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Abstract

Dissipative particle dynamics (DPD) is a mesoscale simulation technique which uses soft

potentials between large particles to reproduce liquid behavior. In form, DPD is similar
to molecular dynamics, as all matter is represented by point particles which interact with
each other via, pairwise forces. The method was first introduced in the early 1990's, and
has since undergone a number of refinements which have put it on a firm thermodynamic
footing. DPD is notable for the flexibility it presents the modeler for building complex
fluid systems. DPD has been used to study simple molecular liquids, polymer and colloid
solutions, and phase behavior of block copolymer melts. Recently, a number of workers
have used DPD to study the flow of polymer solutions in various geometries such as
microchannels, pores, and sudden contractions. While these types of flows are well-suited
to DPD's relative strengths, an important step has been skipped. Before the results of
these complex flows can be accepted, it is necessary to demonstrate that the rheological
predictions made by DPD are generally reliable. The principle aim of this thesis is to
demonstrate that the rheology of polymer solutions can be simulated successfully with
DPD.

The rheology of a solution of DPD dumbbells using a FENE spring force law is stud-
ied in the first part of this thesis via simulation of steady shear flow and steady planar
elongational flow. The rheological results are compared to dilute Brownian dynamics
simulations of the same FENE dumbbell model. The level of coarse-graining of the DPD
fluid is varied by changing the length of the DPD dumbbell relative to the particle size,
while maintaining a constant extensibility parameter. Broadly speaking, the viscosity,
first normal stress coefficient, and dumbbell extension in shear flow calculated with DPD
are in agreement with the BD results. The two methods are not perfectly alike how-
ever, and two systematic differences between the DPD and BD results are observed. An
excluded volume effect which occurs naturally in DPD and is not present in the BD
simulations results in elevated viscosity and dumbbell extension in the zero-shear-rate



regime. The effect is more powerful in DPD dumbbells which are more coarse-grained.
At high shear rates in the power-law regime, DPD systematically overpredicts the rate of
shear-thinning, with the greatest deviation occurring in the most coarse-grained dumb-
bells. This is hypothesized to be a result of hydrodynamic interaction which comes
naturally out of DPD's explicit treatment of the solvent. The HI effect is analyzed using
the Giesekus anisotropic drag tensor.

Shortly after its introduction, the complaint was made that DPD's dynamic results
are suspect because it has a very low, gas-like Schmidt number, meaning that momentum
and mass are transported through the DPD medium at similar rates. This is in contrast
with physical liquids, which have large Schmidt numbers. The use of the Lowe-Anderson
formulation of DPD allows the Schmidt number of a solution to be varied for the same
polymer model. Shear flow simulations of identical dumbbells under different Schmidt
number conditions give results in excellent agreement with each other, indicating that
the Schmidt number is not an important factor in determining polymer rheology with
DPD.

Steady planar elongational flow is simulated for the first time in DPD using the
Kraynik and Reinelt boundary conditions, which are periodic in both space and time,
allowing for simulations of planar elongational flow for an unlimited period of time. The
planar elongational flow results of FENE dumbbells are also in agreement with BD,
butshow the same systematic deviations observed in shear flow.

The second portion of this thesis examines a more complex polymer solution using
DPD, with simulations of semidilute solutions of longer N = 20 bead-spring chain poly-
mers undergoing shear and planar elongational flow. In addition to concentration effects,
the importance of the solvent quality is also examined with simulations of polymer solu-
tions in both good and theta solvents. In order to capture concentration dependency, a
spring-spring repulsion force is added to the DPD model to prevent polymer springs from
passing though each other. A strong concentration dependence on the longest relaxation
time is observed. In planar elongational flow, each solution goes through a coil-stretch
transition at the theoretically predicted strain rate De = 0.5. In shear flow, the rheo-
logical results are in qualitative agreement with theory, showing a plateau at low De,
and a transition into a shear-thinning regime beginning at De = 1. While the planar
elongational flow results show clear dependence on the solution relaxation time, the shear
results show a mixed dependence on the overall solution relaxation time, which reflects
the concentration dependence, and the relaxation rate of an isolated chain, suggesting
that only some aspects of the shear rheology are affected by the concentration.

The conclusion of this thesis is that DPD is able to faithfully reproduce reliable
rheological behavior with bead-spring polymer models. We find however, that the com-
putational costs associated with the explicit simulation of the solvent put DPD at a
disadvantage for systematic rheology studies when compared to Brownian dynamics.
The high costs of the spring-spring repulsion force implementation are particularly lim-
iting. In complex systems where DPD's natural flexibility in molecular architecture and
chemistry make it the best choice, rheological results can now be accepted with more



confidence.
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Chapter 1

Introduction

1.1 Motivation

One of the defining challenges associated with the computational study of polymeric

systems is that of length scale. Within a long chain polymer, a multiplicity of length

and time scales are represented, from the atomistic length scale associated with atomic

vibrations, to the Kuhn length, defined as the length over which the polymer backbone

is stiff, to the full contour length of the macromolecule, which can reach to hundreds of

microns. Polymer physicists have developed a number of different methods for studying

polymer systems, which can be organized based on the length scale they address, and

consequently the level of molecular detail they are able to resolve. The most coarse-

grained methods are continuum based, in which the physics of the polymer solution is

modeled as a field quantity. At this level, closed constitutive equations are required to

calculate the fluid stresses and other system-level quantities of interest, which limits the

molecular complexity that can be captured. As we zoom in closer, we arrive at kinetic

theory, in which a mechanical model of the macromolecule is made to interact with a

surrounding fluid. The stresses and other fluid properties are calculated as a function

of the configuration of the individual molecular model molecules and the flow field of



the surrounding solvent. The models used in kinetic theory to represent polymers run

the gamut from the very simple Hookean spring dumbbell, in which an entire polymer

chain is represented by a spring connecting two beads, to the Kramers chain, a bead-

rod representation which captures Kuhn length-level details, to even smaller-scale models.

Finally, we arrive at the very small length scale domain of molecular dynamics and Monte

Carlo methods, which seek to model polymer systems at the monomer, or even atomic

scale. In these methods, both solvent and polymer are represented as particles rather

than as a continuum fluid. As the methods become more fine-scale, molecular detail is

traded for computational cost. The time and length scales which can be addressed by

molecular dynamics are orders of magnitude smaller than those which can be addressed

by kinetic theory, which in turn are much smaller than those amenable to study with

continuum methods. It is thus natural to seek methods of polymer simulation with

intermediate cost, and an intermediate level of detail in order to address problems for

which traditional kinetic theory models are too coarse, but for which molecular dynamics

and Monte Carlo are too costly. It is here that dissipative particle dynamics (DPD) finds

its home.

1.1.1 History of DPD

DPD was first proposed in the early 1990's by Hoogerbrugge and Koelman[40] as a

method useful for studying mesoscopic complex fluid systems using a framework taken

from molecular dynamics (MD). Mesoscopic refers to length scales which are large in

comparison to atomic or molecular lengths, but small relative to everyday experience.

In form, DPD closely resembles MD, as it is a fluid made of entirely of particles which

interact with other nearby particles through pairwise forces. As such, the implementation

of the two methods have much in common. DPD departs from MD, however, when the

nature of the particles themselves are considered. Each DPD particle represents a large

number of solvent or monomer units, and might be better thought of as a fluid packet

or element. DPD is distinguished from other mesoscale simulation techniques such as



lattice-gas cellular automata [69] and lattice-Boltzman equation [7] in that the particles

move continuously in space, rather than along a predefined lattice. The pair-interaction

laws lead to DPD to conserve momentum, which in turn leads to hydrodynamic behavior.

DPD was quickly adopted by a number of other workers who recognized that the form

of the model would allow for a great deal of flexibility in building complex molecules

and systems. Using DPD to model polymers by connecting DPD particles with entropic

springs was proposed very early[70], and was followed up with studies of the effects of

solvent quality on relaxation and conformation of polymer molecules. [44] .Espanol and

Warren[20] made a major contribution to the development of DPD when they proposed

a constraint on the coefficients and weighting functions of the dissipative and random

forces, satisfying the fluctuation-dissipation theorem. With their modification, these two

forces function as a thermostat, maintaining a constant systemwide temperature. Groot

and Warren[37] made the next major contribution, establishing an integration algorithm

for Newton's equations of motion, and making the first theory-based argument for the

value of the conservative force coefficient. This paper also introduced a relationship

between DPD parameters and Flory-Huggins X-parameters, which led to a great deal of

additional work using DPD to study polymer phase behavior[15, 14, 58]. Marsh et al.[55]

made an effort to derive thermodynamic and transport properties of the simple DPD

fluid via the solution of the Fokker-Planck-Boltzmann equation, leading to estimates of

the viscosity and self-diffusion constants.

The use of DPD as a method of studying polymer systems continued to develop with

additional work on the properties of polymers at equilibrium. Spenley[75] showed that

DPD bead-spring chains followed Rouse scaling in the relaxation time, diffusivity, and

radius of gyration. Pan and Manke[62] investigated the use of a linear spring-spring

repulsion in order to simulate polymer melts. Willemsen et al.[82] explored the use of

frozen DPD particles to build a wall which would exhibit no-slip boundary conditions,

later using the method to simulate pressure-driven flow in a chromatography channel[83]

in one of the first instances of DPD being used to simulate a flowing polymer solution.



Further work on DPD simulations with walls is also available[27, 54, 67, 66, 65, 85, 86, 87].

Fan et al. [26] used DPD to simulate flows of DNA solutions in channels. The work

was further refined[17, 25] to include more realistic treatment of the wall boundaries

and spring force law. DPD has been widely used to simulate phase behavior of block

copolymers[12, 29, 30, 36, 48], aphiphilic polymers[42, 71, 72], lipid bylayers[32, 45, 84],

polymer brushes[60, 41], and particle adsorption[34]. The DPD method has also been

used to model a number of other physical systems and flow types which are not addressed

in this thesis, including dense phase colloid systems[9, 10], flow around spheres[13, 43],

capillary wetting[16], and flow in pores[49, 51].

In 2003, Lowe[52] made an important contribution to DPD with the introduction of

an alternate thermostat, which replaces the dissipative and random forces with a modifi-

cation of the Anderson thermostat from MD. The new method allows for greater control

of the Schmidt number, greatly increasing the flexibility of the method for performing

non-equilibrium simulations. This development led to several studies of the effect of the

Schmidt number on solutions of DNA and other flexible polymer systems[79, 78].

In all the papers mentioned above, the extraordinary flexibility of the DPD system

is used in a number of ways to attack problems which are difficult to access with other

methods. The results, however, are presented based upon an assumption that the DPD

method reproduces correct rheological behavior in polymer solutions generally. This

assumption has never been tested in a systematic way. Quantities are reported which

reflect on the rheology of the polymer system, such as velocity profiles in channel flow, and

spring extension in shear flow, but in no cases are material functions reported explicitly,

especially with respect to the strain rate. This deficiency in the DPD literature forms the

basis for the motivation of this thesis. I am seeking to place non-equilibrium simulation

of polymer solutions in DPD on a firmer footing by performing simulation experiments

which can be replicated with other methods. Showing that DPD produces verifiably

correct results for simple problems will make DPD's predictions of more complicated

phenomena like those studied by previous DPD workers more believable. To this end, I



have developed DPD codes for simulating shear and planar elongational flow over a wide

range of strain rates. I show that DPD produces realistic rheological results both at low

strain rates in which the polymer molecules are not significantly deformed, as well as at

high strain rates, in which the molecules change their shape drastically, resulting in very

nonlinear rheological responses.

This analysis is carried out twice; once for dilute FENE dumbbells, which is a very sim-

ple model, and easy to compare to other methods, and once for concentration-dependent

long chains in varying solvent quality, as a demonstration of DPD's performance studying

the rheology of complex systems for which it is well-positioned.

1.2 Thesis Outline

This thesis is organized progressively, beginning with an introduction to the method

in its various forms. Chapter 2 contains an in-depth description of the original DPD

method, including a breakdown of the governing equations and pairwise forces which act

between particle pairs. The significance of each of the coefficients is explored, as well

as the role of the weighting functions in each of the pairwise forces. Special attention is

paid to the conservative force coefficient, which controls the chemistry of the DPD fluid.

The constraints on the dissipative and random forces which work together to form a

thermostat in the MD sense are explained next. I then discuss the limitations on the use

of DPD for non-equilibrium simulations, including the strains rates which are practically

accessible, and the potential difficulty due to low Schmidt number. The alternative DPD

thermostat proposed by Lowe[52] is then introduced. Finally, the concept of using DPD

to model macromolecules with bead-spring chains is presented, along with a system for

assigning physical scales to DPD length, time, and mass units.

Chapter 3 deals with the details required to implement non-equilibrium flow simula-

tions of DPD systems. Two well-known flow types, simple steady shear flow, and steady

planar elongational flow are studied in this thesis. For both flows, periodic boundary



conditions which are specific to the flow in question are used. For shear flow, Lees-

Edwards boundary conditions involve periodic images which move relative to the simula-

tion domain. Implementation using LE boundary conditions requires careful treatment

of interactions that occur across the moving periodic boundary, including pairwise parti-

cle interactions, polymer spring force calculations, and the calculation of configurational

quantities. Implementation of planar elongational flow is somewhat more involved, as it

entails the use of Kraynik and Reinelt's boundary conditions. The KR boundary condi-

tions describe a periodic domain that deforms with the flow until a certain total strain

is reached, at which point a temporal periodicity is reached, allowing the shape of the

domain to be reset to it's original configuration without interrupting the particle-level

details of the fluid. KR boundary conditions have never been used with DPD before.

In addition to a detailed explanation of how the KR boundary condition system works,

the treatment of interactions which occur across the moving/deforming boundaries are

presented in a step-by-step manner intended to function as a how-to manual for future

investigators.

Chapter 4 contains the first set of simulation results presented in this thesis. The

shear and planar elongational behavior of dilute solutions of FENE dumbbells are inves-

tigated via nonequilibrium DPD simulation, and the results are compared quantitatively

with those of Brownian dynamics simulations of the same molecular models. The pur-

pose of this chapter is to demonstrate that DPD is useful for studying the rheology of

polymer systems, and that the results produced by the DPD method match those of an-

other better-established method. The FENE dumbbell molecular model is purposefully

chosen to be as simple as possible, in order to produce results which can be analyzed in

as simple and uncluttered a manner as possible. Viscosity, first normal stress coefficient,

and dumbbell configuration are studied in detail. The length scale of the DPD particle

pair interaction (in short, the particle diameter) relative to the dumbbell length is var-

ied, allowing us to study the relative importance of the effects of excluded volume and

hydrodynamic interaction on the rheology of polymers in DPD.



Chapter 5 brings together a number of the attractive capabilities of DPD in a single

set of simulations. A longer N = 20 bead-spring chain polymer molecule is simulated in

steady shear and steady planar elongational flow throughout the semi-dilute regime. The

solvent quality is varied as well. In order to include concentration effects, a spring-spring

repulsion force is added to the DPD model to prevent polymer chain backbones from

passing through each other. The implementation details and performance of this addition

to the DPD method are presented in this chapter. The concentration-dependent rheology

of the polymer solutions are presented for each flow, and the results are compared to a

similar study of A-DNA using Brownian dynamics.

Finally, in Chapter 6, the thesis is concluded with an examination of the utility of

DPD as a simulation method for polymer rheology. While I have shown for the first time

that DPD is able to reproduce believable rheological results for two important types

of flow, the question remains as to whether the considerable computational costs and

inherent modeling limitations that accompany the DPD method make it worthwhile to

use for studying this type of phenomena.



Chapter 2

Dissipative Particle Dynamics

Dissipative Particle Dynamics (DPD) is a mesoscopic simulation technique which is mod-

eled loosely on Molecular Dynamics. The term mesoscopic indicates that DPD occupies

the space between Molecular Dynamics and Monte Carlo methods, which seek to model

systems at the level of individual atoms or groups of atoms, and continuum descrip-

tions, which make the assumption that the contributions of individual particles can be

represented as field quantities. Roughly speaking, mesoscale is thought to refer to char-

acteristic lengths of 10nm to 1pm. A DPD fluid is made up of particles which have

continuous spatial positions and velocities, but which are updated discretely in time. In

this way, it is differentiated from other mesoscopic methods such as Lattice-Boltzman[7]

and lattice Monte Carlo methods, wherein particles are restricted to a set of discrete

positions. The motion of the particles is governed by pairwise forces. In this way, DPD

is superficially similar to MD. DPD particles, however, are not intended to represent

individual atoms. Rather, each particle should be viewed as a fluid packet, or element

which may contain thousands or even millions of atoms. DPD particles do not have hard-

sphere repulsions with each other, and as a result overlap with each other to a significant

degree. DPD was first suggested in the early 1990s by Hoogerbrugge and Koelman[40] as

an attempt to address the mesoscopic scale without having to resort to lattice methods.



Figure 2-1: A DPD particle should be thought of as a fluid element, or collection of
atoms, rather than a physical particle. DPD particles are point particles, so the only
measure of size is the interaction length, re.

2.1 The Method

DPD consists of an ensemble of point particles i = 1, .... , N whose positions and momenta

at time t are denoted by ri(t) and pi(t) respectively. The time evolution of ri(t) and pi(t)

are updated according to Newton's equations of motion

dri
d vi (2.1)

and

dpi= Fi (2.2)dt

where vi = pi/mi. For simplicity, the masses of all DPD particles are chosen to be

equal. The DPD unit of mass is chosen such that m = 1, so we will dispense with the

use of the momentum pi, and deal exclusively with vi from now on. The total force on

particle i is the sum of a conservative force, a dissipative force, and a random force, each
of which is pairwise additive



Fi= = [F'. (r(j) + F' (rij, vi) + F (rij)] (2.3)
isj

where the sum runs over all particles found within a cutoff radius designated by r,.

As DPD contains no other inherent length scales, we will choose a unit length to be

rc = 1. Here rij refers to the interparticle vector rij rj - ri, and vij is the difference

in the velocity of particles i and j, vi = vj - vi. Below are descriptions of each of the

component forces:

The Conservative Force

The conservative force is a soft repulsion that acts on a line between the two particles

and is defined as

FC (r/j) = aij(1 - rij)ri'j (rij 1)
F (ri) = 0 (r Ž1) (2.4)S0 (rij _> 1)

where aij is the maximum repulsion between particles i and j, rij is the length of rij;

rij = Irij , and ?ij is the unit vector in the direction of rij; r'j = rij/rij. The conservative

force is similar to that used in molecular dynamics. The choice of the linear weighting

function represents an averaging over the rapid fluctuations of many atoms obeying a

Lennard-Jones potential. The key feature of the conservative force is that at very small

separation distances, the repulsion force is finite. This is referred to as a soft potential.

The Dissipative Force

The dissipative force is dependent on both the separation distance and the relative

velocity of the two particles

F' (rij, vij) = -- ywD(rij) (ij -vij)ij (2.5)

where wD(rij) is an arbitrary weighting function that is finite at rij < 1 and vanishes

for rij > 1. y is a coefficient controlling the amplitude of the dissipative force. This

parameter is important in determining the viscosity of the simple DPD fluid. From a



physical standpoint, it is useful to view the dissipative force as a friction interaction

between particles that pass close to each other having different velocities. A particle

moving more slowly receives momentum from a faster particle, while the faster particle

is slowed down. This momentum exchange contributes strongly to the viscosity of the

fluid as a whole.

The Random Force

The final term in Eq. 2.3 is the random force acting on particle pairs:

F' (rij) = aowR(rij)Oijij (2.6)

where wR(rji) is the weighting function for the random force, and a is the coefficient

governing the strength of the interaction. Oij is a random Gaussian variable with mean

0 and unit variance. The random force models the averaged result of a multiplicity of

atomic collisions that occur in a physical fluid. In this, it can be thought of as analogous

to the Brownian force in Brownian Dynamics simulations. It should be noted that Groot

and Warren report that a uniform distribution for Oej gives indistinguishable results. As

uniformly distributed random numbers can be produced for 1 the computational cost of

Gaussian random numbers, this is a development worth implementing.

2.1.1 Fluctuation-Dissipation Theorem

When DPD was introduced by Hoogerbrugge and Koelman[40], they suggested that the

weighting functions for the dissipative and random forces be set equal to each other,

however Espanol and Warren [37] later showed that in order to satisfy the fluctuation-

dissipation theorem, neither the weighting functions, nor the coefficients of the dissipative

and random forces were independent of each other. Rather, the following relationships

must be satisfied:

wD (rij)= [wR(rij)] 2 (2.7)



and

a2 = 2kBT-y. (2.8)

While the choice of wD(rij) is arbitrary, the majority of DPD workers have opted for

the simple choice of

wD(rij) = [(rij)]2  (- •) (rij 1) (2.9)
0 o(ri _> 1)

so that wn(rij) is identical to the linear weighting function used in the conservative

force. The fluctuation-dissipation theorem ensures that the total energy added to the

system due to the random force is equal to the total energy removed from the system due

to the dissipative force. As such, the random and dissipative forces in DPD, constrained

by Eqs. 2.7 and 2.8 form a thermostat, which ensures that the system temperature

remains constant at the setpoint of kBT. It should be pointed out that DPD is incapable

of sustaining a non-homogeneous temperature field due to the presence of a thermostat.

2.1.2 Integration Scheme

The Newtonian equations of motion for DPD which we have described in detail in the

preceding section are typically integrated using a modified velocity-Verlet algorithm,

given here:

r (t + At) = ri(t) + Atvi(t) + 2(At)2f,(t),

ti(t + At) = vi(t) + AAtf (t), (2.10)

fi(t + At) = fi(ri(t + At), vi(t + At)),

vi(t + At) = vi(t) + !At(fi(t) + fi(t + At))

with A = being typical. vi is an intermediate velocity used in the calculation of

the interparticle forces. Further work on integration schemes and timestep dependence



in DPD is available in[33, 38, 57, 59, 64, 73, 77, 80].

2.2 Parameter Choice in DPD

In addition to specifying the form of the equations, one must choose values for the para-

meters that appear in the governing equations. The most common choices of parameter

values are presented in this section, along with the rationale for so choosing. Generally,

the choice of DPD parameters is made based on a combination of physical rationalization

and practical computational necessity.

2.2.1 Physical Units in DPD

The time scale in the DPD system is a result of choosing the temperature, ksT =

1 along with the MD definition of the temperature, ksBT = (v 2) /d where (...) is the

average over all particles in the simulation, and d is the number of spatial dimensions.

Thus time is scaled such that a particle with velocity v = 1 will move a distance r,

in one time unit. In choosing a timestep At, the modeler must compromise between

a desire to save computational resources by using as large a timestep as possible, and

yet not compromising the stability of the simulation. The accuracy of the integration

of the equations of motion is measured by monitoring the deviation from the set point

temperature. Groot and Warren[37] found that, using the velocity-Verlet algorithm given

above, At = 0.04 resulted in deviations from the setpoint temperature of less than 1%

for a simulation using a random force noise amplitude of a = 3. The same accuracy from

a simpler Euler method algorithm required At - 0.001. Increasing the noise amplitude

a reduces the accuracy of the integration.

2.2.2 The Conservative Repulsion Parameter

Once At and a have been chosen, only aij, the particle pair repulsion coefficient, is

required to fully specify the method. The first two parameters relate to the simulation



itself, while aij describes the model fluid. In order for fluctuations in the DPD liquid to

faithfully reproduce those of the physical model, the compressibility of the liquid must

be correct. The compressibility is given by

K 1 1 Ip
kBThT -kBT / (2.11)nkBTT- k-- -n T

where n is the particle number density, and /•T is the isothermal compressibility.

For reference, water at 300K has '-1 = 15.9835. From the virial theorem, Groot and

Warren[37] define the pressure as

p = pk BT + K (rij -FC) (2.12)

from which they were able to show that for densities p > 2, an approximation of the

pressure is given by

p = pkBT + aap2  (2.13)

where the coefficient for the quadratic term is a = 0.101 ± 0.001. Thus the dimen-

sionless compressibility can be approximately expressed as

--1 = 1 + 0.2a . (2.14)
kBT

Normally, DPD modelers choose the compressibility of their fluid to be similar to

water, which leads to a guideline for choosing the repulsion coefficient to be

75kBT
aij 5k (2.15)

P

Most DPD studies in the literature have chosen p to be between 3 and 4, as the object

is to reproduce hydrodynamic behavior for the cheapest computational cost. The CPU

cost per timestep per unit volume increases as the square of the density, so modelers have

good reason to use a density only as great as is necessary.



Chemical Species Differentiation

Chemical species are easily differentiated in DPD systems simply by specifying that

the interspecies repulsion coefficient between unlike atoms, aAB be different than the

intraspecies coefficients aAA and aBB. Groot and Warren showed that the repulsion

coefficients could be accurately mapped onto Flory-Huggins parameters, and that with

sufficiently dissimilar repulsion coefficients, phase separation could be achieved, and a

surface tension measured which agrees with theory. This ability to represent unlike

species without any major modification to the model is one of the key strengths of DPD.

2.2.3 Dynamics

The governing parameters for DPD have all been established using arguments taken from

DPD's equilibrium behavior. As rheologists, we are at least as concerned with the dy-

namics of the DPD fluid model. One important quantity which has been much discussed

in the DPD literature is the Schmidt number Sc = v/D, where v is the kinematic vis-

cosity and D is the particle autodiffusion constant. This dimensionless number can be

interpreted as the ratio between the rates of diffusion of momentum and mass, or instead

as a comparison of the time it takes a particle to travel a certain distance against the time

required for hydrodynamic interactions to travel the same distance. For reference, the

Schmidt number of liquid water is of order 103 . Marsh et al.[55] have proposed relations

for the transport properties of the DPD fluid. The self diffusion coefficient is given by

45kBT
D 45kBT (2.16)

2irypr2

and the kinematic viscosity by

D 27yrpr 5D 2+- + (2.17)
2 1575

where the first term is the kinetic contribution, and the second comes from the dis-

sipative force contribution. The conservative force contributions are neglected. This



results in a prediction for the Schmidt number of

1 (2irypr4)2

Sc - + C (2.18)2 70875kBT

Measurements of the transport properties of DPD can alternately be calculated from

direct simulation, either via Green-Kubo relations, or by direct measurement of the

results of non-equilibrium flow experiments[6]. For typical operating conditions, the

Schmidt number for the DPD fluid is of order 1.

Limitation on DPD Fluid Viscosity

From the perspective of one interested in polymer rheology, the formulation of DPD

presented above has some key limitations. The first is with regard to the viscosity of the

simple DPD fluid. In dilute polymer solutions, the viscosity of the Newtonian solvent has

a significant effect on the relaxation time scale of the polymer molecule being studied.

In the experimental world, the introduction of Boger fluids allowed researchers to study

dilute solutions of polymers whose dynamics were too fast to access experimentally when

they were in solution with solvents of lower viscosity. One wishing to simulate polymer

solutions with DPD finds the same limitation here. The viscosity of the simple DPD

fluid affects the relaxation time of polymers in solution with it, which in turn affects

the strain rates at which interesting polymer dynamics occur. The viscosity of the DPD

fluid, expressed in Eq. 2.17 depends on the density, the interaction radius, and 7, the

strength of the dissipative force. Due to the dependence of - on a found in Eq. 2.8, -

cannot be increased without a commensurate decrease in the timestep size. Similarly,

increasing either p or r, results in very large increases in the computational cost of the

model as many more particles pair distances and forces must be calculated at each time

step. As such, the simple fluid viscosity that is available to a modeler is relatively static.



Limitation on Strain Rate

As with all stochastic methods, DPD results always include a noise term, which must be

reduced to a small fraction of the quantity being measured. This can be accomplished

either by simulating a large number of DPD particles, or else by running the simulation

over a long time period, and averaging the results. The cost of increasing either time or

system size scales approximately linearly. As a result of this, the accurate measurement

of dynamic quantities such as polymer stress becomes more and more computationally

demanding as the rate of strain is decreased. This principle puts a lower bound on the

rates of strain which are practically accessible via DPD simulation. The upper bound

is set by the fluid itself. As the strain rate is increased, individual beads have less time

to sample each other's presence in the fluid as they pass. As the strain rate, defined

in native DPD units approaches unity, the viscosity of the simple DPD fluid begins to

decrease. We are wishing to treat the simple DPD fluid as a Newtonian solvent, so we

must limit ourselves to strain rates in which the fluid behaves as such, having a constant

viscosity. This results in an upper limit on the DPD shear rate of 0.3.

2.3 The Lowe-Anderson Thermostat

Given the limitations on the Schmidt number, there have been a number of efforts to

modify the DPD model to address this problem. Fan et al. [25] have proposed the

introduction of a new interaction range which is used exclusively for the dissipative

force. This range would be larger than the conservative force range, and would result in

more particle-pairs exchanging momentum. By varying the dissipative interaction range,

they are able to gain a lever with which to manipulate the Schmidt number. The chief

disadvantage of this approach is in the computational cost involved. As the secondary

interaction distance is increased, the efficiency of the simulation suffers.

In another approach to addressing the issue of low Schmidt number, Lowe [52] has

presented an interpretation of DPD in which the method is split between the conserv-



ative force, which serves to govern the thermodynamic behavior of the system, and the

dissipative and random forces, which serve as the thermostat keeping the system at a con-

sistent total kinetic energy, due to their connection through the fluctuation-dissipation

law. He argues that there is no reason that the soft conservative potential must be used

in conjunction with the DPD thermostat in order to convey the advantages native to

it, namely that large time and length scales can be addressed in simulation relative to

molecular dynamics. Several of the advantages associated with DPD are due to specific

properties of the DPD thermostat, but are not necessarily unique to it. In particular, the

DPD model conserves momentum because all particle interactions are pairwise, so that

when momentum is exchanged between particles the pair's momentum is unchanged and

thus there is no global change in the momentum of the system. This is the property that

gives rise to hydrodynamic behavior.

Two other properties of the DPD thermostat are important. Because the random

and dissipative forces contribute to the stress in the system, the DPD thermostat en-

hances viscosity. Finally, the DPD thermostat is local, which means that the strength

of the thermostat's interaction is strictly a result of local, rather than global conditions.

This is in contrast to the Nose-Hoover thermostat [l], for example, which resets particle

velocities based on the entire system's temperature. As a result, a discontinuity in the

temperature in one part of the domain effects the behavior of the thermostat everywhere.

If these properties can be conserved in a thermostat of a different form, then the dynamic

properties of DPD that make it attractive for fluid modeling will be preserved.

2.3.1 The Anderson Thermostat

The Anderson thermostat [2] was originally developed for molecular dynamics simulations.

It controls the temperature of the system by periodically exchanging the momentum of

a particle with that of an imaginary particle from a thermal reservoir. Specifically, the

momentum of system particles are replaced at random intervals with a value taken from

a Maxwellian velocity distribution. This thermostat acts locally, as each thermostat



interaction affects just a single particle and does not depend on the global state of the

system. From the perspective of DPD, the chief disadvantage of the Anderson thermostat

is that momentum is not conserved, as each momentum exchange changes the system

total.

Lowe suggested a modification to the Anderson thermostat in which particle pairs,

rather than individual particles are thermalized. The relative velocity of the particle

pair is replaced by a relative velocity taken from a Maxwellian distribution. The velocity

of each particle in the pair is changed by an amount equal in magnitude, but opposite

in sign, so that the centroid velocity of the pair is unchanged. As a result, the total

momentum of each pair of particles is the same before and after the thermalization step,

and total momentum is conserved.

2.3.2 Lowe-Anderson DPD Formulation

Based on this modification of the Anderson thermostat a new formulation of DPD

is possible. The Lowe-Anderson formulation of DPD then, is made by the marriage

of the modified Anderson thermostat to the integration scheme and conservative force

law of the original Groot and Warren formulation. The dissipative and random forces

introduced earlier are abandoned altogether, while the conservative force law is kept

without modification. In the place of the dissipative and random forces, the Lowe-

Anderson thermostat is inserted.

Moving from the DPD thermostat to the Lowe-Anderson thermostat obviates the

need to choose y, the strength of the dissipative force, which controls the strength of the

viscous interaction. Instead, the modeler chooses a new parameter, F, which controls the

frequency of particle pair thermalization events. For each particle pair with a separation

distance less than the interaction range, for which rij < re, there is a probability defined

by the quantity FAt of undergoing the thermal bath exchange process. This means that

F is an absolute measure of the thermostatting frequency, without regard to the timestep

size. We note, however, that there is a practical limit of the range of F that may be



employed. Each particle pair can be thermalized but once per timestep, so FAt has an

upper limit of 1.

For those particle pairs which are selected, a new relative velocity along the vector

connecting the particles is generated from a distribution j v2kT where (ij is a Gaussian

random number.

[vj]'- rij = -j 2k6j2BT (2.19)

The factor of V/ is included to reflect that the distribution is for relative velocities rather

than for individual particle velocities. This new relative velocity replaces completely the

previous velocity of the particles via

[vj]' = vi + Aij and [vj]' = vj - Aj (2.20)

where the velocity update quantity Aij is calculated according to

2dij = ij ([Vij]' - Vij) i'ij. (2.21)

Let us now examine the question of how the Lowe-Anderson thermostat contributes

to the fluid viscosity. The velocity update term described in Eq. 2.21 is an impulsive

force, but it can be viewed instead as a force on the particles over the timestep given by

fLA - i (2.22)

If we take the example of a simple shear flow, we note that a particle pair that sits

across a shear plane will on average, experience an impulsive thermostat force that retards

the motion of the faster particle, and speeds up the slower particle. The impulse force

can thus be understood to be acting as a viscous force. Making an argument based on

the form of the stress-stress autocorrelation function, which predicts the zero-shear rate

viscosity, Lowe predicts that the simple DPD fluid will have the following viscosity law:



rp2rr5

?o -75m
(2.23)

In a similar fashion, the self-diffusion constant is predicted to follow

D oc kBT/F. (2.24)

Taken together, we see that we can expect the Schmidt number of the Lowe-Anderson

DPD fluid to depend on the square of F. A timestep of At = 0.01 allows us to access

Sc 1800, which is a significant improvement in the range of accessible Schmidt numbers

over the original DPD formulation. The actual Schmidt number behavior of a LA-DPD

fluid was investigated via non-equilibrium simulations by Symeonidis et al. [79], who

showed that viscosity increases linearly with F, while the self-diffusion constant varies as

F - 1, giving the predicted relationship that Sc~ 2 .
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A DPD particle with interaction radius re = 1 when p = 4 will, on average, have

roughly 15 other DPD particles within its interaction sphere at each timestep. If we

focus on the case illustrated in Figure 2-2, where At = 0.01. When F = 50, half

of the particle pairs undergo a LA thermalization at each timestep. This means that

the average particle undergoes more than 7 individual thermalization events at every

timestep. This may seem like an excessively strong intervention, but it is worth keeping

in mind that the centroid velocity of the particle pair is unchanged by the LA thermostat.

This means that the likely effect of a single thermostat interaction is quite small. As F

becomes quite large however, each particle is likely to be thermostatted many times at

each timestep, and so it is not unreasonable to assume that there is a screening effect.

The first thermostat interaction changes the final state of the particle more than the

twelfth. This interpretation explains the fact that the measured Schmidt number does

not follow exactly the F2 heuristic as the value of FAt becomes large.

Table 2.1 gives explicitly the algorithm for implementing the Lowe-Anderson approach

to DPD.

Table 2.1: Implementation of Lowe-Anderson DPD Formulation

Lowe-Anderson DPD approach

1.) v2(t + ) = vi(t) + !FAt

2.) For all particle pairs for which rij < re
i.) Generate a uniform random number (ýj
ii.) If ýjj < FAt, generate [vij]' -rj from

a Maxwell Distribution ij2kBT

iii.) 2Aij = rij ([vij - Vij) rij
iv.) [v]/ = v + Aij
v.) [vj]' = vj - Aij

3.) vi(t + ) = vi(t) + FcAt

4.) ri(t + At) = ri(t) + v;(t + -)At

5.) Calculate Fc

Table 2.1: Implementation of Lowe-Anderson DPD Formulation



2.4 Polymers in DPD

From the earliest introduction of DPD, it has been observed that the model is ideal

for incorporating macromolecules into DPD simulations. In particular, the DPD model

strongly suggests by its structure a bead-spring or bead-rod model for constructing macro-

molecules, as the beads are already extant. Bead-spring models are more coarse-grained

than macromolecules build with rigid connectors, so we will choose to focus on these, as

DPD is a mesoscopic technique.

Bead-spring polymer models, as the name suggests, are constructed of a set of N

beads connected by massless springs which impart a force on the beads between which

they are connected. The mass of the polymer is concentrated in the beads, as is the

interaction with the solvent. To create polymer molecules in a DPD simulation, we

simply connect a series of DPD particles together with springs to form a linear chain, or

any other polymer shape of our choosing.

A number of spring force models have been used for DPD polymers. The simplest is

a Hookean spring constant, in which the force on the beads as a function of the spring

vector Q is simply

FHookean = HQ. (2.25)

Hookean springs are popular because analytical results can be calculated for many

flows without resorting to stochastic simulations. While this model is quite successful at

very low rates of strain, there is no limit on the extensibility of such springs, so the model

gives unphysical results at large strain rates, as the bead-spring chains extend beyond

the total length of the physical polymer molecule being studied. In order to address

this shortcoming, we look instead to the finitely extensible non-linear elastic (FENE)

spring[8], which incorporates a maximum spring extension Qo. The FENE force law is

given by

FFENE HQ (2.26)
1 - Q2/(2.26)

FENE springs are useful for modeling flexible polymers, and will be used throughout



this work.

In Brownian dynamics, the solvent is modeled as a continuum Newtonian fluid which

imparts a hydrodynamic drag force and a random thermal force on the polymer beads. In

a DPD system, the continuum solvent is replaced by an ensemble of DPD particles which

are not themselves connected by springs, but are otherwise indistinguishable from the

DPD beads used in constructing the polymer molecule itself. As in Brownian dynamics,

the interaction between polymer and solvent is once again concentrated entirely in the

polymer beads, as the springs do not "see" the solvent at all. That the DPD solvent is

made of explicit particles rather than a field quantity results in a number of important

differences in the way polymer simulations must be treated.

2.4.1 Length Scales

When the solvent is a continuum, as in BD, it carries with it no length scale. The

length scale of the continuum is simply assumed to be "very small" in comparison to the

polymer. As a result of this, the length scale of such a system is determined entirely by

the characteristics of the polymer molecule, such as the spring law parameters. As we

have seen with DPD, however, the particles themselves have an already-defined set of

mass, length, time, and energy scales. While this set of scales is self-consistent, there is

no systematic way of connecting DPD units with physical units. If a polymer molecule is

built carefully, it can provide a translation between the DPD units described above and

physical units. We will seek to do just that here, using as an example, polystyrene with

molecular weight 500 kDa.

In physical units, our polymer molecule has a mass of 8.3 * 10- 19 g/molecule. If our

DPD polymer molecule model is composed of N = 20 beads, we know that the mass of

a single DPD particle is 4.15 * 10- 20 g. The density of the DPD system is 4 beads per

unit volume, so the mass of a unit volume of DPD fluid is 1.66 * 10- -19 g. If we assume

a physical system density of 1 g/cm3 , we calculate that the length of one side of a DPD

unit cube, r, = 5.5nm. Having established a relationship between DPD and physical



length units, we must now determine the appropriate parameters in the DPD system to

describe our polystyrene molecule with a bead-spring model.

2.4.2 Bead-spring Polymer Model

We will use a stepping-stone approach beginning with the physical polymer molecule, and

specifying its representation as a freely-jointed bead-rod chain, or Kramers chain. From

the Kramers chain, we can calculate the proper FENE bead-spring chain characteristics.

The Kramers Chain represents a linear flexible polymer molecule as a set of beads

joined by rigid rods. The rods rotate freely at the bead points. The number of rods

N necessary for the Kramers chain to describe a polymer can be determined from the

molecular weight of the polymer, M., the molecular weight of the repeat unit, Al 0 , the

bond angle of the carbon-carbon chain, 0, and the characteristic ratio, C,, which contains

information about the chemical structure of the polymer backbone. McKinley[56] reports

the following expression:
N = 2M, sin2 (0/2) (2.27)

With an estimate of C, = 9.6, our 500 kDa polystyrene molecule requires 668

Kramers beads. The length of each rigid rod is given by

col
a = (2.28)sin (0/2)

where 1 is the length of a carbon-carbon bond. For this polymer, a = 0.415 in DPD

length units.

The Kramers chain can be related to a FENE bead spring chain as a function of a

and N where, for a chain of M springs, the finite extensibility Qo is given by

(N- 1)a
Qo = (2.29)

where we recognize that both (N - 1) a and MQo are representations of the contour



length of the molecule. The spring constant for each spring is given by

3MkBT
H = 2  (2.30)(N - 1) a2

If we choose to represent the molecule with a chain of 20 beads and 19 chains, these

relations yield Qo = 11.25 and H = 0.81.

This development serves to establish a method for relating polymers described via

DPD units to physical molecules, and to give an estimate as to the range of chain parame-

ters which are appropriate to use when building model polymer molecules for simulation

within DPD.

2.5 Extensions of DPD

There have been a number of important extensions of the DPD method which are not

addressed in this thesis, but which are important for fully realizing the power of DPD's

flexibility as a model. One can attach an additional energy variable to each DPD particle

in order to create a form of DPD which conserves energy[4, 3, 18, 53, 68]. Alternately,

the conservative force law can be altered to include both repulsive and attractive forces

between particles[50, 81]. This allows liquid-gas interfaces to be simulated in theory.



Chapter 3

Non-Equilibrium Treatment of DPD

Systems

Once the equations of motion have been chosen, and the thermostat is established, there

remains the issue of actually running a simulation, and collecting the results. This chapter

deals with the specific details of writing a DPD code to simulate solutions of polymer

molecules.

3.1 Non-Equilibrium Molecular Dynamics

The tools for direct simulations of explicit particle models for fluids find their genesis in

the field of non-equilibrium molecular dynamics. The original development of molecular

dynamics included rules for the interactions of particles in an equilibrium setting, but

did not provide for the imposition of a bulk flow. When a material is described by

a continuum model, the entirety of the model is devoted to bulk motion. A continuum

fluid at rest may have a temperature, a pressure, and a density, but it doesn't do anything.

In contrast, a fluid at equilibrium in an explicit description is in constant motion, as the

constituent particles move about ceaselessly. As such, the addition of bulk flow to an

MD-type description of a fluid must be undertaken with special care, as we must now



describe two very different types of motion by the movements of but one ensemble of

particles.

3.2 Periodic Boundary Conditions

Anytime one wishes to simulate a fluid with particles, one must establish a method

of constraining the system, so that the constituent particles remain in a defined area.

In a physical experiment, solid walls are frequently used to constrain a fluid, and a

number of DPD workers have chosen this route, modeling solid walls with frozen DPD

particles, simple reflection conditions, or more complicated schemes involving images

of the particles in the domain. [82][28][25] Unfortunately, all of these methods lead

to imperfect modeling of the very small-scale physical realities inherent in a solid-fluid

boundary. Common problems include density and temperature fluctuations near the

wall, as well as failure to reproduce a no-slip condition. As we are primarily interested

in exploring the bulk rheological characteristics of DPD-modeled fluid systems, these

artifacts present a significant challenge, as they reduce the volume of the simulated

domain which is useful for confidently measuring material functions and configurational

quantities.

In order to simulate only bulk flow we employ periodic boundary conditions in all

three spatial dimensions to mimic an infinite bulk. Thus, a particle that leaves the

domain will re-enter immediately on the other side. Surrounding the domain on all sides

are infinite repeat images, each an exact replica of the primary domain. Sometimes,

we will wish to describe features of the simulation which are more clearly expressed in

the view that the domain is infinite. In those cases, a naming convention is important

to keep track of which copy of the original domain we are referring to. Figure 3-1

illustrates this and gives the naming convention we will use to refer to specific periodic

image domains. It is important to keep in mind that while many of the diagrams that

follow will include pictures of the image domains that surround the primary, only the



velocities and positions of the particles in the primary domain are stored by the code.

We will begin by describing the implementation of a DPD fluid at equilibrium, as this

+Ix-lz
Domain

+lx-ly-lz
Domain

Figure 3-1: Schematic and naming conditions for periodic image domains. Each image
domain is an exact replica of the primary domain, shifted by some multiple of the domain
size vectors, Lx, LY, and L,.

is the simplest possible case, in terms of the steps required to deal with the periodic

boundary conditions. There is no change in the relative positions of the periodic images

with time. For the case of equilibrium simulations, a particle leaving the domain across

the -x boundary reappears instantaneously at the +x boundary. Likewise, pairwise

particle-particle interactions are communicated across periodic boundaries as well. This

ensures that there is no discontinuity in the structure of the DPD fluid across a periodic

boundary. When the DPD fluid is a polymer solution, so that DPD beads are connected

by springs to create macromolecules, the orientation of individual springs, as well as

molecular connectivity must be maintained across the periodic domain. While all of the

techniques described here are commonly found in molecular dynamics programs, they



will be useful as a starting point when non-equilibrium treatment is considered.

3.2.1 Particle Position

After the position update step, the position of each particle is checked to see if it has left

the domain. Any particle whose new position places it outside the bounds is returned

to the domain by adding or subtracting Li, the domain side length, from the particle's

position. this process is illustrated in Figure 3-2. At equilibrium, the position of a particle

in each dimension is independent of the other two, so there is no preferred order in which

the dimensions must be checked for out-of-bounds particles. The explicit rules for the

particle re-introduction are given formally in Eq. 3.1

if ri. > L, then ri- =ri. - L7

if ri, < O then ri = r + L

if ri, > L, then ri riy- L(31)

if ri < 0O then riy ri, + L

if riz > Lz then riz= riz-L

if r < 0O then ri = ri, + Lz

3.2.2 Particle Separation Distance

In all variations of molecular dynamics simulations, of which DPD is an example, one

of the main computational costs is the calculation of interparticle distances. These are

required to determine which pairs of particles will impart a force on each other. Without

refinement, this is an O(N2 ) operation, as the separation distance for each pair of particles

must be calculated. In order to reduce this cost, a linked cell list is used. The domain

is divided into cubic cells with side length re, which is the interparticle interaction limit.

The linked cell list contains a list of all the particles that inhabit each cell. For particle



-Lx
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Figure 3-2: When a particle leaves the domain across the +x boundary, it is returned by
subtracting L, from it's position vector ri.

i found in cell A, only particles that are also found in cell A, or one of its immediate

neighbors can be within its interaction sphere, so only those interparticle distances must

be calculated, as pictured in Figure 3-3. In order to further improve the efficiency of the

process, we note that particle pair distances need only be calculated once, so if particle

i in cell A is found to have interparticle vector Dij with particle j in cell B, there is no

need to recalculate this value when the particles in cell B are considered. As such, an

upwinding scheme is employed so that only half the neighboring cells need to be searched.

Of the 26 cells that surround the test cell, all nine (+ly) cells are searched, along with

four cells in the (+0Oy) plane. The upwinding scheme is illustrated in Figure 3-4. Cells

that lie opposite each other across the periodic boundary are considered to be neighbors,

so the effect of the boundary must also be taken into account. The interparticle distance

vector is calculated as

D?,- = r. - ri (3.2)

where ri and rj are the position vectors of the two particles. The particle separation

distance is D = (D - D)2 A periodic boundary check must now be performed in each

dimension to identify particle pairs that sit across a boundary. For these pairs, the



Periodic
Image
Cells

2r- J
Figure 3-3: Linked celllist algorithm: by sorting the particles into cells of side length
re, we reduce the number of particle pairs whose separation distance must be computed.
The particles in any cell can only interact with particles found in neighboring cells.

ý yz

Figure 3-4: Illustration of the upwinding scheme used in the linked cell list algorithm;

the test cell is shown in red, with cells which must be searched shown in green.



separation distance calculated via Eq. 3.2 will be large . Because we know that particles

i and j came from adjacent cells, the maximum value for each component of Dij is 2re.

We conclude that pairs for which a component of Dij > 2r, must lie across a periodic

boundary. Thus the periodic boundary check is performed as:

if Dij > 2rc then Dij~ = Dijx- Lx

if Di < -2r, then Di = Dijx + Lx

if Dijy, > 2r then Dij= Dy- L, (33)

if Dijy < -2r, then D2j, D3y, + Ly

if Dijz > 2r, then Daj = Dijz - Lz

if Dij, < -2rc then Dijz = Dij + L

where Li is the domain size in each dimension. When the fluid is at equilibrium in a

cubic domain, the three spatial dimensions are independent of each other, so the periodic

boundary check can be performed in any order.

3.2.3 Spring Length

The vector describing the length and direction of a polymer spring is given by Qi =
1

ri+l - ri, leading to a spring length Q = (Q -Q) . In the presence of periodic boundary

conditions, a check must be performed at each timestep to determine whether the spring

in question crosses any periodic boundaries. We require that all springs have a maximum

extension Qo < 0.5L where L is the domain side length in the smallest dimension. With

this limitation in place, any spring with Qi > 0.5Li is assumed to lie across the periodic

boundary in the i-direction. Thus we introduce a checking procedure which is similar to



Figure 3-5: Springs which lie across the boundary can appear to be connected internally
across the domain. We identify boundary crossing springs by their length.

Eq.3.3 for springs.

Qix > ULx

Qix < -!Lx

Qiy > ULy

Qiy < -!Ly

Qiz > ULz

Qiz < -ILz

then

then

then

then

then

then

Qix = Qix - Lx

Q = Qix + Lx

Qjiy= Qiy - Ly

Qjiy= Qiy + Ly

Qiz = Qiz - Lz

Qiz = iz + Lz

(3.4)

3.2.4 Molecular Configuration Calculation

Polymer molecules are represented in the model as bead-spring chains made up of

DPD particles connected by springs. In the case of long chains containing a large number

of beads, it is possible for a single molecule to stretch across several images of the periodic

domain, as illustrated in Figure 3-6.

The radius of gyration of a molecule describes the volume occupied by the coil, and



Figure 3-6: Macromolecule connectivity: a large polymer molecule may stretch across
the domain several times. It is essential that the shape of the molecule as it would exist
in an infinite bulk is understood and maintained. Here we picture one macromolecule,
which belongs to the primary domain along with an image of it, which belongs to the
image domain adjacent to the primary domain.

is defined as
N

R = (ri - CM) 2  (3.5)
i=:1

where N is the number of DPD particles, and rcM is the center of mass of the polymer

molecule. In order to correctly calculate this and other configurational quantities, it is

essential to know the position of each bead relative to a fixed reference. We do this by

assigning each particle a new virtual position Fi

Ti = ri + aiLx + i3L, + -,Lz (3.6)

where ai, /3 and "i are the number of times the molecule crosses the periodic boundary

in each dimension between particle i and the reference particle. In this way, we can

take into account instances when the polymer molecule has crossed a periodic boundary,

and is thus larger than the domain. We customarily designate the first particle on the

molecule to be the reference particle, so rl = rl. We then calculate the spring length

vector Q 2,,, between the first and second particles, and apply a boundary check process

similar to that described in Eq. 3.4

If the spring crosses the +x boundary, for example, a 2 is increased by 1. In this

< * *. 0

* .... 0 " .. . ......(o + ..........·.... ...



manner each spring in the molecule is checked for boundary crossings, until every particle

has been assigned a virtual position. Configurational quantities can then be calculated

using the normal formulae. By treating the polymer molecules in this way, we allow

ourselves the ability to simulate molecules with a contour length significantly longer

than the domain size.

3.2.5 Center of Mass and Polymer Molecule Diffusion Constant

The polymer diffusion constant can be measured as a function of the mean squared

displacement of the center of mass at long times. This quantity is calculated as

D = ((rcM(t) - rcM(O)) (37)
6t

for times longer than the longest relaxation time of the molecule. The virtual center of

mass, which was used to calculate the radius of gyration, is given by

rcM = (3.8)ji=1

This value is useful for calculating instantaneous configurational quantities such as the

radius of gyration and end-to-end vector that are not related to the location of the

center of mass of the polymer molecule, but it is important to keep in mind that rcM

will not necessarily lie within the primary domain. Therefore, at each time step, one

must also calculate the in-domain center of mass value. This is done by applying the

particle boundary condition rules described in Section 3.2.1 to rcM. We note that it

can be necessary to add or subtract multiples of L if the virtual center of mass is more

than one periodic image away from the primary domain. Finally, at each timestep we

must compare the in-domain center of mass to its value at the previous timestep to

determine whether rCM has moved across a periodic boundary. So for each rcM(t), we

associate acYM,t, /CMt, and cMi,t to represent how many domain boundaries the polymer



molecule's center of mass has traversed since t = 0. Thus the polymer diffusion constant

is calculated in our simulation as

D = (((rcM(t) + caCM,tLx + ýcM,tLy + YCM,tLz) - rCM(0)) (39)
6t

While none of the procedures described in this section are particularly complicated or

unusual, it is worthwhile to become familiar with the standard rules for dealing with

periodic domains, as they will have to be extensively modified when flows are introduced.

3.3 Shear Flow

We will begin by discussing the implementation of simple shear flow for DPD. A simple

shear flow is defined by the velocity field

vX = jýTy; v, = 0; vz = 0 (3.10)

pictured in Figure 3-7. The stress tensor for a simple shear flow is

P + Txx TyX 0

7r = P6 + r = Ty P + Tyy 0 (3.11)

0 0 p + 7zz

From this, we measure three stress quantities of interest; the shear stress, 7,., the

first normal stress difference, TXz - Tyy, and the second normal stress difference, Tyy - T•z.

For the special case of steady shear flow, material functions can be defined for each of the

aforementioned stresses. The viscosity q is dependent on the shear rate ý- and is defined

as

TYn = -a(h) yi (3.12)

In a similar fashion, the first and second normal stress coefficients, T1 and XF2 are
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Figure 3-7: Lees-Edwards boundary conditions for shear flow: The periodic images of
the domian in the shear directions move at the twice the fluid velocity at the boundary.

defined as

(3.13)

and

Ty, - Tzz = - (')2 2Y (3.14)

3.3.1 Lees-Edward Boundary Conditions

In this section we will describe the implementation challenges related to simulating shear

flow with DPD. The most immediately apparent of these changes is the adoption of Lees-

Edwards boundary conditions, which are an adaptation of the infinite periodic boundary

conditions described in Section 3.2. At its most basic level, the concept behind Lees-

Edwards boundary conditions is to have the ±y periodic images move relative to the

primary domain, as illustrated in Figure 3-7. In order for the particles populating the

region near the shearing boundary to experience a bulk flow, the mean velocity of the

particles must be continuous across the boundary. We will refer to this quantity as the

bulk solution velocity. As there are no absolute positions in a periodic simulation, we

Txx - Tyy - 1 () )/2y



will choose the midline of the primary domain to have bulk velocity v, = 0. This results

in a bulk velocity at the y-boundaries of ±Vx I +y boundary = (myLy) /2. Matching the

velocities across the periodic boundary gives the velocity of the ±y periodic images as

IjxyLx. If we continue one domain further into the infinite bulk in the y-direction, the

the velocity of the +2y-image domain will be 2,,yL,. The movement of the periodic

images also causes displacement of their positions relative to the primary domain. This

introduces the first change that must be made to the original boundary rules. In the

equilibrium case, a particle leaving the primary domain across the +y-boundary would

be reintroduced with the only change being that r, = ry - Ly. Now, because there is a

displacement of the image domains in the x-direction, the particle must be reintroduced

with changes to both ry and rx. We define a new quantity 6LE, the boundary offset, to

describe this displacement. There are several ways to keep track of this value. First, we

can simply define the quantity as the distance the periodic image has moved modulated

by L,.

6LE = ,yyLxt mod (Ly) (3.15)

This method works as long as the shear rate xy, is held constant. If one wishes to uses a

variable shear rate yx, (t), one must update 6LE at each timestep, performing a boundary

check on it at each timestep as well.

6LE,t=O = 0

SLE,t = 6LE,t-At ý+ xyLxAt (3.16)

if LE > Ly, LE= 6LE -L

Calculation of the Interparticle Distance

Having established the positions and velocities of the periodic image domains, we are

ready to revise the linked cell list algorithm for calculating the distance between particle

pairs described in Section 3.2.2. The cost savings from the cell list algorithm comes from

being able to reduce the number of other particles that could potentially be within an



interaction radius of a given test particle, and whose separation distances with the test

particle must be calculated. This in turn is dependent on knowing the identity of the

neighboring cells that might house interacting particles. For the cells that lie adjacent

to the moving boundary, the identity of "neighbor" cells will change with time. The

assurance that one must search only one cell away in each direction is also lost, as the

cells along the moving boundary will not reliably line up with each other. Fortunately,

the entire confusing situation can be sidestepped for a relatively small additional compu-

tational cost. Rather than dealing directly with the shifting relationships between cells ,

we simply create an additional "phantom" row of cells that extend into the +y periodic

image domains. This row of phantom cells is populated with phantom copies of the

particles whose position ry < re. That is, those particles that lie within one interaction

distance of the shifting boundary. The new position of these phantom particles is given

by

rx = rx + 6LE

if rX > LX then rx = rx - L(317)

ry = r~ + Ly

at this point, the normal linked celllist algorithm can be employed for the primary

domain and the phantom row, with the exception that we disallow particle interactions

across the y-boundary. Finally, all particle interactions that occur between two phantom

particles are discarded. Interactions between a real particle and a phantom particle are

kept, along with a notation that the interaction occurs across the moving boundary.

Thermostat Forces with Lees-Edwards Boundary Conditions

When calculating forces that depend on the relative velocity of the two particles, which

include the dissipative force in traditional DPD, and the Lowe-Anderson velocity cor-

rection in that thermostat, one must take into account the differences in the absolute

velocity across the moving boundary. When there exists a moving boundary, the relative



velocity between particles i and j is given by

vvj = vj - vi + 0(ilzyLy) (3.18)

where / = 0 for particle pairs that do not sit across the moving boundary, and 3 = +1

if the particle pair does cross. The sign of 0 is determined by whether ri or rj was a

phantom particle.

Spring Interactions

We now examine the process for resolving the length and direction vector of spring

interactions. In most cases, this is accomplished as described in Section 3. The exception

to this is for springs that lie across the moving y-boundary. First, a little nomenclature.

Because we describe the motion of the periodic images using a positive quantity 6LE, we

will use the convention that the periodic image domain which is even with, or has already

begun to move past the primary domain is considered the (+ly)-domain, while the

trailing image domain is considered the (-lx) (+ 1ly)-domain as in Figure 3-8 . When The

position of the (-lx) (+ly)-domain draws even with the primary domain, 6 LE = 0, and

it is reassigned to be the (+ly)-domain. When a spring is found to lie across the moving

boundary, we automatically assume that the spring extends into the (+ly)-domain. This

will give the true result in cases such as the one illustrated in part a. of Figure 3-8. If

the spring in fact extends into the (-lx) (+ly)-domain, as in part b. of Figure 3-8,

one can see that Qi, is correct, and Qix is simply off by Lx, an error that is corrected

by performing the normal boundary crossing check for the x-boundaries. Because there

is the possibility that a spring may be lying across both the x- and y-boundaries, we

must apply the normal x-boundary check twice: once as an accompaniment to the y-

boundary check, and once in case of a pre-existing x-boundary crossing. Furthermore,

the y-boundary check should be performed first. Eq. 3.19 formalizes the procedure for

checking for spring boundary crossings with Lees-Edwards boundary conditions.
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Figure 3-8: Two examples of springs crossing the moving LE boundary.

1. if

2. if

if

if

if

if

if

if

then Qy=Qiy - Ly
Qiy > L, SQi = Qix - 6LE

1 then Qiy = Qiy + Ly
Qiy < -&Ly

Qix = Qix + 6 LE

Qis > ~L then Q ii -L2

Qix < - Lz then Qi =Qix + Lz

Qix > LxL then Qix = Qix - Lx

Qix < -!Lx then Qix = Qij + Lx

Qiz > LxL then Qiz = Qiz - Lz

Qiz < -LxZ then QiZ = Qiz + Lz

P

+ L,

+ BLE

(3.19)
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3.4 Shearfree Flow

Simple shearfree flows are defined by the velocity field

1
v = = - ( 1 + b) x (3.20)

2

v,= 2 (1- b) y (3.21)

VZ = Ez (3.22)

where ý is the elongation rate. The parameter b ranges from 0 < b < 1 , and determines

the direction in which the shearfree flow operates. For specific choices of b, special

shearfree flows are obtained:

Elongational Flow: b = 0, ý > 0

Biaxial Stretching Flow: b = 0, j < 0

Planar Elongation Flow: b = 1

A steady shearfree flow is one which for which t does not vary in time. In order to

simulate a steady shearfree flow of a polymer solution, the simulation must run until the

molecules have reached a steady configuration, and the stresses have been constant for

a long time, during which an average can be taken. Shearfree flows are distinguished

from many other flows in that neighboring fluid elements move away from each other at

an exponential rate. As Bird et. al. note, two fluid elements initially separated by a

distance 10 will be separated by a distance I after time At, such that

1 = loet a t  (3.23)

Fluid elements which may contain parts of a macromolecule separate from each other

much faster in elongational flow than is typical in shear flows. The result of this is that

macromolecules typically experience much greater deformations in shearfree flows than



in shear flows at similar strain rates.

The stress tensor for a shearfree flow is

p + Txx 0 0

7r = p + 7 = 0 p + Tyy O (3.24)

0 0 p + Tzz

From this, we measure two stress quantities of interest; Tz - Tx and Ty - TX, which

lead to two viscosity functions,

Tzz - T•- = -ri(ý, b)ý (3.25)

and

ryy - TXx = -72(6, b)ý (3.26)

3.4.1 Explicit Particle Simulations

Simulation techniques that model polymer solutions as explicit particles which are as-

signed a physical location face a series of difficulties that do not arise in continuum

simulations or even in Brownian dynamics simulations of dilute polymers. When the

fluid is a continuum, its properties are governed by inputs specified by the modeler.

Even inflow and outflow boundaries do not present a challenge. One simply specifies

the fluid state. In explicit methods, such precision is not possible. The temperature,

pressure, velocity, and even the structure of the fluid, as described by the radial gyration

function, are determined by the positions and velocities of the individual particles. As

a result, special care must be taken to ensure that particles that leave the simulation

domain are reintroduced in such a way as not to change the properties of the fluid. Pe-

riodic boundary conditions are ideal for overcoming this difficulty, because there is no

beginning or end to the domain.

Periodic boundary conditions are easily adapted to the simulation of unidirectional



Figure 3-9: Simulating planar elongational flow in a rectangular periodic domain. In
order to satisfy the mass balance, the borders must move with the flow. After a short
time, the contacting dimension grows smaller than the minimum distance required to
resolve the orientation of polymer springs.

shear flow because the mass balance across opposing (or, in another view, adjacent)

boundaries are naturally satisfied. The number of particles entering the domain at one

boundary is always equal to the number leaving the opposite side, regardless of the shear

rate. Flows which are not unidirectional do not have it so easy. We take as an illustrative

example a cubic domain undergoing planar elongational flow (b = 1), pictured in Figure

3-9. The stagnation point is at the origin in the middle of the domain. The fluid velocity

in the y-direction is v, = -iy, thus the flowrate across the +y-boundary into the domain

is 0.5Ly& The inflow at the -y-boundary is the same. In order to resolve this problem and

restore the mass balance across opposing boundaries, the domain must deform affinely

with the flow. Unfortunately, this severely limits the time duration over which one can run

a simulation, as the size of the domain in the contracting dimension will quickly reach its

minimum length, which for a polymer solution is half the maximum spring extension. As

we are seeking to simulate polymer chains with very long relaxation times, this limitation

is severe. This is particularly true if we wish to study steady elongational flow, as a long
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Figure 3-10: Diagram of Kraynik and Reinelts planar elongational flow cell. The cell is
periodic in all three dimensions, and is tilted with respect to the flow axes by and angle
0.

initialization period is frequently required for the macromolecules to assume their highly

deformed shapes.

3.4.2 Kraynik and Reinelt Boundary Conditions

Kraynik and Reinelt have devised a periodic unit cell for planar elongation flow which

is able to avoid the problem of finite time limitation described above for a rectangular

periodic domain. They begin with a square, spatially periodic domain, which is tilted

with respect to the axes of elongation by an angle 8, as pictured in Figure 3-10. A

planar elongational flow is then applied as defined in standard Cartesian coordinates,

and the domain boundaries deform affinely with the flow, expanding in the z-direction

and contracting in x. This ensures that the flux of particles across the periodic boundaries

is zero. There is no flow in the y-direction, so the periodicity of the fluid in that direction

is unaffected. From this point on, we will describe the method in terms of the z- and x-

dimensions only, as there is no interesting behavior in the neutral y-direction. Kraynik
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Figure 3-11: Progression of the deformation of a Kraynik and Reinelt periodic cell under-
going planar elongational flow. The angle 0(t) that the domain makes to the horizontal
changes as the cell is deformed.

and Reinelt show that for several discrete values of 9, this arrangement leads to spatial as

well as temporal periodicity, so that at a Hencky strain of e,, there exists in the domain

a set of internal boundaries which coincide with the original domain boundaries as they

were at t = 0. At this point, the original boundaries are re-established, and the particles

which are found to lie outside the (new) domain are reintroduced via the normal periodic

boundary rules described in Section 3.2. Table 3.27 gives the first few orientations found

by Kraynik and Reinelt to exhibit periodicity in Hencky strain.

Case 1 p 0
1 0.96242 0.5-53574
2 1.762747 0.392699
3 2.389526 0.294001

4 2.703576 0.613886

(3.27)



In practice it is common to choose case 1, as it has the shortest period, and thus

results in the least deformed domain at the resetting point. The original rotated square

becomes a highly elongated parallelogram at cp, at which point the distance between

the periodic boundaries is at a minimum. It is this distance that limits the allowable

maximum spring extension.

3.4.3 Implementation of KR Boundary Conditions in DPD

Application of the periodic boundary conditions to the rotated domain shown in Figure

3-10 involves a great deal of awkward and inefficient computation, as the boundaries are

continuously shifting in relation to the x - z plane that defines the flow field. Todd and

Daivis have suggested that for purposes of applying the periodic boundary conditions,

the whole domain may be rotated clockwise as in Figure 3-12 until one of the boundaries

is parallel to the z-axis. The angle at which the domain is offset from the z-axis, O(t),

L M(t) 2
2(tl) 4 L

M- (t)

Figure 3-12: Rotation of the KR periodic domain into the calculation-friendly orientation.

begins at the value given in Table 3.27, and is reduced as the domain is elongated.

The rotation is effected by applying a coordinate transformation to the positions of the

particles,

r' = M(t)ri (3.28)



where r' is the new transformed position. The transformation matrix M(t) is defined as

M(t) = cos 0(t) sin 0(t) (3.29)
- sin (t) cos O(t)

which serves to rotate the particle positions by an angle -O(t) about the y-axis. The

rotated reference frame simplifies considerably the application of the periodic boundary

conditions. In the true orientation, a particle's position relative to any domain or cell

boundary was a function of both the x and z-dimensional coordinates, as well as the

orientation angle O(t). In the rotated frame of reference, having one boundary parallel to

the z-axis allows us to describe a particle's position relative to one of the boundaries as

a function of a single dimensional coordinate, r'. This new reference frame is useful for

more easily calculating the distance vectors between particle pairs for the conservative

force Dij, as well as the spring connector vectors Qj, because the absolute positions of the

particles are not important, as long as the separation distances are faithfully maintained

through the coordinate transformation. Before any particle dynamics calculations can

be performed, the domain must be rotated back to its natural position by appling the

inverse transformation,

ri = M-'(t)r/ (3.30)

which rotates the domain through the orientation angle O(t) about the y-axis. The inverse

transformation M-1(t) is given by

M-l(t) = ( cos 9(t) -sino (t) (3.31)
sin 9(t) cos 0 (t)
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Figure 3-13: Diagram of Kraynik and Reinelt domain rotated into the periodic friendly
frame, and subdivided into cells for particle sorting. Here a = 8 and b = 6.

Calculation of Particle Pair Separation in the Rotated Reference Frame

The linked celllist technique for calculating particle pair separation distances described

in Section 3.2.2 is applied in nearly the same fashion for KR boundary conditions as for

standard Cartesian periodic boundary conditions at equilibrium, with the exception that

the component cells into which the domain is subdivided are not always rectangular.

Rather, the vectors that define each cell, L (c elu) and L' (cell), must be fractions of the

domain boundary vectors such that

aL(ceu) = L' and bL(cell) = L (3.32)

where a and b are integers. This ensures that the domain will be divided into a whole

number of equally-sized cells. The sorting cells deform to follow the shape of the domain

as a whole. This arrangement ensures that the cells which are in communication with

each other across periodic boundaries will maintain the same neighbor relationships as

the domain elongates. Smaller individual cells lead to greater computational savings, so

it is desirable to set a and b as large as possible. At t = 0, when the rotated domain is

rectangular, the individual cells are cubes of side length re, because the shortest distance



L' (cell)

Figure 3-14: Minimum dimensions for sorting cells: The distance between parallel bound-
aries of the cell must always be greater than the DPD particle intercation distance r,.

across the cell is in the Cartesian directions. As the cell begins to elongate with the

domain, this minimum distance changes as well. For a parallelogram-shaped cell, we

require that the distance between each pair of opposing parallel sides be greater than

the particle interaction length r, as illustrated by Figure 3-14.Necessarily, as the domain

becomes more elongated, a and b, the number of cells in each dimension, is reduced.

With more particles in each cell, the number of particle pairs whose separation distance

must be calculated increases, and the time savings realized from using the linked celllist

algorithm is less and less. For this reason, we are further motivated to choose Case 1,

which results in the least deformed domain at the resetting point.

The rules governing particle pairs that sit astride periodic boundaries are the same

for KR boundaries as they are for standard cubic periodic domains, as described in

Section 3.2.2 with the exception that L_ and L, are replaced by L' and L', which are

not perpendicular to each other. We also note that because we are calculating the pair



distances in a rotated frame, D'it. It is much simpler to test

if D1x > 2rc then D = D -L 2

if D.j < -2rc then D• D•+L2

if D'jz > 2rc then D = D - L1
(3.33)

if Dijz < -2r, then D Dý + L2

if Djy, > 2r, then Djy = Dij - L

if Dijy < -2r, then Dijy = Dijy + Ly

Calculation of Spring Distance

The issue of correcting boundary crossings is relatively easy for the case of particle pair

distances, because the linked celllist algorithm identifies which pairs of particles interact

across a boundary. When calculating spring lengths, this information is not available,

so a separate check must be performed. In the rotated reference frame, the domain's

z'-dimension length is given by L'z, and the length of the x'-dimension is L'x,. We check

for springs whose x' projection crosses a boundary first, because the resultant correction

affects both Q,, and Qz,. In that case Qx, is adjusted by ±L , and Qz,is adjusted by L'

Following this step, crossings in the z'-direction are detected. The periodic boundary in

the y-direction is independent and can be performed at any time. The spring length



correction algorithm is summarized in Table 3.34.

S then Qix, = Qix, - L'x,
1. if Qix, > -Ll,2

2iz''j Q iz' - L 2z'
then Qi , = QI, + LT'2

2. if Qi~, < - L'2
Qiz = Q iz' L21' (3.34)

3. if Qiz, > L', then Qi,, = Qiz, - Lz

4. if Qiz' < -ILL then Qiz, = Qi, + Li

5. if Qi, > L, then Qiy = Qiy - Ly

6. if Qiy < -Ly then Qiy = Qi + L

Reintroduction of Particles

After the position update step, the position of some particles will be outside the sim-

ulation domain, so they must be reintroduced. The first step in doing so is actually

identifying which particles are no longer within the domain. This is most easily accom-

plished in the rotated periodic-friendly orientation. Here we check first for particles that

have left the domain in the x direction, as this is straightforward and a function of rix

only. Any particle for which r' < 0 or r > L' is no longer within the simulation

domain. Reintroduction requires a modification of both riz and rix. In the z-direction, a

particle is outside the domain if

Sz+ L < 0 or ra + (rLL L (3.35)

where the additional term accounts for the slope of the L' boundary vector. Reintro-

duction of the particle then requires only a modification in riz. The rules for particle

reintroduction are summarized in table 3.36 in the order in which they must be imple-



if r'x < 0

if rix > L'2

if ri, + (r-Lz

if riz + (r I)

if r~, < 0

if ri, > L,

0

L'1

ix = ix + L 2 x

riz = z + L2z/

S= x I- L2x

riz = riz 2z

rilz 7iz + L'z

riz - riz - Lz

riy = riy + Ly

riy = riy - Ly

Updating the Border Vectors

At each timestep, the shape of the domain must be updated to reflect the deformation

of the fluid contained within it. This operation is undertaken in the natural (tilted)

reference frame, and is accomplished by recalculating the border vectors according to

Ll(t') = Li(O)eit' and L2(t') = L2 (O)e" t (3.37)

We note that t' here denotes the time that has elapsed since the most recent domain

resetting operation, rather than that absolute time elapsed. In addition to resetting the

domain vectors, a new value for 0 is calculated with

O(t') = tan- 1 (Li(t') (3.38)

the rotated periodic-friendly domain vectors are also recalculated, according to

L/ = M(t)Li (3.39)

as well as the number of cells to be employed in the linked celllist algorithm. Upon

changing the shape of the simulation domain, it is inevitable that a certain number of

mented.

(3.36)

z



particles will find themselves outside of the domain borders, and must be re-introduced. It

is important that the deformation of the domain is truly affine, and that the stagnation

point that exists at the center of the domain is maintained at the same point. The

domain's origin is set at the intersection of L 1 and L 2 so that the domain rotates about

the origin when we transition from the natural to the periodic-friendly orientation. For

correct affine deformation however, it is more convenient if the origin is at the stagnation

point. To that end, before the resizing step is taken, the position of each particle is

updated according to

r, = r - -Ll(t' - At) + L2(t' - At) (3.40)

which effectively resets the origin to the center of the domain. After the new border

vectors have been calculated, the origin is returned to the intersection of the border

vectors via

r = r. + (L(t') + L2 (t) (3.41)

We assure ourselves that the domain is deforming about the stagnation point by checking

to ensure that an equal number of particles are found outside each pair of periodic

boundaries at each time step. This implies that the area swept out by each moving

boundary is equal.

Resetting the Domain

After the fluid has reached ep, the critical Hencky strain, the domain must be reset back

to the original configuration so that the process can begin all over again. In order to

achieve true temporal periodicity the resetting step must not change anything about

the configuration of the constituent particles. All particle pairs which existed previously

must be preserved, and the total stress-state of the system must not undergo any sudden

dislocations. In order to demonstrate that these conditions are met, we look at the domain

before and after the resetting process as an exchange between internal and external



periodic boundaries. The concept is illustrated for a static square domain in Figure 3-

15. If a periodic domain is repeated infinitely in every direction, then the information

Figure 3-15: If a periodic domain is viewed as an infinite bulk, the location of the domain
boundaries themselves can be changed arbitrarily without changing the structure of the
system. In part a.) the dark box is the primary domain, while in part b.) the primary
domain has been reassigned, without changing any particle pair relationships, or altering
the number and identity of the particles in the primary domian.

contained in the primary domain is also available as a combination of a portion of the

primary domain, and a portion of adjacent image domains. The relationship between

particles that lie across a periodic boundary is no different than the relationship between

particles separated by any arbitrary plane cut through the domain. As this is true,
reassigning where the periodic boundaries cut through the infinite bulk has no effect

of the structure of the fluid. This is the process by which the KR domain is reset,
although the geometry is less straightforward. Figure 3-16 shows the infinite bulk before

deformation, with the highly elongated domain superimposed. The resetting step is

simply a redrawing of the location of the periodic boundaries. After the boundaries are

reset, application of the periodic boundary conditions return all the particles to the inside

of the primary domain.
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Figure 3-16: The infinte bulk formed by the primary domain and its surrounding repeat

images. The primary domian before and after the KR reset step are shaded.
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Imposition of Planar Elongational Flow

The Kraynik and Reinelt boundary conditions provide a framework within which simula-

tion of planar elongational flow is possible. They describe the movement of the boundaries

of the domain, so that a fluid which is undergoing planar elongational flow can be con-

tained without intruding on the dynamics of the flow itself. This is a necessary, but is not

sufficient condition for successful simulation. We have yet to discuss the forces that will

actually cause the DPD particles to move in the manner we wish. At first glance, it may

appear that this can be accomplished simply by moving the boundary conditions. At each

timestep, as the boundaries change shape, particles that are swept out of the domain are

reintroduced along the opposite boundary. There will form areas of higher density where

the boundaries are contracting, and areas of lower density where the boundaries are ex-

panding. This method of flow imposition will work as long as the rate of deformation is

much smaller than the rate at which the system responds to density fluctuations, which

can be interpreted as the speed of sound in the fluid. In the case of DPD, this condition

does not generally hold true. By grouping large numbers of solvent molecules into DPD

particles, the speed of sound is reduced significantly, and the fluid's response to density

gradients is slowed down. (This is yet another result of the fact that the Schmidt number

for DPD is much smaller than that of physical liquids.) An analogous physical picture

is that of a box of gas which is deforming via the KR boundary conditions. As the box

expands, the velocity of the outermost point will be given by v = ex. When this value is

larger than the rms velocity of the gas molecules, there will form an area of low density.

In summary, the DPD particles simply do not move fast enough on their own accord to

keep pace with the deformation of the domain at its edges. As a result, simulating a pla-

nar elongational flow using only the KR boundary conditions results in nonhomogeneous

density distributions, as well as a strong box-size dependence. This problem has been

addressed in the past by workers in Non-equilibrium Molecular Dynamics (NEMD), so

we will take a cue from them, and add to our simulation the SSLOD equations of Evans

and Morriss.



The SSLOD Equations

The SSLOD equations, so named because they are an adaptation of an earlier formulation

called DOLLS, are a technique for imposing a flow field on a fluid made up of discrete

particles. It is essential that the SSLOD equations be implemented in concert with

appropriate boundary conditions, such that no gradients exist at the domain boundaries.

From a qualitative standpoint, the SSLOD equations simply assume that a flow field

is in existence, and then forces are added to the particles such that they conform to

the assumed flow field. In this way, a non-equilibrium system is created in which the

constituent particles behave much as they would in an equilibrium setting, except that

they are in bulk motion. The SSLOD equations of motion are

ii = Pi + ri - Vv (3.42)
mi

and

i = Fi - pi. Vv (3.43)

where once again we note that in the case of our DPD simulations, mi is always equal to

unity, so that pi can always be viewed simply as the velocity. The SSLOD equations are

best understood as a modification of Newton's equations of motion to take into account

a background flowfield. The second term in Eq. 3.42 forces the particle's position to

change with the applied flow field, while the extra term in Eq. 3.43 adjusts the particle's

velocity to account for the unnatural change in position. The SSLOD equations were

developed to allow for the simulation of non-steady state shear flow, in a way that would

allow the fluid to respond instantaneously to changes in the shear rate. It is, however,

applicable to any flow field for which appropriate periodic boundary conditions can be

developed.

The introduction of the SSLOD equations gives us two sets of velocity with which to

contend, and it is important that we are clear as to which is being used at what time.



First, there is an absolute velocity, d which we will call the laboratory velocity, as this

is the speed which would be measured by a stationary observer. The second is called

the peculiar velocity, given by pi in the above equations, which is the particle's velocity

relative to the applied flow field. We define a streaming velocity field v(r) = r -Vv which

is called the zero wavevector profile. In a laminar flow this is simply the bulk velocity

field. The temperature is defined in terms of the peculiar velocity, so that the position

of a particle within the flow field does not affect its contribution. The Lowe-Anderson

thermostatting forces, however, must be calculated using the laboratory velocity, or else

no net shear stress will result, and the thermostat will contribute nothing to fluid's overall

viscosity.

3.5 Calculation of Field Quantities

3.5.1 Temperature Calculation

In DPD simulations, the temperature is set and held constant by the thermostat. It

serves as an indictor of the accuracy of the solution of the equations of motion, as well

as of the stability of the simulation as a whole. At equilibrium, the temperature is given

by the total kinetic energy of the DPD particles,

N

T = (pi - pi) /d (3.44)
i=1

where pi = mrnv is the momentum of particle i, and d is the number of spatial dimensions.

We note that for the simulations described here, the mass mi = m is the same for all

particles, and mass in the system is scaled by m, so the temperature is actually measured

as
N

T = I (vi -v)/d (3.45)
i=1



When a flow field is present, both a peculiar and a laboratory velocity can be measured.

The temperature is calculated using the peculiar velocity, so that the bulk flow of the

system does not add to the temperature. All of the simulations described in this work

are of homogeneous domains, so we expect the temperature to be independent of spatial

position. The temperature of a subregion of the domain can also be checked using Eq.

3.45. Checking to ensure that the temperature does not vary spatially is a good way to

confirm that the flow is in fact homogeneous.

3.5.2 Calculation of Stress

We measure the overall stress state of the DPD system by adding up the contributions

from all pairwise forces, as well as the kinetic contributions due to the velocity of the

DPD particles themselves. In a domain of simple particles with periodic boundaries,

where we have a reasonable expectation that the stress is homogeneous, this calculation

is straightforward, given by the Irving-Kirkwood expression

i8-v + TriiaFiI (3.46)
i=1 i=1 j>i

where the first term accounts for the kinetic contributions due to particles transferring

momentum by moving , and the second term represents all momentum transfers due to

forces acting between particle pairs. This equation gives an averaged stress for the entire

domian. It is perhaps worthwhile to expand Eq. 3.46 to include explicitly the action of

the Lowe-Anderson thermostat with the impulsive actions of the thermostat presented

in the form of a force:

( N N N N N

o""= -- ZV E via i + Z ri j jF § +j ZFriV(, A (3.47)
i=1 i=1 j>i i=1 j>i

In this expanded form, the second term refers only to the conservative force, while

the third term includes the action of the LA thermostat, expressed as a force.



Polymer Contribution to Stress

When there are polymer molecules present, another term must be added to the stress

equation to take into account the forces imposed on the fluid by the polymer springs.

This contribution is calculated using the Kramers expression from kinetic theory:

r7p• = -n ( QiFi) + nkBT56, (3.48)

where Qi, is the projection of the spring vector Q in the a direction, F• is the projection

of the force exerted by spring i in the 0 direction, and 6 is the unit tensor. M is the total

number of springs in the simulation. Adding the first term of the Kramners expression to

Eq. 3.47 yields a complete expression for calculating the total stress tensor of a LA-DPD

simulation which includes polymer molecules:

I N N N N N M

i=- i=1 j>i i 1  i QiFj>i i=
\ i=1 i=1 j>i i=1 j>i At i=1 3 (.9



Chapter 4

Modeling FENE Dumbbells with

DPD

4.1 Introduction

In order to demonstrate the utility of DPD for studying the rheology of complex fluids,

we wish to identify a simple test case with well established results that can be compared

directly to the results produced by DPD. We have chosen for this role simple shear

and planar elongation flow of a dilute solution of Finitely Extensible Nonlinear Elastic

(FENE) dumbbells. FENE dumbbells are widely used as a polymer model because they

are among the simplest kinetic theory models that can reproduce shear thinning. They

represent a step up in complexity from Hookean dumbbells, which predict a constant

viscosity at all shear rates.

4.2 Dumbbell Model

In bead-spring models, the entropic elasticity of sections of a polymer molecule are repre-

sented by massless springs connecting beads. The hydrodynamic force of the surrounding



fluid is applied to the molecule only at the beads. The entire mass of the molecule is

concentrated in the beads as well. The simplest bead-spring model is the dumbbell,

consisting of two beads with positions ri and ri• 1 connected by the spring vector Qj. In

effect we are representing the entire length of the polymer molecule as a single segment.

Naturally, such a simple model cannot fully reproduce the complex dynamics of a poly-

mer molecule undergoing flow. The simplest elastic dumbbell is defined by the Hookean

force law

F(Q) = HQ, (4.1)

which is useful for describing the behavior of polymers with small extension. This model

holds very serious drawbacks for use in an explicit simulation such as DPD. Because

the force is simply proportional to the distance between the two end beads, there is

nothing in the Hookean force law to limit the ultimate length of the dumbbell. We

are concerned with simulating molecules in a domain of limited size, so the choice of a

Hookean dumbbell as a polymer model would require either a serious restriction in the

strain rates that could be simulated, or else a very large domain would be called for

lest the dumbbells extend to lengths greater than the simulation domain. Additionally,

Hookean dumbbells are unable to reproduce nonlinear viscosity behavior in shear and

elongational flows. For these reasons, we look to a slightly more detailed force law, the

Finitely Extensible Nonlinear Elastic (FENE) model.

Flory[31] showed that as a polymer molecule is extended significantly, the entropic

force becomes nonlinear. The force required to hold the ends of a chain at a specified

separation is given by the inverse Langevin function. Warner has suggested an approxi-

mation to this function which is more easily computed. His model is known as the FENE

force law, and is given by
HQF(Q) HQ (4.2)

where Qo is the maximum extension of the dumbbell. Physically, Qo is the contour

length of the polymer. At small extensions, the spring force is linear, and quite similar



to the Hookean force law. As the molecule approaches it's maximum extension, the

force diverges. Two different time constants can be written for FENE dumbbells. The

Hookean time constant, which is the same as that of a Hookean dumbbell, is

AH = (4.3)
4H

where ( is the drag coefficient of a bead relative to the surrounding fluid. A second time

constant is that of a rigid dumbbell.

AQ = (4.4)
12kT

The ratio of these two time constants give us b, a measure of the extensibility of the

FENE dumbbell.
3AQ HQ2b 3= Q HQU (4.5)
AH kT

When b is very large, the FENE spring resembles a Hookean spring.

The nonlinearity of the FENE spring force law makes writing an analytical constitu-

tive equation impossible without resorting to a closure approximation, but Bird et al. [8]

have calculated a series expansion approximation in powers of the velocity gradient 4 for

7 and T1 for FENE dumbbells in dilute solution. This expansion is correct for small

rates of extension. The first two terms are reproduced below.

__ - __ b (1- 2b2(4b + 17) (AH-) 2 1 (4.6)
nkTAH b+5 (b+5)(b + 7)(b + 9)(2b + 7)

1 2 2b 2  2b2(20b3 + 315b2 + 1578b + 2569) 2
nkTA2H (b + 5)(b + 7) (b + 5)(b + 7)(b + 9)(b + 11)(2b + 7)2 (H)2

(4.7)

where ?, is the contribution to the viscosity from the solvent, and n is the number density

of dumbbells. We note that these relations indicate that the scaled material functions for

dilute FENE dumbbell solutions are dependent only on b, the extensibility parameter.



The equilibrium size for FENE dumbbells is

(Q2) 3 (4.8)
Q2 b+5

Because no closed constitutive equation is available, the behavior of the stress tensor,

(and by extension, the material functions) at larger strain rates is only accessible through

stochastic simulation techniques such as Brownian dynamics (BD) or in our case, DPD.

Brownian dynamics is particularly well-suited to the problem of measuring the material

ftnction and spring extension behavior of dilute FENE dumbbells undergoing flow. In

dilute BD calculations, the solvent is treated as a Newtonian continuum which interacts

with the explicitly modeled polymer molecule via the hydrodynamic drag on the end

beads, along with a random Brownian force on each bead that represents thermal motion.

As we are interested primarily in homogeneous velocity fields here, there is no need to

define a physical domain in BD. Rather, the orientation and length of the connector

vector Q is updated at every time step without reference to the absolute location of the

molecule in space. Herrchen and Ottinger[39] give the following stochastic differential

equation which governs the evolution of the FENE dumbbell in time,

dQ= - Q - - Q/ dt + dW(t) (4.9)

where units of length are given by (kBT/H) 2 , and units of time, by AH = . These

result in the following dimensionless quantities:

Q = Q/ (kBT/H) , t = t=HH (4.1)

We note that Q 2 = b. W(t) is a three-dimensional Weiner process. Eq. 4.9 is integrated

numerically over a long time and for a large ensemble of dumbbells. The dimensionless



polymer stress tensor is given by the Kramers form of the stress tensor,

rTp qq1 (4.11)nksT - 1 - Q2/b

which leads to dimensionless material functions

(7 (') - r77 1 rpY=~ (4.12)nkTAH AH' nkBT

and
I,1 (' p, -- pyy (4.13)

nkTA2H (AH) 2  nkABT

We expect that the material functions calculated from a Brownian dynamics simulation

will match those predicted Eqs. 4.6 and 4.7 for small values of IAH. Fan[24] was the

first to publish comprehensive shear thinning results for Brownian dynamics simulations

of dilute FENE dumbbell solutions. Figure 4-1 shows his results, Bird et al.'s expansion

results, and the results of BD simulations I have run to demonstrate that BD simulations

can serve as a reliable benchmark against which DPD simulation results can be compared.

In order to characterize a dilute FENE dumbbell solution using Brownian dynamics,

only one quantity, is required. This is b, the extensibility parameter. All other model

parameters are contained within the scaling units. This means that once the modeler

has chosen b, the BD results that can be expected are fully specified.

We seek to make a direct comparison between the results of a dilute solution of FENE

dumbbells simulated by Brownian dynamics, for which the process is straightforward

and the results well known, and DPD, for which such results have never been reported.

Toward this purpose, we will match the conditions of the DPD simulation as closely as

possible to the BD case. We note that we have chosen to use BD without hydrodynamic

interaction or excluded volume potential, despite the fact that we expect to see these

effects to some degree in the DPD results. We have made this choice specifically because

we want a "clean" benchmark, against which the effects of DPD's HI and EV will be
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easier to identify.

4.2.1 Polymers in DPD

Polymer molecules are created in DPD by connecting simple DPD solvent particles with

entropic springs. The interactions between these polymer beads and other solvent beads

in the simulation are not affected by the change. Rather, an additional spring force is

applied to those particles which are part of a polymer molecule. Thus for the Lowe-

Anderson thermostat formulation of DPD, which will be used for all of the following

polymer simulations, the total force on particle i is given by

Fi = [Fc (rij) + FLA (ri, vij)] + F S (Qk). (4.14)

One of the central differences between DPD and BD simulations of polymers are that
1

the length and time scales inherent to the dumbbell, (kBT/H)2 and the Hookean time

constant, AH = -, are not the only length and time scales present in DPD. The simple

DPD fluid that makes up the solvent has its own characteristic length and time scales.

Let us consider length scale first.

4.2.2 Length Scales for DPD Polymers

Lengths in DPD simulations are scaled by the particle interaction radius, r,. Thus by

specifying H, for the DPD FENE springs, we establish a relationship between the scales,

r, and (kBT/H)2. Once H has been chosen, we must still make an independent choice of

b in order to establish the scaled (in terms of r,) value of Qo. While only one parameter,

b, must be chosen to fully specify the BD problem, two are required for DPD. The choice

of H can be interpreted as controlling the size of the solvent DPD molecules relative

to the length of the spring, as illustrated in Figure 4-2. When, for a constant choice

of b, H is larger and Qo is smaller, the DPD interaction range r, is larger in relation



Figure 4-2: Illustration of the length scaling implications of the maximum dumbbell
extension, Qo.

to the BD length scale than in the case when H is small and Qo is larger. Thus, we

adopt the point of view that a choice of smaller Qo for the DPD system represents a
much more coarse-grained representation of both the polymer and solvent. The solvent
DPD particles each contain a larger number of solvent molecules. Similarly, the polymer
beads in Case 2 of Fig. 4-2 are much larger than those in Case 1. There is no way for
Brownian dynamics to resolve this difference, so we compare both cases to the Brownian
dynamics standard so as to determine whether one formulation is more faithful than
the other. This distinction is particularly important, as the vast majority of studies of
DPD modeling polymer molecules are performed with very small maximum extensions,
sometimes as little as Qo = 0.86rC [62]. Further discussion of DPD length scales can be
found in [5, 11, 19, 22, 23].
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4.2.3 Time Scales for DPD Polymers

The standard time scale used in DPD simulations results from setting the temperature,

kBT, to unity. Because the temperature is defined as the average kinetic energy of the

DPD particles, a time scale is resultant so as to define the average particle velocity

correctly. In order to properly scale the results of a DPD simulation for comparison

to BD, we must relate the DPD time scale to AH, which is used as the BD time unit.

Having previously chosen H, we must now determine the value of (, the drag coefficient.

This is not a straightforward task, as there is no reliable analytical relationship available

between DPD system parameters and (. Instead, ( must be measured directly. It is worth

pointing out that the drag coefficient is nearly a linear function of the solvent viscosity.

Because we are using the Lowe-Anderson thermostat, we are able to manipulate the

solvent viscosity, and by extension the drag coefficient by changing F, the thermostatting

frequency. This allows us one lever in manipulating the ratio of the two time constants.

Unfortunately, experience shows that predictive relationships between r and ( are not

sufficiently precise for our purposes.

4.2.4 Drag Coefficient

In the case of Brownian Dynamics simulations, the drag coefficient ( is scaled by the re-

laxation time, and does not appear in the governing equations. Physically this parameter

governs the drag the solvent fluid exerts on the beads. It, along with the spring constant

H, determines the relaxation rate of the FENE dumbbell, and is related physically to the

viscosity of the solvent. For DPD, the drag coefficient is not chosen directly, but rather

must be measured by the modeler. It is dependent on the density as well as the ther-

mostatting rate F. The most straightforward method of measuring the drag coefficient is

to choose a single test DPD particle in a bath of DPD fluid at rest and apply a body force

to it. The velocity of the test particle is then measured over a long period of time, and an

average taken. The drag coefficient is simply defined as - Fpp""""" Several precautions
Vparticle



must be taken when measuring the drag coefficient in this way. First, the negative of the

body force applied to the test particle must be distributed to the rest of the particles in

the fluid to ensure that total system momentum is conserved. If the body force of the

test particle is given by Fb, every other particle in the simulation must experience a body

force - where N is the total number of DPD particles. Additionally, it is important

that the domain size be large enough so that box-size effects are unimportant. I have

found that a 10 x 10 x 10 cubic domain is sufficiently large for this purpose. The chief

drawback to this method is that it is quite inefficient computationally. As we have chosen

our DPD particle number density to be p = 4, a single test particle, from which we are

able to draw one data point, requires a simulation of 4000 total DPD particles. Even

averaging over 500, 000 timesteps, variations in the calculated drag coefficient from this

method can be as high as 10 - 15%.

An alternate method of measuring the drag coefficient is available from kinetic theory.

If we examine the Kramers and Giesekus forms of the stress tensor, given in Eq.4.15 and

4.16

7, = -n(F(c)Q) + nkT6 (4.15)

S= (QQ)(1) (4.16)

we note that only one of the two expressions contains the drag coefficient. By setting the

two expressions equal to each other, we can calculate (. Let us begin by examining the

upper convected derivative of the the (QQ) tensor. For simple shear flow, we find

(QQ)(1) (QQ),,y 0 -(QQ) QQ 0 0 §iy (4.17)

0 0 (weQQ)zz o o 0o

As we are interested in simulating a steady state flow, the first term drops out, and



one can write an equation for ( in terms of invariants of the (QQ) and (F(C)Q), tensors.

-(F(c)Q) + kT (4.18)

Figure 4-3 shows ( calculated from Eq. 4.18 for long dumbbells with Qo = 20 under

shear flow. We show results for two values of the Lowe-Anderson parameter F, which

represent high and low viscosity solvents. We immediately note two problems. First,
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Figure 4-3: Drag
of F.

coefficient measured with Eq. 4.18 for Qo = 20 dumbbells at two values

at low De, there is a sharp increase in the measured drag coefficient. This is a result

of the excluded volume potential described above, which is present even for such a long

dumbbell. This means that at low strain rates a significant population of dumbbells have

an extension less than re, and thus experience an additional repulsive force which is not
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anticipated in Eq. 4.18. At very large values of De, which are sampled in the higher

viscosity solvent case, we note that ( decreases slightly with increasing strain rate. This

suggests to us that the assumption upon which the Giesekus expression of the stress

tensor is based, namely that ( is a constant, may not be reliable in the case of DPD.

In both cases, however, an estimate of ( can be made in order to properly scale the

rheological results.

4.2.5 Hydrodynamic Interaction

In the BD simulations described above, there is no hydrodynamic interaction included in

the model. In other words, the motion of one bead through the solvent is assumed not to

disrupt the solvent's velocity field, and thus has no effect on the hydrodynamic drag felt

by any other polymer beads. There is no reason to expect that this holds true for DPD,

as the motion of the explicit solvent DPD molecules are affected by the motion of the

polymer beads through them. Unfortunately, there is no a priori method of measuring

the effect of the hydrodynamic interaction on DPD polymers. It is reasonable to expect,

however, that the larger the interaction range of the DPD particles is in relation to the

maximum spring extension, the greater the effect of the hydrodynamic interaction will

be.

4.2.6 Excluded Volume

Because all DPD particles, whether polymer or solvent, are governed by the same set

of forces, the two end beads of a polymer dumbbell will experience a repulsion force

if the spring extension distance Q(t) is less than the particle interaction radius re. In

trying to compare DPD dumbbells to Brownian dynamics models, it is not clear how

to characterized this interaction. On one hand, it is reasonable to view this force as an

excluded volume interaction, as the two beads are prevented by the conservative repulsion

force from occupying the same space. In BD simulations an excluded volume potential



is typically employed to control the solvent quality. In a good solvent, the polymer has

a greater affinity for the solvent than for itself, which can be modeled as a repulsive

force between polymer beads, as BD has no explicit solvent particles to control. In the

BD simulations presented here there is no excluded volume interaction. On the other

hand, there is no way to avoid the excluded volume potential in a DPD simulation. The

coarse-grained nature of the DPD fluid means that a single particle is only interacting

with a limited number of surrounding particles at any given time. The small number

of neighbor particles increases the importance of each one for maintaining an isotropic

pressure force on the bead in question. For this reason, it is not a good option to simply

prevent beads on the same polymer molecule from repelling each other. When this is

done, the pressure force from the surrounding solvent beads pushes the particles together,

resulting in a shorter spring than is predicted by theory.

Figure 4-4 shows the equilibrium size of DPD FENE dumbbells with b = 50 as a

function of the maximum extension Qo, along with the theory prediction from Eq. 4.8.

As one would expect, a shorter dumbbell is more likely to have a spring extension distance

within the interaction range of its composite beads, and is thus subjected to the added

repulsive force which is not anticipated in Eq. 4.8 . As a result, it will be more elongated

relative to the predicted extension. We make the observation that dumbbells with a very

short maximum extension are expected to have material functions that diverge more from

the BD case than do those of longer dumbbells, especially in the zero-shear-rate range.

This distinction is important, as the vast majority of previous work modeling polymers

with DPD have chosen a maximum spring extension that will result is a significant

bead repulsion interaction. It should be noted that the difficulty described here is not a

hindrance to successfully modeling a physical polymer. Rather it is a problem when the

object is to hew as closely as possible to the FENE dumbbell model.

4.2.7 Limitation on Strain Rate
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As noted in Chapter 2, the viscosity of the DPD fluid with the Lowe-Anderson thermostat

is variable, based on the choice of F, the thermostatting rate. As F is increased, the fluid

viscosity increases, resulting in an increase in (, and consequently an increase in AH. As

illustrated in Figure 4-5, the transition for FENE dumbbells from the zero-shear rate

regime to the shear-thinning regime takes place over the range 0.1 < De < 100, so this

is also the range of De that must be accessed using DPD. The range of shear rate values

for which DPD simulations are practical are limited on both the high and low ends. At

shear rates above 0.3 the viscosity of the simple DPD fluid begins to drop, suggesting

that the system is no longer reliably behaving like a fluid. This is illustrated for two

values of the Schmidt number in Figure 4-5. It appears that the shear-thinning effect

begins at roughly the same absolute DPD shear rate without regard to the value of F.

We note that the same behavior is observed in a DPD fluid that employs the original

DPD thermostat. This would indicate that the limiting shear rate is a function of the

conservative potential. At low shear rates, the computational costs become untenable,

as the polymer stress becomes small in relation to the stochastic error. In this situation,

either large ensembles or very long simulation times are required to recover data with

acceptable levels of error. Bound by these constraints, it would be most useful to be able

to effectively control the relaxation time of our molecules so as to more easily access the

large range of De in which we are interested. In order to do so, however, we must first

convince ourselves that changing F, and by extension changing Sc in the fluid does not

affect the polymer dynamics in any meaningful way. We will demonstrate this by showing

agreement between the material function behavior of solutions of DPD dumbbells which

differ only in the viscosity of the solvent, as controlled by F.

4.2.8 Constraints on the Range of De to be Simulated

It is important that the modeler choose the parameters at his disposal, F and H, such that

the interesting range of De coincides with the accessible range of shear rates, remembering
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that the shear rate is scaled by the Hookean time constant, AH =- . For the purposes

of the comparison at hand, we have chosen the FENE parameter b to a value of 50. This

represents a middling degree of extensibility, approximating neither a Hookean dumbbell,

nor a rigid rod. The extensibility parameter b = HQO leads to a relation between Qo4kBT

and H so that choosing one specifies the other. Thus by choosing a longer dumbbell, H

is reduced and AH increases. Within the range of accessible DPD shear rates, a longer

dumbbell will thus be able to access a larger value of De. The simulation domain must be

twice the maximum extensibility in the flow direction, and a multiple of that in the other

two dimensions. It is thus advisable to set a reasonable upper limit of the maximum

extension of the model dumbbell. In practice, I have not attempted any simulations

of dumbbells with Qo greater than 20. Any further tuning of the time constant must

be accomplished by changing (, which we access through F. Once again, we find that

there are practical limits to increasing the time constant. Because FAt is defined as

the likelihood that a particle pair will be thermalized at each timestep, the product of

the two quantities has an upper limit of unity. Thus, significant increases in F must

be accompanied by a reduction in the time step, imposing a significant computational

cost. For b = 50 we are able to access the interesting range of shear rates within these

constraints.

4.2.9 Dilution Approximation

In a Brownian dynamics context, the default assumption is dilution, because the solvent

costs nothing to represent. It exists solely in the form of forces applied to the polymer

beads. Each member of the ensemble is treated individually, and simulated for the allot-

ted time in isolation. There is no need to establish a physical domain with boundaries.

Rather, the center of mass of the dumbbell is always found at the origin, and the relative

positions of the end beads are kept track of. Thus dilution represents the most efficient

manner of simulation for BD. This is not the case for DPD, as we are beginning with an

arrangement modeled on molecular dynamics which involves a physical domain filled with



particles, all of which must be simulated explicitly. As such, it is infeasible to simulate

a single dumbbell in isolation, unless one has an infinite supply of computer time. The

overhead costs associated with the simulation of all the accompanying solvent particles

is too great. Rather, a more concentrated solution of polymer molecules is simulated

under conditions that largely prevent individual polymer molecules from perceiving each

other's presence. Two conditions are required for this assumption to hold. First, the

DPD particles that make up both solvent and polymer must have identical interactions.

In other words, a polymer DPD bead that encounters another bead must experience the

same interaction regardless of the species of the 2nd bead. This condition can also be

interpreted as requiring the solvent be a 0-solvent. The second condition is that of phan-

tom springs, in which the FENE springs exist as a force between two beads, but do not

otherwise interact with the rest of the domain. Thus, springs are free to pass through

each other. Under these conditions, a DPD particle that is part of a dumbbell will in-

teract with another polymer DPD particle with rules that are identical to an interaction

with a solvent molecule. The conservative force interaction will be the same, and the

LA thermostat interaction will be indistinguishable provided that the velocity distribu-

tion of solvent DPD particles does not differ too greatly from that of polymer particles.

In this way we will simulate solutions of DPD dumbbells that function as though they

were dilute, despite having considerable concentrations of dumbbells. This principle is

illustrated in Fig. 4-6 which shows a linear dependence of solution viscosity to dumbbell

concentration for solutions of dumbbells with Qo = 8 and H = 0.78125. The dumbbells

were simulated undergoing simple shear flow at De = 0.56 and 2.8, which represent the

zero-shear viscosity region and the shear-thinning region. We have chosen 25% polymer

as our standard, as this represents a compromise between minimizing the computational

cost required to produce viscometric data, and a desire to avoid significant concentration

effects.
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4.3 Results and Discussion

4.3.1 Shear Flow

The simulation results presented in this section represent the first attempt to compare

the quantitative rheological results of simulations making use of the DPD model to the

results produced by a more extensively studied method. We have chosen Brownian

Dynamics simulations of dilute polymer dumbbells as the standard to which we will

compare our DPD results. In all cases, the DPD simulations have been performed using

the Lowe-Anderson thermostat. The domain is periodic in three dimensions, utilizing the

Lees-Edwards boundary conditions to implement shear flow[l]. The SSLOD equations

of nonequilibrium molecular dynamics are used to impose the flow profile throughout

the fluid[21]. The number density of DPD particles is p = 4 for all simulations, with the

temperature held constant at kBT = 1. The temperature control from the LA thermostat

is excellent, and no simulation shows a temperature error greater than 0.5%. In all cases

the timestep is At = 0.01. Due to the limitations on the range of shear rates which

are accessible to DPD, there is not perfect overlap between the ranges of De sampled

for each dumbbell length. The range in De is expanded, however, by varying F. The

values of F used range from 10 to 80, which corresponds to Schmidt numbers ranging

from roughly 30 to 2000. Figure 4-7 shows the polymer contribution to the viscosity

for the entire range of dumbbell solutions simulated with the DPD method. In all cases

the FENE parameter b = 50, so all series can be thought of as representing the same

physical molecule. For reference, the results of the dilute Brownian dynamics case is

shown as a solid black line. We begin by noting that the longer DPD molecules as a rule

hew more closely to the BD result across the entire spectrum of shear rates studied. We

expect to see divergences from the BD case due to excluded volume and hydrodynamic

interaction, both of which are likely to be more strongly expressed by a shorter, more

coarse-grained DPD particle. In the zero-shear-rate regime, we note that the longest

DPD particles show remarkable agreement with the BD result, while shorter particles
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overpredict the zero-shear-rate viscosity. This in consistent with our earlier observation

that shorter DPD dumbbells are artificially extended at equilibrium as a result of the

excluded volume interaction.

All DPD dumbbell models go through the transition from constant viscosity to the

shear-thinning region at roughly the same De, in very close agreement with the BD

results. This implies a faithful modeling of the fluid physics, and a quantitatively correct

transition point at which the dumbbells begin to stretch and align with the flow. In the

shear-thinning region, all DPD models overpredict the rate of shear thinning, resulting

in a larger power law result than is predicted by the BD case. Once again, we note that

the longest DPD dumbbells show the closest agreement with BD, which implies that the

effect of hydrodynamic interaction is minimized for longer molecules, which correspond

to a finer-grained DPD particle. All the DPD dumbbell solutions presented here were

subjected to the same set of shear rates scaled in native DPD units. De is given as )AH,

so the variation in De can be attributed to the differing values of H required to satisfy

the condition that b = 50. Thus while we seek to compare the relative performance of

DPD dumbbells constructed with differing maximum lengths, we note that each choice

of Qo also affects the range of shear rates which can be accessed.

Figure 4-8 presents the first normal stress coefficient results for the entire suite of

DPD dumbbell simulations alongside the BD result. The first normal stress coefficient

results show significant qualitative similarities to the viscosity results reported above.

We observe an overprediction of the zero-shear-rate first normal stress coefficient for

the shorter dumbbells, while the longer dumbbells show remarkable fidelity to the BD

prediction. The transition from zero-shear regime to the power law shear-thinning regime

occurs at the correct De for all DPD dumbbells studied. In the shear-thinning regime,

we note once again that the longest DPD dumbbells show the closest agreement with

the BD results. The power-law slope is observed to be slightly more negative (faster

shear-thinning behavior) as the dumbbell size is decreased. This observation further

supports our contention that the hydrodynamic interaction, which we predict to have a

100



First Normal Stress Coefficient for DPD Dumbbells
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Stress Ratio for DPD Dumbbells in Shear Flow
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Figure 4-9: Stress ratio for a range of DPD dumbbells along with the results for dilute
Brownian dynamics.

larger effect on shorter DPD dumbbells, is responsible for the greater degree of shear-

thinning observed in DPD compared to the BD case. We note that the first normal stress

coefficient results for DPD in the shear-thinning region adhere much more closely to the

BD results than do the viscosity results for all dumbbell lengths. Figure 4-9 shows the

stress ratio for each DPD dumbbell series along with the Brownian dynamics result. We

note excellent agreement between the longer DPD dumbbells and the BD data, while

we see that the shorter dumbbells show a slight overprediction at low De. Thus, while

there is an overprediction in both the viscosity and the first normal stress coefficient, the

normal stress difference is shown to be more important. This supports the contention

that the low De differences between the DPD and BD results stem from the excluded

volume interaction of the DPD beads.
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Fractional Extension of DPD Dumbbells
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DPD dumbbells along with the results

Figure 4-10 gives the mean squared fractional extension of the DPD dumbbells as

a function of the Deborah number. We begin once again by noting the remarkable

degree of agreement between the results from the two simulation methods. As one might

expect, there is a slight overprediction of the dumbbell length at low De for the shortest

dumbbells. Through the transition period, 1 <De< 10, all lengths of DPD dumbbell

collapse atop the BD result. As the dumbbells elongate significantly, they reach the non-

linear portion of the FENE force curve, and an inflection point appears in the fractional

extension curve. Above this point, at roughly De= 10, the DPD dumbbells begin to show

less extension than the BD case. The effect is more pronounced for shorter dumbbells

than for longer ones. This result indicates that the faster shear-thinning of the viscosity

noted earlier is a result of dumbbells undergoing less extension than in the BD case.
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Schmidt Number Effects on Dumbbell Rheology

In the preceding results, the accessible range of strain rates was extended for each dumb-

bell length by simulating shear flows using varying values of the LA thermostat rate, F. In
order to present results obtained at different Schmidt numbers as representing the same

molecule, we must establish that the Schmidt number is unimportant in determining the

rheological properties of the macromolecular model. The importance of the Schmidt

number in determining the validity of DPD as a simulation method has been extensively

debated[37, 79]. Figures 4-11 and 4-12 show the polymer contribution to the viscosity

and the fractional extension results for the Qo = 10 DPD dumbbells alone. We note that

Shear Viscosity of DPD Dumbbells

De

Figure 4-11: Viscosity of Qo = 10 dumbbells simulated at multiple values of F.

this is the same data presented in the earlier figures, isolated here for clarity. There is a
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First Normal Stress Coefficient for DPD Dumbbells
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Figure 4-12: First normal stress coefficient
values of F.

of Q0 = 10 dumbbells simulated at multiple
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great deal of overlap in the shear rates simulated for F = 80 and F = 40, which allows

us to compare the rheological results of the two series. Because the drag coefficient (

changes with F, each series is scaled with its own relaxation time AH = (/4H, but all

other scalings between the two series are identical. The close agreement between the high

and low Schmidt number simulations suggests that, outside of its effect on the time scal-

ing, the Schmidt number is unimportant in determining the rheology of macromolecules

simulated using DPD. Rather, we find that the sole importance of the Schmidt number

is found in the fact that we are able to control the solvent viscosity by varying F.

4.3.2 Giesekus Anisotropic Drag Model

In using the Giesekus and Kramers forms of the stress tensor to calculate the drag coeffi-

cient as presented in Section 4.2.4, we noted that the calculated drag coefficient appears

to decrease at large shear rates. This suggests that the assumption of a Maxwellian

solvent velocity field, which is required in the development of the Giesekus form of the

stress tensor, is not valid. It is clear that the solvent drag on polymer DPD beads cannot

be satisfactorily explained with a single scalar drag coefficient. This is not an unexpected

result, as we expect DPD to naturally exhibit hydrodynamic interaction. We look instead

to an anisotropic friction tensor, C that varies with the shear stress. Giesekus[35] has

suggested Eq. 4.19 to calculate the friction factor

c (6 - p) (4.19)( nkT

where a is a fitted parameter.

Sim et al. [74] have performed Brownian Dynamics simulations of dilute FENE dumb-

bells in shear flow that incorporate the Giesekus anisotropic friction tensor. Increasing

the value of a has no effect on the zero-shear-rate viscosity, but results in faster shear-

thinning behavior at high De. This behavior suggests that the drag coefficient in DPD
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may follow this model, with larger values of a for smaller dumbbells.

Eq. 13.7-4 in Bird et al.[8] provides a starting point for making use of the relation in

Eq. 4.19. We begin with the general equation for (QQ)(1):

(QQ)(1) = kT 6: a(- Q + [ C Q
2 (9QJ KQaQ

-2kT(')-({-'. F(c)Q} + QF(c) C1-') (4.20)

Because C-1, (QQ), and (F(c)Q) are all symmetric, substituting Eq. 4.19 into Eq. 4.20

results in an expression for (QQ)(1) dependent only on quantities that can be measured

in a DPD simulation, and a.

(QQ)(1) = 7 - at + k,- (F(c)Q) (4.21)

In the limit a -+ 0, Eq. 4.21 reduces to the Giesekus expression for the stress tensor in

the absence of hydrodynamic interaction.

We can now write an equation for a in terms of the traces of the tensors in Eq. 4.21.

a = F(QQ) p (4.22)
a (F()Q)-p

Thus by calculating a for each simulation, we can test whether the anisotropic drag

model captures the observed shear-thinning behavior of the DPD dumbbells. Figure 4-13

gives the calculated value of a for the two longest dumbbells simulated with DPD. The

very large values of a at low Deborah numbers are an artifact of the excluded volume

potential. We can see, however, that at large molecular extension, a constant value of

a is approached, and that it is smaller for the longer dumbbell. This is consistent with

the predictions of Sim et al.[74], who predict faster shear-thinning as a is increased. The

calculated values of a for shorter dumbbells are too affected by the excluded volume

107



interaction to yield comprehensible results. We nonetheless conclude that an anisotropic
drag tensor model is useful in describing the progressively faster shear thinning that
occurs at high De for shorter DPD dumbbells.
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Figure 4-13: Calculated value of the Giesekus anisotropic drag parameter a. The value
of a is strongly distorted by the influence of the excluded volume potential.

4.3.3 Planar Elongational Flow

The results presented here represent the first implementation of Kraynik and Reinelt's
boundary conditions, and by extension planar elongational flow, using the DPD simu-
lation technique. As such, these results serve to demonstrate the viability of the DPD
method itself for modeling planar elongational flows. This is in addition to our goal of
establishing the utility of DPD for rheological characterization of macromolecules. Like
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the steady state shear flow experiments presented previously, all simulations are run with

DPD number density p = 4, at temperature kBT = 1, and with the flow field enforced

by the SSLOD equations. In all cases b = 50.

In steady shear flow, the range of De over which a dumbbell elongates is quite large,

so that a wide range of shear rates must be applied in order to examine the rheological

response from the zero-shear region to the fully elongated, shear thinning region. In

the case of planar elongational flows, several advantages emerge for the DPD modeler.

First, elongational flow involves much stronger deformation of the fluid. This means that

the interesting dynamics (particularly the extension of the polymer dumbbells) occurs

as a much lower rate of strain. Because DPD is limited in the strain rates which are

accessible to it, this is a significant advantage. Second, the interesting dynamics occur

over a narrower band of De, which once again works to the advantage of DPD. As a

result of this, we have been able to access the entire range of interesting strain rates

using a single value of F for each DPD dumbbell model. Finally, as the deformation of

the dumbbells is greater in a planar elongational flow, the stress response is also larger,

which reduces the relative importance of stochastic error. As a result, the need for very

long averaging periods is reduced.

Elongational Viscosity

Figure 4-14 shows the elongational viscosity of DPD dumbbells undergoing steady planar

elongation. The Q0 = 20 dumbbells show very close agreement with the results of the BD

simulations throughout the range of De studied. As was observed in the shear flow results,

a reduction in the length of the dumbbells relative to the DPD interaction length once

again results in an overprediction of the viscosity at low De, and an underprediction as

the molecules are stretched significantly. Here we note that both effects can be observed

for the Qo = 20 case, but are much more apparent when Qo = 5. The Trouton ratio,

which is the ratio of the viscosity to the elongational viscosity at low De is predicted by

theory to be 4, and is show to be correct. Even for the case of Qo = 5 dumbbells, which
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Figure 4-14: Elonagtional viscosity of DPD dumbbells in planar elongation flow
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show the largest deviations from the BD results of any case presented, the Trouton ratio

is preserved correctly, as both the shear and elongational viscosities are elevated.

Fractional Extension

The fractional extension in planar elongational flow is shown in Figure 4-15, showing very

good agreement between DPD dumbbells and Brownian dynamics. As in the elongational

viscosity, the longer DPD dumbbells show the greatest fidelity to the BD case over the

full range of De. At low De, the shorter Qo = 5 dumbbells are slightly more extended,

which is consistent with both shear flow, and equilibrium observations. Through the

coil-stretch transition and above, the agreement between BD and the two DPD cases is

remarkably good.

4.4 Conclusion

The central conclusion of the work presented here is that DPD is able to produce rheo-

logical results which match quantitatively the predictions from Brownian dynamics simu-

lations. This represents the first attempt to match material functions produced via DPD

simulations to those of a more widely studied model. While shear flow has been suc-

cessfully reproduced in the past using DPD, the application of the Kraynik and Reinelt

boundary conditions to the DPD model in order to simulate planar elongational flow is

a first.

It has long been claimed that DPD produces both excluded volume and hydrody-

namic interaction effects naturally due to the explicit modeling of the solvent with DPD

particles. Little progress has been made in quantifying these claims, however. We have

shown that using very long FENE dumbbells in DPD, which minimize the effects of both

EV and HI, we are able to closely match the rheological results produced by a Brownian

dynamics simulation which includes neither of these effects. As the length of the dumb-

bell is decreased relative to the DPD particle interaction length, deviations from the
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Figure 4-15: Fractional extension of DPD dumbbells in planar elongation flow
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BD results begin to appear. First, at low strain rates, the excluded volume interaction

between the dumbbell end beads forces the dumbbell to elongate more than is predicted

by theory. This leads to larger values for the viscosity and first normal stress coefficient

than are predicted by Brownian dynamics. This effect becomes progressively larger for

shorter dumbbells. At large strain rates, DPD dumbbells of all lengths slightly under-

predict the viscosity as compared to BD, with the deviation becoming more severe for

shorter dumbbells. For the case of the longest dumbbells, we showed that this behavior

is in agreement with Giesekus' anisotropic drag tensor model. In this way we propose a

framework for interpreting the hydrodynamic interaction which has long been supposed

to occur naturally in DPD systems. For shorter dumbbells, however, it is impossible

to separate the HI behavior from the EV effect caused by endbead repulsion, and no

conclusions concerning the utility of the Giesekus model could be reached.
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Chapter 5

Non-Dilute Polymer Solutions

5.1 Introduction

In the previous chapter, we took pains to use DPD to simulate one of the simplest kinetic

theory polymer models available, the FENE dumbbell, in order to show unambiguously

the close agreement that is possible between DPD and another model. A polymer dumb-

bell, however, is a poor use of DPD, as it can be simulated more easily and more cheaply

using other methods. In this chapter, we seek to explore some of the capabilities of

DPD that make it attractive as a modeling method. The chief advantage of the DPD

method is the flexibility the modeler has in constructing a model polymer molecule. The

chemistry of the DPD particles can be adjusted easily to vary the makeup of the polymer

or the solvent quality. The computational cost of increasing the number of beads in a

bead-spring chain is roughly linear, and non-linear molecules are simulated as easily as

straight-chain molecules. Finally, intermolecular interactions come about quite naturally,

so concentration effects are included without a great deal of adjustment to the structure

of the DPD model.

All these theoretical advantages of DPD were noted very early in its development as a

model, but rheological studies of model polymer systems under flow using DPD have been

slow in coming. In particular, there has been very little data reported concerning the
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behavior of the material functions such as the viscosity and first normal stress coefficient

as they vary with the strain rate. The goals of this chapter are thus two-fold; we wish first

to simulate a polymer system which includes some of the reported advantages DPD enjoys

in order to show that the model is capable of producing rheologically correct results. This

first goal might be thought of as "proving the model". Having answered the first question

of whether DPD can be used to study polymer rheology, we will then attempt to answer

the more subtle question of whether it should. As noted in the previous chapter, DPD

can be used to study a dilute system of polymer dumbbells, but the computational cost is

far too great to make it worth the effort in practice when similar results can be produced

using Brownian dynamics at a much smaller cost.

In this chapter we present a rheological investigation into systems of DPD bead-spring

chain polymers undergoing shear and planar elongational flow. We examine the effect

of both the solvent quality and of the concentration on the rheology of these solutions

throughout the semi-dilute range. The practical limit of concentration that DPD is

able to model is examined. For the specific case of planar elongational flow, this thesis

represents the first report of DPD being used to model this type of flow. A spring-spring

repulsion force is introduced to prevent springs from passing through each other.

5.2 Spring-Spring Repulsions

In Chapter 4, the challenge of establishing a condition of dilution was given much at-

tention. We sought to show that individual DPD polymer molecules do not affect the

rheological behavior of any other macromolecules in the simulation. In this chapter, we

will attack the opposite problem. Rather than trying to avoid them, we seek to capture

the effects of polymer beads and springs on each other in this chapter. In a solution or

melt of DPD polymers, the individual macromolecules can affect each other through two

methods. The first, which is present even in the dilute case, is bead-bead interactions.

When we wished to simulate a dilute case, we restricted ourselves to a 9-solvent, so that
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the interactions between solvent and polymer beads are indistinguishable. For concen-

trated solutions, that restriction can be relaxed. Pan and Manke [61] have examined

the effects of solvent quality on the equilibrium configuration of DPD polymer chains by

varying the repulsion force coefficient aij. In the case of that study, the only variation in

the coefficient was for polymer-solvent interactions. Pursuing the idea further, one sees

that the same principle can be applied to the architecture of a polymer molecule itself,

so that a block copolymer could be modeled by designating a chemical species for each

bead.

The other addition to the DPD model system that is required in order to move from

the dilute to the concentrated regime is a spring-spring interaction. In the physical realm,

two polymer coils can interpenetrate each other, but the backbones of two chains are not

able to pass through each other. While a bead-spring chain is a highly simplified model

of a polymer molecule, this steric hindrance must be retained if concentration dependent

behavior is to be faithfully reproduced. The first step in implementing a spring repulsion

force is to determine where the springs are relative to each other.

5.2.1 Determination of Inter-Spring Distance

Kumar and Larson[47] have proposed a method for calculating the closest approach

distance between two line segments (polymer springs, in our case) in three dimensional

space which we have adopted. The two springs are defined by their midpoints, P 1 and

P 2, and R1 and R2, the vectors that govern their length and direction. If the springs are

envisioned to lie along infinite lines, a vector D is defined as any vector connecting the

two lines,

D = P 1 + t1 R 1 - (P 2 + t 2R 2) (5.1)

with tl and t2 as parameters that define the location of the endpoints of the vector D on

the lines. To find the point of closest approach between the lines, we find the minimum
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R2

Figure 5-1: Nomenclature used in calculating the closest approach between springs: The
vectors designating the spring midpoints are P 1 and P 2 while the length and direction
of the springs are given by R 1 and R2.

of the magnitude of D, D 2 = D -D, with respect to tl and t2, requiring that

8D2  OD2

0= O (5.2)
at, at2*

The solution of Eq. 5.2 leads to expressions for tl and t2:

(P 1 - P 2) - (RMR 1 - R 21R 2)tj = (5.3)
R22 

(5.3)

(P 2 - P) - (RR 2 - R 21R 1)
t2 = R2 R (5.4)

where R 21 = R 2 , R2 = R 1 R1 and R• = R 2 -R 2.

It is important to note that the parameters tl and t 2 give the positions of the point of

closest approach between the infinite lines, rather than the springs that lie along them.

If -0.5 < ti < 0.5 for both tj and t2 , we know that the points of closest approach

occur along the length of each spring. If either tj or t 2 is outside the above interval, this

signifies that the closest approach lies at the endpoint, and tj is made equal to ±0.5. In
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Figure 5-2: Failure of Kumar and Larson's method: Springs 1 and 2 are nearly parallel,
and the closest approach between their defining lines intersects Spring 1 (D 1). t2 < -0.5,
so it is reset to t2 = -0.5, but since -0.5 < tl < 0.5, it is not reset, leading the algorithm
to report D2 as the closest approach between the springs. The additional checks described
here then identify D3 as the correct approach vector.

the event that only one of the t parameters is outside the interval, care must be taken, as

very nearly parallel springs can cause the above algorithm to give incorrect results. This

problem is illustrated in Figure 5-2.

When two springs are nearly parallel, it is possible for the vector of closest approach

between the two lines to intersect one of the segments, while the shortest distance between

the two segments themselves may pass only through the endpoints. In order to avoid

errors of this type, a check is performed anytime Itil > 0.5. The magnitude of the distance

vector, D is calculated for the four possible cases when tl = ±0.5 and t2 = ±0.5. If any

of these produce a shorter approach distance, ti is changed accordingly.

5.2.2 Implementation of Spring-Spring Repulsions

Springs in the DPD simulations presented here can be as long as one-half the length

of a side of the domain. Consequently, springs are frequently found to be lying across

periodic boundaries. Under flow conditions the periodic images of the domain may be

shifting past each other, as in shear flow with Lees-Edwards boundary conditions, or the

domain itself may be deforming, as is the case for planar elongational flow. As a result,
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the calculation of the distance between each pair of springs must be performed with some

care.

Shear Flow with Lees-Edwards Boundary Conditions

Before any distances between individual pairs of springs are calculated in the spring

repulsion algorithm, Pi and Ri for each spring is calculated and stored, where R, =

r i+ - r and Pi - 2rir Next, the components of Ri are checked to identify springs

which lie across a periodic boundary. We establish x as the flow direction, y as the

shear direction, and z as the neutral direction. The shear direction must be checked

first. If Riy > 0.5L,, this tells us that the spring lies across the y-boundary. L, is then

subtracted from Riy, and 0.5Ly is subtracted from Py Likewise if Ri, < -0.5Ly, then

L, is added to Ri,, and 0.5Ly is added to Piy. This is the standard periodic treatment.

Additionally in the case of shear flow, if the spring crosses the y-boundary, Rix must also

be corrected to account for the motion of the periodic boundaries. If Rjy > 0.5L,, then

6SL is subtracted from Rix, where 6 represents the fractional distance the +ly periodic

domain has traveled. The flow direction is checked for boundary crossings next, and

the process must be performed twice, as the addition or subtraction of 5L, in the first

step can cause the spring to cross the flow-direction periodic domain twice. Finally, the

neutral direction is checked.

Planar Elongational Flow with Kraynik and Reinelt Boundary Conditions

In planar elongational flow, the domain boundaries do not lie along the Cartesian di-

rections, so identifying instances of springs lying across the periodic boundaries can be

geometrically confusing. The situation is improved dramatically by performing a solid

rotation of the domain about the neutral y-direction so that one boundary lies along an

axis. The details of the spring boundary check for planar elongational flow can be found

in Chapter 3.
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Once the centerpoint and direction of each spring has been calculated, the distances

between springs can be measured. Once again, we are faced with the possibility of springs

interacting across periodic bounds. The first step is to measure the distance between the

springs' centers: Dp = P 2 - P1. the vector DR is then subjected to the same process

which has been described in detail above as if it were a spring. The spring pair center-to-

center distance allows us to calculate a minimum possible approach distance between the

spring pair, which would occur if both springs were fully extended and lying along the

same line, as illustrated in Figure 5-3. Having accomplished this first step, we are able to

approach
distance

Figure 5-3: The center-to-center distance allows a minimum separation distance between
the two springs to be calculated without knowing anything about the orientation of the
springs. If the minimum possible distance is greater than the spring-spring interaction
distance, the spring pair can be discarded without further calculation.

winnow down the list of spring pairs for which the actual closest approach distance must

be calculated, as any spring pair for which Dp is greater than RR + ' is geometrically

precluded from experiencing an interaction. This greatly reduces the computational load
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of calculating spring-spring interactions. We are further able to improve the algorithm

efficiency by tabulating a list of spring pairs whose minimum approach distance is below

a certain threshold which is somewhat larger than the maximum interaction distance of

5 . At subsequent timesteps, only the approach distances of these spring pairs must be

calculated. The list is then updated at a longer interval by recalculating the approach

distance of every spring pair in the simulation. For the polymer models and concentra-

tions described in this chapter, it is sufficient to keep a list of particle pairs with approach

distances less than r, if the list is updated once every 20 timesteps.

Pan and Manke[62] made the first attempt to introduce a spring-spring repulsion to

DPD polymers to allow them to simulate a melt. They chose a linear repulsion force law

modeled after the DPD bead conservative force,

S3ajW(c)D if D < irc
F(")(D) = 3a )D if D < (5.5)

0 if D> r

Where a and W(c) are the conservative force coefficient and weighting function respec-

tively. This results in a spring-spring repulsion force law with a slope nine times greater

than that of the conservative force. (It should be noted that Pan and Manke worked

with the original DPD thermostat, as opposed to the Lowe-Anderson modification em-

ployed here.) This linear force law has many of the same advantages and disadvantages

of the DPD model as a whole. Even at very small spring separation distances, the lin-

ear force law produces a finite repulsion force, so larger timesteps can be taken without

threatening the stability of the simulation. As is the case for DPD beads, however, a

soft spring-spring potential leads to a greater likelihood that springs will cross each other

despite the repulsion force. While it is expected, and not upsetting that DPD beads

frequently overlap and pass through each other, the same cannot be said for polymer

springs. It is thus necessary for the linear repulsion force to be accompanied by a very

large coefficient, in order to assure that springs do not cross each other. The problem is
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further exacerbated by having large timesteps (the chief advantage to a linear force law),

as the repulsion coefficient must be increased even more as the length of the timestep is

increased. In contrast to this method, Kumar and Larson [47] propose an exponential

spring-spring repulsion force law given by Eq. 5.6.

F(s)(rij) = Aae-O r (5.6)

The relative merits of the exponential force law proposed by Kumar and Larson are

roughly opposite to those of Pan and Manke's . The force law acts over a much shorter

range, so the unphysical added pressure that results in the system due to the implemen-

tation of a spring-spring repulsion law is much smaller. On the other hand, at very small

separation distances, the exponential repulsion force becomes very large. Smaller time

steps must be taken in order to ensure the stability of the simulation. The repulsive

force produced by the two laws is compared as a function of spring separation distance in

Figure 5-4. The parameters A and a are chosen as a compromise between computational

^^^

60UU

500

400
o
u- 300
C

" 200

100

0

_-Inn

Interspring Distance

Figure 5-4: Spring-spring repulsions potentials proposed by Pan and Manke and by

Kumar and Larson. The exponential potential has A = 100 and a = 10.

convenience and efficacy in preventing spring crossing events. The choice of A has the
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effect of controlling the inter-spring distance at which the force increases rapidly, while

a controls the overall strength of the repulsion. While a larger a is more effective in pre-

venting springs from crossing each other, it leads to a smaller maximum stable timestep

size. In order to avoid rare destabilizing events in which two springs come very close to

each other and thus experience an unphysically large repulsion force, a limit is placed on

the allowable interspring distance. Any pair of springs found to be closer than 0.001r,

are treated as though their separation distance were 0.001re. The choice of this safety

valve setting balances a desire to prevent as many spring crossing events as possible, with

a need to maintain stability in the simulation.

Spring Pair Distribution Function

In order to evaluate the effectiveness of the spring repulsion schemes presented above,

some measure of the number of springs which are crossing each other is needed. While it

is possible to identify instances of springs crossing each other geometrically, the algorithm

for doing so is both tedious to implement, and costly to perform[47]. We instead look to

a different method of evaluation that at once is easier to implement, and gives us other

interesting information as well. As we have already identified all those springs which

approach close enough to another spring to experience a repulsive force, it is trivial to

produce a histogram of spring approach distances. This can also be thought of a pair-

distribution function for springs within the DPD polymer solution. The population of

the distribution function at spring separation distances very close to zero is an excellent

representation of the relative frequency of springs crossing each other. In addition, this

metric allows us to chart the shape of the distribution of spring separation distances,

which allows us to better understand the effect on the structure of the polymer solution

the inclusion of the spring-spring repulsion force has.
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Effectiveness of Spring Repulsion Schemes

Figure 5-5 shows the spring pair distribution function for a solution of DPD N = 20

chains at equilibrium simulated for three cases; casel is implemented with spring-spring

repulsions enforced by Pan and Manke's algorithm, case 2 with the force law of Kumar

and Larson, and case 3 with no repulsion force at all. One notices immediately that at

100
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CL 10-3

104

Spring Approach Distance

Figure 5-5: Spring pair distribution function for the two spring laws considered and for
the case of no spring repulsions. The exponential force law produces a much more natural
pair distribution function than does the linear force law.

spring separation distances very close to zero, both force laws result in a miniscule, though

non-zero population of spring pairs. We thus learn that neither force law is capable of
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completely eliminating spring crossing events, but that both are able to reduce their

frequency to a negligible value. In this narrow sense, both algorithms are successful. We

next look at the overall shape of the entire distribution function. In a physical sense, we

are seeking to represent not a repulsive force, but rather a constraint. Physically, the

backbones of individual polymer molecules cannot cross over each other. On the other

hand, there is no reason for them to experience a repulsive force when they are merely

close to each other. From this insight, we can glean that the ideal histogram profile would

follow the curve of case 3 (no spring-spring repulsions) for any instantaneous snapshot

in time. Here we see the superiority of the exponential force law of case 2, which shows

a much smaller distortion in the overall shape of the histogram. This result is intuitive.

A force law which acts over a shorter distance, and has a steeper slope is likely to yield

a spring-spring distance distribution which hews more closely to the physical system

which we seek to replicate. Against this ideal stands the practical limitation that we

are simulating using discrete timesteps. Spring-spring repulsion laws which act over a

shorter distance require smaller timesteps to maintain stability. Finally, we must note

one additional difficulty that arises from our attempt to replace a constraint with a

force law. An examination of Figure 5-5 shows that for each force law, there is a spring

separation distance at which a sharp decrease occurs in the spring pair population. This

coincides with the point at which the force begins to rapidly increase with decreasing

separation distance. On can imagine that this critical distance defines a cylinder that

surrounds each spring in the system, inside of which other springs are not tolerated.

At low polymer concentrations, when the total volume of these "cylinders of force" is

small in comparison with the volume of the domain as a whole, no unphysical effects

are expected. On the other hand, as the concentration of polymers (and by extension,

springs) in the system is increased, the total volume contained within these cylinders

can approach or even exceed the total volume of the domain. When this happens, the

total pressure force in the system increases dramatically, as springs are forced to invade

each others' space, and strong unphysical ordering of the fluid is observed. At higher
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concentrations still, the simulation almost always becomes unstable. As we are interested

in non-equilibrium simulations, we must note that the same effect can be seen when the

polymers are stretched by the flow. As the springs elongate, their cylinders of force gain

volume, and the effect is the same as if the concentration were increased.

5.3 Bead-Spring Chain Polymer Model

In this work, flexible polymer molecules are modeled with a bead-spring chain constructed

of DPD particles connected by entropic springs. This type of model is similar to those of

Rouse and Zimm, with the exception that a different spring force law is chosen. Rouse

and Zimm used Hookean springs, which are simple to use, and are amenable to the

production of analytical results. For flows in the zero-shear rate regime, Hookean springs

give adequate results, but at higher strain rates, they continue to elongate indefinitely.

As a result, bead-spring chains constructed with Hookean springs are unable to model

non-linear strain rate dependent properties such as shear rate dependence of the viscosity.

True physical polymer molecules have a maxmium extension length, so a model which

incorporates this limitation is desirable as well. We thus replace Hookean springs with

finitely extensible non-linear elastic (FENE) springs instead. The FENE spring force law

is given by

F(Q) 1 - (5.7)

FENE springs are better able to capture non-linear rheological effects, but have been

used less extensively for simulations, as analytical results are only possible with the

inclusion of closure approximations due to the non-linearity of the spring-force law. For

the simulations presented here, we have chosen to model the polymer molecule with

chains of N = 20 beads connected by springs characterized by Q0 = 5, and H = 2

which produces an extensibility parameter b = 50 for each spring. While the specific

chain parameters have been chosen primarily for computational convenience, the choices
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represent reasonable values for a short polymer chain molecule.

5.3.1 Polymer Concentration

For a solution of polymer and solvent molecules modeled with DPD, there are several

ways of approaching the concentration of polymer. First and simplest, is the proportion

of DPD particles in the simulation which are part of a polymer molecule. This is a useful

measure internally to DPD, but does a poor job translating into other representations

of polymer solutions because DPD particles are coarse-grained at a level which is some-

what ambiguous. The limited number density of DPD particles sets an unnaturally low

upper limit on the concentration that can be achieved. Another method of measuring

the concentration is based on the overlap concentration, c*. The radius of gyration at

equilibrium is defined as
N

R= E(ri - rcM)2  (5.8)

and gives an approximate measure of the radius of the polymer coil. c* is defined as the

concentration at which the total volume of polymer coils is equal to the total system

volume. The volume inhabited by a single polymer coil is given by

Vcoil= -4rR .  (5.9)

so c* = 1 when nV •°• = Vsystem. Scaling the concentration by c* gives a new measure of

concentration
4n3rR 3

c •/C* = 3(5.10)
Vsystem

which gives an estimate of the level of interpenetration which should be expected among

polymer molecules.
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5.3.2 Solvent Quality

Solvent quality describes the chemical relationship between polymer and solvent mole-

cules in solution. The simplest case is a 0-solvent, in which the chemical affinity of the

polymer to itself is the same as its affinity for the solvent. In a poor solvent, the polymer

prefers itself, and in a good solvent, the polymer prefers the solvent. Up to this point,

we have worked exclusively with DPD as a 0-solvent. To form a 0-solvent in a DPD

context, one simply sets aij, the conservative force coefficient, to be the same value for

all pairs of particles, regardless of their identity as polymer or solvent. Following Groot

and Warren[37] this value is set at aij = 75/p, or 18.25 for our simulations in which

p = 4. A number of authors have explored using DPD to simulate polymers in both good

and poor solvents. Kong et al.[61] have shown that a solution of polymer molecules in

good solvent can be reproduced by setting aij to a lower value for pairwise interactions

of a polymer and a solvent DPD particle, while maintaining the original repulsion value

for both polymer-polymer and solvent-solvent interactions. Following their example, we

model a solution of polymer in good solvent with the following conservative force law

rules:

Polymer-Polymer: aij = 18.25 (5.11a)

Solvent-Solvent: aii = 18.25 (5.11b)

Polymer-Solvent: aij = 13.125. (5.11c)

This is a 30% reduction in the repulsion between unlike DPD beads. A number of effects

result from this treatment which ought to be noted. The first, and intended consequence

is an additional effective excluded volume potential between polymer beads, as compared

to the 0-solvent case. The lower repulsion value for polymer-solvent interaction causes

greater interpenetration of the polymer coil by solvent particles, which leads to a larger

equilibrium coil size. We note that there is not, in fact, any excluded volume force

being added, but rather a removal of some system pressure due to the reduced repulsion
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between unlike polymer and solvent species. This leads to a second effect, in which the

relative concentration of polymer vs. solvent particles in the solution changes the system

pressure. At a ratio of 1 : 1 polymer to solvent beads, there is a minimum in the system

pressure. As a result, there is no way to simulate an infinitely dilute solution of the good

Figure 5-6: In a good solvent, the total system pressure depends on the polymer concen-
tration due to the lower conservative force coefficient between unlike particles.

solvent case, as was done for a 0-solvent in the previous chapter. There will always be a

concentration dependence on the system pressure.

In Figure 5-7 we show the behavior of the radius of gyration at equilibrium as a

function of concentration for each solvent quality case. In the case of the 0-solvent, there

is a small dependence of the coil size on concentration, as spring-spring repulsions limit

the degree to which polymers coils can inhabit the same volume. The same effect is seen

much more dramatically in the good solvent case, primarily because the coils are much

larger at low concentration.

129

I

I



Radius of Gyration at Equilibrium
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2.6

2.4

2.2 -

I Theta Solvent

* Good SolventU

Concentration, c/c*

Figure 5-7: Radius of gyration of N = 20 bead-spring chain molecules at equilibrium for
the range of concentration studied. The swelling of the coil in good solvent is restricted
as the concentration increases.

5.4 Simulation Details

5.4.1 Planar Elongational Flow Experiments

Steady planar elongational flow is a homogeneous shearfree flow where Vv is given by

vvj
-g 0 0

0 0 0 .
0 0O

(5.12)

We note that in shearfree flows, the velocity gradients are in the flow directions, so the

position of a fluid element changes exponentially as the fluid moves away from the origin.

The total strain is measured in Hencky Strains, defined as

E = t (5.13)
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This type of flow leads to very strong deformation of the polymer shape. The flow is

modeled in a periodic bounded domain with affinely deforming boundaries according to

the method of Kraynik and Reinelt[46] (KR). The KR boundary system is periodic in

both space and time, so the simulation represents an infinite bulk which can be simulated

indefinitely. We are thus able to simulate the planar elongational flow over a long period of

time, and can consequently reach very large Hencky Strains. Perkins et al.[63] have shown

that polymer coils which are subjected to an elongational flow very near the critical coil-

stretch transition strain rate reach their equilibrium length very slowly. Each individual

molecule begins to uncoil at a random time which is not system dependent or predictable.

As a result of this, the time to equilibrium becomes very long for the strain rates which

are most interesting to us, over the range of elongation rates at which the steady state

behavior changes most rapidly. As a result, planar elongation simulations near the coil-

stretch transition are run for 75 Hencky strains, which provides a long enough time to

reach equilibrium, followed by a period sufficient to sample the rheological behavior of

the fluid.

In the extreme of low concentration, the challenge to modeling is one of computational

expense. Specifically, as solvent must be simulated explicitly along with polymer, a low

concentration results in a large overhead of solvent molecules for each polymer molecule

in the simulation, and a minimum number must be present to obtain satisfactory levels

of stochastic error. At high concentration, the limiting factor is based on the spring

repulsions. If there are too many springs present, the timestep must be reduced signifi-

cantly to maintain the stability of the simulation. The N = 20 polymer is studied at four

concentration levels, corresponding roughly to c/c* = 0.5, 1, 2, and 5. As a percentage

of the DPD particles in the simulation which are polymer, this corresponds to 5%, 10%,

20% and 50%. It should be noted that the relationship between polymer fraction and

concentration scaled by c* is established by the coil size at equilibrium of the polymer

under investigation, and would not be constant across other polymer models, including

changes in N, Qo, and H.
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In addition to the variation in concentration, the simulation experiments were per-

formed once under good solvent conditions, and once under 6-solvent conditions, so that

the effects can be compared. The solvent quality has a strong effect on the equilibrium

size of the polymer coil, and by extension affects the c* concentration. For simplicity, the

domain size and number of macromolecules was held constant for the good and 9-solvent

simulations. As a result, we will be comparing simulations which have matching number

concentrations, as opposed to matching c/c* concentrations.

Strain Rate

The rate of strain is expressed as the Deborah number,

De = o (5.14)

which scales the elongation rate with the longest relaxation time. At each concentration,

a series of planar elongational flow simulations was performed, for a range of Deborah

numbers, 0.05 < De < 3, which is sufficient to observe the transition from a coil to a

fully extended molecule. For each solvent quality condition, the set of elongation rates

used was held constant across all four concentration setpoints. As we will show shortly,

however, the concentration of polymer in the solution has a strong effect on the longest

relaxation time of the polymers in solution. Thus there are two measures of the strain rate

which may be used. The first is based on the relaxation time of the lowest concentration

solution, c/c* = 0.5, which is as close to dilute as we are able to simulate. In this way, the

results of all concentrations can be compared on the basis of equivalent absolute strain

rate. This will be denoted by De0.5. Alternately, the results of each concentration setting

can be scaled by the longest relaxation time calculated individually for said concentration,

denoted by De.
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Determination of Longest Relaxation Time

A bead-spring chain possesses a relaxation spectrum, which receives contributions from

each of the relaxation modes (springs) in the molecule. We will eschew trying to accu-

rately determine the entire spectrum in favor of measuring just the longest relaxation

time, which has the largest effect on the coil-stretch dynamics of the molecule as it un-

dergoes deformation. The longest relaxation time of chain molecules is dependent on

the number of beads, N, the FENE spring-law parameters Qo and H, and the solvent

viscosity, as controlled by the thermostatting frequency, F. There is no reliable predictive

measure of the longest relaxation time, so a simulation experiment must be performed

instead. Polymer molecules which have been fully stretched are allowed to relax back to

equilibrium. The squared end-to-end vector decays according to

L2 = L e- t/LO + L (5.15)

where Lo is the contour length of the molecule, and Le is the end-to-end vector at

equilibrium, and A0 is the longest relaxation time. We take advantage of the fact that

we already have a ready-made test cell in the elongational flow code. The solution to be

tested is subjected to a planar elongation rate well above the coil-stretch transition for a

sufficient time to ensure that all polymer molecules have reached nearly full elongation.

The elongation rate is then reset to zero, and the solution is allowed to return to

equilibrium. The value of the mean squared end-to-end vector is then fit to a curve of

the form given in Eq. 5.15 using MATLAB's curve-fitting toolbox. For each concentration

and solvent quality, the simulation was run three times, and an average resultant longest

relaxation time calculated. Figure 5-8 illustrates these results. The dependence of time

constant on concentration is given in Figure

5.4.2 Dynamic Results
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Figure 5-8: Decay of the squared end-to-end vector, fitted
order to measure the relaxation time.
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Figure 5-9: Relaxation time vs. concentration for both good and 0-solvents
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We will begin with an examination of the evolution of the polymer molecules' shape

under elongational flow. We consider the length of the end-to-end vector as a function

of the two measures of the Deborah number described previously.

Extension

In Figure 5-10 we consider the evolution of the end-to-end vector of polymers immersed

in a 0-solvent, scaled by Deo.5 as calculated for the c/c* = 0.5 case. In Figure 5-11 we

Fractional Extension vs De0.5O-Solvent

- CIC-=U.0

- c*=1
cl-- c*=2
c/c*=5

I I I I 1 111 1 1 I I

Deo.s

Figure 5-10: Fractional extension in planar elongational flow in a 0-solvent. The strain
rate is scaled by the relaxation time of the c/c* = 0.5 solution. The fractional extension
is defined as the total molecule length scaled by the contour length.

present the same extensional data as a function of De as calculated for each individual

solution. We note immediately that there is a strong concentration dependence on the
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Figure 5-11: Fractional extension vs. De in planar elongational flow in a 0-solvent.
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elongational flow rate at which significant extension of the molecules begins. When the

curves are rescaled by the relaxation times of the individual solutions, they all collapse

onto a single curve, with a sharp coil-stretch transition evident at De = 0.5 This is the

result predicted by theory. At the largest concentration, c/c* = 5, there is a broadening

in the extension curve. The molecules begin to elongate at a lower De, and reach full

extension more gradually as the De increases. This behavior suggests a broadening of

the relaxation spectrum for the solution.

Figures 5-12 and 5-13 show the concentration dependence of the molecular extension

behavior in a good solvent. We observe once again that the dependence of the relaxation

0

0.2

LL 0.1

Fractional Extension vs. De.. sGood Solvent

v

I I I I I
101

(good solv.)
ood solv.)
ood solv.)
ood solv.)

I I I I I I I

Deo. 5

Figure 5-12: Fractional extension in
strain rate is scaled by the relaxation

planar elongational flow in a good solvent. The
time of the c/c* = 0.5 solution.

time on concentration manifests itself as an earlier onset of the coil-stretch transition as

the concentration is increased. Unlike the 0-solvent case, however, there is also a clearly
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Figure 5-13: Fractional extension in planar elongational flow vs. De in a good solvent.
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visible dependence on the molecular size at very low De, where the influence of the

flow is not great. As the concentration grows, the size of the molecule shrinks. This

is consistent with the RG behavior at equilibrium. In the good solvent, polymer beads

repel each other, so at low concentration, each coil expands as much as possible. As the

concentration increases, however, the coils begin to overlap, and the beads are repelled by

other polymer molecules, which leads to a smaller coil. This behavior is also consistent

with the results reported by Stoltz et. al. [76]

We now consider a direct comparison between the extension behavior of like concen-

trations which differ only in the solvent quality. Figures 5-14 through 5-17 show the

fractional extension behavior of each solution in 0 and good solvent. The Deborah num-

C
.o
0,
C

C
S0.2

C0

.•
LL 0.1

Fractional Extension vs. De
c/c*=0.5

[-F (good solv.)

10-1

Figure 5-14: Fractional extension vs. De with c/
by closed symbols, the good solvent with open.

c, = 0.5. The 0-solvent is represented
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Figure 5-15: Fractional extension vs. De with
closed symbols, the good solvent with open.

c/c* = 1. The 0-solvent is represented by
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Fractional Extension vs. De
c/c*=2

d solv.)

Figure 5-16: Fractional extension vs. De with
closed symbols, the good solvent with open.

c/c* = 2. The 8-solvent is represented by

141

1
0.9
0.8
0.7
0.6
0.5

c 0.4

a 0.3

x
0.2

LLu. 0.1

f l I |I I I l l l ll llI I I I
, I , , , I , , , , , , , I I I I



Fractional Extension vs. De
c/c*=5

I,

4V c/c*=5
c/c*=5 (good solv.)

I I I I I I I I

De

Figure 5-17: Fractional extension vs. De with
closed symbols, the good solvent with open.
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ber for each series is calculated based on the individual relaxation time of the solution.

Beginning with c/c* = 5, we observe very little difference in the elongation between the

two solvent types, which indicates that at this high level of concentration, the excluded

volume effect is less important. At lower concentrations, we see that the fractional ex-

tension at low De is comparatively greater for the good solvent as the concentration

decreases. The larger equilibrium coil size observed in the good solvent also contributes

to an earlier onset of the coil-stretch transition. At high De, the fractional extension

curves overlap at every concentration which suggests that, as the molecules are fully

extended, there is little important interaction between polymer chains.

Elongational Viscosity

In planar elongational flow, the evolution of the polymeric contribution to the elonga-

tional viscosity as the strain rate changes is dominated by the strong deformation of

the polymer molecules. As opposed to shear flow, in which the viscosity is observed to

decrease as the strain rate is increased, the viscosity of a polymer solution under elonga-

tional flow undergoes a rapid increase as the polymer molecules transition from a coiled

to an extended shape. Below the critical strain rate De = 0.5, the polymer molecules

remain more or less in a coiled state, although there is some deformation of the coil

shape. At the critical strain rate, however, the combination of the deformation due to

the contraction flow in the x-direction and the expansion flow in the z-direction become

great enough to cause the polymer molecules to elongate and take on a linear shape.

In the elongation direction, the hydrodynamic drag force on a polymer bead increases

exponentially with separation distance, so once a molecule begins to unravel, the process

is rapid and irreversible as long as the polymer remains in the flow field. Figures 5-18 and

5-19 show the elongational viscosity behavior of the N = 20 chains in a 0-solvent scaled

by Deo.5 and De respectively. The elongational viscosity is scaled by the inverse of the

concentration, c*/c which eliminates the linear dependence of the polymer viscosity on

the concentration. The shape of the viscosity curve is similar to the fractional elongation
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Figure 5-18: Elongational viscosity in a 0-solvent vs. Deo.5 in planar elongational flow
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Elongational Viscosity vs. De
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Figure 5-19: Elongational viscosity in a 0-solvent vs. De in planar elongational flow
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curve. Once again, we see that the coil-stretch transition occurs at an earlier strain rate
as the concentration increases. Examining Figure 5-19, we note that there is a small
concentration dependence of the viscosity at low strain rate, but that the coil-stretch
transition occurs at De = 0.5 for all concentrations. At large strain rates, there is no
observable concentration dependence, as the molecules are highly elongated and are not
expected to interact with each other significantly.

Figures 5-20 and 5-21 show the elongational viscosity of the N = 20 chains in a
good solvent. As the concentration increases, the coil-stretch transition occurs at a lower

Elongational Viscosity vs. De0.5
Good Solvent

103

O

. 102
0

101

cc*=0.5 (good solvent)

c/c*=1 (good solvent)
lcc*=2 (ngoonnd nsolvent)

clc*=5 (good solvent)

I I I I I i i Illi lilll
1 2 3 4

De0.5

Figure 5-20: Elongational viscosity in a good solvent vs. Deo.5 in planar elongational
flow

absolute strain rate. When the data is rescaled according to the individual relaxation

times, in Figure 5-21, we see different behavior than the 0-solvent case. At low elongation

rates, only the highest concentration, c/c* = 5, shows an elevated viscosity. In order to
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Figure 5-21: Elongational viscosity in a good solvent vs. De in planar elongational flow
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understand this, we look back at the fractional elongation data in Figure 5-13. There are

two opposing effects at work here. As the concentration increases, the movement of the

macromolecules is hindered by the presence of other polymers, which tends to increase

the viscosity, as illustrated by the 0-solvent case. On the other hand, the smaller coil

size observed in Figure 5-7 is likely to decrease the viscosity. At large strain rates, the

highest concentration shows a greater viscosity, in contrast to the 0-solvent case. It is

likely that the excluded volume effect is the cause of this, as the polymer beads are likely

to come into contact with each other regardless of the shape of the macromolecules.

In Figures 5-22 through 5-25 we show direct comparisons of the good and 0-solvent

elongational viscosity vs. De for each individual concentration studied, in order to more

closely examine the solvent quality dependence. The most immediately notable difference

between the solvent types across all concentrations is that the good solvent always shows

a larger elongational viscosity at low strain rate. This is directly related to the larger

coil size exhibited by the polymer molecules in the good solvent. The relative difference

between the low-strain viscosity of the two solvent types does decrease as the concentra-

tion is increased. This effect is in harmony with the suppression in equilibrium coil size

observed in the good solvent as the concentration is increased. The case of c/c* = 5 is

especially instructive, because there is little difference observed in the fractional exten-

sion at low strain rate, but there is a much larger difference in the elongational viscosity.

This implies that the EV interaction of the good solvent also makes a contribution to the

elongational viscosity which is independent of the effect created by the larger coil size.

At the point of the coil-stretch transition, we note that the 0-solvent experiences a

much sharper transition, so that the range of De over which the molecule becomes fully

elongated is smaller than in the good solvent case. Once a strain rate at which the

molecules are fully stretched is reached, however, the curves lay atop one another. This

illustrates a transition in which the EV interaction of the good solvent case becomes less

and less important. Finally, at high strain rates, the 0-solvent shows a slightly larger
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Figure 5-23: Comparison of the elongational viscosity of c/c* = 1 vs. De betweeen the
good and O-solvent cases.
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Figure 5-24: Comparison of the elongational viscosity of c/c* = 2 vs. De betweeen the
good and O-solvent cases.
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Figure 5-25: Comparison of the elongational viscosity of c/c* = 5 vs. De betweeen the

good and 0-solvent cases.
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elongation viscosity, with the effect tapering off as the concentration is increased.

Effect of Spring-Spring Repulsions

The computational cost of preventing springs from crossing each other is quite high, so

it is instructive to examine the importance of this portion of the model in determining

the behavior of the solution. Stoltz et al.[76] used Brownian Dynamics to study the

planar elongation of bead-spring chains in a good solvent only, and determined that

the excluded volume potential was sufficient to prevent chains from crossing each other,

and so eschewed the use of a spring-spring potential. While this logic potentially has

currency for the good solvent case, it is surely not applicable to a 0-solvent, in which

no net EV potential should exist. In Figure 5-26 we present the added pressure in the

system due to spring-spring repulsions for all eight elongation series presented thus far.

The added pressure is normalized by the number of macromolecules in each solution to

eliminate the linear concentration dependence. This metric serves as a proxy for the

number and importance of spring-spring repulsions in the solution. At a first pass, we

note immediately that while there is a visible difference in the behavior of the good and

0-solvent solutions, the concentration is clearly the dominant factor in determining the

likelihood of springs coming into contact with each other. We will begin by examining

the good solvent behavior. The added pressure depends strongly on the concentration,

and increases through the coil-stretch transition. The sudden increase in pressure at the

coil stretch transition is a little counter-intuitive in that an elongated molecule is not

expected to interact with other molecules as strongly as a coiled molecule. Opposing this

is an artifact of the polymer model being used. Each spring is surrounded by a cylindrical

volume of exclusion. As the individual springs in each polymer molecule are stretched,

the total exclusion volume in the domain is increased, which results in more powerful and

more frequent spring-spring repulsion events. Nonetheless, at the highest concentration

we are able to observe a decrease in the spring repulsion at the highest strain rate, as

the effect of the molecules lining up overcomes the affect of the added exclusion volume.
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Extra Pressure from Spring-Spring Repulsions
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Figure 5-26: Extra pressure in the system due to spring-spring repulsion forces; The
extra pressure is a proxy for the number and intensity of spring repulsion events within
the flow.

154



The 0-solvent case shows some additional interesting results. Overall, a greater extra

pressure is experienced in the 0-solvent case at each concentration level. The lack of an

EV interaction between polymer beads is chiefly responsible for this, as it has the effect

of screening polymer molecules from each other in the good solvent case, but not in the

0-solvent case. At the lowest concentration, another effect is visible. The total extra

pressure actually declines initially as the molecules begin to align in the flow, and then

increases sharply through the coil-stretch transition. At low concentrations and at low

strain rate, the polymer molecules are in a coil configuration, and intraparticle spring

repulsions are the chief contributor to the extra pressure. As the strain rate increases,

the molecule begins to untangle into a linearly oriented strand before the average spring

length begins to increase. It is during this phase, when the molecules are oriented but

the springs are not stretched that we observe a minimum in the extra pressure with a

0-solvent. At higher concentrations, the importance of intramolecular spring repulsions

is less, and the effect is not observed.

5.4.3 Steady Shear Flow Experiments

Steady homogeneous shear flow is a unidirectional flow where Vv is given by

Vv= 0 0 0 (5.16)

and the velocity field is defined as v, = 'y. The flow is modeled in a 3D periodic domain

with Lees-Edwards boundary conditions to enforce the velocity at the boundary. As

compared to planar elongational flow, the deformation of polymer molecules occurs much

more gradually in shear flow. There is no sharp transitional period comparable to the coil-

stretch transition, so while a much larger range of Deborah numbers must be simulated

to see the interesting dynamics, there is no need for the fine gradations employed in
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PEF. We simulate Deborah numbers ranging from approximately 0.1 to roughly 300,

which covers the full range of molecular extensions, from a coil to the elongated tumbling

stage. The same set of concentrations and solvent qualities are investigated as in the

PEF experiments.

Due to the need to sample a larger range of shear rates, the steady shear flow simu-

lations have been carried out using two values of F. For low De, F = 5 as was the case

for the planar elongational flow. In order to access larger De, a second set of simulations

have been carried out with F = 50. The ten-fold increase in the solvent viscosity allows

us to sample an extra decade of Deborah numbers. Where the two series overlap, the

data from both is plotted.

Extension

In shear flow, we find that the most faithful representation of polymer extension is the

radius of gyration, as that metric better captures the overall molecular size as the mole-

cules align and tumble in the shear flow. The molecular extension in shear flow is much

more gradual than in elongational flow. Once again we will present the results in two

ways; scaled first by the individual Deborah number of the solution, with De = yA where

A is the longest relaxation time of the molecules at the given concentration, and by Deo.5,

the Deborah number of the lowest concentration, so that all concentrations may be com-

pared at identical absolute rates of strain. Figure 5-27 presents the radius of gyration vs.

De for the 0-solvent case. For all concentrations, a softer S-shaped curve is followed as

compared to planar elongational flow, as the molecules transition from a near-equilibrium

coil to a more fully elongated shape. At low shear rates, all the curves are identical, as

is to be expected, as there is little concentration dependency in the equilibrium coil size

with a 0-solvent. As the molecules elongate, we note that a lower concentration leads

to earlier elongation in the middle range of Deborah numbers, after which all the curves

fall back onto each other at high De. Figure 5-28 shows the radius of gyration data for

the same simulations, this time plotted against Deo5. Once again we note that there
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Radius of Gyration vs. De
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Figure 5-27: Radius of gyration vs. De in a 0-solvent
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Radius of Gyration vs. De0.s
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Figure 5-28: Radius of gyration vs. Deo0 5 in a 0-solvent

158

O-Solvent



is agreement between the different concentrations at low and high strain rate. In this

view however, we note that in the middle range of Deo.5, at higher concentrations, the

molecules are shown to elongate at slightly lower absolute strain rates. Thus we see that

the elevated relaxation time of the higher concentration leads to a modest increase in

the rate at which elongation of the molecules occurs, but which is slower than is pre-

dicted. Figures 5-29 and 5-30 show the molecular size profiles for the good solvent case.

Radius of Gyration vs. De Good Solvent
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Figure 5-29: Radius of Gyration vs. De in a good solvent

At low rates of strain, there is a concentration dependence on the molecular size which

follows the equilibrium case. Like in the 0-solvent, the elongation in the middle range of

strain rates occurs faster for greater concentrations, though the effect is less than that

which would be predicted by the measured relaxation time of the solutions. In Figures

5-31 through 5-34 the radius of gyration as a function of solvent quality is compared

159

. . . .. • . . . . . . . .. • . . . . . . . .. • • ' I I I l l lli I I I



Radius of Gyration vs. De0.s
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Figure 5-30: Radius of gyration vs. Deo. 5 in a good solvent
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for each concentration. Across all concentrations studied, the good solvent produces a

larger radius of gyration until the molecules begin to elongate between De = 1 and De

= 10, at which point the solvent quality ceases to play an important role in determining

the extension. The increased intramolecular excluded volume effect of the good solvent

which is responsible for the larger coil size at equilibrium loses its effect as the molecules

are elongated in the shear flow.

Radius of Gyration vs. De
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U
I 1] 12 1 U
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U c/c*=0.5 0-solvent
:1 clc*=0.5 good solvent

. . . . . . .. ..... . .

100
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Figure 5-31: Radius of Gyration vs. De for good and 0-solvents at c/c* = 0.5

Viscosity

In Figures 5-35 and 5-36 the polymer contribution to the viscosity in a 0-solvent is
presented vs. De and De0 5 respectively. The viscosity is scaled by c * /c to eliminate the
linear dependence of viscosity on concentration. As the concentration is increased, the
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Radius of Gyration vs. De
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Figure 5-32: Radius of Gyration vs. De for good and 0-solvents at c/c* = 1

162

i ! 1 , . ., ,,,



Radius of Gyration vs. De
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Figure 5-33: Radius of Gyration vs. De for good and 0-solvents at c/c* = 2
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Radius of Gyration vs. De
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Figure 5-34: Radius of Gyration vs. De for good and 0-solvents at c/c* = 5
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zero-shear-rate viscosity increases. This effect is consistent with the results of Stoltz et

al. [76].

Viscosity vs. De O-Solvent
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Figure 5-35: Polymer contribution to the viscosity vs. De in a 0-solvent

Figures 5-37 and 5-38 show the shear dependent behavior of the polymer viscosity in

a good solvent. Once again, this data is presented once as a function of De, and once as
a function of Deo0 5. As in the 0-solvent case, the zero-shear-rate viscosity increases with

concentration. There is, however, a secondary effect at work which reduces the magnitude

of the increase. A larger coil, which is present in the good solvent at lower concentration,
causes an increase in the zero-shear-rate viscosity, as can be seen to varying degrees in
Figures 5-39 through 5-42, in which the viscosity of the good and 0-solvent solutions are
compared for each concentration. Because the good solvent experiences a decrease in
coil size as concentration increases, this has the opposite effect, tending to decrease the
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Viscosity vs. De0.s
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Figure 5-36: Polymer contribution to the viscosity vs. Deos in a 0-solvent
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Viscosity vs. De
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Figure 5-37: Polymer contribution to the viscosity vs. De in a good solvent
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Viscosity vs. De0 .5
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Figure 5-38: Polymer contribution to the viscosity vs. Deo.5 in a good solvent.
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viscosity as the concentration increases.

Viscosity vs. De
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Figure 5-39: Polymer contribution to the viscosity vs.
c/c* = 0.5

De for good and 0-solvents at

First Normal Stress Coefficient

In Figures 5-43 and 5-44 the first normal stress coefficient for the 0-solvent is shown.

Figures 5-45 and 5-46 give the same for the good solvent. As was the case for the

viscosity, the results are scaled by c*/c to remove the linear dependence on concentration.

Encouragingly, I1f shows the expected qualitative behavior, with a relatively constant

zero-shear-rate value, which transitions into strong shear-thinning at an approximate

shear rate of De = 1. Much like the viscosity results, in both solvent qualities there is
a clear zero-shear-rate dependence of the first normal stress coefficient on concentration.

When examined as a function of De, the dependence continues throughout the range of
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Viscosity vs. De
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Figure 5-40: Polymer contribution to the viscosity vs. De for good and 0-solvents at
c/c* = 1
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Viscosity vs. De
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Figure 5-41: Polymer contribution to the viscosity vs. De for good and 0-solvents at
c/c* = 2
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Viscosity vs. De
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Figure 5-42: Polymer contribution to the viscosity vs. De for good and 0-solvents at
c/c* = 5
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shear rates studied. When plotted as a function of a constant shear rate, however, the

data for each concentration collapses onto a single power-law curve.

First Normal Stress Coefficient vs. De
8-Solvent
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Figure 5-43: The first normal stress coefficient vs. De in a 0-solvent.

Figures 5-47 through 5-50 show the first normal stress coefficient vs. De for the

two solvent qualities at each individual concentration, to highlight the effect of solvent

quality. In the zero-shear-rate range, the good solvent shows a consistently larger first

normal stress coefficient, but as the Deborah number increases, and the importance

of intramolecular excluded volume interactions become less important, the difference

between the two solvent qualities diminishes. The first normal stress coefficient is quite

susceptible to noise error, as is evidenced by the less-than-perfect smoothness of the
curves
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Figure 5-44: The first normal stress coefficient vs. De. 5 in a 0-solvent.
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First Normal Stress Coefficient vs. De
Good Solvent
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Figure 5-45: First normal stress coefficient vs. De in a good solvent.
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First Normal Stress Coefficient vs. De0. sGood Solvent
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Figure 5-46: First normal stress coefficient vs. Deo0.5 in a good solvent.
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First Normal Stress Coefficient vs. De
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Figure 5-47: First normal stress coefficient vs. De for good and 9-solvents at c/c* = 0.5
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First Normal Stress Coefficient vs. De
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Figure 5-48: First normal stress coefficient vs. De for good and 0-solvents at c/c* = 1
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First Normal Stress Coefficient vs. De
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Figure 5-49: First normal stress coefficient vs. De for good and 0-solvents at c/c* = 2
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First Normal Stress Coefficient vs. De
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Figure 5-50: First normal stress coefficient vs. De for good and 0-solvents at c/c* = 5
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5.4.4 Discussion

There are several key themes that come out of the shear flow results which find them-

selves repeated in different forms throughout the material function and configurational

results. Primarily, we contrast the importance of the relaxation time in shear and elonga-

tional flows. In planar elongational flow, plotting the molecular extension and viscosity

against De produces very good agreement between the different concentrations, with a

coil-stretch transition occurring at the predicted value of De = 0.5. When this data is

plotted as a function of a constant strain rate, Deo.5 , however, one can see clearly the

importance of the relaxation time dependence on concentration, as each concentration

undergoes the coil-stretch transition at a different absolute strain rate. It is clear that the

dynamic results in planar elongational flow depend on the relaxation rate of the solution

as a whole, much more than the relaxation rate of a single molecule in isolation. In

the shear flow results, however, this dichotomy is not as clear. Both the radius of gyra-

tion and first normal stress coefficient are dominated by the flow-direction stretch of the

molecules, and these quantities are most successfully plotted against Deo.5. This suggests

that the intermolecular interactions that cause a larger relaxation time at higher con-

centration are not that important in determining the flow-direction extension in steady

shear flow. The viscosity, on the other hand, is much more successfully plotted against

De, which does take into account the differences in relaxation time. We conclude that in

the shear-thinning region, interactions between particles are important in determining

macromolecular alignment, but are less important in governing the degree of stretch ex-

perienced by each bead-spring chain. The transition between the zero-shear-rate regime

and the shear-thinning regime is much more gradual, and occurs over a larger range of

the Deborah number than does the coil-stretch transition in planar elongational flow. As

a result, the strain rate at which transitions begin are more difficult to specify in shear

flow.

The necessity of using multiple values of F in order to access the entire range of

interesting De for shear flow must be viewed as a liability for DPD, as it is difficult to
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match the overlapping data perfectly, and adds uncertainty to the conclusions that can

be made. We note that planar elongational flow does not suffer from this difficulty, as

the entire range of interesting strain rates is accessible using a single value of F.

We also note the importance of the equilibrium coil size on the zero-shear-rate results.

In the good solvent, where the concentration has a strong effect on the coil size, a larger

radius of gyration, viscosity and first normal stress coefficient were observed in shear flow

as compared to the 0-solvent. This effect becomes smaller as the concentration increases.

Similarly, the fractional extension and and elongational viscosity at low elongation rates

showed the same general trend in the elongational flow case.

In interpreting our results, we look to compare qualitatively to the work of Stoltz et

al. [76], who have performed Brownian dynamics simulations in the semi-dilute regime of

steady shear and planar elongational flows of A-DNA molecules. The work is restricted

to a good solvent, but includes simulations with and without hydrodynamic interaction.

We are in agreement with this work in predicting an equilibrium coil size which decreases

with increasing concentration, as well as an increase in the relaxation time of more

concentrated solutions. The concentration-dependence of the zero-shear-rate viscosity in

shear flow is predicted by both methods as well. When HI is included in the Brownian

dynamics simulations, the elongational viscosity at large De in planar elongational flow

increases dramatically with the concentration while the fractional extension is relatively

unchanged. This effect disappears when HI is not included in their model. The DPD

results do not show this concentration dependence, which suggests that the HI effects

which come about naturally in DPD do not capture this phenomenon.

5.5 Conclusion

In this chapter, a demonstration of the rheological modeling capabilities of DPD has

been presented. A linear bead-spring chain model of a flexible polymer was subjected to

steady shear and planar elongational flow at concentrations throughout the semi-dilute
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range. The conservative force coefficient was varied to reproduce both good and 0-solvent

conditions. A spring-spring repulsion force has been introduced into the DPD polymer

model in order to prevent springs from passing through each other, allowing the model

to reproduce concentration dependent effects.

At equilibrium, the radius of gyration of the polymer coil was shown to depend on both

the solvent quality and the polymer concentration. At low concentration, the polymer

coil size is much larger in the good solvent than in the 0-solvent. As the concentration is

increased, however, the coil size in the good solvent decreases. The polymer coil size in

the 0-solvent is much less sensitive to the concentration.

As concentration is increased, the relaxation time of the solution increases for both

solvent qualities. The presence of other molecules hinders relaxation from a stretched

shape. This result is in accord with previous studies of concentration-dependence of

polymers in the semi-dilute range.

In planar elongational flow, a sharp coil-stretch transition was observed to occur at

the theoretically predicted strain rate of De = 0.5. This is reflected in both the molecular

extension and the elongational viscosity. This result is significant, as it represents the

first use of DPD to simulate an elongational flow. The results presented here thus serve

as a confirmation of DPD's ability to reproduce correct polymeric rheology, as well as

a demonstration of the appropriateness of applying the Kraynik and Reinelt boundary

conditions to the DPD system.

In shear flow, the results were more mixed. Encouragingly, the viscosity, first normal

stress coefficient, and radius of gyration all showed correct qualitative rheological be-

havior. The material functions were constant at low shear rates, transitioning to a shear

thinning regime obeying a power-law at De = 1. The radius of gyration is constant at low

shear rates, goes through a sharp increase, and finally levels off at very high shear rates.

A clear concentration dependence of the zero-shear-rate viscosity was demonstrated for

both solvent qualities, in agreement with previous work, with the viscosity increasing

with concentration. In the good solvent, this effect is tempered by an opposite tendency
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due to the larger coil size at lower concentration.

In the shear-thinning regime, the effect of the concentration was shown to apply

primarily to the viscosity, as the shear-thinning curves at disparate concentrations fall

onto a single curve when plotted against the Deborah number. The first normal stress

coefficient and radius of gyration on the other hand fall on a single curve when plotted

against a constant strain rate, Deo. 5, indicating that the concentration does not have a

significant effect on these properties.

In both types of flow, the importance of the spring-spring repulsion force was demon-

strated by tracking the pressure added to the system due to it. Spring repulsions are

more common in the 9-solvent, because the excluded volume interaction present in the

good solvent prevents springs from approaching each other in many cases. Contra Stoltz

el al., however, we found that the EV interaction does not reduce spring crossing events

sufficiently so that the spring repulsion interaction may be removed from the model.

As the concentration increases, the number and importance of spring-spring interactions

increases for both solvent qualities.

Having found the linear spring repulsion force law to be insufficient, we were forced

to use a more computationally demanding exponential force law instead. While calcu-

lation of the spring-spring interaction is no more computationally demanding with the

exponential law, stability constraints required us to reduce the timestep used, and to

limit the maximum spring length used in our bead-spring chains. Stochastic error is

a significant problem in these calculations, particularly at low strain rates, where the

measured stresses are very small. The cost of including the spring repulsion interaction

limits the length of time which can be sampled.

Thus, while we note that the agreement with both expected rheological results gener-

ally, and with the specific semi-dilute concentration dependence reported by Stoltz et al.

is encouraging, and speaks to DPD's ability to produce correct rheological behavior in

polymer systems, the sheer computational requirements for reaching these results coun-

sels against the use of DPD as a tool for systems as simple as the one presented here.
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In other words, when Brownian dynamics is available as an alternate method, it will

likely always hold a significant computational cost advantage over DPD. Nonetheless,

the extensive flexibility in molecular architecture and chemistry available to DPD makes

it attractive to use for modeling more complicated molecules and systems. Having shown

that the rheological predictions made by DPD are quite reliable, such systems can be

simulated with more confidence.
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Chapter 6

Summary

In this thesis, the utility of the Dissipative Particle Dynamics method for rheological

studies of polymers is explored through non-equilibrium simulations of steady shear and

planar elongational flow. Special attention has been paid to the implementation details

of simulating non-equilibrium flows in domains of limited size. The application of the

Kraynik and Reinelt boundary conditions to DPD to simulate planar elongational flow

has not been previously demonstrated, and represents a new use for DPD. The material

functions of DPD polymer solutions are calculated as a function of strain rate, showing

that DPD is capable of reproducing correct rheological behavior over a large range of

shear and elongation rates.

6.1 Dilute FENE Dumbbells

In Chapter 4, DPD was used to simulate as faithfully as possible a dilute solution of

FENE dumbbells. The purpose of the exercise was to show that the scaled material

function results of FENE dumbbells undergoing shear and planar elongational flow are in

quantitative agreement with the predictions of Brownian dynamics, a simulation method

which is well-studied and widely accepted. Due to computational cost restraints, the

condition of dilution in DPD is approximated by using a O-solvent and "phantom" springs,
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which can pass through one another freely. All DPD dumbbells were simulated with a

constant extensibility parameter, b = 50, to allow for comparison to a single set of BD

results. The ratio of the maximum extension length of the dumbbell to the DPD particle

interaction length was varied, which in turn varied the degree of coarse-graining in DPD.

For the longest dumbbells, corresponding to the finest-grained DPD, excellent agreement

was found between DPD and BD in the shear viscosity, first normal stress coefficient, and

elongational viscosity. As the molecules were shorted, two discrepancies arose. At low

shear rates, elevated viscosity and first normal stress coefficient were observed. This effect

is a result of the excluded volume interaction produced by the repulsive interaction of the

dumbbell's end-beads when the length is less than the DPD interaction distance. At high

shear rates, shorter dumbbells exhibited faster shear-thinning of the material functions

than is predicted by BD. I showed that this result is in qualitative agreement with the

predictions of the Giesekus anisotropic drag model for hydrodynamic interaction.

6.2 Semidilute Solutions of Bead-Spring Chains

Chapter 5 explored the shear and elongational rheology of longer N = 20 bead-spring

chain molecules. In order to include the effects of concentration on the rheology, an

additional component was added to the DPD model to prevent springs from passing

through each other. Specifically, a repulsive force law with an exponential weighting

function was added between springs. Solvent quality was also varied by changing the

strength of the conservative bead-bead repulsion force between solvent and polymer DPD

particles. The solvent quality and concentration dependence of the polymer material

functions were reported for steady shear and planar elongational flow. At equilibrium, the

coil size of polymers in a good solvent was shown to be strongly concentration dependent,

decreasing as concentration increased and the coils impinged upon each other. The effect

was observed, but found to be much weaker in a 0-solvent.

The relaxation time of the solution increased with concentration for both solvent
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qualities. This leads to two scalings of the strain rate. The Deborah number is calculated

for each individual solution based on the relaxation time measured. Alternatively, the

solutions can be compared on the basis of a constant absolute shear rate. In planar

elongational flow, a sharp coil-stretch transition was observed to occur at De = 0.5, for

each solution, in accordance with theoretical predictions. From this, we note that the

dynamics of elongational flow is predicted quite successfully by the measured relaxation

rates, as opposed to the absolute strain rate. The same cannot be said for shear flow,

which shows some dependence on the Deborah number, and some on the absolute shear

rate. The viscosity shows behavior consistent with different relaxation rates for different

concentrations, while the first normal stress coefficient and radius of gyration behavior

appears to depend only on the relaxation rate of an individual molecule. At low strain

rates, the viscosity increased with concentration. This effect was mitigated in the good

solvent by the tendency of the coils to be larger at low concentration, as larger coils lead

to greater viscosity.

6.3 Conclusions

* For rheological investigations of polymers, the Lowe-Anderson formulation of DPD

is vastly superior to the original incarnation which includes the explicit dissipative

and random forces. Original DPD is much more restricted in the range of Schmidt

number that can be simulated. Stability considerations dictate the value of the

random force coefficient, and there is very little flexibility available to the modeler.

I have been able to find no substantive difference between the results of the two

methods at low Schmidt numbers. The variety of polymer molecules which can be

built in DPD is almost limitless, and represents an enormous spread of relaxation

times. Because DPD is naturally restricted in the strain rates at which simulation

can be performed efficiently, the ability of LA-DPD to simulate different simple

fluid viscosities is very important.
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* Due to the high cost of performing DPD simulations, it is frequently important

to limit the simulation box size as much as possible. I have shown that long

molecules may be simulated using a domain which is smaller than the total contour

length of the molecule. In this thesis, the box size has been defined most often

by the requirement that the domain be twice the maximum spring extension in

any direction. While I have not performed systematic studies to determine the

importance of box-size effects, I have not detected any box-size dependent behavior

in my rheology studies. It is possible that the soft interparticle interaction that

characterizes DPD leads to rapid damping out of perturbations, minimizing the

domain size requirements.

* The concentration of polymer which can realistically be simulated with DPD is

limited by a number of factors. First, the number density of DPD particles is small

compared to other methods, reflective of the fact that each DPD particle represents

a large collection of solvent or monomer units. Even when every DPD particle is

a part of a polymer molecule, only a small multiple of the overlap concentration

is achieved. Second, concentration-dependent behavior requires the inclusion of

a spring-spring repulsion interaction. Calculating the closest approach distance

between one-dimensional objects such as springs is much more computationally

demanding than finding distances between points. At high polymer concentrations,

the spring-spring repulsion algorithm becomes the limiting computational step in

the DPD method. This problem is shared by Brownian dynamics as well.

* The effect of excluded volume in DPD has been clearly demonstrated in the dumb-

bell results of Chapter 4. Depending on the length scale chosen by the modeler,

the effect can be quite strong, or almost non-existent. The polymer length scale

has a very powerful effect on the simulation cost, however, so the modeler may not

always be free to change the polymer length scale to suit his needs. The effect of

hydrodynamic interaction is much more difficult to establish clearly. I have shown
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that the faster shear-thinning of shorter dumbbells is in qualitative agreement with

the Giesekus anisotropic drag model, but quantitative measures of the effect of HI

are difficult to obtain, due to the presence of EV. Like EV, the importance of HI in

DPD is tunable by varying the polymer length scale. There is no way to separate

these two effects, which must be considered a weakness of the DPD method.

* Stochastic error is a significant problem in DPD, particularly when examining the

low-shear-rate behavior of polymer molecules with long relaxation times such as

those studied in Chapter 5. In comparison to Brownian dynamics, the cost of

simulating the solvent explicitly in DPD makes the method much less attractive

for systematic rheology studies. The method is tremendously flexible for building

polymer molecules, including architecture, chemistry, and solvent quality, but is

quite inflexible with regard to other issues such as the inclusion of, and the degree of

importance of HI and EV. It is important to show that DPD produces qualitatively

correct rheology for a verifiable case such as FENE dumbbells, because DPD is best

used to simulate unverifiable cases, which are not amenable to simulation with other

methods.
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