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Abstract

This thesis proposes and implements ANA, a new method for the simulation of ARM
programs on the ARM platform. ANA is a lightweight ARM instruction interpreter
that uses the hardware to do a lot of the work for the read-decode-execute piece of
simulation. We compare this method to the two existing methods of full simulation
and direct execution that have been traditionally used to achieve this. We demon-
strate that despite some setbacks caused by the prefetching and caching behaviors of
the ARM, ANA continues to be a very useful tool for prototyping and for increasing
simulator performance. Finally, we identify the important role that ANA can play in
our current efforts to virtualize the ARM.
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Chapter 1

Introduction

We propose ANA, a method for performing ARM code execution on ARM platforms

that seeks to combine the advantages of two traditional approaches to the problem:

full simulation and direct execution. We analyze the tradeoffs between these two ex-

tremes and describe where our hybrid approach fits in and how it performs. Through

experimentation, we show that ANA offers a simple and efficient solution for execut-

ing ARM code that takes a different set of tradeoffs from its predecessors. Such a

method will allow an entire computer to be simulated under a controlled environment,

and achieving this brings us closer to the vision of virtualization onto the ARM.

1.1 Problem Statement

The main goal of a simulator is to be able to execute a program (usually distinguished

as a "guest program") inside a controlled environment without the guest knowing that

it is being simulated rather than executing on real hardware. As such, there needs to

be a way to simulate the hardware architecture in a detailed enough manner to serve

as a substitute for the real thing [10].

A lot of the work in creating a simulator lies in building the proper infrastructure.

For example, memory needs to be simulated in a way to allow the guest code to

use any part of the virtual space of its choosing. Interrupts and exceptions must be

handled correctly somehow, since guest code will sometimes expect to trap to get the



right behavior [1]. Most of these tasks have previously been done for simulating next-

generation hardware, or to do performance profiling of new techniques (i.e. different

ways of caching) on existing machines.

We are concerned with a different problem, however, of simulating the same ar-

chitecture as the hardware it's running on, since our ultimate goal is to create a

simulator capable of running a virtual machine. While this has also been done by

many others, it has been on high performance computers that have plenty of resources

to work with. On low performance computers such as the ARM, processor speed and

memory constraints become a major concern. We must seek to minimize both CPU

and memory overheads if we hope to have an ARM on ARM execution model that

can be used in applications like virtualization.

1.2 Full Simulation vs. Direct Execution

The traditional approaches of full simulation and direct execution offer two diametric

views of the solving same problem. Full simulation interprets ARM instructions as

they come, which has the advantage of runtime flexibility and control. To get this,

however, full simulation pays a significant price in terms of number of instructions

needed to execute a single ARM instruction. Direct execution, however, pays for this

up front via a method called binary translation (more detail on how binary translation

works are in the following chapters). This initial cost is then amortized over the course

of execution because the translated instructions can run directly on the hardware with

no additional overhead. The effect of binary translation on improving performance is

further emphasized by the fact that most execution consists of loops, amortizing the

one-time cost of binary translation. This makes direct execution perform a lot better

than full simulation in almost all cases. However, direct execution does not benefit

from the same amount of flexibility and control that full simulation offers.



1.3 ANA: Our Solution

We propose ANA as a method for achieving reasonable performance while retaining

the flexibility of full simulation. Our simulation starts off with a full simulation model

but utilizes direct execution to carry out the interpretation and execution on a per

instruction basis. For straight-line code, per instruction direct execution has a lower

overhead than the traditional binary translation approach. In this thesis, we show

the effects of such a design in terms of the tradeoffs in performance relative to the

two traditional approaches.

We then report our efforts to implement this technique and list some of the chal-

lenges we encountered. We discuss possible solutions to these problems and the

tradeoffs made by each of these. Though it becomes apparent that, given the limita-

tions of the architecture, ANA does not achieve the performance we hope it would,

it still possesses much value and may have some very good use cases.

We then demonstrate the importance of this solution in the context of applications

such as virtualization. We discuss the aspects of virtualization where ANA may be

useful.

1.4 Thesis Outline

The rest of this thesis is outlined as follows:

Chapter 2 describes and analyzes the two currently used approaches for ARM on

ARM. It also discusses previous work and related work in those areas.

Chapter 3 provides some relevant background information on the ARM architec-

ture and instruction set.

Chapter 4 describes ANA, presents our implementation of ANA, and analyzes its

tradeoffs and benefits.

Chapter 5 describes our implementation challenges and their solutions, as well as

their implications on the applications of ANA. We also discuss the impact of ANA

on our ongoing efforts to virtualize the ARM.



Chapter 6 concludes, discusses future work on ANA, and summarizes our contri-

butions.



Chapter 2

Previous and Related Work

In this chapter, we describe more fully the two traditional approaches of full simulation

and direct execution. We also discuss previous work that has been done on these

respective subjects.

2.1 Full Simulation

Full simulation is essentially a high-level interpretation and execution of guest code.

Guest instructions are decoded directly by the implementation, and the effects of

a particular instruction are carried out via updating the state of a high-level data

structure. This data structure essentially serves as the "virtual machine state" of the

guest program, making the guest think that it is running on a real machine. Figure

2-1 shows a simplistic view of what a simulator might do for a given instruction.

In this figure, we can see that the virtual machine state consists of all the register

values in the CPU running the guest program in combination with a representation

of memory.

Examples of a typical full simulator include Bochs [8] and Skyeye [15]. Created to

simulate the x86 architecture, Bochs has a large loop that models the fetch-decode-

execute behavior of a CPU as described above and in Figure 2-1. Main memory is

represented in Bochs by a large array of memory within the simulator. Because the

implementation resides on such a high-level, full simulators like Bochs have an advan-
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Figure 2-1: Instructions are decoded by a switch statement and then executed by
updating the appropriate registers in the virtual machine state.

tage of portability across different host machines. SkyEye is similarly implemented

on the CPU emulation side but for the ARM instead.

Full simulation also has the advantage of allowing the simulator to always have full

control over the hardware at all times. This effectively gives the simulator a great deal

of control and flexibility for handling each instruction as it arrives during runtime.

For example, the simulation may pause in between guest instructions or sometimes

even in the middle of executing a guest instruction. Alternatively, a simulator may

decide to handle the same instruction differently depending on the state of the virtual

machine.

This, however, comes with a fairly large price, both in terms of implementation

and runtime costs. Full simulators pay a hefty implementation cost because they

need to interface to every piece of critical hardware that the guest code may need

to interact with. As shown in Figure 2-2, a simulator needs to effectively simulate

different kinds of hardware in its machine state for certain types of programs. But

perhaps the largest factor in the overhead for creating a full simulator lies in the

decode-and-execute module. This piece needs to essentially have an implementation

for every single instruction. Typical simulators as a result have thousands of lines of

code to achieve this level of instruction support.
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Figure 2-2: A full simulation implementation will typically need to have its own
interfaces to individual hardware devices.

In terms of runtime performance, because everything is handled at such a high-

level, the ratio of actual machine instructions needed to carry out a single guest

instruction is very high. On a typical simulator, this ratio can range from 10:1

to 100:1 or even more. The result is a considerably large slowdown for simulating

guest code, and this is undesirable for performance-critical applications. The ratio

is especially pronounced for ARM data processing instructions, where two levels of

interpretation are necessary to correctly simulate them.

Despite this, full simulation is still an attractive option for those who would like

control. As a result, a fair amount of work has been placed into optimizing the

performance of full simulation implementations.

SimOS [10] is a full simulation system that optimizes performance by switching

hardware simulation modules on the fly depending on the current task being run.

These modules had varying levels of detail with respect to the actual hardware they

were supposed to be emulating. Thus, by choosing shallow implementations for hard-

ware that a particular task did not need, SimOS is able to achieve better performance.

With these techniques and others, SimOS performs at about a 200:1 ratio to full sim-

ulation performance.

Simics [7], another full system simulator based off SimOS, overcomes the imple-

mentation hurdle of the interpreter by developing a specification language, SimGen,

to encode various aspects of their target instruction-set architecture. The creators



also optimize their interpreter using partial evaluations whenever they can, depending

on their target specifications.

2.2 Direct Execution

Direct execution is a solution designed to achieve the best performance possible by

using the hardware to do most of the work. The basic idea behind direct execution

is to allow the guest code run on the hardware itself. In order to do this, an imple-

mentation must first overcome some potential problems before it can safely execute

guest code directly:

1. Guest code may not necessarily be able to access all the memory it thinks it

has access to. The simulator has a limited address space available to it, but the

guest code running inside the simulator has no knowledge of this.

2. Guest code may generate faults or traps. This is bad for the simulator because

if a trap occurs during guest code execution, the simulator has essentially lost

control of the program.

3. Guest code may contain privileged instructions, while the simulator is running

in User mode. This may result in certain instructions trapping or failing silently.

Binary translation, the process of translating one set of instructions to another

so that it may be safely run directly on the hardware, is commonly used to address

some of these issues. It may, for example, translate the guest code such that the

translated code will only access areas of memory known to the simulator. Another

common method to address (2) is modifying the trap vectors to return control to the

simulator [10].1

There are two types of binary translation: static translation and dynamic transla-

tion [1]. Static translation performs the entire translation prior to execution. While

1Because of these requirements that direct execution must fulfill in order to even work in most
cases, any use of the term "direct execution" in the rest of this thesis refers to this kind of protected
execution.



static translation offers more opportunities for optimization, it is more difficult to do

and typically requires end-user involvement. Dynamic translation, on the other hand,

performs this translation at runtime and caches the result. Code is therefore trans-

lated on demand. The translation step in either approach is not cheap, however, since

it must at some point or another be done over the entirety of the guest code that is

executed. The performance gain comes from the fact that this cost is amortized over

the number of instructions executed on the hardware. This number is usually very

large compared to the actual size of the translated code because of frequent loops in

code execution, resulting in a significantly reduced amortized cost of translation.

Another advantage to this approach is the relatively lower implementation cost

from not having to write interfaces to different pieces of hardware. The guest code,

when translated properly, is free to directly interact with memory, disk, and other

i/o. The need for a large switch block like the one used in full simulation is also

eliminated here, since the instruction decoding is left to the hardware. We keep in

mind, however, that this gain in implementation cost is offset by the code needed to

perform the binary translation step.

Direct execution pays another price by sacrificing control over the code it is ex-

ecuting for performance. Unlike full simulation, a direct execution implementation

can only stop in between blocks of translated code rather than at arbitrary locations.

While the translated guest code is running, the simulator has no means of regaining

control of the hardware; it must simply wait until the program counter has reached

the preset endpoint for that particular block of code, or it must insert checkpoints

in the middle of that block. Additionally, to optimize performance, the blocks often

account for multiple instructions at a time, which means that the simulator will only

have control in between multiple instructions rather than individual ones. Direct ex-

ecution also has no straightforward way to flexibly handle instructions. It cannot, for

example, treat the same instruction differently based on the virtual machine state at

the time it is executed. Another weakness in binary translation's flexibility is that it

is fairly incompatible with any other architecture besides the source and target archi-

tectures of the translation, which contrasts starkly to the high-level of compatibility
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Figure 2-3: A direct execution implementation allows the CPU to directly interact
with other hardware devices, thus reducing the need for modules that interface to
them.

full simulators typically have [6].

Despite its weaknesses, plenty of applications rely heavily on binary translation

for its performance benefits. QEMU [2] is an emulator that demonstrates the power

of binary translation. Using dynamic translation along with a handful of other opti-

mizations, QEMU suffers only from a slowdown factor of 2 in full system simulation,

which is 30 times faster than Bochs. Even SkyEye [15], as a full simulator, has started

to use binary translation in an effort to improve performance.

Other work on binary translation include UQBT [6] and DIGITAL FX!32 [5].

UQBT is an effort to allow cheap re-sourcing and re-targetting of binary transla-

tion implementations. DIGITAL FX!32 seeks to optimize binary translation perfor-

mance by first executing and profiling its target application. It then performs static

translation on the application, using the profiling results to apply the best set of

optimizations.



Chapter 3

Background

In this section we provide some background information on the ARM architecture

and instruction set. Since this thesis deals mostly with executing ARM instructions,

we focus our overview of the architecture on the registers, processor modes, and the

instruction set.

3.1 Modes of Operation

The ARM has 7 modes of operation: User, FIQ (Fast Interrupts), IRQ, Supervisor,

Abort, Undefined, and System mode. All modes but User mode operate at a privileged

level - that is, the full ARM instruction set is available in those modes. User mode

is restricted from using a subset of instructions, which are referred to as privileged

instructions.

3.2 Processor Registers

The ARM has 31 general-purpose registers, including a program counter, and 6 status

registers. These registers are all 32 bits wide, although for the status registers, only

12 of the 32 bits are actually used.

The primarily used general-purpose registers are RO-R15. These are used to run

user-level programs. Typical ARM implementations use R11 to store the frame



pointer (fp), R12 for the base pointer (ip), R13 as the stack pointer (sp), R14 as

the link register (lr), and R15 to hold the program counter (pc). This is reflected in

the instruction set.

With the exception of FIQ and System modes, each different privilege level has

a separate set of banked registers for R13-R14. FIQ has an additional set of banked

registers from R8-R12. System mode does not have any banked registers; it shares

the same set as the normal, User mode registers.

In addition to these general-purpose registers, the ARM also has a Current Pro-

gram Status Register (CPSR). The CPSR contains bits for condition codes, interrupt

disabling, Thumb mode execution, and the current privilege level of the CPU. Each

privileged mode (except for System) also has its own Saved Program Status Register

(SPSR), which is used to preserve the User CPSR when entering into one of those

modes.

3.3 The ARM Instruction Set

The ARM instruction set has 55 instructions which can be classified into three major

categories: data processing instructions, memory access instructions, and miscella-

neous. Data processing instructions include ALU instructions and other instructions

that directly modify register data. Memory access instructions are single loads and

stores various sizes, while miscellaneous instructions include multiple-register loads

and stores and privileged instructions. Data processing and memory access instruc-

tions each have multiple addressing modes specific to them. The particular category

an instruction belongs to can be determined by looking at the opcode bits plus a few

other bits of the instruction.

The instruction set is characterized by many irregularities, making it difficult

to decode. Instructions of different categories and subcategories will have different

encodings. For example, the opcode field is only present in data processing operations,

and a separate set of bits are used to determine if an instruction is a data processing

instruction in the first place. In other cases, an interpreter has to check combinations



syntax operation
#<immediate> Immediate operand
<Rm> Register operand

<Rm>, LSL #<shift_imm> Logical shift left by immediate
<Rm>, LSL #<Rs> Logical shift left by register

<Rm>, LSR #<shift_imm> Logical right left by immediate

<Rm>, LSR #<Rs> Logical shift right by register
<Rm>, ASR #<shift_imm> Arithmetic shift right by immediate
<Rm>, ASR #<Rs> Arithmetic shift right by register
<Rm>, ROR #<shift imm> Rotate right by immediate
<Rm>, ROR <Rs> Rotate right by register
<Rm>, RRX Rotate right with extend

Table 3.1: All the possible shifter operand computations for data processing instruc-
tions..

of various single bits across the instruction in order to correctly decode it. We suspect

that these irregularities resulted from numerous extensions over the generations, and

old instruction encodings were left to ensure backward compatibility.

Even after decoding an instruction, an ARM interpreter may have more work to

do. For example, data processing operations have shifter operand field. This shifter

operand can be handled in 11 different ways depending on the kind of data operation

specified by the instruction. Table 3.1 lists of all the processing modes that are

possible for a shifter operand.

This additional level of operand processing effectively adds another addressing

mode for data processing instructions, making it difficult to efficiently decode and uni-

formly process data processing instructions in one single step. What this ultimately

means is that any implementation that decodes the ARM instructions requires an ad-

ditional, nested switch block to determine the appropriate shifter operation for data

processing instructions. The alternative to this is the equally unattractive choice of

a one-level switch statement that has all the combinatorial possibilities of each data

instruction with their different shifter operand modes. This complexity causes any

attempt to create a full simulator for the ARM to have a very large interpreter. For

example, SkyEye's [15] ARM interpreter is implemented with approximately 5600

lines of C code.



The one fortunate feature of the ARM instruction set is that it has uniform regis-

ter argument locations. If a particular register argument is present in an instruction,

we can be guaranteed to find it in the same place regardless of the instruction. Each

instruction can have a maximum of 4 register arguments: a base register Rn, a desti-

nation register Rd, a shift register Rs, and an operand register Rm. Checking which of

these registers are present in an instruction is also a relatively straightforward task.



Chapter 4

ANA

With an understanding of the tradeoffs between full simulation and direct execution,

we now propose a model for ARM on ARM execution that tries to gain the perfor-

mance benefits of direct execution while retaining the control and flexibility of full

simulation.

4.1 Concept

The basic idea behind ANA is to exploit the hardware to decode and execute each

instruction as it comes without handing over control of the CPU to the guest. The

steps for doing this is as follows:

For each instruction:

1. Rewrite the instruction to use 4 preset registers.

2. Setup an execution CPU state with the correct values for those 4 registers,

where these values are taken from the virtual CPU state.

3. Save the real CPU version of these 4 registers.

4. Load the execution CPU state onto the real CPU.

5. Load the rewritten instruction into the PC and execute.



instruction transformation
instruction: add r14, r15, rl

RN: 15 <--> 1

execution cpu state setup
I I

exe c'ni r rt -- = irt . r'nl m re'i1 i-5
RD: 14 <--> 2 -I - c ,-.RD: 14<-->2 exec_cpu.reg2 = virtualcpu.regl4
RM: 1 3 exec_cpu.reg3 = virtualcpu.regl

transformed: add r2, rl, r3

execution virtual cpu state
update

save hardware rl-r5
load exec rl-r5 exec-area virtualcpu.regl5 =
save return loc to r5 exec_cpu.regl
jump to exec-area add r, rl, r3 virtual_cpu.regl4 =

exec_cpu.reg2
save exec rl-r5 I.dr pc, r5 virtualcpu.reg =
restore hardware rl-r5 execcpu.reg3
return -

I I

I __I

I II

I.- - - - - -- - - - - - - - - - - - - - .s- - - - -

Figure 4-1: An instruction is first transformed to use our preset registers. We then
execute the transformed instruction by setting the PC to its location in memory
followed by an instruction that immediately returns the PC back to the simulator.

6. Write back out the 4 registers from the real CPU to the execution CPU.

7. Restore the original 4 registers from their backup location.

8. Update the virtual CPU state by reverse-mapping the execution CPU state.

Figure 4-1 illustrates the transformation and execution steps more clearly.

There are several reasons why the instruction transformation process is used.

First of all, by limiting the set of registers being used by all incoming instructions,

we only need to save and restore 5 registers for executing the instruction as well

as for preserving the actual CPU state (which contains the state of the simulator

program itself). It should be noted, however, that this savings in overhead is offset

by the routines needed for properly transforming an instruction. A second, more

important reason is that a full register set switch is simply not possible to do without

the danger of losing complete control of the processor. For example, if the guest
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instruction modifies the PC or the frame pointer, there would be no effective way

for the simulator to regain control of the program. By transforming the instructions

and carefully choosing the 5 registers we use, we can fully control which registers get

modified. (It is worth noting here that we could check to see if the one of the registers

was the PC or the FP, but this requires a lot of conditionals because they could be

in one of two possibly-affected registers. One could perhaps optimize by doing this

check and only remap registers if necessary, assuming that the cost of this check is

less than the cost of the remapping process.)

4.2 Implementation Details

To obtain actual results on the performance of our proposed method, we set out to

implement a simple user-level version of ANA that can execute user level programs

in an ARM Linux environment. Execution of a user level program involves setting up

a virtual CPU data structure and then interpreting and executing the instructions of

the program on that virtual state.

Our ANA simulator performs all data processing instructions and all single-register

loads and stores using our method. Multiple loads and stores, branches, and other

miscellaneous instructions were implemented via full simulation. Since we expect user

level programs to only touch legal areas of memory, we simply pass memory accesses

through to the hardware. The only complication to this approach arises from having

to set up a stack for the guest so that it would not conflict with the stack of simulator

itself. To do this, we allocate a large static array in the program and then initialize

the virtual CPU state's stack pointer register the array's location.

The simulator itself runs a loop that executes guest instructions. After each in-

struction, it updates the virtual CPU state and increments the guest PC until it

reaches an end address specified by the user. We have a function, go(), that ini-

tializes the guest state and makes a call to the function that does the actual work,

singlestep(). single_step() performs a read-decode-execute for a single instruc-

tion. This function does a basic check on the instruction to decide whether it is a



data or memory processing instruction or if it is an instruction that needs to be

fully simulated. If it is a data or memory processing instruction, it is then passed

to a direct_exec () function that carries out the direct execution of the instruction.

Figure 4-2 shows excerpts of the direct_exec() function.

The direct_exec() function transforms the guest instruction to use 4 preset

registers (registers 1-4) and stores it into run []. It sets up the appropriate hardware

state (preserving the simulators hardware state) and then jumps to run [], where it

executes the single transformed guest instruction before returning to direct exec ().

At this point, the remainder of the function simply cleans up and updates the guests

virtual CPU state before returning.

4.3 Initial Analysis of ANA Overhead

An initial estimate on the performance of ANA can be done by looking at the number

of instructions a typical path through a directexec () sequence will take:

* 20 instructions to transform the instruction to use the preset registers

* 12 instructions to save and restore the real CPU register state

* 12 instructions to swap the fakecpu registers before and

* 16 instructions to set up the preset registers and extract the results from them

* 6 instructions to load and execute the rewritten instruction with a proper return

instruction afterwards

If, on average, a full simulation implementation requires more than 66 instructions

to execute a particular ARM instruction, then our approach gives us a performance

boost across the board in addition to having a much smaller memory footprint. While

this may appear to be a big number, we can expect, at least for certain data processing

instructions, to outperform full simulation because of the extra overhead incurred by

the need to calculate the shifter operand.



uint32 run[4];
void direct_exec(uint32 instr, union cpustate &vcpu)

struct smallcpustate fake_cpu, real_cpu;
// find out what type of instruction instr is
// modify the instruction so that the registers
rep_intsr = xform_instr(instr);

// setup memory area where the cpu will jump to
run[0] = repinstr;
run[1] = Oxe596fOOc;
run[2] = &run[O]; // we set a register here so

// bring the pc to run[O]

are remapped

ldr pc, register will

// swap registers 1-4 with RN, RD, RS, RM
fake_cpu.regs[1] = vcpu->regs[RN(instr)];

fake_cpu.cpsr = vcpu->cpsr;

asm volatile(
- read hardware cpu regs 0-6 and cpsr into real_cpu
- load fake-cpu into the hardware cpu

- set r6 to point to run[2]
- set run[3] to point to pc+4
- ldr pc, r6
- save hardware cpu back into fake_cpu
- restore hardware cpu from realcpu

// update RD (do not support LDR/STR with writeback)
vcpu->regs[RD(instr)] = fake_cpu.regs[3];
vcpu->cpsr = fake_cpu.cpsr
return;

Figure 4-2: Partial code and pseudocode for the direct_exec() function.



We could also perform further optimizations of this process to reduce the overhead

of instruction rewriting and execution. For example, as mentioned in the previous

section, we could get rid of the instruction transformation and register swapping

process if we could devise a way to check for the PC and FP as as modifiable register

arguments. Another approach may be to keep the register switching, but to execute

more than one instruction at a time using the same four registers. If we can force

the compiler to not use registers R1-R5, then we don't need to save and reload those

registers after each instruction. Instead, we would only need to save the destination

(and possibly the base) register each time.

Another benefit of this implementation is that it essentially covers almost all

of the ARM instruction set without a large implementation cost or a large space

requirement. This makes it an ideal way for prototyping applications that require an

interpreter, especially if optimal performance is not extremely important.



Chapter 5

Results and Analysis

In this chapter we will describe our attempts to benchmark our ANA implementation

on two Nokia devices, the problems we encountered, and an analysis of the results of

our attempts.

5.1 Methodology

Our benchmarking methodology was a measurement of the time it took to complete

the following Fibonacci calculator program:

int fib(int n)

(

if (n == 0) return 0;

if (n == 1) return 1;

return fib(n - 1) + fib(n - 2);

Our ANA implementation was developed on an ARM Linux environment called

Scratchbox [11]. Scratchbox is a toolkit that with the capability to cross-compile code

for the ARM on an x86 platform. Additionally, it can integrate with QEMU to run

ARM code on the same x86 host. Our initial tests were performed on Scratchbox

before the binaries were run on the N770 and the N800 Internet Tablets.



5.2 Challenges

Unfortunately, we were unable to successfully execute the code on either the N770 or

the N800 to obtain any measurements on the devices themselves. The program ran

perfectly on the emulator on an x86 host, but that behavior could not be replicated

on the hardware.

On the N800, direct_exec() seemed to fail on executing the transformed in-

struction. In an attempt to debug this, we compiled and installed GDB on the N800

to step through the code. Unfortunately, the program would work just fine when we

stepped through it in GDB, thus making it nearly impossible to debug. We also found

that the program would work unreliably if enough debug statements were inserted in

between calls to direct_exec ().

This led us to the conclusion that the most likely cause for this problem is instruc-

tion caching on the ARM. Our ANA implementation is essentially a small piece of

self-modifying code (1 instruction of modified code, to be exact). We discovered too

late that self-modifying code is handled differently per each ARM implementation.

In our particular case, the data seems to indicate that the instruction cache simply

is not being updated during each call to direct_exec(), so when the CPU jumps

to the location of the rewritten instruction, it will still be executing the instruction

thats in the cache.

5.3 Solutions

We have come up with several solutions to this problem, but each of them requires a

reasonably large tradeoff in performance. They are:

1. Flush the instruction cache line each time direct_exec() is called.

Each time direct_exec() is called and before the PC jumps to the written

instruction, invalidate the instruction cache line that the instruction resides

in. This ensures that the CPU will fetch the page from memory. The problem,

however, is that the instruction used to flush the cache is a privileged instruction.



This means that the only way this approach is even possible is to have a kernel

level module do it for the simulator. This kernel call incurs a pretty large

overhead, especially considering that it has to happen per guest instruction

that goes through ANA.

2. Mark the page that run [] resides on as uncacheable.

On ARMs that have an MMU, each page table entry has a cacheable bit (the

C bit) that marks a page as cacheable or uncacheable. Clearing the C bit for

the page where run [] resides ensures that the CPU will go to memory to fetch

the rewritten instruction each time. Since this approach requires access to the

page tables, an implementation would have to have access to a privileged level

(i.e. via a kernel module). This approach will also require walking the page

tables of the host machine to correctly find the page for run []. As a result, a

high initial overhead must be paid in order for this to be effective. Last but not

least, any other data that happens to be on the same page will suffer runtime

access performance because they are now uncacheable.

3. Use more than X number of run [] arrays in a round-robin fashion, where X is

the number of cache lines on the target CPU.

The idea here is to simply make sure that the instruction cache can never be

used to fetch any instruction in run []. The idea here is to crowd out the cache

enough so that by the time the PC returns to a particular run [] array, that

array will have already been evicted from the instruction cache and need to be

fetched from memory again. This approach sacrifices a lot less in performance

and requires no additional privilege levels to work. It does, however, suffer

very much from being implementation-specific (not all ARM processors have

the same caching behaviors or the same number of cache lines) and from having

a larger memory overhead from the extra run [] arrays.

At the moment it remains unclear which solution is the best. It may ultimately

be that each has its own use cases. If the simulator can be run directly in a privileged

mode, (1) will likely be the best approach. If the simulator must run in user mode



but can have access to a kernel module capable of properly modifying bits in the page

table, then (2) will outperform (1). However, if the ultimate concern is to have a

program that works solely in user mode, then (3) is the way to go.

5.4 Analysis

The ultimate reality that we have learned from this experience is that there is no

current way to implement ANA in a way that can outperform binary translation

or, most of the time, even full simulation. The cost incurred from ensuring cache

coherency is simply too large to be overcome at the moment. But ANA is far from

useless and still stands to have many useful applications.

One of the biggest advantages of ANA is its low implementation cost. With very

little programming effort, one can use ANA to build up a decent ARM on ARM

emulator. This makes ANA the ideal candidate for prototyping applications that

need an ARM interpreter. We certainly made good use of it in our ongoing project

with ARM virtualization: our ANA implementation was used to handle guest data

processing instructions on the virtual machine monitor. (We did not suffer problems

from the caching issue because our virtualization prototype flushed the cache after

every instruction for other reasons.) This saved us a lot of the time and effort that

writing a full interpreter for ARM data processing instructions would have taken.

Another, equally large advantage of ANA is its low space cost. This is important

especially in the context of ARM devices and applications because memory is still

an extremely scarce and valuable resource on today's ARM devices. Most simulators

suffer from large memory overheads because of the size of their interpreters. With

ANA, one can achieve the same functionality as a large, clunky simulator in a compact

piece of code - all at the cost of a slight performance decrease.

Last but not least, there may be ARM implementations that are significantly

friendlier to self-modifying code. In these cases, ANA has the potential to outper-

form most full simulators and perhaps even in some cases such as straight-line code

execution, binary translation implementations.



5.5 Virtualization

Another area where ANA continues to have promise beyond being a simple prototyp-

ing tool is the realm of virtualization. All machine virtualization techniques require

a well-featured (if not fully-featured) interpreter that is capable of handling a large

number of guest instructions. This interpreter lives in the virtual machine monitor,

where guest instructions are being executed. ANA can still be of use here for several

reasons:

* A kernel module is accessible to the virtual machine monitor and thus to the

interpreter. Either solutions (1) or (2) would be viable here.

* World switching generally results in the flushing of all caches because of a page

table switch. If these happen often enough in between instructions, the ANA

code may always be running on a clean cache.

* The VMM usually does other things after instructions are executed. If there

are enough instructions in between calls to direct_exec (), the cache will evict

the entry with the previous, stale instruction each time and fetch from memory

the latest rewritten instruction.

If any or all of these conditions are true for a given virtualization implementation,

then ANA will be a worthwhile approach for efficiently executing guest instructions

that would otherwise have been fully simulated.

More detail about our efforts toward virtualization can be found in Appendix A.





Chapter 6

Conclusions and Contributions

6.1 Conclusions

We originally set out to find a method that allowed us to perform cheap and efficient

ARM on ARM execution. One of our main goals for doing this was to be able to create

a simulator that could run on inherently resource-constrained ARM devices, so that

this simulator could be used as a major piece in ARM virtualization. We examined

the two traditional approaches of full simulation and direct execution with binary

translation and found a hybrid approach between these two extremes that had the

potential to outperform full simulation while retaining the same amount of control.

This hybrid approach yielded a framework that offers a lot of scope for optimizations

depending on the particular application and platform. These optimizations can also

be added independently of each other, giving the implementor a considerable amount

of flexibility for which ones they want to include for their particular use case.

Our discovery that the caching mechanisms of most ARM devices prevents a self-

modifying code approach such as ANA has led us to believe that while it may not

be a universal solution, ANA can still be ideal for a variety of different problems.

We proposed three possible workarounds for the issue of the ARM instruction cache,

analyzed the tradeoffs of each, and identified the instances where each one could be

used. Finally, we showed that, despite its shortcomings, ANA remains to be a very

viable candidate for prototyping a virtual machine monitor because it fulfills the role



of the VMMs instruction interpreter very well.

Ultimately, all these different tradeoffs for different approaches lead us to the

following conclusions about efficient simulation:

* Code sections that are frequently executed should be binary translated and then

directly executed.

* Short-straight line code sections should be treated on a line by line basis: if

the instruction is easy to fully simulate with relatively little overhead, it should

just be simulated. If, however, the instruction is complex, it can be directly

executed via ANA.

6.2 Future Work

Much work remains to be done on ANA and in the area of ARM-on-ARM execution in

general. For one thing, it would be interesting to see how our proposed workarounds

to the caching problem actually perform in practice. It is also unclear right now which

exact cases will ANA outperform the traditional two methods of full simulation and

direct execution in, so measurements of the system's performance still needs to be

done. A lot of the optimizations that we've mentioned in the course of describing

ANA's implementation have also yet to be tried, so a lot of work remains there as

well.

We are optimistic about the possibility that ANA will eventually evolve into a

more general solution to the problem of efficient ARM on ARM execution. While it

may not be the right solution for the problem, ANA has many principles in it that

could be used to build the right solution. Such a solution will not only allow us to

build great simulators on the ARM for the ARM, but also great virtual machines as

well.

6.3 Contributions

In summary, our contributions in this thesis are:



* Formulated the problem of executing ARM code on the ARM architecture.

* Identified the strengths and weaknesses of traditional approaches to simulation.

* Proposed and implemented a hybrid method for solving this problem, and dis-

covered the challenges to such an implementation in the form of the ARM

instruction cache.

* Designed and analyzed solutions for overcoming the caching issues and identified

the situations for which each of these solutions could be used.

* Identified the utility of ANA in the process of implementing virtualization for

the ARM.





Appendix A

ARM Virtualization

For our first attempt in virtualizing the ARM, we chose to implement a hosted model

of full virtualization. This means that the user can simply install an application on

their existing operating system, and by installing a module in the kernel capable of

performing privileged level instructions, this application is able to create a virtual

machine monitor that resides in its own, independent machine state.

A.1 Overview of the Virtualization Framework

The core idea behind a hosted virtualization framework is in the ability to world

switch a system into an entirely different memory space that is owned by a virtual

machine monitor. Guest programs operate on top of this monitor, whose purpose is

to maintain the virtual machine's state. In order to achieve this from a user level

applications perspective, several key pieces need to be in place.

1. A user level process to serve as an entry point to the entire framework (the

VMX).

2. A kernel module that allows for register save/restore and page table switching.

3. A virtual machine monitor that serves as an interface between the guest level

programs and the host.
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Figure A-1: The VMX sits on the host OS as a user process, utilizing the kernel
module to world switch into the virtual machine monitor. Guest programs are then
run on top of the virtual machine monitor in an instruction execution loop.

Figure A-1 shows a clearer picture of how these modules relate to one another.

In this setup, a world switch from the host to the virtual machine is essentially

a saving of the real CPUs state and loading in a virtual (or guest) CPU state in its

place. Along with this, a different page table must be used to present the guest the

illusion that it has access to its own full memory address space. All of this can be

done by the kernel module, which is called via the VMX as it starts. This process is

reversible to allow a switch back to the host from the virtual machine. The VMX is

also responsible for initializing the CPU and memory state for the guest.

On the virtual machine side, the VMM needs to be capable of executing guest in-

structions. This can be achieved via full simulation, binary translation, or something

in between like ANA.



Exception type Mode Normal address High vector address
Reset Supervisor Ox00000000 OxFFFF0000
Undefined instructions Undefined 0x00000004 OxFFFF0004
Software interrupt (SWI) Supervisor 0x0000008 OxFFFF0008
Prefetch Abort Abort 0x0000000C OxFFFF000C
Data Abort Abort 0x00000010 OxFFFF0010
IRQ (interrupt) IRQ 0x000000018 OxFFFF0018
FIQ (fast interrupt) FIQ Ox0000001C OxFFFF001C

Table A.1: ARM exception and interrupt tables for high and low vectors.

A.2 Exception and Interrupt Handlers

A virtual machine implementation needs to be able to handle interrupts generated by

the software and hardware, as well as any exceptions caused by the guest code, the

monitor, or the host. This is our policy regarding interrupts and exceptions:

* Interrupts should always be forwarded to and handled by the host. We are

uninterested in all interrupts because they will generally concern the host and

not the guest.

* Exceptions (or faults) need to be examined, and it must be determined whether

the fault was caused by the guest code, the host, or the monitor. If the guest

code generated the exception, we need to handle the exception in the monitor,

or in some cases, let the guest code handle it. Otherwise, the exception must

be forwarded onto the host so that it can be properly dealt with by the host

OS.

On the ARM, the exception and interrupt vectors could be found in two possible

locations, as illustrated in Figure A.1.

The N800 uses high exception vectors, so we mapped into the monitors memory

an instruction that jumped to our interrupt handler. Our interrupt handler would

then simply make a UserCall(NOP), a routine that is used to request execution of

some code on the VMX, requiring a world switch to the user and back. In this case,

the NOP specifies a non-operation, so it will effectively trigger only the world switches



with no other effects. The idea behind this is to leave the interrupt unserviced, switch

to the host where the interrupt line is still raised, let the host deal with the interrupt

on its own, and then return back to the monitor as if nothing had happened.

Handling exceptions is a significantly more complex issue, since it requires careful

examination of the machine state combined with a fair amount of deduction to decide

whether the exception needs to be handled by the monitor, the host, or the guest.

How this is exactly done is beyond the scope of this thesis. For now, our current

implementation simply exits upon an exception (whereas previously, the N800 would

simply crash because of the lack of an exception handler).

A.3 A GDB Stub for the Virtual Machine Monitor

We decided that implementing a GDB stub to debug guest code would be very useful.

In this section, I will briefly discuss the benefits of having a GDB stub for the VMM,

the differences between implementing a normal stub and one for a virtual machine,

and the way we integrated it into our framework.

As we continued to add and extend modules on the VMM to support a wider

variety of guest code, we needed to find a way to reliably stop the guest program at

arbitrary locations and inspect the state of the virtual machine. Having a GDB stub

on the VMM to debug the guest code would allow us to do exactly this and more. In

addition to breakpoint and memory read/write operations, the stub would provide

us with single-stepping functionality for debugging guest code, or in some cases, the

VMM itself.

Traditionally, there is only one way to actually implement a GDB stub for a typical

program. You need to:

1. Implement the basic read/write methods used by the stub to communicate with

the server.

2. Implement several key functions that points the stub to the exception vectors

of the host machine.



3. Modify the guest code to make the actual call to modify the hosts exception

vectors with GDBs vectors.

(1) completes the stubs functionality as a GDB server that can be connected to by a

remote debugger (via serial port or TCP/IP). (2) and (3) are necessary so that GDB

can gain control of the CPU by modifying the hosts breakpoint exception vectors to

point to GDBs own handler. This handler can then pause the guest program and

respond to the commands from the debugger.

However, since we have full control of the virtual machines CPU via the monitor,

it is possible to implement a GDB stub on the VMM without touching the exception

vectors. We can choose to simply invoke the stub from within the VMM and allow the

stub to control the read-decode-execute loop of the interpreter. Reading machine state

is simply a matter of looking at the virtual CPU struct and performing virtual memory

reads. Breakpoints could be implemented simply by keeping a list of addresses that

the monitor should stop at and hand control over to the stub. This allows for a

relatively straightforward implementation of GDB stub support on the monitor side.

Unfortunately, this will only work for instructions that get executed from the

monitors interpreter. This model breaks apart when we start directly executing guest

code on the hardware. Since breakpoints, single-stepping, and other control flow

mechanisms of the GDB stub are implemented at the monitor level, there would be

no way for the stub to take control of the hardware like a normal implementation

would allow.

A solution to this issue would be to treat the virtual machine as actual hardware

and implement the stub directly onto that. This essentially is a reversion to the

traditional method where we allow GDB to modify the virtual machines exception

vectors. However, a significant level of complexity arises from the fact that we will

need to be extra careful about when GDB should get control of the PC as opposed

to when the monitor should, since we have already modified the vectors as explained

in the previous section.

As of writing, we have implemented the first half of the GDB stub, allowing us

to effectively debug guest programs running on the interpreter. Perhaps the most
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Figure A-2: The GDB debugger client connects via TCP/IP to the server in the
VMX. Requests get forwarded through the kernel module over to the stub in the
VMM, which actually handles the request and provides information about the guest
program state.

important thing to note is that (1) needed to be implemented in a special way to deal

with the fact that the monitor has no serial or TCP/IP support by itself because in

its world, it has no access to the communication devices on the host. The way we

dealt with this was to implement the read and write packet interface as a User Call

through the VMX. We ran a server stub on the VMX (the host) that does the actual

communication with the remote debugger via TCP/IP, forwarding and responding to

packet requests through the UserCall interface. The interaction between the monitor

and the debugger is illustrated in Figure A-2.
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Appendix B

Flash Memory Access Statistics

One of the most often cited reasons for employing virtualization on embedded proces-

sors is the lack of spare memory. Indeed, memory has a linear cost and inexpensive

devices have just enough memory to keep the cost down. Luckily, many embedded

devices have the ability to add flash memory. Flash is better than disk in that one

can execute from NOR flash and one can quickly swap because the overheads are low.

This appendix provides evidence to support this claim.

B.1 Types of Flash Memory

There are two most commonly used types of flash memory: NOR flash and NAND

flash [3]. NOR flash is capable of high-speed random access but suffers from slow

writes, low density, and high cost. Conversely, NAND flash's sequential access ar-

chitecture achieves reasonable write speeds, has a much higher density, and is very

cheap [9]. However, this same architecture makes random access reads on NAND

flash comparatively slow.

The diametric properties of these two types of flash means that embedded devices

will typically employ both to cover different tasks. NOR flash is especially good for

code storage and applications that execute in place, while NAND flash offers cheap

data storage good for frequent rewriting [9].



file size read speed write speed
500k
1MB
2MB

10.65
10.59

M/s
M/s

10.77 M/s

22 M/s
24 M/s
24 M/s

Table B.1: Read/write speeds of external flash on the Nokia N800.

file size read speed write speed
500k 11.35 M/s 2.18 M/s
1MB
2MB

11.25 M/s
10.63 M/s

4.4 M/s
4.3 M/s

Table B.2: Read/write speeds of internal flash on the Nokia N800.

B.2 Results

Tables B.1, B.2, and B.3 display results from testing file reads and writes on both the

internal and external flash memory as well as the speed of RAM on the Nokia N800.

The speeds displayed here are an average of 10 trials per file size.

B.3 Analysis

These tables show several surprising results:

* External and internal flash have comparable read speeds, but external flash

outperforms internal flash on write speeds by nearly an order of magnitude.

* External flash performs writes faster than reads by nearly a factor of 2.5.

* External flash write speeds suffer a slowdown in comparison to RAM only by a

factor of 3.

file size read speed write speed
500k 78 M/s 78 M/s
1MB
2MB

78 M/s
78 M/s

78 M/s
78 M/s

Table B.3: Read/write speeds of RAM on the Nokia N800.



The results also suggest that external flash uses NAND technology and internal

flash uses NOR technology. This makes sense given our knowledge of the properties

of NAND and NOR memory.

But perhaps the most important implication of these results comes from the fact

that flash speeds are not that far away from RAM speeds. The 3:1 and 7:1 ratios are

orders of magnitude away from the access gap ratios of 5000:1 to 10,000:1 between

traditional disk and RAM [14]. This opens up a lot of opportunities for redesigning

operating systems and virtual machine monitors for embedded devices.

'It should be noted here that the internal NOR and external NAND flash performed similarly for
reads most likely because our test methods favored sequential access. If we introduced randomness
into our tests, the results would likely favor internal flash.





Appendix C

Development Environment Setup

C.1 Setting up the Nokia N800

C.1.1 Flashing To R&D Mode

Download the Flasher-3.0 utility from:

http://tablets-dev. nokia. com/d3.php

1. With the N800 unplugged and powered off, plug in the USB cable to your PC.

2. Press and hold the Home button on the N800 and power it on while holding

this button down. Once you see the little usb symbol on the top right corner of

the "NOKIA" screen, you can release the button.

3. On the PC, as ROOT, run:

# ./flasher-3.0 --enable-rd-mode

4. Disconnect the USB from the N800, and it should now boot in R&D mode.

C.1.2 Red Pill Mode

Taken from:

http://www. digitalknk. com/2007/05/2 7/howto-ruby-on-rails-on-your- nokia-n800/:

1. Open Application Manager



2. Click on the Application Menu(upper left hand corner)

3. Click on Tools and then click on Application catalog

4. Click on the New button

5. In the Web Address delete http:// and type in matrix

6. Click on Cancel

7. This will bring up a prompt with Red Pill or Blue Pill, click on Red Pill.

C.1.3 Installing xterm

On your N800, navigate your way (yes, ugh) to this page:

http://downloads. maemo. org/products/osso-xterm-advanced

and click on the green arrow to install xterm.

C.1.4 Installing SSH

On your N800, navigate your way (yes, ugh) to this page:

http://maemo. org/downloads/product/openssh

and install SSH.

To start, stop, and restart, use the usual /etc/init.d methods.

C.1.5 Becoming Root

Becoming root on the N800 is simple once red pill mode and R&D mode are enabled:

$ sudo gainroot

Note: you can also directly ssh into the N800 as root using the default password,

'rootme'.



C.2 Setting Up A VMWare Environment

C.2.1 Setting Up A Ubuntu VM

1. Create a new VM and install Ubuntu with it. From here on, the instructions

are to be executed in your VM.

2. Now you need to install VMWare Tools. But before you can do this you need

to (as root):

3. Update your Ubuntu installation by repeating:

# apt-get update

until you have nothing to update/upgrade. Then do a dist-upgrade:

# apt-get dist-upgrade

Reboot as necessary.

4. Install build tools:

# apt-get install build-essential

5. Get the linux headers for your kernel. Find out what version of Ubuntu you're

running with:

# uname -r

then call:

# apt-get linux-headers-<ubuntu version here>

6. Install VMWare Tools itself by selecting VM-ZInstall VMWare Tools from the

VMWare Workstation menu. This will mount a VMWare Tools folder on your

Ubuntu desktop. Copy the VMWareTools-5.x.tar.gz file somewhere and cd into

that directory.

Then run:

# ./vmware-install.pl

7. (optional) If after installing VMWare Tools and restarting X, your mouse wheel

stops working, edit /etc/Xll/xorg. conf (as root)



Change the line:

Option Protocol "ps/2"

to:

Option Protocol "IMPS/2"

And restart X (with CTRL+ALT+Backspace).

C.3 Setting Up Scratchbox

C.3.1 (optional) Installing QEMU

Download and untar into /. (as root):

http://fabrice. bel lard. free. fr/qemu/qemu-O. 9. 0-i386. tar. gz

(or whatever is the latest version on the site)

C.3.2 Installing Scratchbox

1. Edit /etc/apt/sources. list and add the line:

deb http://scratchbox.org/debian/ apophis main

2. Update apt.

# apt-get update

3. Download scratchbox with all its core utilities and toolchains:

# apt-get install scratchbox-core scratchbox-devkit-cputransp \

scratchbox-devkit-debian scratchbox-devkit-doctools \

scratchbox-devkit-perl scratchbox-libs \

scratchbox-toolchain-cs2005q3.2-glibc-arm

4. Add yourself to the scratchbox group (as root).

# /scratchbox/sbin/sbox_adduser <username>

You may need to relogin for this add to take effect.



C.3.3 Setting Up A Scratchbox Target For The N800

1. Download the ARMEL SDK rootstrap for scratchbox:

http://tablets-dev. nokia. com/bora/armel/maemo-sdk-rootstrap_3. Larmel. tgz

Place the rootstrap tarball into /scratchbox/packages (as root).

2. Login to scratchbox as a normal user.

3. Create an ARMEL target.

Esbox-SDK_PC: -] > sb-conf setup \

SDK_ARMEL --compiler cs2005q3.2-glibc-arm \

--devkits=debian:perl: doctools: cputransp \

--cputransp=/scratchbox/devkits/cputransp/bin/qemu-arm-0.8.1-sb2

Note that your version of qemu is not the same as what we enter here. This

is because scratchbox doesn't have support for higher version numbers, but it

still works here. If you opted to not install QEMU, you can omit the cputransp

line, I believe... or set it =None or something.

4. Select that target.

Esbox-SDK_PC: -] > sb-conf select SDK_ARMEL

Restarting Scratchbox shell...

Hangup

Shell restarting...

[sbox-SDK_ARMEL: ~] >

5. Extract the rootstrap.

[sbox-SDK_ARMEL: ~] > sb-conf rootstrap

/scratchbox/packages/<ROOTSTRAP>.tar.gz

Unpacking rootstrap...

[sbox-SDK_ARMEL: -] >

6. Setup devkits, libfakeroot environment and /etc directory with following com-

mand:



[sbox-SDK_ARMEL: ~] > sb-conf install SDK_ARMEL

--devkits --fakeroot --etc

Installing fakeroot version 1.4.2...

[sbox-SDK_ARMEL: ~] >

7. Outside of scratchbox, edit your /etc/apt/sources.list file to include:

deb http://repository.maemo.org/ bora free non-free

deb-src http://repository.maemo. org/ bora free non-free

Do an apt-get update.

8. Download the kernel source into a folder in your scratchbox user's home direc-

tory. Here's how I did mine:

$ cd /scratchbox/users/calvinon/home/calvinon/

$ mkdir kernel

$ cd kernel

$ apt-get source kernel-source-rx-34

9. Go back into the scratchbox to config and make the needed kernel modules.

$ scratchbox

[sbox-SDK_ARMEL: ~] > cd kernel/kernel-source-rx-34-2.6.18

[sbox-SDK_ARMEL: ~] > make n800_defconfig

lots of output from make

[sbox-SDK_ARMEL: ~]1 > make modules

lots of output from make

Your scratchbox environment is now complete and ready to compile ARM pro-

grams along with Linux kernel modules.

C.4 (optional) Setting Up USB Networking

1. PC setup (as root)

Make sure your kernel has usbnet module installed (if not, you'll need to re-

compile the kernel). The Ubuntu installation should have it by default.



check if you have it (as root) with:

# ismod I grep usbnet

should output something like:

usbnet 18888 0

2. Edit your /etc/network/interfaces file to add the following at the end:

allow-hotplug usbO

mapping hotplug

script grep

map usbO

iface usbO inet static

address 192.168.2.1

netmask 255.255.255.0

broadcast 192.168.2.255

up iptables -I INPUT 1 -s 192. 168.2.2

3. N800 setup (as root)

Edit /etc/network/interfaces file to add the following

if ace usbO inet static

address 192.168.2.2

netmask 255.255.255.0

broadcast 192.168.2.255

up route add default gw 192.168.2.1

-j ACCEPT

at the end:

4. Check if gether module is up:

# ismod I grep g_ether

Chances are that it isn't. You'll need to load the module. Run:

# insmod /mnt/initfs/lib/modules/'uname -r'/g_ether.ko

The first time usually fails because of a busy drive/resource. Ignore this and

just do it again and it should work.



5. Connect the device to the PC. On both the N800 and PC, enable the usb0

network interface:

# ifup usb0

You should now be able to connect to the phone via 192.168.2.2.
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