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Abstract

We have made a wide phylogenetic survey of Pix proteins, which are constituents of vertebrate centrioles in most eukaryotes.
We have also surveyed the presence and structure of flagella or cilia and centrioles in these organisms, as far as is possible from
published information. We find that Pix proteins are present in a vast range of eukaryotes, but not all. Where centrioles are
absent so are Pix proteins. If one considers the maintenance of Pix proteins over evolutionary time scales, our analysis would
suggest that their key function is to make cilia and flagella, and the same is true of centrioles. Moreover, this survey raises the
possibility that Pix proteins are only maintained to make cilia and flagella that undulate, and even then only when they are
constructed by transporting ciliary constituents up the cilium using the intraflagellar transport (IFT) system. We also find that
Pix proteins have become generally divergent within Ecdysozoa and between this group and other taxa. This correlates with a
simplification of centrioles within Ecdysozoa and a loss or divergence of cilia/flagella. Thus Pix proteins act as a weathervane to
indicate changes in centriole function, whose core activity is to make cilia and flagella.
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Introduction

The core of this paper is a phylogenetic analysis of Pix proteins,

which are constituents of vertebrate centrioles [1]. A technical

problem with establishing the function of these proteins is that they

are very stable, thus making them hard to deplete using methods such

as RNA interference and the resulting phenotypes are not very

informative because, as with some other components of centrioles

their malfunctions leads to the activation of cell cycle checkpoints or

apoptosis [2,3]. We have therefore used a phylogenomic approach to

identify key aspects of Pix function conserved in evolution. We find

that Pix proteins are found across a vast range of eukaryotes, but are

absent from some. Our analysis suggests that the key function on

evolutionary time scales of Pix, and more importantly centrioles, is to

make cilia and flagella. Further, the Pix proteins themselves are only

needed to make cilia and flagella that undulate, and even then only

when (as is generally the case) they are constructed by transporting

ciliary constituents up the cilium using the intraflagella transport

(IFT) system. In addition we find evidence of a general divergence of

Pix proteins in Ecdysozoa , which correlates with diminished

importance of cilia and flagella and a simplification of centrioles.

Centrioles and Basal Bodies
The most thoroughly studied role of the centriole is to maintain

the integrity of the centrosome, the principal microtubule

organising centre (MTOC) of animal cells. In this context the

centriole has a major function in formation of mitotic and, in

many cases, meiotic spindles [4]. A second role is in organising

cilia and flagella, where centrioles are also known as basal bodies

[5]. In an organism like the unicellular, flagellated, photosynthetic

protist Chlamydomonas, these two functions are mutually exclusive,

so cells are either motile or dividing [6]. This may well represent

the situation that existed in very early eukaryotes.

The centrioles are typically present as pairs of orthogonally

placed cylinders of microtubules, each composed of 9 sets of triple

tubules [9(3)] [7]. Although centrioles can be constructed de novo,

they typically arise from pre-existing centrioles by a semi

conservative process, so that each centrosome contains a young

and old centriole, the daughter and the mother [8,9,10]. The 9(3)

structure of centrioles is comparable to the typical structure of

eukaryotic cilia and flagella, except that these usually have 9 sets of

doublets surrounding a central pair of singlet tubules [9(2)+2]. This

core microtubular structure is known as the axoneme. However, in

recent years it has become apparent that many animal cells have a

single cilium without the central pair of tubules [9(2)+0]. These

‘‘primary’’ cilia usually have a sensory function and they are non-

motile, except for some of those in the principal signalling centre of

early vertebrate embryos, the node or organiser, where they are

involved in directing left/right asymmetry [11,12].

In a conventional, undulatory cilium the 9(3) centriole grades

into the 9(2) structure of the ciliary axoneme, which it constructs,

explaining the fundamental similarity of the two structures. In

contrast, when a centriole is involved in organising and initiating

the formation of the microtubules of an interphase cell, or the

spindle of a dividing cell, it acts as a scaffold focusing a mass of

other proteins, including c-tubulin ring complexes, which actually

perform these roles. This larger organelle is called the centrosome

and there is no obvious link between its function and the 9(3)

structure of centrioles. The centrosome also contains regulatory

proteins concerned with progression through the cell cycle, some

of which are associated with the centriole itself [4].

Pix proteins
Pix proteins were discovered in Xenopus oocytes because they

interacted with a Xenopus-specific protein called Xpat, which is a

constituent of germ plasm [1]. Germ plasm is a granular structure
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localised into the vegetal cortex of the egg and contains dense

aggregates of RNPs and mitochondria. It is inherited by a small

number of cells in the blastula and directs them to become the germ

line. Ectopic Xpat itself can form germ plasm-like structures [13],

which made its interaction with Pix interesting. Importantly, Pix

proteins turn out to be highly conserved in other vertebrates and

beyond.

In cultured cells Pix proteins localise to mitochondria in a

microtubule-dependent fashion [1]. This most likely explains why

Pix is localised to germ plasm, because it is rich in mitochondria. We

also found that Pix is localised to mitochondria in the embryos of a

sister group of vertebrates, the ascidians, in particular into the

embryonic mitochondria of the yellow crescent, an area of

cytoplasm that will form the muscles of the larva (Sardet, Paix

and HRW, unpublished observations). Thus, the mitochondrial

localisation of Pix is likely to be a general phenomenon, at least in

Deuterostomes, the clade containing vertebrates. However, in both

mammals and frogs, we found that Pix proteins are also constituents

of centrioles. Consistent with this location, injection of Pix

antibodies into cultured cells causes abnormalities of cell division

[1]. In all vertebrates examined there are two Pix genes, encoding

similar proteins called Pix1 and Pix2, which both localise to

centrioles. In addition, Pix1 and Pix2 were identified as components

of the human centrosome proteome, while Pix1 was identified as a

component of the mouse photoreceptor ciliome complex [14,15]. In

the protist Chlamydomonas the Pix homologue is Poc1 (see below).

In this paper, we describe the wider conservation of Pix proteins

and show that, while the protein is conserved in organisms with

undulatory cilia, it is absent wherever these structures are lacking

or immotile. Beyond this, we argue that in organisms where motile

cilia are lacking, centrioles disappear, and where the motility of

cilia or flagella is absent or poor, centrioles diverge from the

conventional structure. This is reflected by loss or divergence of

Pix proteins. This suggests that the principal conserved function of

centrioles is to make undulatory cilia or flagella, and of Pix is to

enable centrioles to achieve this function. We then speculate on

how the link between centrosomes and spindles might have arisen.

Analysis

Taxonomic distribution of Pix proteins
The Pix proteins were first discovered in Xenopus and humans and

are characterised by two conserved structures: an N-terminal region

containing seven WD40 protein repeats and a small but highly

conserved coiled-coil region near the C-terminus [1]. Based on

homology with other WD40 repeat proteins and modelling studies of

the Pix WD40 repeats, it is expected that this domain folds into a b-

propellor structure that provides a surface for protein-protein

interactions. (Figure 1). However, while there are many proteins

with seven WD40 repeats, only one or two per organism can be found

with the conserved C-terminal coiled-coil motif. BLAST searches of

these against the protein database always show them to have great

similarity with the vertebrate Pix proteins (Figures 2, 3; Table S1).

Two Pix proteins were found in all the vertebrate genomes

examined, corresponding to Pix1 and Pix2 in humans and Xenopus.

In other Metazoa there are either one or none. The result of

genomic BLAST searches are summarised in Figure 2, which is a

cladogram of eukaryotes based on a consensus of molecular

evidence, and Figure 3 which shows an alignment of Pix proteins

from representatives of major animal groups. Organisms where

Pix could not be identified are marked in red. A crude measure of

Pix relatedness is indicated by pairwise BLAST P-value scores for

the Pix sequence in question compared to Xenopus Pix2 (the P value

indicates the likelihood that the similarity occurs by chance).

Compared to vertebrates the similarity with the Pix sequences of

Cnidaria is remarkable. Cnidaria are basal metazoans diverged

from bilaterally symmetrical animals about 600 Mya. Using

Clustal W to make comparisons, the sea anenome Nematostella

vectensis Pix is 59% identical to Xenopus Pix1 and 65% to Xenopus

Pix2, whereas the Xenopus proteins are only 55% identical to each

other. Multicellular animals evolved from flagellates, specifically

the Choanoflagellata, represented by Monosiga brevicollis. Monosiga

Pix is 53% and 51% identical to Xenopus Pix1 and Pix2,

respectively. If one looks at the other bilaterally symmetrical

groups, Pix sequences of the Lophotrochozoa are similar to

vertebrates, with P values of about 1e-150. These organisms,

including molluscs and annelids, are heavily dependent on

undulatory cilia/flagella at various stages of their life cycle.

It is equally instructive to ask in which organisms Pix cannot be

identified. In multicellular animals the sole examples identified to date

are C. elegans and other nematodes. Of course such an absence might

be because of incomplete genome coverage, but since it is absent in a

range of available nematode genomes, this loss is likely to be real.

Nematodes are members of the Ecdysozoa (Figure 2, pink box) and

the Pix proteins of non-nematode members of this clade are as

diverged from other multicellular animals as they are from those of

ciliates, a group of organisms that branched off very early in

eukaryote evolution. The significance of this divergence is discussed in

detail below.

Figure 1. Pix protein organization. A. A schematic diagram of the
two human Pix proteins with amino acid numbers indicated. Pix
proteins consist of an N-terminal domain containing seven WD40
repeats (green) and a highly conserved C-terminal coiled-coil (blue). B.
A model of the Pix protein WD40 repeat domain folded to form a b-
propellor. The structural model was built using MODELLER with the
structure of the WDR5 protein (pdb-entry: 2GNQ) serving as a template.
The figure was generated in pymol.
doi:10.1371/journal.pone.0003778.g001
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Figure 2. Pix proteins across eukaryotes. A cladogram of a wide range of organisms is drawn according to the current, generally accepted
consensus. Pix genes were identified by BLAST search of genomes and identified as hits to the N-terminal 7 WD-40 repeats and the C-terminal coiled-
coil region. When these proteins were in turn used to search all genomes their closest vertebrate homologues were Pix proteins. The presence of Pix
genes in the genome is indicated by black entries and their absence by red. Pix sequences were compared to Xenopus laevis Pix2 by pairwise BLAST
and the P-value for the match is shown.
doi:10.1371/journal.pone.0003778.g002
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Amongst plants, angiosperms also lack Pix, but mosses do not.

Similarly fungi, including yeasts, lack Pix, except for the primitive,

parasitic chytrid fungus Batrachochytrium dendrobatidis. Interestingly,

higher plants lack centrioles and cilia/flagella, as do most fungi.

However, mosses have flagellated zoospores, as does Batrachochy-

trium. This suggests that the presence of Pix proteins correlates with

the presence of flagella. A similar argument can be made in protists,

where amoebae which lack Pixl also lack flagella. Thus, there is an

obvious correlation between the presence of Pix proteins and the

possession of cilia/flagella in various groups. There are exceptions

however. Pix could not be found in the Selaginella genome, but

members of this clubmoss group have haploid, flagellated zoospores.

This could result from a lack of full genome coverage, so further

work is needed to clarify this situation. However, centrioles form in a

unique way to generate the flagella in this group of simple land

plants, the Lycopodiaceae, as they do in pteridophytes [16,17,18],

so one could be detecting first steps in the divergence and

subsequent loss of flagella in early land plants.

Another apparent exception may not be real. The marine

bloom organism Aureococcus anophagefferens has Pix, but has not been

Figure 3. Sequence alignments of Pix proteins from representatives of major animal groups compared by ClustalW. Nematostella
vectensis (Cnidaria, Anthozoa); Capitella sp. (Lophotrochozoa, Annelida); Drosophila melanobaster (Ecdysozoa, Arthropoda); Xenopus laevis, with two
Pix genes (Deuterostomata, Vertebrata); Monosiga brevicollis (Choanoflagellida). Identical amino acids blocked in black and domains are identified
according to the Nematostella sequence, using the programs SMART and Coils at EMBL-EBI.
doi:10.1371/journal.pone.0003778.g003
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reported to have flagellated cells in its life history. These organisms

have not been intensively studied and it is possible that zoospores

have been missed. Other Pelagophyceae have flagellated zoo-

spores (Chrysonephos) or basal bodies (Pelagococcus), supporting

the likelihood that a flagellated stage exists in Aureococcus. This view

is also supported by the presence in the Aureococcus genome of a b-

tubulin with the C-terminal motif essential to form 9+2 cilia.

Organisms without 9+2 cilia lack such tubulin. [19,20]. The

single-celled alga Chlorella, which is not known to have a flagellated

stage, has a Pix homologue and a b-tubulin that is related to the

flagellar type. This might support the idea of an unknown

flagellated form of Chlorella, but the fact that Aureococcus contains a

variety of IFT genes but Chlorella does not, would make it more

likely that, while the former has an undiscovered flagellated stage,

Chlorella does not and uses Pix in some unusual way.

Other protists support the hypothesis that the presence of Pix

homologues correlates with orthodox undulatory cilia/flagella. We

have already mentioned the presence of a highly conserved Pix in a

choanoflagellate. This is true of photosynthetic flagellates related to

multicellular plants (Chlamydomonas, Volvox, Micromonas), indeed in

Chlamydomonas the Pix homologue (Poc1) has been identified in the

flagellar proteome [21]. Pix is also present in other flagellates and

ciliates, but is absent from Entamoeba and Dictyostelium, all of which lack

cilia/flagella. In Tetrahymena a Pix (Poc1) homologue was identified in

the basal body proteome. EM immunocytochemistry shows it to be

localised to the basal end, or cartwheel of mature centrioles and to the

amorphous assembly disc of newly forming centrioles [22]. This is

different from Pix localisation in vertebrate centrioles, which is

preferentially to the distal end [1]. This difference may be related to

the absence of this cartwheel centriolar precursor in animals.

However, there are several protists which have flagella, but

apparently lack Pix. These cases turn out to be provocative, because

they make their flagella in an unusual way. Apicomplexans, such as

the malarian parasite Plasmodium, have flagella that seem to be

simpler than those of other eukaryotes, and their genomes lack IFT

genes to transport components into the flagellum. In this case the

axonemes are constructed within the main cell body [23], which is

similar to the process by which the sperm axoneme is made in

Drosophila, see below (review [24]). A second example is the centric

diatom Thalassiosira, which is deficient in Pix and IFT genes and has

flagella with a 9(2)+0 axoneme [25].

Finally, there is direct evidence that the ciliary/centriolar

function of Pix proteins is highly conserved in eukaryotes, since Pix

proteins have been identified in the basal body proteome of

Chlamydomonas [26] and Tetrahymena [22]. Overall the presence of

Pix, the b-tubulin motif, and undulatory cilia/flagella is correlated

(Table S1), but there are several apparent exceptions which

deserve further investigation.

Pix in Ecdysozoa
The absence of Pix in nematodes and its divergence in other

Ecdysozoa has already been mentioned. One characteristic of

Ecdysozoa is the absence of undulatory cilia, except in the sperm

of some groups [27]. Ecdysozoa are characterised by an inert,

moulting cuticle, which precludes the presence of ectodermal

locomotory cilia [28]. Within the Ecdysozoa Drosophila has the

most divergent Pix sequence identified in any Metazoan (1e-78)

and several other insects are only a little less diverged (Figures 2, 4;

Table S1). The crustacean Daphnia falls into the middle of this

range. While, compared with other animals, there is some

sequence conservation in the C-terminal region, in Diptera the

Coils program predicts only a low probability that it will form a

coiled-coil. On the other hand the probability is very high in

Daphnia (Crustacea) and Apis (Hymenoptera), even though the

sequence is quite diverged. This suggests that this region of the

protein may have lost its conserved function in dipteran flies, and

that selection is relaxed in other Ecdysozoans.

What is special about Ecdysozoa? Neither nematodes nor most

crustaceans, including Daphnia, have flagellated sperm, although all

have sensory primary cilia (9+0). Thus these organisms totally lack

locomotory cilia. In insects the occurrence of primary cilia is restricted

to Type I mechanoreceptors, so their dependence on sensory cilia is

far less than in vertebrates [29]. In the insect Drosophila melanogaster

sperm are flagellated, yet they are truly remarkable because the sperm

tail is as long as the male. In Drosophila bifurca they are forty times

longer than the male, that is 58 mm [30]! It is hard to imagine that

such sperm ever undulate in any organised way; rather the great

length is likely to be an adaptation to sperm competition in a species

in which females eject sperm before mating again with a new partner.

Bees have more normal sperm length, but the axonemes are unusual

in having 9+9+0 structure (Zama et al., 2005). Bee Pix is a little more

like vertebrate Pix than that of Drosophila. This suggests that the

axonemes of the flagella of insects may be different from those in

other animals at a molecular level. Interestingly, the way in which

sperm flagella are made in Drosophila is unusual and is more like that

in Plasmodium and diatoms described above, that is the axoneme is

constructed in the main cytosol [31] without the function of IFT

proteins [32,33]. On the other hand the sensory cilia of Drosophila do

require IFT proteins.

Thus, undulatory cilia/flagella have become simplified and less

employed in the evolution of Ecdysozoa and they are absent in

nematodes and most crustaceans. However, all members of the

clade possess 9+0 primary, sensory cilia, although these are far less

used than in animals like vertebrates. This suggests the

generalisation that Pix proteins are essential to form typical motile

cilia/flagella, but not necessarily the non-locomotory, primary

kind. Since ecdysozoan Pix proteins are more diverged than in any

members of the clade, including Choanoflagellates and multicel-

lular animals, it suggests that the requirements of a Pix to make

primary cilia are less demanding than in making normal

undulatory cilia. In addition, the phylogenomics suggest that, at

least in the long term, Pix proteins are only essential to make cilia/

flagella via an IFT-dependent mechanism. Since Pix proteins are

localised within the lumen of the centriole, rather than in cilia/

flagella [1], it is reasonable to suggest that Pix proteins are needed

to make the sort of centriole capable of making cilia/flagella via

IFT transport processes. Of course other proteins are also needed

to do this, including b-tubulin with a specific tubulin motif (EGEF

followed by 3 acidic residues; Table S1) [19,34]. These suggestions

raise further questions about the core function of centrioles.

Centrioles and Pix in diverse organisms
Higher land plants and fungi (other than Batrachochytrium) lack

cilia/flagella, centrioles and Pix. Centriolar structure in Drosophila

is interesting because only in sperm development are long

centrioles with a 9(3) structure found and, as already described,

the sperm flagellum is made in an atypical, IFT-independent

manner. In other tissues centrioles may be 9(2) or even 9(1) [35].

This suggests that the centriole is becoming less typically organised

as cilia/flagella become less important. It is significant that the

later development of Drosophila is possible without centrioles

[29,36,37]. This may be enabled by a generally reduced

functionality of centrioles in this clade. While comparable

experiments have not been performed in other animals, mamma-

lian cultured cells divide abnormally in the absence of centrioles

[38], suggesting that mammalian development would be impos-

sible without centrioles. In fact, in Drosophila that lack centrioles as

a result of DSas-4 deficiency, lethality does ensue when combined

Pix Proteins and Centrioles
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with loss of the mitotic checkpoint protein, Mad2, even though

Mad2 loss alone is not inviable (J. Raff, personal communication).

Further, larval brains often develop malignant neoplasms in Dsas-

4 deficient flies [39], suggesting that a role for centrioles in cell

division remains important.

C. elegans lacks undulatory flagella, having amoeboid sperm, but

has primary 9+0 sensory cilia. Its centrioles are of a single tubule,

9(1) kind [40]. Again this is consistent with the evolutionary loss of

conventional cilia leading to a simplification of centrioles and a

concomitant loss of Pix proteins. This simplification extends to the

loss of other proteins from both C. elegans and Drosophila, namely d-

and e-tubulin [41,42].

Together, these observations support a hypothesis that the core

function of centrioles across eukaryotic phyla is to construct either

the conventional motile 9(2)+2 secondary cilia or 9(2)+0 primary

cilia. Pix is essential only for the former, and then only when they

are made via an IFT-dependent mechanism.

Discussion

What are conventional centrioles for?
As explained, the presence of Pix, undulatory cilia/flagella and

conventional centrioles correlate across the eukaryotic phyla.

Thus, when only primary cilia are present centrioles are simplified

(C. elegans). In Drosophila there are primary cilia and the sperm are

flagellated, but their undulatory movement cannot be normal.

Here Pix is divergent and in somatic tissues at least the centrioles

are simplified. These organisms have primary, 9+0 cilia, for which

a reduced centriole is sufficient. In advanced land plants and most

fungi, without even primary cilia, the loss of all cilia has led to the

loss of centrioles. Broadly speaking these correlations are

supported across protists. Apparent exceptions like diatoms and

apicomplexans have flagella, but no IFT genes and intra-cytosol

manufacture of the axoneme.

The main conclusion of these observations is that the core

conserved function of centrioles is to construct flagella/cilia, but that

if these are not of the undulatory 9(2)+2 kind a less sophisticated

centriole will do (see also discussion by Marshall [5]). Without this

function selection does not maintain centrioles at all, at least on

evolutionary time scales. This makes sense because the structure of

the centriole corresponds to that of the axoneme, indeed it blends

into it from the basal body. On the other hand centriolar structure

has no relationship to the microtubules nucleated by MTOCs. In

this role centrioles merely act as a platform for aggregating MT

nucleating proteins. Typically, in mammalian cells the centrioles

organise a bipolar division spindle, prevent multipolar spindles

Figure 4. Comparison of Pix proteins in Ecdysozoa. ClustalW was used to compare the Pix proteins of Drosophila melanogaster (Insecta,
Diptera), Anopheles gambiae (Insecta, Diptera) Apis melifera (Insecta, Hymenoptera), Daphnia pulex (Crustacea, Cladocera). Details as in Figure 3.
doi:10.1371/journal.pone.0003778.g004

Pix Proteins and Centrioles
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forming, and control aspects of progression through the cell cycle. It

is essential that these processes are precisely regulated or

chromosomal missegregation may occur.

How did centrioles become associated with the division
spindle?

Flagella clearly evolved in very early eukaryotic cells [43]. Ciliates

are an early diverged offshoot, but typically the early protists would

have had a single flagellum or a pair, in each case arising from a

single basal body, or centriole. Although centrioles can arise de novo

it would clearly be advantageous for each mitotic daughter cell to be

able rapidly to assemble new flagella using a basal body, and hence

to swim. Thus, there would have been selection for a robust

mechanism to supply each daughter with a single centriole. On the

one hand there would have to be robust control of centriolar

replication, tightly linked to the cell cycle. On the other hand

association of the centrioles with the spindle poles would have

ensured that each centriole would arrive in a different daughter cell.

One can envisage that there would have been progressive

integration of the centrioles into other aspects of cell division. This

might be compared to situations where parasitism evolves towards

symbiosis. Initially, the centriole has ‘‘parasitized’’ the spindle,

then the two have become mutually dependent. The tight linkage

of centriolar replication to the cell cycle would have led to the

centriole becoming a platform for molecules regulating the cell

cycle and controlling the number of spindle poles, rather than

simply using them for localisation. Such a role would be consistent

with the observation that Chlamydomonas without centrioles can still

divide, albeit with abnormal cell division and slow growth caused

by disorganized mitotic spindles and cytoplasmic microtubules

[44]. Of course plants and fungi tell us that while this role may be

advantageous, without the role of centrioles in constructing cilia/

flagella their existence is unsupportable in the long term. It is

noteworthy that these organisms have rigid cell walls, which may

have enabled control of cell division by other means. Furthermore,

while centrioles are largely dispensible in the later development of

Drosophila, they are essential for the early divisions, when the

embryos are syncytial [36]. This reduced dependence on centrioles

may be aided by the fact that the requirement for centrioles is

relaxed in ecdysozoans, but apparently centrioles are still

absolutely necessary when there is not even a cell membrane for

astral microtubule attachment.

To support these proposals further work is clearly needed.

Exceptional situations, like Selaginella, should be clarified. Drosophila

provides an interesting test, since centrioles have different degrees

of complexity in different tissues. If Pix is knocked out would it

affect only sperm, or sensory neurones, or other tissues as well?

And are other centriolar proteins divergent or absent in a way that

correlates with Pix? In Chlamydomonas centrioles alternate between

essential spindle roles and constructing flagella. So what would

disruption of Pix do, indeed what is the precise function of Pix in

any organism? While there are many experimental lines that need

investigation, the argument for a core role of centrioles in making

cilia/flagella, while largely non-experimental, is still a very strong

one. Moreover the phylogenetic survey of centrioles certainly

throws up interesting trends, particularly that of simplification of

centrioles in the Ecdysozoa.

Supporting Information

Table S1 Survey across eukaryotes of centrioles, cilia, flagellum-

specific b-tubulin and Pix homologues. Deuterostomia (white),

Ecdysozoa (blue), Lophotrochozoa (grey), Cnidaria (yellow), Fungi

(pink), plants and protistan sister groups (green), other protists

(purple). Column 3, taxonomic groups are from the NCBI

taxonomic database. The b-tubulin cilia/flagellum C-terminal

domain was sought in genomes using BLAST with the Drosophila

sequence (EGEFDED; the human sequence is EGEFDEE and

consensus is EGEF+3 acidic residues[19]). The absence of this

protein from the puffer fish genome is unlikely to be real. Column

8, Pix homologues were sought in genomes by BLAST with the

Xenopus Pix2 sequence. The diagnostic feature of the Pix proteins

was taken to be seven WD40 repeats plus homology in a coiled coil

region in the C-terminus. The proteins were re-BLASTed again

and their closest relatives were known Pix genes. The presence of

the C-terminal coiled-coil region was confirmed using the program

COILS (http://www.ch.embnet.org/software/COILS_form.

html). The number of Pix homologues in genomes is shown in

brackets. The similarity of Pix homologues is represented by a

BLAST similarity score with the Xenopus Pix2 sequence.

Found at: doi:10.1371/journal.pone.0003778.s001 (0.03 MB

XLS)
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