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Abstract

This thesis focused on advancing the microchemical field from single device based
demonstrations to systems that can perform multi-step series and parallel synthesis. Few
examples of micro-separators and micro-pumps suited for miniaturized lab-on-a-chip
systems for organic syntheses exist, so the first half of this thesis developed systems for
these micro-unit-operations, while the second half demonstrated multistep microchemical
operations enabled by these systems.

In-line continuous separation devices are developed that enabled removal of
unreacted reagents/byproducts, making it possible to realize a series of reactions without
leaving the microreactor environment. Differences in surface forces and preferential
wettability characteristics of fluoropolymers are used for phase separation. Such
microseparators are used to demonstrate 100% separation of two phase flows of hexane
and water, toluene and water, dichloromethane and water, and hexane and methanol.
Integrated liquid-liquid extraction devices are microfabricated that performed two-phase
contacting by segmented flow, followed by separation - resulting in single stage
extraction. Single stage extraction of N,N-dimethylformamide from dichloromethane to
water, and from diethyl ether to water is demonstrated.

The development of separators allows microreactors to be connected to
microseparators to form microreactor networks enabling reactions and separations in
succession. The starting reagents are loaded in syringes and syringe pumps push fluid
through the train of microdevices. However, this pumping scheme is limited by pressure
constraints at the pump drives as well as the microseparators. Therefore, there is a need
to develop in-line pumps to sustain the microdevice network.

Pressure-driven flow is employed for the operation of micropumps. An enclosure
with the liquid is pressurized with helium gas, causing the liquid to flow. The dynamics
of pressurizing and de-pressurizing an enclosure are modeled and confirmed by
experiments. Active and passive control schemes to provide constant flowrate of the
liquid are developed and implemented. Different schemes are developed to use the gas
pressure to manipulate the flow path of liquids. In one scheme, two enclosures are used
together to perform as an in-line pump. The in-line pumps also acted as a buffer to
prevent any disturbance propagation, and allowed the upstream and downstream to
operate at different flowrates. The pump concept is demonstrated at two scales - 1)
microfabricated silicon chips of 40 microliter volume and 2) using glass shell vials of
10000 microliter volume. These pumps are used along with two microseparators to
demonstrate two-stage countercurrent and cross-flow liquid-liquid extraction of N,N-
dimethylformamide from dichloromethane to water starting with 4.4 mole percent



mixture. The in-line pumps also allowed recirculation with a constant flowrate that
enabled long residence time reactions. As an example, peptide synthesis from amino
acids, using the Merrifield technique is implemented. Specifically, the pentapeptide,
Leuenkephalin is synthesized on different resins simultaneously as an example. A new
design for the silicon microreactor for packed bed reactions is developed to enable larger
catalyst loadings and offer manageable pressure drops across the packed bed even when
the solid loading increased in volume during operation, as is the case with the peptide
synthesis experiments. These microchips are also used to study "click chemistry"
reactions to synthesize drug-candidate molecules. The packed bed microreactor
experiments give higher conversions and better selectivities than batch experiments after
the same amount of reaction time as the microreactor experiments provide increased
relative catalyst concentration, and reduce side reactions that otherwise reduce selectivity.

As an example of multi-step synthesis involving reactions and separations, the
synthesis of carbamates starting from azoyl chloride and sodium azide, using the Curtius
rearrangement of isocyanates is performed. This example also demonstrates parallel
synthesis of analogous carbamates by introducing branching in the synthesis sequence
after the isocyanate production to form microreactor networks. The second reaction
involved heat decomposition of the organic azide, and performs faster when catalyzed
using solid acid zeolite catalyst in a packed bed microreactor. Continuous operation of
the microdevice network for ~ 7-10 days at flowrates of 1-5 [dl/min show no change in
performance. The microreactor based synthesis is run at higher temperatures than
conventional batch scale reactions due to the inherent safety in microreactor based
production. The multiple-carbamate-synthesis microreactor network consists of five
microreactors and two separators. This demonstration is the first multi-step organic
synthesis involving reactions and separations, and showcased the major contributions
from this thesis.

The development of micro-unit-operations in this thesis has advanced the
microchemical field from single device based demonstrations to systems that can perform
continuous-flow multi-step series and parallel chemical synthesis.

Thesis Advisor: Klavs F. Jensen
Title: Department Head, Chemical Engineering

Warren K. Lewis Professor of Chemical Engineering
Professor of Materials Science and Engineering
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1 Introduction, Motivation and Objectives

1.1 Research and development in the chemistry laboratory

A typical, simple experiment in the chemistry laboratory involves adding two

reagents in a glass vessel, and analyzing the mixture after some time to look for the

distribution of desired and undesired products, and unreacted reagents. Often heating the

mixture results in increased rate and may change product distribution, as does adding

soluble (homogeneous) or insoluble (heterogeneous) catalysts. The organic and inorganic

reactions are studied systematically in a chemistry laboratory with one of the following

goals-

* Understanding chemical mechanism

The analysis of products formed, and their distribution gives an insight to the

mechanism of reactions, and helps design better reagents to achieve desired products.

These studies help increase the fundamental understanding of interactions at the

molecular level.

* New product discovery

A strong driving force for chemistry research is to develop new materials or

better, economical replacements for existing materials to enable new technologies.

Plastics, synthetic drugs, are some from the many examples where new chemistry

discovery ushered in a new era. New discovery is done by using fundamental

chemistry knowledge and designing directed experiments, or more often by sifting

through a library of promising candidates. Though most historical discoveries have

been serendipitous, both above approaches aim to increase the chance of an

accidental discovery. Screening of a large number of chemical compounds is often

performed to look for suitability in an application, such as testing of a number of drug

candidates in a pharmaceutical research department.



e Parameter screening

Once a chemical reaction of interest is discovered, many reactions are performed at

different conditions of temperature, concentration, stoichiometric ratios, solvents, and

other related parameters, to find out the condition that best satisfies the objective, i.e.

maximize product yield or minimize byproduct or some other similar objective

function.

* Kinetic studies

Related to parameter screening, kinetic studies are performed to understand the rate

law - the speed of consumption of reagents, formation of products, and its

dependence on variables such as pressure, temperature, and concentration. Kinetic

information is used to design bigger reactors for large scale production of the

chemical product of interest.

For all the reactions performed in any of the stages of research and development, it is of

utmost importance to reliably obtain the information being sought, and have no artifacts

as a result of the manner of performing these experiments. The apparatus and hardware

used in studies is a mere facilitator, and should be such that it does not add additional

phenomena so that the required data is either difficult or impossible to obtain. The ideal

hardware is the one that is the most convenient to use, allows the researcher to obtain

required data from the experiments, and adds no overlying phenomena of its own.

1.2 Chemical Synthesis - The Old Way

Chemical organic and inorganic synthesis has been performed for years in glass

apparatus such as the round-bottom flask. Excellent chemical inertness and optical

transparency have been their key operational advantages. While these glass systems have

been the working horse of the chemistry laboratory for many years, increasing chemistry

demands have exposed limitations in their usability. These limitations are -



* Mass transfer limitations for fast reactions

Formation of chemical product involves the two steps of i) reagent mixing, followed

by ii) chemical reaction. The rate of mixing is dependant on the scale of operation,

reactor design and geometry, while rate of chemical reaction is a function of

parameters (such as temperature, concentration ...) that are independent of scale of

operation. When the reaction rate is faster or comparable to the rate of mixing, the

measured kinetics is not the chemical reaction rate - it is the rate of mixing. Reactor

scaleup based on such data often fails. In the lab, though magnetic or overhead

stirrers are used to enhance mixing for a fast reaction, concentration gradients exist,

and spatial inhomogeneities make it difficult to study fast reactions in traditional

glassware.

* Thermal management of energetic reactions

Energetic reactions release a large amount of energy in a very short time. Often in the

form of heat, this high energy flux, if not managed properly, results in a runaway

reaction. Typical examples of these include oxidation reactions, reactions involving

highly reactive chemicals, such as fluorine or reactions involving unstable

compounds, such as the high-nitrogen-containing organic compounds. Glass

hardware has limited capacity for heat removal because of i) limited heat transfer area

per unit volume, and ii) poor thermal conductivity of glass. Hence many interesting

high-energy reactions cannot be studied in traditional hardware. Even for reactions

that are performed in traditional glassware, but are highly exothermic or endothermic,

temperature gradients exist due to the poor thermal characteristics of such hardware,

making it difficult to have accurate kinetic data.

* Batch operation resulting in prolonged times for parameter screening

Consider the case where an interesting chemistry has been discovered, and needs to

be optimized to find the best operating i) temperature, ii) concentration, and iii) molar

excess, for a given solvent, reaction time and catalyst amount. In the simplest method,

using prior expertise, one will fix the parameter spans, and pick, say, four temperature



points, four concentrations, and four molar excesses to perform 43 = 64 experiments.

Using design of experiments to reduce this number and still capture the trends, say

this number is brought down to 16. The batch of operation for most experiments

means that after every experiment, the glass hardware needs to be cleaned and dried

to perform the next experiment. This process is even more laborious if the chemistry

is air or moisture sensitive. Depending on the nature of experiments, it may take up to

a week to perform these sixteen experiments and analyze all results. It is possible to

speed up the parameter optimization studies by performing experiments in parallel or

using automated chemistry platforms. However, the increased experimentation speed

comes at the expense of increased resources, and there is not much gain in efficiency,

measured as the ratio of results obtained to the resources employed. In order to

fundamentally increase the rate of chemistry research, a new model different from the

glass apparatus based batch experimentation is needed.

Difficulty in performing high temperature and pressure experiments

Many organic reactions perform faster at higher temperatures. Increasing temperature

to get improved rates works only till one reaches the boiling point of the solvent used

for the synthesis. Assuming the reagents or products do not degrade at higher

temperatures, one could achieve better rates at even higher temperatures, which can

be achieved with the same solvent under pressure to elevate its boiling point.

Unfortunately, most standard glassware are not designed to withstand high pressure,

so the highest studied temperature is often close to the boiling point of solvent being

used. One could use different, higher boiling solvents, but that is not always possible

without expecting changes in the reaction itself. It is not a coincidence that most

chemical reactions are reported at temperatures near the solvent boiling point. It is

because refluxing - the most common way of performing reactions involves boiling

the solvent and recycling condensed vapors to maintain isothermal operating

conditions. The ability to probe at higher temperature may provide new insights. Most

temperature optimization graphs could then be peaks, showing a best point, rather

than monotonically increasing graphs that are common in chemistry literature.



In order to overcome the limitations of traditional glassware, new chemistry tools need to

have fast mixing, high thermal conductivity, higher specific surface area, continuous

mode of operation and ability to handle elevated pressures, without sacrificing the

advantages of excellent chemical inertness and optical transparency.

1.3 Microreactors - The New Paradigm

Microreactors were developed in the 1990s -6 to address these increasing chemistry

requirements. Although the first microreactors developed in the 1970s7, 8 were

developments from the MEMS field, there was a parallel evolution of miniaturized

devices and systems for analysis that led to the development of micro-Total-Analysis-

Systems (ptTAS). Silicon-based microreactors of today are a confluence of the MEMS

and pTAS efforts. A microreactor has feature sizes of the order of a few hundred

micrometers - hence the name. When these devices are used to perform reactions, they

are called microreactors; a general term to use is microdevices, or microchemical devices.

Other examples of microdevices include microseparators, and micropumps. As shown in

Figure 1. 1, a microreactor 9 typically has dimensions of a few centimeters in length and

breadth, and is fractions of millimeters in depth. The working volume is defined by long

channels, which could be straight or winding, and vary from a few millimeters to several

meters in length. The equivalent diameter of these channels is usually always in the order

of a few micrometers. The feature sizes are decided by the intended application of the

microdevice, and also by the material and method of fabrication.

Figure 1.1 Example of a silicon-based microreactor



Microdevices can be made of glass'o' i", siliconl 2, metals' 3, ceramicsl 4, soft

polymers' 5, 16 and hard plastics'7 . Methods to fabricate18 these devices include cleanroom

microfabrication, micromachining, molding, and stamping. Besides organic chemistry

experiments, microdevices are also in use for biological experiments' 9, nanoparticle

synthesis20, 21, and energy research22. Most devices developed for organic chemistry

applications are fabricated from silicon, glass or metals so as to be chemically compatible

with the harsh organic solvents often used in synthesis. Most of the work in this thesis

uses microdevices fabricated from silicon and glass. Besides providing excellent

chemical inertness, thermal conductivity and optical transparency, the silicon based

microdevice fabrication uses standard lithography techniques and processes that have

been optimized over the years for computer chip manufacturing in a cleanroom

environment. The ability to microfabricate silicon devices allows for novel geometry

reactors, such as ones with posts, or non-standard shapes. It provides a greater flexibility

with reactor designs and functionalities not possible before. As a result, one could design

specialized microdevices for specific chemistries. It is also possible to fabricate generic

microdevices that find applications in most organic synthesis applications and could be

used as the initial step while transitioning from traditional glassware to microdevices,

before designing specific microdevices for the specific application.

* Benefits of silicon-based microdevices over standard glassware1 2' 23-25

Advantages due to small size-

i) Improved rates of mixing, and better transport characteristics

The small feature sizes and the ability to design reactors to limit the mixing distance

by methods such as intertwining fluid streams26 31 offers the much improved mixing

rates, thus allowing the study of fast reactions. Higher areas per unit volume at

smaller length scales provide correspondingly higher heat and mass transfer

coefficients with permits reactions with high heat flux in microdevices.

ii) Ability of perform high pressure reactions

Silicon based microdevices are capable of withstanding high pressures, permitting

reactions at temperatures beyond the boiling point of the solvents32. More than the



device mechanical strength, the connections and packaging method determine the

pressure rating. Solder-based connections methods are used to package devices for

high pressure operations33

iii) Safety of operation and Process Intensification

The small size of reactors permits safer operation of hazardous chemistries as the

total amount of material involved is limited. The smaller size and lower thermal

masses lead to faster time constants for control of parameters such as flowrate and

temperature. Microchemical processes are inherently greener as they reduce chemical

consumption and minimize waste generation, are safer to operate and amenable to

automation. Microreactors are a thus a tool for process intensification 34, and a step in

the right direction as a tool for chemical syntheses as they are operationally better and

environment-friendly.

Advantages due to continuous mode of operation-

iv) Rapid profiling of parameter space

Continuous mode of operation permits a number of experiments to be performed in

much shorter timespan. The increase in number of experiments is the result of

elimination of manual handling, and apparatus preparation in between each

experiment because of the ability to quickly change temperatures and concentrations

in continuous flow systems. As an example, glycosylation studies were performed in

a microreactor in one afternoon, the conventional equivalent of what would have

taken about a week9.

Advantages due to materials used-

v) Chemical compatibility

The chemical inertness of silicon-based devices is the same as that of glass - silicon

has a thin native or intentionally grown silicon dioxide (silica) layer, which is the

same material as glass. Additionally, the silicon based devices are capped with Pyrex

affording visibility of the reaction channels - a feature liked by chemists used to

traditional glass apparatus for chemical synthesis.



vii) Thermal conductivity

The high thermal conductivity35 of silicon (150 Wm-'K'1 ) compared with regular

glass (1 Wm'K-') permits faster supply or removal of heat for endothermic or

exothermic reactions. Isothermal operation is also easier as a result preventing

thermal gradients that mar kinetic studies.

Highlighting these advantages, a number of chemistry demonstrations in

microdevices have been performed, and have helped increase their adoption in the

chemistry community. Exothermic, hazardous and difficult reactions such as direct

fluorination 36, 37, hydrogenation 38, 39, and ozonolysis 40 have been demonstrated. Many

other organic chemical syntheses have been performed in continuous flow

microreactors 41-45 utilizing one or more of the advantages mentioned above.

1.4 Thesis Motivation

While microreactors have been shown as a superior chemistry tool for many chemical

syntheses than traditional glassware, most applications have remained restricted to single

step demonstrations in microchips. Most chemical syntheses, however, involve multiple

reaction steps, such as A-B-... -P, before the final product (P) is formed. Moreover,

there are workup steps in-between successive reaction steps. Having seen the

microreactor potential with individual demonstrations, there is an increasing interest in

the chemical synthesis community to advance microchemical systems to higher level

applications, such as optimization of multistep syntheses, parallel synthesis of related

compounds, scaleup for microreactor based manufacturing of chemical compounds.

Unfortunately, most of these applications require the use of microchemical systems for

multistep syntheses, the methods for which do not exist.

When a multistep synthesis is performed in batches at the lab scale, the transfer of

product after the first reaction, separation of unreacted reagents or byproducts, and

addition of new reagents is done manually. On the other hand, when the same chemistry

is performed industrially as a continuous flow operation, there is seamless flow of

material between different unit operations such as mixing, reaction, heating, and

separation. Pumps provide the energy for fluid flow after each unit operation. All unit



operations are standardized, and each operation such as a separation using distillation

columns has been extensively studied and understood over many years. There are

advanced control systems to maintain set-points and ensure reliable operation.

The strong desire to develop small-scale versions of these unit operations, to realize

multistep syntheses in continuous flow microsystems cannot be met by simply scaling

down the unit operations. Distillation, for example works on the differences between the

boiling points of the different components of a mixture - the more volatile components

enrich the vapor phase and flow upwards based on density differences. Small scale

operations are fundamentally different, because the surface forces, such as interfacial

tension, dominate body forces, such as gravity, i.e. the Bond number (Bo), the ratio of

gravitational forces to interfacial forces is much less than 1. Consequently, scale down of

distillation fails. Similar arguments apply to most unit operations. Pumping, for example

is usually performed using centrifugal pumps on the large scale. The low flowrates and

laminar flowrates at the small scale render centrifugal pumps unusable at the microscale.

Therefore, there is strong interest, and an unmet need for a microchemical system that

enables multistep syntheses, thereby extending the advantages of microdevices to the

entire synthesis train. Such systems would eliminate the manual process of workup and

enable reactions with reagents having short lives, and save time otherwise lost between

reagent transfers. Development of microchemical system for multistep chemistry is

challenging because supporting microdevices such as microseparators and micropumps

do not exist, and need to be developed, and combined with microreactors to form the

microchemical system. This thesis aims to fill in this void by developing microscale

versions of unit operations and using them to demonstrate functioning microchemical

synthesis networks.

Previous attempts at extending microreactor uses to multistep chemistries have

focused on specific chemistries. As a result, the systems developed have been specific to

the chemistries tried, and not universally applicable. The total synthesis of IsF-labeled

fluorodeoxyglucose46 in an integrated microfluidic chip built in poly(dimethylsiloxane)

(PDMS) combined five sequential steps: 18F ion concentration on a solid capture agent,

water evaporation through PDMS, radiofluorination, solvent exchange by evaporation

through PDMS and replacement, and hydrolytic deprotection in sequential submicroliter



batch quantities. PDMS devices however cannot be used for most organic chemical

syntheses. Multistep syntheses of natural products were performed44, 47, but the workup

steps were manual, and off-line. These examples show that multistep syntheses are

possible when reactions can be performed sequentially without major workup steps in-

between. They also highlight the need for microseparators for more universal multistep

chemistries.

Commercial microchemical systems such as the Cellular Process Chemistry

Systems 48 (CPC), IMM Microreactors 49, Syrris10 , Micronit Microfluidics"I , Thalesnano 5so

and Epigem17 have been developed noting the demand of industrial and academic

chemistry research groups adopting microreactors for chemical studies. These are

commercial vendors for microchips in different materials such as glass (Syrris, Micronit),

metals (IMM) and polymers (Epigem). They also make systems of microreactors attached

together (CPC, IMM) or specialized systems (hydrogenation reactors, Thalesnano). These

systems make performing reactions easier, and allow chemists to buy microreactors off

the shelf, and focus on chemistry. Almost all these commercial ventures have root in

academic groups, and their technologies are products from microreactor based

demonstrations performed earlier in academia. (As an example, the hydrogenation

reactors called H-Cube commercially available from Thalesnano were first demonstrated

earlier in literature38' 39). As these systems are trains of reactors alone, they lack workup

capabilities.

The real growth in multistep syntheses capabilities will be provided by development

of unit operations that support microreactors. Kitamori et. al. have worked to develop

micro-unit operations further and have shown two-phase contacting and extraction 51-53

across interfaces. This work illustrates advantages offered due to prevalence of surface

forces over gravity to effect separation. However, the techniques work at only very low

flowrates, good for the analytical applications they were developed for, but fall short for

chemical synthesis. Strong interest in multistep syntheses in microchemical systems is

not only in academia, but also in industry 54 for the same applications of research and

developments discussed in 1.1. It is understood that current systems are not good enough

as supporting components do not exist. There is thus a need to develop robust, reliable

and scalable multistep syntheses microchemical systems.



1.5 Thesis Objectives and Layout

This thesis addressed the challenges to further advance the microreactor field to

include multistep chemical syntheses. Specifically, the objectives of this thesis included

development of microseparators and micropumps, and to use them together with

microreactors to construct microreactor networks for parallel and series multistep

reactions, and demonstrate the working systems by choosing interesting chemistry

examples. Development of the microchemical system along with the fundamental

understanding of the operation of its different components is the main technological leap

enabled in this thesis.

Two-phase separation development using capillary forces and its application for

liquid-liquid extraction is presented in chapter two. The development of a micropump

using gas-pressure driven fluid-flow is discussed in chapter three. Multiple separators and

micropumps are used together in chapter four to design, develop and demonstrate

multistage liquid-liquid extraction. As the first example of multistep chemistry, chapter

five discusses solid-phase peptide synthesis using micropump based recirculation

techniques. The multistep serial and parallel synthesis of related carbamates involving

three reactions and two separations is presented in chapter six. The seventh chapter ties

together the accomplishments of this thesis, and details the future direction for

microchemical systems research.



2 Two-Phase Separators and Liquid-Liquid

Extraction

2.1 Introduction

Performing multistep chemical synthesis on the microscale requires development of

reaction and separation techniques in microfluidic devices. Microreactors have been

developed for a wide range of chemical applications24, 45, but further development of

continuous flow chemical separators is needed for implementing continuous, multistep

microchemical synthesis.

Common separation processes, such as liquid-liquid extraction, are complicated by

the need to continuously perform phase separation after mixing and contacting the phases.

Traditional continuous phase separation is achieved using a settler tank where differences

in density of the two fluid phases drive the separation. However, at the microscale,

gravitational forces are small compared with surface forces, so it is difficult, if not

impossible, to achieve complete phase separation using differences in density. Thus,

alternative forces for driving phase separation must be considered. Surface tension effects

are particularly attractive as they dominate gravity and viscous forces at the microscale

(i.e., the Bond number (Bo) and the capillary number (Ca) are both <<1)55. Additional

issues to address in designing and implementing a microextractor include materials

compatibility with aqueous and organic solvents, good mixing for high mass transfer

rates, and continuous phase separation.

Categorization of microfluidic extraction devices is typically based on the method of

immiscible fluid contacting. Side-by-side immiscible fluids in co-current and counter-

current flow arrangement offer the advantages of phase separation by laminar flow

splitting and the potential for more than one equilibrium extraction stage, but often have

relatively low interfacial surface area to microchannel volume ratios with corresponding

modest separation capacity (throughput).51' 56-61 Maintaining phase separation in these

systems is usually achieved by using small interfacial areas to maintain sufficient

capillary pressure to counter balance the imposed driving pressure or by modifying

wetting characteristics to stabilize interfaces. However, chemically modified surfaces (e.g.



by attachment of hydrophobic silanes) can degrade over time either through limited

solubility of the coating in the solvent flowing through the device or via susceptibility to

chemical attack. For these reasons it is difficult to realize a practical counterflow

extractor capable of more than one equilibrium stage. Therefore, it is desirable to develop

a method of maintaining phase separation that incorporates microfabrication materials

with very different surface properties, such as hydrophilic glass and silicon in

combination with hydrophobic Teflon.

Segmented flow facilitates convective mass-transfer between the phases 55, 62-64 and

thus enables high overall throughput relative to laminar co-current flow situations, which

are typically limited by diffusion to the interfacial area. However, the two phases must

ultimately be separated. There have been several approaches to phase separation in

microfluidic devices. 61' 62, 65-70 Capillary forces have been demonstrated to be effective

means for separating gas-liquid mixtures in microfluidic systems.63' 71, 72 In these

segmented flow applications, channels of 20 gtm size were used to selectively separate

one phase from the other. The interfacial forces in liquid-liquid systems are often low due

to small interfacial tensions, and contact angles of the liquid-liquid-solid interface

approach 900 rendering liquid-liquid phase separation with such channel sizes difficult.

In this chapter, liquid-liquid phase separation was realized by using a thin porous

fluoropolymer membrane that selectively wets non-aqueous solvents, has average pore

sizes in the 0.1-1 -pm range (giving high capillary pressures), and has a high pore density

giving high throughput. Pressure drops throughout the microfluidic network were

modeled and operating regimes for the membrane phase separator were determined based

on hydrodynamic pressure drop and capillary pressure forces. A microdevice with a

PTFE membrane sandwiched between microchannels illustrates the capillary pressure-

induced phase separation behaviour for a hexane-isopropanol-water system.

A silicon-based solvent extraction device that integrates mixing and phase separation

processes was also demonstrated. An integrated design decreases the number of device-

device fluid connections reducing dead volumes at the expense of increased

microfabrication complexity. Chemical separations benefit from integration of mixing

and separating as the same steps are used in most chemical extraction processes. Mass

transfer rates are similar for small molecules and chemical compatibility is achieved by



using glass or silicon as the material of construction. The integrated devices were realized

by using silicon micromachining and modeling served to establish operating limits. The

device was capable of completely separating several organic-aqueous and fluorous-

aqueous liquid-liquid systems, even with high fractions of partially miscible compounds.

In each case, extraction was equivalent to one equilibrium extraction stage.

2.2 Separation principle

Consider a two-phase flow flowing in the microseparator shown schematically in

Figure 2.1.

Figure 2.1 Schematic of two-phase liquid-liquid separator. The schematic shows a

segmented flow of an aqueous solution (blue) dispersed in an organic phase (pink).

The organic phase wets the hydrophobic membrane and is driven through the

membrane pores by the imposed pressure difference leaving the aqueous solution

behind in the top portion of the device.

As shown in the Figure 2.1, two channels are sandwiched together with capillaries in

between them. The capillary material is such that it only wets one phase of the two-phase

flow flowing into the microseparator device. The blue-colored phase is the non-wetting

phase, while the pink-colored phase is the wetting phase. The backpressures, AP1 and AP 2

due to pressure drop from the two outlets are given by the Hagen-Poiseuille equation for

laminar flow-pressure relationship. It will be shown later (section 2.5.1) that the pressure-

drop on the same side of the capillaries within the separator device, compared AP1 and



AP 2 to can be ignored. Thus, the pressure difference existing across the capillaries is

(APi-AP2). The wetting phase forms an interface at the capillary inlets with the non-

wetting fluid. The pressure required to force this wetting fluid down the capillaries by the

non-wetting fluid is provided by the Young-Laplace equation, AP = 7 cos 0. The
R

pressure drop through the capillaries (APmem ,ow) when the wetting phase flows across it is

also given by the Hagen-Poiseuille equation.

The conditions for a working separator are-

1) The non-wetting phase does not cross the capillaries

To ensure none of the non-wetting phase crosses the membrane, the existing pressure

difference across the capillaries (AP1 -AP2) should always be less than that required to

flow across, APc

(API-AP 2) < APe

2) All of wetting phase crosses the capillaries and flows out the bottom outlet.

To ensure none of the wetting phase goes out the top outlet, the hydraulic flow

resistance on the non-wetting side must be much more than that on the wetting side.

Non wetting side flow resistance >> Wetting side flow resistance

For 1:1 volumetric flow, this condition becomes AP > >APmemflow+AP2

For this special case of 1:1 volumetric flow, the two necessary conditions for separation

can be combined as AP, > (API-AP 2) >> APmem flow

These are the overall conditions necessary for complete separation of two-phase flow in

capillary separators. These conditions will be analyzed in more detail in section 2.5.1

2.3 Experimental

Two devices were fabricated, one to explore the phase separation principle (Figure

2.2) and the other to examine the phase separation combined with mixing and extraction

(Figure 2.3). The proof of principle device was fabricated in polycarbonate and the

integrated extraction device was microfabricated in silicon.



2.3.1 Proof of Principle Polycarbonate Device for two-phase separation

Standard machining techniques were employed to fabricate 0.5 x 0.5 x 20 mm

channels in two pieces of polycarbonate (Figure 2.2). Inlets and outlets were 0.5 mm

holes drilled directly into the channels, and ¼"-28 screws with 1/16" Tefzel tubing

(Upchurch Scientific; Oak Harbor, WA) were used for fluid connections. Tubing sizes

ranged from 250-1000 pm ID and 10-30 mm long. Typically, 250 [pm ID x 210 mm long

tubing was used on the aqueous outlet, while 500 [pm ID tubing x 210 mm long was used

on the organic/fluorous side. A piece of Zefluor membrane (-7x30 mm from 47-mm disk

and separated from the support, Pall Company; East Hills, NY) was placed between the

two pieces to divide the channels, and compressed using 10 1/16" cap screws.

Figure 2.2 Photograph of the proof of principle membrane device fabricated in

polycarbonate. The device dimensions are 10 mm width, 50 mm length and 20 mm

height.

Flow rates of organic and aqueous solutions were varied between 10 and 2000 pl/min.

Hamilton Gastight Syringes (Reno, NV) of 1, 5, and 10 mL volumes were used, and

PTFE tubing was connected using luer fittings (Upchurch Scientific, now part of Idex

Corp). Hexane (VWR Scientific; West Chester, PA), isopropanol (VWR Scientific), and

DI water (from a Milli-Q water system, 18.2 MR; Billerica, MA) were delivered by

syringe pump (PHD 2000, Harvard Apparatus; Holliston, Massachusetts), mixed and

contacted using T-mixers (Upchurch Scientific), and fed to the phase separator.



2.3.2 Integrated Silicon Device for liquid-liquid extraction

A schematic of the device layout shows the mixing, contacting, and separation

sections (Figure 2.3). Silicon microdevice processing consisted of micro-machining a

silicon wafer using MEMS bulk fabrication techniques (Figure 2.4). Beginning with a

650-700 [pm thick (100) double-side polished silicon wafer (Silicon Quest; Santa Clara,

CA) coated with 500 nm low-stress nitride, the backside was spin-coated with positive

photoresist, patterned, and developed to define the fluid ports and membrane trench.

SF 6/0 2 plasma was used to etch the nitride layer, exposing the underlying silicon. Next,

the wafer was etched in 25 wt% KOH at 850 C to a depth of 320-340 ipm, depending on

the wafer thickness.

A
Mixer C

B

Raffinate

Figure 2.3 Schematic (top) and photograph (bottom) of the integrated extractor

device. Fluids A&B are mixed; then contacted with an immiscible liquid C, where

the partially miscible component A partitions between B&C. Finally, the two phases

are separated by the membrane. The footprint of the device is 35x30x1.5 mm

(WxLxH).



The wafer was cleaned with a piranha bath (3:1 concentrated sulfuric acid: 30%

hydrogen peroxide), and the frontside was aligned to backside features and patterned

using positive photoresist to define the main flow channels for the mixer, contactor, and

membrane trench. The frontside silicon nitride layer was patterned and etched the same

way as the backside, concurrently etching both sides of the wafer until the inlets met the

flow channel, -190 ptm on both sides. The wafer was cleaned and 49% HF was used to

etch the remaining nitride. Finally, a 762 ýpm thick Pyrex 7740 wafer (Bullen Ultrasonics;

Eaton, OH) was anodically bonded to the frontside of the silicon device and individual

devices (Figure 2.3) were obtained after the silicon wafer was cut using a diesaw. Using

KOH etch processing to define flow channels can result in the over-etching of exposed

convex silicon comers due to the significantly faster etch rate of the <411> crystal plane

compared to the <100> (-1.5x). 73 Low-stress nitride as the KOH mask layer was used

and small "tabs" were added at these exposed comers to significantly reduce the amount

of overetching (Figure 2.5).74

Silicon Wafer with 500 rnm
Low Stress Silicon Nitride

Silicon Nitride Layer Pattered
and Etched

25 wt% KOH Etch to Define
Backside Features

Repeat process for Frontside
Features

Etch Nitride Film with
49% HF

Anodically Bond Pyrex Glass
Wafer to Cap Flow Channels

Figure 2.4 Silicon microfabrication process

I
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Figure 2.5 Photo mask structures (left) designed to compensate for the fast etching

rate of the exposed convex corners during the KOH etch process. The resulting

corners after KOH etching (right) show little edge erosion.

Table 2.1Silicon Device Dimensions

Width (gm) (at the

Section Depth (pm) top surface of the Length (gm)

silicon wafer)

Flow ports 500 750 Not applicable

Mixer 71 100 350

Contactor 156 300 400

Separator 648 1000 21

The size of the tabs was calculated using a correlation described elsewhere, 74 with a

channel width (w1) of 300 [tm and a gap width (w2) of 25 gm. As a rule of thumb, it was

found that the method of using tabs to protect the convex comers allowed a maximum

etch depth of -0.6-0.7 times the channel width. Finally, a 150 mm Pyrex 7740 wafer

(Bullen Ultrasonics) was anodically bonded to the device wafer and the stack was diced

into individual devices measuring 35x30xl.5 mm. Each section of the device contains

channels of different size and length (Table 2.1).

2.4 Liquid-liquid extraction experiments

Fluids were delivered using Harvard Apparatus syringe pumps. DI water (Milli-Q)

and N,N-dimethylformamide (DMF) (Sigma-Aldrich; Milwaukee, WI) were loaded into

plastic syringes (B&D Scientific; Franklin Lakes, NJ), and the organic solvents



dichloromethane (DCM) and diethyl ether (Sigma-Aldrich) were loaded into a removable

needle Hamilton Gastight syringe. Typical flowrates of the aqueous and organic phases

were 25 [pL/min each, and DMF flowrates were varied from 0-2.5 ýpL/min.

2.4.1 Packaging

A custom microfluidic chuck was machined from glass-filled PTFE and

polycarbonate (McMaster-Carr; Atlanta, GA). PTFE O-rings measuring 3/16" OD (PTFE

AS568A-003, McMaster-Carr) were used to seal the fluidic connections and the 0.5 ýpm

pore PTFE membrane (Pall) was cut to - 8x25 mm from a 47-mm disc and compressed

between the trenches on the chuck and silicon device. Fluid connections on luer-type

syringes were made using luer fittings (Upchurch Scientific, now Idex Corp), while

Valco fill ports (VISF-2; Houston, TX) were used on the Hamilton Gastight syringe.

1/16" OD PTFE tubing with 0.01"-0.02" ID and 1/4"-28 screw fittings were used to

connect to the fluid chuck in all cases (Figure 2.6).

Figure 2.6 Exploded schematic view of the microfluidic device and packaging (top),

and final packaged silicon device (bottom). The membrane and silicon microdevice

are sealed by compression using Teflon o-rings with the fluid chuck and

polycarbonate top plate. 1/16" PTFE tubing and fittings are screwed into to the

chuck.
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2.4.2 Analytical

For phase separation-only experiments, visual inspection of the outlet fractions was

used to confirm no immiscible phase passed to the wrong outlet. The use of red and blue

dyed aqueous pH 4 and 10 buffers (VWR Scientific) made this straightforward. Videos

were also obtained for qualitative analysis using a COHU 2222-1000 color CCD camera

(COHU; Poway, CA) and a Leica stereo-microscope MZ12 (Leica Microsystems Inc.;

Bannockburn, IL).

For extraction analyses, HPLC (Waters; Milford, MA) with a reverse phase C-18

column and 0.1 M aqueous monobasic phosphate buffer at 1 mL/min for the aqueous

extract was used. A calibration curve of the concentration vs. absorbance at 220 nm was

prepared for known concentrations of extractant (DMF, VWR Scientific) in de-ionized

water to quantify results. 25-100 ptl of each sample was diluted in 900 pl of water and run

3 times. Variation in area counts between runs was less than 3% and typically less than

1%. The measured concentrations were then scaled by the dilution factor to give the

concentration of the sample.

2.5 Results and Discussion

2.5.1 Liquid-Liquid Phase Separation Using Capillary Forces

The immiscible liquids are delivered to the membrane separator where selective

wetting and capillary pressure are used to induce and maintain separation of the two

phases. A sufficient difference in the surface wetting by the two immiscible phases is

required to drive the phase separation. For example, no suitable materials were identified

for separating organic (hexane) and fluorous (perfluorohexane, Lancaster Synthesis, Inc.;

Pelham, NH) phases, but either of those phases could be separated from water. Materials

studied included PTFE (Pall), cellulose (filter paper, VWR), and ethyl acetate (Sigma

Aldrich). The aqueous phase, which does not wet the PTFE membrane, passes across the

membrane surface to outlet 1 while the organic/fluorous phase wets and flows through

the pores of the membrane to outlet 2 (Figure 2.1). The pressure drop due to laminar flow

is given by the Hagen-Poiseuille equation.
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AP = Q (1)
iR

4

The pressure drop from the aqueous phase outlet 1 to the point of collection of the

separated aqueous phase is API. Denoting Qtot as the total flowrate of the two phase fluid

flow, QI is the aqueous phase flowrate and Q2 is the organic phase flowrate, RI and L1

are the outlet tubing radius and length, respectively. There are two extreme cases based

on the duration of segments relative to the length of the membrane separator: (i) small

alternating aqueous and organic segments, and (ii) large aqueous segments followed by

large organic ones. In the first case, the flowrate through the outlet I will be Q, as all the

organic phase that comes with the aqueous phase goes through the membrane and out

from outlet 2. In the second situation, when the aqueous phase is longer than the

separator region, there is no flow through the membrane when the aqueous segment is in

the separator and the flowrate through the outlet 1 will then be Qtot. Actual operation

falls between the two cases, but flow through outlet 1 can be approximated as Qtot to

obtain a worst case design criterion. API is then given as:

= 81 Q°tL 1  (2)
rR,

An order of magnitude analysis shows that the pressure drop due to flow in the

channel on the aqueous side in the separator device (APaq,mem) is very small compared to

API:

8AuQiLsep

Aqmem R4se L,,p R 1 21 mm 0.25 mm
_- em 0.002 (3)A·4 8 1QL1  L, Rs, 210 mm 0.66 mm)4

Consequently, APaq,mem needs not be included in further analysis and the pressure at

any point on the aqueous side of the membrane is approximately API. The pressure drop

through the membrane (APm) and organic outlet tubing (AP2) are also described by the

Hagen-Poiseuille equation. By a similar order of magnitude estimate (3), the pressure at

any point on the organic side of the membrane is approximately AP2.The pressure drops

through outlets I and the sum of the membrane and outlet 2 must equal since the two

fluid streams exit at the same ambient pressure. The total flowrate must also be conserved.



= A Pm +AP2  (4)

Q,o, = Q1+ Q2 (5)

8 p Qto, 8 p2Q2 8]2Q28  
4IQt L, = Lm L + 8  L2  (6)

iRJ 7nR4 m rR2

The fluid viscosity is p., L is length of the flow path, and n is the number of capillaries

through which fluid is flowing. The membrane has a high pore density (-10 8 pores/cm2),

reducing hydrodynamic resistance of the wetting phase by distributing the flow. The

number of active capillaries (n) was typically much less than the actual number of

capillaries present (-1-10%), but this provides an upper limit for operation. If cylinders

are used to represent the membrane pores, the capillary pressure (APc) is:

P= 2 cos 0 (7)
R

where y is the interfacial tension, R the pore size, and 0 the wetting angle. Typical pore

sizes in the membrane were -0.5 ptm according to the manufacturer.

The minimum pressure needed to overcome the capillary pressure difference and

force the aqueous phase through the membrane is APc, whereas the real pressure

difference between the two sides of the membrane is API - AP 2. As the capillary pressure

difference prevents the non-wetting phase from penetrating the porous membrane surface,

the condition for the aqueous phase to not cross the membrane is

AP > - AP2 (8)

Using Equations (4) and (7), this condition can also be written as

AP• > Al'

y 4p 2Q2  (9)ycos 0 > L
nrR3

The Hagen-Poiseuille equation in terms of fluidic resistance (k) can be written as

AP

k =(10)
k 8puL

irR4

The condition where the organic/fluorous phase does not flow through outlet I is now

established next. As the organic/fluorous phase wets the membrane, it can flow out



through any outlet, and the only way to prevent it from flowing out through outlet 1 is to

provide a much larger fluidic resistance for flow through the undesired outlet.

Thus, kl >> k2 as given in equation (11).

8,u2L, 8,l 2L, 8+l2L2
rR 4  TnR4  ,zR4
L 1  Lm 2
I >> Lm + 2

R 4 nR 4  R4

The two conditions must be satisfied for successful operation of the device, specifically:

(i) The pressure difference between the aqueous and organic sides of the membrane

should be less that the capillary pressure difference, and

(ii) The combined organic side fluidic resistance should be much lower than the aqueous

side fluidic resistance.



Figure 2.7 A series of images looking down onto fluids flowing atop the membrane.

The images were captured from video of co-flowing immiscible aqueous (red) and

hexane (clear) phases passing over the PTFE membrane. The hexane passes through

the membrane and "disappears" from view. The total flowrate was 100 pl/min.

In a typical liquid-liquid phase separation, the interfacial tension term (ycos0) was

estimated to be -0.005 Nml' and an average pore size (R) to be 0.5 jim, giving a capillary

pressure (APc) of -20 kPa. If the aqueous outlet tubing is 210 mm long with a 250 gim ID,

the flowrate (Qtot) can be -100 pL/min (API ~ 3.65 kPa). For the second (wetting phase)

outlet, the tubing diameter and length are typically 500 gm and 210 mm, giving a

pressure drop (AP2) of 0.23 kPa. Using Equation (4) yields APm as 3.42 kPa. Using equal

aqueous and organic volumetric flowrates and solving for n using this value of APm gives

n 106 pores. The separation membrane exposed to flow was 1 mm wide and 21 mm

long (Table 1), having a pore density of - 108 pores/cm 2. Therefore, -5 % of the total

available pores were typically active for separation leaving room for additional separation

capacity.

For each immiscible liquid-liquid system studied, the wetting fluid phase (e.g. organic,

fluorous) was observed to pass through the membrane, while the aqueous phase did not

enter the membrane and flowed out a second outlet (Figure 2.1). As an example, Figure

2.7 illustrates a series of images looking down onto fluids flowing atop the membrane.

Hexane (clear phase) passes through the membrane and "disappears" from view. The

supporting electronic file shows a movie of the liquid-liquid phase separation.

2.5.2 Effect of Reduced Interfacial Tension

The influence of lowering the interfacial tension on separation capacity was

investigated experimentally with the polycarbonate device. The volumetric flow ratio of

hexane and water was kept at 1:1, while isopropanol (IPA) was added to hexane using a

T-mixer (Upchurch) to lower the interfacial tension. The droplet sizes ranged from

relatively large (-5 [iL) to small (-1 nL). It was not attempted to tightly control the

segment sizes in order to mirror typical extraction conditions expected in routine



microchemical applications. Moreover, the variation introduced by the different segment

lengths will reduce as YJ with increasing number of segments (N) passing through

the device. The maximum operating flowrate decreased significantly with increasing IPA

vol%, though the polycarbonate device was still capable of separating in excess of 100

giL/min of total fluid flow at 17 vol% IPA (Figure 2.8). At higher concentrations of IPA,

the interfacial tension decreases to a value at which point the Equation (9) is no longer

valid and complete phase separation is no longer possible.
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Figure 2.8 The effect of lowering the interfacial tension on phase separation

performance was studied by adding IPA to a flow of hexane/water. The maximum

operating flowrate decreased significantly with increasing IPA concentration.

2.5.3 Integrated Liquid-Liquid Extraction Device

In the design for the integrated liquid-liquid extraction device fabricated in silicon,

characteristic times for mixing, contacting, and phase separation were estimated to aid in

characterizing device performance. Mixing of miscible components is sometimes

necessary in solvent extraction processes. In a solvent switch process, for example, a

reagent and its initial solvent are mixed with a new miscible solvent before the initial

solvent can be extracted. The mixer design was based on diffusive mixing of co-flowing



streams, with flow splitting and lamination used to reduce the diffusive path length by

half.31 The KOH-etched channel in this section was 340 mm long and 100 pLm at the top,

or - 50 pm at the channel centre. Using typical liquid diffusivities (- 10-9 m2/s), the

mixing time was estimated as -0.6 seconds and the maximum operating flowrate as -120

pL/min.

Liquid-liquid mass transfer is accomplished with segmented flow of immiscible

aqueous and organic/fluorous phases. The mass transfer coefficient for the Taylor flow of

segments in capillaries is used, based on penetration theory7 . Only the species flux at the

end (cap) of the segment is considered as the most conservative estimate for this design:

k, a r= 2- U (12)
(L +L2) dhyd

The hydraulic radius (dhyd) is used to simplify the analysis. The shape of the channel

is trapezoidal with all sides between 100-300 gpm, suggesting that this characteristic

dimension will be sufficient as a first-order approximation.

4A (H(w +W)
dhvd = 4A = 4

P w, + w2 +2s (13)

s = H 2 + 0.25(w, - w 2) 2

The internal recirculation of the segment affects the mass transfer rate because of

surface renewal. For our system, characteristic model parameters 76 gave a recirculation

mass transfer coefficients (kLa) of 0.26 s-'. A conservative estimate of the time to reach

equilibrium is -20s using the characteristic parameters. Therefore, the maximum

expected operating flowrate for this system before mass-transfer effects are observed is

-50 pl/min. The conservative design estimate implies that equilibrium is reached in the

system at flowrates lower than this value.

2.5.4 Solvent Extraction

Large amounts of equilibrium data have been compiled for partially miscible systems

and help simplify solvent selection for extraction.7 7 As a model system, extraction of

N,N-dimethylformamide (DMF) from an organic phase into water was chosen.



Dichloromethane (DCM) and diethyl ether (DEE) were each used as the non-polar

organic solvent and the DMF fraction in the organic stream was varied from 1-20 mol%.

The partition coefficient did not change significantly over this concentration range, as

indicated by a linear plot of aqueous extract DMF mol fraction vs. the initial organic

DMF mol fraction (Figure 2.9).

The concentration of DMF was measured in the aqueous extract stream and a

mass balance was performed to calculate the extraction yield. For a system with a

constant partition coefficient, the extraction yield is constant. The extraction yield values

obtained from the microfluidic device agree well with the equilibrium data obtained from

shake-flask experiments for these two cases. Hence, longer extraction times will not

improve the yield. The DCM/DMF/water values also agreed well with those reported in

the literature.78 Thus, each device is capable of a single equilibrium extraction stage.
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Figure 2.9 The partition coefficients of DMF in the DCM/water and DEE/water

systems are nearly constant at low to moderate DMF concentration as evidenced by

the linear increase in aqueous extract concentration vs. the feed concentration.

Using multiple extractor units in series would improve extraction of the partially

miscible component. 79 Assuming constant single-stage extraction yield, a process with a

single stage yield of 60% will therefore remove -94% of the undesired species in 3 stages.



2.6 Conclusions

The reported extraction devices represent a step towards developing continuous

microchemical separations for multistep synthesis processing. Surface forces provide

continuous separation of immiscible liquids in microfluidic devices when they are

balanced appropriately by fluid flow pressure drops; specifically, the capillary pressure

difference must be much greater than the pressure used to drive the fluid flow through the

device, and the pressure drop for the two fluid outlets must be adjusted so that the

membrane non-wetting phase experiences a larger pressure drop than the membrane

wetting phase. A thin, porous, PTFE membrane enables quantitative phase separation by

being hydrophobic and having high density of micron sized pores. The use of a

hydrophobic membrane circumvents surface modifications of the device and has the

additional benefit that the membrane can be replaced if it becomes plugged by impurities.

As a demonstration, a membrane device was capable of complete phase separation of

aqueous/organic and aqueous/fluorous systems, even with high fractions of partially

miscible components significantly lowering the capillary pressure.

Phase separation was implemented with mixing and liquid-liquid contacting to create

an integrated microfluidic liquid-liquid extraction unit operation. The device was

manufactured using silicon micromachining and packaged with the membrane using

compression sealing. In this device, solvent extraction of DMF from DCM and diethyl

ether to an aqueous phase was performed and found to be equivalent to one equilibrium

stage. Because of the devices' robustness, chemical compatibility, and ease of use, this

technique can be used with a wider range of chemistries and operating conditions. If the

pressure drops are controlled according to the design guidelines, multistage extraction

can be performed using multiple devices in series. Thus, it should be possible to conduct

continuous processing and achieve the same extraction yield as multiple shake-flask

extractions performed during traditional chemical workup.



3 In-line Pumps for Microchemical Systems

3.1 Introduction and Motivation

As discussed in chapter 1, several promising devices have been developed previously

for applications in chemistry and biology. Further development of lab-on-a-chip

applications involves connecting these individual microfluidic devices to form a

microchemical system, capable of performing many more steps of an organic synthesis

than currently possible. Current synthesis steps involve use of a syringe pump upstream

of all devices. The syringe pump operates by displacing a fluid in a syringe through

controlled piston movement to deliver a desired fluid flow rate. This works well as long

as the number of devices connected downstream of the syringe pump is less, about five at

the most. As the number of devices connected increases, the syringe pump starts

reaching its limit to provide energy to overcome the increasing pressure drop through

multiple devices. Specialized, high pressure syringe pumps exist, for such applications

(such as those by Teledyne Technologies, Inc.), but their high cost makes it prohibitive to

have multiple such pumps in a typical laboratory. Many times, use of such high pressure

pumps is further complicated by the existence of capillary separators in the microreactor

network. As discussed in chapter 2, these separators have pressure constraints and they

do not work properly if the imposed pressure exceeds design limits. Many microfluidic

pumping devices have been developed 80 -82, such as those by Quake, but they all provide

non-constant flow, and use soft polymers incompatible with most organic solvents. They

also provide very low flowrates (order of several nanoliters per minute), so are

inadequate for the chemical synthesis applications.

As the number of devices starts increasing, the current method of having one pump at

the start does not work as a result of pressure constraints on each individual device (such

as a separator) and limits on pumping capacity of existing syringe pumps. These

problems are further accentuated when the microreactor network is used for small-scale

chemical synthesis, and involves reactions having slow reaction rates. Flowrates of the

order of a few milliliters per minute (for small-scale synthesis) coupled with the longer

residence time (due to slow reaction rates) results in significant pressure drop. Thus, there



is a need for micro-versions of in-line pumping devices, similar to the feed charge pumps

in the conventional chemical industry before each unit operation. It would help maintain

the pressure at all points in the system below a critical pressure (Pc), beyond which,

individual devices start failing (Figure 3.1). Such pumps need to be compatible with most

chemicals and provide steady flow with a wide range of operation.
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Figure 3.1 Pressure profiles in a three-unit system with and without in-line pumps

In-line pumps increase the pressure energy of a fluid stream in-between two unit

operations (Figure 3.1). In conventional chemical manufacturing, centrifugal pumps

perform this function. However, for microchemical continuous multistep synthesis,

centrifugal pumps cannot provide the low flowrates (order of gl/min) necessary.

Peristaltic pumps have often been used in this flow regime in medical applications.

However, they have two shortcomings that render them unsuitable for organic synthesis -

Firstly; peristaltic pumps provide pulsating flow. This non-constancy of flow alters the

residence time of reactions, and also changes the pressures in the system affecting device

performance, such as separation operation. Secondly, peristaltic pumps need flexible,

compressible material for peristaltic action. It is difficult to find mechanically stable,

chemically compatible material for the harsh chemical solvents often used in synthesis

and separation steps. The micropumps developed by Quake also cannot be used for the

same reasons.



In this work, pneumatic pressure is used to pump liquid. Pressure driven flow

techniques have existed before 83 to flow liquid out from liquid reservoirs upstream of all

devices to replace syringe pumps, thus providing much constant flow than syringe

pumps. Use of pressure driven flow to enable in-line pumps is discussed in this chapter.

The pressure driven flow work required further design and development to function as in-

line pumps. In this work, chemically compatible, mechanically and functionally robust

in-line pumps capable of providing a wide range of substantially constant flowrates are

designed, developed and demonstrated.

3.2 Pressure driven flow

A pressure driven flow setup consists of a small enclosure (such as a microchip with a

cavity, or a glass vial) with connections as shown in Figure 3.2. The gas inlet is

connected to a source such as a gas cylinder, and is at a constant high pressure P1. RI and

R2 represent the resistance to flow in the respective sections of the gas line. When the

valve is open, the head space in the enclosure attains pressure P2 given

byP2 =P R2 . This relationship is derived in Appendix A. As the pressurizing of

the enclosure is a first order charging equation, the time it takes to reach 99.3% of steady

state is 5TI (• = -V RR2 ). The time it takes to decay back to the ambient atmospheric
RT RI +R2

pressure from the steady state pressure P2 after the high pressure gas inlet is closed, is 5T2

(T2 = R2)(V is the headspace volume, R the Universal Gas constant and T represents
RT

the temperature of operation).
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Figure 3.2 Schematic of pressure driven flow. A constant high pressure source (such

as a helium gas cylinder) is connected to the head-space of the enclosure, with a

leakage line to the atmosphere. R1, R2 and Rfluid represent flow resistances.

By varying parameters such as diameter and length of the flow path, the fluid-flow

resistances R1 and R2 can be tuned, to give charging and discharging times varying from

sub-second values to several seconds. When tuned to charge or discharge in less than a

second, the system performs like a switch, with the on/off valve at the gas inlet serving as

the changing knob. When the valve is open, the pressure in the enclosure is high and

there is fluid flow out of the enclosure; and when the valve is close, the pressure is low

and there is no fluid flow. This is depicted graphically in Figure 3.3.
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Figure 3.3 Figures (a) and (b) represent switch operation of two systems with high

and low time constants, respectively.
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3.3 In-line pump design

The purpose of an in-line pump is to increase the pressure in-between in a train of

microfluidic devices as shown in Figure 3.4.

Mp

Figure 3.4 Schematic showing an in-line pump in a train of micro-unit operations.

A design for such a pump is shown in Figure 3.5. A high pressure gas source (Po)

connects two enclosures with each enclosure having an on/off valve, V and fluidic

resistances RI and R2. While the pump is in operation, the two valves, VI and V2 are

always in toggled states with respect to each other, i.e. when Vi is on, V2 is off, and vice

versa. When Valve VI is open, the pressure in corresponding enclosure is P*

P( * RR2 ))and when VI is close, the pressure is Pa. Thus, at any time of

operation, one of the two enclosures has pressure P* and the other is at ambient

atmospheric pressure, Pa. The solid arrows shown in the flow lines are one-way valves

that allow flow only in the indicated direction.

•P
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Figure 3.5 Design of an in-line pump. The solid arrows represent one-way valves.

The two valves, VI and V2 are always in opposite states, i.e. when VI is on, V2 is off,

and vice versa. When V1 is open, the pressure in corresponding enclosure is P* and

when it is close, the pressure is Pa. The fluid pressure after device 1 is P1 and before

device 2 is P2. The pumping action of the in-line pump results in P2 > P1

During the operation of the pump, consider the case when VI is on, and V2 is Off. In

such a case, The pressure in the left enclosure is P* and the right enclosure is Pa. Flow

from the upstream device coming at pressure P1 goes into the right enclosure having low

pressure Pa. At the same time, flow from the left enclosure at pressure P* flows into the

downstream device, with pressure P2. When the right enclosure is close to reaching its

capacity or if the left enclosure gets depleted of the fluid, the valve states are toggled, so

that flow downstream now occurs through the right enclosure. As the switch action

almost instantly changes the pressure in the enclosure from one state to the other (when

time constants are small, corresponding to Figure 3.3(b)), the downstream devices do not

see the switching of enclosures.

In the normal mode of operation, the resistances for fluid flow in both the gas lines

leading to the two enclosures are kept identical to achieve the same pressure P* in each

enclosure when the corresponding valve is on. However, novel schemes can be developed



by deliberately keeping them different. Resulting oscillating pressure profiles can find

interesting applications.

3.4 In-line Pump

Based on the design in Figure 3.5, there is no constraint on the size of the enclosure.

Two different enclosure volumes were considered - 10 ml and 40 pl.

i) 10 ml scale

The 10 ml scale was attained using 3 dram (12 ml) shell vials from VWR

International. A manifold (Figure 3.6) was machined from aluminum and anodized to

house either one or four such glass vials, and provide pressure-tight seal using o-rings

and standard '/4-28 screwed fluidic connections to the sealed enclosure. The design was

made to enable quick attachment and release of the glass vial to enable fast change of

reagents.

Figure 3.6 Schematic and photograph of the manifolds used for pressure driven flow.

Design details are discussed in Appendix D

ii) 40 tl scale

The 40 p• scale enclosures were microchips (Figure 3.7) microfabricated from 1 mm

thick silicon wafer and capped with Pyrex wafer to form a 42 p1 cavity in the device. The

fabrication details are discussed in the Appendix C. The design of the in-line pump using

the microchips is shown in Figure 3.8

:n



Figure 3.7 Photograph and schematic of microchip. Design details provided in

Appendix C.

Pump outlet

Pump inlet

Figure 3.8 Design of in-line pump with microchips. The solid red arrows are one-

way check valves.

A helium gas cylinder was used as the high pressure source to drive the in-line pump

operation as helium has the least solubility in liquids at standard conditions of all

common gases. The helium cylinder at constant high pressure was connected to a 3-way

on-off solenoid valve (model # LHDA0523212H from The Lee Company), shown in

Figure 3.9. It had a common inlet and two outlets - one was Normally Open (NO), while

the other was Normally Closed (NC). The NO and NC states toggled on application of a

5 V voltage to the valve. The helium gas inlet to the common port could then be made to

flow out the NO or NC ports upon application of low (0 V) or high (5 V) signals.

Automated switching was used to toggle the high pressure source between two
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enclosures. A square wave signal generator (model # DS335 from Stanford Research

Systems) was used to toggle the enclosures at a set frequency that could be varied from

10-6 Hz to 3 MHz. The Lee 3-way valves had a response time of 2 millisecond.

Practically, the switching frequencies were made to vary such the switching times were 3

seconds at the fastest and 10 minutes at the slowest. At 100 il/min flowrate, 5 pl liquid

flows out in 3 seconds - the lower bound when the chip of 40 1l volume keeps an

average of 20 p• fluid in it on an average. This half filled strategy keeps the microchip

most away from running dry or flooding. The longer switching times were used for the

larger scale enclosure.

N.C. Commrnon N.O.

Figure 3.9 Schematic of the 3-way on-off valves (from The Lee Company)

The one-way valves used were part # CV3330 from Upchurch Scientific (now part of

Idex Corp). They have a 1 psi cracking pressure to start flowing in the direction of flow,

and can withstand up to 2000 psi pressure in the opposite direction of flow without

leaking. The variability in the rated 1 psi cracking pressure was substantial, and it altered

the downstream resistance seen by the two enclosures of the pump, leading to different

flowrates out of the two enclosures during their corresponding half of the pumping cycle.

Hence, a modified design shown in Figure 3.10 was used that eliminated the need to use

check valves, and used the three-way valves instead. In the figure, green color on the

valve represents open position, and red color represents closed position. For example,

when the left chip is pressurized, it pumps liquid out whereas the right microchip is at

low pressure and takes the incoming flow. The gas side switching was performed using

the Lee valves, but they were found to i) heat up in long-term use and ii) be chemically

incompatible with organic solvents, particularly dichloromethane and N,N-

dimethylformamide. The first issue is manageable, but the incompatibility caused the

inner gasket material to swell up blocking flow out of the valve. Chemically compatible

valves were bought from Burkert Fluid Control Systems (part # 0127). These 3-way

rocker solenoid valves were made from more chemically resistant polyvinylidene



fluoride. As they were more expensive than the Lee valves, they were only used on the

fluid side (two such valves per pump) when the fluid was incompatible with Lee valve

seals, and the Lee valves were always used on the gas side.

The presence of bubbles in the lines changes the flow resistance, causing unequal

flow out of the two enclosures. To prevent bubble formation, the pure liquid samples

used for experiments were degassed by placing under vacuum for about 30 minutes.

Pump outlet I

Pump inlet

Figure 3.10 In-line pump with check valves replaced with 3-way on-off valves

3.5 Experiments

The demonstration of the in-line pump design was performed using the experimental

setup showed in Figure 3.11

Figure 3.11 Experimental setup for in-line pump studies
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The details of the in-line pump were described in 3.4. The syringe pump used for the

study was bought from Harvard Apparatus (model # PHD2000). The flow rate was

measured using flow sensors form Sensirion (model # SLG1430) that worked on the

principles of flow anemometry. The flowmeter measured flow from 1-40 1l/min with a

resolution dependant on the sampling rate. At 12.5 Hz sampling rate, the resolution of

measured flow was 1.2%, with a response time of 20 millisecond. A commercial

flowmeter for microfluidic applications enabled measurement of flow profiles after a

syringe pump and the developed in-line pump.

Syringe pumps are known to provide oscillatory flow as a result of the screw rotary

motion causing the syringe piston to move forward. The Sensirion flowmeters helped

measured the variance of flow, and compare it with the in-line pumps. The availability of

a direct flowmeter was a useful analytical tool as most other approaches use alternatives

such as pressure measurements or dye injections and image wavy patterns. Experiments

were performed at different flowrates, sampling rates, syringe sizes, and switching

frequency.

3.6 Results and Discussions

In the experimental setup described in Figure 3.11, a set value of flowrate was keyed

in the syringe pump, and the gas inlet pressure to the in-line pump was adjusted to

provide outlet flow at the same flowrate so that there was no accumulation or depletion in

the pump. Milli-Q water (Millipore) was used as the working fluid for these experiments.

The flow profiles from the syringe pumps and the in-line pumps when the flowrate was

set to 20 ml/min, in-line pump switching at 0.02 Hz and data sampling at 1.56 Hz are

shown at different timespans in Figure 3.12. The pressure provided to the inlet pump was

2.5 psi.
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Figure 3.12 Flow profile from a syringe pump (left) and in-line pump (right) for set

flowrate of 20 pl/min at different timespans, from 20 seconds to 300 seconds. In-line

pump switching at 0.02 Hz, and data sampling was at 1.56 Hz.

The blips seen in the in-line pump flow profile represent the switching between

enclosures. As each enclosure starts flow from a no-flow state, these blips result, but by
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making the time constants of the system smaller, it is possible to reduce their effect on

the flow constancy. The oscillations seen in the syringe pump agree with most

experimental observations and previous studies 84 . Both the syringe pumps, and in-line

pressure driven pumps were studied for their flow profiles at different operating

parameters and these results are discussed next.

3.6.1 Comparison of flow profiles

Comparison of flow profiles of the two pumps shown in Figure 3.12 was done

numerically by using the mean and standard deviation of the measured data. Scaled error

was defined as the ratio of standard deviation to the mean. As seen from Table 3.1, the

scaled error in pressure driven in-line pump is less than half of the error in syringe

pumps, supporting the more constant flow seen visually in Figure 3.12. The use of

standard deviation was a harsher tool to study pressure driven flow constancy as the

differences get squared, magnifying the effect of the blips in constant flow, while the

syringe pump oscillations are regular around a mean value.

Table 3.1 Comparison of flow profiles shown in Figure 3.12. Syringe used was 10 ml

Hamilton Gastight. Flowrate sampling was at 1.56 Hz, switching at 0.02 Hz.

Syringe Pumps Pressure Driven In-line Pumps

Mean Standard Scaled error Mean Standard Scaled error

flowrate (g) deviation (a) (p/o) flowrate (g) deviation (o) (pG/O)

19.3048 0.8348 0.04324 20.1366 0.4088 0.02030

3.6.2 Flow profile from In-line Pumps

i) Effect of sampling rate

The flowmeter from Sensirion came with software that could sample data at rates of

1.56, 6.5, 12.5, 25, 50, and 100 Hz. Higher sampling rates gave lower resolution. The

effect of sampling rate was studied for a pumping rate of 20.5 pl/min, and switching of

enclosures at 0.1 Hz, all the above sampling rates were used. Figure 3.13 shows the same

flow out from the pressure driven pump measured at sampling rates of 25, 1.56 and 6.25



Hz. As expected, rapid sampling shows deeper blips. The flow from each enclosure

theoretically starts from zero - fast enough sampling observes that. The width of each

blip is the same, however, irrespective of the sampling rate, as that is determined by the

time constant of charging, which does not change with sampling rate. The time constants

can be made smaller, (discussed in Appendix A) for reduced blip widths. Another way to

completely eliminate the blips is to use a third enclosure as buffer volume - more on this

approach is discussed in the chapter on recirculation.
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Figure 3.13 Flow profile from in-line pump at sampling rates of 25, 1.56 and 6.25 Hz

ii) Effect of switching frequency

Switching frequencies of 0.01, 0.05 and 0.1 Hz were used, corresponding to

switching times from 50 to 5 seconds, respectively. A square wave to switch has one half

high and the other half low signal, so a 0.1 Hz corresponding to 10 second wave was on

for 5 seconds and off for the other 5 seconds. Figure 3.14 shows the flow profile with

switching every 50 seconds. As the switching affects the otherwise constant flow, the

ideal switching time is as high as permissible by the flowrate and scale of operation. At

20 ptl/min flowrate, 1.7 pl liquid flows out in 5 seconds - sufficient drainage rate for a

chip of 40 pl volume, where the average fill in the chip is maintained at 20 pl fluid on an

average, keeping the microchip most away from running dry or flooding. While

switching every 50 seconds, 17 pl liquid would flow out risking drying or flooding. Such

operations therefore require tighter control systems to monitor liquid level that could be

developed in future, or use the larger scale enclosures for operation, as is the case for the

flow profile shown in Figure 3.14. Faster than necessary switching may be required when



very good mixing between the two enclosures is required, for example if the upstream

device delivers fluid that changes with time due to some reaction, so large accumulations

become undesirable. In such cases, the pump is started with very small initial fluid, and

switching is performed at higher rates to maintain low dead volume and prevent fluid

from ageing in the pump.
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Figure 3.14 Flow profile from in-line pump at 0.01 Hz switching rate.

3.6.3 Flow profile from Syringe Pumps

Flows out of syringe pumps show oscillations because the screw over which the

bulkhead pushing the syringe piston moves has a finite pitch, so the rotary action of the

motor causing the flow becomes digitized to deliver an average overall desired flowrate.

Syringe pump flows can be much smoother if finer pitch designs were used, but such

pumps are expensive, and using multiple such pumps in a laboratory setup is not feasible.

i) Effect of different syringe sizes (or flowrates)

A syringe pump calculates the linear shaft speed needed for a desired volumetric

flowrate by ' dividing the volumetric flowrate by the cross-sectional area of the syringe.

The area of a syringe varies with the syringe capacity. Thus, increasing volumetric

flowrate affects the linear shaft speed in the same way as reducing syringe size. The flow

profiles from a syringe pump were observed at different shaft speeds by operating at
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volumetric flowrates from 5 to 20 tl/min, and using 1, 10, and 25 ml Hamilton Gastight

syringes. Sampling rates of 1.56 Hz, 12.5 Hz and 50 Hz were used. Table 3.2 summarizes

the results for sampling rate of 1.56 Hz, while graphs in Figure 3.15 show the trends.

Table 3.2 Effect of syringe size on the flow oscillation from syringe pumps at

different flowrates. The flowrate measurements were sampled at 1.56 Hz.

Standard Scaled
Flowrate (pl/min) Mean (ýt)

Deviation (o) error (t/o)

1 ml syringe, diameter = 4.61mm

1 1.0143 0.1473 0.145223

5 5.04401 0.1016 0.020143

10 9.9647' 0.1752 0.017582

20 19.0916i 0.2746 0.014383

30 27.9191 0.4035 0.014452

10 ml syringe, diameter = 14.57 mm

1 1.11201 0.1739 0.156385

5 5.2349, 0.5781 0.110432

10 9.93461 0.7367 0.074155

20 19.30481 0.8348 0.043243

30 28.2825 0.7686 0.027176

25 ml syringe, diameter = 23.00 mm

1 1.1289, 0.1863 0.165028

5 5.2927 0.5063 0.095660

10 9.9769, 0.7400 0.074171

20 19.4898 1.0786 0.055342

30 28.04961 1.3277 0.047334
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Figure 3.15 Effect of syringe size on the flow oscillation from syringe pumps at

different flowrates. The linear speed of the shaft is determined from the flowrates

and the syringe size. The three distinct curves seen represent syringe sizes of 1, 10

and 25 ml going from left to right, respectively.

Figure 3.15(b) is a close up of Figure 3.15(a) displaying full scale. The three distinct

curves seen represent syringe sizes of 1, 10 and 25 ml going from left to right,

respectively. As expected, increasing flowrates for any one syringe reduce the extent of

oscillations measured by the scaled error. For any flowrate, lower size syringe gives

fewer oscillations than higher size syringes. However, the relationship between error and

linear shaft speed is not universal - for the same shaft speed, lower syringe sizes provide

fewer oscillations. Thus, to avoid fluctuations in flow, use of lowest syringe size is best.

Unfortunately, lower size also means lower capacity and puts a constraint on how long an

experiment can be run.

ii) Effect of sampling rate

The effect of varying sampling rates on the flow profiles were studied at 1.56, 12.5,

and 50 Hz sampling rates, and are shown in Figure 3.16 and Figure 3.17. As the syringe

pump flow profiles oscillate around a mean value, changing sampling rates has a less

dramatic effect than on pressure driven pumps. High rates of sampling measure the noise



along with the oscillations, while the lower rates tend to capture just the oscillations as

long as the sampling rates are higher than oscillation frequency. The observations are

consistent with the Nyquist-Shannon sampling theorem. As the lower sampling rates are

less likely to capture the extremes of oscillation, the lower sampling rates show smaller

scaled errors than for higher sampling rates as seen in Figure 3.17. The effect of different

syringe sizes and flowrates follows the trend discussed earlier.
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Figure 3.16 Syringe pump flow profile measured at 12.5 Hz (left) and 50 Hz (right).

Flow is at 20 pl/min and is from a 25 ml syringe
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from syringe pumps. The x-axis denotes the set point flowrates. The experiment was
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3.7 Microfluidic transistors

3.7.1 Real-time on-off flowrate control

Extending the discussion started in section 3.2, it is possible to add a feedback control

system to measure the downstream flowrate, and change the pressure to get desired

flowrates. The control diagram is shown in Figure 3.18. Pressure sensors or flowmeters

were used to measure downstream pressure and the values were fed to a controller that

sent out a binary signal to either open or close the valve. A binary output was used

because proportional valves for the small scale did not exist. An on-off valve (Lee

Company, part # LHDA0523212H) was used instead. The on-off control algorithm

opened the valve if the measured flowrate was less than the set point, and closed if the

measured flowrate was more. If pressure sensors were used to measure the downstream

flowrate, the set point was a desired pressure drop corresponding to the desired flowrate

using the Hagen-Poiseuille equation.

A challenge using such an on-off control is handling the oscillations as a result of the

overshoot during the delay in signal measurement, transmission, processing or control

action. The amplitude of oscillations can be dampened, and flow constancy can be

achieved by either

1) Having fast on/off cycles

2) Having large resistances so that charging/discharging was slow

3) Using Model Predictive Control

The first option was limited by hardware as the sampling rate is limited, so the second

alternative was used, and steady controlled flow at different flowrate set points (in

pl/min) was attained as shown in Figure 3.19. The system time constants were made

large enough that the oscillations seen had amplitude equal to the resolution (0.228

pl/min for this example, 40 ýLV8 5 at 1 V operation in general) of the Analog to Digital

converter (FP-Al-110 and cFP-AI-1 10 from National Instruments) used for sampling

pressure drop values. The use of Model Predictive Control was considered beyond the

main focus of this thesis, but is certainly an attractive approach for future studies.
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Figure 3.18 Schematic of Pressure Driven Flow with Closed-Loop Real-time Control
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Figure 3.19 Flow profile with on-off control

Microfluidic analogs of digital electronic circuit components such as microfluidic

large scale integration86, coding/decoding of information in microfluidic dropletss7 ' 88

and microfluidic bubble logic89 have recently been developed that provide the lab-on-a-

chip community with innovative tools to apply in the quest of development of complete,

universal lab-on-a-chip systems. The in-line pumps developed in this chapter are



microfluidic analogs of the digital transistor, the invention of which accelerated the

growth of the computer industry at breakneck speed.

Addition of a control system to the in-line pump as shown in Figure 3.20 ensures a set

point of either constant output pressure (P2 = constant) or desired output flowrate. It can

also be run to provide a constant gain (Gain = P = P2/P1). Such a configuration may find

application in cases when the change in pressure drop over time during operation requires

dynamic adjustment of the pressures to maintain constant desired flowrates. Specific

chemical examples include increase in pressure drop across a catalyst bed due to

deactivation or particle breakup, or increase in pressure drop due to solids formation,

clogging, or swelling of organic support resin as in solid phase peptide synthesis.

Controller - - - - - - - - Set point,
P1

0/1 0/1

P > P1

Figure 3.20 Design of In-line Pumps as Microfluidic Transistors

Table 3.3 and Figure 3.21 consider a simple case when the flowrate is maintain

constant despite increasing flow resistance.



Table 3.3 Simulation of increasing flow resistance (could be due to catalyst coking,

fines generation or support swelling). The flow resistance is assumed to increase 5%

per hour. The pressures are assumed to increase without any time lag to maintain

constant flowrate.

Time Resistance P1 P2 (P1-P2) Flowrate

Hours psi/(ul/min) psi psi psi ul/min

0 0.20 7.00 2 5.00 25

1 0.21 7.25 2 5.25 25

2 0.22 7.51 2 5.51 25

3 0.23 7.79 2 5.79 25

4 0.24 8.08 2 6.08 25

5 0.26 8.38 2 6.38 25

- P1 (psi) - P2 (psi) - (P1-P2) (psi) - Flowrate (ul/min)

30.00

25.00

20.00

15.00

10.00

5.00
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2 3
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Figure 3.21 Simulation of changing pressures with varying resistance to maintain

constant flowrate. The flow resistance is assumed to increase 5% per hour
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3.8 Advantages of pressure driven in-line pumps

The pumps developed in this chapter find their use as

i) In-line pumps in-between devices, used to increase the flow pressure in-line of a

microfluidic network - the equivalent of which currently do not exist.

ii) Replace syringe pumps altogether as the primary drivers for flow upstream of all

devices, as pressure driven in-line pumps offer more constant flowrates.

3.8.1 Operational advantages

1) Quick response times

In-line pumps are instant on (have short transients, less than one second), unlike

syringe pumps that take from 5-10 minutes to adjust to new conditions, thus allowing

quick stopping of flow for techniques such as stop-flow lithography (SFL) 90. So far,

such techniques have been used alone, but the development of in-line pumps enables

SFL to be used along with chemical syntheses opening new, interesting possibilities.

2) Constant flow

As seen in section 3.6, in-line pumps provide substantially constant flowrates

compared to syringe pumps or systems with cyclical pumping such as peristaltic

pumps. Moreover, the time constants for the systems can be tuned to always provide

with a level of constant flow better than the demands of the system.

3) Differentflowrates through different devices, and decoupling

The in-line pumps act as buffers, and have capacity to accumulate volume, thus

permitting different flowrates upstream and downstream of the device. This ability is

unique as all current applications use the same flowrate over the entire system.

4) Decoupling of systems upstream and downstream of the in-line pump

In-line Pumps also help to decouple devices and stop the propagation of disturbances

through the microsystem. This can be seen from the noisy input and rectified output

from the experimental setup in Figure 3.11 and the flow profile results in Figure 3.12.

This keeps the multiple devices decoupled and prevents disturbances in one device

from propagating onto other devices. Therefore, these in-line pumps help in

broadening the operable range of a microsystem by allowing independent operation

upstream and downstream of these pumps.



5) Infinite reservoir

When used as upstream starting pump, the volume of fluid flowed can be replaced by

an additional checked line for feed inlet. Thus, the pressure driven pumps can be used

for very large times without the need to stop the running system. This feature is of

value in applications such as microreactor networks for chemical synthesis or in

multistep extractions, where a substantial amount of initial feed is used to prime and

get the system to steady state - all of this is lost if the systems has to be stopped to

refill the feed lines. One could argue that very large syringes could be started with, in

syringe pumps - but as it was seen, larger syringes lead to increased fluctuations in

the flowrates.

6) Large range offlowrates

The microchip is known to withstand high pressures (15 atm.) 33. The glass-vial

system was pressure tested under water to 15 atm. Liquefaction of ammonia was

performed in the glass-vial system successfully at room temperature. Thus, the

pressure driven flow can generate flows at pressures varying from a few psi to several

atmospheres. The flowrates depend on the flow resistance, and there is no constraint

in attaining flows from as low as 1 ul/min to several ml/min. However, as in-line

pumps for flowrates greater than 1 ml/min exist (for example, from Burkert Fluid

Control Systems), the real utility of these pressure driven in-line pumps is in the low

flowrate regime.

3.8.2 Mechanical advantages

1) No moving parts

Unlike syringe pumps or systems with multiple microfabricated valves, the pressure

driven pumps have no constantly moving parts. As a result, these pumps do not

change their performance over time, and hence are more reliable. The valves used are

external and can be easily replaced.

2) Simple setup

The simple setup costs far less compared to equivalent syringe pumps, and it is easy

to scale these pumps to have many independent units running from the same single

high pressure source.



3.8.3 Scale advantages

The in-line pumps were demonstrated in two size ranges - 10 ml and 40 tl. Having

demonstrated these extremes of capacity scales, it is possible to demonstrate at any in-

between size range. The choice of the in-line pump volume depends on the intended

application.

i) Advantages of the 10 ml scale in-line pump

The large volume allows for longer operation at different inlet and outlet flowrates

utilizing the large buffer volume in the system. This is useful for subsequent chemical

reactions having different reaction time or flowrate requirements. The large volume also

means the enclosures are less likely to get flooded or run dry, so the switching between

enclosures can be performed less often provided fewer blips in the constant flow rate.

ii) Advantages of the 40 yul scale in-line pump

In applications that require the system volume to be minimized, the 40 Pl in-line

pumps are the preferred choice. The small volume allows quick startup of the system as

less volume needs to be filled up before downstream devices become operational. The

ability to microfabricate these pumps allow them to be mass produced, and presents the

possibility of integrating multiple operations on a single microchip.

3.9 Conclusion

The use of pressure to control fluid path in the manner described here is an

advancement in microfluidic flow technology. These schemes can provide substantially

constant flowrate while recirculating a body of liquid or when used as an intermediate

pump. The intermediate pump can also be used as a gas-liquid separator. Current syringe

pumps are constrained in that they provide the same fluid flowrate through all the

connected devices. On the other hand, by means of the temporary holdup inherent in the

design, our design allows having different and independent flowrates through the

different devices connected in series.

Pressure driven flow techniques were used in this chapter to develop and demonstrate

pumps that can be used to replace current syringe pumps and be used as an in-line pump.

The developed pumps are superior in performance to existing alternatives and have



capabilities such as maintaining different flowrates upstream and downstream of the

pump that do not exist in current pumps. Development of robust in-line pumps in this

chapter, and along with separators developed in chapter 2, enables microdevice networks

for chemical syntheses applications as shown in further chapters. It is expected these

pumps will become an integral component for all future microsystems. Microfluidics has

often been likened to the circulatory system in humans - both have similar length scales

of operation. In that case, the pump developed in this chapter is the equivalent of the

heart - both pump fluid by imposing pressure.



4 Multistep Liquid-Liquid extraction in

Microsystems

4.1 Introduction

The need for multistep synthesis in microchemical systems was discussed in detail in

chapter 1. Continuous separation is the key in enabling continuous multistep synthesis.

Consider as an example a simple organic transformation beginning with an alcohol,

converted to organic halide in the first step, and used for further synthesis steps

downstream. The first step is shown in Figure 4.1. In a continuous synthesis operation, it

becomes important to maintain the purity of each reactant; else the impurity buildup after

each step reduces the yield of the final product. In batch scale operation, a workup step

usually follows the reaction to purify the product. As shown in the figure, a similar

workup operation after each reaction is also needed on the continuous scale to maintain

reagent purity. Continuous separation is thus, an essential element of multistep

continuous synthesis. While many different chemical reactors for microsystems have

been developed, few continuous separation techniques exist. The difficulties for

continuous separation in microsystems were discussed in detail in chapter 2. While one

stage liquid-liquid extraction was demonstrated in chapter 2, complete transfer of a

chemical component from one phase into another requires multiple stages to deliver

extraction beyond the single stage equilibrium values.

RCI for furtjer synthesis

s stream with
excess SOCI 2 and ROH

ROH
SOCI2

Figure 4.1 Example of a continuous reaction and workup operation for multistep

synthesis



The most common separation operations on the batch scale and large scale continuous

manufacturing are distillation and crystallization. Miniaturizing these operations for the

microscale is still a challenge. Previous demonstrations9l' 92 of liquid-liquid extraction

have presented it as a promising separation technique for continuous microscale

operations. Kitamori and others have used surface modification of glass using organic

silanes to alter its wetting characteristics 53, 57, 58, 61, along with two-phase contacting

across the phase boundary to perform extraction. While these represent one of the first

demonstrations of continuous workup, they have issues that render them not very

scalable. The surface treatment tends to wear over time, rendering the devices functional

only over short periods of time, making it a challenge to incorporate these devices in

long-term continuous flow, multistep synthesis schemes. The throughput from these

devices is another concern - they can be run at the most at - 1 pl/min. Higher flowrates

result in interface instability and device failure. An ideal continuous workup device

downstream of the microreactor should be chemically compatible with most reagents and

have a wide and robust operable range. The two-phase separators developed in chapter 2

provide exactly those features. In chapter 2, these separators were used for single stage

extraction. As the workup step often requires extraction beyond equilibrium values, there

is a need to perform multiple staged extractions to deliver near complete separation. In

this chapter, the separators developed in chapter 2 are combined with the in-line pumps

developed in chapter 3 to develop a system capable of performing multistep extractions.

The developed system was used to demonstrate two-stage extraction of the model system

studied in chapter 2.

4.2 Multistep liquid-liquid extraction

Figure 4.2(a) shows a schematic of two separators connected in counter-current

extraction mode of operation for the extraction of N,N-dimethylformamide (DMF) from

dichloromethane (DCM) into water. This model system was chosen because DMF and

DCM are common solvents; DMF also represents any generic small organic molecule

that may be of interest for separations in multistep reaction-separation systems. The

countercurrent mode of operation always maintains a driving force for extraction,

resulting in enhanced separations. Fresh feed of DCM (with DMF) contacts water coming



from the second separator. The two phase segmented flow is provided enough residence

time to attain equilibrium in the tubing that serves as inlet to the first separator. The lean

DCM phase exits the separator and contacts fresh water inlet resulting in the second stage

of extraction followed by separation. Lean DCM flows out the outlet of the second

separator while water with DMF flows out the outlet of the first separator.

bP
1  

P1
nuiFi in

DMF in
DCM DMFin iDCM
DM

water

Water

IF in
ter

P6

r5

lean
DCM

lean
DCM

(a) (b)

Figure 4.2 Countercurrent extraction arrangement with two stages (a) without in-

line pump (b) with in-line pump.

In order to maintain the indicated flow directions, a positive pressure gradient is

needed in the direction of flow. Thus, for the aqueous outlet from the bottom separator to

form two phase flow with the organic feed, a necessary condition is

PI>P2 (1)

Similarly, for the two-phase flow to flow into the separator, and organic flow to flow

out of the organic outlet, the necessary condition is

P2>P3 (2)

The necessary condition for the organic outlet from the top separator to form two-

phase flow with the fresh aqueous feed is

P3>P4  (3)

These three conditions, taken together, imply

PI>P4 (4)

0I+n
uvnlrl ii



A necessary condition for the aqueous flow from the outlet of the second separator to

the inlet of the first separator is

P4>PI (5)

This condition is the exact opposite of the one in (4). Hence, as shown in Figure

4.2(a), the flow direction forms a loop in a gridlock with no flow at steady state. This

gridlock can be broken by the introduction of an in-line pump as shown in Figure 4.2(b).

The pressure gradients in the modified system are given by-

PI>P2

P2>P3

P3>P4 (6)

P4>P 5

P6>P5

P6>PI

These conditions are consistent, and result in flow in the intended direction, thus

proving an in-line pump is necessary for countercurrent multistage extraction in a

modular system using independent separators as shown in Figure 4.2. The experiments on

multistage extraction discussed in this chapter were performed using the in-line pumps

developed in chapter 3.

4.3 Countercurrent and cross-flow extraction

Figure 4.3 shows a schematic of the two-stage countercurrent extraction setup with

the in-line pump. The in-line pump design presents the option to perform the multistage

extraction as either a countercurrent or a cross-current extraction. Say, the right enclosure

is primed with the same fresh aqueous feed that is also the inlet to the second separator. If

there is no switching of enclosures, all flow out of the pump is from the right enclosure,

while all flow in is in the left enclosure. This state of operation is possible only as long as

either the left enclosure floods or the right enclosure runs dry. For a 20 tl1/min flowrate,

the length of time the pumps can be run without switching is 2 minutes for the 40 jil

enclosure, and 500 minutes (8 hours, 20 minutes) for the 10 ml enclosure. In this manner

of operation, the aqueous stream in both separators is fresh feed providing the maximum



driving force for extraction. This manner of operation is cross-flow extraction, and

schematically shown in Figure 4.4(a). Cross-flow extraction is used when the extractant

(water in this case) is plentiful, and the main aim is to remove as much solute as possible.

When operated with switching of the enclosures such that the net flow in is the same as

the net flow out, the in-line pump can be used indefinitely. In this mode, the aqueous

outlet from the bottom separator flows through the pump and contacts the fresh organic

feed, resulting in counter-current mode of operation. The startup of this setup, like any

other continuous operation startup needs priming, and takes at least four volume sweeps

before reaching steady state. Once the concentration of the sample in the pump

enclosures becomes the same as that of the aqueous outlet from the bottom separator, the

mode of operation is countercurrent, and independent of the switching frequency.
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Figure 4.3 Schematic of the two-stage multistage extraction
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4.3.1 Governing equations for Cross-flow extraction

Let y represent the mole fraction of solute in the extracting phase (aqueous), and x

represent the mole fraction in the extracted phase (organic). FD and Fs are the molar

flowrates in the organic and aqueous phase, as shown in Figure 4.4(a). For each stage, the

molar flowrates are known, as are the inlet concentrations. The two outlet concentrations

are the two unknowns. The equilibrium relationship (y=Kx - it is assumed linear for

simplicity, could be non-linear as well) and mass balance are used to estimate the two

outlet concentrations. Thus, for two stage cross-flow extraction, the equations are-

Yl = Kx,

FDx o + FsYl,i, = FDx + Fsy,

y2 = Kx2

FDx I+ FsY2,in = FD 2 +FSY 2

These equations can be solved analytically to yield the theoretical outlet

concentrations after each stage. They can also be solved graphically using the McCabe-

Thiele method as shown in Figure 4.4(b). The operating line has slope, -F Knowing

yi, i,, and xo, the outlet concentrations after each stage are estimated93

Fs 1 n I Y2,in
FD X0  Xl X2

Y1 Y2
(a)



x2 XX Xo X
(b)

Figure 4.4 (a) Schematic and (b) graphical representation for two stage cross-

current extraction.

4.3.2 Governing equations for Countercurrent extraction

The schematic of two-stage countercurrent extraction is shown in Figure 4.5(a). The

equilibrium relationship and mass balance for each stage are used to estimate the

unknown concentrations. For two stage countercurrent extraction, the equations are-

YI = Kx,

FDxo + F 2 =FDX, + Fsy

Y2 = Kx2

FDXI+ FsY3 = FDX2 + FsY2

These equations are solved analytically to yield the theoretical outlet concentrations

after each stage. To solve graphically using the McCabe-Thiele method as shown in

Figure 4.5(b), the operating line has slope, F . These methods assume negligible

solubility of the immiscible phases in each another. When the mutual solubilities are non-

negligible, the ternary diagram with tie lines is used to estimate the concentrations of the

outlet streams.



FD Xo

Fs V.7

Xl

4-- V
J I '

y

x, y V
"Z1 "'1

(b)
Figure 4.5 (a) Schematic and (b) graphical representation for two stage cross-

current extraction.
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4.4 Experimental

The multistage extraction setup used two two-phase separators described in chapter 2

and the in-line pump described in chapter 3, with the extraction schematic as shown in

Figure 4.3. The flowrates were varied from 1-30 pl/min. The startup of the extraction

required priming all the separators and pumps with liquids that would be running in the

respective sections of the setup at steady state. Thus, the organic outlet of the separator

was filled with the organic phase, and the aqueous outlet with the aqueous phase. Initial

tests were performed using syringe pumps, but all experiments for countercurrent

extraction were performed using pressure driven flow, as the syringe pump oscillations

caused irregular two-phase flow, and introduced disturbances to the flow constancy and

pressure distribution. The residence time for two-phase contacting that resulted in

extraction varied from 10 to 15 minutes. The overall system volume, including all

devices, tubing and attachments, was about 1-2 ml. At a flowrate of 20 tl/min, for a

system volume of 2 ml, four complete volume sweeps required about 6 hours. For all

experiments, data was collected after 6 hours to ensure collected data was from the steady

state operation. Data gathered up to one hour after the initial 6-hour period showed no

significant or systemic differences confirming the 6-hour wait was long enough to let the

concentrations reach steady state of operation. The concentrations varied initially because

of mixing with the primed fluid already in the lines. Fluidic priming was necessary to

maintain the pressure differences required for the separators to work. If the separators

fail, they do not self correct, but the system keeps shifting away from the desired state of

operation. Consider, for example, if the lines have air to start with initially, the aqueous

side outlet would offer significantly less backpressure because of the lower gas viscosity,

causing the organic phase to flow out the aqueous side. With the system time constant

being of the order of hours, any corrective action taken does not take effect immediately.

Air bubbles, if present in fittings/tubing during startup offer similar destabilizing effect

on the system. Therefore, all liquid phases were degassed before experiments and the

whole system was primed to ensure trapped gas bubbles were minimized. Figure 4.6

shows the actual experimental setup with an in-line pump on both, organic and aqueous

lines. Providing in-line pumps on both lines makes the system more robust and easier to



control, as the pump decouples the system into two independent sections and prevents

propagation of disturbances downstream. Providing these pumps also keeps the system

scalable to multiple stages of extraction, well beyond two or three.

Figure 4.6 Photograph of the multistage extraction setup. The two separators were

machined from stainless steel with a fluoropolymer membrane sandwiched between

the two flow channels. In this experiment, in-line pumps were used on both, organic

and aqueous lines. Two in-line pumps used four enclosures. Two additional

enclosures were used to flow in the aqueous and organic feeds using gas pressure,

while two more enclosures were used to collect the aqueous and organic outlet

streams. Two Burkert three way rocker type solenoid valves and one Lee three-way

solenoid were used per pump. The Burkert valves were used on the liquid lines as

they are chemically compatible with most organic solvents. The Lee valve was used

on the gas-side to control the switching between enclosures. A function generator

was used to switch the states of the Lee valve. Details of the individual components

are provided in Appendices D and E



As seen from the figure, there are three distinct parts that make the system -

Electrical, Fluidic and Pneumatic. While all liquid flow takes place in the fluidic lines,

the pneumatic lines are used to provide pressure, and the electrical lines are used to

power the valves, and flowmeters.

When the syringe pump was being used, at very low flowrates (1-5 pl/min), periodic

flow oscillations from one-phase to two-phase flow were observed. Referring to Figure

4.3, the oscillations were seen in the two-phase region where the fresh organic feed from

the syringe met the aqueous flow from the pump. As the two immiscible phases met, and

formed two-phase flow, the pressure drop in the two-phase region increased because a

two-phase flow offers higher pressure drop than either single phase' 03. The important

feature of this system was that the in-line pump flowed at constant delivery pressure,

whereas the syringe pump works by volume displacement, hence provides constant

flowrate, adjusting for required pressure to deliver the flowrate. So as the two-phase flow

was formed, the pressure drop increased with each new droplet addition until the pressure

drop became so high that the aqueous side stopped flowing being unable to provide

increased pressure. A single phase organic flow was observed after about 20 drops of

two-phase flow were formed. As the two-phase flow reached the separator and got

separated, the pressure drop reduced, starting the aqueous flow, and resuming the two-

phase flow pattern. This oscillation between two-phase and single-phase flow was a

result of comparable surface forces (that determine two-phase pressure drop) with the

pressures existing in the system due to flow (a result of the flowrate set point), along with

the uniqueness in the system in that of the two flow drivers, one was constant volume, the

other at constant pressure. It is difficult to predict the pressure drop in two-phase flows as

it depends on a number of factors - flow regime, wetting characteristics, impurities.

Previous work94-99 on simple model systems showed the complexity and uncertainty in

multiphase microfluidic modeling. Attempts to numerically model the oscillations to

compare with the experimental observation along the lines of previous work was found to

depend on a number of assumptions, and resulted in being too involving. It is possible,

however, to construct simpler systems to study just the flow oscillations if the aim is to

glean more insight about two-phase flow behavior at the microfluidic scales. For



multistage extraction experiments, the system was made immune to disturbances, and

physics of multiple forces by i) replacing syringe pumps by pressure driven flow, thus

removing flow disturbance source ii) providing in-line pumps in both, organic and

aqueous lines iii) collecting outlet streams under pressure that could be tuned as an

additional handle to control the pressure gradients along the system. Removal of the

syringe pumps got rid of the single and two-phase oscillations and provided steady,

regular two-phase flow.

Experiments using the microdevice (discussed in detail in chapters 3 and 8) as

enclosures for the pump over long times showed that an active level control system was

needed to prevent the small enclosures from flooding or running dry. Any small error in

measuring flowrate adds up over time resulting in actual volume in the enclosure being

different from the one measured using integrated flowrate values over time. There are

also other disturbances such as tiny air bubbles that introduce challenges in operating

small enclosures for prolonged time periods. Use of the larger enclosures provided

enough time for accumulation or depletion without any enclosure running dry or

flooding. The larger capacity also allows a large run time after steady state is achieved.

The large scale system can be reliably run for multiple days without any decline in

performance. Extraction using large enclosures uses long switching times, has longer

startup times because of greater volume, and is suitable for use in cross flow and

countercurrent extraction modes, while the microchips use short switching times, have

shorter startup times and can be used countercurrent extraction, but not for cross-current

as a result of the lower volumes.

4.5 Results

The results after extraction of DMF from DCM into water after two stages of

operation are shown in, and depicted graphically in Figure 4.7. The results confirm two-

stage countercurrent extraction, as the amounts extracted are very close to the two-stage

theoretical expectation. In most experiments, the extracted amounts were slightly less

than 100% of theoretical, while one reading was over 100%. These differences are a



result of the small errors in estimating flowrate for the organic phase by measuring

volume in a given amount of time. As the flowrate was needed to be kept constant, the

volumes were measured in short time intervals resulting in the small uncertainty in

flowrate.



Table 4.1 Multistage extraction results

COUNTERCURRENT EXTRACTION

Total

extraction as
Concentration in

Flowrate Concentration at the outlet a percentage
Phase feed

([l/min) (mole percent) of
(mole percent)

theoretical

expectationa

Experimental Theoretical

Organic 13.87 5.6845 0.6546 0.6043
Run- 1 99.01

Aqueous 25.22 0.0000 No Data 0.7940

Organic 24.90 4.4299 0.3465 0.6199
Run-2 107.17

Aqueous 37.35 0.0000 0.7369 0.7998

Organic 13.35 3.9976 1.0034 0.9544
Run-3 98.39

Aqueous 13.35 0.0000 0.6790 0.8687

CROSS-FLOW EXTRACTION

Total

extraction as
Concentration

Flowrate Concentration at the outlet a percentage
Phase in feed

( (Pl/min) (mole percent) of
(mole percent)

theoretical

expectation
- -i 4

Experimental Theoretical

Stage- Organic 5.00 4

1 Aqueous 3.06 0

Stage- Organic 5.00 2

4350 2.3620 2.8048

4261 0.9070 1.0871
96.91

3620 1.0540 0.9460

2 Aqueous 5.00 0
a Total extraction as a percentage of

theoretical expectation

'.(0000 0.3641 0.3667

total change in organic concentration

expected theoretical change in organic concentration
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Figure 4.7 The results from multistage extraction shown on a McCabe-Thiele

diagram. The theoretical stages are marked off, while the blue dots represent final

experimental concentrations.
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4.6 Discussion and Conclusions

The extraction result is scalable to many more stages when an in-line pump is used

after each stage for both the phases. It is the microscale equivalent of the feed-charge

pump common before each unit operation at large scale continuous operations. As with

all continuous operations, the startup takes time, but the system is robust in operation

once steady state is reached. The system can be easily integrated with reactions upstream

or downstream - not possible if syringe pumps were used. Initial materials issues were

solved by using chemically compatible three-way valves from Burkert Fluid Control

Systems. Interesting systems engineering challenges were met with and the observed

phenomena could be studied further. Further development of the system could involve

adding automated control systems and level monitoring for the flowrates, and new

generation chip design that integrates most of the tubing, valves, and enclosure volume to

provide a more elegant multi-stage system.

The system demonstrated for multistage extraction is much more robust than previous

work as it provides a larger operation regime, and the ability to add multiple stages. The

level of electrical and fluidic connections is relatively simple compared to the work of

Quake1 oo that interfaces gas lines with fluidics and electrical connections. The multiple

stages were enabled by the inline pump, and resulted in extraction beyond the single-

stage equilibrium. The system provides the opportunity to transfer a solute almost

entirely from one phase to another opening the door for multi-step chemical reactions

involving different solvents.



5 Recirculation in Microchemical Systems

5.1 Introduction

As seen in chapter one, a number of chemistry examples have been performed in

microreactors. These examples have helped to demonstrate the numerous advantages

microreactors offer over conventional synthesis methods. One common thing that stands

out among all examples is the time scale of chemical reactions - all are relatively fast

reactions that vary from a few milliseconds up to 30 minutes residence time in the

microreactor for appreciable conversions. Going over the advantages of microsystems, it

becomes obvious that fast reactions gain the most from a change in experimental

apparatus from conventional glassware to microreactors - hence, the preponderance of

fast reactions in microsystems! However, there are other reasons why mainly fast

reactions have been used in microsystems-

i) Fabrication ease

The simplest microreactor is a straight channel about a few centimeters in length

providing enough residence time for appreciable conversion for only the fast reactions.

Advanced designs with turns in channels for larger residence times, and modifications

over straight channel configuration to maintain good mixing are needed to provide larger

volume microreactors. Designing such microdevices requires knowledge of the

fabrication processes. When designs start getting advanced, they also start becoming

specialized for certain types of chemical applications. Most microreactor users are

chemists who prefer having generic microdevices for a wide range of applications. As a

result, most microreactors found in literature are relatively simple designs running fast

chemical reactions.

ii) Pressure drop

The simplest manner of increasing residence time for a given flowrate in

microdevices is to have longer channels. However, this approach leads to increased

pressure drop. As pressure drop scales as the fourth power of the channel diameter,

microdevices already present increased pressure drop, which becomes difficult to manage

with longer channels. These issues become a significant challenge while handling packed



bed reactions - where catalysts or solid support materials are loaded in the channel with

the void fraction providing the flow path. As a result of the difficulty of managing large

pressure drop in microsystems, most examples found in literature deal with simpler

configurations that provide lesser residence time appropriate for fast reactions.

As the microsystems community moves forward from single demonstrations to

multiple unit systems, the effort is to miniaturize all reaction systems - whether or not

they have fast reactions. There is a strong effort in industry to move to continuous

manufacturing at all scales of operation. When production requirements are small in

continuous systems, as is the case at the research level, the system is inherently a

microreactor. The continuous microreactor systems present easier and faster scaleup for

large scale production along with other cost savings, such as possibilities to perform

processes very differently.

Thus, there is a need for microsystems that can handle reactions with large residence

times, but few such systems exist. In this chapter a system capable of performing long

residence time reactions is presented. The developed microchemical system recirculates

flow to increase the residence time, permitting slower reactions to be studied in

microreactors without much increase in flow pressure drop. Flow recirculation was

performed by pumping the microdevice outlet stream back in the inlet of the microdevice,

thus increasing the residence time. Microscale fluid recirculation has been performed

earlier, and was used to concentrate a solid phase capture agent by circulating a solution

round in a loop. Microscale valves, fabricated using soft-polymer lithography were used

to enable the recirculation by Quake"'. As discussed in chapter 3, this manner of

pumping fluid is not applicable for general chemical synthesis for the reasons of chemical

incompatibility of soft polymers with most organic solvents, the narrow range of

flowrates achievable, and lack of constancy of flow. The method presented in this chapter

uses the pump developed in chapter 3 and overcomes all these disadvantages.

5.1.1 Batch versus Continuous

A truly continuous system is shown in Figure 5.1. A simple approach to increase

residence time is shown in Figure 5.2, where multiple units are added to increase

residence time. The approach used in this chapter is more like Figure 5.3, where the



outlet is pumped back as the inlet to increase residence time. Depending upon the

concentration and reaction types, there are four distinct possibilities-

1) Reaction only in chip

2) Reaction everywhere

3) Cout,n-I = Cin,n

4) Cout,n-1l - Cin,n

When the reaction takes place only in the chip, and Cout,n-1 = Cin,n, systems shown in

Figure 5.2 and Figure 5.3 are identical after four passes of the reactor. The system in

Figure 5.3 is still a batch system as there is no overall inlet and outlet, but the reaction

chip operates in a continuous flow manner. It is possible to make the system continuous

by adding an inlet and an outlet stream to the system shown in Figure 5.2, in which case

the recirculation would provide recycle, and based on recirculating and outlet flowrates,

different recycle ratios could be achieved. No recycle would mean a plug flow operation

while very high recycle ratios would imply a CSTR-type operation.
.. V...F..... 1

F
'I

V

Figure 5.1 Generic microreactor

1 "[1 T1 T1

C, C2
AP

C4
C5

Figure 5.2 Increased residence time by addition of microreactor units

---~---------- __



Figure 5.3 Recirculation using pump

5.2 Recirculation Setup

5.2.1 Description

The inline pumping technique used gas pressure from a high pressure gas source and

involved no moving parts. The pressurizing principles are the same that were developed

in chapter 3. The flow recirculation system involved three enclosures - El, E2 and E3

connected in cyclic fashion to form the recirculation loop, with the microdevice between

El and E2, which were kept at constant pressures, Pt and P2, respectively, in order to

maintain constant pressure drop, hence a constant flowrate across the microdevice.

Pressure in E3 was varied periodically using a square-wave profile with the higher

pressure as P3 and lower as Pa (atmospheric ambient pressure), such that P3>PI>P2>Pa, to

enable the flow recirculation. When the valve is closed, liquid from El flows to E2

through the microdevice at a constant flowrate, and then from E2 to E3. When the valve

is open, liquid flows from E3 to El, completing the loop. The frequency of valve opening

and closing depends on the flow resistances between E2 and E3, and E3 and El. Usually,

these resistances are kept same, in which case, the valve is open half the time and closed

the other half. The flowrate though the microfluidic device remains constant as the

pressure drop (PI-P 2) is held constant. If the flow resistance in the device changes with

time (as when the microdevice is a packed bed catalytic reactor), flow sensors can be

attached and feedback control as described in chapter 3, can be used to maintain constant

flowrate by accordingly adjusting the enclosure pressures. This method of recirculation



uses either silicon microdevices as enclosures or glass vials as discussed in chapter 3 -

both materials excellent in their chemical compatibility with most reagents. The flowrate

in this system remains very constant as shown in the next section, and by varying the

pressures Pi and P2, a large range of constant flowrates are achievable in the loop. Similar

to the demonstration of the inline pump in chapter 3, the recirculation experiments were

performed using enclosures of two scales - i) 10 ml scale, and ii) 40 jtl scale.

Microdevices described in chapter 3 were used as enclosures for (ii), while shell glass

vials with pressurized manifold were used for (i).

AP = P1 - P2 = constant

2

P3 > P1 > P2 > Pa

Figure 5.4 Design of the constant recirculating flow system. The solid arrows

represent one-way valves. P1 and P2 are the steady state pressures achieved in

corresponding enclosures using the system described in chapter 3. The on-off valve

on the third enclosure is periodically switched, and the pressure inside the enclosure

is P3 when the valve is open and Pa when it is closed. When the active valve is open,



fluid flows from the third enclosure to the first and from the first to the second,

through the microfluidic device, following the pressure gradient P3 > Pt > P2. When

the active valve is closed, fluid flows from the first enclosure to the second through

the microdevice and from the second to the third, following the pressure gradient P1

> P2 > Pa.

5.2.2 Governing equations

Let VI, V2 and V3 represent the volumes of the liquid-free space in enclosures 1, 2

and 3 respectively. Let RD, R. and Rp represent the fluid flow resistance between

enclosures 1 and 2 through the device, between enclosures 3 and 1, and between

enclosures 2 and 3 respectively. RI, R2, R3, R4, R5 and R6 are gas-side flow resistances as

shown in Figure 5.4. Po (for i=1-3) represents the constant high pressure for the three

enclosures. There are six variables - the three pressures in the enclosures and the three

flowrates; and there are six equations that determine these values as a function of time in

the two cases - when the valve is open, and when it is closed.

dV P-P
The flowrate out of enclosure 1 ( ' ) is the difference between flow out ( )

dt RD

and flow in ( ). The pressure, PI in the enclosure is given by the solution of a mole

balance differential equation on the gas side explained in section 3.10 of chapter 3. Using

these balances, the governing equations are-

When valve open, (P3 is high, P3> PI > P2)



When valve closed, (P3 is

d V P - P P3 - P
dt RD Ra

dt RD
dV3 _ P-,
dt Ra

1 d(PIV 1)_ PO' - P - Pa
RT dt R1  R2

1 d(PV2) _ P - P2 P ~-a
RT dt R3  R4
1 d(P3V3) Po3 - P3 P3 -Pa

RT dt R, R6

low (=Pa), PI > P2 
> P3)

dVJ _ -P
dt RD

d V2 _ -P P2- P
dt RD Rp
dV3 P_-P3
dt RP

1 d(PIVJ) Po- P  P,-Pa
RT dt R, R2

1 d(P2 V2) _ P2P P -Pa
RT dt R3  R4

1 d(P3V3) P3_-P
RT dt R6

8,uLM Pas.m.kg / mol 8yuLM Pa
D = r4p m4kg/m 3  rr4p mol/s

As shown in chapter 3, pressure driven flow provides constant and steady flow after

the pressure in the enclosure is fully developed. In the recirculation setup, as enclosures 1

and 2 are kept at constant pressure, the flowrate through the microdevice remains

constant. The only time when this constancy is affected is when the valve on the gas side

on enclosure 3 is toggled leading to a change in governing equations. The equations

above were used to simulate the change in constancy. Figure 5.5 shows that substantial



constancy of flow can be achieved when the gas side resistance is made small enough

that the time scale for pressures to adjust to changed conditions is much smaller than the

time-scale for flowrates to readjust.

^x 104

ct,
0
cc
a..40.v

"a.)
.o .2

2 Q= .2
n2

ca2

CO=2o€o

"A IA 1 20 25 30 35
Time (seconds)

(a)
X 104

a)
h,

ooiI 4F

2o .2
>1

ý E 0)to3tC)

ca)2-
2
0Cu

o 5 10 15 20 25 30 35 40
Time (seconds)

(b)
Figure 5.5 Constancy of flow as a function of leak resistance on the gas line. The

difference between the two graphs is that Rlthrough R6 are lower by a factor of 16

in (b) compared to (a). Tubing used to provide the resistance was 500 micrometer

diameter instead of 1 millimeter diameter in (a) leading to a sixteen-fold reduction

in resistance. The governing equations discussed in 5.2.2 were used in a MATLAB

program to generate these graphs. The MATLAB program is presented in the

Appendix B
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5.2.3 Constancy of flow

The constancy of flow was experimentally observed in the setup shown schematically

in Figure 5.6. These figures will be explained in more detail in the section on peptide

synthesis; for this section only the fluidic design is relevant. High pressure gas source

from PA and PB resulted in pressures PI, P2 and P3 in the three enclosures. The flowrate

through the two microdevices was measured by adding an inline Sensirion flowmeter (not

shown in the setup). The tubing lengths and diameters used were calculated to provide

specific resistance values so that the model discussed in 5.2.2 could be verified. The

detailed design calculations along with the lengths, diameters, and physical constants are

presented in the Appendix B. The observed flowrate is shown in Figure 5.7. Two things

stand out from this graph - the flowrate is very constant, and the constant value is very

close to the designed value of - 8.5 tl/min. These confirm the model used to design the

flow recirculation, and show that very constant flow can be obtained.

Figure 5.6 Schematic of flow recirculation set-up
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Figure 5.7 Study of flow constancy for the recirculation system shown in Figure 5.6

5.3 Chip design and fabrication

The recirculation system developed earlier in this chapter is a tool to provide longer

residence times and hence, the ability to study slower reactions. It also has the ability to

provide large pressures to overcome high pressure drops in the system. Packed-bed

reactions in a microreactor tend to fall in this category - they are slow and packed bed

reactions tend to offer increased pressure drop. The synthesis of peptides using the solid

phase Merrifield techniques are an example of such reactions - the reaction times vary

from 50 to 60 minutes, and the solid support increases in volume during reaction, up to

double the initial volume or more depending on the size and type of peptide being grown.

Preliminary test experiments for peptide synthesis were performed using standard tubes

with a frit and ferrule at the outlet to prevent solid support from flowing. These tests

showed the increase in solid support volume happens along all directions leading to

partial blocking of the tube and presenting very high pressure drops. Therefore, use of

microchips used for previous demonstrations of packed bed reactions such as

hydrogenation was ruled out. The increase in solid support volume is a result of i)

swelling of the organic matrix of the solid support ii) physical growth of the peptide

chain length on the bead. Attempts were made to use inorganic silica beads
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functionalized with organic linkers to act as peptide synthesis supports. However, silica

functionalization led to poor surface coverage uniformity - only small islands on the bead

surface got functionalized, which was inadequate for peptide growth as with increasing

chain length, steric issues emerge. In addition, silica bead use only could solve half the

volume increase challenge - the increase due to peptide growth would have still existed.

Therefore, new silicon-based microchips were fabricated that permit volume change of

the packed solid phase and were used for the peptide synthesis using flow recirculation.

As shown in Figure 5.8, there is a large cavity of 650 ipm depth with a shallow 50[tm

deep bank of 50 pim wide capillaries at one end. The outlet was on the other side of the

bank of capillaries. The small feature size at the outlet served as a filter to prevent beads,

usually 100 ptm in diameter from flowing out. The large cavity allowed for increase in

volume when packed partially.

Figure 5.8 Photograph and schematic of microchip and packaged microdevice.

Design details are provided in the AppendixC.

Having developed a recirculation system that provided constant flowrate, and

microdevices capable of handling solid phases with variable volume, two different model
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heterogeneous systems were demonstrated - one used solid phase to grow product, other

used the solids phase as catalyst.

5.4 Peptide Synthesis

5.4.1 Packed bed protein synthesis

Peptides are important biological polymeric compounds that have amino acids as

their basic building blocks. Their immense importance in biological research imparts

significant value to their synthetic production techniques. So important; that Robert

Bruce Merrifield was awarded the Nobel Prize in Chemistry in 1984 for the invention of

solid phase peptide synthesis techniques. Today, most peptide synthesis is performed

commercially in Applied Biosystems' Peptide Synthesizer machines that improve upon

the process invented by Merrifield. Most previous effort towards peptide synthesis in

microreactors has been by the research groups of Watts0 •102, and that of Gulari03-106

The Watts' approach uses homogeneous solution phase chemistry to couple individual

amino acids to form peptides. While this has been one of the first attempts at peptide

synthesis in microreactors, peptide lengths attainable are limited, and the yield drops with

increasing size. In general, all challenges with general homogeneous phase peptide

synthesis apply to their work. The approach of Gulari has been to use functionalize

silicon surfaces with bridging groups and use non-conventional methods such as optical

activation to perform peptide coupling reactions. While these are promising approaches,

they further the 96-well batch synthesis methods, and fail to capitalize on the continuous

synthesis advantages that the commercial Applied Biosystems synthesizers utilize.

In this approach, the recirculation setup was used to achieve continuous flow peptide

synthesis on a packed bed of polymeric matrix inside microchips along the lines of

modified Merrifield synthesis methods. The recirculation was demonstrated at two scales

of enclosures - 40 microliter and 10 milliliter to achieve flowrates up from 1 jl/min to

several ml/min. The chemistry involved successive steps of deprotection of amino acid

on the matrix, activation and addition of new amino acid, and washing to grow the

peptide chain, followed by cleavage of the final peptide from the resin. The typical

coupling times (30-50 minutes) were more than what most microdevices provide, hence

the recirculation system was used to increase the residence time. The large volume
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microdevices allowed for manageable pressure drop even with supports that swell during

synthesis. The system design allowed for multiple different peptide syntheses

simultaneously, and the small scale of operation permitted synthesis of very small

amounts of peptides - sizes comparable to what most experiments require.

5.4.2 Peptide synthesis -Process Chemistry

In its simplest form, peptide synthesis of size n requires n-1 coupling reaction steps.

Say A, B, C...represent amino acids, then formation of the peptide A-B-B-C-B, involves

reacting A with B to form A-B, separating excess A and B from A-B, and then reacting

the separated A-B with the next amino acid, B to form A-B-B...and so on. If the

separation efficiency at any step is not 100%, the impurities build up in the system

leading to a progressively decreasing yield of desired products. Furthermore, the

reactants need to be protected at all but one reactive group in the amino acid to prevent

self -couplings, and multiple couplings. The method just described is the homogeneous

phase synthesis, and does not work well for long peptide chains due to exponentially

diminishing yields. The method invented by Merrifield used a solid phase to immobilize

the first amino acid. The use of heterogeneous synthesis greatly improved yields and

allowed synthesis of many long chain, and biologically relevant peptides. The initial

method used Boc chemistry or (t-Boc for (t)ert-(B)ut(o)xy(c)arbonyl) for protection of

the amino group. Present day methods use Fmoc (9H-(f)luoren-9-

yl(m)eth(o)xy(c)arbonyl) The supports are generally made of polystyrene resin. The

general heterogeneous synthesis procedure is described in Figure 5.9.

Leuenkephalin, a type of endorphin has the structure Leu-Phe-Gly-Gly-Tyr. This

peptide was synthesized using the system showed in Figure 5.11, where there were two

chips in the synthesis line used two different types of beads, having different loadings of

the first amino acid- Leucine. The system is scalable to many chips in line, and can be

used to synthesize different peptides at the same time by using jumpers to skip a chip

while circulating an amino acid not in sequence.

5.4.3 Experimental

Leu-Enkephalin has the sequence NH2-Tyrosine-Glycine-Glycine-Proline-Leucine-

COOH. The recipe used for its synthesis started with commercial Fmoc protected resin
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with the starting amino acid, leucine preloaded. The supports used were Applied

Biosystems' HMP polystyrene resin (Fmoc-L-Leucine-HMP Resin # 401424) having

Leucine loading of 0.52 mmol/gm, and Novabioschem's TGA tentagel resin (Fmoc-Leu-

NovaSyn® TGA Cat.# 04-12-266), having a loading of 0.24 mmol/gm. Approximately 1-

2 mg beads were loaded in the microdevice and were swelled by flowing DMF for I

hour. The Fmoc protecting group on Leucine was removed by circulating 20% piperidine

in DMF for 5 min, followed by washing with DMF for another 5 minutes. 5 ml

HBTU/HOBt (0.5 M in DMF) (HBTU = 2-(1H-Benzotriazole-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate, HOBt = Hydroxybenzotriazole) were mixed

with 5 ml Proline (0.2 M in DMF) along with 700 microliter DIEA (N,N-

Diisopropylethylamine), and this mixture was circulated for 20 minutes over the beads

for the amino acid coupling reaction. This was followed by washing with DMF for 5

minutes, and repeating the steps of deprotection, washing, coupling and washing till all

the amino acids were attached to form the desired peptide. Finally, 20% piperidine in

DMF was circulated for 5 minutes for deprotection of the Tyrosine and the beads were

washed with DMF. The support beads with the peptide were removed by flowing

dichloromethane in the reverse direction and treated with trifluoroacetic acid (TFA) for

complete removal of the peptide from the resin. The peptide was analyzed using Matrix

Assisted Laser Desorption Ionization (MALDI).

The analysis parameters are provided in detail in the Appendix B. After synthesis, the

resin was cleaved and analyzed at the MIT biopolymer lab. As shown in Figure 5.11, two

microdevices were used in the synthesis train simultaneously. They had different starting

resins, Applied Biosystems' HMP polystyrene resin (Fmoc-L-Leucine-HMP Resin #

401424) having Leucine loading of 0.52 mmol/gm, and Novabioschem's TGA tentagel

resin (Fmoc-Leu-NovaSyn® TGA Cat.# 04-12-266), having a loading of 0.24 mmol/gm.
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Basic Steps in Solid Phase Peptide Synthesis Using Fmoc-Chemistry

Incoming amino acid with Y
side-chain protecting group

HH O

Fmoc-N-C-C-OH + Activator

2II n b~~lr

(Ex. F

HH O

Fmoc-N-C-C-Act

Y

Resin Pre-loaded with first amino acid
with X side-chain protecting group

H O
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HI
m-] 1 l
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H Q
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Figure 5.9 Generalized heterogeneous peptide synthesis procedure
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C)
Fmoc-Phe-OH HOBtHB- Fmoc-Phe-Act + HLeu-O g Fmoc'Leu-O

(Activator)

Fmoc--Gly-OH -HOBtHB Fmoc-Gly-Act + HPhe-Leu-O- 1 Fmoc- Phe"-Leu- O
(Activator)

DMF

Fmoc-Gly'Phe-Leu'O • HGlyPhe-Leu- + FmocGlyAct HBTU Fmoc--Gly--OH

(Activator)

DMF

pU HOBt/HBT IBu  
_

Fmoc-Tyr-OH Fmoc-Tyr-Act HGly-GlyPhe-Leu-O- Fmoc-Gly Gly-Phe--Leu-O

iDMF

IBu N F3C OH
Fmoc-TyrG ly Gly" Phe- Leu-O "HT rG I-GIGIy Phe-LeuO - HT r GlyGly" Phe-Leu OH

But But

Figure 5.10 Reaction steps for the synthesis of the pentapeptide Leu-Phe-Gly-Gly-Tyr (Leuenkephalin, an endorphin

sequence) using the Merrifield Solid Phase Synthesis scheme.
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Figure 5.11 Peptide synthesis system with two chips simultaneously using different

solid supports for the synthesis.

5.4.4 Results

Figure 5.12 shows the pictures of the two chips after each coupling step. The increase

in volume observed is due to the growth of the peptide chain on the support. During

cleavage, all protective groups come off the peptide. Leuenkephalin's molecular weight

is 505. Leukenkephalin is a negatively charged peptide, and therefore it finds common

positive ions such as hydrogen, sodium and potassium to bind. These counter-ions add to

the molecular mass and show up on the results of the two microchips, shown in Figure

5.13 as additional peaks. The MALDI results demonstrate successful synthesis of
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Leuenkephalin because the desired peptide synthesis is confirmed without any side

product formation.

(a) b)

Figure 5.12 (a) Packed bed for both the microchips after loading and swelling the

beads but before starting the peptide synthesis. It shows some areas that are free

and not occupied by the beads. (b) Packed bed after peptide synthesis. Note that the

bed has expanded to cover the free volume available before.
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Figure 5.13 MALDI results confirming presence of the desired peptiae. reaK at ~Uo

mass is desired product. Peaks at 507, 528 and 544 mass show association with H+,

Na + and K+.

5.5 Click Chemistry

The "click chemistry" 10 7 112 is an example of a popular synthetic step in the

manufacture of important chemical compounds that have pharmaceutical relevance. The

packed bed reactor described earlier in the chapter was used to demonstrate the click

chemistry reaction for synthesis of triazoles. This work was performed in collaboration

with Eamon Comer and Sarathy Kesavan from the Chemical Biology Platform at the

Broad Institute, along with Jonathan McMullen.

5.5.1 Chemistry

As shown in Figure 5.14, the click chemistry comprises of the triazole ring formation

from the azide and triple bond. The experiments performed in this study were Cu(I)

catalyzed, shown in Figure 5.15. The catalyst (Figure 5.16) was solid phase polystyrene
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resin with Cu immobilized along with basic groups required for the reaction. The desired

product was the result of the intramolecular reaction while the dimers formed as a result

of intermolecular reaction (Figure 5.17) were undesired. The two substrates studied are

shown in Figure 5.19.

H oc
PMBO N Boc

Me TBSO Me

N3

Nz 3 OH Me
O Me :N " Boc

PMBO NNBoc

Me TBSO Me

"Couple"

Ru-catalyzed cycloaddition
(1,5 triazole)

ye
N,

I Boc

PMBO

N=NN --N
N

12
O N O Me

Me "NBoc

Me

MeMe Cu-catalyzedcycloaddition

PMBO (1,4 triazole)

"Pair"
Figure 5.14 Triazole formation using click chemistry

N3

,NN

Me

Boc 0 N (R) N-BOC

(R)

OPMB

Figure 5.15 Reaction studied in this work

.f >Me2 m

CuPF6

PS-CuPF 6
Figure 5.16 Solid phase Cu(I) catalyst used for the experiments
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Desired Reaction - Intramolecular Coupling

N3

<7 I/

Undesired Reaction - Intermolecular coupling

N3
U3N

Figure 5.17 Schematic representation of desired and undesired reactions

5.5.2 Experimental

The microdevice was prepared by crushed catalyst beads and sieving to get particles

between 250 ptm and 300 p~m size range. 62 mg of this sieved catalyst was loaded in

microchip having cavity volume of 118 p• by design. The catalyst density (p) was

measured to be 1 mg/tl, so the volume occupied by the catalyst particles was 62 pIl,

providing liquid volume in the packed region as 118 - 62/p = 56 Il. When the continuous

flow experiments were performed at a flowrate of 2 [pl/min (as in the temperature

studies), the reaction time for catalysis was 56/2 = 28 min. The packed bed microreactor

is shown in Figure 5.18.
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Figure 5.18 Microreactor with 62 mg supported Cu(I) catalyst packed., and solvent

(toluene).

,N N

C N- Me

Boc

M,,MeMe
OPMB

Substrate 1

N 3
0L o Me

N NBoc

rMee
OPMB

Substrate 2

PS-CuPF 6

PS-CuPF 6

Me

N-Boc

OPMB

N/z N

O Me

O N N•Boc

OPMBe

OPMB

Figure 5.19 Different substrates studied
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5.5.3 Results and Discussion

The solid-phase catalyzed reaction takes several hours on the batch scale. The

microsystem based method of reaction differed from the batch method in that the relative

concentration of catalyst was always higher in the microreactor experiment as only a

small amount of reagent saw the catalyst at any given time due to the continuous flow

mode of operation. Rates will also be higher if reaction is mass-transfer controlled

because the microdevices offer improved mass transfer rates compared to large scale

batch systems.

The advantages of using a continuous flow, packed bed plug flow microreactor over

stirred batch experiments was seen in experiments with substrate 1. Substrate 1 achieved

full conversion in about 16 hours in batch experiments at 60 oC. Microreactor based

experiments achieved similar conversions in a little over 2 hours, as seen in Figure 5.21.

The ease of performing multiple experiments quickly in microreactors was demonstrated

by performing temperature studies on a similar reactant, substrate-2 at temperatures from

50-110 OC. The results are shown in Figure 5.22. The continuous flow mode of operation

meant that performing new experiments only required changing the temperature set point,

and collect after 4 residence times to ensure steady state results. This is a big

improvement from batch systems that need to be completely replaced and restarted for

each new experiment. The faster rates in microreactors also help performing more

experiments in given time. The selectivity in the second set of experiments is higher

because the site concentration on the catalyst is lower. As seen in Figure 5.17,

dimerization requires two coupling steps, and hence two reaction sites. Lower site density

reduces the probability of dimerization, thus improving selectivity.

For future experiments, the recirculation setup could be used to operate at higher

flowrates to obtain higher production rates. The concentration measurements after each

loop would provide reaction kinetics data, as in a differential reactor. An alternative to

recirculation is to flow at very small flowrates to achieve same overall residence times -

the extreme example of this is the stop-flow experiments. However, these approaches do

not provide intermediate concentrations, hence kinetics, and the low flowrates fail to

capture the mass transfer advantages in microreactors that generally scale with increasing

flowrates.
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Entry Conditions Temperature Monomer/Dimer (conversion)

1 PS-CuPF 6  RT NR
Toluene, 0.01 M,
Residence time = 35 min
PS-CuPF 6
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Figure 5.20 Results from experiments with Substrate-i
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Figure 5.21 Results from experiments with Substrate-2

115

+ Dimers



5.6 Conclusion

The constant flow recirculation technique is advancement over other approaches as it

provides very constant flow for a wide range of flowrates. The development of

recirculation techniques has enabled long residence time reactions such as the peptide

synthesis and the click chemistry reactions. These are also the first demonstrations for a

growing bed microchip design that overcomes limitations of standard packed channels.

The microchip permitted synthesis of very small amounts of peptides, while the

recirculation system allowed simultaneous synthesis of multiple peptides on different

chips in the recirculation loop. The inline pump thus enabled study of new, interesting

and varied systems such as the solid phase peptide synthesis and the click chemistry.
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6 Multistep Synthesis with Reactions and

Separations

6.1 Introduction

Chapter 1 discussed in detail how microreactors enhance chemical synthesis through

advantages offered by continuous operation at small length scales in closed systems such

as reduced reaction volumes, enhanced heat and mass transfer, and protection from air

and moisture.5 24, 113-120 Typical chemical synthesis involves multiple reaction steps with

separations (work-up) between two successive reaction steps. However, the majority of

microchemical demonstrations have been limited to a single reaction step, 5' 24, 113-120

multiple reaction steps without intermediate separations, 12 '1, 122 or multiple steps with

solid phase capture and off-line work-up.44' 47 As an example of the latter, the first

demonstration of the complete synthesis of the natural product oxomaritidine used solid

phase reactants and capture as well as offline manual solvent switch.47 The total synthesis

of '8F labeled fluorodeoxyglucose in an integrated microfluidic chip built in

poly(dimethylsiloxane) (PDMS) combined five sequential steps: 18F ion concentration on

solid capture agent, water evaporation through the PDMS, radiofluorination, solvent

exchange by evaporation through the PDMS and replacement, and hydrolytic

deprotection in sequential sub jiL batch quantities46. These studies elegantly demonstrate

the potential of microreactors in multistep synthesis, but the need for integration of

continuous work-up with reactions remains. Solvent compatible microreactor systems

combined with separation units would allow continuous multistep synthesis ranging from

nanoliter to milliliter quantities with potential for scale-up to larger amounts through

parallel operation. Moreover, avoiding the use of solid phase capture agents reduces costs

and the need for replacing/regenerating the solid phase.

The dominance of surface tension forces over gravity in microfludidic devices 123

means that microfluidic extraction is typically based on immiscible fluid contacting.91' 92

By exploiting the laminar flow characteristics of microfluidic devices, extraction can be

realized by side-by-side contacting of immiscible fluids in co-current and counter-current

flow arrangements. 91 Such devices offer the potential for more than one equilibrium
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extraction stage, but often have relatively low interfacial surface area to microchannel

volume ratios with corresponding modest separation capacity (throughput) and in the

case of counter-current modest operating range. 51' 56-58, 61, 91, 124, 125 Phase separation in

these systems is usually achieved by having a small interfacial area to preserve sufficient

capillary pressure to counter balance the imposed driving pressure or by modifying

wetting characteristics to stabilize interfaces. The life time of the later approach can be

limited by degradation of the surface modification over time either through gradual

dissolution of the coating into the solvent flowing through the device or via susceptibility

to chemical attack. Efficient (ml/min), surface tension based continuous microfluidic

techniques for separating immiscible fluids such as gas-liquid1 26 and organic-aqueous

phases 92 was developed in chapter 2 and demonstrated for applications in multistage

extraction in chapter 4.

Chloride

Figure 6.1 Schematic of the experimental setup for carbamate synthesis. PiRI
microreactor for conversion of acid chloride to organic azide; IpS quantitative

separation of organic and aqueous streams; p.R2 microreactor load with solid acid
catalyst for conversion of organic azide to isocyanate; pS2 quantitative separation of

gaseous N2 from liquid stream; .R3 microreactor for reaction of isocyanate and
alcohol to carbamate.
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In this contribution, these microfluidic extraction systems, and inline pumps

developed in chapter 3 were integrated with microreactors 9' 127 in a continuous multistep

synthesis system (Figure 6.1) that enabled sequential reactions without leaving the

microreactor environment and created the potential for synthesis of varying amounts of

analogous structures.

6.2 Model chemistry

The synthesis of carbamates using the Curtius rearrangement of isocyanates12 8 serves

as the model chemistry (Figure 6.2) for demonstrating the multi-step microchemical

synthesis. Carbamates are interesting because they show biological activity' 29' 130

Moreover, isocyanates and organic azides are important intermediates that serve as a

starting material for a variety of reactions in synthetic chemistryl31 ' 132. This choice of the

model chemistry is further motivated by the intermediates azide and isocyanate being

potentially hazardous and difficult to scale-up in conventional batch chemistry.

Continuous flow synthesis offers in situ generation and consumption of the intermediates,

which eliminates the need to store intermediates and thus makes the synthesis scheme

safer. Furthermore, the use of glass coated silicon-based microreactors provides the

chemical inertness of glass with the excellent heat transfer characteristics of silicon." 19

0

NCO 
RO NH

HEAT ROH
+ NaN3 -N2

Benzoyl
Chloride Sodium Azide Benzoyl Azide Phenyl isocyanate

Carbamate
in Toluene in water in Toluene in Toluene
(Organic Phase) (Aqueous Phase)

Figure 6.2 Carbamate synthesis scheme as case study.

6.3 Experimental Setup and Devices

The first step, the phase transfer reaction between aqueous azide and acid chloride to

produce the organic azide, was performed in a silicon based microreactor (tR,)
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previously described. 9' 126 The formation of isocyanates in the second reaction step was

first performed by heating the organic azide in a standard microreactor ([tR 2) and then by

packing this reactor with a solid acid catalyst (H-mordenite solid acid catalyst, HS-690,

Wako Chemicals) to achieve high conversions at lower temperatures. Subsequent

removal of the generated nitrogen was achieved in the separator unit (pS2) by the liquid

wetting and flowing through the membrane while preventing gas penetration. 126

Carbamate was formed in the third step by contacting the generated isocyanate with

alcohol in the third microreactor (pR 3). As a demonstration of using in situ generated

potentially hazardous intermediates in subsequent parallel reactions, a small vial replaced

the second gas liquid separator and served as a liquid supply for three concurrent

carbamate reactions (Figure 6.9). Figure 6.3 shows the experimental setup photographed

inside a chemical hood. Three silicon microreactor and two modular phase-separators are

seen. The details of the devices and the packaging schemes used are discussed below-

Figure 6.3 Experimental setup with three microreactors and two microseparators
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6.3.1 Solder-based packaging for chip-to-tube bonding

The microreactors used in the study have been described before. 9' 32 They were

packaged (Figure 6.4) for inlet-outlet connections by soldering 1/16" SS tubes using

brass ferrules. The detailed process is described in Murphy et. al.33 Reversible quick

connect manifolds were designed as shown in Figure 6.5 to quickly replace microdevices

with fresh ones if need be. ýpRj in Figure 6.3 is attached using this technique.

F

Figure 6.4 Tubes soldered to a microchip

p--
I:i Ltf

Figure 6.5 Quick-connect reversible packaging

6.4 Separators

6.4.1 Separator-1 (gS1)

pSI is a two-phase liquid-liquid separator. Standalone separators were machined from

stainless steel with device assemble similar to that described in chapter 2. Figure 6.6

shows the details of these separator modules. The continuous separation of the aqueous

and organic mixture was realized in a microseparator (pSi) based on preferential wetting

characteristics. 92 The device has a thin porous fluoropolymer membrane that is

selectively wetted by the organic solvent. The membrane has pore sizes in the 0.1-1 ptm
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range (giving high capillary pressures), and a high pore density providing high

throughput. The wetting by the organic phase prevents the aqueous phase from passing

through the membrane while an imposed pressure drives the organic phase through the

membrane holes resulting in quantitative separation of the two phases. The throughput

increases with imposed pressure difference across the membrane with the maximum

pressure limited by the capillary pressure. The first reaction and separation steps were

also combined into a single device 92 (Figure 6.7) integrating contacting of the organic and

aqueous reactants and subsequent phase separation of the reaction products.

STwo-phase inlet
11 11 I lA Aqueous phase outlet

~..Jloro poly mrnr"n 

bn,

L) * membrane
U - I

SOrganic phase outlet

(a) (b) CC) (d)

Figure 6.6 (a) Phase-separation device (b) Schematic (c) Exploded view (d) Sectional

view. The flow channels for both, aqueous and organic phases were 4 cm long, 2 mm

wide and 1 mm deep.

4

Si.

V
Figure 6.7 Combined reaction and work-up into a single device

6.4.2 Separator-2 (jS 2)

iS2 is a two-phase gas-liquid separator. Three different approaches were used. In one

approach, PS2 was a similar unit as that for pS1. As gas-liquid interfacial tension

differences are greater than liquid-liquid differences, these separators worked under

lesser constraints of operating pressures. Another way of accomplishing gas-liquid
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separation after the second reaction was to use a degasser (Figure 6.8). Semi-permeable

tubing (Teflon® AF, Biogeneral, San Diego, CA) was enclosed inside a chamber

connected to vacuum. The two-phase gas-liquid flow entered the vacuum chamber where

the pressure difference between the interior and exterior of the tubing drove out the gas

from the flow channel resulting in gas-liquid separation.

Semi-permeable
Tubing O-ring

Vacuum

Vacuum Chamber

Figure 6.8 Schematic, and actual device using coiled semipermeable tubing inside of

a vacuum chamber.

The flowrate across the membrane is described by-

A
q = p - AP

T

Where q is the total permeate flowrate, p is the permeability, A the surface area, T the

wall thickness, and AP the difference in pressure across the membrane. High permeate

materials, such as PDMS 133 and Teflon AF® 134, have a permeability of- 10o14-10 1 5

m2/s-Pa, while most other materials are several orders of magnitude less permeable.
Permeability of common gases generated by chemical or biological reactions such as H2,
02, CO 2 and N2 are within an order of magnitude and tend to be higher compared with
other larger organic molecules. Assuming complete conversion, and knowing initial
concentration, the maximum amount of gas evolved can be calculated. The length of
tubing required was estimated knowing the flowrate. The amount of tubing provided in
the degasser was far more than necessary, as all gas evolved was removed within the first

123



two inches of tubing length. The excess tubing was provided to enable coiling and to

have the degasser be used as a general gas-liquid separator. The advantage of using these

degassers was that start-up was easier as the two-phases could not cross-flow as in pSJ

resulting in failed separations. A challenge using theses degassers was the high pressure

drop they offered, narrowing the operable flowrate range for the system. For most

experiments, gas-liquid separation was performed using the third method described next.

When parallel synthesis was performed, gas-liquid separation was driven by the

differences in gas and liquid density as in conventional separation schemes. This

branching method, which could also be applied to the organic azide stream, allowed

simultaneous synthesis of multiple compounds in the same run. Using this scheme,

parallel synthesis of methyl phenyl carbamate, ethyl phenyl carbamate and benzyl phenyl

carbamate was performed. Two different pressure-driven flow schemes were used to flow

liquid out of the vial. (1) The vial was pressurized with an inert gas (helium) while

allowing a small leak for the generated nitrogen to escape. Tube diameters and lengths

were adjusted to control the flow rates in the three systems. (2) The vial was kept open,

and three syringe pumps were connected independently to the three final microreactors.

The syringe pumps were operated in withdrawal mode. The latter was the easier of the

two methods as it did not pressurize the upstream devices, and no adjustment of tubing

lengths/diameters was needed. However, this method required the use of three additional

syringe pumps making the experimental setup bulkier and more expensive than the active

pressure-driven scheme.

Me&ba0-*

A-*u-a

odiun azde in takmne

Figure 6.9 Reaction scheme for parallel synthesis of three analogous carbamates.
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6.5 Experimental

The organic and aqueous phases were loaded in separate 10 ml syringes (GasTight,

Hamilton) and connected to the inlets of the first reactor (Figure 6.1). The outlet from the

third reactor was used directly for analysis without any further treatment. The flowrates

used ranged from 1 to 5 ýL-.min-l with a 1:1 ratio of aqueous and the organic reagents.

The ports of reactors not in use were closed using plugs (Upchurch). To facilitate better

two phase contact, a T-mixer (Upchurch) was added upstream of the first reactor, and

tubing (1/16" OD, 0.01" ID Teflon, Upchurch) was provided for additional residence

time before the first reactor. The overall two-phase contacting residence time was varied

in this manner from 90 min to 200 hours. The second reactor was heated using a hotplate

directly in contact with the reactor. A 5% w/v aqueous sodium azide solution (VWR) was

diluted with MilliQ water and sodium hydroxide solution (made using sodium hydroxide

pellets from Mallinckrodt and MilliQ water) to give 0.4 M sodium azide solution of pH 9.

Benzoyl chloride solution was prepared by adding commercial benzoyl chloride (Sigma

Aldrich) directly to toluene (Sigma Aldrich) to give 0.36 M benzoyl chloride in toluene;

resulting in the azide being in 11% molar excess.

6.5.1 Sample Analysis

NMR was used to identify the final product. GCMS was used to quantify the

concentration of benzoyl chloride, phenyl isocyanate and the final carbamate, while

HPLC was used to quantify the aqueous phase concentration of azide in the feed stream

to the first reactor as well in the aqueous waste from the first separator.

6.6 System Startup

The multistep synthesis when started goes from the initial state of rest through

increasing flowrates, concentrations and pressures until all three reach a steady state, i.e.

invariant in time. The start-up procedure should be such that at all times during the

unsteady state, i) the separator pressure conditions are satisfied and ii) the flowrate

directions are maintained as desired for synthesis. Examples of cases when condition (i)

is not held is when the start-up is done dry, i.e. with air in the devices and tubes. In this

case, the aqueous outlet offers significantly smaller backpressure due to orders of
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magnitude lower viscosity of gas over liquid, causing the organic phase to flow out the

aqueous outlet, resulting in failed separation. Condition (ii) is challenged when the

alcohol inlet to p1 R3 starts flowing up the scheme into the separator-2 and flows out the

aqueous outlet of separator-2 immediately after the scheme is started. Any failure

occurring in the system takes a long time to correct. Therefore, to ensure proper start-up,

the entire system was primed with liquid phases that would be expected in those sections

of the system at steady state. So the aqueous outlet was primed with aqueous phase, and

the organic lines were primed with toluene. This technique helped offer correct

backpressures right from the start of the system. The backflow in the network was

prevented by calculating pressure drops and adjusting tubing lengths and diameters to

match pressures at the junctions, and to offer favourable pressure drops in desired flow

directions. Thus, the alcohol inlet was made of a tube with flow resistance equivalent of

the upstream system with two reactors and two separators so that when the alcohol meets

the isocyanate, the pressures are similar. Also, the alcohol flow was not started until the

isocyanate started flowing out [tR 3. The start-up process was:

i) Prime all lines

ii) Start the azide and azoyl chloride flows

iii) Start the alcohol flow after the fluid-flow out the pR3 outlet is seen.

iv) Wait four residence times for concentration steady state to collect samples.

This start-up process is very similar to large scale continuous start-up. Once the

system reached steady state, it could be run indefinitely till all the reagents got consumed.

Using larger reservoir (bigger syringes) of reagents in the beginning allowed for longer

run times. The system was shown to run for 6-7 days continuously without change in

concentrations of the products. For large residence time reactions (200 minutes), the start-

up time was 14 hours. In such experiments, the system was started and steady state

allowed to be reached overnight. Sample collection started the next day.
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6.7 Results and Discussion

Uniform liquid-liquid segmented flow was observed in the first microreactor when

contacting benzoyl chloride in toluene (0.36 M) with a basic (pH 9) solution of sodium

azide (0.4 M). The conversion of benzoyl chloride to benzoyl azide was a function of the

residence time, 65% conversion at a residence time of 90 minute and 98% conversion

after 200 minute. To facilitate better two phase contact, a T-mixer (Upchurch) was added

upstream of the first reactor, and tubing (1/16" OD, 0.01" ID Teflon, Upchurch) provided

for additional residence time before the first reactor. Liquid recirculation within the liquid

segments enhanced mass transferl2 3 beyond diffusive rates and increased surface/volume

ratio at the microscale eliminated the need for phase transfer catalyst. As a result, the

final carbamate was obtained without having to remove any contaminants such as phase

transfer catalysts. The liquid-liquid separator (gtSj) provided complete separation of the

organic and aqueous phases. The conversion of benzoyl azide to phenyl isocyanate in the

second reactor was a function of the heating temperature (Table 6.3) consistent with

reported kinetic data.' 35, 136 The decomposition temperature of benzoyl azide is reported

to be between 50-80'C. 32 In batch operation, the azide is typically heated gently not

much beyond the decomposition temperature to prevent uncontrolled release of energy.

The microreactor enables higher temperatures reducing the time needed to achieve

complete conversion.
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Table 6.1 Conversion after each step of the multistep scheme

Reactant Product Conversion

o CI

N 
0

0

98.0

99.0

Parrallel Synthesis[a]

HN

0H

99.5

99.9

95.7

[a] This was performed according to the scheme shown in Figure 6.9
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Table 6.2 Conversion as a function of residence time

(PhCOCI " PhCON3)

for the two phase reaction

Residence Temperature Flowrate Conversion

time (oC) ratio (%)

(min) (Org:

Aqueous

phase)

90 20 1:1 65

200 20 1:1 98

Table 6.3 Conversion as a function of temperature for the decomposition reaction

PhCON3 - PhNCO, without catalysis

Temperature Residence Average

(OC) time Conversion +

(min) Std. Dev. (%)

60 60 7.0 + 0.8

90 60 91.2 + 1.4

105 60 99.0 + 1.3

The conversion of the azide to isocyanate in the second reactor proved to be the limiting

step in increasing the overall system productivity. This limitation can be mitigated by

adding a second heated reactor and operating at double the flowrate while keeping the

same overall residence time. Another approach would be to use higher temperatures by

(i) pressurizing the system and using the same solventl27 or ii) by replacing toluene with a

higher boiling solvent, such as xylene. Yet another possibility is to speed up the

decomposition using acid catalysis.' 37 The latter approach was demonstrated by loading

the microreactor with 12.13 mg of H-mordenite solid acid catalyst (HS-690, Wako
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Chemicals) and operating at the same flowrate. At 900 C, 99.9% conversion of the azide

into the isocyanate was obtained, as compared to the 91.2% conversion in the non-

catalyzed case. The higher boiling point (167 0 C) of phenyl isocyanate compared to

toluene (108 0 C) should also make it possible to remove the toluene by a 'solvent-

stripping' operation. This process could be done by heating the gas-liquid separator vial

(Figure 3) above the boiling point of toluene to obtain neat phenyl isocyanate and to

remove toluene vapors along with nitrogen in the gas phase. The gas-liquid separators

operated as designed, and removed all of the evolved gas. The final reaction between an

alcohol and phenyl isocyanate was fast' 38 yielding 96-99% of the carbamate. With a

flowrate of 1 pl/min each of aqueous (0.4 M) and organic reagents (0.36 M), the

productivity ranged from 80-120 mg per day depending on the type of carbamate

synthesized. Achieving high productivity was not the target of this investigation.

Productivity can be increased by optimization of the microreactor design and the

operating conditions. In typical runs, the continuous multistep synthesis setup was

operated for 6-7 days without any interruption until the all the reagents were used. There

was no change in system performance over the long-term continuous operation of the

microreactors and separators. It was also feasible to use only the first two reactors and

corresponding phase separator to produce isocyanate on-demand.

rgndrIc,+,
outlet

Figure 6.10 Series and parallel reactions with separation
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6.8 Conclusion

The Curtius rearrangement served as a case study with reactive and potentially

hazardous intermediates (azide and isocyanate). However, the technique of combining

microreactors and separators apply broadly to continuous multi-step synthesis. When

needed, the general microreactors can be replaced by specialized devices such as packed

bed catalytic microreactors, 38, 39 as illustrated by introducing solid acid catalyst in the

second transformation. Monitoring and optimization of reaction yields become feasible

when combining the microreaction system with analytic techniques as already

demonstrated for individual microreactors.' 20 Introducing branching after the formation

of an intermediate provides for continuous synthesis of multiple, analogous compounds

as demonstrated with the addition of multiple alcohols to the benzoyl isocyanate to form

different carbamates. Moreover, different reagent solutions could be run in succession to

further expand the number of compounds synthesized. The continuous operation implies

that the amounts of particular interesting products could be scaled up by increasing the

run time or the number of systems. In conclusion, a continuous multi-step microchemical

synthesis consisting of three transformations with in-between separation steps using the

Curtius rearrangement as a model system was performed, as shown in Figure 6.10. The

work demonstrated the simultaneous use of a network of microreactors and separators for

parallel synthesis of a family of compounds, in situ generation and consumption of

hazardous intermediates such as isocyanates, safe operation of microreactor systems for

reactive compounds such as azides, and small-scale synthesis of chemicals for screening

and optimization purposes.
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7 Conclusion and Future Outlook

7.1 Summary of Thesis Contributions

This thesis focused on advancing the microchemical field from single device based

demonstrations to systems that can perform multi-step series and parallel synthesis.

Packed bed microreactors, micro-separators and micro-pumps suited for miniaturized lab-

on-a-chip systems for organic syntheses were developed in the first half of this thesis,

while the second half demonstrated different multistep microchemical operations enabled

by these systems.

In chapter 2, inline continuous separation devices were developed that enabled

removal of unreacted reagents/byproducts, making it possible to realize a series of

reactions without leaving the microreactor environment. Differences in surface forces

and preferential wettability characteristics of fluoropolymers were used for phase

separation. Such microseparators were used to demonstrate 100% separation of two

phase flows of hexane and water, toluene and water, dichloromethane and water, and

hexane and methanol. Integrated liquid-liquid extraction devices were microfabricated

that performed two-phase contacting by segmented flow, followed by separation -

resulting in single stage extraction. Single stage extraction of N,N-dimethylformamide

from dichloromethane to water, and from diethyl ether to water was demonstrated.

In chapter 3, pressure-driven flow was used as the basis for operations of

micropumps. An enclosure with the liquid was pressurized with helium gas, causing the

liquid to flow. The dynamics of pressurizing and de-pressurizing an enclosure were

modeled and confirmed by experiments. Active and passive control schemes to provide

constant flowrate of the liquid were developed and implemented. Different schemes

were developed to use the gas pressure to manipulate the flow path of liquids. In one

scheme, two enclosures were used together to perform as an inline pump. The inline

pumps also acted as a buffer to prevent any disturbance propagation, and allowed the

upstream and downstream to operate at different flowrates. The pump was demonstrated

at two scales - 1) microfabricated silicon chips of 40 microliter volume and 2) using

glass shell vials of 10000 microliter volume. In chapter 4, these pumps were used along
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with two microseparators to demonstrate two-stage countercurrent and cross-flow liquid-

liquid extraction of N,N-dimethylformamide from dichloromethane to water starting with

4.4 mole percent mixture. The inline pumps also allowed recirculation with a constant

flowrate that enabled long residence time reactions. As an example, peptide synthesis

starting from the amino acids, using the Merrifield technique was demonstrated in

chapter 5. The pentapeptide, Leu-Pro-Gly-Gly-Tyr (Leuenkephalin, a type of endorphin)

was synthesized on different resins simultaneously as an example.

A new design for the silicon microreactor for packed bed reactions was developed in

chapter 5 that permitted larger catalyst loadings, and offered manageable pressure drops

across the packed bed even when the solid loading increased in volume during operation,

as was the case with the peptide synthesis experiments. These microchips were also used

to study click chemistry reactions to synthesize drug-candidate molecules. The packed

bed microreactor experiments gave higher conversions and better selectivities than batch

experiments after the same amount of reaction time as the microreactor experiments

provided increased relative catalyst concentration, and prevented background reactions

that otherwise reduce selectivity.

As an example of multi-step synthesis involving reactions and separations, the

synthesis of carbamates starting from azoyl chloride and sodium azide, using the Curtius

rearrangement of isocyanates was demonstrated in chapter 6. Parallel synthesis of

analogous carbamates by introducing branching in the synthesis sequence after the

isocyanate production to form microreactor networks was also demonstrated. The second

reaction involved heat decomposition of the organic azide, and was shown to perform

faster when catalyzed using solid acid zeolite catalyst in a packed bed microreactor.

Continuous operation of the microdevice network for - 7-10 days at flowrates of 1-5

jl/min showed no change in performance. The microreactor based synthesis was run at

higher temperatures than conventional batch scale reactions due to the inherent safety in

microreactor based production. The multiple-carbamate-synthesis microreactor network

consisted of five microreactors and two separators, with the second one used pressure

driven flow. This demonstration was the first multi-step organic synthesis involving

reactions and separations, and showcased the major contributions from this thesis.
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The development of micro-unit-operations in this thesis has advanced the

microchemical field from single device based demonstrations to systems that can perform

continuous-flow multi-step series and parallel chemical synthesis.

7.2 Specific directions for future work

The packed bed reactor, two-phase separator, and inline pump developed in this thesis

could be used in demonstrations of several chemical systems that cannot be otherwise

performed in microdevices. Such examples may include multiple reaction steps, systems

with large pressure drop, system with large reaction times, systems with multiple

separation steps, and packed bed reactions. Complete synthesis scheme optimization

could be performed over multiple reactors and separators to provide optimum conditions

to satisfy an objective such as maximize yield or minimize side-products.

The pressure driven flow techniques developed for the pump and recirculation could

be extended to replace syringe pumps entirely. The dynamics for flow control from one

reservoir were developed - it could be extended to multiple reservoirs pumping

simultaneously, thereby replacing all syringes and providing constant flow. The ability to

generate large pressures also allows for a larger range of flowrates and reactions with

solid supports or catalysts.

Distillation operations separating a single phase mixture could be developed by

heating the single-phase to form vapor-liquid two-phase flow which can be separated

using the two-phase separator. The gas phase enriched in the more volatile component,

upon condensation yields an enriched mixture. This represents one stage of an

enrichment operation which could be performed over more stages to provide desired

purity.

Early work on integrated silicon board with sensors for temperature, pressure, and

concentration presented two challenges - the fluidic network was susceptible to change in

flow directions when bad packaging resulted in leaks. The leaks changed the flow

resistance and hence the flow paths. This can be corrected by incorporating jumpers or

redundancies in design to make the network more robust. Another challenge was the

incorporation of electrical connections in a reliable manner, especially with the pressure

sensor chips. At that point, gold-wire bonds, similar to the ones used for IC packaging
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were used. However, as microsystems handle harsher chemical environment, more robust

packaging methods need to be developed. New techniques have appeared since the initial

approaches. For example, wireless pressure sensors (CardioMEMS Inc, Atlanta, GA) that

work on radio frequency communication can be used to make the electrical integration

simpler.

7.3 Future Outlook

The contributions of this thesis are a step towards the development of robust and

elegant microsystems. The devices and techniques developed in this thesis although

aimed at chemical synthesis; also find applications in other areas of microreactor

application, namely, biological studies, nanoparticle synthesis, fuel-cell development, and

energy research.

The opportunity is ripe at this point for contributions at many levels - either direct

continuation of this work or related work branching out in other disciplines. The further

development of microsystems for chemistry research will benefit from inter-disciplinary

contributions, such as the development of smart electrical interfacing with the

fluidics/pneumatics, not only for electrical power and sensing, but also for advanced

techniques such as distributed control systems for decentralized control.

The biggest advantages of using microsystems for chemistry research will not come

from simple miniaturizations of existing processes - it will come about from a rethinking

of process design accompanied by a change in operating parameters suited more for the

microsystems. The key is to achieve the desired results without having to replicate each

single step of a traditional process. For example, solids handling is often cited as a

challenge for microsystems. However, there may be no need to crystallize the product

after each reaction step in microsystems. Change in operating temperature or

concentration from batch conditions may also avoid solids formation during synthesis.

Continuous workup methods are vital to realizing robust multistep microsystems. One

form of continuous workup in microsystems was developed in this thesis. Differences

between other physical or chemical properties significant at the microscale could be used

to develop more ways to perform separation. Mature technologies such as distillation

could be adapted for the microscale to offer more tools for multistep operations. Any new
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separation technology has the potential for important contribution and immediate impact

to the further development of multistep microsystems.

The aim to develop elegant, but robust microsystems often springs up the question if

the final systems should be modular - comprised of multiple independent units, or

integrated systems - all in one boards, similar to integrated circuits in the computer

industry. While each approach has its pros and cons, there is no one answer. Multiple in-

between hybrid systems are possible, and the answer also depends on the final

application. The objective has to be to minimize total development times while delivering

required performance. For example, all-in-one-systems are attractive from a usability

perspective; however, a small change in design requirements could mean spending a lot

more time fabricating. In one example, lack of redundancy in flow network design caused

a silicon board to cease operating whenever leaks occurred. Such systems could be tested

in modular arrangements before finalizing the design for the integrated board. In modular

systems, the connections between devices take up a substantial portion of the system

volume. When the system has to go through a period of startup, these connection volumes

matter. The excess volume also means additional material in the system, and increases

the wait between successive experiments under different conditions. As all-in-one boards

take a long time to develop, ideas could first be tried out in modular systems, and when

perfected, integrated to form unified systems. An example is the development of the two-

phase microseparator. Initial studies were performed in simple separator devices, and

when the operation was understood, they were integrated with residence time units in

silicon microchip to form integrated liquid-liquid extraction devices.
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Appendix A - Governing equations for In-line Pumps

A.1 Derivation of charging and discharging equations

In this section, the equations for pressure (P2) in the enclosure are derived in the

transient and steady state operation.

Assumptions made-

1) The gas follows the ideal gas law (PV = nRT)

2) The liquid flow out from the enclosure is governed by the Hagen Poiseuille equation.

AP 8pLQ (volume / time) = -P, R, = 4

3) All gas-phase flowrate - pressure drop relationships are modeled using the equation

AP 8uLM
Q (moles / time)= - , R2 =

R22 rr 4p

4) Gas flow is incompressible (p = constant). Previous work' 39 on compressible laminar

flow in a capillary supports this assumption.

Referring to Figure A-1 below, let Q represent the molar flowrate at the gas inlet and q

represent the molar flowrate out from the leak to the atmosphere.

Pressure =

Figure A-1 Pressure Driven Flow Setup
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The pressure in the vial (P2) as a function of time after the instant the gas inlet is opened

is derived below-

When gas flow is open,

P2 - P
R2

q,, =Q-q

Using (1) and (2) in equation (3)

RP-P P2-Pa

qn =
PR2 + PFRj - P2(R + R2

RR 2

q dn, = d (P2V
dt dt RT)

Assuming the rate of change in volume is very small, one can approximate

dVVconstant
V constant (- - 0, when compared

dPt
dt RR 2

dP
with P2

dt

(7)

Solving equation (7),

P2 (t) =

Setting the reference as Pa= 0, equation (8) becomes

PR, -(P4R2 -P 0(RI + R2)) exp -
(Charging equation) (9)

At steady state (t > 4 r ),

(10)
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(3)

(4)

(5)

(6)

•R, + R (8)lRi +R2)
R + -(R, R2 -P20(R, +2))exp-

Z_

PR2 + PaR, -P(R, + R2)

P2 (t)

2 ( ) = P R +R 2 )P2 00) elRl + R2



The assumption dV d;--z 0, when compared with P2
dt dtJ

enabled analytical solution

equation (10).

dVIn a more rigorous treatment of the problem, dV 0 but
dt

dV rrjuid (P2 -Ped= V- - , the flowrate of the fluid out of the vial.
dt 8/p Lfluid

(11)

Thus, the pressure profile as a function of time is calculated by solving equations (5), (6)
& (11) numerically.

Figure A-2 shows a comparison of the numerical solution with the analytical solution
given by equation (10), and the agreement of the two profiles supports the approximation
made for equation (7).

I.U

1.3

x 105
1 6

Pressure in the vial
I I I I I

;4
L~f(
M

tB
Iti~

g

1.2k

Solution with constant volume approximation
Numerical Solution of the complete set of PDEs

I I I I

0 1 2 3 4 5 6 7 8 9 10
t (s)

Figure A-2 Comparison of the numerical solution with the analytical solution having
constant volume approximation.
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When gas inlet is tuned off by closing inlet valve,

qout = z- (12)
R2

dP P--kdP2 - P-Pa (13)
dt R2

Solving,

P2(t)= P. +( -P.) Pexp(-r2 (2 = kR 2) (Decay equation) (14)

P2(t) = P2exp( -r2 (using reference as Pa = 0) (15)

At steady state,

P2(o) = =0 (16)

The time constants, tl and t2 are respectively, V R1 R2 and . Therefore, for given
RT R, + R2  RT

gas, the system volume, V, tubing length L and diameter d are used as handles to affect

the fluidic resistances, and hence the time constants. For as small time constants as

possible, V and L must be small and diameter, d should be as large as practically possible.

For most of the applications, V varied from 10 pl to 10 ml, L varied from 5 cm to 100 cm

and d varied from 100 to 1000 pm. As a result, time constants ranged from 1 ms to 10 s.
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A.2 MATLAB program used for the simulation results

function main=comparison;
5 Program to compare rth Nmerical solution and Psuedo steady sare
approximation
K Hemant Sa-ho (hemants@mit.edu)
12 February 2<07
data-

VO = le-6; i-nitiai vouime, in m3
PO = 101325; - initiaI pressure, 1 atm = 101325 Pa
PVO= 101325*1e-6;

T = 295; :• onstant operating temperature, in K
R = 8.314e-3; J Universal gas :onstant, in J/kmol.K
Pa = 101325; ; Ambient pressure, in Pa
P1 = 2*101325; 'ons[-ant High pressure from gas cylinder

muLiq=1.2e-3; Liuid = Ehannaol, Sas = Helium
muHe=2.0113e-5;

densityHe=0.178;
densityLiq=789;

radiusl=500e-6;
radius2=500e-6;
radiusL=75e-6;

L1=0.1;
L2=0.1;
LLiq=0.5;

R1=8*muHe*L1*2e-3/(3.14*radiusl^4*densityHe); 2e-3 = k mo es of
R2=8*muHe*L2*2e-3/(3.14*radius2^4*densityHe);

alpha=(3.14*radiusL^4)/(8*muLiq*LLiq);
a=(R*T)*(P*R2+Pa*R1) / (R1*R2);
b=-R*T*(R1+R2) / (R1*R2) ;
c=(P1*R2+Pa*R1);
tau=-V0/b;

yO=[PV0,VO];

options = odeset('CRe >Ll',1e-15);
[t,y] = ode45(@diffeqnsolverlll,[0,10],y0,options,a,b,PV0,alpha,Pa);

for j=1:length(t);
approx(j)=(c-(c-P0* (R1+R2))*exp(-t(j)/tau) ) / (R+R2);
numerical(j)=y(j,1)/y(j,2);
end

figure;
plot(t,approx,'-r ',t,numerical,'-bs');
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xlabel('t (s)');
ylabel('Pressure (Pa) ');
title('Pressure in the vial');
h = legend('Solution with constant volume approximation', 'Numerical
Solution of the complete set of PDEs',4);

function f = diff eqn solverlll(t,y,a,b,PVO,alpha,Pa);

f = zeros(size(y));

f(1) = a+b*y(1)/y(2);
f(2) = alpha*((y(1)/y(2))-Pa);

return;
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A.3 Generalized Governing Equations

Referring to Figure A-I, consider the general case when the flow resistance between

the leak to the atmosphere and the inlet to the enclosure is not zero but has a value equal

to R3. The charging and discharging equations in such a general case are derived using

arguments similar to section A. I1

Case (i) when the valve is open - enclosure charging.

P -P*
tr = R (17)

2R

P*-P
qi, -(19)

R3

qtotal = qin + qout (20)

Solving equations (17)-(20) together for P*,

P*= P2RR 2 + PR2R3 + PaR 3R, (21)
RR 2 + R2R3 + R3R,

Solving equations (6), (19) and (21)

P R, +IR 2 ( PR, +I1R2 e(-/, V rR1 R2+R2R3 +R3R, (22)
R, +R2  R + R2 RT R, + R2

This equation is identical to equation (6), except that zt is different, and has terms due to

R3.

Following a similar line for the equation for case (ii), when the valve is close - enclosure

discharging, the pressure profile as a function of time is-

V
P2 = P + (P20 - P) exp(-t / 2), r2 = (R2 + R3) (23)

RT
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Appendix B - Supporting Information on Recirculation
System design

B.1 Design of peptide synthesis setup

The following shows a MAPLE program used to solve the network shown in Figure

5.6 and Figure 5.11. The gas side network was solved to estimate the pressures in the

three enclosures, which were then used to estimate the flowrate through the peptide

synthesis chip. The experimental measurement of the flowrate is shown in Figure 5.7

showing good agreement between prediction and actual flow. The observed difference is

attributed to the existence of extra flow resistance offered by the fittings.

> restart;
> eqns := {(PO-P3)/R1=((P3-P4)/R2)+((P3-P5)/R3), (P3-
P4)/R2=(P4-Pa)/R4, (P3-P5)/R3=(P5-Pa)/R6};

e PO -P3 P3- P4 P- P -P3- P4 P4 - P Pa P3- P5 P5 -PaSR R2 R3 R2 R4 R3 R6

> abc:=simplify(solve(eqns,{P3,P4,P5}));

abc - p- R4 R6 PO- R4 RI Pa + R2RI Pa + R4 R3 Pa+ RI R3 Pa + R6 R2 PO -R6 RI Pa + R2 R3 Pa

R RI R4 + R6 R4 + R2 R3 -RI R3 + RI R6 +RI R2 + R6 R2 + R3 R4

R2 RI Pa + R2 R3 Pa + R6 R2 Pa + R4 R6 PO + RI R3 Pa + R4 RI Pa + R4 R3 PO + R6 RI Pa

RI R4 + R6 R4 + R23 RR3- RI R3 + RI 6 RI R2 - R6 R2 -R3 R4

R4 R3 PO -R RI Pa + RI R3 Pa + R2 R3 PO + R4 RI Pa + R6 R2 PO + R6 RI Pa + R4 R6 PO
P3:-

R I R4 ÷ R6 R4 R2 R3 + R I R3 + R I R6 + R I R2+R6 R + R3 R4

> rho:=8.17e-2;M:=2e-3;mu:=1. 9e-5;
p := 0.0817

,V1:= 0.002

p := 0.000019

> L1:=0.8;L2:=0.1;L3:=0.1;L4:=0.564;L6:=0.10;dl:=le-
3;d2:=0.25e-3;d3:=0.25e-3;d4:=0.25e-3;d6:=0.25e-3;

Ll : 0.8

L2 : 0.1
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L3 := 0.1

L4 := 0.564

L6 :=0.10

dl := 0.001

d2 :- 0.00025

d3 := 0.00025

d4 : 0.00025

d6 := 0.00025

R1:=8*mu*M*L1/(3.14*(dl/2)^4*rho) ;R2:=8*mu*M*L2/(3.14*(d2/2
) ^4*rho) ;R3:=8*mu*M*L3/(3.14*(d3/2) ^4*rho) ;R4:=8*mu*M*L4/(3
.14*(d4/2)^4*rho) ;R6:=8*mu*M*L6/(3.14*(d6/2)^4*rho);

Ri:= 1.516812324 107

R2 :- 4.853799435 108

R3:= 4.853799435 108

R4 := 2.737542883 109

R6 : 4.853799435 108

> Pa:=101325;
Pa : 101325

> PO:=101325+(10*101325/14.6959488);
PO:= 1.702725728 105

> assign(abc) ;P3;P4;P5;eval(P4-P5);

1.688987097 10
5

1.587219461 10

1.351118548 105

23610.0913
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> Lliq:=0.40;Dliq:=0.le-3;muliq:=le-3;P5psi:=(P5-
101325)/101325*14.6959488;P4psi:=(P4-
101325)/101325*14.6959488;P3psi:=(P3-
101325)/101325*14. 6959488;delPpsi:=(P4-
P5)/101325*14.6959488;

Lliq := 0.40

Dliq := 0.0001

nmuliq :- 0.001

P5psi := 4.90036900

P4psi := 8.32472323

P3psi:= 9.80073801

delPpsi:= 3.42435423

> Q[liq-ulmin-l] :=3.14*(Dliq/2) ^4* (P4-
P5) / (8*muliq*Lliq) *1e9*60;

Qliq - uilmin - I := 8.687775783
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B.1.1 MATLAB program used for the simulation of flowrate constancy.

(The graphs are shown in Figure 5.5)

function flownumexpt=theRealConstantFlow;
y0 (1)=10e-6;
y0 (2)=20e-6;
y0 (3)=20e-6;
y0(4)=101325*10e-6;
y0(5)=101325*20e-6;
y0(6)=101325*20e-6;

sov i 'g te ODE system for steady state
options = odeset('RelTol',le-15);
[t,y] = odel5s(@diffferential_eqnsl,[0 16],y0,options);

noting the steady state values
lastone=length(t);
finalstate=y(lastone,:);
p(:, 1)=y(: , 4) ./y(:, 1);
p(:, 2 )=y(:,5)./y(:,2);
p(:,3)=y(:,6)./y(:,3) ;
flow=p(:,1)-p(:,2);
z=y;
time=t;
fin=t(lastone);

% figure;
Splt(t, flow,4'-r');

D p ot(tf w, ':ro',wl ,zl,':bs');
x xlabel ('T ime' ;
S~labe L(',elaP rrough device');

f igu ;

plot( ,y(:, 1), '-r',t,y(:,2) ,'-b',t,y(:, 3), '-g'
S xiabe ('Time');

yL abe ,('volumes')

options = odeset('Reloml',le-15);
[t,y] = odel5s(@diffferential_eqns2,[0 20],finalstate,options);
alpha=fin.*ones(size(t));
t=alpha+t;
z=[z' y']';
time=[time' t']';

lastone=length(t);
finalstate=y(lastone,:);
pl(:,l)=z(:,4)./z(:,l);
pl(:,2)=z(:,5)./z(:,2);
pl(:,3)=z(:,6) ./z(:,3);
flow=pl(:,1)-pl(:,2);

figure;
plot (time, flow, '-r');

P pioI(: zf Lw ': ',• , ,':bS')

147



xlabel('Time');
ylabel('deltaP through device');

figue ;
5 plot(t ime, z (:, 1),'-r', ime,z(:, ),'-b',time, (:,3),'- '
xlabei('Tire');ylabe1('viumes');

return;

function f = diffferential_eqnsl(t,y);

f = zeros(size(y));

const nts
R=8.314;
T=293;

Sex tefna pressures

Pa=101325;
P01=3*101325;
P02=2*101325;
P03=4*101325;

Sas side constant
L11=0.2;
L12=0.2;
L21=0.2;
L22=0.2;
L31=0.2;
L32=0.2;
rholg=101325*28e-3/(8.314*293);
rho2g=101325*28e-3/(8.314*293);
rho3g=101325*28e-3/(8.314*293);
M1=28e-3;
M2=28e-3;
M3=28e-3;

rll=500e-6;
r12=500e-6;
r21=500e-6;
r22=500e-6;
r31=500e-6;
r32=500e-6;
nugl=1.7e-5; air a
nug2=1.7e-5;
nug3=1.7e-5;

nitrogen 4as
nitrogen gas
nitrogen cas
kg/mol, nitrogen gas
•g/mol, nitrogegar J
kg/mol, nitrogen gas

Li.u i 1 ziJe
ra=500e-6;
rb=500e-6;
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rd=500e-6;
nuL=le-3;
LL1=1;
LL2=1;
LL3=2;

issiy of water; etahn

Ltis is device

BS3 phase2- resis•>-•3es
R11=8*nugl*L11*M1/(3.14*rholg*rll^4)
R12=8*nugl*L12*M1/(3.14*rholg*rl2^4)
R21=8*nug2*L21*M2/(3.14*rho2g*r21^4)
R22=8*nug2*L22*M2/(3.14*rho2g*r22^4)
R31=8*nug3*L31*M3/(3.14*rho3g*r31^4)
R32=8*nug3*L32*M3/(3.14*rho3g*r32^4)

j, : :-i. Zph133s resist n S
Ra=8*nuL*LL1/(3.14*ra^4);
Rb=8*nuL*LL2/(3.14*rb^4);
Rd=8*nuL*LL3/(3.14*rd^4) ;

p(1)=y(4)/y(1);
p(2)=y(5)/y(2);
p(3)=y(6)/y(3);

f(1)
f(2)
f(3)
f(4)
f(5)
f(6)

((p () -p(2))/Rd) - ( (p(3)-p ())/Ra);
- ((p (1)-p(2))/Rd);
((p(3)-p (1))/Ra) ;
R*T*(((P01-p(1))/R11)-((p(1)-Pa)/Rl2));
R*T*(((P02-p(2))/R21) - ((p(2)-Pa)/R22) ) ;
R*T*(((P03-p(3))/R31) - ((p(3)-Pa)/R32) ) ;

return;

function f = diffferentialeqns2(t,y);

f = zeros(size(y));

R=8.314;
T=293;

Pa=101325;
P01=3*101325;
P02=2*101325;
P03=4*101325;

L11=0.2;
L12=0.2;
L21=0.2;
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L22=0.2;
L31=0.2;
L32=0.2;
rholg=101325*28e-3/(8.314*293);
rho2g=101325*28e-3/(8.314*293);
rho3g=101325*28e-3/(8.314*293);
M1=28e-3;
M2=28e-3;
M3=28e-3;

Sr1=250e-6;
r21=250e-6;
r22=250e-6;
r31=2 50e-6;

% r32-250e-6;

rll=500e-6;
r12=500e-6;
r21=500e-6;
r22=500e-6;
r31=500e-6;
r32=500e-6;
nugl=1.7e-5; I air at OC
nug2=1.7e-5;
nug3=1.7e-5;

% Liquid side
ra=500e-6;
rb=500e-6;
rd=500e-6;
nuL=le-3;
LL1=1;
LL2=1;
LL3=2;

% nitrogen gas

nitrogen gas
nitrogen gas

S kg/mol, nitrogen gas
kg/mol, nitrogen gas
kg/mol, nitrogen gas

constants

A viscosity of water; etahnol = 2

this is device

Gas phase resistances
R11=8*nugl*L11*M1/(3.14*rholg*rll^4);
R12=8*nugl*L12*M1/(3.14*rholg*rl2^4);
R21=8*nug2*L21*M2/(3.14*rho2g*r21^4);
R22=8*nug2*L22*M2/(3.14*rho2g*r22^4);
R31=8*nug3*L31*M3/(3.14*rho3g*r31^4);
R32=8*nug3*L32*M3/(3.14*rho3g*r32^4);

Liquid phase resistances
Ra=8*nuL*LL1/(3.14*ra^4);
Rb=8*nuL*LL2/(3.14*rb^4);
Rd=8*nuL*LL3/(3.14*rd^4);

: When · lve clos e d

p(1)=y(4)/y(l);
p(2)=y(5)/y(2);
p(3)=y(6)/y(3);
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f(1) = (p (1) -p (2) ) /Rd;
f(2) = -((p(1)-p(2))/Rd)+((p(2)-p(3))/Rb) ;
f(3) = -((p(2)-p(3))/Rb);
f(4) = R*T* (((P01-p(1))/R11)-((p(1)-Pa)/R12));
f(5) = R*T*(((P02-p(2))/R21)-((p(2)-Pa)/R22));
f(6) = -R*T*((p(3)-Pa)/R32);

retu --------------------------------------------------------

re tu r n;
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B.1.2 Matrix Assisted Laser Desorption Ionization (MALDI) peptide analysis

details

User and sample information
Researcher: Sahoo
Laboratory: Jensen
Sample Name: V8192 samples #3,4
Sample Matrix: DCM
Sample concentration: 0.52 mmol/g for sample 3,

0.24 mmol/g for sample 4
Amount submitted: 5 mg on a resin
Date analyzed: 7/16/08
Operator: AL
MALDI Matrix: Alpha-cyano acid
External standard used C2 ABI

Brief description of the analysis performed:
~ 51 nG of "carrier" resin added to the sample,
- The sample was washed with DCM and methanol, and then dried down
- FMOC was removed with 20% Piperidine
- The sample was washed with DMF, DCM, Ethanol and dried down
- The sample was cleaved with TFA- cleavage mixture "A"
- precipitated in Ether
- centrifuged
- Ether removed and the sample was dried down
- reconstituted in 100 pl of 0.1% TFA
- luL of the sample was mixed with luL of matrix solution, spotted and analyzed on
MALDI on negative and positive mode.

Operator comments:
Expected MW is 505 (506

Instrument Settings:
Mode of operation:
Extraction mode:
Polarity:
Acquisition control:
Accelerating voltage:
Grid voltage:
Mirror voltage ratio:
Guide wire 0:
Extraction delay time:
Acquisition mass range:
Number of laser shots:

with the proton)

Reflector
Delayed
Positive
Manual
20000 V
66%
1.12
0%
250 nsec
400 -- 1500 Da
100/spectrum
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Laser intensity:
Laser Rep Rate:
Calibration type:
refl.cal
Calibration matrix:
Low mass gate:
Timed ion selector:
Digitizer start time:
Bin size:
Number of data points:
Vertical scale 0:
Vertical offset:
Input bandwidth 0:
Sample well:
Plate ID:
Serial number:
Instrument name:
Plate type filename:
Lab name:
Absolute x-position:
Absolute y-position:
Relative x-position:
Relative y-posititon:
Shots in spectrum:
Source pressure:
Mirror pressure:
TC2 pressure:
TIS gate width:
TIS flight length:

1855
5.8 Hz
External -- D:\Maldi data\2008\July2008\071608\c2p 1-

a-Cyano-4-hydroxycinnamic acid
400 Da
Off
29.335
0.5 nsec
54724
1000 mV
0%
750 MHz
75,76
BIOPOLY I1
4219
Voyager-DE STR
C:\VOYAGER\100 well plate.plt
MIT BIOPOLYMERS
27059
11766.4
71.479
18.8553
52
9.044e-007
3.06e-008
0.0137
8
1161
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Appendix C - Microdevice Design and Fabrication

C.1 Microdevice as Small-scale Enclosure and Packed-bed

Microreactor

C.1.1 Microchip Design

New silicon-based microchips were fabricated that permit volume change of the

packed solid phase and were used for the peptide synthesis using flow recirculation. As

shown in Figure C-2, there is a large cavity of 650 Ctm depth with a shallow 50am deep

bank of 50 tm wide capillaries at one end. The outlet was on the other side of the bank of

capillaries. The small feature size at the outlet served as a filter to prevent beads, usually

100 [tm in diameter from flowing out. The large cavity allowed for increase in volume

when packed partially.

75 mrn

650 jtm

Surface

Figure C-i Same color represents same depth from the surface. The microdevices

were fabricated from a 1000 pm thick silicon wafer.
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Figure C-2 Photograph and schematic of microchip and packaged microdevice. The

photograph shows (left) a microdevice with no catalyst packed and (right) with 55

mg catalyst with support.

C.1.2 Microchip Fabrication

Fabrication process steps are discussed below without cleanroom machine details-

1) Start with 1 mm silicon wafer with 5000 A low-stress nitride.

2) Spin photoresist, expose mask 3, and develop

3) Etch away exposed nitride using RIE

4) Piranha clean wafer to remove photoresist.

5) Repeat steps 2-4 on the back side with mask 1

6) Etch in potassium hydroxide such that both sides get etched. Through holes are

formed on the back, and the large cavity is formed on the frontside.

7) Spin photoresist, expose mask 2, and develop

8) Using handle wafer, DRIE the channels to connect the two large cavities to depth

of 75 micrometer.

9) On the backside, Spin photoresist, expose mask 4, and develop
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10) E-beam deposit chromium, followed by copper and gold

11) Anodically bond pyrex wafer

12) Die-saw individual devices.

Starting wafer for step 1

Nitride

Silicon

Nitride

Wafer after step 6 of fabrication process

Wafer after step 8 of fabrication process

-I -

Final chip

Figure C-3 Schematic of fabrication steps

As seen from Figure C-4, four different types of devices were fabricated from a single

wafer. 26 devices of size 15 mm x 20 mm, and 2 devices of size 30 mm x 40 mm were

the yield from a single wafer. The shallow pit connecting the deep cavities had channels
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present in half the devices while they were absent in the other half. While the channels

help increase the resistance for liquid to flow up the gas side, it makes matters worse for

wetting liquids as the channels aid in wicking up the liquid. Therefore, both kinds of

devices were fabricated to present an option to the user. The dimensions of the microchip

are presented in Figure C-5.

0

HRS MicroPUMP

Figure C-4 Final device layout on a six-inch silicon wafer
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Figure C-5 Dimensions of the 15x20 mm microchip. The 30x40mm microchip has

the same proportion except for the channel width and port size that are the same

dimension. Units used is millimeter.
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C.1.3 Masks

The masks used for the microchip fabrication are presented below. The dimensions

are presented in Figure C-5

Figure C-6 Mask-1 for ports on the backside of a 150 mm diameter silicon wafer
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Hemant Sahoo
uPump, Mask-2

Figure C-7 Mask -2 for etching shallow trench and channels.
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Figure C-8 Mask-3 for etching deep cavity in microdevice.
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Figure C-9 Mask-4 for cavity on the frontside of a 150 mm diameter silicon wafer.

Two different size devices are designed.Two different size devices are designed.
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C.2 Microchip Packaging

C.2.1 Soldering

Tube to chip soldering was used to package the chips. A custom stand as shown in

Figure C-10 was machined to align the tubes when the chip fitted in the space at the stand

bottom. It is important to add weight at the top of the tubes to ensure proper contact and

soldering of the tubes with the microchip.

Figure C-10 Schematic of stand used to solder tubes to microdevice

C.2.2 Compression method

The compression sealing method using standard O-rings made of either viton,

silicone, PVDF or teflon (depending on chemical compatibility) was used when the

soldering method was not possible, as when the tubing was too small to permit catalyst

loading after packaging. Loading before packaging would damage the catalyst at the high

temperature of soldering. The packaging needs to be done carefully to avoid the silicon

devices from breaking. Compression methods are useful when the clearance between

ports is too small to permit soldering or use of Nanotight fittings (discussed next).
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Compression
packaging

Nanotight
fittings

Figure C-11 Microchips with compression seal, as well as Nanotight packaging

C.2.3 Nanotight fittings

Nanotight fittings from Upchurch Scientific (part number N-333) were used to

connect standard tubing to the inlet/outlet ports. It requires at least 9 mm clearance

between ports for successful bonding.
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Appendix D - Design of Vial Holder

The vial holder was designed to serve as pressure chamber to flow liquid out when

pressurized, and have a quick connect feature to present the ability to easily change

reagents. Glass was the only wetted material, besides the tubing that dipped in the liquid

to flow in/out. An O-ring made a pressure-tight seal. A 900 turn disengaged the setup and

freed the glass vial for refilling/replacement. The pressure setup was tested to

consistently hold pressure up till 200 psi. It was also used to liquefy ammonia at 25

atmospheres. Beyond 200 psi, the pressure seal depended on how well the compression

using nuts and bolts was performed. For experiments involving multiple pressurized

chambers, a 4-vial setup was designed and machined, as shown in Figure D-2

L
Figure D-1 Construction details with photograph of the vial holder
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Figure D-2 Schematic and photograph of the 4-vial holder
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Appendix E - Component Engineering Drawings

The CAD files used to machine the assembly components are presented next-

1) Vial-Holder

2) Bottom plate for Individual Holder
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3) Glass Shell Vial, 3 dram

4) O-Ring for seal
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5) Top Plate for Individual Vial Holder
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6) Top Plate for 4-Vial Holder

"I zt lZl Fr-
T T

Hemant Sahoo
heman•s*mit.edu
66-1 25; >21459
Chemical Eng, MIT
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7) Bottom Plate for 4-Vial Holder

Hemant Sahoo
hemants@mit.edu
66-125; x21459
Chemical Eng., MIT

171

,(



8) Modular Separator - Upper part

I~~ I i

I ~ II * I
I' *I* it

K I~l i
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9) Modular Separator - Lower part
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