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Abstract

Large population health insurance claims databases together with operations research
and data mining methods have the potential of significantly impacting health care
management. In this thesis we research how claims data can be utilized in three
important areas of health care and medicine and apply our methods to a real claims
database containing information of over twi million health plan members. First, we
develop forecasting models for health care costs that outperform previous results.
Secondly, through examples we demonstrate how large-scale databases and advanced
clustering algorithms can lead to discovery of medical knowledge. Lastly, we build a
mathematical framework for a real-time drug surveillance system, and demonstrate
with real data that side effects can be discovered faster than with the current post-
marketing surveillance system.
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Chapter 1

Introduction

This thesis explores applications of operations research methods and data mining to

health care insurance claims data. This research was possible through collaboration

with D2Hawkeye, a medical data mining company in Waltham, Massachusetts. A

collection of members' claims has the benefit of giving a "bird's eye view" of a pa-

tient's health care, providing the opportunity to recognize patterns in a member's

records that is not visible from a single specialist's view. Large population claims

databases therefore provide a wealth of research opportunities, and together with ad-

vanced data mining models, have the potential of significantly impacting health care

management in the US. In this thesis, we research how claims data can be utilized

for cost prediction, medical knowledge discovery and drug surveilance.

Below, we give an introduction to claims data and the contents of the subsequent

chapters.

1.1 Health Insurance Claims Data

Health insurance claims data, or simply "claims data", includes two types of claims,

medical and pharmaceuitical, as well as information about the members, such as age,

gender and his/her geographical location. Medical claims data get generated when

hospitals and other health care providers send claims to third-party payers to receive



reimbursement for their services. Each time a member visits a doctor or a hospital, a

claim line gets generated with the reason for the visit, the diagnois and the procedure

performed. If multiple services are performed, a single visit might result in multiple

claim lines. The data does not include results of tests or procedures, although some-

times the results can be ineffered from the subsequent treatment. Pharmaceutical

claims data get generated when a member fills a prescription and includes, for exam-

ple, information about the drug, the prescribing doctor, and the number of days of

supply.

The value of claims data in medical research has often been questioned [36, 23] be-

cause these databases are designed for financial reasons and not for clinical purposes.

Nevertheless, claims data has been shown to be useful in many settings and is increas-

ingly being used for medical research. Examples include researching differences in the

outcomes of adherence to medication [53], in length of episodes [50], and of medical

outcomes [61] as well as identification of in-hospital complications [44]. Statistical

methods generally used when working with medical data are nicely summarized in

[37], and other work addressing issues working with health care cost data include

[65, 47].

Claims data relies on health care professionals to encode their diagnoses and proce-

dures in terms of the ICD-9-CM codes. There are numerous studies that investigate

the reliability of claims data, which compare the information in the claims data to

actual medical records; we refer the reader to [22] for a nice summary of those studies.

In short, the sensitivity1 of a diagnosis varies from 50% to over 90%, depending on

the diagnosis. Procedures in the claims data have a high correlation with the medical

record, and prescription claims have been found to be a more reliable record for drugs

actually dispensed than the medical record. In summary, claims data has limitations

to its accuracy, but the availability and the size of the data make it an attractive

1The Sensitivity of a diagnosis in a claims data is the probability of the diagnosis appearing in
the claims data among all patients with disease. A sensitivity of 100% for a diagnosis means that
for all members with the disease, the appropriate diagnosis appears in the claims data.



option when conducting research in medicine and health care.

1.2 Cost Prediction and Discovery of Medical Knowl-

edge

The rising cost of health care is one of the world's most important problems. Ac-

cordingly, predicting such costs accurately is a significant first step in addressing this

problem. In Chapter 2, we focuse on health care cost prediction. Earlier researchers

concentrated on using classical regression models or logistic regression models often

combined with heuristic classification rules [21], and traditionally, researchers have

reported the accuracy of their models using in-sample R2 . In our view, the best way

to express the predictability of a method is to perform out-of-sample experiments us-

ing different performance measures. We therefore introduce new error measures and

report our results out-of-sample, that is, on data that was not used in developing the

models. We introduce the concept of a "cost bucket" - a predefined range of cost.

We first forecast the cost bucket and then translate the prediction into dollar terms.

The "bucketing" helps reduce the noise in the data and the effects of outliers. We also

introduce a baseline method of "repeating costs," that we use to compare our results

with. We apply data-mining algorithms, in particular clustering and classification

trees, to cost prediction and outperform previously published results.

Through our work on cost prediction, we identify opportunities for medical discovery,

using an modified version of the clustering algorithm Eigencluster [3]. The algorithm

can take a global view of the data and identify new patterns and may therefore re-

veal unexpected associations among diagnoses, procedures and drugs. We identify a

recently suspected link between osteoporosis and depression. In addijton, we identify

nonsteroidal anti-inflammatory agents as a risk factor for cardiac patients. Further

analysis of the data and the existing medical literature confirmed our discoveries.



1.3 Drug Surveillance

After the withdrawal of rofecoxib (commonly known as Vioxx) from the pharmaceu-

tical market in 2004, post-FDA-approval drug safety and surveillance has come under

serious scrutiny. In a 2006 study by the Institute of Medicine, it was pointed out that

efforts to monitor the risk-benefit tradeoff of medications decreases after FDA ap-

proval, and that this issue needs to be addressed [55]. Currently the Center for Drug

Evaluation and Research, a part of the Food and Drug Administration (FDA), han-

dles the post-FDA-approval drug surveillance, which is conducted using the Adverse

Event Reporting System (AERS). The AERS is a voluntary system where patients

and health care professionals can submit reports of adverse events. Although the

system has often proved useful in identifying serious side effects of drugs, it has been

insufficient in identifying potential safety signals, as not all events (some even suggest

very few) get reported and events that can be indicators of increased risk might not

be considered important by individual patients or health care professionals.

Claims data holds great potential for real-time drug surveillance, due to its fast avail-

ability and size, which is crucial when trying to detect rare events. In Chapter 3, we

develop a framework for drug surveillance and address two of its fundament issues:

a) how do we choose comparison groups? and b) how do we compare the two groups?

We test serveral methods on real data from D2Hawkeye and report on the results.

1.4 Contributions

There are several contributions of this thesis. In our work on cost prediction we

indentify the past cost trajectory to be a powerful predictor of future cost. This

observation could refocus the research effort in the area away from detailed disease

based modeling. We also raise questions about the limitations and validity of current

measures of predictive accuracy and propose alternatives, guided by the use of the

cost predictions. Finally, we introduced new methods that have not been applied



in this context before, and showed that they outperform previous published results.

We discuss how medical knowledge is often obtained from small studies. As a result,

large-scale claim databases has the potential to add to that knowledge, and we provide

two examples to support that argument. Lastly, in Chapter 3 we perform, to our

knowledge, the first full drug-surveillance experiment, that tests across the whole

spectrum of possible side effects. Our findings discourage the use of a comparison

population as a direct comparison, the current method of choice. Our work shows

that a successful drug-surveillance system can be built, based on claims data analysis

and could become one of FDA's standard tools for post-marketing surveillance.





Chapter 2

Prediction of Health Care Costs

and Algorithmic Discovery of

Medical Knowledge

2.1 Introduction

The predictive power of claims data became a topic of research in the 1980s [63]

and numerous studies since have established the predictive power of administrative

data on health care costs, [10, 64, 27, 63]. Van de Ven et al. [59] provides an in-

sightful overview of the developments in risk based predictive modeling prior to 2000.

Cumming et al. [21] presents a comparison analysis of different predictive models de-

veloped in the insurance industry for both risk assessment and population health care

cost prediction. The models compared used both diagnosis and prescription data and

the study further validated the predictive power of claims data. Earlier researchers

have concentrated on using classical regression models [63, 10, 64, 54] when predict-

ing total health care costs or logistic regression models, [43, 57] to identify high risk

members. Often these regression models are combined with heuristic classification

rules. There has also been significant work in creating comorbidity' scores from ad-

'Comorbidity is defined as coexisting medical conditions.



ministrative data, as a method to account for comorbidity differences of comparative

populations in medical research [41], to design fair reimbursement plans [59, 25] and

as a basis for predictive modeling of health care costs [10, 27, 18]. Numerous studies

that predict health care cost, based on data other than claims data are available,

examples include [29, 52].

In our view, the best way to express the predictability of a method is to perform

out-of-sample experiments (that is, use data that the method has not seen) using

different performance measures. To the best of our knowledge, the majority of earlier

regression studies do not report on the predictability of the method in an out of sam-

ple experiment, with a few exceptions [54, 24]. Traditionally [21] R 2 (or adjusted R 2)

have been the measures used to evaluate predictive models but there are some serious

drawbacks to its use, which in our opinion makes it unsuitable for a study like the

one presented in this chapter. The R 2 measure is a relative, not an absolute measure

of fit. It measures the ratio of the improvement of predictability (as measured with

the sum of squares of the residuals) of a regression line compared with a constant

prediction (see for example, [12]). In particular, comparisons based on R 2 can be

made when different regression models on the same data set are being compared,

but it is not very meaningful to base comparisons with other methods such as the

methods we utilize in this chapter. Depending on the purpose of the cost prediction

(medical intervention, contract pricing, etc.) different error measures may be more

appropriate and better suited than R2 . We therefore define new error measures that

better describe the prediction accuracy in a variety of ways.

Our objectives in this chapter are to utilize modern data mining methods, specif-

ically classification trees and clustering algorithms, and claims data from more than

800,000 members over three years to provide predictions of health care costs in the

third year, by applying data mining methods to medical and cost data from the first

two years. We quantify the accuracy of our predictions by applying the models to a

test sample of more than 200,000 members. The key insights obtained are: a) our



data mining methods provide accurate predictions of health care costs and represent

a powerful tool for prediction, b) the patterns of past cost data are strong predictors

of future costs, c) medical information adds to prediction accuracy when used in the

clustering algorithm, while with classification trees, cost information alone results in

similar error measures.

The rest of the chapter is structured as follows: In Section 2.2, we describe the

data and define the performance measures we consider and in Section 2.3, we present

the two principal methods we use: classification trees and clustering algorithms. In

Section 2.4, we report on the performance of classification trees and clustering re-

spectively in forecasting health care costs, and in Section 2.6, we briefly discuss our

conclusions and future research directions.

2.2 The Data and Error Measures

This study uses health care data generated when hospitals and other health care

providers send claims to third party payers to receive reimbursement for their ser-

vices. The study period is from 8/1/2004-7/31/2007, split up into a 24 month long

observation period from 8/1/2004 - 7/31/2006 and a 12 month result period from

8/1/2006 - 7/31/2007. We build our models using information from the observation

period to predict outcomes in the result period.

Our data set includes the medical claims data for 838,242 individuals from a com-

mercially insured population, from 2866 employers and employer groups across the

country. The data set includes both medical and pharmaceutical claims, as well as

information on the period an individual (and his/her family) was covered by the in-

surance policy. The data also contains basic geographic information such as age and

gender. All members have eligibility starting no later then 8/1/2005 and ending no

sooner than 8/1/2006, and all employers had continuous coverage starting no later

than 8/1/2005 and ending no sooner than 8/1/2007. This ensures that every employee



has at least 12 months of data in the observation period and that big populations do

not drop out during the result period, as a result of change in an employers insurance

carrier. Out of the 838,242 members, 730,918 have eligibility stretching beyond the

result period. The difference, just over 108,000 members or 13.8% of the population,

drop out during the result period. This is most often due to employee turnover which

is expected to be around 15% per year. A smaller portion, expected around 3,000

members (based on gender and age distribution of the population) do not have full

coverage due to death. Our analysis has shown that including the population with

partial coverage in the result period improves the error measures, and therefore in

the interest of simplicity we build our models using the population with full coverage

in the result period and report these results.

We split the data set, by random assignment, into equally sized parts: a learning

sample, a validation sample, and a testing sample. The learning sample is used to

build our prediction models, while the validation sample is used to evaluate the per-

formance of the various models. The test sample was set aside while building and

calibrating the models, and only used at the very end of the experiment, to report

results of the finalized models. We believe that this methodology appropriately vali-

dates our conclusions.

2.2.1 Aggregation of the Claims Data

The claims include diagnosis, procedure and drug information. The diagnosis data

is coded using the ICD-9-CM [1] (International Classification of Diseases, Ninth Re-

vision, Clinical Modification) codes, the universal codes for medical diagnoses and

procedures. The procedures are coded under various coding schemes: ICD9, DRG,

Rev Coding, CPT4 and HCPCS; over 22,000 codes altogether. Furthermore, the data

includes pharmacy claims, that is, it contains information about which, if any, pre-

scription (and some limited over the counter) drugs a health plan member is taking,

coded in terms of 45,972 drug codes [5].



Claims data relies on health care professionals to encode their diagnoses and pro-

cedures in terms of the ICD-9-CM codes. Although coding for medical claims starts

with a clinician, it is most often completed and submitted by a separate dedicated

billing operator. Because of the inevitable variations in interpretations introduced by

these practices, and to reduce the data to a more manageable size, we chose to use

coding groups rather than individual codes. We reduced over 13,000 individual diag-

noses to 218 diagnosis groups. Medical procedures and drug categories were likewise

grouped. Over 22,000 individual procedures are classified into 180 procedure groups,

and over 45,000 individual prescription drugs were classified into 336 therapeutic

groups. Also included in the analysis are over 700 medically developed quality and

risk measures which designate hazardous clinical situations (for example patients with

a pattern of ER care without office visits, diabetics with foot ulcers, etc.) We also

count the number of diagnosis, procedures, drugs and risk factors that each member

has and include it as additional variables. In summary, the predictive medical vari-

ables include: the diagnosis groups, the procedure groups, the drug groups, the risk

factors that we have developed, and their count, for a total of close to 1500 possible

medical variables. We refer the reader to Appendix 2.A for more details.

2.2.2 Cost and Demographic Data

In addition to the medical variables, we utilize 22 cost variables, since we believe

that cost information gives a global picture of the health of a member and include

age and gender as well. In order to capture the trajectory of the medical costs (as a

proxy of the overall medical condition) we use the monthly costs for the last twelve

months in the observation period, the total drug cost and the total medical cost over

the entire observation period, as well as the overall cost in the last 6 months and

the last 3 months of the observation period. Furthermore, in order to capture the

pattern of costs, we developed a new indicator variable that captures whether or not

the member's cost pattern exhibits a "spike" pattern, i.e., a sudden increase followed

by a sudden decrease in cost. To demonstrate this idea let us consider Figure 2-1

that depicts the monthly cost of two members in the last twelve months of the ob-



servation period. While both members have around $98,000 of paid claims, Member

A has constant relatively high medical costs (a typical pattern for a member with a

chronic condition), while Member B has a spike in the cost profile (a typical pattern

for a member with an "acute" condition). The key idea here is that while constant

high medical costs have a strong tendency to repeat in the future, a cost pattern that

exhibits a spike might have a low risk of high future health care costs, for example

in the case of pregnancy complications, accidents, or acute medical conditions like

pneumonia or appendicitis.

x 104
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Figure 2-1: 12 months health care costs of two members, with overall cost of $97,500
and $98,100 respectively. A cubic spline curve is fit to the data for easier viewing.
The cost profile for Member A has the characteristics of a chronic illness while, the
characteristics of member B's profile is "acute". The diagnoses behind the most
expensive claims of member A are lymphema and respiratory failure. The reasons
behind the highest claims of member B reflect complications of labor.

Moreover, we used the following additional four variables: the maximum monthly

0



cost, the number of months with above average cost, positive and negative trend in

the last months of the observation period.

Finally, we used gender and age as additional variables. Table 2.1 summarizes all

the variables used in the study and more details are provided in Appendix2.A.

Variable
Number Description

1 - 218

219- 398
399- 734

735- 1485
1486- 1489
1490- 1780

1522-1523

Diagnosis Groups, count of claims with diagnosis codes from each
group
Procedure Groups
Drug Groups
Medically defined risk factors
Count of members diagnosis, procedures, drugs and risk factors
Cost variables, including overall medical and pharmacy costs, acute
indicator and monthly costs
Gender and age

Table 2.1: Summary of the Data Elements Used.

2.2.3 Cost Bucketing

The range of paid amounts for members in the learning sample during the result pe-

riod is from no cost up to $ 710,000. The population's cumulative cost exhibits known

characteristics; 80% of the overall cost of the population originates from only 20% of

the most expensive members. In Figure 2-2, that shows the cost characteristics of

our population, we note that for our sample around 8% of the population contributes

70% of the total health care costs.

In order to reduce noise in the data and at the same time reduce the effects of

extremely expensive members (who can be considered outliers) we partitioned the

members' costs into five different bands or cost buckets. We partition in such a way
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Figure 2-2: Cumulative health care costs of the result period for members in the
learning sample. On the x-axis is the cumulative percentage of the population and on
the y-axis is the cumulative percentage of the overall health care costs. For example
we note that 8% of the population (the most expensive members ) account for 70%
of the overall health care costs.

that the sum of all members' costs is approximately the same in each bucket, i.e.,

the total dollar amount in each bucket is the same (approximately $117 million per

cost bucket). We chose five buckets because it ensures a large enough number of

members in the top bucket (we have 1175 members in the learning sample in bucket

five). Table 2.2 shows the range of each bucket, the percentage and the number of

members of the learning sample that are in each bucket.

The knowledge of the predicted bucket of a member is valuable to health care man-

agement professionals. The buckets from one through five can be interpreted as rep-

resenting low, emerging, moderate, high and very high risk of medical complications.



Percentage of Number of
Bucket Range the Learning Sample Members

1 <$3,200 83.9 % 204,420
2 $3,200-$8,000 9.7 % 23,606
3 $8,000-$18,000 4.2% 10,261
4 $18,000-$50,000 1.7% 4,179
5 > $50,000 0.5% 1,175

Table 2.2: Cost Bucket Information. Cost bucket ranges and fraction of the learning
sample in each bucket (last 12 months of the observation period costs). The sum of
members' costs that fall in any one of the buckets is between $116 and $119 million.

Members predicted to be in buckets 2 and 3 are candidates for wellness programs,

members predicted to be in bucket 4 are candidates for disease management pro-

grams, while those members forecasted to be in the top bucket are candidates for

case management programs, the most intense patient care program.

2.2.4 Performance Measures

We will measure the performance of our models with three main error measures: the

hit ratio, a penalty error and the absolute prediction error (APE). To be able to

compare our results to published studies we also include R2 and truncated R 2, and

introduce a new similar measure IRI. We provide some additional insights into R 2 in

Section 2.2.4 and define the new error measures in Section 2.2.4.

Definition of Error Measures

The Hit Ratio

We define the hit ratio to be the percentage of the members for whom we forecast

the correct cost bucket.

The Penalty Error

The penalty error is motivated by opportunities for medical intervention and is there-

fore asymmetric. There is greater penalty for underestimating higher costs, consistent

with the greater medical and financial risk in missing these individuals. The penalty



of misidentifying an individual as high risk, whose actual costs are low, is smaller

than the opposite case, as little harm or cost ensues in this instance. Therefore, the

penalties for underestimating a cost bucket are set as twice those for overestimating

it, the estimated opportunity loss by doctors. Table 2.3 shows the penalty table for

the five cost bucket scheme. We define the penalty error measure to be the average

forecast penalty per member of a given sample.

Outcome
12345

102468
210246

Forecast 3 2 1 0 2 4
432102
543210

Table 2.3: The Penalty Table defines the penalty error measure for the five cost
buckets. A perfect forecast results in an error of zero.

The Absolute Prediction Error

The absolute prediction error is derived from actual health care costs. We define the

absolute prediction error to be the average absolute difference between the forecasted

(yearly) dollar and the realized (yearly) dollar amount. As an example, if we forecast

a member's health care cost to be $500 in the result period, but in reality the mem-

ber has overall health care cost of $2,000, then the absolute predicted error for the

member is 1$500 - $2, 0001 = $1, 500. We define the absolute prediction error (APE)

to be the average error over a given sample. APE has been used in recent studies

[21, 54, 25] together with the traditional R2 . An advantage of APE is that it does not

square the prediction errors, which makes it less sensitive to outliers (members with

extreme health care cost). This is of special concern due to the nature of health care

cost data, as there are a few individual members with very unpredictable high costs.



The R2 Measure

R2 is defined as

R2= 1- i(ti- fi )2

i(ti - a)2

where fi is the forecasted cost of member i, ti is the true cost of member i and a

is the average health care cost in the result period. If we look at the contribution

of members in the observation period's cost buckets to the sum in the denominator,

it varies greatly as shown in Table 2.4. The second column has the fraction of the

learning sample in each bucket, and in the third column the contribution to the sum

in the denominator. We note that 27.9% of the sum is contributed by the 0.5% of

members in the top bucket in the observation period. R 2 is therefore disproportion-

ably influenced by the members in the top bucket.

R2 squares each prediction error, which makes it very sensitive to prediction error

for members with high health care costs. A model that does very well for the major-

ity of the population might therefore have low R 2 due to few extreme unpredictable

outliers (for example, members with a sudden onset of a serious condition). In the

literature, researchers have dealt with this fact by truncating the health care cost.

We denote the resulting R 2 when claims are truncated to $100,000 by R2oo, and the

fourth column of Table 2.4 shows the contribution to the denominator sum in that

case. By truncating the these members the contribution in the denominator sum of

the top bucket reduces to 16%, close to that of bucket 2 through 4.

A natural measure of health care cost prediction is the absolute value of the prediction

error. We therefore define a new R-like measure, that has some of the same properties

as R 2,

R = 1 - Eti - fil
SIti - m i'

where m is the sample median. We note that IRI = 0 if we predict the median of the

sample for all members, and |R| = 1 if ti = fi for all members i. In the same way

as R 2 measures the reduction in the residuals squared, |Rl measures the reduction
01



% of the % of Overall % of Overall
Learning % of Overall E((ti - a) 2) % of Overall E(lti - m)

Bucket Sample E((ti - a) 2) Truncated E(lti - ml) Truncated
1 83.9% 30.8% 36.1% 47.0% 48.3%
2 9.7% 12.4% 15.9% 20.0% 20.7%
3 4.2% 14.0% 14.3% 14.0% 14.2%
4 1.7% 14.9% 16.9% 10.9% 10.6%
5 0.5% 27.9% 16.8% 8.2% 6.2%

Table 2.4: Analysis of Denominator Sums of R 2 and JRI. Contribution to denominator
sums of R 2 and the |RI error measures as a function of the bucketed cost in the last
12 months of the observation period (numbers are based on the testing sample).

in the sum of absolute values of the residuals. In the last two columns of Table 2.4,

we summarize the contributions to the RI| denominator sum for the populations. We

note that the contribution is strictly decreasing in the observation period bucket,

and is less affected by truncation (noted by IRiooI). We conclude that JRI is less

sensitive to outliers than R 2 and therefore possibly better suited for health care cost

predictions.

2.3 Methods

2.3.1 The Baseline Method

In order to make meaningful comparisons, we define a baseline method against which

we compare the results of the prediction models. As our baseline method, we use the

health care cost of the last twelve months of the observation period as the forecast of

the overall health care cost in the result period. Since current health care cost is a

strong indicator of a person's health, this baseline is much stronger than, for exam-

ple, random assignment. Table 2.5 shows how the population falls into the defined

cost buckets in the last 12 months of the observation period and the results period.

As an example, close to seventy percent of the population are in bucket one in both

periods. We further note that for members that fall into cost buckets 1 through 4

in the observation period, the most common bucket in the result period is bucket



one. On the other hand, for members who fall into cost bucket 5 in the observation

period the most common result period bucket is bucket 5. This can be interpreted

as most members who are experiencing moderate cost are, most commonly, getting

better, while those in the most expensive bucket have a greater tendency to incur

high medical costs.

Last 12 Month Observation Result Period Cost Bucket
Period Cost Bucket 1 2 3 4 5

1 75.63% 5.54% 1.88% 0.66% 0.20%
2 5.03% 2.98% 1.19% 0.39% 0.11%
3 1.81% 1.01% 0.91% 0.39% 0.08%
4 0.51% 0.38% 0.34% 0.38% 0.11%
5 0.10% 0.08% 0.08% 0.10% 0.13%

Table 2.5: The Cost Bucket Distribution of Members in the Testing Sample.

Table 2.6 summarizes the baseline forecast for all error measures. The baseline pre-

diction model correctly predicts 80.0% of the members, the average penalty error is

0.431 and the absolute prediction error is $2,677. In order to get a deeper under-

standing of the baseline method, we examine the effectiveness of the baseline method

with respect to the buckets in the observation period. From Table 2.6 we observe for

example, that for bucket 1 members the hit ratio is 90.1%, the penalty error is 0.287

and the absolute prediction error is $1,279. The fact that most of the members are

in bucket 1, have low health care costs and continue to have low health care costs

in the result period significantly affects the baseline error measures. Note that the

performance measures worsen with each increasing cost bucket.

2.3.2 Data Mining Methods: Classification Trees

Classification trees [15] have been applied in many fields such as finance, speech

recognition and medicine. As an example, in medicine they have been applied to

develop classification criteria for medical conditions such as osteoarthritis of the hip



Table 2.6: Performance measures of the baseline method overall and by cost bucket.
The cost buckets refer to the cost in the last 12 months of the observation period.

[9], the Churg-Strauss syndrome [48] and head and neck cancer [60]. Classification

trees recursively partition the member population into smaller groups that are more

and more uniform in terms of their known result period cost. This partition can

be represented as a tree, and this graphical representation makes classification trees

easily interpretable and therefore models that build on them can be medically verified.

As an example, consider the simplified case of a data set having information on

only three diagnoses in the observation period: coronary artery disease (CAD), di-

abetes and acute pharyngitis, as well as the cost bucket of the result period. The

classification tree built on this data might result in the classifier depicted in Table

2.7. The classifier can be used to predict the result period's health care cost for any

unseen member. Assuming we have a new member for whom we want to predict a

cost bucket, we first look at whether or not he/she has been diagnosed with CAD.

If not, we predict the member to be in cost bucket one next period. If the member

has been diagnosed with CAD we examine whether he/she has been diagnosed with

diabetes. If he/she has, we predict the member to be in cost bucket five, and in cost

bucket three otherwise. We refer the interested reader to Appendix 2.B for details.

Running the classification tree algorithm on the full data set results in more com-

plicated classifiers than the one depicted in Table 2.7. Tables 2.8 and 2.9 describe

characteristics of subgroups predicted to be in bucket 5 and 4 by these more compli-

cated trees. These scenarios demonstrate how the trees use both cost and medical

Bucket Hit Ratio Penalty Error APE ($)
all 80.0% 0.431 2,677
1 90.1% 0.287 1,279
2 52.3% 0.992 4,850
3 41.7% 1.358 9,549
4 30.5% 1.669 21,759
5 19.3% 1.825 75,808



Table 2.7: An example of a classification tree, built on data that has only information
about three diagnosis, CAD, diabetes and acute pharyngitis from the observation
period and the cost bucket of the result period. We note that acute pharyngitis
does not appear in the tree, which makes intuitive sense as we do not expect acute
pharyngitis to affect the following year's health care costs.

information along with age to identify the risky members of the population.



Examples of members predicted to be in cost bucket 5 in the result period

* Members with overall costs between $12,300 and $16,000 in the last 12 months
of the observation period and have acute cost profiles. The members take no
more than 14 different therapeutic drug classes during that period, and have
not had a heart blockage followed by dose(s) of amiodarone hcl. They have
more than 15 individual diagnosis and at least one of the following condi-
tions: a) have been in the ICU because of Congestive Heart Failure , b) have
Chronic Obstructive Pulmonary Disease with more than one prescription for
Macrolides or Floxins c) have Renal Failure with more than one hospitaliza-
tion in the observation period or d)have both Coronary Artery Disease and
Depression.

* Members with more than $24,500 in costs in the observation period, an acute
cost profile and a diagnosis of secondary malignancy (cancer).

* Members in cost bucket 2, with non-acute cost profile and between $2,700 and
$6,100 in costs in the last 6 months of the observation period, and with ei-
ther a) Coronary Artery Disease and Hypertension receiving antihypertensive
drugs or b) has Peripheral Vascular Disease and is not on medication for it.

* Members in cost bucket 2, taking between 15 and 34 different therapeutic
drug classes during the observation period, with non-acute cost profile and
between $1,200 and $4,000 paid in the last 6 months of the observation period
and finally have a Hepatitis C related hospitalization during the observation
period.

* Members in cost buckets 2 and 3 with non-acute cost profiles, less $2,400
in pharmacy costs and on fewer than 13 therapeutic drug classes, but have
received Zyban (prescription medication designed to help smokers quit) after
a seizure.

Table 2.8: Examples of members that the classification tree algorithm predicts to be
in bucket 5.



Examples of members predicted to be in cost bucket 4 in the result period

* Members in cost buckets 2 through 5, that have taken more than 34 thera-
peutic drug classes during the observation period.

* Members in cost bucket one that have inpatient days (have been in a hospital)
in the last three months with around $1,300 dollars in health care costs in the
last 3 months.

* Women in cost bucket one that have between $1,300 and $1,500 in cost in the
last 6 months of the observation period, that do not have Renal failure, but
have taken Arava (disease-modifying anti-rheumatic drug) within 180 days
prior to delivery and do not have prescribed prenatal vitamins during preg-
nancy.

* Members in cost bucket one, who have more than $1,700 in health care costs in
the last 6 months of the observation period, that have non-acute cost profiles
and have hypertension but no lab test in the observation period.

* Members with more than $24,500 in healthcare costs in the observation pe-
riod but less than $3,200 in pharmacy costs and on fewer than 14 different
therapeutic drug classes during the observation period. With non-chronic cost
profile, do not have a diagnosis of secondary malignancy, but have more than
nine office visits in the last 3 months of the observation period.

Table 2.9: Examples of members that the classification tree algorithm predicts to be
in bucket 4.



2.3.3 Data Mining Methods: Clustering

Clustering algorithms organize objects so that similar objects are together in a cluster

and dissimilar objects belong to different clusters. Our prediction clustering method

centers around the algorithm behind EigenCluster, a search-and-cluster engine devel-

oped in [38]. The clustering algorithm, when applied to data automatically detects

patterns in the data and clusters together members who are similar. We adapted

the original clustering algorithm for the purpose of health care cost prediction. We

first cluster members together using only their monthly cost data, giving the later

months of the observation period more weight than the first months (see Appendix

2.C.) The result places members within a particular cluster who all have similar

cost-characteristics. Then for each cost-similar cluster we run the algorithm on their

medical data to create clusters whose members both have similar cost characteristics

as well as medical conditions. We then assign a forecast for a particular cluster based

on the known result period's costs of the learning sample. To illustrate let us give an

example (details on the algorithm can be found in Appendix 2.C). We start with a

cluster, found by the algorithm using cost characteristics only. The cost profiles of

the members are shown in Figure 2-3. We note that all members have relatively low

cost until the last six months of the observation period, but a greater cost in the last

months of the period.

The key observation is that when using cost information only we are not able to

distinguish between the members in the cluster. The algorithm uses medical informa-

tion to identify subgroups within the cost cluster and partitions the members into two

sub clusters. Table 2.10 shows some of the medical characteristics with the greatest

difference in prevalence between the two groups.

The first cluster consists of members that have pathology, cytopathology, infusions

and other indicators of cancer indicating a potentially serious health problem that is

likely to lead to higher health care costs in the future. The second cluster on the other
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Figure 2-3: The monthly costs of the last 12 months of the observation period for all

members of a cost similar cluster.

hand consists predominantly of members who are in physical therapy and have had

orthopedic surgery and have other musculoskeletal characteristics. We can expect

that these members will be getting better, and thus have lower health care costs in

the following year.



Frequency in Frequency in
Cluster One Cluster Two Description

18% 72% Physical therapy
29% 83% Durable medical equipment
14% 66% Orthopedic surgery, exclude endoscopic
4% 48% Osteoarthritis

39% 3% Risk factor: amount paid for injectables greater
than $4,000.

71% 38% Pathology
32% 0% Hematology or oncology infusions
7% 38% Rehab

21% 52% Musculoskeletal disorders
25% 3% Emetics
25% 3% Blood products or transfusions
18% 0% Cancer therapies

Table 2.10: Some of the features that distinguish between cost similar members and
separates them into two medical sub clusters. The first two columns show the per-
centage of members of each cluster who have a certain diagnosis, have had a procedure
or are taking a drug.



2.4 Results

2.4.1 Performance of the Data Mining Methods

We ran the classification tree algorithm using the learning sample and calibrated the

algorithm using the validation sample. We built three distinct classification trees, one

for each of the three performance measures. Once we had found the right tree for each

error measure we used it to classify the testing sample and we report those results.

Similarly we ran the clustering algorithm. The resulting clusters contain groups of

members with similar cost characteristics and often similar medical characteristics.

For each cluster we assign a prediction based on the learning and validation samples

and apply it to the testing sample. We report on the performance of the algorithms

on the aggregate level first and then by bucket.

Hit Ratio (%) Penalty Error APE ($)
Bucket Trees Cluster BL Trees Cluster BL Trees Cluster BL

all 84.6 84.3 80.0 0.386 0.374 0.431 2,243 1,977 2,677
1 90.2 89.9 90.1 0.275 0.259 0.287 1,398 1,152 1,279
2 60.2 58.7 52.3 0.864 0.884 0.992 4,158 4,051 4,850
3 51.9 52.7 41.7 1.038 1.071 1.358 6,598 6,585 9,549
4 43.3 44.4 30.5 1.241 1.177 1.669 12,665 11,116 21,759
5 36.9 42.7 19.3 1.405 1.170 1.825 36,541 31,613 75,808

Table 2.11: The Resulting Performance Measures. The top line shows the measures
for the whole population, followed by the measures broken down by the observa-
tion's last twelve months cost buckets, for the classification tree algorithm, clustering
algorithm and the base line (BL) methodology.

Table 2.11 shows the performance measures. The trees predict the right bucket for

over 84% of the population, the average penalty is 0.385 and the absolute prediction

error is $2,243. There is a considerable improvement in all the performance measures

compared to the baseline methodology, particularly in the absolute prediction error

where the improvement is over 16%. The reduction in the penalty error is 10.5% and

there is close to 5% improvement in the hit ratio. For the clustering algorithm there

is again considerable improvement in all the performance measures compared to the



baseline method. In comparison with the classification tree algorithm, the results are

comparable, with the clustering algorithm having an edge in the absolute prediction

error.

We now take a more detailed view on the accuracy of the algorithms and break

down the performance by the observation period's cost bucket. For both algorithms

the improvements are most significant for the top buckets. For the classification tree

algorithm we note that the hit ratio almost doubles, the decrease in the penalty error

is 23% and the decrease in the absolute prediction error is over 50% for the top bucket.

The clustering algorithm similarly more than doubles the hit ratio by, decreases the

penalty error by more than 35% and the decrease in average absolute prediction error

is over 58% for the top bucket. We note that the classification tree algorithm does

a bit better on the lowest cost buckets for the hit ratio and penalty error, but the

clustering algorithm works better on the higher cost buckets.

2.4.2 Prediction Using Cost Information Only

We next investigate the predictability of health care costs using cost information

alone and compare the prediction to the results when the algorithms use both cost

and medical information. We note in Table 2.12 that for the lower buckets the results

are just as good, and in some cases slightly better. The classification trees have better

error measures for the low buckets, but the clustering algorithm does better for the

two most expensive buckets. In general, the classification trees do not benefit from

adding the medical variables.

Given that an important objective of cost prediction is medical intervention through

patient contact, models with interpretable medical details are preferred. In other

cases, simpler models, that achieve good results using only 22 cost variables, com-

pared to close to 1500 medical variables, may be preferred.



Hit Ratio (%) Penalty Error APE($)
Bucket Trees Cluster BL Trees Cluster BL Trees Cluster BL

all 84.6 84.2 80.0 0.389 0.399 0.431 2,214 2,116 2,677
1 90.1 90.1 90.1 0.279 0.282 0.287 1,395 1,269 1,279
2 60.3 57.5 52.3 0.873 0.920 0.992 4,033 4,146 4,850
3 52.3 49.9 41.7 1.025 1.093 1.358 6,462 6,580 9,549
4 42.7 41.7 30.5 1.256 1.272 1.669 12,310 12,412 21,759
5 35.2 40.5 19.3 1.367 1.220 1.825 35,875 33,907 75,808

Table 2.12: The Resulting performance measures using cost information only. The
top line shows the measures for the whole population, followed by the measures broken
down by the observation's last twelve months cost buckets, for the classification tree
algorithm, clustering algorithm and the base line (BL) methodology.

2.4.3 Comparison with Other Studies

We start by noting that, comparisons across studies that use different data sets, are

not fully valid as the average prediction error is highly dependent on the data set.

Therefore, as an indication only, we compare our average absolute prediction error to

the error reported by two other studies. [21] reports an average absolute prediction

error of 93% of the actual mean, and [54] reports an error of 98% of the actual mean.

The error for the clustering algorithm is 78.8% of the mean of our testing sample,

lower than in the two other studies.

Traditionally prediction software have aimed to minimize R2. Cumming et al. [21]

reports Ro00 from 0.140 to 0.198 (with claims truncated at $100,000) and R2 from

0.099 to 0.154 (without truncation). The trees have R2= 0.162 and R oo= 0.204, and

the clustering algorithm has R2= 0.180 and R oo= 0.219, as can be seen in the top

row of Table 2.13. In the top row of Table 2.14 we provide IRI and IR1oo0 for both

our measures as well as the baseline method.

Finally we note that summarizing the goodness of cost prediction to one number,

whether it is R2 or IRI can be misleading, and important information is lost. To

illustrate this point we have included in Tables 2.13 and 2.14 the relative reduction



in the error sum for each of the cost buckets. As an example, if Ei(ti - a)2 = 100

for the members in cost bucket one, and Ei(ti - fi)2 = 95 for the same members,

the relative reduction is (95 - 100)/100 = 0.05 or 5%. We note that for buckets 1-4,

the baseline improves over predicting the sample average, but for the most expensive

bucket, bucket 5 the baseline does worse. For the most expensive members, repeating

the current cost is not a strong prediction rule, and due to the weight that those

members carry in the R 2 measure, this results in negative R 2.

Our algorithms reduce the relative error for all cost buckets, and the reduction in-

creases with higher cost buckets, ranging from 5% to 49% for the R2 and Ro o00 measures

and from 10% to 32% for the IRI and IRlool measures. This shows that our prediction

models improve predictions for members in all buckets, most significantly for the most

expensive members.

Baseline Trees Clustering
Bucket R R R 00  R2  Roo R2  R2

all -0.102 -0.050 0.162 0.204 0.180 0.220
1 -3.3% -5.3% -5.3% -8.3% -5.0 % -7.9%
2 -5.6% -8.9% -6.3% -10.9% -5.7 % -8.6%
3 -8.7% -13.6% -12.8% -23.3% -12.7% -22.5%
4 -5.7% 1.3% -22.6% -34.1% -24.4% -36.5%
5 50.0% 60.1% -31.0% -39.4% -37.0% -49.8%

Table 2.13: The R2 , and R 0oo for the two algorithms and the baseline. Rows 1 through
5 show the relative reduction in the denominator sum for each cost bucket.

Baseline Trees Clustering
Bucket |RI IRlooI IRI IR0oo IRI IR1oo I

all -0.037 -0.013 0.171 0.182 0.182 0.194
1 -11.5% -11.9% -10.4% -10.8% -12.7 -13.1
2 -8.5% -8.8% -23.9% -24.9% -21.7 -22.4
3 10.1% 10.6% -25.0% -26.2% -24.1 -25.3
4 32.5% 35.4% -23.4% -25.4% -24.2 -26.3
5 71.0% 58.2% -16.6% -23.4% -23.7 -33.0

Table 2.14: The |RI, and IR1ool for the two algorithms and the baseline. Rows 1
through 5 show the relative reduction in the denominator sum for each cost bucket.



2.4.4 Summary of Results

In summary, we observe that the both algorithms improve predictions over the base-

line method for all performance measures and the improvement is more significant

for more costly members (higher buckets). In terms of overall performance measures

(overall hit ratio and absolute prediction error) the methods are comparable. The

clustering method results in better predictions for current high cost bucket members

and consistently better absolute prediction error, while the classification tree algo-

rithm has an edge on lower cost members when we look at the hit ratio and the

penalty error. We believe that the reason that the clustering algorithm is stronger in

predicting high cost members is the hierarchical way cost and medical information is

used. Recall that the clustering algorithm first uses cost information and then uses

medical information in situations where medical information can further discriminate

between members belonging in different cost buckets. Referring back to our clus-

tering sample, we note that all members of a cost-similar cluster have similar cost

trajectories of rising costs in the last months of the observation period. Using medical

information, the clustering algorithm is able to distinguish between two main groups

of patients, identifying one as higher risk cancer patients, predicting cost bucket 4

while predicting cost bucket 1 for the patients with musculoskeletal and orthopedic

characteristics. Where medical information is not dense, that is for members in the

lower buckets, using cost information only results in similar error measures. Further-

more, from our comparison with previous studies we find evidence that our algorithms

do well in comparison to current prediction methods, and analysis of the R2 measure

and IRI showed improved predictions for all cost buckets.

2.5 Algorithmic Discovery of Medical Knowledge

New medical information is often obtained through small controled studies tht focus

on few detailed factors rather than the big picture. Large-scale datasets coupled with

advanced algorithm have to potential to discover information, that is only visible

with large populations. Through our work on cost prediction, we have identified



opportunities for medical discovery, using an adopted version of Eigencluster. We

applied Eigencluster to selected subgroups of the populations and analyzed the results.

The algorithm can take a global view of the data and identify new patterns and

therefore reveal unexpected associations among diagnoses, procedures and drugs. In

this Chapter, we demonstrate through two examples how medical insights can be

extracted from the data.

2.5.1 Association of Estrogens with Antidepressants

The clustering algorithm has the ability to take a global view of the data and po-

tentially identify new patterns in the data. In this example, we ran the algorithm

on all women in our sample between 45 and 65 years of age. When interpreting the

resulting clustering a strong association between estrogens and antidepressants was

observed. Information on a cluster consisting of 26,651 members that demonstrates

this relationship is shown in Table 2.15.

Prevalence
50%
32%
28%
27%
22%
20%
20%
16%
14%
11%

Description
Estrogens & comb.
Antidepressants
Antihyperlipidemic drugs
Hypertension
Ace inhibitors & comb.
Beta blockers & comb.
Thyroid agents / hormones
Gastrointestinal drugs
Calcium channel blockers & comb.
Cardiac drugs

Table 2.15: Antidepressants and estrogen cluster, the top ten most distinguishing
features of the cluster. We note that both antidepressants and estrogens are among
the distinguishing features. This pattern of estrogen coupled with antidepressants

(and in some cases depression) was repeated throughout the clustering and led us to
our analysis of the relationship between estrogens and antidepressants.

After noting this relationship, we analyzed our dataset and found that the probability

of a member being on an antidepressant goes up by 166% 2 if we know the member is

2In our data we are unable to verify that all members have complete pharmacy claims data. For
comparison, we excluded all members whom we could not verify having complete pharmacy claims,



taking estrogens, compared to members not taking estrogens. The difference in the

number taking antidepressants was assessed by a z test and we found the difference

to be statistically significant at the p < 0.001 level. 3 Our observation is consistent

with recent reports of relationships between osteoporosis and depression [20, 56, 8].

2.5.2 Association of Nonsteroidal Anti-Inflammatory Agents

and Increasing Costs

Table 2.16 shows information on two additional clusters that both contain cardiac

patients from a general study that included numerous clusters. The members of the

first cluster have significantly higher health care costs (bucket 4) in the result period,

while members of the second cluster have significantly lower health care costs (bucket

2). Comparing the characteristics of each cluster, we observed that they are very

similar except for the fifth factor of the first cluster, the presence of nonsteroidal

anti-inflammatory agents4 .

This observation, together with recent reports of increased cardiac risk in patients

taking Cox 2 inhibitors, led us to analyze the costs and cardiac outcomes of members

taking Cox 2 drugs. We compared overall costs and the prevalence of CAD between

patients of the study sample who had taken only Cox 1 drugs and patients who had

taken only Cox 2 drugs, as presented in Table 2.17. Differences in Coronary Artery

Disease prevalence were significant at the p<0.001 level. Since Cox 1 and Cox 2 are

prescribed for the same condition, we expect the differences to be explained by the

drugs class.

in which case the increase is 33%. In the authors opinion the true increase is somewhere between
the two.

3We used a z test for differences in proportions. The p value was <0.001, both for the whole
sample, and excluding all members that could not be verified having complete pharmacy information.

4There are two additional factors that are also not the same in the two clusters, Opiates and
GI drugs. Those factors appeared frequently in clusters in a nonspecific fashion - their use was
common to many conditions. On the other hand, except for musculoskeletal clusters, the association
between anti-inflammatory drugs and medical conditions not related to the musculoskeletal system
was limited to this association with cardiac events.

5The cost has been adjusted for the cost of the Cox 1 and Cox 2 prescriptions.



Prevalence
41%
38%
34%
33%
25%
25%
24%
13%
13%
13%

Cluster 1
Description
Antihyperlipidemic drugs
Ace inhibitors & comb.
Calcium channel blockers&comb.
Hypertension
Nonsteroidal /Anti-Inflam. agent
Opiate agonists
Beta blockers & comb.
Cardiac drugs
Hypotensive agents
Antidiabetic agents, misc.

Cluster 2
Description
Antihyperlipidemic drugs
Hypertension
Ace inhibitors & comb.
Beta blockers & comb.
Chest pain
Gastrointestinal drugs
CAD
Calcium channel blockers&comb.
Diabetes mellitus
Cardiac drugs

Table 2.16: Top ten most distinguishing features of two clusters of cardiac patients.
Cluster 1 contains members that have significantly higher health care costs in the
result period compared to the observation period while Cluster 2's members have
significantly lower health care costs in the observation period. A distinguishing feature
of a cluster is a diagnosis/procedure or drug that has more prevalence among members
of the cluster than in the general population.

Cox 1 Cox 2 p-value
Number of Members 30,277 11,046

Average Cost5  $4,954 $8,306 <0.001 6

CAD Prevalence 0.05 0.09 <0.001 7

Table 2.17: Comparison of costs and cardiac outcomes in the observation period for
members taking Cox 1 and Cox 2.

6The difference in the average cost was assessed by a t test and a z test as described in [65]. Both
were significant at the p<0.001 level.

Prevalence
44%
37%
33%
31%
30%
27%
27%
23%
22%
15%



2.6 Conclusions and Future Research

The algorithms we developed based on modern data mining methods provide quan-

tifiable predictions of medical costs and represent a powerful tool for prediction of

health care costs. We also argue that R 2, that has traditionally been used to re-

port prediction accuracy has some limitations, and the use of more descriptive error

measures, specially designed for the application at hand, might give better insight

into the prediction accuracy. Despite the relative abundance of clinical information

included in our data sets, we found that for all but the highest cost patients, primary

cost information was the most accurate predictor of true costs. It is clear that cost is

an efficient surrogate for medical information, except in cases where the most dense

medical data are available. The algorithms can be used for cost predictions for indi-

viduals and groups and as a base for patient intervention in health care management.

Future research that builds on these algorithms could be used for financial reimburse-

ment/insurance pricing purposes, but such an effort requires greater integration with

health care economics, and system design.

The clustering algorithm discovered autonomously that cardiac patients taking non-

steroidal anti-inflammatory agents have higher costs in the following year. Moreover

identifies a suspected link between osteoporosis and depression The algorithm may re-

veal unexpected associations among diagnoses, procedures and drugs and may identify

potential safety issues with drugs in common use. In general, the algorithm reveals

associations, but further studies would be needed to establish causality. Effort should

also be put on automating the disocvery process, which is a current undertaking of

the author.

7The difference in the number with CAD coding was assessed by a z test.



2.A Appendix - Detailed List of Variables and Ex-

amples of Coding Groups

Table 2.1 on page 27 summarizes the variables used in our study, what follows is a

more detailed list.

1. Variables 1 thought 218 are the number of claims for a member, that have

coding belonging to different diagnosis groups. A diagnosis groups is a collection

of ICD-9 codes that have been put together to form a group. As an example,

Table 2.18 in Appendix 2.D shows all ICD-9 codes that fall into the diabetic

group.

2. Variables 219 through 398 are the number of claims for a member, that have

coding belonging to different procedure groups. These groups were created in

the same fashion as the diagnosis groups. Table 2.19 in Appendix 2.D contains

an example of all ICD-9 codes that fall into our MRI-scan group.

3. Variables 399 through 734 are the number of claims for a member, that have

coding belonging to different drug groups. The grouping is bases on the NDC

codes, and drugs from the same drug class are grouped together. Table 2.20 in

Appendix 2.D contains an example of all drugs in the Insulin group.

4. Variables 7350 through 1485 are indicators of additional specified risk factors.

We can divide the risk factors into 4 main categories:

(a) Interaction between illnesses, an example is: diabetes and obesity.

(b) Interaction between diagnosis an age, an example is: CAD and age above

65.

(c) Noncompliance to treatment an example is: a pattern of ER care without

office visits.

(d) Illness severity, an example is: diabetes with foot ulcers.



5. Variables 1486 through 1489 are counts of the number of different diagnosis,

procedures, drugs and risk factor a member has during the observation period.

6. Variables 1490 through 1511 are cost variables. Those are:

(a) Monthly costs of the last twelve months of the observation period (12

variables).

(b) Overall pharmacy costs (1 variable).

(c) Overall medical costs (1 variable).

(d) Overall cost (the sum of medical and pharmacy costs) (1 variable).

(e) Overall cost in the last 6 months of the observation period (1 variable).

(f) Overall cost in the last 3 months of the observation period (1 variable).

(g) Positive and negative trends, found by fitting a line through the last

monthly costs of the observation period (2 variables).

(h) Acute indicator, a indicator variable found by comparing the highest month

with the average monthly cost. If these are significantly different, the

indicator takes on the value 1. (1 variable)

(i) Number of months above average. This variable is an indicator of the

shape of the cost profile. If the cost is relatively constant over the period,

this variable takes on a value around six, which is an indicator for a chronic

cost profile (1 variable).

(j) The cost of the highest month in the observation period.

7. Variable 1512 is an indicator variable for the gender being female.

8. Variable 1513 is the age of the member at the beginning of the observation

period.



2.B Appendix - Classification Trees

Classification trees recursively partition the independent variable space into a set of

subspaces and assign a separate classification rule to each subspace. This partitioning

can be represented as a tree. We start with the whole sample space at a root node,

and then partition the data set into two subsets according to a splitting rule designed

to minimize a node impurity measure that has been defined. This first split is shown

in Figure 2-4. The process then continues dividing up the subspaces, until a defined

stopping criteria is satisfied.

The Whole Sample Space

Applying Spli ing Ru

Subspace 1 Subspace 2

Figure 2-4: The first step in recursive partitioning, creating the first two sub nodes.

We used the software CRUISE [2] to create our classification trees. What follow is

a discussion on some of the specifics of the algorithm, we refer the reader to [21 and

[40] for further details.

Notation

Let X be a vector of independent variables and Y be a categorical dependent variable

that takes k different values. Let t be any node in a classification tree and let Pit be

the fraction of the observations for which y = i at node t. Let Nt be the collection of

observations at node t.

Node impurity measure

The most common node impurity measure, and the one that we use, is the Gini-index,

which is defined as
k

i=1

52



which can be rewritten as

Z Pit -Pt.
isj

In the case of uneven misclassification costs, as in the case of the penalty matrix error

measure, the Gini-index is adjusted to

SW(i, j)pit pjt
isi

where W(i, j) is the cost of misclassifying as i a class j case. Note that if all the

observations belong to a single class, then the Gini-index is zero.

Splitting rule

The split is chosen to give the largest reduction in the defined node impurity mea-

sure. The split can either rely on a single variable or multiple variables. To preserve

interpretability, we choose to use single variable splits. There are two main categories

of univariate splitting methods: exhaustive search and methods that do statistical

hypothesis tests at each node to assess the significance of a split.

Loah and Shih [46] show that the key to avoiding selection bias is the separation

of variable selection from split point selection. This separation differs from the ex-

haustive search approach of simultaneously finding the variable to split on and the

splitting value. It has also been noted that exhaustive search methods are biased

toward categorical variables over numerical variables as well as toward continuous

variables over discrete variables, because the continuous variables afford more splits.

An algorithm that overcomes this bias is 1D as described in [40], where at each node

an analysis of variance (ANOVA) F-statistic is calculated for each variable. The vari-

able with the largest F-statistic is selected, and linear discriminant analysis is applied

to it to find the split value. This is the algorithm used in this chapter.

Classification rule at end nodes



At an end node, the class that minimizes a error measure is assigned to the node. For

example, for our penalty error we assign class i to an end node t if i minimizes

P(ii, y),
jENt

where P is the penalty matrix defined in Section 2.2.4 and yj is the observed class

of member j. In the case when the costs for all misclassifications are equal, the as-

signment rule simplifies to assign the most frequently observed class at an end node

as the classification rule. For the average absolute dollar error we assign the median

cost of the learning sample at each node.

Pruning and selecting the "best" tree

At some point, the recursive partitioning needs to be stopped. This stopping point

can be predefined, limited by the number of levels, minimum number of observa-

tions at a node, or when improvement in the node impurity measure is negligible. A

methodology introduced by Breiman et al. [15], which is used here, is to overgrow the

tree and then prune it back using the pruning sample. After overgrowing the tree,

the classification rule is applied to the pruning sample and the misclassification cost

is calculated at each node and at each parent node. We then cut off the nodes that

result in the smallest increase (or the biggest decrease) in the overall misclassification

cost. The result is a sequence of trees, each associated with a certain misclassifica-

tion cost. The tree with the smallest misclassification cost is called 0-SE [15]. The

smallest tree within one standard error of the minimum is called 1-SE and is the tree

we choose to use.

2.C Appendix - Clustering

This Appendix explains how the Eigencluster algorithm was adapted for medical

data mining. For details on the original version of Eigencluster we refer the reader to

[19, 38].



2.C.1 Notation and Outline

Given a learning set L and a validation set V of patients for whom we know the result

period's cost, we predict the cost for the test set T according to the below procedure.

We view each member as a vector of features, which belong in one of two categories -

cost and medical. Let Li, Vi, Ti be the subset of members in the learning, validation

and test set respectivly that belong to bucket i in the the observation period. The

procedure is as follows, and applies to any measure (the hit ratio, the penalty error,

the average absolute prediction error, etc.).

1. Define feature weights

2. Apply feature weights to Li U Vi U Ti.

3. Use EigenCluster to cluster Li U Vi U Ti based only on cost features. Let Ri be

the resulting hierarchical clustering tree.

4. Using Li, and Vi compute the frontier Fi of Ri for which clustering based on

medical information is at least as good as clustering based on cost information.

5. For each node C in Fi, let x be the single prediction that optimizes the sum of

the measure on C n (Li U Vi). Use x as a prediction for each test member in

CnT T.

Below we briefly discuss each of the outlined steps.

2.C.2 Define Feature Weights

We define two sets of weights: cost weights and medical weights. The cost weights

apply to the cost features, whereas the medical weights apply to the medical features.

As the last months of the observation period have stronger correlation with the result

period, the last months are given more weight than the first. Equal weight is given

to each of the medical features.



2.C.3 Applying Weights

For every member u (vector of features) in Li U Vi U Ti, we apply the weights ti by

setting ui +- Vwui. Thus, the inner product between members is now the weighted

similarity.

2.C.4 Using EigenCluster

The goal in applying EigenCluster is to put members who have similar cost patterns

together in a "cluster". The hypothesis is that members with similar cost patterns

in the observation period will have similar future cost patterns. In each "cluster",

there will be members of the learning, validation and test sets. Thus, we will make a

prediction for each of the members of the test set based on the result period behavior

of the learning set and validation sets.

Technical details

We apply EigenCluster to the set of members Li U Vi U Ti, where each member is only

described by cost features. The result is a hierarchical clustering tree Ri. Each node

is a subset of the members and the root node is the entire set (Li U Vi U Ti). Each

interior node has two child nodes, whose subsets comprise the subset at the parent

node. Each leaf node (a node with no child nodes) represents a subset of size at least

50.

2.C.5 Compute the Frontier

We would like to make predictions that are based on medical information, as well as

based on cost information. It appears that cost information can distinguish members

with different result period costs at a coarse level, but medical information cannot.

On the other hand, medical information can distinguish members with different result

period costs at a more fine level, whereas cost patterns cannot. This is the motivation

behind the frontier - the "coarsest" level at which medical information can distin-

guish members.



The frontier consists of nodes in R, for which we can improve the clustering us-

ing medical information, that is the resulting prediction is at least as good as if we

had clustered those nodes further using cost information. We describe next how to

compute this frontier.

Technical details

We walk up the tree Ri and apply EigenCluster to the member subset at each interior

node, but only using medical features. Suppose we are at some interior node, and

cl and c2 are the best error measures for our child nodes C1 and C2 as determined

by the learning sample (Li n Ci and Li n C2) and applied to the validation sample

(Vi n Cj and V n C2). We apply EigenCluster to the subset at our current node to

obtain a hierarchical clustering tree f. For every leaf node C in R, we compute the

single answer , that optimizes the sum of the error measure on C n Li and apply it

to the validation sample Cn Vi. Let ý be the cost incurred by J. If a, summed over

all leaf nodes is more optimal than the sum of cl and c2 , we designate this interior

node to lie on the frontier Fi, replace its subtree with R, set its cost to be the sum of

the a's and continue up R/. After we have walked up the whole tree we have replaced

parts of the tree Ri, which was built using cost information only, with number of new

subtrees 1i 's that use medical information and improve prediction.

2.C.6 Prediction

Each leaf node contains a subset of patients. Roughly two thirds are in the learning

and validation sets, and the a third are in the test set. The idea is that every member

of this node is similar - otherwise they would not be put in the same node. Therefore,

it is natural to think that the result period behavior of the patients in the learning

and validation sets is similar to the result period behavior of the patients in the test

set. This motivates our prediction technique, described below.

Technical details



We now have at our disposal leaf nodes C1,..., C,. Each C consists of members of

the learning, validation and the test sets. We compute the answers xj that optimizes

the sum of the measure on C n Li n Vi, and use this as a prediction for each member

in CnTi.

2.D Examples of Group Coding

Table 2.18

ICD-9 Code

250

2500

2500x

2501

2501x

2502

2502x

2503

2503x

2504

2504x

2505

2505x

2506

2506x

2507

2507x

2508

2508x

2509

Description

Diabetes Mellitus

Diabetes Mellitus without complications

Diabetes Mellitus without complications

Diabetes with Ketoacidosis

Diabetes with Ketoacidosis

Diabetes with Hyperosmolarity

Diabetes with Hyperosmolarity

Diabetes with Coma

Diabetes with Coma

Diabetes with Renal Manifestations

Diabetes with Renal Manifestations

Diabetes with Ophthalmic Manifestations

Diabetes with Ophthalmic Manifestations

Diabetes with Neurological Manifestations

Diabetes with Neurological Manifestations

Diabetes with Peripheral Circulatory Disorders

Diabetes with Peripheral Circulatory Disorders

Diabetes with Manifestations

Diabetic Hypoglycemia

Diabetes with Complication

Continued on next page...



Table 2.18 - Continued

ICD-9 Code

2509x

3572

3620

36201

36202

36203

36204

36205

36206

36207

36641

6480

6480x

V4585

V5391

Description

Diabetes with Complication

Polyneuropathy in Diabetes

Diabetic Retinopathy

Background Diabetic Retinopathy

Proliferative Diabetic Retinopathy

Nonproliferative Diabetic Retinopathy

Mild Nonproliferative Diabetic Retinopathy

Moderate Nonproliferative Diabetic Retinopathy

Severe Nonproliferative Diabetic Retinopathy

Diabetic Macular Edema

Diabetic Cataract

Diabetes Mellitus - Complications of Delivery

Diabetes Mellitus - Complications of Delivery

Insulin Pump Status

Fitting/Adjust Insulin Pump

Table 2.18 An example of ICD-9 diagnosis codes in a diabetes diagnosis group ("x"

at the end of a code stands for any number.

Table 2.19

Code Description Code Origin

0159T Computer-aided detection, including computer algorithm CPT4

analysis of MRI

0160T Therapeutic repetitive transcranial magnetic stimulation CPT4

treatment pla

70336 Magnetic Image, Jaw Joint CPT4

7054x MRI of Face, Neck and Head CPT4

Continued on next page...



Table 2.19 - Continued

Code

7055x

7155x

7214x

72150

72156

7219x

73218/9

7322x

73718/9

7372x

7418x

7555x

76093

76094

76394

76400

76498

7702x

77084

C8903-8

C9723

Q0070

18891

18892

18893

Description

MRI of the Brain

MRI Chest

MRI Neck, Lumbar or Chest Spine

Magnetic Resonance (proton)

MRI (proton) of Chest, Lumbar or Angio Spine W/O&w

Dye

MRI Pelvis

MRI Upper Extremity

MRI Uppr Extremity

MRI Lower Extremity

MRI Lower Extremity

MRI Abdomen

Heart/Cardiac MRI

Magnetic Image, Breast

Magnetic Image, Both Breasts

MRI for Tissue Ablation

Magnetic Image, Bone Marrow

MRI Procedure

Magnetic resonance guidance

Magnetic resonance (eg, proton) imaging, bone marrow

blood supply

MRI , Breast

Dynamic Infrared Blood Perfusion Imaging

Magnetic Image, Spine

MRI of Brain & Brainstem

MRI Chest & Heart

MRI Spinal Canal

Continued on next page...

Code Origin

CPT4

CPT4

CPT4

CPT4

CPT4

CPT4

CPT4

CPT4

CPT4

CPT4

CPT4

CPT4

CPT4

CPT4

CPT4

CPT4

CPT4

CPT4

CPT4

HCPCS

HCPCS

HCPCS

ICD9

ICD9

ICD9



Table 2.19 - Continued

Code Description Code Origin

18894 MRI Musculoskeletal ICD9

18895 MRI Pelvis,prostate,bladder ICD9

18896 Other Intraoperative Magnetic Resonance Imaging ICD9

18897 Magnetic Resonance Image Unspecified ICD9

18899 Unspecified MRI ICD9

R483 MRI Rev Code

R61x MRI Rev Code

Table 2.19 An example of procedure codes in a procedure group. The table displays

all codes within the MRI-scan group ("x" at the end of a code stands for any number).

In general the codes in a procedure group come from various sources: ICD-9, DRG,

Rev Coding, CPT4 and HCPCS.

Table 2.20

NDC Code NDC Description RxlO0 Description

00003378015 Insulin Insulins

00069006119 Exubera Chamber Insulins

00069009741 Exubera Release Unit Insulins

00002811201 Iletin Ii Pzi Beef Insulin - Beef

00002821201 Iletin Ii Reg. Beef Insulin - Beef

00002831201 Iletin Ii Nph Beef Insulin - Beef

00002841201 Iletin Ii Lente Beef Insulin - Beef

00003244510 Insulin, Purified Ultralente Beef Insulin - Beef

00169352215 Insulin Standard Nph Insulin - Beef

00169352815 Insulin Standard Lente Insulin - Beef

00169357805 Insulin Standard Semilente Insulin - Beef

00169357215 Insulin Standard Ultralente Insulin - Beef

Continued on next page...



Table 2.20 - Continued

NDC Code NDC Description Rx10O Description

00002811101

00002821101

00002831101

00002841101

00002850001

00003244110

00169010001

00169020001

00169030001

00169244010

00169244210

00169244710

00169351215

54569165200

54569165202

54569281600

54569281700

54569289100

54569289101

00002811001

00002824001

00002831001

00002844001

00002851001

00002864001

54569165101

54569165102

Iletin Ii Pzi Pork

Iletin Ii Regular Pork

Iletin Ii Nph Pork

Iletin Ii Lente Pork

Iletin Ii Regular Pork

Insulin, Purified Semilente Pork

Insulin Purified

Insulin Purified

Insulin Purified

Insulin Purified Regular Pork

Insulin Purified Lente Pork

Insulin Purified Nph Pork

Insulin Standard Regular

Iletin Ii Reg. Pork

Iletin Ii Reg. Pork

Insulin Purified Lente Pork

Insulin Purified Regular Pork

Iletin Pork Nph

Iletin Pork Nph

Iletin Pzi

Iletin Regular I

Iletin Nph I

Iletin Lente I

Iletin Semilente

Iletin Ultralente

Iletin Nph I

Iletin Nph I

Continued on next page...

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Insulin

Pork

Pork

Pork

Pork

Pork

Pork

Pork

Pork

Pork

Pork

Pork

Pork

Pork

Pork

Pork

Pork

Pork

Pork

Pork

Beef

Beef

Beef

Beef

Beef

Beef

Beef

Beef

Pork

Pork

Pork

Pork

Pork

Pork

Pork

Pork
--------



Table 2.20 - Continued

NDC Code NDC Description RxlO Description

54569295100 Iletin Regular I Insulin - Beef & Pork

54569295101 Iletin Regular I Insulin - Beef & Pork

54868142801 Iletin Nph I Insulin - Beef & Pork

54868208901 Iletin Regular I Insulin - Beef & Pork

00002751001 Humalog Insulin - Human

00002751101 Humalog Mix 75/25 Insulin - Human

00002751559 Humalog Insulin - Human

00002751659 Humalog Insulin - Human

00002821501 Humulin R Insulin - Human

00002821601 Humulin Br Insulin - Human

68115083910 Lantus Insulin - Human

Table 2.20 An example of drugs in a drug group. The table contains examples of

drugs that belong to the Insulin group, as well as their NDC codes.





Chapter 3

Drug Surveillance

The Food and Drug Administration is responsible for the evaluation of new drugs.

A large part of their role is to ensure drug safety. After a drug is approved (if the

FDA approves it as safe and effective), the drug maker is responsible for reporting

any adverse drug events it learns of to the FDA. In addition, the FDA runs a post-

FDA-approval drug surveillance system called the Adverse Event Reporting System

(AERS), which is a voluntary system in which patients and health care professionals

can submit reports of adverse events. Although the system has often proved useful

in identifying serious side effects of drugs, it has been insufficient in identifying po-

tential safety signals, especially since events that can be indicators of increased risk

of common conditions might not be considered important by individual patients or

health care professionals.

A safety concern raised through the AERS system, or through different channels

such as the medical literature, results in warnings to consumers or in serious cases

a withdrawal of the drug. A black box warning is the strongest warning the FDA

can require. The warning appears on the package insert in a black box stating that a

drug can potentially have serious or life-threatening adverse effects. Among some of

the more widely covered warnings in recent years are the following:

e The FDA has required that black box warnings be placed on all antidepressant



medications stating they may result in increased risk of suicidal tendencies in

children and adolescents.

* FDA advisors have recommended that Pfizer be required to place a black box

warning on their Non-Steriodal Anti-Inflammatory (NSAID) drug celecoxib

(U.S. trade name Celebrex).

* In November 2004, the FDA required a black box warning on the Depo-Provera

contraceptive injection, due to the risk of significant loss of bone density with

long-term use.

* In October 2006, the FDA added a black box warning to the anticoagulant

warfarin due to the risk of bleeding to death.

* In November 2007, the FDA added a black box warning to the diabetes medi-

cation Avandia, citing the risk of heart failure or heart attack to patients with

underlying heart disease, or those at a high risk for heart attack.

After the withdrawal of rofecoxib (known outside the medical profession under the

marketing name of Vioxx) from the pharmaceutical market in 2004, post-FDA-approval

drug safety and surveillance has come under serious scrutiny. A 2006 study by the

Institute of Medicine pointed out that efforts to monitor risk-benefits tradeoff of med-

ications decrease after FDA approval and that this issue needs to be addressed [55].

Large claims databases, with near-real time1 information coupled with advanced sta-

tistical models have the potential to greatly improve post-approval drug surveillance,

by analyzing individual outcomes in a very large population. Events that on individ-

ual level might not look significant (and therefore not get reported to the AERS) can

be serious risk indicators when aggregated over large populations. Such approaches

can not only discover side effects but also potential added benefits.

10One can expect about a three month delay for claims processing and data processing.



3.1 Previous Work

To the best of our knowledge, there is not a large literature on real-time drug surveil-

lance. The most recent [16] is the first paper to attempt detection of adverse drug

events within a population as a function of time, using claims data. The major draw-

back of the paper is that the authors do not test across all possible adverse events,

but rather just for a single known side effect and one other effect as a control. They

successfully show that adverse events can be detected. Moreover, studies have also

started to analyze what a post-marketing surveillance system should entail [11]. A

couple of studies focus on vaccine surveillance and monitoring of the vaccines known

side effects. The most recent study [45] uses maximized sequential probability ratio

testing to test for known side effects, the same method is used in the most recent

drug surveillance study [16].

Numerous studies use claims data to investigate drug effects. [34], led one of its

authors to testify before the US Senate in the rofecoxib case, as the study drew at-

tention to how much and when the FDA knew about the increased cardiac risk for

patients taking rofecoxib. That study and others [58, 33] demonstrate that claims

data can be an effective means to monitor drugs and their side effects.

3.2 Overview, Terminology and Notation

According to the FDA's Orange book [7], over 2000 different (or different combinations

of) approved pharmaceuticals are marketed under over 5500 different names. Many

of the drugs are commonly used, while others are rarely found in claims databases.

In this thesis we focus our attention to drugs in common use, although much of the

methodology is transferable to less common drugs (in some cases more direct meth-

ods, such as randomized trials, may be more appropriate). We choose to focus on

these drugs as they play to the strength of claims data, its near immediate availabil-

ity and large size, which allows us to detect changes in occurrences of rare events,



relatively fast.

Drugs are most commonly prescribed for a single reason or diagnosis. Often there

is a choice of more than one drug to treat the condition; for example, atorvastatin

(marketed under the name Lipitor) and simvastatin (marketed under the name Zo-

cor) are both drugs that treat high cholesterol. These drugs are very similar [66], and

there are no clinical reasons why a doctor would prescribe one over the other2 . In

this case, we can compare populations on one drug to populations taking another. If

a drug has quickly become the treatment of choice, a comparison group might not

be available, as similarly sick members are not being treated without the drug. With

access to older data, we can build a comparison group from previously treated pa-

tients and compare the outcomes of similar patients who were treated before the new

drug became popular. Care needs to taken to make sure that changes in coding be-

havior do not affect the outcome, but the same methodology applies. In this chapter

we propose different methods to adjust for differences in populations and suggest a

methodology to compare the two populations once selected.

We will call the members taking the drug of interest a treatment group, and the

group of members that we compare them with the control group. The exposure of a

member to a drug, is the time a member is taking the drug. An adverse event can

be an onset of a disease such as asthma or a single event, for instance stroke. We

define adverse events in terms of the members' claims data, for example by counting

the number of claims associated with a particular adverse event. We define the post-

toxicity time period as the time after a member stops taking a treatment drug until

its toxicity no longer affects him or her, which varies from drug to drug.

We consider one-month time intervals, as that is the most common rate of claims

2The main clinical advantage of atorvastatin over simvastatin is that it is not metabolized by
certain liver enzymes, and thus its blood concentration is not increased when combined with grape-
fruit juice which inhibits these enzymes. Simvastatin patients should therefore avoid drinking large
amounts of grapefruit juice for this reason.



data updates. We define pi as the probability that an adverse event i happens in any

particular month, for any member.

3.3 Selecting Comparison Populations

When we compare effects of a drug, we need to select a comparison population to

serve as a baseline. Ideally this population is very similar to the treatment popula-

tion in terms of age, gender, disease burden and other important factors for medi-

cal outcomes. Carefully choosing the comparison group is vital to an efficient drug

surveillance system, as a wrong baseline will result in a drift away from the expected

number of events, resulting in multiple false alarms. When there is an alternative

drug given for the same condition as the treatment drug in question, such as in the

case of simvastatin and atorvastatin, the two populations are very similar and can

possibly be used without further adjustments. In other cases adjustments are needed.

Below we discuss methods for making the adjustments.

3.3.1 General Methods

When a similar drug to the one under study is on the market, but the groups do not

fully overlap (for example, in the case of rofecoxib and naproxen; naproxen is more

common in children than rofecoxib), simple adjustment methods can be used to select

the comparison population. These include

* Randomly select members from the comparison population so that the age and

gender (and even cost-bucket) distribution is similar.

* Estimate the baseline rates for each of the sub-populations and combine them

in an estimate reflecting the age and gender (and cost) distribution of the treat-

ment population.

Section 3.7 reports on how these methods work with real data. Previously, researchers

have used comorbidity-scores and propensity-scores to adjust for differences in the two



populations. We found the simple selection methods mentioned above to be more

successful, in our experiments.

3.3.2 Maximal Pairing

Perhaps the most accurate way to select a comparison group is to select, for each

member in the treatment group, a member (or members) in the control group with

very similar pre-treatment medical history and conditions. To do so, we can solve a

maximum (multiple) pairing optimization problem, in which constraints are placed on

age, gender, important conditions and risk factors as well as overall medical similarity.

We propose the following formulation to measure medical similarity. Let xi(t) be

a vector of medical features (diagnosis, procedures and drugs) for member i, at time

t. In particular let ij (t) be the number of days with claims that include code (or code

group) j, for some pre-specified time prior to starting on a drug. Let w be a weight

vector, that weights the features to account for different importance of different codes.

For example, we place a greater weight on cancer conditions than on a common cold,

or a routine doctor's visit. We define a rescaled vector fi(t) for member i as:

w'xzi(t)V(t) = -x (t)

and the medical similarity of any two members as the inner product of their rescaled

vectors. This way, the weighted medical similarity of a member with himself is one

and the weighted similarity between any two members i and k is between zero and one.

We can now write a standard optimization problem, that will maximize the num-

ber of control-treatment member pairs in the study. Let Yik be an indicator variable

that equals one if members i and k being paired up for the study, and is zero otherwise.



The standard maximum pairing problem is then written as,

maximize Z Z Yik
i k

subject to Yik 1 for all i
k

Z Yik 1 for all k

Yik E {0, 1} for all i and k.

To reduce the size of the problem (recall that our treatment and control populations

might be on the order of 100,000, and therefore the number of possible pairs of the

order of 100,0002) we include only those Yik in the input that satisfy the medical

similarity constraints, as well as age, gender and risk factor requirements. The for-

mulation can easily be extended to allow for multiple control members to be paired

with a treatment member.

One of the major drawbacks of the method, is that it cuts down on the number

of members that can be used for the study significantly, especially if the population

is on the smaller side (as the probability of a similar member being found in the

control group is smaller). We can relax the formulation by matching members only

based on known risk factors for a given condition for example age, gender, hyperten-

sion, cholesterol drugs and diabetes in the case of cardiac events (this would result in

solving multiple optimization problems, one for each condition under surveillance).

Considerations when a Similar Drug does not Exist

If a similar drug exists, the medical feature vector for a member on the comparison

drug has a natural "anchor" date, the day he or she starts the comparison treatment.

The medical feature vector can then be built from the data over the pre-specified

period prior to starting treatment. When no comparison drug exists, we need to define



a fixed date, to use as "anchor" date for the comparison population, to avoid biases

in the selection process. This date can be some time (T) in the past, which has the

added benefit that we already know the post-treatment outcomes for the comparison

population. Knowing the outcomes for the comparison populations results in a more

stable baseline. In contrast, selecting T as the present, we would be following two

random processes, the outcomes of the treatment members on one hand and the

control members on the other. This would cause more fluctuation in the estimated

baseline rates.

3.3.3 Population Maximization

The idea is to select the largest comparison group possible that is similar (pre-

treatment) to the treatment group, with the goal of finding stable baseline estimates.

Below we assume a similar drug exists and refer the reader to the end of Section 3.3.2

for considerations when building the data vectors in the absence of a similar drug.

Let xi be a decision variable, indicating whether or not member i of the control

group is included in the study. Let aij be the value for condition j for member i. In

each month we would solve the following optimization problem

maximize xi

subject to aijxi - (aj + 6j) x i 0 for all j

i i (3.1)
- aiji + (aj -6) xi > 0 for all j

i i

xi E {0, 1},

where •j is the average diagnosis value for the treatment group for control j and 5j

is the allowed perturbation around it. The controls can include cost, age, gender,

disease burden, average lenght of pre-treatment history, average time on drug, etc.

From the chosen comparison group, which is similar to the treatment group prior to



drug use, we then estimate the baselines for different outcomes.

Beyond Averages

One of the pitfalls of this formulation is that it takes into account only the average,

which means the distribution of a control can be quite different between the two

groups. (An extreme example would be one population with very young and very

old members, and the other with only middle-aged members, both groups could have

the same average age.) We can account for these differences by constraining controls

over subgroups. For example, we can require the same fraction of the population to

be under the age of b. Let fb be the fraction of members under b in the treatment

group. Then by adding the constraints

E xi-(fb+6b) i < 0 and
ilagei<b i

- S + (fb - 6b) xi 0O
ilagei<b i

we make sure that the fraction of members under b in the comparison group is within

6 b of the treatment group. In general, we can constraint the average of a subpopulation

(Sk) to be between ajk ± 6jk by adding

E aijxi- (ajk + kj) i X 0 and
ieSk ieSk

- aijxi + (ayk - 6kj) E Xi < 0,

iESk iESk

to the formulation. This formulation therefore has flexibility in terms of the restric-

tions it can place on the comparison population.



Accounting for Better General Health

When one population is generally healthier than the other, as we will see is the case

of rofecoxib and naproxen, the optimal solution to (3.1) will tend to have the lower

bounds of the diagnosis condition constraints tight. Therefore, the comparison popu-

lation will be on average healthier across most if not all code groups compared to the

treatment population. We can address this problem by introducing new constraints

that ensure that only fraction of the conditions in question can be lower for the com-

parison compared to the treatment population. We suggest two ways to achieve this

objective. First, we can sum up over all the conditions, the differences between the

target disease burden (of the treatment group) and the actual disease burden of the

comparison group and set the sum to approximately zero. Mathematically, we can

write this relaxation as

S- o+ tand
i i

j i (xi±) I

where all data has been re-scaled to the same mean and standard deviation, 7j is the

rescaled average value for diagnosis j for the treatment population, dij is the rescaled

data value of diagnosis j for the comparison population member i, and finally 6 tot is

the flexibility we allow in the overall health.

Another approach to even the disease burden is to add additional variables to the

formulation to limit the number of conditions that have higher (or lower) average

values for the comparison population compared to the treatment group averages. To



achieve this, we introduce new variables and rewrite (3.1) as

maximize zi

subject to C aijxi - (aj + Jj - bjyjL) i '5 0 for all j
i i

- aijxi + (oi - 6j + Jjyju) xi < 0 forallj

SYjL > kL
i

Yju > kuŽ

YjL, jU E {0, 1},

where kL is the number of conditions we want to ensure that the comparison popu-

lation has at least the same prevalence (or higher) when compared to the treatment

population and ku is the number of conditions we want to ensure that the comparison

population has at most (or lower) prevalence of the disease than the treatment group.

3.3.4 Not Adjusting the Population

So far we have discussed methods for selecting a comparison group, so that pre-

treatment, the populations have the same characteristics. Another approach is not

to adjust the comparison group at all. Instead of applying often complicated selec-

tion methods, we simply observe the two populations independently and analyze the

changes. The intuition is that if the drug has no effect, the underlying rate of adverse

events should not change, and the before and after rates should be similar. Monitor-

ing the comparison group at the same time has the added benefit of accounting for

the effect of the underlying disease as well as possible coding changes. Section 3.5

discusses how to monitor drugs without a direct comparison baseline.



3.4 Mathematical Modeling of Surveillance Sys-

tem with a Comparison Group Baseline

We use the comparison group to estimate the probability pi of an adverse event i

occurring for a member in any given month. This estimated probability serves as a

baseline for the treatment population. If we view the population as a homogenous

population, then the expected number of events in a particular month t for a treat-

ment population of size n is n - pi. Assuming that events in different months are

independent, then the sum of events i over 7 months is a binomial random variable:

Bin(Et~1 n(t), pi), where n(t) is the number of members in the treatment population

in month t.

We can reject the null hypothesis that the probability of an event equals pi if the

number of observed events falls far enough from N, = E• • n(t) . pi, the expected

number of events. In particular, for some significant level (1-a), we reject the null

hypothesis if N, falls outside the (smallest possible) interval [kl, k2] defined by

max P(k < ki) < a/2,
kl

max P(k > k2) > a/2,
k2

where k is Bin(ELt=Z n(t), pi).

When n is sufficiently large and

Pi -n _n -pi . (1 -pi)

we can approximate the binomial distribution with a Poisson distribution and build

confidence intervals in the same way.



3.4.1 Poisson Approximation for Non-Homogeneous Groups

Very commonly, adverse events for example heart attacks vary greatly with both

gender and age (as well as underlying health status). Therefore, the probability pi

of an event i occurring is not uniform over the group. To overcome this problem, we

divide the population into subgroups. In particular if j is a subgroup of the population

with nj members and

Pij " nj nj , Pij (1 - pij )

holds for all subgroups j = 1, ... , J, then the number of events up to time t has

an approximate Poisson distribution, and the expected number of events up to and

including T is equal to
SJ

E 5P ij " nj(t).
t=1 j=1

At any point in time we can therefore draw a (1-a)% confidence interval around the

expected mean and reject the null hypothesis of the rates of adverse events being the

same if the observed number of events is far enough from our expected number.

3.4.2 Controlling for False Positives

So far we have not taken into account that we are looking at multiple possible adverse

events at the same time and therefore putting ourselves at risk for false positives. If

we have defined M possible adverse events, at any point in time we expect M -a to

be outside the confidence intervals (prior to observing any data), in the absence of

any true effect of the treatment. We also need to keep in mind that conditions are

not independent. For example, a member who gets a lung infection is more likely to

get asthma, making controlling for false positives even more important.

When some Ni(t) > Ui(t), where Ui(t) is the upper (1 - a/2) % confidence inter-

val, there is the possibility that we have observed this increased rate by chance alone.

Below we list how this issue can be addressed.

1. We can make a very small, or choose a such that we optimize the tradeoff



between the number of false positives and the detection of side effects.

2. We can start a new process that includes only new members (members starting

on the drug) to avoid any biases and monitor this new process. This approach

has the serious drawback of cutting down the population and could result in a

very long additional ramp-up time while building up a new population.

3. We can continue to monitor the same process but define a new target A and

target time T (based on the Poisson distribution). We accept the diagnosis as a

side effect, only if the number of additional events reaches A on or before time

T.

In our case studies we chose the third option, as our data did not allow us the luxury

of restarting the process, and the third option has a lower false positive rate than the

first option, when the time to discovery of a true signal is kept constant.

Medical coding is constantly changing, and medicine is often complex. Coding pat-

terns change when reimbursement policies change. This change can affect the baseline

estimates (especially those that are estimated from historical data). A two-step sys-

tem allows for flexibility to investigate potential explanations behind the increase at

the time of first alert, both systematic changes in coding behavior and undiscovered

underlying explanatory variables for the conditions: even though we have selected a

"similar" comparison group, for rare events there might be a underlying reason that

is missed in the process.

3.5 Mathematical Modeling of Surveillance Sys-

tem without a Comparison Group Baseline

Section 3.4 discussed how to compare a treatment population to a comparison pop-

ulation, when the comparison population is selected to be similar to the treatment

group. A different approach is to not adjust the comparison population prior to mon-

itoring the drugs, rather accept that they may be dissimilar and follow the changes



for the two groups independently. We assume that the comparison group is large, and

therefore the observed rates of the comparison population can be considered known

and constant. We therefore want to monitor the change in the adverse event rate and

to detect if a) it significantly increases and b) the relative change significantly differs

from the change in the comparison group.

Let pcb(i) and pa(i) be the before- and after-treatment probabilities for adverse event

i for the comparison group (assumed non-random), and let ptb(i) and pta(i) be defined

similarly for the treatment group. We want to raise a safety concern, if we observe

that Ptb(i) < Pta(i) and that the relative change3 is greater for the treatment group

than the control group, that is

Pca(i) - Pcb(i) Pta(i Ptb(i)

Pcb(i) Ptb(i)

Equivalently,

Pta (i) - ptb(i) > Pca(i) - pcb(i)
Ptb(i) Pcb(i)

Pta(i 1> c(i) 1
Ptb(i) Pcb(i)

ptW(i > pca(iW
Ptb(i) P- cb(i)

The resulting hypothesis test of the relative change for the treatment population

being greater than that of the comparison population results in a chi-square test with

one degree of freedom [14, 28]. As before we compare our outcomes to an upper

(1 - a/2)% confidence interval. We note that the confidence interval depends on

Ptb(i) and Pta(i), which are both a function of the size of the treatment population

and the prevalence of the event.

3We chose to use relative change rather than absolute change, as the starting probabilities
(Pcb(i), Ptb(i)) might be quite different and make a direct comparison difficult.



3.6 Practical Considerations

3.6.1 Time on Drug and Toxicity Period

The literature [16] suggests that the minimum time that a member needs to take

the drug and the definition of the post-toxicity period are very important. Our case

studies, however, show that the minimum time a member takes a drug is in many cases

not important, and the trade-off of having a larger population by having the minimum

time shorter (even down to a single prescription) makes including everyone preferable.

We illustrate this point in our rofecoxib case study in Section 3.7. Intuitively, one

expects the toxicity of a drug to go down as time passes after a member stops taking

the drug. The exception to this phenomenon occurs when a permanent damage has

been done. Due to limitations on the size of the data set, we were unable to research

the effects of varying the post-toxicity period.

3.6.2 Definitions of Events

We define events using the occurrences of specific ICD-9 codes in the claims data. An

event can be defined in a number of different ways.

* Claim-line event: Each claim line (a data entry) with the particular diagnosis

code of interest is an event. This definition can result in multiple counts per

days, if a diagnosis is associated with multiple procedures or financial transac-

tions. This count can be useful as it is an indicator of the severity of the event,

but on the other hand it introduces a lot of variability into the parameter esti-

mates.

* Claims-day event: Each day that a diagnostic code appears in the data defines

an event.

* Claims-period event: This event is defined as a period of time within which

all occurrences of the code count as a single event. Claims-period event is

parameterized by the number of consecutive days d without the diagnosis code



allowed, without ending the event. As an example, if d = 5 then a single event

can have a 5 day long break in coding, if there are 6 or more days before a code

reappears in the claims data, then the reappearance counts as a new event. It

is natural to allow for some break in coding, as in many clinical cases there may

be follow-up appointments, prescriptions to be filed or long-term treatment.

If d = 0, the claims-period event definition becomes the claims-day event. If

d = T, where T is the study horizon, the claims-period event becomes a count

of first occurrences of conditions.

It is important to note that for some adverse effects, such as heart attacks, the way

an event is defined has very little effect on drug surveillance. On the other hand, for

other diseases it can be misleading to define events in certain ways. This difference

depends on the nature of the events in question. Some events are a "one time thing,"

such as complications of labor; others may take a long time to resolve (resulting in

multiple claims over a long period); finally, some events can be the start of a long

and irreversible condition, such as the onset of Alzheimer's disease. The definition of

events may therefore not be the same for every diagnosis.

3.6.3 Grouping of Codes

The ICD-9 codes are organized in a hierarchical structure, by the organ systems. One

can view the structure as a tree, and every level of the tree represents an additional

digit of the ICD-9 code, and the descriptions of the conditions get correspondingly

more detailed. There is a significant variability in ICD-9 coding, as some health care

professionals may code only to the third digit, while others to the fourth or fifth.

At the same time, the further down the tree, the less common the conditions get,

and therefore the harder it is to observe a significant shift in risk. Lastly, sometimes

neighboring codes (that have the same parent) are very similar and can be joined

into one for the purpose of drug surveillance. All these considerations should be

taken into account when a drug surveillance system is implemented, and medically

trained professionals who are knowledgeable about the codes are needed to construct



a good code grouping at the right coding level.

3.6.4 Stability of the Estimates

When surveiling a new drug, it takes a while to observe enough events to get a

stable estimates. This is particularly true when we follow the relative change. We

therefore need to wait until we have observed enough events to be able to raise a

flag with some confidence. We define A(e,(t)) as the maximum fluctuation allowed

in a estimator over the past 7 months at time t, before a flag can be raised. In our

numerical experiments, we have found that defining A(el(t)), A(e2(t)), A(e 3(t)), the

change over the past one, two and three months to work well (using a single A(e,(t))

allows for unwanted conditions to slip through).

3.7 Case Study: Rofecoxib and Naproxen

Rofecoxib is a nonsteroidal anti-inflammatory drug (NSAID)4 developed by Merck

& Co. to treat osteoarthritis, acute pain conditions, and dysmenorrhoea. Rofecoxib

was approved FDA on May 20, 1999 and was subsequently marketed under the brand

names Vioxx, Ceoxx and Ceeoxx.

In November 2000, the New England Journal of Medicine published the VIGOR

(Vioxx GI Outcomes Research) study [13]. The goal of the study was to assess

whether rofecoxib is associated with a lower incidence of upper gastrointestinal events

when compared to naproxen. The study showed reduced gastrointestinal events for

the rofecoxib population, but also reported a four-fold increase in cardiac events.

This increase, however, was deemed not statistically significant and attributed to a

positive effect of naproxen. The results of the VIGOR study were submitted to the

4Nonsteroidal anti-inflammatory drugs (NSAIDs) come in two classes, non-selective COX-1 and
selective COX-2. COX-1 mediates the synthesis of prostaglandins responsible for protection of
the stomach lining, while COX-2 mediates the synthesis of prostaglandins responsible for pain and
inflammation. The COX-2 therefore delivered the same pain relief, but with reduced risk of peptic
ulcers.



FDA in February 2001, which led to the introduction of warnings on rofecoxib label-

ing concerning the increased risk of cardiovascular events (heart attack and stroke)

in April 2002.

In October 2001, another study [42] was published that compared rofexocib to a

placebo. This study found an elevated death rate among rofecoxib patients, although

the deaths were not generally heart-related. However, the study did not find any

elevated cardiovascular risk due to rofecoxib. Before 2004, Merck cited this study

as evidence of rofecoxib's safety, contrary to VIGOR. In the following months, more

studies and articles appeared [17, 51], and researchers debated the cardiac side effects

of rofecoxib. Around the same time, another study [58] demonstrated the protective

cardiac effects of naproxen compared to other NSAIDs.

In 2001, Merck started the APPROVe study, a three-year trial with the primary

aim of evaluating the efficacy of rofecoxib for the prophylaxis of colorectal polyps.

The APPROVe study was terminated in 2004, when the preliminary data from the

study showed an increased relative risk of adverse cardiovascular events (including

heart attack and stroke) beginning after 18 months of rofecoxib therapy. At the same

time, information about an FDA study [34] that supported previous findings of in-

creased risk of heart attack due to rofecoxib came out. The study estimated that

rofecoxib caused between 88,000 and 139,000 heart attacks, 30 to 40 percent of which

were probably fatal, in the five years the drug was on the market.

On September 30, 2004, Merck voluntarily withdrew rofecoxib from the market be-

cause of concerns about the increased risk of heart attack. Rofecoxib was one of the

most widely used drugs ever to be withdrawn from the market. In the year before

withdrawal, Merck had sales revenue of $2.5 billion from rofecoxib.

The goal of this case study is to assess whether an active drug surveillance system

could have led to faster withdrawal of rofecoxib from the market.



3.7.1 The Data Set

The data set used in this study contains claims from close to 2.4 million members

between 5/1/1999 and 12/1/2005. Most members are active during only a fraction

of this period, and the data contains a total of 33,215,756 member months. We have

a total of 24,044 members who were prescribed rofecoxib and 71,100 members who

took naproxen. The average time in the data set prior to treatment is 12.9 months

for the naproxen members and 9.7 months for the rofecoxib members.

As in the previous chapter, the data is acquired through D2Hawkeye. D2Hawkeye is

a growing company founded in 2001, and therefore very little data is available from

the early years of rofecoxib. The first prescription for rofecoxcib in our data set is in

early July 2000. Figure 3-1 shows the number of members starting on rofecoxib each

month, the number of members stopping each month, the overall number of members

taking rofecoxib each month, and the cumulative number of members who have at

some point taken the drug. The sharp increase in number of members starting on

rofecoxib about 30 months into the study is explained by new clients being acquired

by D2Hawkeye.

Days on drug

Table 3.1 show the number of days a member is on the drug (assuming that he or

she takes all her dispensed medication). As we can see, close to half of the rofecoxib

members take rofecoxib for 30 days or less. Therefore in this case study, we cannot

be too stringent about the minimum time a member takes the drug. Section 3.7.4

shows how varying the minimum requirement affects the results of the study.

Given the late adoption of rofecoxib in this data set and the short period of time

members stay on rofecoxib, we choose to set the toxicity period to the length of a

member's stay in the database. Restricting the toxicity period to be a fixed time
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Figure 3-1: The top-left figure shows the number of members starting rofecoxib each
month; the top-right figure the number of members who stop taking rofecoxib. The

bottom-left figure shows the number of active members at each point in time and
finally the bottom-right picture shows the cumulative number of members who have
ever taken rofecoxib in our data set. The x-axis represents the number of months
from the start of the study (July 2000).

period would cut down our data set too fast, and as a result we would lose the ability

to detect rare adverse events.

Age and Gender Distribution

When we compare the rofecoxib population and the naproxen population, we find that

the average age differs by 9 years: it is close to 40 years for the naproxen population,

and 49 years for those taking rofecoxib. Naproxen is more prominent among women

and children, as Table 3.2 shows. We define the following age groups that we use

throughout the study: 1) 0-19 years old, 2) 20-30 years old, 3) 30-34 years old, 4)

35-39 years old, 5) 40-44 years old, 6) 45-49 years old, 7) 50-54 years old 8) 55-59
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Days on Drug Rofecoxib Naproxen
0-10 2,957 19,989

11-30 8,767 35,083
31-60 2,974 8,501
61-90 1,987 2,862

91-120 1,092 1,444
121-150 757 716
151-180 954 648
181-210 491 361
221-240 416 298
241-270 610 227
271-300 290 206
301-330 226 145
331-360 382 199

more 2,055 961

Table 3.1: Length of naproxen and rofecoxib therapy.

years old, 9) 60-64 years old, and 10) over 64 years of age.

Naproxen Rofecoxib
Age Group Male Female Male Female

1 3.0% 4.9% 0.9% 1.1%
2 5.1% 9.2% 2.3% 3.3%
3 3.9% 6.3% 2.4% 2.9%
4 4.6% 6.9% 3.4% 4.5%
5 5.2% 7.9% 4.9% 6.4%
6 5.2% 8.0% 6.1% 8.7%
7 4.6% 6.5% 6.3% 9.6%
8 3.4% 4.6% 6.0% 9.0%
9 2.0% 2.5% 4.4% 6.5%

10 2.7% 3.5% 4.7% 6.6%

Table 3.2: The age-gender distribution of rofecoxib and naproxen members.

Pre-treatment Costs and Diagnosis

Since naproxen and rofecoxib were approved for treatment of the same conditions,

one would expect the populations prior to starting the treatments to be similar. The

data, however, tell a different story. Table 3.3 shows the average monthly health

care cost prior to starting treatment, by age group. We note that the rofecoxib



members uniformly have higher pre-treatment costs. The 300% cost difference in the

lowest age group is in part explained by the fact that the average age in age group

1 for naproxen is lower than for rofecoxib. Table 3.4 shows the average number of

claim-line events per month for seven randomly chosen diseases. We note that for

6 out of 7 diseases the prevalence is higher for the rofecoxib population. In fact,

"thyroid problems" is one of the few diagnoses that is virtually equal between the

two populations. These differences are only in small part explained by the difference

in age-gender distribution, as verified by a more detailed analysis.

Age Group Naproxen Rofecoxib Difference
1 $132 $527 299.1%
2 $195 $281 44.2%
3 $224 $365 62.5%
4 $219 $358 63.9%
5 $224 $376 67.8%
6 $243 $319 31.2%
7 $279 $397 42.1%
8 $312 $403 29.1%
9 $348 $477 37.1%
10 $225 $414 83.8%

Table 3.3: Comparison of pre-treatment costs. The second and third columns show
the average cost per month before starting treatment of naproxen and rofecoxib,
respectively.

Disease Naproxen Rofecoxib Difference
Anemia 0.0058 0.0083 44%

Benign Neoplasms 0.0103 0.0119 16%
Endocrine 0.0450 0.0548 22%

Malignant Neoplasms in Bone 0.0056 0.0139 150%
Nutritional Deficiencies 0.0005 0.0010 104%

Other Blood Diseases 0.0015 0.0043 177%
Thyroid 0.0103 0.0102 0%

Table 3.4: Comparison of pre-treatment diagnosis prevalence. The second and third
columns show the average number of claim-line events per month before starting
treatment of naproxen and rofecoxib, respectively.



3.7.2 Event Definitions and Code Grouping

As previously mentioned, the ICD-9 codes are structured in a hierarchical way. Due

to coding inaccuracies at the lower levels, we chose to focus on three-digit codes

(including all subsequent four- and five-digit codes). We furthermore merge codes

that have the same parent code and represent the same condition. As an example,

we group together all tuberculosis codes, which all fall under the parent category of

infectious and parasitic diseases. Table 3.5 shows the eight different level-3 codes for

tuberculosis. Details of the group coding appear in Appendix 3.A. Tables 3.6 and

3.7 summarize the codes used for identifying the two known side effects of rofecoxib

at the time of withdrawal, heart attacks and stroke.

ICD-9 Code Description
010 Primary tuberculosis infection
011 Pulmonary tuberculosis
012 Other respiratory tuberculosis
013 Tuberculosis of meninges and central nervous system
014 Tuberculosis of intestines, peritoneum, and mesenteric glands
015 Tuberculosis of bones and joints
016 Tuberculosis of genitourinary system
017 Tuberculosis of other organs
018 Miliary tuberculosis

Table 3.5: Level 3 ICD-9 codes grouped together in the tuberculosis group, a part of
infections and parasitic diseases.

ICD-9 Code Description
410 Acute myocardial infarction
411 Other acute and subacute forms of ischemic heart disease

4110 Postmyocardial infarction syndrome
4118 Other

41189 Other
4130 Angina decubitus

Table 3.6: ICD-9 coding used to identify heart attacks.



ICD-9 Code Description
433 Occlusion and stenosis of precerebral arteries including basilar

artery, carotid artery, and vertebral artery, etc.
434 Occlusion of cerebral arteries including cerebral thrombosis and cere-

bral embolism and unspecified cerebral artery occlusion.
435 Transient cerebral ischemia

Table 3.7: ICD-9 coding used to identify strokes.

3.7.3 Using Optimization to Select the Comparison Groups

In our research we implemented all of the strategies discussed in Section 3.3. Our

observations on using optimization methods appear below, and Sections 3.7.4 and

3.7.5 reports the results of other methods.

Using Maximum Pairing

Pairing each rofecoxib member with a naproxen member based on their medical his-

tories prior to starting the treatment results in data samples that are very similar.

We implemented this approach but found it to be unsuccessful due to how fast it

cuts down on the data. To be able to compute members' similarity, we need at least

6 months of data prior to starting treatment, for each member. This criterion ex-

cludes 27,727 naproxen and 11,892 rofecoxib members from the study; we lose almost

half of our rofecoxib population. The minimum number of days on a drug and other

inclusion requirements leave very few members in the sample. Table 3.8 shows the

number of potential members to be paired up in each month for two years, from May

2001 to May 2003, when we required at least 90 days of taking the drug and at least

180 days in the sample before and after the start of treatment. In the optimization,

age and gender were ignored, and minimum similarity was set to the average simi-

larity of members. This combination of rather stringent inclusion criteria but loose

optimization criteria results in zero observed cardiac events over the two year period.

We therefore conclude that although matching based on past history would take care

of all discrepancies in the pre-treatment disease burden, due to the limited number

of members that have sufficient prior history in our data set, this method was unsuc-



cessful. This method may potentially work better with larger data sets that include

more members over longer periods.

Month
May 2001
June 2001
July 2001

August 2001
September 2001

October 2001
November 2001
December 2001

January 2002
February 2002

March 2002
April 2002
May 2002
June 2002
July 2002

August 2002
September 2002

October 2002
November 2002
December 2002

January 2003
February 2003

March 2003
April 2003
May 2003

Table 3.8: The number of potential members for pairing.

Using Population Maximization

As opposed to trying to match every single rofecoxib member with a similar naproxen

member, population maximization tries to adjust for the pre-treatment disease bur-

den over the whole population at once. When this approach is implemented, selecting

the right jS's, the slack on the control constraints takes some care. When a diagnosis

is common, we can be more stringent than when the diagnosis is rare. Similarly, our

Rofecoxib
Members

47
27
26
31
36
21
42
44
52
44
45
40
34
33
36
83
69
53
109
114
114
116
156
116
171

Naproxen
Members

41
28
22
22
23
27
24
31
35
36
36
32
29
42
38
41
40
39
58
45
53
57
99
86
78



results suggest that including very sick members (in the pre-treatment period) who

have a lot of diagnoses constrains the optimal solution of the optimization problem.

Removing the pre-treatment "top spenders" improves the optimal solution (the sam-

ple size). Our optimization method produced results similar to those from simpler

selection methods and we therefore omit them.

3.7.4 Results from Methods with a Baseline Rate

The study period is from July 2000 (the date of the first rofecoxib prescription in

our data set) through March 2005 (6 months after rofecoxib was withdrawn from

the market). Our experiment tests across all 328 coding groups. We compare the

results from finding a baseline by adjusting the comparison population by age, gender

and cost bucket to the results from following the relative changes in coding in both

populations independently. We furthermore investigate different requirements for the

minimum number of days taking the drugs and different definitions of events.

We analyze the time until the known side effects; cardiac events and stroke are flagged

through the drug surveillance. We also pay special attention to renal coding since a

meta-study from 2006 [62] found an increase in renal risk as a result of taking rofe-

coxib.

We first analyze the results of adjusting the comparison population for age and

gender. The results are functions of both how we limit our population (minimum

number of days taking the drug) and how we define an event (claims-line, claims-day,

claims-event). Moreover, whether we raise an alarm is a function of how we set our

confidence intervals. Finally, to avoid false positives due to unstable risk estimators,

we set a minimum number of observed events in the post-treatment period that need

to be observed, before an flag can be raised.

Table 3.9 compares the results for different minimum days and definitions of events



Settings (MinDays, Cardiac Stroke Renal Fail- Secondary Number
Event) ure Renal of False

Coding Positives
(0,line) - 43 47 - 121
(0,event(30)) - 54 - - 88
(0,event(1500)) - 51 - - 73
(30,line) - 41 36 - 188
(30,event(30)) - 55 - - 26
(30,event (1500)) 53 40 36 - 176

Table 3.9: The result of running age- and gender-adjusted population selection. If a
known side effect was detected, the number represents the month of detection. The
primary and secondary upper bounds were set to 97.5% and 95% respectively, and
we required a minimum of 20 observed events in the post-treatment-period.

for the age-gender adjusted methodology. We note that we succeed in detecting stroke

across different settings, but the same cannot be said for the cardiac events, which

we detect only once. These succesful detections are outweighed by a very high false

alarm rate, which makes this approach unsuccessful. It is therefore clear that ad-

justing only for age and gender does too little to adjust for prior differences between

the two populations. Figure 3-2 shows how the numbers of cardiac events, stroke,

and renal failure evolve over time compared to the confidence interval around the

expected number of events. In the same figure we display the event data for the di-

agnosis of thyroid problems, which was signaled as a side effect, but is a false positive.

A member's health care cost is a good proxy for his or her overall health condition.

We therefore split our population into cost buckets similar to those introduced in

Section 2.2.3, adjusted for increases in health care cost, (as this is an older dataset).

We adjust our estimates based on cost buckets and gender (we exclude age-groups

in the adjustment as it would segment the data into too many subgroups, resulting

in unstable baseline estimates). Table 3.10 shows the results for the same parameter

settings as before for the age-gender adjusted methodology in Table 3.9. We note

that we still have too many false positives, but all settings correctly identify stroke
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Figure 3-2: The number of observed events compared to a 95% confidence intervals
constructed from the naproxen population estimates, for 4 conditions: 3 known side
effects as well as thyroid problems. The x-axis is the number of months from the
start of the study.

and renal failure as a side effects, and they do so faster than the age-gender adjusted

method. The number of false positives is similar or higher. The two adjustment

methods therefore performed similarly.

3.7.5 Results from Methods without Baseline Rate

We now look at the results from running the drug surveillance without a predefined

baseline. In order to raise an alarm, the estimate of the relative risk needs to have

stabilized. As we see from Figure 3-3, this stabilization does not occur until around

week 50 for many of the conditions. One of the main reasons is that for the first 3

years of the study, there are very few members in the data, and it is not until 2004

Stroke

Renal Failure Thyroid Conditions
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Settings (MinDays, Cardiac Stroke Renal Fail- Secondary Number
Event) ure Renal of False

Coding Positives
(0,linect ) - 35 37 - 142
(0,event (30)) - 36 40 - 121
(0,event(1500)) 46 36 41 - 109
(30,linect ) 56 28 32 - 179
(30,event(30)) - 40 31 - 40
(30,event (1500)) - 31 40 - 171

Table 3.10: The result of running cost bucket- and gender-adjusted population se-
lection. If a known side effect was detected, the number represents the month of
detection. The primary and secondary upper bounds were set to 97.5% and 95%
respectively, and we required a minimum of 20 observed events in the post-treatment-
period.

that we have a significant number of members taking rofecoxib. We therefore first

test for stability of our estimates, and only if a condition passes the stability test

do we analyze if the relative risk is significantly larger for the rofecoxib members

than for the naproxen members. If a condition raises an alarm, it enters a six-month

false-positive-period, designed to catch false positives due to temporary stabilization

of the estimates.

Analyzing the Whole Population

Running the analysis resulted in 21 flags being raised, two of which are cardiac events

and stroke. From Table 3.11 we note that at the time of alarm, we estimate the rela-

tive risk of strokes to be 4.38 and those of heart attack to be 4.04. We did not detect

increased risk of renal failure. Out of the 19 other alarms, 8 of the conditions are

related to the circulatory system and might therefore be related to a wider cardiac

effect of rofecoxib than previously acknowledged.
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Figure 3-3: The estimates for the relative risk for four conditions over time. The
horizontal line is the estimated relative change for naproxen.

Condition Time at Detection Relative Risk at Detection
Cardiac Events 55 (29) 4.002

Stroke 41 (15) 4.384
Renal Failure Not detected

Table 3.11: Relative risk for known side effects at the time of detection. The number
in parentheses is the number of months since September 2002.

Analyzing the Population by Cost Bucket

Table 3.12 shows the estimated risk for the known side-effects and thyroid problems,

by cost buckets. We observe that the expected elevated risks of the known side ef-

fects are visible in the lower buckets, but they disappear in upper buckets. Sick

members have a lot of pre-treatment coding, resulting in increased variability in the

estimates. This observation motivates a further study into how the lower cost buckets

(the healthier population) can be used for drug surveillance, rather than the popu-

Cardiac Events Stroke
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lation as a whole. Figure 3-4 shows the estimates of the relative risk, for bucket 1

members for cardiac events, stroke, renal failure and thyroid problems as a function

of time. We note that the estimates again do not stabilize until around week 50.

Minimum Cost Cardiac Renal Thyroid
Days on Drug Bucket Events Failure Stroke Problems

1 1.487 1.381 2.138 -0.110
2 0.022 4.434 0.179 -0.407

0 3 -0.006 0.129 -0.215 -0.456
4 -0.844 -0.533 -0.524 -0.434
5 -0.324 -0.831 -0.493 -0.480
1 2.829 5.982 2.592 -0.113
2 0.181 3.724 0.229 -0.412

30 3 -0.193 0.110 -0.242 -0.485
4 -0.910 -0.369 -0.519 -0.492
5 0.008 -0.856 -0.535 -0.395

Table 3.12: Relative risk for known side effects and thyroid problems. For example,
we observe an almost six-fold risk in renal failure for bucket 1 members (this in large
part due to very few events in the pre-treatment history) if we require members to
have been prescribed a minimum of 30 days of rofecoxib.

Running the drug surveillance using bucket 1 members only results in a reduced num-

ber of flags being raised significantly. Table 3.13 summarizes the information about

the flags raised. Seven conditions were flagged, including stroke and cardiac events,

the known side effects of rofecoxib. Two other conditions related to the circulatory

system were flagged, raising questions about wider cardiac effects of rofecoxib (as we

saw previously when we ran the analysis on all buckets). Another condition that was

flagged is hypertensive chronic kidney disease, a sign of deteriorating kidney health,

which is connected to the known effects of rofecoxib on the kidneys. Two other condi-

tions get flagged, one of which, "other conditions originating in the perinatal period,"

we catch as a false positive in the six-month-long follow-up period, leaving "congen-

ital anomalies of urinary system" as a false positive. This condition has very few

events in both the pre-treatment and post-treatment periods with a pre-treatment
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Figure 3-4: The figure shows, for bucket 1 members, how the estimate for the relative
risk for rofecoxib members changes, for four different conditions: Cardiac events,
stroke, renal failure and thyroid problems. The horizontal line in each subfigure is
the relative change for the naproxen population.

p=0.0000391. Furthermore the corresponding relative risk for naproxen members is

1.96, indicating that there might be a systematic increase in relative risk and that our

estimate has not gone down enough when the study ends (due to very few observed

events). Using only the bucket one population reduces the number of false positives,

while detecting both cardiac events and stroke.

Renal Failure

As previously discussed, renal failure became a known side effect of rofecoxib after

the drug was withdrawn. When running the analysis on bucket 1 only, we did not

flag renal failure (however, we did observe kidney disease). When the surveillance is

StrokeCardiac Events
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Condition Time Relative Relative Change
until Risk at Risk at between
Dis- t min(t + t and
covery 6, 57) t + 6
(t)

Cardiac Events 55(29) 2.74 2.83 3.12%
Stroke 51 (23) 2.72 2.59 -4.8%
Hypertensive chronic kidney disease 45 (19) 10.3 12.0 16.5%
Angina pectoris , excluding 413.0 56 (30) 2.24 2.24 0%
Portal vein thrombosis, venous em- 52 (26) 2.41 2.54 5%
bolism and throbosis
Congenital anomalies of urinary sys- 52 (26) 3.80 3.73 -2%
tem
Other conditions originating in the 49 (23) 2.13 1.92 -10%
perinatal period

Table 3.13: The side effects identified by the relative risk methodology, using popula-
tion from bucket 1 only. The numbers in parenthesis are the number of months from
September 2002.

run on buckets 2 through 5, only one condition is flagged, renal failure in bucket 2.

One of the reasons we see renal failure in bucket 2 and not in bucket 1 is that healthy

kidneys do not go into renal failure right away (unlike a heart attack which may have

no prior indications and therefore no prior costs). Kidneys progressively get worse

until they reach the stage of renal failure. Due to the biologics of rofecoxib, healthy

kidneys (as are most kidneys in members in bucket 1) are not affected by rofecoxib as

much as troubled kidneys, such as those that might be found in members in the upper

buckets. Table 3.14 shows the time, relative risk and change during the six-month

false-positive control period for the renal failure condition in bucket 2.

This observation raises the point that looking at bucket 1 may not be enough when

looking for adverse events that cannot (or rarely) originate from bucket 1. Those

events are few, and we leave it to implementation with medical expertise to define

the appropriate surveillance buckets for those events.



Condition Time Relative Relative Change
until Risk at Risk at between
Dis- t t + 6 t and
covery t + 6
(t)

Acute renal failure and unspecified re- 51 (25) 3.59 3.94 10%
nal failure

Table 3.14: The side effects identified by the relative risk methodology, using popu-
lation from buckets 2 through 5. The number in parenthesis is the number of months
from September 2002.

3.7.6 Conclusions

In this section we have shown that we can effectively way follow the changes in rel-

ative risk and discover false positives sooner than with the current post surveillance

system. We have also shown that the key to a successful system, is to follow bucket

one members only, except for few conditions that cannot arise among bucket one

members. This approach reduces the variance in the system and leads to more stable

estimates and many fewer false positives. We have also found that the most appropri-

ate definition of events is to count only first occurrences of conditions (claims-period

events, with large d), rather than define events as claims-lines or claim-day, as this

approach also reduces the variability in the system.

From our analysis, we have learned that it takes between 2 and 3 years, after we

get a significant amount of data, to detect cardiac events, stroke and kidney prob-

lems. It is therefore clear that many adverse events could have been prevented if

active real-time drug surveillance had been in place during the rofecoxib years.

3.8 Case Study: Atorvastatin vs. Simvastatin

Atorvastatin, marketed under the name Lipitor, is now one of the largest selling drugs

in the world, with US sales in 2006 exceeding $12.9 billion. Marketed by Pfizer, the

drug belongs to the class of pharmaceuticals called statins. It is used to control



elevated cholesterol levels and, as a result, lowers the risk of cardiovascular disease.

Another statin is simvastatin, better known under the marketing name Zocor, which

in medical studies has been shown to have efficacy and toxicity profile similar to

atorvastatin [35, 66].

3.8.1 The Data

In our dataset we have over 57,000 members who have taken atorvastatin (thereof

over 56,000 in bucket 1) and close to 23,000 members (close to 22,000 in bucket 1)

who have taken simvastatin. Table 3.15 summarizes some of the key parameters for

the statin members. For example, we note that average age is 55 and 56 years for

atorvastatin and simavastatin respectively. The study period was from September

1999 through August 2005.

Drug Cost Count Avg. Avg. Avg. Avg. Avg.
Bucket Age Days Pre- Post- Monthly

on treatment treatment Pre-
Drug Months Months treatment

Costs
Atorvastatin 1 56,035 55 1196 10 28 229
Simvastatin 1 21,935 56 832 11 31 266
Atorvastatin all 57,578 55 1203 10 28 567
Simvastatin all 22,812 56 868 11 31 891

Table 3.15: Data summary for atorvastatin (Lipitor) and simvastatin (Zocor).

3.8.2 Results

We applied the same methodology and parameter settings as with rofecoxib and

naproxen. Table 3.16 shows the flags that were raised, and the changes in the six-

month follow-up period. We note that all the flags raised get caught as false positives

in the follow-up period.
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Table 3.16: The side effects identified by the relative risk methodology,
lation from bucket 1 only and the settings from the rofecoxib study.

using popu-

Looking at the estimates for the relative risk, we notice less variance than with the

estimates using the rofecoxib data. One reason is that the average post-treatment

period is longer and the population is taking the drug for longer periods. We there-

fore adjust the parameters accordingly and rerun the analysis. As a result of the new

parameter settings, one flag was raised, for other psychoses. As Figure 3-5 shows, a

flag is raised when the relative risk is stable for a couple of months, 4 years into the

study. The risk goes down in the following months, and therefore the condition is

labeled as a false positive in the six-month follow-up period.
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Drug Condition Time Relative Relative Change
until risk at risk at in 6
Discovery t min(t+ months

(t) 6,57)
Zocor Malignant neoplasm of bone, 45 6.59 3.99 -39.5%

connective tissue, skin, and
breast

Lipitor Symptoms involving nervous 48 4.27 1.71 -60.0%
and musculoskeletal systems

Zocor Other psychoses 48 13.62 6.26 -54.1%
Lipitor Cataract 49 3.08 1.80 -41.5%
Lipitor Disorders of the autonomic ner- 50 3.74 1.96 -47.5%

vous system
Lipitor Other disorders of soft tissues 51 2.52 1.04 -58.9%
Zocor Hyperkinetic syndrome 52 7.80 3.17 -59.4%
Zocor Varicose veins of lower extremi- 52 2.99 2.28 -23.8%

ties and other sites
Zocor Fitting and adjustment of pros- 60 3.50 1.99 -43.0%

thetic device, implant or other
device

Zocor Disorders resulting from im- 68 2.40 2.02 -15.9%
paired renal function
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Figure 3-5: The estimate of the relative risk for "other psychoses" during the study

period. The x-axis represents the number of months from September 2000.

3.8.3 Conclusions

The results from this study indicate that atorvastatin and simvastatin have similar

side effects, as suggested in the medical literature. Furthermore, the study indicates

that the methodology developed in previous sections can work across different drugs.

An interesting future study would be to compare simvastatin and atorvastatin to a

sample from the general population, to better understand the drugs' toxicity profiles.

3.9 Case Study: Sildenafil vs. Tadalafil

Sildenafil, known under the marketing names Viagra, Revatio and others, is a drug

used to treat male erectile dysfunction (impotence) and pulmonary arterial hyper-

tension. Viagra was launched in 1998 and had the fastest initial sales growth of any

pharmaceutical product following its launch [39]. In 2000, it had 92 percent of the
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global market for prescribed erectile dysfunction pills. One of Viagra's main competi-

tors today is tadalafil, better known under the marketing name of Cialis. Tadalafil was

approved by the FDA in November 2003. One advantage tadalafil has over sildenafil

(and vardenafil, known under the marketing name Levitra) is its 17.5 hour half-life,

compared to 4 hours for sildenafil, earning Cialis the nickname "the weekend pill."

Sildenafil has some rare but serious side effects, including the following: priapism,

severe hypotension, myocardial infarction, ventricular arrhythmias, stroke and in-

creased intraocular pressure, especially in men with heart conditions. More common,

but less serious side effects include diarrhea, dizziness, dyspepsia, facial flushing,

headache, nasal congestion, rash, sneezing, palpitations, photophobia, upset stomach

and urinary tract infection [6, 49, 32]. These side effects reflect the ability of silde-

nafil to cause blood vessels to widen. Tadalafil has many side effects in common with

sildenafil [26], as both drugs belong to the same drug class and therefore work in

similar ways. The most common side effects of tadalafil are headache, indigestion,

back pain, muscle aches, flushing, and stuffy or runny nose.

In May of 2005, the U.S. Food and Drug Administration issued a warning that silde-

nafil (as well as tadalafil and vardenafil) could lead to vision impairment [30], and

in October 2007, the FDA required labeling for sildenafil (and other similar drugs

including tadalafil) to warn users of the potential risk of sudden hearing loss [31].

In this case study, we apply the relative risk methodology and compare sildenafil

to tadalafil. As the drugs share many side effects, the goal is to evaluate if there is a

difference between the two drugs, as opposed to flagging all side effects. An interest-

ing study would be to compare those men taking sildenafil to the general population,

but that is outside the scope of this chapter.
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3.9.1 The Data

The study uses the same database as in the previous two case studies. The data in-

cludes 11,401 sildenafil members and 1,931 tadalafil members after excluding women

(277 members) and members under 20 (46 additional members). Most of the mem-

bers are in bucket one, as Table 3.17 shows. The first prescription for tadalafil is in

December 2003, and the last is in October 2005. Due to the late introduction of Cialis

to our dataset, the average number of months after starting treatment is much lower

for tadalafil than for sildenafil. To overcome this difference ( longer post-treatment

period allows for a longer time for events to happen), we adjust the post-treatment

histories for the sildenafil members. For same reasons, the pre-treatment period is

longer for the tadafil members and we adjust the pre-treatment data in the same way.

We furthermore compare the surveillance results using adjusted histories with the

outcome when we do not adjust the length of pre- and post-histories. We note that in

other ways the populations are quite similar: the average age of the two populations

is almost the same (52 and 53 years) and the average pre-treatment monthly cost is

close ($223 and $290 for bucket one members).

Drug Cost Count Avg. Avg. Avg. Avg. Avg.
Bucket Age Days Pre- Post- Monthly

on treatment treatment Pre-
Drug Months Months treatment

Costs
Tadalafil 1 1,882 52 80 18 12 290
Sildenafil 1 11,158 53 126 11 23 223
Tadalafil all 1,931 52 81 18 12 475
Sildenafil all 11,401 53 128 11 23 406

Table 3.17: Data summary for sildenafil (Viagra) and tadalafil (Cialis).
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3.9.2 Results

Tadalafil has a short timeframe in our datasets, and a small sample size. We therefore

do not expect to be able to detect many differences as not all estimators of adverse

events will have stabilized in 2 years with only 2,000 members. We ran the experiment

both with and without requirements for the minimum number of days that the mem-

bers took the drugs, and with and without adjustments to pre- and post-treatment

histories. Table 3.18 shows the flags raised as a result of our analysis. No flags were

raised when the analysis was run with no requirement on minimum number of days

on the drugs (both with and without adjusting the histories). When we required 30

days as the minimum number of days taking the drugs, one flag was raised (both

with and without history adjustment), but it had very few events behind it in the

post-treatment period (nine events), and was caught by the six-months false-positive

surveillance period. Figure 3-6 shows the relative risk estimate during the study pe-

riod; we note that it temporarily levels off around month 15 but then continues to fall.

Min History Condition Sildenafil Tadalafil Month
Days Ad- Rel. Rel.
on just- Risk Change
Drug ment
30 No Special screening for -30.5% 235.3% 17

endocrine, nutritional,
metabolic, and immunity
disorders

30 Yes Special screening for -30.7% 235.3% 17
endocrine, nutritional,
metabolic, and immunity
disorders

Table 3.18: Flags raised for sildenafil (Viagra) and tadalafil(Cialis). No flags were
raised for when no requirement was put on the minimum numbers of days a member
needed to take the drug in order to be included in the analysis. Month refers to the
number of months after the first tadalafil prescription.

In conclusion, due to limitations in our data (very few events) we are unable to detect
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Estimated Relative Risk
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Figure 3-6: The estimate of the relative risk for "special screening for endocrine,
nutritional, metabolic, and immunity disorders". The x-axis represents the number
of months from the start of the study (December 2003).

any differences in side effects between tadalafil and sildenafil, if there are any. The

condition that was flagged had less than ten observed events in the post-treatment

period and was labeled as a false positive in the six-month follow-up period. This

finding indicates that our methodology does not raise unwanted alarms when dealing

with smaller populations.

3.10 Conclusions

In this chapter we have laid the foundations for a surveillance system for drugs in

common use. We ran three case studies that show promising results and encourage

further study.
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The rofecoxib case study highlighted some of the difficulties with setting up a ro-

bust system. We found that it is not enough to select similar drugs: prior differences

need to be accounted for. We introduced pre-treatment and post-treatment relative

change as the measure to achieve that goal. We also introduced several mathematical

programming formulations of the population selection problem and believe, although

they did not prove to be completely successful in our case study (in part due to a

small sample size) that they have potential to aid in population selection when drug

surveillance is run against a comparative baseline.

The two other case studies showed that the methodology developed did not raise

any unexpected flags or have a high rate of false positives (none in our two studies)

when applied to broader range of drugs classes.

This study shows that drug surveillance using claims data could become one of FDA's

standard tools for post-marketing surveillance. The methodology introduced here

should be further developed on drugs with known side effects, which will highlight

more challenges and be a valuable learning process. Some of the refinements that

will further fine-tune the methods are a) to use medical knowledge to create a better

grouping of ICD-9 codes; b) to implement definitions of events as functions of the

underlying conditions, with acute events treated differently than chronic conditions;

and c) to analyze the optimal setting of the upper confidence intervals, to strike a

balance between the expected time until discovery of a true side effect and the prob-

ability of a false positive.

In conclusion, in this chapter we have emphasized finding side effects. With the

same methodology we can potentially find unexpected benefits of drugs currently on

the market.
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3.A Appendix - Grouping of Codes Used in Case

Studies

Table 3.19 shows the ICD-9 groupings used in the study. The group descriptions are

based on [4].

Table 3.19

Description

Intestinal infectious diseases

Tuberculosis

Zoonotic bacterial diseases

Other bacterial diseases

Human immunodeficiency virus infection

Poliomyelitis and other non-arthropod-borne viral diseases of

central nervous system

Viral diseases accompanied by exanthem

Other human herpesviruses

Arthropod, borne viral diseases

Other diseases due to viruses and chlamydiae

Rickettsioses and other arthropod-borne diseases

Syphilis and other venereal diseases

Other spirochetal diseases

Mycoses

Helminthiases

Other infectious and parasitic diseases

Late effects of infectious and parasitic diseases

Malignant neoplasm of lip, oral cavity, and pharynx

Malignant neoplasm of digestive organs and peritoneum

Malignant neoplasm of respiratory and intrathoracic organs

Malignant neoplasm of bone, connective tissue, skin, and breast

ICD-9 Code

001.x - 009.x

010.x - 018.x

020.x - 027.x

030.x - 041.x

042.x

045.x - 049.x

050.x - 057.x

058.x

060.x - 066.x

070.x - 079.x

080.x - 088.x

090.x - 099.x

100.x - 104.x

110.x - 118.x

120.x - 129.x

130.x - 136.x

137.x - 139.x

140.x - 149.x

150.x - 159.x

160.x - 165.x

170.x - 176.x

Continued on next page...
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Table 3.19 - Continued

Description

Malignant neoplasm of genitourinary organs

Malignant neoplasm of other and unspecified sites

Malignant neoplasm of lymphatic and hematopoietic tissue

Benign neoplasms

Carcinoma in situ

Neoplasm of uncertain behavior

Neoplasm of unspecified nature

Disorders of thyroid gland

Diseases of other endocrine glands

Nutritional deficiencies

Other metabolic and immunity disorders

Anemias

Diseases of white blood cells

Other diseases of blood and blood-forming organs

Dementias

Alcohol and drug induced mental disorders

Drug-induced mental disorders

Transient mental disorders due to conditions classified elsewhere

Persistent mental disorders due to conditions classified elsewhere

Schizophrenic disorders

Episodic mood disorders

Other psychoses

Pervasive developmental disorders

Anxiety, reactions to stress or adjustment reaction

Personality disorders

Sexual and gender identity disorders

ICD-9 Code

179.x - 189.x

190.x - 199.x

200.x - 208.x

210.x - 229.x

230.x - 234.x

235.x - 238.x

239.x

240.x - 246.x

250.x - 259.x

260.x - 269.x

270.x - 279.x

280.x - 287.x

288.x

289.x

290.x

291.x

292.x

293.x

294.x

295.x

296.x

298.x

299.x

300.x, 308.x,

309.x

301.x

302.x

Continued on next page...
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Table 3.19 - Continued

Description

Alcohol dependence, drug dependence or nondependent abuse

of drugs

Physiological malfunction arising from mental factors, special

symptoms or syndromes

Specific nonpsychotic mental disorders due to brain damage

Depressive disorder, not elsewhere classified

Disturbance of conduct, not elsewhere classified

Disturbance of emotions specific to childhood and adolescence

Hyperkinetic syndrome of childhood

Specific delays in development

Psychic factors associated with diseases classified elsewhere

Mental retardation

Meningitis

Encephalitis, myelitis, and encephalomyelitis

Intracranial and intraspinal abscess

Phlebitis and thrombophlebitis of intracranial venous sinuses

Late effects of intracranial abscess or pyogenic infection

Organic sleep disorders

Cerebral degenerations

Parkinson's disease

Other extrapyramidal disease and abnormal movement disorders

Spinocerebellar disease

Anterior horn cell disease

Other diseases of spinal cord

Disorders of the autonomic nervous system

Pain, unspecified by location

ICD-9 Code

303.x, 31

305.x

306.x, 307.x

310.x

311.x

312.x

313.x

314.x

315.x

316.x

317.x - 319.x

320.x, 3

322.x

323.x

324.x

325.x

326.x

327.x

330.x, 331.x

332.x

333.x

334.x

335.x

336.x

337.x

338.x

34.x,

21.x,

Continued on next page...
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Table 3.19 - Continued

Description

Multiple sclerosis

Other demyelinating diseases of central nervous system

Hemiplegia and hemiparesis

Other paralytic syndromes

Epilepsy and recurrent seizures

Migraine

Cataplexy and narcolepsy

Other conditions of brain

Other and unspecified disorders of the nervous system

Trigeminal nerve disorders

Facial nerve disorders

Disorders of other cranial nerves

Nerve root and plexus disorders

Mononeuritis of upper limb, lower lip and mononeuritis multi-

plex

Hereditary and idiopathic peripheral neuropathy

Inflammatory and toxic neuropathy

Myoneural disorders

Muscular dystrophies and other myopathies

Disorders of the globe, retinal (exluding 361.x) iris, ciliary body,

refraction, accommodation, conjunctiva, lacrimal, cornia orbit,

optic nerve and visual pathways.

Retinal detachments and defects

Chorioretinal inflammations, scars, and other disorders of

choroid

ICD-9 Code

340.x

341.x

342.x

344.x

345.x

346.x

347.x

348.x

349.x

350.x

351.x

352.x

353.x

354.x, 355.x

356.x

357.x

358.x

359.x

360.x,

364.x,

371.x,

375.x,

377.x,

361.x

363.x

362.x,

367.x,

372.x,

376.x,

379.x

Continued on next page...
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Table 3.19 - Continued

Description

Glaucoma

Cataract

Visual disturbances

Blindness and low vision

Keratitis

Inflammation of eyelids and other disorders of eyelids

Strabismus and other disorders of binocular eye movements

Disorders of external ear

Nonsuppurative otitis media and eustachian tube disorders

Suppurative and unspecified otitis media

Mastoiditis and related conditions

Vertiginous syndromes and other disorders of vestibular system

Otosclerosis

Other disorders of ear(including tympanic membrane, middle

ear and mastroid

Hearing loss

Acute rheumatic fever

Chronic rheumatic heart disease

Essential or secondary hypertension

Hypertensive heart disease

Hypertensive chronic kidney disease

Hypertensive heart and chronic kidney disease

Acute myocardial infarction, and other acute and subacute

forms of ischemic heart disease

Old myocardial infarction

Angina pectoris , excluding 413.0

Other forms of chronic ischemic heart disease

ICD-9 Code

Continued on next page...
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365.x

366.x

368.x

369.x

370.x

373.x, 374.x

378.x

380.x

381.x

382.x

383.x

386.x

387.x

388.x, 385.x

386.x

389.x

390.x - 392.x

393.x - 398.x

401.x, 405.x

402.x

403.x

404.x

410.x, 411.x

412.x

413.x

414.x



Table 3.19 - Continued

Description

Diseases of pulmonary circulation

Other forms of heart disease

Cerebrovascular disease

Diseases of arteries, arterioles, and capillaries

Phlebitis and thrombophlebitis

Portal vein thrombosis, venous embolism and throbosis

Varicose veins of lower extremities and other sites

Hemorrhoids

Noninfectious disorders of lymphatic channels

Hypotension

Other disorders of circulatory system

Acute respiratory infections

Other diseases of the upper respiratory tract

Pneumonia and influenza

Chronic obstructive pulmonary disease and allied conditions

Pneumoconioses and other lung diseases due to external agents

Other diseases of respiratory system

Disorders of tooth development and eruption

Diseases of hard tissues of teeth ,

Diseases of pulp and periapical tissues

Gingival and periodontal diseases

Dentofacial anomalies, including malocclusion

Other diseases and conditions of the teeth and supporting struc-

tures

Diseases of the jaws

Diseases of the salivary glands

ICD-9 Code

415.x - 417.x

420.x - 429.x

430.x - 438.x

440.x - 449.x

451.x.

452.x, 453.x

454.x, 456.x

455.x

457.x

458.x

459.x

460.x - 466.x

470.x - 478.x

480.x - 488.x

490.x - 496.x

500.x - 508.x

510.x - 519.x

520.x

521.x

522.x

523.x

524.x

525.x

526.x

527.x

Continued on next page...
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Table 3.19 - Continued

Description

Diseases of the oral soft tissues, excluding lesions specific for

gingiva and tongue

Diseases and other conditions of the tongue

Diseases of esophagus

Gastritis and duodenitis

Gastric, duodenal, petic, gastrojejunal ulcers and gastric mu-

cositis

Disoiders of function of stomach, and other disorders of stomach

and duodenum

Appendicitis

Hernia of abdominal cavity

Noninfectious enteritis and colitis

Condition of the liver

Cholelithiasis and other disorders of gallbladder and biliary tract

Diseases of pancreas

Gastrointestinal hemorrhage

Intestinal malabsorption

Acute glomerulonephritis, nephrotic syndrome, chronic

glomerulonephritis, nephritis and nephropathy, not specified as

acute or chronic

Acute renal failure and unspecified renal failure

Chronic kidney disease (ckd)

Renal sclerosis, unspecified

Disorders resulting from impaired renal function

Small kidney of unknown cause

Infections of kidney

Hydronephrosis

ICD-9 Code

528.x

529.x

530.x

535.x

531.x - 534.x,

538.x

536.x, 537.x

540.x

550.x

555.x

570.x

574.x

577.x

578.x

579.x

580.x

- 543.x

- 553.x

- 558.x

- 573.x

- 576.x

- 583.x

584.x, 586.x

585.x

587.x

588.x

589.x

590.x

591.x

Continued on next page...
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Table 3.19 - Continued

Description

Calculus of kidney, ureter or lower urinary tract

Other disorders of kidney and ureter

Cystitis and other disorders of bladder

Urethritis, not sexually transmitted, and urethral syndrome,

urethral stricture and other disorders of urethra and urinary

tract

Hyperplasia of prostate

Inflammatory diseases of prostate

Other disorders of prostate

Hydrocele

Orchitis and epididymitis

Redundant prepuce and phimosis

Infertility, male

Disorders of penis

Other disorders of male genital organs

Benign mammary dysplasias

Other disorders of breast

Inflammatory disease of female pelvic organs

Endometriosis

Genital prolapse

Fistula involving female genital tract

Noninflammatory disorders of ovary, fallopian tube, broad liga-

ment, cervix, vagina, vulva or perineum

Disorders of uterus, not elsewhere classified

Pain and other symptoms associated with female genital organs

Disorders of menstruation and other abnormal bleeding from

female genital tract

ICD-9 Code

592.x, 594.x

593.x

595.x, 596.x

597.x - 599.x

600.x

601.x

602.x

603.x

604.x

605.x

606.x

607.x

608.x

610.x

611.x

614.x

617.x

618.x

619.x

620.x,

624.x

621.x

625.x

626.x

- 616.x

622.x -

Continued on next page...
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Table 3.19 - Continued

Description

Menopausal and postmenopausal disorders

Infertility, female

Other disorders of female genital organs

Ectopic and molar pregnancy

Other pregnancy with abortive outcome

Complications mainly related to pregnancy

Normal delivery, and other indications for care in pregnancy,

labor, and delivery

Complications occurring mainly in the course of labor and de-

livery

Complications of the puerperium

Carbuncle and furuncle

Cellulitis and abscess

Acute lymphadenitis

Impetigo

Pilonidal cyst

Other local infections of skin and subcutaneous tissue

Erythematosquamous dermatosis

Atopic dermatitis and related conditions, contact dermatitis and

other eczema

Dermatitis due to substances taken internally

Bullous dermatoses

Erythematous conditions

Psoriasis and similar disorders

Lichen

Pruritus and related conditions

Corns and callosities

ICD-9 Code

627.x

628.x

629.x

630.x

634.x

640.x

650.x

633.x

639.x

649.x

659.x

660.x - 669.x

670.x - 677.x

680.x

681.x, 682.x

683.x

684.x

685.x

686.x

690.x

691.x ,692.x

693.x

694.x

695.x

696.x

697.x

698.x

700.x

Continued on next page...
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Table 3.19 - Continued

Description

Other hypertrophic and atrophic conditions of skin

Other dermatoses

Diseases of nail

Diseases of hair and hair follicles

Disorders of sweat glands

Diseases of sebaceous glands

Chronic ulcer of skin

Urticaria

Other disorders of skin and subcutaneous tissue

Diffuse diseases of connective tissue

Arthropathy associated with infections

Crystal arthropathies

Arthropathy associated with other disorders classified elsewhere

Rheumatoid arthritis and other inflammatory polyarthropathies

Osteoarthrosis and allied disorders

Other and unspecified arthropathies

Internal derangement and other unsprecified disorders of joins

(includes knees)

Ankylosing spondylitis and other inflammatory spondylopathies

Spondylosis and allied disorders

Intervertebral disc disorders

Other disorders of cervical region and back

Polymyalgia rheumatica

Peripheral enthesopathies and allied syndromes

Other disorders of synovium, tendon, and bursa

Disorders of muscle, ligament, and fascia

Other disorders of soft tissues

ICD-9 Code

701.x

702.x

703.x

704.x

705.x

706.x

707.x

708.x

709.x

710.x

711.x

712.x

713.x

714.x

715.x

716.x

717.x, 718.x,

719.x

720.x

721.x

722.x

723.x, 724.x

725.x

726.x

727.x

728.x

729.x

Continued on next page...
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Table 3.19 - Continued

Description

Osteomyelitis, periostitis, and other infections involving bone

Osteitis deformans and osteopathies associated with other dis-

orders classified elsewhere

Osteochondropathies

Other disorders of bone and cartilage

Flat foot

Acquired deformities of limbs (excluding curvature of spine)

Curvature of spine

Nonallopathic lesions, not elsewhere classified

Anencephalus and similar anomalies

Spina bifida

Other congenital anomalies of nervous system

Congenital anomalies of eye, ear, face, and neck

Bulbus cordis anomalies and anomalies of cardiac septal closure

Other congenital anomalies of heart and the circulatory system

Congenital anomalies of respiratory system

Cleft palate and cleft lip

Other congenital anomalies of upper alimentary tract and diges-

tive system

Congenital anomalies of genital organs

Congenital anomalies of urinary system

Certain congenital musculoskeletal deformities

Other congenital anomalies of limbs and musculoskeletal anoma-

lies

Congenital anomalies of the integument

Chromosomal anomalies

ICD-9 Code

730.x

731.x

732.x

733.x

734.x

735.x, 736.x,

738.x

737.x

739.x

740.x

741.x

742.x

743.x, 744.x

745.x

746.x, 747.x

748.x

749.x

750.x

752.x

753.x

754.x

755.x, 756.x

757.x

758.x

Continued on next page...
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Table 3.19 - Continued

Description

Other and unspecified congenital anomalies

Maternal causes of perinatal morbidity and mortality

Other conditions originating in the perinatal period

General symptoms

Symptoms involving nervous and musculoskeletal systems

Symptoms involving skin and other integumentary tissue

Symptoms concerning nutrition, metabolism, and development

Symptoms involving head and neck

Symptoms involving cardiovascular system

Symptoms involving respiratory system and other chest symp-

toms

Symptoms involving digestive system

Symptoms involving urinary system

Other symptoms involving abdomen and pelvis

Nonspecific findings on examination of blood

Nonspecific findings on examination of urine

Nonspecific abnormal findings in other body substances

Nonspecific abnormal findings on radiological and other exami-

nation of body structure

Nonspecific abnormal results of function studies

Other and nonspecific abnormal cytological, histological, im-

munological and dna test findings

Other nonspecific abnormal findings

Ill-defined and unknown causes of morbidity and mortality

Persons with potential health hazards related to communicable

diseases

ICD-9 Code

759.x

760.x - 763.x

764.x - 779.x

780.x

781.x

782.x

783.x

784.x

785.x

786.x

787.x

788.x

789.x

790.x

791.x

792.x

793.x

794.x

795.x

796.x

797.x - 799.x

v01.x - v06.x

Continued on next page...
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Table 3.19 - Continued

Description

Persons with need for isolation, other potential health hazards

and prophylactic measures

Persons with potential health hazards related to personal and

family history

Persons encountering health services in circumstances related to

reproduction and development

Liveborn infants according to type of birth

Persons with a condition influencing their health status

Elective surgery for purposes other than remedying health states

Aftercare involving the use of plastic surgery

Fitting and adjustment of prosthetic device, implant or other

device

Other orthopedic aftercare

Attention to artificial openings

Encounter for dialysis and dialysis catheter care

Care involving use of rehabilitation procedures

Encounter for other and unspecified procedures and aftercare

Donors

Persons encountering health services in other circumstances

General medical examination

Observation and evaluation for suspected conditions not found

Special investigations and examinations

Special screening examination for viral and chlamydial diseases

Special screening examination for bacterial and spirochetal dis-

eases

Special screening examination for other infectious diseases

Special screening for malignant neoplasms

ICD-9 Code

Continued on next page...
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v07.x - v09.x

vl0.x - v19.x

v20.x - v29.x

v30.x - v39.x

v40.x - v49.x

v50.x

v51.x

v52.x, v53.x

v54.x

v55.x

v56.x

v57.x

v58.x

v59.x

v60.x - v69.x

v70.x

v71.x

v72.x

v73.x

v74.x

v75.x

v76.x



Table 3.19 - Continued

Description

Special screening for endocrine, nutritional, metabolic, and im-

munity disorders

Special screening for disorders of blood and blood-forming or-

gans

Special screening for mental disorders and developmental hand-

icaps

Special screening for neurological, eye, and ear diseases

Special screening for cardiovascular, respiratory, and genitouri-

nary diseases

Special screening for other conditions

Genetics

Body mass index

Estrogen receptor status

A transport accident

Place of occurrence

Accidental poisoning

Misadventures to patients during surgical and medical care, and

abnormal reaction to treatment

Accidental falls

Other accidents

Late effects of accidental injury

Drugs, medicinal and biological substances causing adverse ef-

fects in therapeutic use

Suicide and self - inflicted injury

Homicide and injury purposely inflicted by other persons

Legal intervention

ICD-9 Code

v77.x

v78.x

v79.x

v80.x

v81.x

v82.x

v83.x - v84.x

v85.x

v86.x

e800.x - e848.x

e849.x

e850.x - e858.x,

e860.x - e869 .x

e870.x - e876.x,

e878.x - e879.x

e880.x - e888.x

e890.x - e928.x

e929.x

e930.x - e949.x

e950.x

e960.x

e970.x

e959.x

e969.x

e978.x

Continued on next page...
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Table 3.19 - Continued

Description ICD-9 Code

Injury undetermined whether accidentally or purposely inflicted e980.x - e989.x

Injury resulting from operations of war, or terrorism e979.x, e990.x -

e999.x

Table 3.19 Grouping of ICD-9 Codes, "x" at the end of a code stands for any number.
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