buffering ports is possible even when a pipeline block has internal feedback requiring finer-
grained synchronization, such as the [IR filter in our synthesizer. By incorporating acceptable
latency we minimize the complexity of scheduling communication between cores on a shared
bus. Buffered pipelines also allow cores to dynamically decrease their voltage and frequency if

there is pipeline slack due to load imbalance.

Synchronization rate tends to be the inverse of functional granularity. Larger function
blocks must be synchronized at a lower rate. Instead of thinking of 6 SPEs performing 128-bit
vector operations at 3.2 GHz, it is often better to think of the Cell processor spatially as an array
of 6400 simple vector pipelines each operating at 1 MHz for /O bound multithreading, or 600
megapixel instructions® iterating at 30 Hz for graphics applications. With buffered pipeline
communication between cores, it may be possible to achieve very close to this kind of
performance. Metaprogramming shells are good for hiding the programming overhead required

to develop synchronization protocols.

The current C compilation strategy in the RhoZeta interpreter works well for developing
generic blocking assignment threads on a global memory space. A metaprogramming script for
producing multithreaded kemnels out of synchronized blocking assignment is very easy to work
with, though much more work is required to develop a general system for managing and
optimizing dynamic stateful lambda application and synchronization. In the next section a

Verilog compilation of RhoZeta will be demonstrated in which all unexpanded lambda

* Instructions that operated on 1 million 128 bit pixel vectors

59

applications compile to clock disabling traps. Section 2.4 will discuss a reductionist model for an

OS based on dynamically reconfigurable cells as a means of lambda expansion.
2.3 Compilation to Verilog

Compilation of a spreadsheet to Verilog for an FPGA is much easier than compilation to
C. The Python execution policies described in section 2-1 are a framework for a dynamically
typed interpreter for Verilog and transformation of blocking, non-blocking and asynchronous cell
managers are directly translatable to “always @ ([step signals])” blocks. Additional parser
macros allow Verilog-like bit-string reference “A[1:0]” to override the Python meaning. Types
can be specified as in C, though a Verilog type is specified by using a bit width for the type with
additional directives for “signed” or “unsigned.” Many functions have been added to the Verilog
framework and many modules have been tested on Virtex-2, Virtex-5 and Spartan boards”. In
order to specify cells as parameters, inputs, inouts and outputs, a few additional functions were
added. If unspecified, all cells with no dependencies become inputs, all cells with no dependents

become outputs.

Depending the on the types you wish to use, implementations of operators may need to be
added to the language. Currently supported types for converting from Python to Verilog include
bit strings, integer numbers and lists of bit strings and numbers. Floating pomnt types are not
native to most Verilog implementations and are not fully yet supported in RhoZeta either, though
a PDP-11 floating point adder has been built. Ordinary Verilog cannot handle structural
recursion, but we have added a global trap whenever a dynamic invocation is required. The

leading zero counter (LZC) shown in Table 2-14 is used to normalize floating point numbers and

% The 6.111 Lab assignments are good benchmarks. [have also incorporated MIDI and AC97 audio modules. These boards have
all been coupled to my CPU via USB and [have not been able to test high performance hybrid multiprocessing yet. Ultimately
the target application for a spreadsheet to FPGA, GPU and Multicore is for modeling and simulation applications.

60

was a testing benchmark for recursive macros. This implementation of LZC is not expressed in
the optimal parallel way. The way it is expressed requires N steps to execute, where N is the

number of bits of the LZC input bit string.

Table 2-14 A serialized expression of the leading-zero-counter. This code is intentionally bad for Verilog
and compiles to a long series of if statements. Rest is dependent on Verilog bit-string interpretation of the
Ala:b] syntax. We will later attempt to automate optimizations which reduce this O(N) serial operation to
the correct O(lg N) parallel algorithm for LZC.

=lambda((A1),IF(Len(A1)=1,1,
IF((msb(A1))=1,Len(A1)-1,LZC(rest(Al

(10 | 0100101010010101 o —LZC(A10,

A hardware trap was added to Verilog so that any cell manager may be compiled to static
Verilog even if it contains dynamic lambda invocations. Since dynamic lambda invocations are
always encapsulated by conditional expression, a Verilog translation raises an interrupt flag and
disables the clock whenever a dynamic recursion is required. Listing 2-6 demonstrates how this
works for LZC from Table 2-14. When we tell RhoZeta to construct Verilog from the LZC
function call in B6, our Verilog compiler will collect only the cell managers that exist in Python.
Since the LZC happened to expand internally in Python to a certain number of levels, only these
objects are flattened in the Verilog. If we flatten this code entirely for a 64 bit LZC, the Xilinx

tools compile this to a propagation delay of 7 ns on a Virtex 5 with full optimization. We will

61

demonstrate spreadsheet macros in the next chapters that transform this sheet to better Verilog

achieving 3.9 ns propagation delay on the same chip.

Listing 2-6: Leading Zero Counter emitted from Table 2-13

module sheetl (clk, A5, B6, lambda_req);
parameter B11_TRAP_ID = 1;
input [19:0] A5;

output [4:0] B6;

output [16:0] lambda_req;
reg [19:0] A6;

reg [18:0] A7;

reg [17:0] AS8;

reg [16:0] AY9;

reg [15:0] A10;

reg [14:0] All;

always @ (posedge clk) begin
if (A6[19] == 1)
B6 = 18;
else begin
A7 = A6[18:0]
if (A7([18] == 1)
B6 = 17;

else begin
All = Al10[14:0]

if (Al11([(14] == 1)

B6 = 13

else begin

Lambda_Regl[l6] = 1; //make lambda request
Lambda_Req[15:0] = B11_TRAP_ID //trap id!

So far this lambda req trap has not been used for much more than simple testing purpose.
This is a way of making a request for reconfiguration; currently there is nothing to answer that
request. In the C compiled code, the trap to Python could cause the interpreter to unroll more C
code for execution. Since Verilog synthesis, mapping, place, route and device programming
takes a long time for large designs, it is not practical for a device to request this sort of
reconfiguration. A lower level model of reconfigurability must be built into the language to

manage stateful recursion when it is necessary.

62

2.4 Dynamic Low Level Compilation and Reflection

The goal of this section is to construct a model for describing low-level compilation to
reconfigurable tiled arrays. A Jow level macro editor for configuration layers should support
dynamic dispatch to hardware; rather than reverse-engineer existing FPGA architectures’ bit-
streams, I have built my own FPGA models within a spreadsheet®. Conﬁgurationé are stored in
memory and we are able to modify them dynamically like any other data. Once we have a low-
level model for a tile we will implement a crossbar model to reconfigure the control bits. We
can attach the crossbar reconfiguration controller to the actual programmable environment thus
achieving reflection. We will also attach a reconfigurable array to a RISC processor so we can
use a software model for FPGA control. When a user alters a spreadsheet cell representing the
configuration data at a specific chip location, the RISC reconfiguration controller controls the
crossbar array to implement the change in hardware. 1 have yet to suécessfully compile a

spreadsheet to run in an FPGA expressed inside a spreadsheet.
2.4.1 Primitive Languages for Reconfigurable Arrays

So far we have used inherited similarities between Python, Verilog and C to create syntax
transformation macros. What is necessary is to close the gap to reconfigurable computing on
spatially assorted tiles is a primitive language and a means for reflecting dynamic cell allocation
into the hardware. In the dynamically typed spreadsheet we used a stateful lambda evaluation
function to take care of issuing step calls to internal state. In a low level compiler, we need some
way to allocate cells and modify formulas of a statically typed array. What we want is to have

the ability for a few special cells inside of the spreadsheet to control the formulas in other cells.

® One result of a spreadsheet programming environment is that designing an FPGA takes 10 minutes.

63

Once we have access to an internal configuration ports then we have a self-reconfigurable
architecture capable of handling lambda application via structural recursion. The Xilinx FPGAs
used to prototype RhoZeta have internal configuration ports though the Xilinx documentation

informs you of their existence with a warning [23].

Before attempting automation, developers must have hands-on understanding of what
they are automating. To build a model for a low level compiler for tiled arrays, we will consider
how to characterize the types of primitive tiles that make up a logic array. There are a number of

| different types of universal cells and many devices support multiple different kinds of primitive
operations and routing modes for connectivity. For an FPGA, the most primitive language is to
think of tile configuration bits as specifying look-up-tables or connection bits operaticns for a
router. Rather than worrying about the routing constraints or primitive configurations we assume
that an architectures’ primitive operation have constrained addressing modes that limit us to a
certain range of cells for operations and that an auto-router is required to determine whether or
not a low level spreadsheet meets routing constraints. Additionally, cell assignments may be
clocked or asynchronous and this also needs to be incorporated into the addressing mode of a

primitive language.

It is possible to have a purely functional array without any rouﬁng. For example, each
logic block may be defined as four 4-LUTs taking a single bit of input from each of its four
neighbors and producing a single bit of output for each of its neighbors. This structure is shown
in Table 2-15. The LUT4 function takes as arguments a 16-bit string and 4 inputs and converts
returns the bit indexed by the bit inputs. By making the LUT configurations reconfigurable as
we have made loadable registers, we can produce a reconfigurable array. If we constrain our
implementation to associative operators we can reduce the lookup table to 3 bits each.

64

Table 2-15: A look-up-table based programmable logic array with a static address mode, each cell output
is strictly a function of its neighboring cells. By replicating this structure and defining the LUTs we
produce a universal Turing machine. Cell C3 demonstrates how to make the lookup table reconfigurable.
It is usetful to create a separate sheet storing recon_addr and recon_data.

=LUT4(B3,
A3,B1,D2,C4)

Alternatively it is possible to construct reconfigurable arrays in which the cell function is
fixed and programmability created by modifying routing. Table 2-16 demonstrates a “MUX”
array tile in which tfhé only function is a MUX and the routing may specify a set of offsets for
reading the inputs. These primitive array structures are easy to experiment with and may have

potential for interesting nanometer scale assembly techniques, as well as optical systems.

Table 2-16: An OFFSET-MUX tile. By specifying the offset for the mux operation we create a
multiplexer with programmable inputs. This structure can be implemented using adiabatic logic with
power clocks and transmission gates.

4 |0 0 =OFFSET(D3,4*A4,4*B4)

2.4.2 Re-Configuration Macros and Reflection

In addition to primitive tiles structures there are a number of modes for reconfiguration.

For example, Xilinx Virtex chips have their configuration shifted in serially as a column. A

65

common feature of spreadsheet solutions is that the solution is usually reduced to a single
replicated formula. Thus an interesting reconfiguration method I have experimented with uses a
shift register to drive a crossbar row and column select signals for a reconfiguration buffer. This
allows us to select a group of cells, and then select all cells shifted by some offset. First we
create a crossbar structure as in Table 2-17. In a table we will create another symmetric array
which checks if its column and a row are selected and if the reconfiguration signal is true. If so,
the cell loads a new configuration from a specified value. Algorithms will often require multiple
common structures replicated regularly; by using this reconfiguration control structure to select

rows and columns we can spawn multiple copies of the same structures simultaneously.

Table 2-17 A 3x3 cross-bar is used to select a row and column for configuration. Row 1 and column A
are shift registers so we can create multiple copies of the same thing simultaneously. Interpret this table
with non-blocking semantics.

S
=IF(ShC,Cin, A2) =AND(B1,A2) =AND(C1,A2) =AND (D1, AZ2)
PR T rray o i i I 5 "‘ g
. SR e bt
=IF(ShC,A3,A4) =AND(B1,24) =AND(C1,a4) =AND (D1, A4d)

Once we have a means to control the configuration bits of a tiled array, we can make the
signals responsible for controlling these bits attached internally to signals in the tiled array. This
reflection allows us to define a state-machine in the language of the underlying array that is
capable of reconfiguring itself. Hooking up our FPGA to a RISC processor like the one from
section 1.2.3 allows for even more interesting hybrid architecture exploration in which a
processor uses a reconfigurable array as a co-processor. A diagram is of this architecture is

66

shown in Figure 2-10. We can control the configuration and data ports of the reconfigurable
array as if they were registers of the RISC CPU and can consider a model for incorporating
dynamic reconfigurable pipelines into RISC architecture. A low level FPGA Control API in the
RISC processor allows macro control of the FPGA device and a shared memory communication

scheme is used to share data between the two.

Figure 2-10 A hybrid reconfigurable architecture prototyped in a spreadsheet. The RISC CPU controls
the cross-bar programmable array using row select and column select registers.

2.4.3 Conclusions and Looking Forward

Structural lambdas in a spreadsheet make it substantially easier to prototype a tiled array
and design its API. Once we have a model for specifying and reconfiguring the primitive cells,
we will want to develop a set of macros that allow us to allocate and manage cells for lambda
expansion. While a dynamic low-level compiler for reconfigurable computing on FPGAs is non-
trivial it is at least feasible. Again for FPGAs as with multiprocessors (where a good dynamic
allocator is also an open problem) static optimization is critical to performance. A properly

67

compiled system will not require any sort of dynamic elaboration or will produce a trap to some
higher level interpreter to handle reconfiguration. A generic static optimizer and profiler for
parallel computations in a spreadsheet is still an interesting problem, and can be examined in an

architecturally independent manner.

Architecture optimizations are possible even within the functionality of the Verilog and C
compiler we already have. The next chapters will construct architectural optimization macros for
spreadsheet defined architectures independent of the low level physical API implementation.
Within our dynamically typed language we will construct a rule based interpreter which allows
sheet polymorphism as a guarded atomic action. By establishing optimization macros as an
atomic action on a sheet we will establish a means of automating architectural exploration.
Behaviorally invariant transformation rules will allow us to optimize the stracture of ISA

emulators and apply resource sharing and fault tolerance macros.

68

Chapter 3

Catalyst: Optimization of Spreadsheet Architectures

“Simple things should be simple, complex things should be possible” — Alan Kay

This chapter addresses the problem of optimizing a behavior defined in a spreadsheet for
power, speed, area and fault-tolerance. We shall express graph isomorphism and dynamic
reconfiguration as guarded atomic actions on spreadsheet cells. Section 3.1 describes the Catalyst
rule-system which dynamically optimizes functions in a spreadsheet and demonstrates how
combinatorial reductions, redundant resource sharing and speculation macros can be used to
automatically optimize a serially-defined leading-zero-counter. Section 3.2 will explain how an
analysis of static code can often optimize out most of the architecture from an instruction set
emulator and provide a model for automatic pipelining of arbitrary instruction set architectures.
Section 3.3 shows how pipeline resource sharing in this context allows multiple non-blocking
pipelines to share physical resources. Section 3.4 will demonstrate simple macros to automate

and test for fault tolerance.

The Catalyst rule-system presented in Section 3.1 is designed to optimize a spreadsheet
architecture using behaviorally invariant graph-rewriting macros on a spreadsheet. Graph-
rewriting on a spreadsheet is a very useful general purpose problem solving tool and gives a Ul
to guarded atomic-action rule systems. The general topic of dynamic dataflow optimization has
been widely studied and incorporated into a number of development environments. My
implementation of a dynamic transformation system executes graph-rewrite rules as atomic-

actions on spreadsheet architectures. The guarded atomic action model used to preserve

69

dynamism is derived from Bluespec [24]. A previous implementation of Bluespec in Scheme
was used to perform pipeline resource sharing [25]. This previous work in Scheme served as the
basis for Catalyst, which uses guarded atomic actions to modify dataflow architectures expressed
in a spreadsheet. Section 3.2 describes how to unroll a pipeline of arbitrary instruction set
emulators and is inspired by the CHiMPs compiler from Xilinx [11]. By using rule-based
optimization threads to act on spreadsheet typed objects in a behaviorally-invariant way, we can
express dynamic architecture transformation strategies that guarantee the functionality of our
system. By applying redundant resource sharing and Boolean reduction rules we will transform

a worst-case linear sequentially specified leading-zero-counter to a logarithmic parallel version.

3.1 Behavioral Invariance

We use the term behavior to mean the combinatorial function determining a cell’s next
state and outputs. The topological space of behaviors is enumerable: a look-up-table can specify
arbitrary n-to-m combinatorial logic functions. However, instead of operating on huge somewhat
meaningless numbers for large behaviors, we define all behaviors in terms of a graph of simpler
behaviors. In this section we will define a rule system to perform topological transformations
that preserve behavior. Our behaviorally invariant macros will execute atomically while the
RhoZeta interpreter is running allowing for dynamic optimization. Reduction rules will be used

to optimize a serially specified 64-bit leading zero counter.

3.1.1 Catalyst: Guarded Atomic-Actions for Graph Rewriting

In Chapter 2 when we presented the event-based FIFO thread dispatcher, we discussed

predicated step signals. Without predicated events, we could not conditionally dispatch step

70

functions under certain conditions of the step signall. A different asynchronous event scheduling
abstraction 1s guarded atomic-actions. Instead of using guarded atomic-actions to modify cell
values we will perform predicated optimization on a sheet’s formula. The result is a rule-based
framework for dynamically executing atomic actions on spreadsheet. While guarded atomic
actions operating on cell values could be used as a framework to implement compute-commit
ExecutionPolicies for RhoZeta, the metaprogramming approach for dynamic compilation is
easier to implement for immediate integration. Instead we use guarded atomic actions to act on

cell formulas and construct some simple optimizations.

The Catalyst algorithm is my implementation of atomic graph rewriting. It incorporates a
pattern matching framework and a means for concurrent graph transformations as atomic actions.
Multiple graph-walking threads can be used to identify or act upon property patterns in the
spreadsheet process graph (properties are represented in the cell color, border, font size, or any
other arbitrarily defined associations). A variety of search algorithms can be used to dictate the
graph traversal order: a depth-first traversing thread can be written in 10 lines of Python. A
thread may spawn new and different threads or it may allocate new cells to add formulas to the
graph. Every catalyst thread may act atomically on the spreadsheet and multiple catalysts may
simultaneous operate in the same cells if they do not modify the same properties. Atomicity is
managed with locking and a thread-priority conflict resolution system. By allocating empty cells

with specific formulas, we can form connections between distant cells of a graph.

The optimization rules I have developed are generic fine-grained Boolean optimizations
though they have been specifically designed to optimize a serial chain of multiplexors into a

more efficient combinatorial network to produce an optimal Leading Zero Counter. The premise

! This is not really an issue with lambda since we can predicate the expansion of a functional lambda.

71

for this optimization is based on analogy of guarded atomic actions as a pool of chemicals and
enzymes (global memory and guarded rules) that may modify other chemicals. Optimizations
may be performed by the teamwork of multiple types of simpler Catalyst threads. For example,
an indicator for a graph optimization walks a cell precedent graph and attaches a color property
to cells that match a predicate condition, for example, we can mark all IF statements green and
all constant 1’s and 0’s blue and red. When a transformation thread finds cells with the correct
promoter color pattern it performs an atomic action to copy and optimizes a sheet. Another
thread can evaluate the output of a cost function and determine over time when a transformation
is worse than the original. This system is biologically inspired with the intent of evolving rules;

though I have only incorporated rudimentary cost-function indicators for feedback.

The learning curve is extremely low for developing spreadshect graph traversing
functions with win32com, VBA or UNO using cell properties to mark graph properties. A good
way to develop these optimization threads is by using the macro recording feature in a
spreadsheet as you perform the optimization and then modify the code to generically walk the
dependency graph. By associating cell styles with cell predicate matches, it is possible to create
macros and watch them run. Figure 3-1 shows a number of graph reduction optimizations that
propagate static values and merge associative and commutative operations. These optimizations
are almost always beneficial reductions. It is usually necessary to predicate atomic actions on

whether or not they lower a cost function.

72

Figure 3-1: A few simple reduction rules for multiplexors and Boolean logic. These are programmed as
threads that search for patterns in the precedent graph and atomically modify the graph.

We can use macros to generate cost functions out of a process graph. These allow us to
track some metrics as our sheet calculates and provide feedback to a cost-function minimization -
thread. For example a useful macro for analyzing the average switching rate of signals is shown
in Table 3-1. The switching score macro creates new cells to store the value of a cell from the
previous iteration and tracks each transition. Temperature simulations can be performed by

putting this activity data into a resistive lattice temperature model as shown in Figure 3-2

73

Table 3-1: A macro spawns cells to track the switching activity of every cell in two adder benchmarks.
The top benchmark sums serial connected counters so the activity of each successive bit is half of the
previous bit. This power macro is useful for creating objective functions to direct an optimization.

S

f

éNe;fécimégur{ters - |

. s .
249437.').124719 0.062134 0.0319_67k 0.015308‘ 0.007654|

1801] 0.0009] 0.00045 of 0{ B
iCar_m___ .__2_0_.']._711%.110311 0.05493 0.027Q_1_5_ 0013507’9006}03
§Sum .125169 0.052584.0.031067' 0.015308' 0.007654
"Random Inputs e | 0.162652

‘Word1

Average | 0.494442

74

Figure 3-2: Relative temperature simulations of two adder benchmarks (with made up thermal equation
constants). This simulation is performed directly in the spreadsheet using a function of the computed
activity values. The edges are fixed at a constant temperature 0. Thermal capacitance and resistance
between nodes is the same for each tile. This simulation is based only on the activity in a cell and does not
take into account specific wire connections. The LSB for the counter (top) is easily identifiable as a “hot
spot.”

75

The goal for the LZC optimization macros was to see if using a set of combinatorial
circuit transformation rules for Boolean logic we could transform a linear combinatorial circuit
into a logarithmic one. As a starting point the circuit consisted of 64 serial MUXes for each of 6
output bits. A “combinatorial path” indicator measures the worst-case combinatorial graph
distance from an input to a node of a circuit® and a “total area” indicator measures the total
number of cells used for a circuit. The speculation and resource sharing macros presented in the
next two sections were useful to explore the automatic parallelization of a serially-defined
Verilog architecture and achieved positive results for the serially defined leading-zero-counter
ciréuit. The method runs in many massively parallel threads each atomically modifying color or
formula properties in the spreadsheet graph. The threads can visualize locking, allocating, and

atomically modifying cells by coloring them and changing fonts®.
3.1.2 Speculation as a Parallelization Primitive

Speculation in the context of an instruction set executer is the process of conditionally
executing code simultaneously in parallel before the conditional predicate expression is resolved.
The performance boost comes from the fact that we can start to compute both possibilities while
we are determining the predicate. Speculation presents a direct method for improving
performance with parallelism. For example, consider the expression IF(P,A,B). Suppose that A
and B require 5 ns to compute while P requires 4 ns. In a sequentially executing processor,
resolving this conditional expression requires 9 ns. If we have a 3 parallel processors, we may

simultaneously schedule P, A and B to execute simultaneously. When P resolves we may halt

*The worst-case combinatorial graph distance is not the worst-case delay since false-paths may exist. Detecting
false paths is hard.

* Making a spreadsheet visualize multithreaded locking and graph-walking should be the first homework assignment
for a parallel compilers class and takes few lines of Python code to achieve multithreaded gratification that walks the
contents of cells and colors them and so forth.

76

the unnecessary operation and resolve the entire conditional expression in 5 ns. If we only have
2 parallel threads, then we can only speculate one of A or B and we would want to pick the more

likely of the two outcomes. This is what speculating branch predictors do.

In dataflow executers like FPGAs, the Verilog compiler will automatically make MUXes
out of all conditional statements (except in the case of a conditional lambda application, which
should be thought of as a conditional dispatching a trap). Even when we are already
speculatively executing all inputs to a multiplexer, there is another form of dataflow speculation
which is useful for transforming decision bound structures into speculative parallel structures.
Consider the formula F(X,(IF(P,A,B))). Suppose now that P resolves in 4 ns but A and B resolve
in 1 ns. Suppose further that F(X,A) and F (X,B) require 3 ns. We may transform
F(X,(IF(P,A,B)) into IF(P,F(X,A),F(X,B)). The former requires 7 ns if executed with full
speculation but the latter only requires 4 ns. This transformation ‘rule is shown in Figure 3-3.

Note that F may have any number of other inputs and this transformation is still valid.

77

Figure 3-3 We may speculatively apply F to A and B before determining the predicate P. If A or
B resolve before P, then this can speed up the circuit. If F(X,A) and F(X,B) share common
substructure then we can use a redundant resource sharing macro to minimize wasted resources.

Speculation does not improve our serial leading zero counter circuit, and could
potentially cause a cancer: an infinite number of multiplexers may be created. In order to
prevent this from happening we have had to alter the indicator for speculation so that it only
occurs when the predicate has the largest combinatorial delay of all of the MUX inputs. Figure
3-4 shows a circuit diagram of the serial LZC as it was defined in Chapter 2 and demonstrates
what happens on one step of speculation. This example provided an important lesson on the

need for feedback and regulation in automated graph rewriting systems.

78

The Orange MUX matches
the Speculation Predicate

The Speculation Atomic
Action Transforms the Graph

The Red MUX now matches
the Speculation Predicate

Figure 3-4: Out-of-control speculation does not decrease the combinatorial path of a serial LZC and may
create an infinite number of MUX circuits if not properly guarded. :

3.1.3 Redundant Resource Sharing

After the combinatorial reductions propagate constants into the LZC circuit an
independent circuit for each bit remains. Whenever a cell has two dependents computing the
same formula, those two formulas can be merged. This is often necessary to eliminate common
substructures emerging from other transforms. When reduction rules on the leading zero counter
occur in full, a number of redundant AND and OR gates emerge computing on various subsets of
the input vector. Without Xilinx resource sharing, static propagation alone yields a highly
redundant circuit requiring a lot of wire delay. Resource sharing optimizations identify when
redundant operations exist and must split redundant AND and OR logic into multiple disjoint

subsets as shown in Figure 3-5.

79

Initially we are

performing a
redundant AND

We may lift out a common
sub-expression to minimize
resource usage

Figure 3-5: A redundant resource sharing macro minimizes the size and simplifies the routing of
redundant expressions.

Results for compiled Verilog emitted before and after reduction rules and redundant
resource sharing are shown in Table 3-2. Catalyst’s fully optimized LZC outperforms a fully
reduced implementation without resource sharing when both are compiled with Xilinx’s resource
sharing optimizations. Multithreaded graph rewriting as atomic actions are is a powerful
mechanism for dynamic architecture optimization. There is potential for reflection in a system
like this to self-optimize the rule system execution reflexively. The method of using guarded
atomic rewrite rules on a spreadsheet is underexplored and has potential to vastly simplify
creating and understanding heuristic optimization systems for a variety of hard problems. These
algorithms run slowly when they must communicate with the spreadsheet visualization directly.
It could be possible to use the RhoZeta frontend synchronizer framework to decouple the
algorithm from the visualization of properties.

80

Table 3-2: Results for 64-bit leading-zero-counter under speculation and resource sharing optimizations
as produced by the Xilinx Verilog synthesis tool. Note the huge amount of routing resources consumed
under full reduction without resource sharing. The serial LZC fully optimized by Catalyst before Xilinx
synthesis and optimization outperforms all other optimizations by 1 ns (20.5% faster, the macros used
were specifically designed to do LZC really well of course).

Slices | Levels of | Total Delay | Logic Delay | Routing
Logic (ns) Delay
Serial LZC with Xilinx Full 74 13 7.016 1.576 5.440
Reduced LZC without Xilinx 45 15 9.483 1.964 7.519
Optimization
Reduced LZC with Xilinx Full 45 8 4.873 1.404 3.469

3.2 Optimizing Legacy Emulators

Emulating an instruction set in a tiled array is a strategy for legacy system compatibility
especially where highly domain specific software systems exist such as industrial machinery® or
mechanical controllers. As FPGAs and RAW chips enter the mainstream computing market, a
model for legacy software compatibility will be crucial to their adoption. Instruction set
emulation provides a route to such compatibility. Nearly all FPGA manufacturers offer a soft-
microprocessor core with a C compiler suite in order to provide a traditional development
environment for microcontroller applications. Many FPGAs also include fixed hardware
microprocessors such as a PowerPC or an ARM. The possibility of a reconfigurable computing

system executing arbitrary legacy emulators is the goal of RhoZeta and inspired the name.

There are number of ways to consider optimizing generic emulator structures. Suppose

we have built a model of a general purpose CPU core, like the RISC core of section 1.2.3. If we

*Often legacy hardware is better understood and easier to emulate than upgrading domain specific software to a
new platform.

81

dispatch our core to execute a static thread that requires no dynamic allocation, and no
multiplier, then our memory space is too big and we've wasted space for our multiplier. We can
optimize out these structures from the core. Given an ISA emulator with a static instruction
ROM that does not perform dynamic code modification, it is possible to perform a static code
analysis to identify a complete set of instructions and registers used by the function. Once a
generic multicore architecture is built, generation macros can parameterize all of the system
components and a manifest of required cores and functional units can be determined by static

instruction analysis.

After creating a multicore architecture for a sample-based-synthesizer [22], I employed
this technique to reduce the area for the DSP components to 30% of the original area. By pruning
cores to a specific application, we can fit more of them in an FPGA. which is useful for .
algorithms that can scale this way. Using generic multicore frameworks and performing
architecture optimization for a specific core task is a generalized way to maintain a compatibility
layer between FPGA and Multicore architectures. For example, an auto-pruning SPE-

compatible FPGA core could be used as an accelerator to the Cell processor with exactly the

same API.

Another option for legacy compatibility is instruction stream emulator pipelining.
Suppose now that we implement an ISA emulator as a function of a set of instructions and some
initial state of every cell. The CPU lambda will execute a single instruction each cycle and
combinatorially produce the next state of the processor. Thus, we can place
“=CPU(InstructionSet,InputSystemState)” into a reading order blocking pipeline of cells to
capture the ILP behavior of multiple CPU steps or use non-blocking interpretation to make a
multicycle pipeline. This works even in Excel and can be tested by copying the RISC

82

architecture sheet from Section 1.2.3 and making each sheet read registers from the previous

sheet’s state in the pipeline. Figure 3-6 shows a diagram of this process.

step 2

step 1

computation computation

Input state
for step 1

Figure 3-6: Each RISC core is used to compute the next input state of the next stage in a pipeline. With
functional unit pruning macros, this method could be used to auto-pipeline arbitrary instruction set
emulator code

Instead of using a single ISA emulator with its next state attached to its current state, we
can spawn a new ISA emulator as a continuation for each instruction and pass the entire emulator
state to the newly spawned architecture. Whenever we reach a conditional branch, we can either
speculate, backtrace to a previous stage or dynamically spawn a new emulator for the

continuation of a thread. These options are shown in Figure 3-7.

83

One-Way
Speculation

Two-Way
Speculation

Backtrace and
stall

Dynamic
Expansion

Figure 3-7: Call-with-current-continuation meets reconfigurable computing. A number of different
strategies can be used to handle branching in the unrolled-emulator computer. We may speculate with
one or two supported next state possibilities. We may backtrace to share a previously spawned stage and
possibly stall its input pipeline. Alternatively we may wait until the branch resolves and invoke a lambda
trap. :

When architecture pruning rules are combined with dynamic pipelining we can imagine a
system in which each function is laid out in front of the data as it reaches the execution point.
Since this is reduced to a spreadsheet macro, it can be generally applied to arbitrary ISA

emulators. A complete implementation of such a system provides a framework for legacy

84

compatibility. A global memory model for this kind of dataflow architecture is extremely non-

trivial and any interrupting behavior must be handled by a lambda trap.

3.3 Pipeline Resource Sharing

Computers can be thought of as a finite array of statically typed resources in a graph with
a strict interconnection schema. Resource consumption in the idealized spreadsheet application is
theoretically infinite with no routing constraints. Sometimes fast physical resources or large
macro structures can be placed in a gate array and must be shared by multiple processes as
shown in Figure 3-8. Our spreadsheet models can often exceed the physical resources available
for execution of all cells. Parallel threads can share a pipelined resource to minimize the amount

of physical area required to perform a behavior.

Figure 3-8: Two processes in a reconfigurable fabric share a large 64 bit floating point unit. The Floating
Point unit may be a physical structure or a macro. Managing resource sharing in a reconfigurable array is
a difficult problem.

The decision to share often comes at a tradeoff. Maintaining behavioral invariance often
requires faster pipeline units which require more power and may require a mechanism to stall a

pipeline. This overhead means that two processes sharing do not necessarily halve the area.

85

Whenever resource sharing is used, some extra hardware is spawned to manage the sharing
relationship. For example, Table 3-3 shows two square root operations before and after resource
sharing transformation. A round-robin resource sharing macro chooses one of two inputs to
square-root each step. Figure 3-9 shows how this transformation saves area. As an alternative to
round-robin selection, a priority dispatcher may use the leading-zero-counter from Section 3.1 to

select one of many requestors with priority.

Table 3-3: The square-root resource can be shared in a round robin setup. Columns A and B are two
separate cores with two separate square-rooters. Columns C and D share the operator

A B C D

S

Y

=Sqri(Al) | =Sqrt(Bl) —IF(A3,Input(A) Input(B)) | =Sqrt(AS)

Regulating resource sharing macros requires a complex optimization system to evaluate
various sharing possibilities. Resource sharing macros must take into account temporal and
spatial locality of physical processes. For example, in system designed for dynamic
reconfiguration to run unrolled emulator structures, we will want to schedule processes that
recycle common resources when threads terminate to minimize the amount of reconfiguration.
There are also tradeoffs related to heterogeneous partitioning of processes. These topics will be

explored further in Chapter four.

86

Figure 3-9: Resource sharing reduces the overall area required for complex pipeline elements.

3.4 Fault and Defect Tolerance

Incorporating fault and defect tolerance into an operating system for reconfigurable chips
has potential to decrease time-to-market for new fabrication technologies and to increase yield of
semiconductor devices. Randomized actors can simulate a fault or defect. A simple macro for
fault and defect tolerance performs n-way modular redundancy and a guarded atomic action
system can detect and manage spreadsheet formula defects by reassigning formulas from a

guaranteed source.

As technology progresses to smaller geometries, static and dynamic faults will occur with
increased frequency. There are well established mechanisms for analyzing of error correction
codes and susceptibility to faults. There is a proof that the parity function requires at least
logarithmic redundancy [26]. FPGA vendor tools incorporate fault tolerance macros for

configuration memory [27] and DRAM and hard disk systems commonly incorporate error-

87

correction codes. There is also potential to use dynamic reconfigurability to recover from a fault
[28]. From a programmer’s perspective there are relatively few development environments that
address the issue. In most languages, there is no a simple mechanism to randomly flip the
variables in a running system without multiple compile and test iterations. Since there is no
concept of dynamic reconfigurability in previous hardware description languages, incorporating
dynamic fault recovery mechanisms into an FPGA system must use vendor macros and may
require complete reconfiguration. A generalized strategy for testing fault tolerance can extend
into the spreadsheet programming environment with random atomic actors. A self-testing circuit

can manage even with static defects within the array.

3.4.1 Randomly Guarded Atomic Actors

Most languages lack a simple mechanism for testing fault tolerance. Using a thread to
randomly move around the graph and modify cells, we can inject faults into the system to
simulate dynamic defects or randomly place an actor in a cell to simulate an unknown static
defect. Faults may modify any cell property like formulas, values or colors in the Ul The atomic
action optimization system could have strange behavior due to coloring faults. It is possible to
create evolution where a random actor modifies the guard of an optimizer actor and mistakenly
permutes the dataflow graph in a non- invariant way. Since atomic actors will ultimately be
implemented in a fault-tolerant dynamic dataflow environment it is possible to ignore these

effects.

Formulas and values represent two different components of a reconfigurable computing
system. The formulas are configuration data in the cells and the values are the processed data

flowing through the system. Both components of a reconfigurable system are susceptible to

88

defects though we do not necessarily have the same mechanisms to access both. N-way modular
redundancy (NMR) with majority voting can detect and correct both kinds of faults at a large
area overhead cost. Table 4-1 shows how a majority-vote NMR is implemented in a spreadsheet.
Figure 4-1 shows NMR detecting a data fault and a configuration fault. For high-reliability

systems it is necessary to incorporate this sort of fault detection at multiple levels of hierarchy.

Table 3-4: An NMR macro copies the [IRFilter 3 times and instantiates a majorityvoter. NMR can be
used to detect faults in the configuration or in the data flowing through the system.

A B C

=if(unanimous,0,handle())

<

Majority

Data Fault

%

Configuration
Fault

Figure 3-100: NMR with a majority voter can detect and handle configuration faults or data faults. The
handle() function executes an atomic action. NMR alone does not guarantee against silent faults in the
configuration.

89

To handle a fault, we must detect if it is a configuration fault, a data fault or a static
defect. Configuration faults can be behaviorally invariant; it is possible for a random event to
modify the don’t-care conditions of a look-up-table. NMR is not sufficient for detecting such
silent configuration faults and there is a possibility that a series of silent errors can accumulate
across a system’s configuration before a fault is observed. Modern FPGAs provide configuration
check-sum mechanisms that can detect configuration faults even with don’t-cares. The optimal
method for handling a detected error is to identify and record the source of the error so that we

can track for static defects and partially reconfigure the erroneous region.

3.4.2 Error Correction as a Data Type

Error correction codes (ECC) are an optimal method to increase the reliability of stored
data. It is possible to incorporate error correction macros in an FPGA that can read back its own
configuration and check it against an error correction code, though this is wasteful if we can just
reconfigure the location again. Error correction codes can be used generically throughout an
electronic system to correct data stored in RAM or any other long term data storage though ECC
codes do always not make sense for the data moving through the dataflow architecture. Harmful
effects may still result when a fault occurs in the dataflow architecture and so ECC must be

coupled with functional redundancy to actively detect and correct dataflow faults.

In order to have a unified perspective of fault tolerance, we would like to program in
terms of guaranteed execution and have NMR, ECC and other fault-tolerance mechanisms
incorporated in the OS. A fault tolerance guarantee should be like a dial which can allow the
developer to turn up the number of zeros guaranteed by the system in a provable manner. The

gap between our ability to model faulty systems and our ability to apply fault tolerant mechanism

90

means that advanced techniques for fault tolerance are generally unexplored. If fault-tolerance is
reduced to a data-type in the language and a property of the OS, then structures like fault-tolerant
arithmetic and logical units [29] can be incorporated as sub-systems to provide a fault-tolerance

guarantee without requiring substantial developer burden.
3.4.3 Static Defect Detection and Self-Testing

So far we have addressed the problem of detecting and managing dynamic data and
configuration faults via NMR and ECC by tracking and reconfiguration. Since an NMR fault
tolerance system can track the location of faults when it invokes a handler, we can determine if a
particular physical location has regularly occurring faults. If a chip is suspected to have a static
physical defect in a particular configuration bit, it can be found using multiple orthogonal self-
testing configurations to narrow down the potential locations of a physical defect. Once a defect

is found and characterized, a software system can manage it.

It is also possible to characterize a reconfigurable chip for process variations by placing
self-timed ring-oscillators around the circuit and comparing their counts with counters fixed to a
clock. A thorough investigation of this method is provided in [30]. A diagram of this auto-
characterization is shown in Figure 4-2. Using a low-level FPGA API it is possible to test
various interconnect paths around a circuit to determine variations in the interconnect delay
between various points. If self-test characterization of hardware is built into an operating
system, it is possible reduce the hardware test costs and simply manage defective components or

optimization specifically design for the characterization of a part.

91

Counter

Counter

Figure 3-11: Ring Oscillator structures can be used to auto-characterize an FPGA for interconnect

variance

In this chapter we introduced the Catalyst system which uses guarded atomic actions in a
spreadsheet graph rewriting system and explored potential macro strategies for optimizing
spreadsheet dataflow circuits. Since Catalyst graph-rewriting macros modify cell formulas
atomically, the optimizations occur while the system is running without affecting the system’s
dataflow behavior. We examined how cost metrics allow us to regulate the optimization system
and used combinatorial reduction and resource sharing to optimize a leading-zero-counter for
Verilog compilation. We explored the potential to use macros to automatically optimize arbitrary
emulators for dataflow execution and discussed the potential for resource sharing macros to
reduce area. We also showed a set of macros which allow us to randomly simulate faults on a

spreadsheet and modify sheets to handle such faults.

92

Chapter 4

Efficiency, Heterogeneity and Locality Optimization

Wherever you have an efficient government you have a dictatorship.
-- Harry S. Truman

This chapter discusses the general problem of profiling and optimizing applications in
heterogeneous environments consisting of multiple types of processing elements. Section 4.1
discusses information entropy throughput per dollar as a metric of computational throughput
efficiency in an application specific environment. Section 4.2 explores how heterogeneous
management can potentially minimize the cost of computational throughput by locating
computational pipelines in particular hardware. Section 4.3 suggests a multi-dimensional
simulated annealing approach to generalized locality optimization and explains the use of

projection to gradually introduce dimensionality constraints into a placement optimization.

We have shown that spreadsheet iteration is a sufficient model for expressing arbitrary
computation. In as much as there is demand for computation there is demand for spreadsheet
iteration. The rate and cost of spreadsheet iteration can provide a measurable efficiency unit for
utility computing. If there is a hardware agnostic API for standard spreadsheet iterations, a
general cost reduction strategy may be to partition parts of spreadsheet iteration to the lowest
cost supplier of a particular function. A unified cost model is required to profile spreadsheet
iteration across a plurality of options. Cost functions may depend highly on application specific

constraints. When high-throughput is paramount, power efficiency may be less of a concern. For

93

applications that can achieve lower power consumption through increased parallelism, the

amortized cost of real-estate must be weighed against power benefits.
4.1 GOPs per Dollar

We have already considered switching activity, temperature and combinatorial delay as
indicators of module’s cost. In this section we will generalize computational throughput
efficiency and examine GOPs/$ as a metric for computational efficiency. GOPs is short for
“billions of operations per second” and is dependent on the application. If our unit of an
application specific computation is a spreadsheet, then GOPs is a measure of one billion
iterations of that spreadsheet in a second. Teraflops, for contrast, is a measure of floating-point
throughput. The cost function for a specific application is also dependent both on the type of
operation being performed and the mapping to a panicﬁlar computational fabric. An
application’s cost function may incorporate multiple factors including power, latency, area and

temperature.

To quantify information processing 1 will use Shannon’s concept of information entropy.
If a Boolean random variable is has equal probability of being 1 or 0, then we gain 1 bit of
information from reading its value. Logic functions affect the entropy between the input and
output signals by projecting a domain into a smaller range. For example, a two input NOR gate
with evenly distributed independent inputs has output probabilities has p(0) = .75 and p(1) = .25.
Storing the string of outputs of the NOR gate provides us with .75*1g(.75) + .25*1g(.25) = .811
bits of information (lg means base-2 logarithm). If this gate iterates 1 Billion times, we expect a

lower bound of 811 Megabits required to store the output string.

94

Consider now if both of the inputs to the NOR gate are independent and have p(1) = .99
and p(0) = .01. The output of our NOR gate now has p(1) =.0001 and p(0) = .9999. Resolving
the NOR gate only provides us with .0015 bits of information, substantially less than before.
Storing the outputs of 1 Billion iterations should only require 1.5 Kilobits of information. Yet the
circuitry providing the data from the NOR gate output to its dependents still must transmit 1
Gigabit of data. Thus there is a huge amount of symbolic inefficiency from the quantization
required for discrete states. Whenever symbolic inefficiency occurs, it is likely that interconnect

efficiency can be improved through serialization and multi-word encodings.

Information entropy of an input provides a physical basis for measuring an operation’s
usefulness. If GOPs is operational throughput, then its physical unit is bits/second or
(information entropy / time) and GOPS/$ = information entropy / (time * cost) is a measure of
throughput efficiency subject to an application’s cost-function. If the information entropy of a
variable is small, then it may not be worth the cost of implementing the hardware that reads its

value and instead invoking a lambda trap to the OS.

For example, consider an adder whose inputs have high probability of being small. The
entropy of the output bits is very low for the high order bits. Depending on the costs and
probabilities of handling exceptions, it may be worthwhile to use an 8 bit adder instead of a 32
bit adder. If there is some finite probability of inputs being larger than 8 bits then we will need a
lambda trap as shown in Figure 4-1. This adds a fixed area cost to the circuitry and a
probabilistic time-cost dependent on the probability and delay of invoking a trap. If we compare

cost functions across a variety of topologies we can deduce an optimal bit width for our adder.

95

MSB LSB
Low Entropy High Entropy

Figure 4-1: Since our 32-Bit Adder has low entropy in the MSBs we can remove the computation for the
higher-order bits. By using an 8-bit adder and an overflow handler we can save area. Since we require
detection circuitry and a trap in overflow cases, there is overhead to this method.

In cases where the entropy of a signal between successive pipeline stages is small, it may
be possible to perform compression on the data between stages to minimize the data transmission
overhead between streaming cores. For example, consider the pipelines in Figure 4-2: a
transformation and filter pipeline produce low entropy data for an analysis engine to interpret
and the analysis engine is separated from the transformational filters by a substantial latency. A
common example of such a setup may be an image recognition algorithm which first performs a
series of transformations and filters on an image processor and ships the reduced data to a
database engine for comparative analysis against a dataset. The output of the image filter may be
represented by a bitmap with substantially lower information content. An encoder and decoder
can substantially compress the symbol space before transmission to decrease the burden on long
distance interconnects. In many cases it is possible to propagate the encoder and decoder into
the pipeline and operate directly on compressed data streams. For example, if a bit-serialized

transmission feeds into a parallel adder, we can use a bit-serial adder instead.

96

Low Entropy Long Wire

Encode before transmit

Integrated Codecs

Figure 4-2 Initially the signal transmitted over a long wire has low entropy. If we encode the stream
before we transmit the data to the analysis unit we save transmission overhead. It is often possible to
integrate the encoder and decoder into the filter and analysis to simplify these modules.

4.2 Heterogeneous Load Balancing

In our pipeline example, we made a decision to encode data prior to long-range
transmission between separate processors. Partitioning and profiling an application across
multiple co-processors still remains as a task left to developers. Partitioning decisions are non-
trivial: we will pose an example of partitioning N FFT operations of size S and we have the
option of using a CPU, a GPU or an FPGA. Let's suppose our computation begins in the CPU
and we only wish to perform 1 FFT of size 128. In this case it may not be worth the overhead of
offloading the process to the GPU or the FPGA since we only need to perform a single operation.

As a result, GOPS/$ is maximized by using the CPU to compute the FFT.

Consider now that we have 128 FFT operations of size 128. In this case, the throughput
benefits associated with offloading the process amortizes the cost of doing so. We may offload

97

the task to either the FPGA or the GPU. If the FPGA already has FFT circuitry configured and
assuming it performs FFTs substantially better than the GPU, then the task should be performed
in the FPGA. However, if the FPGA is not configured with an FFT, then for a problem of this
size the overhead associated with configuring the FPGA may preclude using it for this operation.
Thus we will use the GPU if the FPGA does not already contain an FFT core. Now suppose that
we want to perform 2048 FFTs of size 2048. The cost of configuring the FPGA for this task is
amortized by the size of the job and thus it will always be beneficial to perform the FFT on the

FPGA.

The result of this discourse is that choosing an execution methodology in a heterogeneous
reconfigurable fabric may be a runtime consideration depending on the size of the operation to
be performed and the configuration of the system. A load-balancing subsystem will need to
simplify the task of profiling an application by determining some high-dependency variables. To
keep the overhead associated with a run-time load balancer low, we will generate a condition set

at profile-time and link each condition with a particular configuration and methodology.

4.3 Generalized Locality Optimization

Both the heterogeneous partitioning problem and thread placement in a multicore or
FPGA can be generalized as locality issues. The general problem is how to map a high
dimensional graph of cells to a low dimensional lattice of hardware in which the lattice exhibits
communication constraints due to a distance function. I have experimented with a
multidimensional variation of simulated annealing based on a simple premise: a graph of N
nodes can be mapped to N dimensions such that all nodes are equidistant from one another. This
can be easily understood by placing each node initially at (1,0,0...0), (0,1,0,...0), (0,0,1,...0) to

form an N by N placement matrix which is initially the identity. The power cost of each node is

98

its activity times its Manhattan distance to each of its precedents. This cost is represented in an
N x N activity matrix. The cost of a placement is the product of the activity matrix and the
placement matrix. By taking the absolute value of the activity-placement product matrix we can
compute the wire distance times the activity for each dimension. By multiplying the product
matrix by dimensionality communication factors we can reduce the cost to a scalar quantity.
Figure 4-3 demonstrates a graph and equations for its cost function. This generalized cost

function can easily be programmed into a spreadsheet.

(%2, Y2, 22)

(X1, y1.,21)

(X3, ¥3, 23)
—a a 01 Y1 Z1i|\ jf
Cost=1[f1 f» f3labs ([b -2b b] X2 Y2 ZzD fz
0 c —cll*xs Y3 231/ |f5

Figure 4-3: A very simply case of 3 nodes and the cost function for them. By modulating the
dimensionality factors in the cost we can project a graph from N dimensions to 2 dimensions. We use the
absolute value of each element of the cost matrix and placement product to compute the activity times the
Manbhattan distance of each arc.

Simulated annealing is a general optimization strategy in which random modifications are
attempted and accepted probabilistically dependent on the net effect of the permutation on the
cost function. If a modification increases the cost function, there is a finite probability dependent
on a temperature parameter, that the permutation will be accepted. In this case, a cell is allowed
to randomly move in any direction in the integer lattice provided there is no collision. In order to
project the precedent graph to a two-dimensional lattice the dimensionality is reduced gradually
by modulating the cost factor for high dimensional communication as the temperature parameter

of the simulated anneal decreases. When T=0 any circuit placement that contains higher

99

dimensional terms will have infinite cost and only permutations that reduce the cost function will
be accepted. Knots in a circuit placement can be untied by increasing the temperature and lifting
the circuit graph into a higher dimension at various stages of the simulated anneal. In order to
create extra space for cells to move in, the placement matrix is may be multiplied by a constant

factor.

I have achieved positive results for this algorithm on a few obvious graphs by producing
the temperature schedule by hand. The simple cases tested include a 4 x 4 graph in which all
nodes are connected with their immediate neighbors and a linear pipeline. These two test cases
were chosen because they have an obvious global optimum. This multidimensional simulated
annealing approach apart from being mathematically interesting is currently very slow and takes
several minutes and multiple user-interactions to converge to the global optimum even for these
simple cases. Simulated annealing tends to work as a brute-force optimization mechanism and
there seems to be an endless number of ways to tweak the algorithm that could potentially

improve performance.

4.4 Conclusions and Future Work

This thesis has presented a number of methods and tools for the design and development
of dynamic dataflow in a spreadsheet. Emerging reconfigurable architectures obviate the need
for a new software development paradigm. The current toolset for multicore and FPGA
development is inadequate for the needs of software developers. Spreadsheets obviate the
parallelism in a system design and provide a simple visual development environment with
minimal time-to-gratification. The complexities of spreadsheet-driven dynamic reconfiguration

are still unsolved. Many layers of abstraction still separate the simple programming model of a

100

spreadsheet to compilation on an FPGA or Multicore. These multiple compiler layers ultimately
slow down the dynamic programming model. For multicore and GPU chips, vendor specific
global memory optimization mechanisms will probably require dynamic compilation. Since our
programming environment converﬁently matches the hardware environment a better low-level

programming environment can hopefully be built within a spreadsheet.

101

Bibliography

[1] M. Bohr, "Interconnect Scaling - The Real Limiter to High Performance ULSL," International
Electron Devices Meeting, p. 241, (1995).

[2] S. Das, A. Chandrakasan, and R. Reif. "Calibration of Rent's-Rule Models for Three-
Dimensional Integrated Circuits.” IEEE Trans. on VLSI Systems, vol. 12, no. 4, pp. 359-366,
Apr. 2004.

[3] L.Koren, Z. Koren "Defect tolerance in VLSI circuits: techniques and yield analysis ,"
Proceedings of the IEEE , vol.86, no.9, pp.1819-1838, Sep 1998

[4] C. Constantinescu, "Trends and Challenges in VLSI Circuit Reliability," IEEE
Micro ,vol. 23, no. 4, pp. 14-19, July/August, 2003.

[5] W. Thies, M. Karczmarek, and S. Amarasinghe. “Streamlt: A Language for Streaming
Applications” '

[6] W.J. Dally, U.J. Kapasi, B. Khailany, J. H. Ahn, A. Das. Stream Processors: Programmability
with Efficiency ACM Queue, Vol. 2, No. 1, March 2004, pages 52-62.

[7] L. Page. Constructing hardware-software systems from a single description . Journal of VLSI
Signal Processing, 12(1), pp. 87-107, 1996.

[8] Impulse Accelerated Technologies Corporate Website. http://www.impulseC.com
[9] O. Storaasli, D. Strenski. Exploring Accelerating Science Applications with FPGAs

[10] D. Lau, O. Pritchard, “Rapid System-On-AProgrammable-Chip Development and Hardware
Acceleration of ANSI C Functions,” in Proc. 16™ International Conference on Field
Programmable Logic and Applications (FPL 2006), (Madrid, Spain, August 28-30, 2006).

[11] D. Bennett, E. Dellinger, J. Mason, P. Sundarajan, An FPGA-oriented target language for
HLL compilation. http://gladiator.ncsa.uiuc.edu/PDFs/rssi06/presentations/13_Dave Bennett.pdf

[12] E. Neuwirth. Realtime Fourier synthesis — Sound generation
http://sunsite.univie.ac.at/Spreadsite/fourier/fourtone.htm

[13] http://www.milezero.org/index.cgi/music/tools/excel/the beat _goes on.html

[14] R. Gradwohl, R. Fateman. Lisp and Symbolic Functionality in an Excel Spreadsheet:
Development of an OLE Scientific Computing Environment

102

[15] Fuller, D. A., Mujica, S. T., and Pino, J. A. 1993. The design of an object-oriented
collaborative spreadsheet with version control and history management. In Proceedings of the
1993 ACM/SIGAPP Symposium on Applied Computing: States of the Art and Practice

[16] R. Hettinger. Python Cookbook : Spreadsheet
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/355045

[17] U. Eriksson http://siag.nu/siag/

[18] Abelson, H. and Sussman, G. J. 1996 Structure and Interpretation of Computer Programs.
2nd. MIT Press.

[19] R M. Snyder. A Metaprogramming Pattern for Creating Java Class Functions Using a
Spreadsheet. http://sais.aisnet.org/2006/Synder-SAIS2006-paper.pdf

[20] Lew, A. and Halverson, R. 1995. A FCCM for dataflow (spreadsheet) programs. In
Proceedings of the IEEE Symposium on Fpga's For Custom Computing Machines (April 19 - 21,
1995).

[21] A. Yoder, D. Cohn. Domain-specific and general-purpose aspects of spreadsheet languages
www-sal.cs.utuc.edu/~kamin/dsl/papers/yoder.ps

[22] A. Hirsch, A. Leiserson. A MIDI Controlled Sample-Based Synthesizer.
http://web.mit.edu/6.111/www/s2004/PROJECTS/1/index htm

[23] Xilinx Inc. Virtex-5 Libraries Guide for Schematic Designs.
http://toolbox.xilinx.com/docsan/xilinx82/books/docs/v5lsc/vSlsc.pdf

[24] http://www .Bluespec.com

[25] K. Kelley, A. Hirsch, D. Qumsiyeh, M.M. Tobenin. Sequentializing Bluespec.
http://fpgaos.com/bs/SequentializingBluespec.pdf

[26] N. Pippenger, G.D. Stamoulis, J.N. Tsitsiklis. On a Lower Bound for the Redundancy of
Reliable Networks with Noisy Gates. http://dspace.mit.edu/bitstream/1721.1/3177/1/P-1942-
21258897 pdf

[27] B. Bridgford, C. Carmichael, C.W. Tseng. XAPP779 Correcting Single-Event Upsets in
Virtex-1I Platform FPGA Configuration Memory. Xilinx Inc.

[28] K. Kwiat, W. Debany, S. Hariri, "Software Fault Tolerance Using Dynamically
Reconfigurable FPGAs," glsvlsi, p. 0039, 6th Great Lakes Symposium on VLSI, 1996

103

[29] Alderighi, M.; D'Angelo, S.; Metra, C.; Sechi, G.R., "Novel fault-tolerant adder design for
FPGA-based systems," On-Line Testing Workshop, 2001. Proceedings. Seventh International ,

vol., no., pp.34-58, 2001

[30] M. Ruffoni, and A. Bogliolo, "Direct Measures of Path Delays on Commercial FPGA
Chips," in Proc. of IEEE Workshop on Signal Propagation on Interconnects, 2002

104

