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Abstract

Cellular Wireless Wide Area Networks (WWANs) are most prevalent and offer high-
bandwidth data transfer. We believe WWANs can be availed for voice communica-
tions employing Voice Over IP technologies. Such a communication will be of better
quality and offer higher resilience compared to voice communication over a cellular
phone (using cellular voice networks).

We present a Quality of Service analysis of one-way voice communication over
cellular voice networks and cellular WWANs. By studying different quality metrics
we test if WWANs offer a better solution for voice communications compared to tra-
ditional cellular voice networks. We also study if employing more than one WWANs
or cellular voice networks leads to a higher resilience in voice communication.
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Chapter 1

Introduction

This thesis describes an experimental setup to analyze voice audio quality over Wire-

less Wide Area Networks (WWANs) in comparison to traditional cellular voice net-

works. Current cellular voice networks suffer from low quality voice communication

and unexpected call terminations (also referred to as "dropped calls"). WWANs are

most prevalent and offer high-bandwidth data transfer. By porting existing Voice-

over-IP technologies to WWANs we can create a voice communications network that

offers higher voice quality and reliability.

Our research leverages the widespread cellular wireless data networks to develop

and test a resilient high quality voice communications network. This thesis develops

a testbed for comparing this voice network to the traditional cellular phone network,

discussing its design and evaluating the performance of both the networks under

different conditions.

1.1 Motivation

Our work was motivated by a need for a mission critical voice communications system.

As part of a telemedicine project, we wanted to transmit bi-directional audio from a

moving ambulance using public carrier networks.

We realized the traditional cellular voice networks were not suitable for our ap-

plication. The loss in voice quality over such networks (especially when transmitting



from a moving van) makes it harder for the doctor at the other end to discern between

the various auditory symptoms. Also, the phenomenon of "dropped calls" meant an

unexpected abruption in the voice communication that is undesirable.

In most urban areas, there are a large number of public carrier wireless channels

providing mobile connectivity to the Internet, using standard cellular technologies

such as GSM and CDMA2000. Notably, these providers have overlapping coverage areas,

allowing us to connect to more than one provider at the same time. Other researchers

have investigated the use of higher bandwidth wireless technologies, such as 802.11

[4, 28], for public networks with varying degrees of success.

Individual cellular Wireless Wide Area Network(WWAN) channels provide enough

bandwidth for our audio application. The upstream bandwidth' offered by these

channels is limited in comparison to a wireless local area network (e.g. 802. 11).

However, the best WWAN channels available to us in the greater-Boston area provide

a couple of hundred kilobits per second of peak bandwidth which is more than sufficient

for audio transmission2

WWANs also provide us with the ability to use intelligent scheduling schemes to

send voice data over these channels. E.g., in case one network is facing high latency,

we can adapt our application on the fly to send data on another overlapping network.

1.2 Challenges

WWAN channels provide little in the way of quality of service guarantees for data

channels. We have observed that WWANs with overlapping coverage have widely

varying channel characteristics. Motion and location cause many additional com-

plications, the details depending on the network technology and service provider.

WWAN channels are handicapped by high and variable round trip times, occasional

outages, considerable burstiness, and much instability when moving [53, 54, 25]. For

1Here the term upstream bandwidth here refers to how much data we can send and the term
downstream bandwidth refers to how much data we can receive

2We use an encoding bitrate for the WWAN transmission comparable to the throughput of a
traditional cellular voice network



instance, average packet round-trip-times on different channels can easily differ by

500ms. Even on a single channel, at different times and locations, individual packet

times can vary by this much.

In most areas the bandwidth/latency/loss characteristics of the available public

carrier wireless channels vary by more than an order of magnitude (such as among a

set of channels containing both 2.5G and 3G cellular data channels). We also expect

there to be a high degree of dynamic variation in each wireless channel's quality-

partly due to the motion of the vehicle. There is evidence of high variability in

bandwidth and packet-latency on real WWAN channels [53]. Spatial variation in the

quality of service provided by different carriers is well-known and largely depends on

the carrier's placement of cell-towers relative to the terminal. One of the reasons for

temporal variation is that demand varies over time, while the total bandwidth in any

given cell remains roughly constant.

These issues led us to consider using redundancy. By taking advantage of ser-

vice provider diversity, overlapping coverage, and network technology diversity (e.g.

GPRS, CDMA, UMTS), we attempt to provide the illusion that a reliable stable

high-bandwidth channel is available.

In our environment, however, the underlying links are neither stable nor homo-

geneous. Therefore, the manner in which we decide to schedule the transmission of

voice data packets can have a large influence on observed latencies, bandwidth, and

loss rate. Furthermore, we care more about average latency and its variance than

packet loss for voice transmission.

Thus, these redundancy schemes involve sending voice data in some order over

multiple physical channels, possibly reassembling the data in the correct order at

the other end before passing it on. Unfortunately, the scope of this thesis does not

involve creating/testing complex redundancy schemes. We use the simple scheme of

transmitting data on more than one physical channel.

Our decision to use WWANs also demands a robust buffering algorithm to decrease

the variance in average latency. This introduces another type of latency at both ends.

However, unlike the inherent latency linked to the physical network, we can decrease



the quantity of this secondary latency by fine tuning our buffering algorithm.

For traditional cellular voice networks, we had to ensure that any degradation in

voice quality was due to the network, and not because of our hardware. Extra care

was taken to transfer uncompressed voice data to the input, and to record voice data

without any sort of compression at the output.

1.3 Goals

Our primary goal is to prove that Wireless Wide Area Networks are capable of voice

communication that has the following properties:

High Quality

We gauge the quality of the received audio in terms of metrics including frequency

and phase. High quality audio means less frequency filtering and very low (preferably

none) phase shift. This requires the use of an efficient voice codec.

Reliability

Voice transmission is more reliable compared to the traditional cellular voice networks.

This means there are fewer call drops and even in the worst case scenario, the voice

quality on WWANs is atleast as good as that on cellular voice networks. This requires

the use of the overlapping WWANs as well as a robust buffering scheme.

Low Latency

The network is good enough for real-time voice communication. This means an aver-

age latency less than 250ms [53]. Even though we are testing uni-directional audio,

a latency comparatively higher than 250ms is undesirable. We can not change the

value of the network latency, but we can average out the latency value by the use of

an efficient buffering scheme.

Voice communication must be as insensitive to motion as possible. Unfortunately,

even in the best case scenario, some degradation in link quality due to motion may



occur. Doppler effects, resulting from the motion, can be correlated across all chan-

nels. Similarly if provider base-stations are co-located, loss and bandwidth on the

different channels may exhibit correlation.

Finally, our research intends to highlight the problems with the current cellular

voice networks.This thesis does not focus on improving such networks; we tackle the

problem of developing a better voice communications system, using widely available

technology.

1.4 Thesis Contributions

This thesis makes the following major contributions:

Cellular Voice Networks' Characteristics

We explore the characteristics of cellular voice networks through real-world experi-

ments. We show that these networks degrade the quality of the audio and suffer from

occasional unexpected termination of calls.

WWAN Channel Characteristics

Through experiments and discussions of WWAN technology standards, we explore

the characteristics of real WWAN channels. We show that CDMA2000 1xEV-DO and

GSM EDGE/EGPRS channels are handicapped by high and variable round trip times,

occasional outages, considerable burstiness, and much instability when moving.

Transmitting Audio over Heterogeneous and Unstable Channels

We assume that the characteristics of WWAN channels can change rapidly (e.g. due

to motion relative to a base-station), and show that we can still transfer high quality

audio with high reliability. Even though we use a simple redundancy scheme, the

final results prove that voice transmission over WWAN channels is possible.



1.5 Thesis Organization

This thesis begins by providing some background on WWAN channels and cellular

voice networks in chapter 2. We also talk about our choice of voice quality metrics.

We provide an overview of the testbed architecture in chapter 3, and follow in chapter

4 with a discussion of the experiments we performed with their results. Chapter 5

evaluates the results of the experiments and debates the feasibility of a WWAN based

voice communications system in comparison to the traditional cellular voice networks.

Finally, chapter 6 provides conclusions and directions for future work.



Chapter 2

Background

This chapter covers some background material.

2.1 Wireless WAN's

Figure 2-1 enumerates some of the various wireless data networking technologies that

are available.

The cellular WWAN technologies are the most prevalent. In most urban areas,

there are a large number of public carrier wireless channels providing mobile connec-

tivity to the Internet 1, using standard cellular technologies such as GSM EDGE/EGPRS

and CDMA2000 1xEV-D0 2. Notably, there are multiple providers and these providers

have overlapping coverage areas, allowing us to connect to more than one provider at

the same time.

In connections over these WWAN's the wireless link dominates in determining the

'based networks
2 Referred to as EGPRS and EV-DO respectively in the thesis.

Channel Latency Loss Throughput/Down Throughput/Up
GSM EDGE/EGPRS High Low 240 100
CDMA2000 1xEV-DO High Low 300 120
802.11b Low Medium 5000 5000

Figure 2-1: Characteristics of wireless data network channels. The throughputs are
estimated averages in kilobits-per-second.



quality of the connection. Also, Doppler effects due to motion and the positioning

of the terminal relative to the provider's base-stations can significantly reduce the

available throughput.

The last IP hop's latency accounts for over 99% of the overall latency of the entire

route taken by packets sent from a WWAN terminal [53]. Providers using EGPRS use

IP tunnels to transfer a terminal's data packets through the provider network. The

last IP hop in such a situation is the entire provider network, which might explain

why it dominates.

WWAN channels are handicapped by high and variable round trip times, oc-

casional outages, considerable burstiness, and much instability when moving. The

quality of a WWAN link is highly dependent not only on the technology used, but

perhaps even more so on the way the provider has decided to set up the network (e.g.

the distribution of a provider's base-stations).

EV-DO channels and EGPRS channels have comparable speeds, as noted in figure

2-1. For small TCP-SYN packets and stationary terminals, the measured average

packet round-trip-times on a EV-DO link is around 315ms and 550ms on an EGPRS

link. For larger UDP packets and stationary terminals, both types of channels have an

average packet latency of around 800ms with a standard deviation of around 100ms

for 768-byte packets [53].

Motion causes the quality of these links to degrade. Average throughputs arent

affected much by motion, but on both channels the standard deviation of the through-

put gets multiplied by a factor of five. When moving, the average latency rises to

760ms and the standard deviation jumps to 460ms [53].

Disconnections on WWAN channels are rare and uncommon. In case of a discon-

nection we can reconnect immediately without changing location. However, occas-

sional service disruptions while moving are unavoidable.

Finally, the WWAN extensively uses link-layer retransmissions and forward-error-

correction (FEC) for data packets, increasing packet delays and delay variances, but

keeping the bit-error-rate for the channel at a low level.

Other researchers have investigated the use of higher bandwidth wireless tech-



nologies, such as 802.11, for public networks [4, 28, 3] with varying goals and varying

degrees of success. 802.11 was not designed to be used over large distances, in multi-

hop wireless networks, and with vehicular mobile terminals. Therefore its use in this

way poses a number of technological challenges. For instance, technologies like EV-DO

have been designed to seamlessly switch base-stations whenever appropriate.

In this thesis the only wireless data network connections available to us are a CDMA

1xEV-DO link and a GSM EDGE/EGPRS link.

2.2 Cellular Voice Networks

We use the term Cellular Voice Networks to refer to the mobile telephony networks,

specifically those that employ second-generation wireless telephone technology (also

referred to as 2.5G networks). For this thesis we restrict ourselves to CDMA 1xRTT

and GSM3, the two most widely used 2.5G networks in the world. Figure 2-2 compares

the two networks in terms of bandwidth available.

Both CDMA and GSM are highly optimized for low bandwidth voice communication.

The GSM Enhanced Full Rate speech codec (EFR) uses 12.2 kbit/s for speech coding

and 10.6 kbit/s for error correction [44]. Even though CDMA 1xRTT offers higher

bandwidth, it transfers voice data at a speed comparable to GSM [29].

CDMA and GSM channels are prone to degradation in voice quality. Speech codecs

like EFR are lossy codecs that encode speech at high levels of compression at the

expense of quality degradation. The saved bandwidth is used for error correction,

and its bitrate is comparable to the encoding bitrate. This way the voice stream

is reconstructed perfectly 4, though with a loss of tonality, even in situations of bad

network connectivity [44].

A bigger problem with cellular voice networks is dropped calls. Dropped call is the

common term for a wireless mobile phone call that is terminated unexpectedly as a

result of technical reasons. Areas where users experience a large number of dropped

3Referred to as CDMA and GSM respectively in the thesis
4By perfect we mean the user at the other end is able to hear the speech correctly



Channel Latency Loss Throughput/Down Throughput/Up
GSM Low Low 40 20
CDMA2000 1xRTT Low Low 120 120

Figure 2-2: Characteristics of wireless data network channels. The throughputs are
estimated averages in kilobits-per-second.

calls are commonly referred to as dead zones.

One reason for a dropped call is when the mobile phone moves out of range of

a wireless network. An active call cannot usually be maintained across a different

company's network (as calls cannot be re-routed over the traditional phone network

while in progress), resulting in the termination of the call once a signal cannot be

maintained between the phone and the original network. Another common reason

is when a phone is taken into an area where wireless communication is unavailable,

interrupted, interfered with, or jammed. From the network's perspective, this is the

same as the mobile moving out of the coverage area.

Occasionally calls are dropped upon handoff between cells towers within the same

provider's network. This may be due to an imbalance of traffic between the two

cell sites' areas of coverage. If the new cell site is at capacity, it cannot accept the

additional traffic of the call trying to "hand in." It may also be due to the network

configuration not being set up properly, such that one cell site is not aware of the

cell the phone is trying to hand off to. If the phone cannot find an alternative cell to

move to that can take over the call, the call is lost.

Co-channel and Adjacent channel interference can also be responsible for dropped

calls in a wireless network. Neighbor cells with the same frequencies interfere with

each other, deteriorating the quality of service and producing dropped calls. Trans-

mission problems are also a common cause of dropped calls.

Areas where users experience a large number of dropped calls are commonly re-

ferred to as dead zones. Apart from cell tower issues, dead zones are also created due

to geographical reasons. E.g., cellular signal strength drops if the area is surrounded

by tall buildings or in a tunnel.

A great amount of money and time is invested by wireless operators in order to



Category Metric Description
Timeliness Latency Time taken for a message to be transmitted

Response Time Round trip time from request transmission
to reply receipt

Jitter Variation in delay or response time
Bandwidth Throughput Bandwidth required or used, in bits

or bytes per second.
Reliability Loss or corruption rate Proportion of total data which does not

arrive as sent, e.g. network error rate
Perceived QoS Encoding Rate Audio sampling rate and number of bits

(Audio Quality)
High Fidelity Frequency response and phase variation

Figure 2-3: Description of QoS metrics for audio transmission

improve the network quality of service to acceptable values. Dropped calls along with

congestion are the two most important customer perceived problems that affect the

quality.

2.3 Voice Quality of Service Metrics

Reliable message transfer with error control and notification of non-delivery is com-

mon in many modern communication systems. However, the ability to specify time-

liness, and the perceived quality of the data arriving is also important, particularly

where more complex multimedia are being used. The underlying concepts of band-

width, timeliness (including jitter), reliability, perceived quality and cost are the

foundations of what is known as Quality of Service (QoS).

While systems are often defined in terms of their functionality, QoS defines non-

functional characteristics of a system, affecting the perceived quality of the results.

In multimedia this might include audio quality, or speed of response, as opposed to

the fact that a sound was produced, or a response to stimuli occurred. Much work

has been done in the past on establishing the QoS metrics for multimedia[27, 20].

Figure 2-3 delineates the various metrics that apply to audio.

The particular problems of WWAN's highly variable connection quality means

that latency, response time and jitter are adversely affected. Our experiments involve



uni-directional audio. Thus, we will not be analyzing the response time metric in this

thesis. However, latency is a considerable problem for all type of cellular networks

(especially WWAN). End-to-end latency is one of the most important performance

parameters for a voice communication system. It includes the time the signal takes to

traverse the network as well as any delay caused in the hardware (e.g. delay caused

by buffering). At present there is some agreement that an end-to-end latency of no

more than 250ms is acceptable[37].

Jitter is an unwanted variation of one or more signal characteristics. For audio,

jitter defines how jerky it is, and how much crackle is there. Cellular voice networks

are optimized for low jitter. A robust buffering scheme decreases jitter at the expense

of added delay/latency.

Throughput defines the amount of data we can send per unit time. The higher

the throughput, the better quality of the audio transmitted. However, the through-

put rate of cellular voice networks is set by cellular companies and can not be set

independently. To compensate for this limitation we restrict the bandwidth available

for audio to 22kbits/s. This value for the bandwidth is comparable to the throughput

available on cellular voice networks. Unfortunately this means that throughput is not

one of the QoS metrics we wil analyze in this thesis.

Reliability is a desired property for any real-time application. For voice commu-

nication reliability means a best effort network that adapts on-the-fly to any changes

in the underlying links.

Cellular voice networks are circuit switching networks, and the notion of reliability

involves decreasing the probability of dropped calls. Again, this probability depends

on the underlying link and is determined by various factors like the cell tower belong

at its capacity, etc. On the other hand, WWAN are packet switching networks and

they do not face the problem of dropped calls unless there is no coverage5 . However,

WWAN suffer from the problem of lost packets aggravated by the varying nature

of the underlying links. Hence, a voice communication system over WWAN should

employ some sort of traffic loss recovery scheme. We discuss such a scheme in the

5We assume that the sender is always in an area where at least one WWAN has coverage



next section.

Perceived QoS metrics refer to those audio properties that are distinguishable by a

human being. Encoding and audio sampling rate determines the ability of the digital

system to recreate the analog audio signal upon replay. These values are set inside

the network for cellular voice networks. We set comparable values for the encoding

and audio sampling rate when transferring audio over WWAN. High fidelity means

how succesful we are when creating the digital audio signal at the receiving end. The

underlying links, in all type of networks, determine what frequencies do and do not

pass, and which frequencies get attenuated and which get stronger (phase variation).

A phase skew distorts the audio making it incomprehensible for the receiver.

2.4 Voice Encoding and Streaming

We are motivated by the need to encode voice data in WWAN at almost the same

bitrate and sampling rate as available to cellular voice networks. This section provides

some background to the area of audio encoding.

Cellular voice networks make use of optimized speech codecs for voice transmis-

sion. Example includes the Enhanced Full Rate (EFR) codec used in the GSM net-

work. (EFR) uses 12.2 kbit/s for speech coding and 10.6 kbit/s for error protection.

The compression scheme is based on a sophisticated Code Excited Linear Prediction

(CELP) algorithm. Also, GSM networks are optimized for transmitting audio sampled

at 8kHz6 [46].

Unlike cellular voice networks where the codec is hard coded in the hardware,

we have to determine what codec to use for transmitting audio over WWAN. There

are several speech codecs available this purpose. We did a comparison of various

speech codecs for the experiments including internet Low Bit Rate Codec (iLBC)[5],

Advanced Multi-Band Excitation (AMBE)[2] and Speex[12].

We decided to encode our audio with Speex for multiple reasons. Speex is a roy-

alty free software speech codec that claims to be free of patent restrictions. Speex

6 Referred to as narrowband



is extensively used on Voice over IP (VoIP) applications and podcasts and, unlike

other speech codecs, is not targeted at cell phones but rather at VoIP. Similar to the

(EFR) codec used in GSM networks, Speex employs the Code Excited Linear Predic-

tion (CELP) algorithm to compress the data[60]. However, Speex is a lossy format,

meaning quality is permanently degraded to reduce file size.

Every codec introduces a delay in the transmission. For Speex, this delay is equal

to the frame size, plus some amount of "look-ahead" required to process each frame.

In narrowband operation (8 kHz) of our system, the delay is 30ms[60]. This delay is

unfortunate, but its value is less than the delay introduced by the other codecs we

tested.

Designing for VoIP instead of cell phone use means that Speex is robust to lost

packets. However, Speex does not handle the case of corrupt packets but it relies on

the User Datagram Protocol (UDP) to ensure that packets either arrive unaltered or

don't arrive. WWAN extensively uses link-layer retransmissions and forward-error-

correction (FEC) for data packets, increasing packet delays and delay variances, but

keeping the bit-error-rate for the channel at a low level.We can also use a robust

packet loss recovery scheme to fix the corrupt packets. Such schemes include special-

ized forward error correction (FEC), interleaving, error concealment, etc[51]. For our

experiments we decided to rely on WWAN's retransmissions for lost/corrupted pack-

ets. This meant a low overhead and allowed us to determine the variables associated

with WWAN without any cover up done by the schemes.

Additionally, with network streams, there are likely to be hard deadlines for the

arrival of audio packets. Generally, audio data is useless if it arrives too late into

the decoding process at the receiver's end. Modern systems use a playout buffer to

compensate for delay. Such buffers can help mitigate for network delay, variance in

this delay (jitter), and even to provide enough time to retransmit lost packets [36].



Chapter 3

Experimental Setup

This chapter delineates the testbed designed for this thesis. Our testbed has two

distinct setups, one for analyzing cellular voice networks and the other for analyzing

WWANs. Both these setups are discussed below.

3.1 WWAN: Experimental Setup

3.1.1 Hardware

The experiments were carried out using a Linux laptop and hosts on the MIT ethernet.

The laptop was running an updated 2.6.x kernel from the Fedora Core 5 distribution.

The Linux point-to-point protocol daemon (pppd) was used to establish connections

over each WWAN interface.

For the CDMA2000 experiments, we used an Airprime-5220 PCMCIA card, enabled

with a Verizon[15] wireless data service plan which used the CDMA2000 1xEV-DO option

on the card. The Verizon plan gave us a routable IP address and the ability to send

and receive ICMP, UDP, and TCP packets.

Similarly, for the GSM EDGE experiments, we used a Sony Ericsson GC82 EDGE

PCMCIA Card, enabled with a T-Mobile[13] wireless data service plan. It also pro-

vided us with an IP based network similar to Verizon's.

On the receiving end was a Linux host connected to the MIT Ethernet. Both the



sender and the receiver have their clocks synced through an NTP server.

3.1.2 Sending Voice Data

Voice over IP technologies were used to transmit audio through the WWAN links. As

mentioned in Section 2.4 Speex was used to encode voice data. Input data was an

uncompressed PCM file in the WAV container with a sampling frequency of 96kHz

and a bitrate of 4608 kbits/s'. This data was encoded by Speex with a sampling

rate of 8kHz and a bitrate of 18kbits/s. These values are comparable to the network

values for cellular voice networks.

We decided against keeping a buffer at the sender's end because of the effective

use of forward error correction and link-layer acknowledgments in WWANs. Also, for

a real-time application like audio, lost packets are abandoned after a certain period

of time for the sake of continuity.

Speex also provided us with the ability to create Application Data Units (ADU)

of the same size as of the data packets sent at the link layer. This got rid of added

complexity involved with creating complete ADUs at the receiving end, especially in

the case of lost/corrupt packets.

Work has been done in the past to determine the optimum packet size for trans-

mitting data over WWAN. It has been found that the round-trip-time distribution

of small and medium packets (768 bytes and smaller) is different from the round-

trip-time distribution for larger packets (1024 bytes or more). The average median

round-trip-time for large packets is over 500ms larger than the average median round-

trip-time for smaller packets and the inter-quartile range for larger packets is 100ms

less than this range for smaller packets. Also, medium and small packet transmissions

are highly inefficient on the link, but for packets larger than 768 bytes, packet size

has no impact on throughput.[53].

For the purpose of our experiments we found that packet size of 512 bytes was

optimum. We did not experience any sort of inefficient transfer or extra latency, and

Speex provided us with a better audio encoding for this size compared to 768 bytes.

'This low compression meant input data was almost as good as analog sound in quality



3.1.3 Receiving Voice Data

It has been shown that packet loss rate on WWAN links is very low ( P 1%)[53].

On the other hand, WWAN links suffer from high and variable round trip times,

occasional outages and considerable burstiness. Hence, we require a robust buffering

scheme on the receiver's end to decrease jitter and have a smooth playback. We also

want the ability to turn off the buffering scheme for some of the experiments.

The voice data arrives at the receiver as a User Datagram Protocol (UDP) stream

through the Ethernet. Even though Speex provides us with an in-built jitter buffer,

we decided to disable that option and implement our own buffer. This way we have

more control over the parameters associated with the buffer.

Considerable amount of research has been done on buffering schemes associated

with multimedia streaming[51, 36, 55]. Our implementation was optimized for net-

work parameters associated with WWAN[53]. The buffering scheme added an extra

50ms to the playback delay (and end-to-end latency) of the system. This may seem

too high a delay, however, it was required to counter the burstiness of the WWAN

link.

Speex is optimized for fast decoding of the audio frames. For the narrowband

operation (8 kHz) of our system, decoding takes 20ms[60]. This is a small and

acceptable delay and its value is less than the delay introduced by the other codecs

we tested. Instead of playing back the received data, we save the decoded audio

stream on a hard drive with the associated timestamps.

3.2 Cellular Voice Networks: Experimental Setup

3.2.1 Hardware

We used a Motorola RAZR V3m cellular phone, enabled with a Verizon wireless ser-

vice plan, for the CDMA experiments. Motorola offers a software suite[9] that facilitates

interfacing with the phone. For the GSM experiments, we used a Nokia N80 cellular

phone, enabled with a Motorola wireless service plan. This phone runs Symbian OS



that supports Python applications.

On the receiving end was a host running Windows XP SP2. It was interfaced

with two external USRobotics 56K USB Voice Modems which connected to the public

switched telephone network (PSTN) through two separate landlines. Both modems

featured V.92 enhancements that facilitated call recording by sending uncompressed

PCM data to the computer.

The drivers for many internal modems cannot tolerate more than one of the same

device inside a single computer (on both Linux and Windows XP). Symptoms of

incompatibility include crashes, blue screens of death, or simple inoperability of all

but a single modem. External serial modems do not have this limitation because

each modem contains its own microprocessor and is unaware of other modems on the

same host. USB modems may or may not have this problem, because some USB

modems are simply serial modems with a "USB-to-serial" converter chipset (in which

case there should be no problem), and other USB modems are "host-controlled" and

are essentially externally-attached internal modems (in which case the problem may

persist). We chose the external USRobotics 56K USB Voice Modems because they

have a "USB-to-serial" converter chipset that allowed us to receive two calls at the

same time. Unfortunately the drivers for the modems failed to work on Linux and

we were forced to use Windows XP for the experiments.

The sender, the receiver and the Nokia N80 cellular phone have their clocks synced

through an NTP server.

3.2.2 Sending Voice Data

For cellular voice networks like CDMA2000 and GSM, the compression scheme for audio

transmission is hard coded into the hardware (cellular phones). Transmitting voice

data involved sending the voice audio to the cellular phone with minimum delay. We

achieved this on the Motorola RAZR V3m cellular phone by connecting it to the

computer through USB 2.02 and sending uncompressed voice audio to the phone's

input. This ensured that all signal degradation happened inside the network. Also,
2USB 2.0 offers a bandwidth of 480 Mbit/s which is higher than the bitrate of the voice audio



because of the high transfer rate associated with USB 2.0, there was virtually no

delay involved with the transfer of the audio to the phone. It was easier to send voice

audio through the Nokia N80 cellular phone. The uncompressed voice audio was

transferred to N80's memory. Using the Python bindings to the underlying Symbian

OS, the audio was directly fed into the phone input. This eliminated any delay

in audio transfer, and any signal degradation before the data entered the cellular

network.

Both cellular phones were operated by hand. In case of a dropped call, a new call

to the network was placed manually. This process could have been automated on the

Nokia N80 but not on Motorola RAZR V3m. We decided to do it manually for the

sake of consistence.

3.2.3 Receiving Voice Data

Using external modems allows us the ability to record two incoming calls simulta-

neously. We originally intended to implement an application to capture data from

both the modems and save it on a hard drive. However, a quick search led to many

telephone recording software including "Yet Another Telephony Engine" (Yate)[16],

"TRx Phone Recorder" [14] and "Modem Spy" [8]. We decided to use Modem Spy for

our experiments because it has a small footprint (unlike Yate which is a telephony en-

gine), is free for academic use, and it lets us save the incoming audio as uncompressed

PCM (along with the associated timestamps). Thus, no audio compression happens

either when the modems transmit the voice data to the computer or when the ap-

plication saves this data to the hard drive. This ensures that any signal degradation

present in the data is due to the characteristics of the network.

3.3 Motion Experiments

Experiments to determine the effects of motion were carried out by placing the laptop

inside the MIT "Boston-West" safe-ride (route shown in Figure 3-1). The safe-ride

is a shuttle service that follows a fairly constant path, making frequent short stops,



Figure 3-1: The Boston-West saferide route

moving from the MIT campus into Boston over the Harvard bridge, moving east onto

the Boston University campus, and then back to MIT over the BU bridge. Since all

motion experiments were carried out late in the evening on a weekday, no adverse

traffic conditions hampered the motion of the vehicle.



Chapter 4

Experiment Design and Results

This section describes the various experiments we performed using our testbed and

their results. As discussed in Chapter 2, the Quality of Service metrics we will be

studying are latency/jitter, reliability and perceived QoS. We decided not to analyze

bandwidth because it is hard coded into the cellular voice networks. We are also

unable to accurately measure response time because our test system is uni-directional.

However, latency will provide us with a good estimate about the response time as

well.

The aim of our experiments was to clearly differentiate between the two types

of networks in terms of the QoS metrics. We were also interested in studying how

mobility affected our results because the general user of a cellular network is most

likely to be on the move when communicating with someone.

We divide our experiments into two distinct groups. All experiments related

studying frequency response and phase variations are grouped together under per-

ceived QoS. Experiments studying delay, jitter and reliability are banded together

under latency. We are including reliability in the second group because it is a dis-

crete value (dropped calls) under cellular voice networks, and it gets translated into

latency (buffering, retransmissions) in WWAN.

As discussed in Chapter 3, cellular networks encode voice data at P 23 kbit/s

(e.g., the GSM Enhanced Full Rate speech codec (EFR) uses 12.2 kbit/s for speech

coding and 10.6 kbit/s for error correction) with a sampling rate of 8kHz. To have



a fair comparison, we encode voice data with Speex at 18kHz (with a bandwidth of

5kbits/s overhead for retransmissions) with a sampling rate of 8kHz in WWAN.

4.1 Latency related Experiments

These experiments were designed to establish the inherent latency associated with

both types of networks. For a realtime application like voice communication, an end

to end latency of more than 250ms is not considered good[37]. Our aim in designing

these experiments was to minimize the latency by as much as possible. This involved

avoiding slow codecs, fast data transfers to and from the network interfaces, etc.

As latency is our biggest concern here, we ignore issues about data quality (they

are dealt with in the next section) and concentrate on data arrival patterns. To sim-

plify our task, we input a specialized signal to the networks and study the variations

in the output. All of the experiments in this section use the same clip for consistency.

The testbed setup remains the same as well; only the way we send and receive our

data varies.

4.1.1 Input Data

Our specialized input is a amplitude varying blip signal with a frequency of 2Hz. The

reason we chose such a signal was the ease of analyzing latency by comparing the time

difference between adjacent blips. By studying these time intervals we can ascertain

the latency characteristics of the underlying networks. We vary the amplitude to

make it easier for use to differentiate between the different blips on a cellular voice

network (we use timestamps for this purpose on WWAN).

We calculate average latency between two blips for each set of 5 blips (varying in

amplitude from 0.2 to 1.0), and plot the results for each experiment. This way we can

observe how the networks changes over time with respect to latency and reliability.

Note about the graphs
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Figure 4-1: Input Data for Latency Experiments

For all the experiments in this section we output graphs plotting the time between

blips in the received data against time at the receiver. We chose to represent our

results this way because it helps us visualize the QoS metrics we are studying. E.g.,

in all graphs, the very first spike represents the initial end to end latency of the

system. It is the time from the instance a packet is sent by the sender to the instance

it is played back at the receiver' (or saved to the hard drive). Both the sender and

the receiver have synchronized clocks by connecting to an NTP server before hand.

After the first spike, the rest of the graph displays the variation in this latency of the

system, and also how the system reacts to it.

4.1.2 Experiment 1: Stationary Source, Single Network

These experiments involved transmitting voice data from a stationary source to a

stationary destination for both types of networks. We use the results of these exper-

iments as a baseline for the experiments involving motion.

1It includes the initial delay caused by buffering for the relevant systems
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We run these experiments on single networks (we do not take advantage of network

overlap). This is because both WWAN and cellular voice networks perform very well

when the source is stationary. Also, latency can not be decreased by using more than

one WWAN because of the real-time nature of the application.

Even though our goal is more about comparing the two different types of networks

than all the individual networks, we run our experiment on all four networks available

to us: CDMA2000 1xRTT, GSM, CDMA2000 1xEV-DO and GSM EDGE/EGPRS.

Cellular Voice Networks

For both CDMA200 1xRTT and GSM, the results of the experiments are attached in

Figure 4-2. As we can observe, there is very little difference in the behavior of

both networks. There is jitter spread above the 500ms line (the actual time interval

between blips), but it is at all times below 250ms.

GSM is a little better than CDMA200 1xRTT in terms of worse latency. However, the

mean latency in case of CDMA200 1xRTT (558ms) is better than that of GSM (591ms).

It is also worth mentioning that there were no dropped calls during our experi-

ments.

WWAN

We first ran the experiment without any sort of buffering at the receiver. There

was a huge variation in the latency over time, and the whole system was highly

unsuitable for a real-time application.

With the use of buffering we were able to steam out the huge jitter involved with

the network. However, buffering meant there was an initial 50ms of delay added to

the latency.

Figure 4-3 graphs the average latencies for both WWAN networks. The graphs

have two interesting features. The first is the very small jitter during playback time.

This jitter is actually even less than that of cellular voice networks (f 15ms). The

second are the blips spread throughout the graphs. The blips represent the time
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waiting for the next packet while the buffer is empty. These values are the sum of the

latency of the underlying network and a latency of 50ms introduced by the buffering

algorithm.

These blips introduce huge latencies in the system, worst being 362ms in the case

of CDMA200 1xRTT and 319 in the case of GSM. These latencies are more than our

threshold of 250ms.

4.1.3 Experiment 2: Mobile Source, Single Network

As observed in the last section, CDMA200 1xRTT and GSM have almost the same network

characteristics. Similarly, CDMA200 1xEV-DO and GSM EDGE also have comparable

network characteristics. Therefore, we decided to use just one networks from both

the groups for this experiment.

This experiment had the same settings as the last except for the fact that the

sender was in a mobile vehicle. This was motivated by the fact that most people use

cellular networks while on the move.

Cellular Voice Network: CDMA2000 1xRTT

Figure 4-4 graphs the average latency observed from a moving source. There is at

least 90 ms of latency in the system. Also, there are times when latency shoots up by

a big amount and stays the same for a while. These were the "hand off' times when

the phone was negotiating with another cell tower. This graph does not show any

dropped calls as that would be represented by a period of no activity. On average,

we had 3 dropped calls every 15 minutes.

WWAN: CDMA2000 lxEV-DO

Figure 4-5 shows the results for this experiment. In comparison to a stationary

source case, the average jitter in the playback state was much higher ( 90ms). This

was because of the huge variations in the arrival time of packets, the buffer was never
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Average latency for CDMA2000 IxRTT (Mobile Source)
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Figure 4-4: Latency for CDMA2000 1xRTT network with a mobile source

actually full. We could have decreased this jitter by increasing the initial buffering

time from 50ms, but decided against that.

On average, the waiting time for the blips also went up. In the worse case, we

had a latency of 700ms added to the original 500ms.

4.1.4 Experiment 3: Mobile Source, Multiple Networks

This experiment was similar to Experiment 2, but we sent data on two networks

instead of one. Later on, we analyzed the received data merged the two streams

into one stream with less errors. Merging was done by comparing both the streams

for uniform time intervals, and choosing the "best" of the two for that interval. By

"best" we mean the signal with the higher amplitude for cellular voice networks, and

available packet with that time stamped for the WWAN.
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Figure 4-5: Latency for CDMA2000 1xEV-DO network with a mobile source

For this experiment both cellular phones were connected to the laptop through

USB. This ensured that the data was transferred through both of them at the same

time. The final merged stream (Figure 4-6) was much smoother than the result for a

single mobile source. There is jitter, but it's less than 250ms and comparable to the

jitter for a single stationary source.

WWAN

Same packets were sent on both the CDMA2000 1xEV-DO link and the GSm EDGE

link. The end result was better than Experiment 2 (see Figure 4-7). The average

jitter went down to 15ms, as in the case of a stationary source. The playback waiting

periods (the blips) were lower than in case of a single mobile source, but still a lot

higher than a stationary source (the worst case being 560ms).
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4.2 Perceived Quality of Service related Experi-

ments

These experiments were designed to study and analyze the changes in the quality of

the audio as noticed by a human being. Humans auditory system is able to distinguish

between the different frequencies contained in a sound. Generally referred to as timbre

or tone quality, there are certain aspects of a sound that distinguishes it from another

sound even if both have the same pitch and amplitude. We quantize this notion of

timbre by analysis of frequencies and phase variations in the received audio.

These experiments are geared towards getting the best output and ignoring latency

(we covered latency in the last section). Therefore, we will only be comparing the

characteristics of the final received audio and not of the data arrival. Also, for all

experiments, we will be transmitting data through two networks from a mobile source

for both cellular voice networks and WWAN respectively. This section is more about

comparing the two different types of networks than all the individual networks.

We utilize the buffering scheme by default for all the experiments over WWAN in

this section. As shown in the last section, transmitting audio over WWAN channels

without using a buffer at the receiver's end leads to undesirable jittery playback.

All our experiments in this section use the same audio clip for consistency. The

testbed setup remains the same as well.

4.2.1 Voice Clip

We use a standard voice clip used by Real Networks in the comparison of their Real

Media (RM) format against Microsoft's Windows Media Audio (WMA)[11]. This

clip is an uncompressed PCM file in the WAV container with a sampling frequency

of 96kHz and a bitrate of 4608 kbits/s. It is a 14 seconds long mono clip of a woman

narrating a passage, and contains a variation of pitches as well as silence.

Figure 4-8 graphs the clip in time domain and frequency domain. As can be seen

in the frequency domain graph, most of the energy associated with the spectrum lies
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Figure 4-8: Input Voice Data, represented in Time Domain and Frequency Domain

in the to 2.5kHz range.

4.2.2 Voice received over Cellular Voice Networks

We transmitted the same voice data from two cellphones (CDMA2000 1xRTT and GSM)

while on the go. The destination host saved the received data to a hard drive, and

later both the received audio streams were merged into one stream with less errors.

Merging was done by comparing both the streams for uniform time intervals, and

choosing the "best" of the two for that interval. By "best" we mean the signal with

the higher amplitude. For all our tries, there was never an instant where both the

cell phones had dropped calls.

Figure 4-9 displays the time domain and frequency domain characteristics of the

received data. Compared to the original clip, higher frequencies gained amplitude

while smaller frequencies were attenuated. This can be observed by noticing the dip

in the frequency response graph. This dip occurs at low frequencies while higher

frequencies have a higher gain compared to the original clip. Also, there is a a
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Figure 4-9: Voice Data Received over Cellular Voice Networks, represented in Time
Domain and Frequency Domain

considerable amount of lost data noticeable in the time domain graph. It seems that

CDMA2000 1xRTT filters out lower frequencies and boosts higher frequencies on its

channels.

4.2.3 Voice received over WWAN

Identical voice data packets were sent over a CDMA2000 1xEV-DO interface and over

a GSM EDGE/EGPRS interface from a moving vehicle.. The receiver saved both these

data streams to hard drive, and later on both these streams were merged to build a

final stream. Merging was easy because each data packet had a time stamp and all

corrupt packets were already dropped by the system.

Figure 4-10 displays the time domain and frequency domain characteristics of the

received data. The output signal is comparable to the original input, though there

are certain issues. There is lost data (as observed in the time domain graph), and
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even though the signal's frequency response mimics the input's frequency response,

it has peaks at certain frequencies ( 310Hz, 1750Hz and 2800Hz). However, this

output is not clipped as was the case with cellular voice networks.
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Chapter 5

Evaluation

The preceding chapters have covered the overall design of the testbed including the

experiments and their results. This chapter compares and evaluates the obtained

results, and tries to ascertain if we were able to achieve our goals.

As described in section 1.3, we set our primary goal to prove that WWAN are

capable of voice communication that is of high quality, reliable and has low latency

associated with it. We look at each of these properties and determine how WWAN

fared against cellular voice networks.

High Quality

Figure 4-9 and Figure 4-10 provide a comparison between a cellular voice network

and a WWAN in terms of signal quality. We contrast these figures to Figure 4-8 that

graphs the input signal.

Cellular voice networks are optimized for low bandwidth voice communications.

This shows in Figure 4-9 where low frequencies are clipped and attenuated, and

high frequencies get a power boost. There is also data missing from the output in

comparison to the original.

Even though there are compression artifacts visible in Figure 4-10, the overall

quality of the output for a WWAN was higher than that of a cellular voice network.

Also, the frequency response of the WWAN was similar to the frequency of the input

signal. Figure 5-1 graphs the frequency response of the three signals (Input, Cellular
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Figure 5-1: Comparison of Frequency Response for the Input Signal, the output of a
Cellular Voice Network and the output of a WWAN

Voice Network's output and WWAN output). This is more due to the fact that Speex

is an efficient codec than to any internal network characteristic.

From the comparisons it is visible that the output from the WWAN reproduces

the original signal more faithfully compared to the output from the cellular voice

network. Therefore, we can claim that WWAN offers a higher audio quality than a

cellular voice network for the same throughput and sampling rate.

Reliability

Our goal in case of reliability was to have a WWAN voice communications system

at least as good as any cellular voice network. For most of the experiments both

WWAN and cellular voice networks were 100% reliable. The only experiments where

we faced a decrease in reliability were the ones involving a moving source. While

transmitting data over a single network, the CDMA2000 1xRTT network had an outage

at a rate as high as 3 dropped calls every 15 minutes. We did not have any sort of

complete network outage while transmitting data over CDMA2000 1xEV-DO. However,

as described in Section 2.3, WWAN have less than 1% packet drop rate. Therefore,

the notion of reliability translates into latency for a WWAN. As seen in Figure 4-5,

there is an extremely high latency associated with the results. This latency cripples

the system making it unfeasible for a realtime voice communications system.

On the other hand, WWAN fared very well in all experiments where the cellular
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voice network did not have any dropped calls. Even though the latency for WWAN

was higher than our accepted threshold (250ms), it was the latency inherent in the

underlying network, and not caused by reliability problems. We can test this by

comparing the results to the result of a single stationary sender (Figure 4-3).

Latency

Latency proved to be the greatest hurdle in our attempt to create realtime voice

communication over WWAN. For all of our experiments, the average latency for

the WWAN was over 250ms, our threshold. Even for a stationary source the end-

to-end latency was at least 300ms (Figure 4-3). Latency got worse for a moving

source, getting as high as 610ms (Figure 4-5). This was because extra time was spent

negotiating transfer between cell towers, which in turn meant lost packets that had to

be retransmitted by the link layer. Mobility also introduced a high jitter which meant

that the buffer was rarely full. We could have smooth out this jitter by increasing

the buffer size / initial buffering time, but we decided not to do so for the sake of

consistency.

We were able to decrease the amount of latency for a mobile source by using two

WWAN channels. Their overlap meant that while one channel was busy connecting

to a new cell tower or faced a very weak signal, we were able to send data over the

other channel. this decreased the latency in the network to less than 500ms.

In comparison, the cellular voice network had a very small latency associated with

it. For a stationary source, maximum latency amounted to less than 200ms (Figure

4-2). With a mobile source we would get short periods of high latency (300ms) and

large periods of medium latency (150ms) (Figure 4-5). The high latency was caused

by the cell tower hand off and could not be avoided. However, by making use of two

cellular voice networks, we were able to transmit the data through one network while

the other was busy with hand off. This smoothed out the variations in the latency,

leaving us with a maximum latency of about 200ms.

Unfortunately voice communication over WWAN was not able to meet the latency

requirement in our experiments. This latency could not be avoided because it was



a part of the underlying network. We tried to minimize any extra latency we added

to the system (50ms for initial buffering and 50ms for encoding and decoding audio

frames). Even in the best case scenario (stationary source) the maximum latency was

more than our threshold. Making use of multiple WWANs is not helpful because of

the realtime nature of voice communication.



Chapter 6

Conclusions

In this chapter we conclude the thesis with a summary of its goals and contributions

followed by proposed improvements and directions for future work.

6.1 Goals and Contributions

Our research leverages the widespread cellular wireless wide area data networks

(WWAN) to implement a realtime voice communications and tests this implemen-

tation against cellular voice networks. Our primary goal was to develop a voice

communications system comparable to the cellular voice networks in term of audio

quality, reliability and latency.

Our experiments proved that audio of higher quality can be transmitted through

WWAN in comparison to cellular voice networks for the same throughput and sam-

pling rate. We used the Speex codec for compression purposes, and it yielded better

results than the compression codecs hard coded inside cellular voice networks.

Our system was more reliable because of the lack of dropped calls. In case of a mo-

bile mission critical application, WWAN provide better support for getting the data

across to the receiver than cellular voice networks. However, the gain in reliability

translated to an increase in latency which was detrimental to our system.

Unfortunately, latency was a big problem for the system. In all experiments

latency fir the system was not only higher than that of cellular voice networks, but



also greater than the acceptable threshold of 250ms. Motion increased the latency

by almost twice, though it was reduced by making use of two overlapping WWAN.

Latency remains our biggest concern for the system.

This thesis proved that it is feasible and desirable to create a voice communica-

tions system over wireless wide area networks, even if there are some latency related

issues. This is because it provides us with a higher quality and a more reliable method

of communicating, qualities that lack in a cellular voice network. It also showed that

even though WWAN channels have high and variable round trip times, consider-

able burstiness, and much instability when moving, we can still implement stable

applications on top of it by using a robust buffering scheme and taking advantage of

overlapping networks.

6.2 Future Work

Our implementation of a one-way voice system was more of a proof-of-concept than a

deployable, real-world system. Much additional work is possible on developing such

a system. The following are few of the obvious possibilities:

Bi-Directional Audio System

We implemented a uni-directional voice system because of a lack of time for the added

complexity. It will be a good experiment to study two way communication and to

extend our study of latency to response time. WWAN are asymmetrical networks in

term of bandwidth and latency, and a study of this asymmetry would be helpful

We can also extend the system to transfer more than just voice audio. There can

be many uses for such a system, e.g., transferring medical data (EKG) or transmitting

surround sound.

Optimized Codec

Speex added an extra 50ms to the latency of the system. It is a codec optimized for

a high bandwidth network and, thus, is not tweaked for faster encoding/decoding.



A custom codec that not only is faster but is also capable of taking advantage of

overlapping networks is very desirable.

On-the-fly Stream Merge

For our experiments involving more than one channels, we saved the received data to

hard drive and merged it later to create a better stream. This approach is orthogonal

to the idea of a realtime system. A better way of merging the output streams on-the-

fly is necessary for a voice communications system.
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