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ABSTRACT
This thesis consists of three essays addressing open empirical questions in applied
microeconomics.

Chapter 1 attempts to quantify the impact of climate change on Indian agriculture. I use
historical data on past yearly weather fluctuations and crop yields to measure the effect of
these weather fluctuations on output, then use climate change prediction models to derive
projections of the impact of future climate change on future productivity. I find that even
moderate climate change could be seriously detrimental to productivity, with a consensus
prediction for warming over the period 2010-2039 reducing productivity 4.5 to 9 percent.

Chapter 2 provides a new tool for analysis of distributional, or quantile, effects in
regression discontinuity (RD) models. RD has become increasingly popular over the last
decade as a method of obtaining quasiexperimental estimates of mean treatment effects.
This paper extends the methodology to the measurement of quantile treatment effects. I
provide simulation evidence on the effectiveness of the estimator and an empirical
application to returns to compulsory schooling in the United Kingdom.

Chapter 3, written jointly with Esther Duflo and Michael Greenstone, examines the
impact of a water and sanitation intervention in Orissa, India, on health outcomes, in
particular the monthly incidence of severe cases of diarrhea and malaria. The design of
the intervention, in particular the fact that the water system is activated suddenly,
unpredictably and simultaneously for all households in a given village, allow us to
overcome several empirical challenges that have impeded credible estimation in the past.
We find large effects: the arrival of services appears to reduce severe cases of diarrhea by
as much as forty percent, with similar effects on severe cases of malaria. Furthermore,
these effects appear to be persistent, as they continue to be apparent in the data after three
and even five years.
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Chapter 1:

The Impact of Climate Change on Indian Agriculture



1 Introduction

As the scientific consensus grows that significant climate change, in particular increased

temperatures and precipitation, is very likely to occur over the 21st century (Christensen

and Hewitson, 2007), economic research has attempted to quantify the possible impacts of

climate change on society. Since climate is a direct input into the agricultural production

process, the agricultural sector has been a natural focus for research. The focus of most

previous empirical studies has been on the US, but vulnerability to climate change may

be greater in the developing world, where agriculture typically plays a larger economic role.

Credible estimates of the impact of climate change on developing countries, then, are valuable

in understanding the distributional effects of climate change as well as the potential benefits

of policies to reduce its magnitude or promote adaptation. This paper provides evidence

on the impact of climate change on agriculture in India, where poverty and agriculture are

both salient. I find that climate change is likely to reduce agricultural yields significantly,

and that this damage could be severe unless adaptation to higher temperatures is rapid and

complete.

Most previous studies of the economic effects of climate change have followed one of two

methodologies, commonly known as the production function approach and the Ricardian

approach. The production function approach (also known as crop modeling) is based on

controlled agricultural experiments, where specific crops are exposed to varying climates in

laboratory-type settings such as greenhouses, and yields are then compared across climates.

This approach has the advantage of careful control and randomized application of environ-

mental conditions. However, these laboratory-style outcomes may not reflect the adaptive

behavior of optimizing farmers. Some adaptation is modeled, but how well this will corre-

spond to actual farmer behavior is unclear. If farmers' actual practices are more adaptive,

the production function approach is likely to produce estimates with a negative bias. On

the other hand, if the presumed adaptation overlooks constraints on farmers' adaptations or



does not take adjustment costs into account, these estimates could be overoptimistic.

The Ricardian approach, pioneered by Mendelsohn et al. (1994), attempts to allow for the

full range of compensatory or mitigating behaviors by performing cross-sectional regressions

of land prices on county-level climate variables, plus other controls. If markets are functioning

well, land prices will reflect the expected present discounted value of profits from all, fully

adapted uses of land, so, in principle, this approach can account for both the direct impact of

climate on specific crops as well farmers' adjustment of production techniques, substitutions

of different crops and even exit from agriculture. However, the success of the Ricardian

approach depends on being able to account fully for all factors correlated with climate and

influencing agricultural productivity. Omitted variables, such as unobservable farmer or

soil quality, could lead to bias of unknown sign and magnitude. The possibility of omitted

variables bias and the inconsistent results obtained from Ricardian studies of climate change

in the US have lead to a search for new estimation strategies.

More recently, economists studying the US have turned to a panel data approach, using

presumably random year-to-year fluctuations in realized weather across US counties to es-

timate the effect of weather on agricultural output and profits (Deschenes and Greenstone,

2007; Schlenker and Roberts, 2006). This fixed-effects approach has the advantage of con-

trolling for time-invariant district-level unobservables such as farmer quality or unobservable

aspects of soil quality. Furthermore, unlike the production function approach, the use of data

on actual field outcomes, rather than outcomes in a laboratory environment, means that es-

timates from panel data will reflect intra-year adjustments by farmers, such as changes in

inputs or cultivation techniques. However, by measuring effects of annual fluctuations, the

panel data approach does not reflect the possibility of longer-term adaptations, such as crop

switching or exit from farming.

Agriculture typically plays a larger role in developing economies than in the developed

world. For example, agriculture in India makes up roughly 20% of GDP and provides nearly



52% of employment (as compared to 1% of GDP and 2% of employment for the US), with

the majority of agricultural workers drawn from poorer segments of the population (FAO,

2006). Furthermore, it is reasonable to expect that farmers in developing countries may be

less able to adapt to climate change due to credit constraints or less access to adaptation

technology. However, the majority of the economics literature on the impact of climate

change has focused on developed countries, in particular the US, presumably for reasons of

data availability. Most research in developing countries has followed the production function

approach, finding alarmingly large possible impacts (Cruz et al., 2007). A true Ricardian

study would be difficult to carry out in a developing country context, because land markets

are less likely to be well-functioning and data on land prices are not generally available.

Instead, a semi-Ricardian approach has used data on average profits instead - the idea is

that the land price, if it were available, would just be the present discounted value of profits.

The major developing country semi-Ricardian studies, of India and Brazil, found significant

negative effects, with a moderate long-run climate change scenario (an increase of 2.00 C in

mean temperature and seven percent increase in precipitation by the end of the 21st century)

leading to losses on the order of 10% of agricultural profits (Sanghi et al., 1998b, 1997).

This paper applies the panel data approach to agriculture in India, using a panel of

over 200 districts covering 1960-1999.1 The basic estimation strategy, following Deschenes

and Greenstone (2007), is to regress yearly district-level agricultural outcomes (in this case,

yields) on yearly climate measures (temperature and precipitation) and district fixed effects.

The resulting weather parameter estimates, then, are identified from district-specific devia-

tions in yearly weather from the district mean climate. Since year-to-year fluctuations in the

weather are essentially random and therefore independent of other, unobserved determinants

of agricultural outcomes, these panel estimates should be free of the omitted variables prob-

1 Auffhammer et al. (2006) also employ the panel data methodology to study Indian agriculture, rice in
particular. Their study uses state-level data on rice output and examines the impact of climate as well
as atmospheric brown clouds, the byproduct of emissions of black carbon and other aerosols. They find a
negative impact of increased temperature, as does this paper.



lems associated with the hedonic approach. The use of district-level data is important to

obtain adequate within-year climate variation, thereby distinguishing climate impacts from

other national-level yearly shocks. I also include smooth regional time trends so that the

effect of a slowly warming climate over the second half of the twentieth century is not con-

founded with improvements in agricultural productivity over the same period. The predicted

mean impact of climate change is then calculated as a linear combination of the estimated

weather parameters and the predicted changes in climate.

The paper finds significant negative impacts, with medium-term (2010-2039) climate

change predicted to reduce yields by 4.5 to nine percent, depending on the magnitude and

distribution of warming. Long-run climate change (2070-2099) is even more detrimental,

with predicted yields falling by 25 percent or more. Because these large changes in long-

run temperatures will develop over many decades, farmers will have time to adapt their

practices to the new climate, likely lessening the negative impact. However, estimates from

this panel data approach may be more relevant for the medium-run scenario, since, as the

paper's theoretical section argues, developing country farmers face significant barriers to

adaptation, which may prevent rapid and complete adaptation.

This negative impact of climate change on agriculture is likely to have a serious impact

on poverty: recent estimates from across developing countries suggest that one percentage

point of agricultural GDP growth increases the consumption of the three poorest deciles by

four to six percentage points (Ligon and Sadoulet, 2007). The implication is that climate

change could significantly slow the pace of poverty reduction in India.

2 Theoretical Framework

Because this paper will attempt to estimate the impacts of climate change based on the

effects of annual fluctuations in the weather, it is worthwhile to consider the relationship

between the two.



2.1 Short-run weather fluctuations versus long-term climate change

Consider the following simple model of farmer output. A representative farmer's production

function is f (T, L, K), where T represents temperature, L represents an input that can be

varied in the short run, which we shall call labor for concreteness, and K represents an input

that can only be varied in the long run, which we call capital. Labor and capital should

not be thought of literally, nor are the distinctions between inputs that are flexible in the

short and long run so sharp in reality. The point is that some inputs, such as fertilizer

application or labor effort are relatively easy to adjust, while other inputs, such as crop

choice or irrigation infrastructure, may be more difficult to adjust or may be effectively fixed

at the start of the growing season. The farmer, taking price and temperature as given, solves

the following program:

max {p f (T, L, K) - wL - rK}

where for simplicity we assume linear input costs. For a given temperature T, with all

inputs fully flexible, the farmer will choose profit-maximizing L (T) and K (T) and obtain

a maximized profit of 7r (T, L (T) , K (T)). Now consider a small change in temperature to

T' > T. First, consider the case where the farmer is not allowed to make any changes, i.e. L

and K are held fixed at L (T) and K (T), respectively. In this case, the farmer obtains profit

7r (T', L (T) , K (T)). To the extent that the production function approach discussed in the

introduction understates or ignores the possibility of adaptation, that approach estimates

the effect of climate change on profits as ArPF = ,r (T', L (T) , K (T)) - 7r (T, L (T) , K (T)).

Next, consider the case where the farmer can carry out short-run adjustments, which in

this model we capture as reoptimizing L, but is constrained from long-run adjustments of

K. In this case, the farmer obtains r (T', L (T') , K (T)). The panel data approach followed

in this paper, where farmers are free to make all intra-season adjustments but not longer-



run adjustments, estimates the effect of climate change as AFE = 7r (T', L (T') , K (T)) -

7r (T, L (T), K (T)).

Finally, consider the case where the farmer is allowed to reoptimize all factors. In this

case, the farmer obtains 7r (T', L (T') , K (T')) and the true effect of climate change is Ar =

7r (T', L (T') , K (T')) - ir (T, L (T) , K (T)). Since greater choice can only help the farmer,

we have

Ar '> A7rFE >_ ATrPF

This framework is illustrated in Figure 1. The first point to note is that the panel data

approach should better approximate the true effect of climate change than a production

function approach that does not allow for adaptation. The second point is that, for small

changes in climate, the panel data approach may provide a reasonable approximation to the

true effect of climate change. However, for large changes in climate, the panel data approach

will overstate the costs of climate change relative to the true long-run cost, when farmers

have re-optimized.

Furthermore, the panel data approach may also provide a reasonable approximation

if farmers are unable to reoptimize along some margins or do so only slowly. If long-term

reoptimization is slow or incomplete, it is plausible that the panel data approach will provide

a good estimate of the costs incurred over the medium run, while not all adjustments have

been carried out. There are several reasons to expect that agricultural practice may adapt

slowly to climate change. First, the signal of a changing mean climate will be difficult

to extract from the year-to-year weather record. The IPCC calculates that a discernible

signal of a warmer mean climate for the South Asian growing season will take 10-15 years

to emerge from the annual noise (Christensen and Hewitson, 2007). This is for South Asia

as a whole, greater noise in particular locations will slow the signal's emergence further.

If farmers' practices are based on mean climates, then this difficulty in discerning climate

change could lead to farming practices significantly out of phase with the true optimum.



Second, many of the investments associated with long-term reoptimization - new irrigation,

new crop varieties, or migration - involve both fixed costs and irreversibilities, both of which

can delay investment in the presence of uncertainty (Bertola and Caballero, 1994; Dixit and

Pindyck, 1994).

Additionally, it is reasonable to expect developing country agriculture to face even greater

difficulties adjusting. Incomplete capital markets, poor transmission of information, and low

levels of human capital are all pervasive and likely to slow adaptation. Topalova (2004) pro-

vides evidence that factors, especially labor, are relatively immobile in India. Furthermore,

slow adaptation of profitable agricultural practices is a long-standing puzzle in the economics

literature (Foster and Rosenzweig, 1995; Duflo et al., 2005).

2.2 Caveats

Several important caveats may limit the applicability of the above model. First, data on

annual agricultural profits are not available.2 This paper will use data on annual yields

(output per hectare) as a proxy instead and explore the impact on those inputs for which

annual data are available. This may overstate the impact on welfare if farmers reduce their

use of inputs in response to a negative weather shock. The empirical analysis explores the

impacts on those inputs for which yearly, district-level data are available. Second, it is not

possible for a panel study to assess the impact of weather on output through its effects on

stock inputs. For example, if climate change hurts agriculture by depleting aquifers but one

year's drought does not appreciably deplete an aquifer, the panel data approach will not

capture this effect. Finally, the panel approach cannot assess the impact of variables that

vary only slowly over time. For example, it is believed that the same increased levels of carbon

dioxide (CO2) that are causing global warming may be beneficial to agriculture, since carbon

2 Sanghi et al. (1998b) use average profits over a 20-year period. Their imputed labor inputs are based on
agricultural labor quantities measured by decadal censuses, with linear interpolations for non-census years.
This is appropriate for their purpose, which is to asses the relationship between average climate and average
profits, but not appropriate for this paper, where the emphasis is on annual fluctuations.



dioxide is important to plant development.3 Since the level of CO 2 changes only slowly, it is

not possible to separate its effect from that of, for example, smooth technological progress

over time. However, since CO 2 levels are roughly constant across space, the Ricardian

approach is not able to capture this effect either.

3 Data Sources and Summary Statistics

The analysis is performed on a detailed 40-year panel of agricultural outcomes and weather

realizations covering over 200 districts. Although Indian districts are generally somewhat

larger than US counties, the district is the finest administrative unit for which reliable data

are available. This section describes the data and provides some summary statistics.

3.1 Agricultural outcomes

Detailed district-level data from the Indian Ministry of Agriculture and other official sources

on yearly agricultural production, output prices and acreage planted and cultivated for 271

districts over the period 1956-1986 have been collected into the "India Agriculture and Cli-

mate Data Set" by a World Bank research group, allowing computation of yield (revenues

per acre) and total output (Sanghi et al., 1998a). This dataset covers the major agricultural

states with the exceptions of Kerala and Assam. Also absent, but less important agricul-

turally, are the minor states and Union Territories in northeastern India, and the northern

states of Himachal Pradesh and Jammu-Kashmir. These 271 districts are shown in Figure

2.A. The production, acreage and price data for major crops were extended through 1999

by Duflo and Pande (2007), allowing computation of yields (output per acre) for these ma-

jor crops. 4 218 districts have data for all years 1960-1999; these are the districts that will
3Recent research in the crop modelling school has cast doubt on the magnitude of beneficial effects from

CO2 fertilization (Long et al., 2006).
4The six major crops are rice, wheat, jowar (sorghum), bajra (millet), maize and sugar. These comprise

roughly 75% of total revenues.



be included in the regressions. These districts are mapped in Figure 2.B. The bulk of the

districts lost are in the East, in particular Bihar and West Bengal.

Because markets are not well-integrated, local climate shocks could affect local prices.

These price effects make estimating effects on revenue undesirable. While the price response

to a negative climate shock will reduce the impact on farmers, calculating the effect of climate

on revenues will ignore the effect on consumer surplus. In this context, the impact on yields

better approximates the overall welfare effects, as pointed out by Cline (1992). To avoid

these potential pitfalls from endogenous prices, then, I hold prices fixed at their 1960-1965

averages.

The World Bank dataset also includes input measures, such as tractors, plough animals

and labor inputs, as well as prices for these inputs. However, many of these inputs, in

particular the number of agricultural workers, are only measured at each 10-year census,

with annual measures estimated by linear interpolation. This precludes construction of

annual profits data, a theoretically preferable measure. This paper will use data on fertilizer

inputs, the agricultural wage and the extent of double-cropping, each of which is measured

annually at the district level, to estimate the extent of within-year adaptation to negative

climate shocks.

3.2 Weather data

Recent research in economics and agricultural science has pointed to the importance of daily

fluctuations in temperature for plant growth (Schlenker and Roberts, 2006). Commonly

available data, such as mean monthly temperature, will mask these daily fluctuations, so

it is important to obtain daily temperature records. Recent economics research in the US

has used daily records from weather stations to construct daily temperature histories for US

counties. However, the publicly available daily temperature data for India are both sparse

and erratic. The main clearinghouse for daily data, the Global Summary of the Day (GSotD,



compiled by the US National Climatic Data Center on behalf of the World Meteorological

Organization) has at most 90 weather stations reporting on any one day and contains major

gaps in the record - for example, there are no records at all from 1963-1972. Furthermore,

these individual stations' reports come in only erratically - applying a reasonable sample

selection rule such as using stations that report at least 360 days out of the year or 120 days

out of the 122 day growing season would yield a database with close to zero observations.

To circumvent this problem, I use data from a gridded daily dataset that use non-

public data and sophisticated climate models to construct daily temperature and precip-

itation records for 1' x 1' grid points (excluding ocean sites). This data set, called NCC

(NCEP/NCAR Corrected by CRU), is a product of the Climactic Research Unit, the Na-

tional Center for Environmental Prediction / National Center for Atmospheric Research and

the Laboratoire de M6teorologie Dynamique, CNRS. NCC is a global dataset from which

Indian and nearby gridpoints were extracted, providing a continuous record of daily weather

data for the period 1950-2000 (Ngo-Duc et al., 2005). To create district-level weather records

from the grid, I use a weighted average of grid points within 100 KM of the district's ge-

ographic center. 5 The weights are the inverse square root of the distance from the district

center.

I employ two methods to convert these daily records to yearly weather metrics for analysis.

The first, degree-days, reflects the importance of cumulative heat over the growing season, but

may fail to capture important nonlinear effects. The second, less parametric approach, counts

the number of growing-season days in each one-degree C temperature bin. This approach is

more flexible, but imposes a perhaps-unrealistic additive separability assumption. However,

the results are similar between the two approaches. Details of the methods follow.
5Alternative radii did not appreciably affect the district-level records.



3.2.1 Temperature: Degree-days

Agricultural experiments suggest that most major crop plants cannot absorb heat below

a temperature threshold of 8C00, then heat absorption increases roughly linearly up to a

threshold of 32°C, and then plants cannot absorb additional heat above this threshold. I

follow the standard practice in agronomics, then, by converting daily mean temperatures to

degree-days by the formula

0 if T < 80C

D (T) T - 8 if 8C <T<32C

24 T > 320 C

Degree-days are then summed over the summer growing season, which for India is defined

as the months of June through September, following Kumar et al. (2004). Fixing the grow-

ing season avoids endogeneity problems with farmers' planting and harvesting decisions. It

should be noted that the degree-day thresholds were developed in the context of US agri-

culture. Crops cultivated in a warmer climate may have different thresholds, in particular

a higher upper threshold. For comparability with other research, I use the standard 8°C

and 320C thresholds in the empirical results that follow, but the results are not sensitive

to the use of alternative upper thresholds (330C, 340C). I also allow for the possibility that

heat in excess of a threshold may be damaging by including a separate category of harmful

degree-days. Each day with mean temperatures above 34°C is assigned difference between

that day's mean temperature and 340C; these harmful degree-days are then summed over

the growing season. Again, the results are not sensitive to alternate thresholds (33oC, 35°C).

3.2.2 Temperature: One-degree bins

Schlenker and Roberts (2006) emphasize the importance of using daily records in the con-

text of nonlinear temperature effects. Consider the following simple example: imagine that



increased temperature is initially beneficial for plants, but then drastically damaging above

30C00. Consider two pairs of days, the first pair with temperatures of (300C, 30"C) and the

second pair with temperatures of (290C, 3100C). Although both pairs have the same mean

temperature, their contributions to growth will be very different, with the second much

less beneficial. To capture such potential nonlinearities, I employ a nonparametric approach,

counting the total number of growing season days in each one-degree C interval and including

these totals as separate regressors. That is, for each grid point g, I construct

Tc,g,y = {# of growing season days with mean temperature in the interval ((c - 1) 0C, c°C]}

for year y and for each of c = 1,.. ., 50. To obtain district-level measures from these measures

at each grid point, I again take the weighted average of the number of days in that bin for

each grid point within 100KM of the district center.

It is important to emphasize that the district-level bins are constructed by averaging over

grid point temperature bins rather than constructing bins of district center temperatures.

Again, this is necessary to account for potential nonlinear temperature effects. To under-

stand the reasoning, consider the following simplified example of a district center equidistant

between two grid points. Suppose these are the only two grid points within 100 KM of the

district center. As above, imagine that increased temperature is initially beneficial for plants,

but then drastically damaging above 30C00. Now suppose that one of the two grid points has

a mean temperature of 29C00 every day while the other grid point has a mean temperature

of 31C00. The mean temperature calculated at the district center will be 30C00 each day, but

the bin-by-bin experience of the district as a whole would be better captured by assigning

half a day to each of the bins corresponding to 290C and 31'C. This methodology does lead

to districts having fractional number of days in bins, but the total over all bins still sums to

122, the number of days in the growing season, for each district.

The mean number of days in each bin across all districts is plotted in Figure 3. Because



of the scarcity of observations above 38°C and below 22°C, each of these will be collected

into single bins. The tradeoff here is between precision of estimation (aided by grouping

these observations) and estimation of nonlinearities at extreme temperatures.

3.2.3 Precipitation

Precipitation data are summed by month to form total monthly precipitation for each month

of the growing season, during which the vast majority of annual precipitation occurs. In-

cluding separate monthly measures, rather than merely summing over the growing season,

allows the timing of precipitation, in particular the arrival of the annual monsoon, to affect

output. To test robustness, I also run regressions with total growing season precipitation.

3.3 Climate change predictions

I compute estimated impacts for three climate change scenarios. First, I examine the short-

term (2010-2039) South Asia scenario of the Intergovernmental Panel on Climate Change's

latest climate model (Cruz et al., 2007), which is an increase of 0.5°C in mean temperature

and four percent precipitation for the growing season months of June-September. This sce-

nario corresponds to the "business-as-usual" or highest emissions trajectory, denoted A1F1

in the IPCC literature. However, because most of the short-run component of climate change

is believed to be "locked-in", i.e. already determined by past emissions, these short run pro-

jections are not very sensitive to the emissions trajectory. For example, the short-term South

Asia scenario associated with the lowest future emissions trajectory, denoted B1 in the IPCC

literature, differs by less than 0.050 C for the growing season months. The impact of this

scenario on the distribution of growing season temperatures is plotted in Figure 4.

The IPCC does not report higher moments of predictions for this consensus scenario.

However, considering just a mean shift in temperatures would overlook the potentially im-

portant effects of the distribution of temperatures, in particular nonlinearities at temperature



extremes. Furthermore, this consensus scenario is given as a uniform change across all re-

gions, whereas it is likely that climate change will develop differently across different regions

of India. To assess the effects of changing distributions of temperatures and to account for

regional differences, I use daily predictions from the Hadley Climate Model 3 (HadCM3)

data produced by the British Atmospheric Data Centre for the AIF1 business-as-usual sce-

nario. These predictions are given for points on a 2.50 latitude by 3.50 longitude grid. I

calculate the average number of days in each one-degree interval, by region, for the years

1990-1999, 2010-2039 and 2070-2099. The changes in the distribution of temperatures are

then applied to the district-level temperature distributions derived from the historical NCC

data to obtain district-level changes in temperature distributions.6 These changes are plot-

ted in Figures 5 and 6. The contrast with the mean-shift scenario of the IPCC is apparent

in the greater relative mass in the right tails. Significantly, the increase in the mean number

of growing-season days with temperatures above 38C00 is greater than the mean number of

such days in the historical data: while the average district experienced just 0.4 such days

observed per year in the historical data, the mean number of days is expected to increase

by nearly 2 for the period 2010-2039 and nearly 10 for the period 2070-2099. Because the

effect of these extreme temperatures is only imprecisely estimated, this will add uncertainty

to the estimated impacts.

3.4 Summary statistics

Summary statistics of the key variables of interest are presented in Table 1.A. This table

presents the sample used in the analysis, covering 1960-1999 and including only the 218

districts with full records of output and yields. Noteworthy points in this table include the
6 The Hadley data for 1990-1999 display both a higher mean and variance than the NCC data for the

same period. Since the estimation of temperature effects is performed with the NCC data, calculating
projected impacts using temperature changes based on the Hadley data would not be properly scaled. In
the projections, I rescale the level of the Hadley data so that the 1990s means by region match the 1990s
NCC data. I also rescale the spread so that the root mean squared errors around each gridpoint's monthly
mean match for the 1990s.



high productivity, irrigation and use of high-yield varieties (HYV) of the Northern states

(Haryana, Punjab and Uttar Pradesh). Significant poverty reduction, defined relative to

state- and sector-specific thresholds for minimum adequate calorie consumption, is also vis-

ible, although poverty remains high, especially in the Eastern states. Panel I of Table 1.B

compares the 218 districts analyzed in this paper to the sample of 271 districts for the

period 1966-1986 studied in Sanghi et al. (1998b) (referred to as SMD98 hereafter). The

two samples are very similar. Panel II of Table 1.B looks at the 218 districts over time.

Noteworthy trends include the increase in agricultural productivity revealed by increasing

yields, the large increase in irrigation an high-yield varieties, and warming (observed in mean

temperatures and degree-days).

3.5 Residual variation

Because this paper uses district fixed-effects to strip out time-invariant unobservables that

could be confounded with mean climate, it is important to consider how much variation in

climate will be left over after these fixed effects and other controls have been removed. This

section assess the extent of this residual variation.

3.5.1 Mean temperatures, degree-days and precipitation

Table 2.A reports the results of an exercise designed to assess the extent of residual variation

in mean temperatures, degree-days and precipitation. I regress each weather measure on

various levels of fixed effects - none, district, district and year, district and region*year,

district and state*year. The residual from this regression is a measure of remaining variation.

For example, the residual from the regression with no fixed effects is simply the deviation

of that district*year observation from the grand mean of the sample, the residual from the

regression with district fixed effects is the deviation of that district*year observation from

the district mean, etc. I then count how many observations have residuals of absolute value



greater than certain cutoffs - for mean growing season temperature, for example, steps

of 0.5°C up to 2.50C. Ideally, there should be a substantial number of observations with

deviations greater than the predicted change in climate. If this is the case, then the effect of

weather variation of similar magnitude to the predicted climate change would be identified

from the data, rather than from functional form extrapolations.

Unfortunately, the fixed effects do wipe out a great deal of variation. Consider the sixth

row of Panel 2, which examines the results for district and year fixed effects for the sample

that will be the focus of the regression analysis: the 218 districts with output data for all

years 1960-1999. Here, we see that just 15 district*year observations differ from the predicted

value - which, in this case, is the district mean plus the deviation of the national mean for

that year from the national mean for the sample period - by more than 120 degree-days

(which corresponds roughly to a 1.00 C mean temperature increase), while no observations

differ from the predicted value by more than 180 degree-days.

These findings are less than ideal, since they mean that only a few observations are

available to identify even small weather fluctuations. To recapture some of this variation,

I retreat from year fixed effects and add smooth time trends (linear, quadratic, cubic) to

district fixed effects. This way, I remove possible confounding from correlated trends in

temperature and technological progress. If yearly weather fluctuations are indeed random,

then in expectation they will be uncorrelated with other economic shocks and therefore the

consistency of the estimates will not be affected. Looking at the fifth row of Panel 2, we

see that we now have 161 observations differing from the predicted value by more than 120

degree-days. Although this is an improvement relative to the year fixed-effects, there is

still not an overwhelming amount of variation: we still have no observations differing from

the predicted value by more than 240 degree-days. However, not much variation is lost

relative to the district fixed-effects alone (the first row of each panel). In Appendix Table 2,

I experiment with alternative upper bounds for the degree-day measure, but this does not



revive much variation.

These results should lead to caution in interpreting predicted impacts for large changes

in climate, since these will depend on functional form assumptions. However, in the case of

precipitation, there is no lack of underlying variation, as is made clear by Panel 3. Estimates

of precipitation effects will be well-identified from the data.

3.5.2 Temperature bins

To assess the extent of the residual variation within temperature bins, I calculate the sum

of the absolute value of the residuals from a regression of the value of the bin variable on

different levels of fixed effects. That is, for each bin c = < 20, 21, ... , 40, > 40, I estimate

Tc,d,t = FEf + ec,d,t

f

where {FEf} is some set of fixed effects (e.g. none, district, district and year, district and

region*year, state*year) and calculate the average value of the absolute residuals,

1
AVR~ D x T ,

d,t

I also perform similar calculations for regression models incorporating smooth functions of

time rather than year fixed effects, e.g.

Te,d,t = 5 FEd + 'Y1Y + 7y2 2 + ) 3Y3 + Ec,d,t
d

The results of these calculations of mean sums of absolute residuals are reported in Table

2.B. Each entry represents the mean across districts and years, so the mean times the number

of district-by-year observations (here 218 x 40 = 8270) yields the number of observations

available to identify the effect of that interval. For example, looking at the fifth row, cor-



responding to the regression model with district fixed effects and a cubic time trend, there

are roughly 0.05 x 8720 r 435 observations available to identify the extremal bin collecting

all days with mean temperatures above 400C. Because of the scarcity of observations above

380C and below 22°C, each of these will be collected into single bins. The tradeoff here

is between precision of estimation (aided by grouping these observations) and estimation

of nonlinearities at extreme temperatures. The results for the specification of district fixed

effects and a cubic year trend are plotted in Figure 7.

4 Econometric Strategy

4.1 Semi-Ricardian method

This section describes the econometric framework used in the semi-Ricardian approach of

Sanghi et al. (1998b) in order to make clear the difference between that approach and the

panel approach considered here. The cross-sectional model is

9d = X'd,3 + E Z ifi (id) + Ed (1)

where Yd is the mean agricultural outcome of interest for district d, Xd is a vector of observ-

able district characteristics (such as urbanization, soil quality, etc.), Wid is a climate variable

of interest (temperature, precipitation) and gd is the error term. In SDM98, the climate

variables are monthly mean temperature and precipitation for the months of January, April,

July and October, as well as their squares and within-month interactions. As noted above,

SDM98 diverge from the traditional Ricardian or hedonic approach by using an average of

profits, output and other flow variables rather than land values in a year, for reasons of

data availability. The regressions are weighted by area in cropland in each district, with

the motivation being that estimates of output from larger districts will be measured more



precisely.

For the coefficients of interest Oi to be estimated consistently, it is necessary that

E [fA (Wid) Ed Xd] 0

for all i. Intuitively, climate must be uncorrelated with unobserved determinants of agricul-

tural productivity, after controlling for observed determinants of agricultural productivity.

Note that this requires that the true influence of the Xd is linear (or, alternatively, that

the true, nonlinear relationship has been correctly specified). SMD98 include measures of

soil quality, population density and other plausible determinants of agricultural produc-

tivity. However, the possibility remains that unobserved determinants of output, such as

unobserved soil quality, farmer ability, or even government institutions are correlated with

the error term Ed, which would bias the estimated coefficients 0i and therefore the imputed

impact of climate change.

In the language of the model in Section 2.1, the semi-Ricardian method estimates the

impact of a shift in climate from T to T' by comparing observed - (T', L (T') , K (T')) with ob-

served r (T, L (T) , K (T)), with the observations taking place in two different districts. How-

ever, there may be other unobserved components of the profits function, so in truth the semi-

Ricardian method would be comparing 7 (T', L (T') , K (T') , ) with - (T, L (T) , K (T), E),

while the true long-run impact of climate change for the district currently at climate T would

be i (T', L (T'), K (T') , E) - 7 (T, L (T) , K (T) , E).

4.2 Panel approach

This paper follows the panel data approach, estimating

Ydt = ±d + gr (t) + Xdt3 + E kifi (Widt) + Edt (2)



There are a number of important differences between equation (2) and equation (1). First,

note that the dependent variable, Ydt, is a yearly measure rather than an average. In the

models estimated below, this is annual yields (output per hectare). Second, the regressors of

interest are (functions of) yearly realized weather Widt, rather than climate averages. Third,

as discussed in the theory section, the coefficients on short run fluctuations need not be the

same as those on long run shifts, i.e. Qi Z Oi. Finally, the district fixed effects ad will absorb

any district-specific time-invariant determinants of ydt.

The consistency of fixed-effects estimates of Bi rests on the following assumption:

E [fi (Widt) Edt Xdt, ad, gr (t)] = 0

Intuitively, Bi is identified from district-specific deviations in weather about the district aver-

ages after controlling for a smooth time trend. This variation is presumed to be orthogonal

to unobserved determinants of agricultural outcomes, so it provides a potential solution to

the omitted variables bias problems that impede estimation of equation (1).

Because outcomes are likely autocorrelated between years for a given district, I perform

feasible generalized least squares (FGLS) estimation of the fixed-effects model, estimating

the autocorrelation structure of the dependent variable using the bias-corrected method of

Hansen (2007). Examining the residuals from the fixed effects regression reveals that an

AR(2) process best fits the data. However, as Hansen (2007) emphasizes, conventional esti-

mation of the parameters of the autocorrelation model are biased in a fixed effects framework,

so I compute these parameters using Hansen's bias-corrected method.

While an AR(2) process describes the observed data best, it is unlikely that the true

underlying error-generating process is literally AR(2). Therefore, I construct cluster-robust

standard errors for the FGLS estimates in the spirit of the Huber-White heteroscedasticity-

robust variance-covariance matrix. That is, rather than computing the standard error

as &2 (XIi-1X) (where X denotes the regressors with fixed effects removed), which



would be appropriate if the data truly were governed by an AR(2) process, I compute

('k)-1) W (X'-1X) -1, where W is the robust sum of squared residuals matrix.7

This procedure combines the best of both worlds - the FGLS procedure is more efficient

than fixed effects estimation alone, because the AR(2) process does approximate the true

autocorrelation structure, but the robust standard errors are conservative (Wooldridge, 2003;

Hansen, 2007).

5 Results

5.1 Regression results

5.1.1 Modelling temperatures with degree-days

The first set of regressions models temperature using growing season degree-days (and its

square) and harmful growing season degree-days. As noted above, this reflects the agronomic

emphasis on cumulative heat over the growing season, but may be overly restrictive in its

functional form. In particular, I estimate

Ydt = ad + g9 (t) + 9DDGSDDdt + ODD2GSDDdt + OHDDHDDdt (3)

+OPPdt + OP2Pdt

+6IDD,P (GSDDdt -Pdt) + OIHD,P (HDDdt . Pdt) + dt

where the dependent variable is the major crop yield (output per hectare in 2005 US dol-

lars). I include district fixed effects and region-specific cubic time trends. The time trends

allow productivity to improve as the climate slowly warms over the latter half of the 20th

century, avoiding confounding of temperature warming with technological progress. Ta-

7Precisely, W= E N  ~lj, where fj = j tejt . ejt is the residual from the FE regression and and

i2t is the j, t row of the matrix 0- 1/ 2 .



ble 3.A, column (1) reports the results of this FGLS regression. The results are overall

as expected: yields are increasing in the linear temperature and precipitation terms, but

decreasing in the squares. Harmful degree-days are indeed very harmful, although when

considering the magnitude of the coefficient it should be kept in mind that an increase of

100 harmful degree-days would be quite a radical increase in temperatures. Interestingly,

the interaction term between degree-days and precipitation is negative, which runs counter

to the received agronomic wisdom that extra moisture helps shield plants from extra heat.

However, precipitation does appear to shield plants from extreme heat, at least if we take se-

riously the positive (but insignificant) point estimate of positive interaction between harmful

degree-days and precipitation.

In column (2) of Table 3.A, I report results for a regression that includes monthly precipi-

tation (and squares), in an attempt to capture the importance of the timing of precipitation.

The estimates on precipitation are generally sensible, with yields increasing in linear precip-

itation terms and decreasing in their squares. The exception is August precipitation, where

the signs are reversed, presumably reflecting the negative impact of a late-arriving monsoon.

5.1.2 Temperatures in nonparametric bins

Because of concerns that the degree-day specification may be overly restrictive, I also estimate

models where the regressors are the number of days in each of 20 temperature bins. In

particular, I estimate

Ydt = ad + 9g (t) + Z bTTc,dt + 0pPdt + bPd2t + Edt (4)
C

where the temperature bins are c = < 22, 21, ... , 38, > 38. The (29, 30] bin is omitted as

the reference category, so each coefficient 9 To represents the impact of an additional day in

the bin (c - 1, c] compared to a day in the (29, 30] bin. The main functional form restriction

this framework imposes on the temperature effects is that the effect is constant within each



bin. This seems a reasonable approximation for the interior bins but of course cannot be

true for the extremal bins (< 22 and > 38). As above, I run models with aggregate growing

season precipitation (and its squares) and with monthly precipitation (and squares). Again,

I include district fixed effects and regional cubic time trends.

The coefficient estimates are given in Table 3.B, but are perhaps more easily assessed in

graphical form, presented in Figure 8. The clear pattern is that cooler temperatures increase

agricultural productivity and warmer temperatures are harmful, relative to the (29, 30] bin.

For example, imagine that climate change shifts one day from the P29 bin (temperatures

in (28, 29] C) to the P31 bin. Since the estimated coefficients on these bins are 0.013 and

-0.082, respectively, the total estimated impact of such a shift would be -0.095. Notably,

the effects of the highest temperature bins, while negative, are imprecisely estimated.

This additional flexibility does come with a cost: as is readily visible in equation (4),

there is a strong assumption of additive separability. That is, I am implicitly assuming that

the marginal effect of, for example, a day in the (34, 35] bin is the same in a relatively warm

year as in a relatively cool year. This is unlikely to be true. However, as will be apparent in

the predicted impacts, the results from this nonparametric approach are reasonably close to

those obtained from the degree-day approach, which does take into account cumulative heat

over the growing season.

5.2 Predicted Impact of Climate Change

To incorporate the estimated coefficients into a climate change prediction, I calculate the

discrete difference in predicted yields at the projected temperature and precipitation scenario

from the predicted yield at the historical mean. That is, in the case of the nonparametric



bins, I calculate

y Y i-Yo

yz (Yl, -- Y0O I

+ S {OPm (Pm,1 - Pmo) + 'P2 -m 0) }
m

where OT, is the estimated coefficient on temperature bin c, OPm on precipitation in month

m, and OPm on squared month-m precipitation. Tc,1 represents the mean number of days in

bin c in the projected climate, T0 ,o the mean in the historical climate, and similarly for the

precipitation variables. The calculation is similar for the degree-days approach.

Table 4.A presents results for the degree-days approach, using both total precipitation

and monthly precipitation. The underlying regression coefficients are taken from the corre-

sponding columns in Table 3.A. In each case, impacts are estimated for each of three climate

change scenarios: the IPCC 2010-2039 consensus A1F1 (business-as-usual) scenario (+0.5"C

uniform temperature increase, +4% precipitation increase), the Hadley 2010-2039 A1F1 tem-

perature predictions with +4% precipitation, and the Hadley 2070-2099 A1F1 temperature

predictions with +10% precipitation. The aggregate impact is negative for all three scenar-

ios, with mildly positive precipitation effects outweighed by negative temperature effects.

Even the moderate IPCC 2010-2099 scenario reduces yields by roughly 4.5%. The Hadley

scenarios are even more detrimental. In the medium run (2010-2039), yields are predicted to

fall by approximately nine percent, while the long run effect is over 40% of yields. However,

this latter estimate is in the absence of long-run adaptation, and therefore likely represents

an upper bound on damages.

Table 4.B presents results for the temperature bins approach. The national results,

reported in column (1) are broadly similar to those from the degree-days approach: the mild

(IPCC) medium-run scenario reduces yields by roughly 4.5 percent, and damages increase for



the Hadley scenarios, emphasizing the importance of the shift into the highest temperature

bins. Notably, the long-run Hadley scenario is not nearly as damaging as in the degree-

days model, although yields are still predicted to fall by 25 percent. The difference can be

attributed to the degree-days model's reliance on functional form: as temperatures increase,

the negative coefficient on the quadratic degree-day term pushes yields far down.

To explore potentially heterogeneous impacts, columns (2)-(5) reports results from sep-

arate estimates by region. Effects are negative across all regions with the exception of the

East, which is very imprecisely estimated due to the small sample size. The estimated

long-run effect for the Northwest region is perhaps implausibly large (over 60% of yields),

although this region also has a small sample size and this estimate is not very precise.

Table 4.C explores the possibility of heterogenous impacts over time. I split the sample

into 1960-1979 and 1980-1999 and run the temperature bins regressions separately. The coef-

ficients on the temperature bins are plotted in Figures 9.A and 9.B. Inspection of these figures

reveals the same pattern of beneficial lower temperatures and harmful higher temperatures.

overall decline in temperature. As above, these coefficients (along with the coefficients on

monthly precipitation) are combined with climate projections to obtain predicted impacts,

reported in Table 4.C. For comparison, column (1) re-reports the results for the full sample,

1960-1999. Interestingly, the later period (reported in column (3)) shows greater sensitiv-

ity to climate than the earlier period (reported in column (2)), both absolutely and as a

percentage of average yields. One possible explanation for this increased vulnerability is

the higher prevalence of high-yield varieties (HYVs) in the latter period, as HYVs are be-

lieved to provide greater yields on average but are more sensitive to climate fluctuations.

Another potential explanation is that temperatures in the second half of the period were

somewhat higher. The important message is that technological progress need not reduce

climate vulnerability.



5.3 Evidence on Adaptation

Three margins for adaptation can be explored with the available data. First, the application

of fertilizer can be adjusted in the face of a harmful weather shock. The fertilizers reported

in the data are nitrogen, phosphorus, and potassium, which are aggregated at mean 1960-

1965 prices. Column (1) of Table 5 shows the estimated impact of a P1C mean temperature

increase on the quantities of fertilizers used per hectare. Fertilizer use falls by roughly 4.5

percent. This suggests that the true welfare impact of a climate shock may be slightly

overstated by the effect on yields, since farmers can reduce their input use.

Second, farmers could respond to a harmful shock by planting in the second, winter

season. However, column (2) shows that the extent of double-croppings is not significantly

affected by a one-degree temperature shock. This margin for adaptation may be limited, at

least in the short run.

Finally, although yearly data on labor inputs are not available, yearly wages are available

at the district level. If we assume that the temperature affects the agricultural labor market

mainly through the channel of labor demand rather than labor supply, the behavior of wages

in response to temperature shocks can be informative about the response of labor demand

to temperature. Column (3) shows that the wage falls by nearly two percent in response to

a one-degree temperature increase.' In a full-employment context, we could interpret this

as reducing the welfare effect of a climate shock, since farmers use fewer scarce resources,

much as with fertilizer. However, given chronic unemployment in India, it is likely that these

resources are left unemployed, so the welfare effect is ambiguous. The results of Topalova

(2005), demonstrating the slow response of factor quantities in India to shocks, suggest that

this effect could be persistent.

8 As measured by the ratio of gross cropped area to net cropped area.
9 This is consistent with the effects for rainfall found by Jayachandran (2006).



6 Conclusion

This paper employs a panel data methodology to show that the impact of climate change

on Indian agriculture is likely to be negative over the short- to medium-term. The medium-

term (2010-2039) impact on yields is estimated to be negative 4.5 to nine percent. Since

agriculture makes up roughly 20 percent of India's GDP, this implies a cost of climate

change of 1 to 1.8 percent of GDP per year over the medium run. Furthermore, agricultural

productivity is particularly important for the well-being of the poor. A back-of-the envelope

calculation using the estimate of Ligon and Sadoulet (2007) that each percentage point of

agricultural GDP growth increases consumption of the lowest three deciles by four to six

percent would imply that climate change could depress consumption among India's poor by

at least 18 percent. In the absence of rapid and full adaptation, the consequences of long-run

climate change could be even more severe, up to 25 percent of crop yields. The results of

this paper pose two important questions for future research. First, what are the factors

explaining the difference between these negative consequences for a developing country and

the mildly positive results for the U.S. found by Deschenes and Greenstone (2007)? Second,

and crucial for the welfare of Indian agriculture, how quickly will developing country farmers

be able to adjust their farming practices to adapt to the changing climate and what policies

or technologies will enable rapid adaptation?
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Table 1.A: Descriptive Statistics
Variable Units All North NorthWest East South

Output 2005 USD (000) 4,564.2 7,580.2 2,289.0 4,098.6 3,682.8
(4,813.8) (6,860.9) (2,567.6) (2,396.3) (3,092.3)

Yield (output per hectare) 2005 USD 15.2 19.6 10.4 10.9 14.8
(11.0) (11.5) (9.0) (4.8) (10.9)

Mean temperature (growing season) Deg. C 28.3 29.6 29.1 27.8 27.3
(2.3) (2.3) (2.0) (1.4) (2.0)

Degree-days (growing season) Deg. C 2,438.4 2,577.2 2,526.2 2,403.5 2,336.2
(253.6) (255.6) (220.7) (166.3) (220.8)

Precipitation (growing season) mm 760.8 791.2 682.8 996.1 746.0
(309.1) (279.3) (273.7) (197.7) (330.9)

Share of cropland irrigated 0.28 0.48 0.21 0.21 0.20
(0.23) (0.22) (0.12) (0.16) (0.19)

Share of cropland HYV 0.23 0.31 0.16 0.16 0.21
(0.19) (0.22) (0.13) (0.12) (0.19)

Share below poverty line (1973) 0.45 0.36 0.42 0.70 0.49
(0.14) (0.11) (0.16) (0.14) (0.10)

Share below poverty line (1999) 0.23 0.15 0.17 0.42 0.27
(0.12) (0.10) (0.08) (0.15) (0.10)

Number of districts 218 61 36 11 110
Number of observations 8,720 2,440 1,440 440 4,400

Notes: Regression sample: 1960-1999, 218 districts with output data for all years 1960-1999. Regions defined as:
North (Haryana, Punjab and Uttar Pradesh); Northwest (Gujarat, Rajasthan); East (Bihar, Orissa, West Bengal); South
(Andhra Pradesh, Karnakata, Madhya Pradesh, Maharastra, Tamil Nadu). Standard deviations in parentheses.



Table 1 .B: Supplemental Descriptive Statistics

Panel I: Comparison of Regression Sample with World Bank Sample
Regression Sample, World Bank Sample, Regression Sample,

Variable Units 1960-1999 1966-1986 1966-1986
Output 2005 USD (000) 4,564.2 4,296.8 4,245.7

(4,813.8) (3,806.1) (3,912.0)
Yield (output per hectare) 2005 USD 15.2 13.3 13.7

(11.0) (8.3) (8.6)
Mean temperature (growing season) Deg. C 28.3 28.0 28.0

(2.3) (2.6) (2.6)
Degree-days (growing season) Deg. C 2,438.4 2,408.2 2,404.9

(253.6) (294.3) (292.3)
Precipitation (growing season) mm 760.8 801.9 754.2

(309.1) (351.8) (315.8)
Share of cropland irrigated 0.28 0.26 0.28

(0.23) (0.23) (0.23)
Share of cropland HYV 0.23 0.22 0.22

(0.19) (0.19) (0.19)
Share below poverty line (1973) 0.45 0.47 0.45

(0.14) (0.15) (0.14)
Share below poverty line (1999) 0.23

(0.12)
Number of districts 218 271 218
Number of observations 8,720 5,670 4578

Panel II: Regression Sample By Decade
Variable Units 1960-1969 1970-1979 1980-1989 1990-1999
Output 2005 USD (000) 2,777.3 3,956.2 5,365.1 6,158.1

(2,110.4) (3,346.6) (5,025.6) (6,713.1)
Yield (output per hectare) 2005 USD 10.2 12.9 17.3 20.4

(5.8) (7.6) (10.6) (14.8)
Mean temperature (growing season) Deg. C 27.6 28.3 28.6 28.6

(3.3) (1.8) (1.8) (1.8)
Degree-days (growing season) Deg. C 2,356.4 2,443.5 2,476.5 2,477.3

(368.8) (196.0) (192.6) (190.0)
Precipitation (growing season) mm 734.2 788.6 766.5 754.1

(327.2) (302.6) (308.9) (294.6)
Share of cropland irrigated 0.22 0.27 0.32

(0.19) (0.21) (0.25)
Share of cropland HYV 0.05 0.20 0.35

(0.07) (0.16) (0.19)
Share below poverty line 0.45 0.39 0.27

(0.14) (0.17) (0.15)
Number of districts 218 218 218 218
Number of observations 2,180 2,180 2,180 2,180

Notes: Regression sample includes all 218 districts with output data for all years 1960-1999. Word Bank sample includes all 271 districts of the
Sanghi, Mendelsohn and Dinar (1998) World Bank study. Standard deviations in parentheses.



Table 2.A: Residual Variation in District Weather Variables

Panel 1: Growing Season Mean Temperatures (C)

District*year observations differing from predicted value by more than
Mean: 28.5; N:8720 0.5 deg C 1.0 deg C 1.5 deg C 2.0 deg C 2.5 deg C
Regressors RMSE Number Share Number Share Number Share Number Share Number Share
Constant only 1.81 6853 0.786 5200 0.596 3619 0.415 2214 0.254 1230 0.141
District FEs 0.50 2624 0.301 358 0.041 69 0.008 6 0.001 0 0.000
District FEs, Linear Year 0.49 2551 0.293 330 0.038 46 0.005 4 0.000 0 0.000
District FEs, Quadratic Year 0.49 2557 0.293 303 0.035 53 0.006 5 0.001 0 0.000
District FEs, Cubic Year 0.49 2531 0.290 298 0.034 44 0.005 4 0.000 0 0.000
District and Year FEs 0.33 1011 0.116 32 0.004 0 0.000 0 0.000 0 0.000
District and Year*Region FEs 0.26 517 0.059 9 0.001 0 0.000 0 0.000 0 0.000
District and Year*State FEs 0.20 174 0.020 3 0.000 0 0.000 0 0.000 0 0.000

Panel 2: Growing Season Degree-Days (C)

District*year observations differing from predicted value by more than
Mean: 2,464.6; N:8720 60 deg-days (C) 120 deg-days (C) 180 deg-days (C) 240 deg-days (C) 300 deg-days (C)
Regressors RMSE Number Share Number Share Number Share Number Share Number Share
Constant only 194.95 6752 0.774 4914 0.564 3034 0.348 1441 0.165 867 0.099
District FEs 50.47 1926 0.221 189 0.022 25 0.003 0 0.000 0 0.000
District FEs, Linear Year 49.32 1783 0.204 168 0.019 20 0.002 0 0.000 0 0.000
District FEs, Quadratic Year 48.92 1735 0.199 168 0.019 22 0.003 0 0.000 0 0.000
District FEs, Cubic Year 48.89 1751 0.201 161 0.018 21 0.002 0 0.000 0 0.000
District and Year FEs 33.89 617 0.071 15 0.002 0 0.000 0 0.000 0 0.000
District and Year*Region FEs 27.27 323 0.037 3 0.000 0 0.000 0 0.000 0 0.000
District and Year*State FEs 20.49 85 0.010 2 0.000 0 0.000 0 0.000 0 0.000

Panel 3: Growing Season Precipitation (mm)

District*year observations differing from predicted value by more than
Mean: 775.0; N:8720 2 percent 4 percent 6 percent 8 percent 10 percent
Regressors RMSE Number Share Number Share Number Share Number Share Number Share
Constant only 302.47 8403 0.964 8058 0.924 7721 0.885 7382 0.847 7028 0.806
District FEs 183.38 8093 0.928 7439 0.853 6775 0.777 6220 0.713 5638 0.647
District FEs, Linear Year 182.15 8091 0.928 7473 0.857 6850 0.786 6219 0.713 5631 0.646
District FEs, Quadratic Year 182.15 8096 0.928 7462 0.856 6853 0.786 6222 0.714 5635 0.646
District FEs, Cubic Year 182.14 8091 0.928 7464 0.856 6851 0.786 6225 0.714 5637 0.646
District and Year FEs 149.57 8003 0.918 7228 0.829 6517 0.747 5802 0.665 5125 0.588
District and Year*Region FEs 133.05 7785 0.893 6912 0.793 6009 0.689 5229 0.600 4460 0.511
District and Year*State FEs 105.00 7382 0.847 6094 0.699 4952 0.568 3970 0.455 3232 0.371

Notes: Table counts residuals from regressions of district*year observations on regressors listed in row headings. Cell entries are number of
residuals of absolute value greater than or equal to the cutoffs given in the column headings.Years: 1960-1999; Sample: 218 districts with output
data for all years.



Table 2.B: Residual Variation in District Temperature Bins

Regressor(s)
Constant
District FEs
District FEs, Linear Year
District FEs, Quadratic Year
District FEs, Cubic Year
District and Year FEs
District and Region*Year FEs
District and State*Year FEs

Regressor(s)
Constant
District FEs
District FEs, Linear Year
District FEs, Quadratic Year
District FEs, Cubic Year
District and Year FEs
District and Region*Year FEs
District and State*Year FEs

Regressor(s)
Constant
District FEs
District FEs, Linear Year
District FEs, Quadratic Year
District FEs, Cubic Year
District and Year FEs
District and Region*Year FEs
District and State*Year FEs

Bin
<20 21 22 23 24 25 26 27 28 29 30

0.30 0.06 0.13 0.85 2.89 6.08 12.16 18.77 19.47 18.13 13.68

0.04 0.03 0.09 0.42 0.92 2.24 4.08 4.85 5.65 4.92 4.06

0.06 0.04 0.11 0.50 1.05 2.32 4.15 4.85 5.64 4.89 4.06

0.06 0.04 0.11 0.52 1.05 2.32 4.15 4.84 5.63 4.90 4.05

0.06 0.04 0.11 0.52 1.05 2.31 4.16 4.84 5.64 4.90 4.05

0.07 0.04 0.14 0.61 1.12 2.43 4.19 4.68 5.48 4.79 4.01

0.07 0.04 0.15 0.62 1.09 2.21 3.72 4.41 4.89 4.24 3.28
0.07 0.05 0.13 0.47 0.89 2.04 3.26 4.07 4.41 3.89 2.93

Bin
31

7.48
2.70
2.70
2.69
2.69
2.56
2.22
1.99

32
5.20
2.02
2.02
2.02
2.02
1.93
1.75
1.54

33
4.33
1.77
1.77
1.77
1.77
1.67
1.54
1.35

Alternative Extremal Bins
<21 <22 >38
0.36 0.49 0.42
0.05 0.11 0.51
0.05 0.12 0.52
0.06 0.13 0.52
0.06 0.13 0.53
0.07 0.17 0.57
0.07 0.18 0.53
0.08 0.17 0.45

34
3.91
1.59
1.59
1.60
1.60
1.51
1.41
1.25

35
3.35
1.40
1.40
1.40
1.41
1.34
1.24
1.09

36
2.51
1.22
1.22
1.22
1.23
1.17
1.08
0.93

37
1.54
1.00
1.01
1.01
1.02
0.98
0.90
0.74

38
0.76
0.68
0.69
0.69
0.71
0.70
0.64
0.53

39
0.30
0.36
0.36
0.36
0.37
0.39
0.37
0.32

40
0.09
0.14
0.15
0.15
0.15
0.17
0.16
0.14

>40
0.03
0.04
0.05
0.05
0.05
0.06
0.06
0.05

>39
0.12
0.18
0.19
0.19
0.19
0.21
0.20
0.18

Notes: This table assesses the extent of residual variation available after removing district fixed effects and other controls. For each bin, the number

of days in that bin is regressed on the controls given in the row heading. The absolute value of the residual is then averaged over all district*year
observations. The result can be interpreted as the mean number of days per district*year available to identify the effect of that bin. Years: 1960-

1999; Sample: 218 districts with output and yield data for all years 1960-1999 (8720 total year*district observations)



Table 3.A: FGLS Estimates of Weather Variables' Effects on Major Crop Yields

(1) (2)
Growing Season Degree-days (100, C) 5.418 3.536

(2.325) (2.310)
GSDD Squared -0.125 -0.094

(0.047) (0.048)
Harmful GSDD (100, C) with threshold 34 -3.508 -2.687

(1.540) (0.706)
Total Growing Season Precipitation (100 mm) 1.620

(0.471)
TotalGrowSeasonPrecip Squared -0.021

(0.007)
GrowSeasonDegreeDays*TotalGrowSeasonPrecip -0.048

(0.017)
HarmfulGSDD34*TotalGrowSeasonPrecip 0.068

(0.173)
June Precipitation (100 mm) 0.520

(0.216)
June Precipitation Squared -0.034

(0.049)
July Precipitation (100 mm) 0.272

(0.206)
July Precipitation Squared -0.061

(0.027)
August Precipitation (100 mm) -0.450

(0.207)
August Precipitation Squared 0.050

(0.030)
September Precipitation (100 mm) 0.533

(0.234)
September Precipitation Squared -0.010

(0.051)
N 8,720 8,720

Notes: Dependent variable: major crop yields (2005 USD / HA). Regressions include district
fixed effects and region*year cubic time trends (coefficients not reported). Years: 1960-1999.
Sample: 218 districts with output data for all years. FGLS estimator uses bias-corrected AR(2)
parameter estimates; standard errors are calculated from the robust variance-covariance matrix.



Table 3.B: FGLS Estimates of Effect of Days in One-Degree (C) Temperature Bins on Major Crop Yields

Days in <=22 bin

Days in P23 bin

Days in P24 bin

Days in P25 bin

Days in P26 bin

Days in P27 bin

Days in P28 bin

Days in P29 bin

Days in P30 bin (omitted category)

Total GS Precipitation
(1)

0.192
(0.120)
0.081

(0.061)
0.032

(0.037)
0.040

(0.019)
0.037

(0.014)
0.031

(0.015)
0.006

(0.015)
0.017

(0.017)

Monthly GS Precipitation
(2)

0.126
(0.121)
0.094
(0.060)
0.026

(0.037)
0.038

(0.018)
0.028
(0.014)
0.025

(0.014)
-0.001
(0.015)
0.013

(0.017)

Days in P31 bin

Days in P32 bin

Days in P33 bin

Days in P34 bin

Days in P35 bin

Days in P36 bin

Days in P37 bin

Days in P38 bin

Days in >38 bin

Total Growing Season Precipitation (100 mm)

Growing Season Precipitation Squared

June Precipitation (100mm)

June Precipitation Squared

July Precipitation (100mm)

July Precipitation Squared

August Precipitation (100mm)

August Precipitation Squared

September Precipitation (100mm)

September Precipitation Squared

N

-0.073
(0.041)
-0.001
(0.041)
0.012

(0.047)
-0.091
(0.037)
0.040

(0.041)
-0.114

(0.045)
-0.021
(0.059)
-0.225
(0.132)
-0.092

(0.076)
0.387

(0.144)
-0.016

(0.007)

-0.082
(0.040)
-0.013

(0.043)
0.004

(0.047)
-0.082

(0.038)
0.044

(0.042)
-0.123

(0.046)
-0.014

(0.060)
-0.209
(0.133)
-0.092

(0.076)

0.602
(0.253)
-0.050
(0.055)
0.361

(0.205)
-0.075
(0.028)
-0.441
(0.217)
0.050

(0.032)
0.614

(0.235)
-0.030

(0.051)
87208720

Notes: Dependent variable: major crop yields (2005 USD / HA). Robust FGLS standard errors in parentheses. Each bin is identified as
its upper limit (e.g. P35 includes temperatures in (34,35] C). FGLS regressions include district fixed effects and a cubic time trend
(coefficients not reported). Years: 1960-1999. Sample: 218 districts with output data for all years.



Table 4.A: Projected Impact of Climate Change on Major Crop Yields
from Aggregate Weather Regressions

Total GS
Precipitation

(1)

Monthly GS
Precipitation

(2)
Mean of Dependent Variable 15.215 15.21.
Number of Observations 8,720 8,72C

Panel A: IPCC Medium-Run (2010-2039) S. Asia Scenario
(Uniform +0.5 deg C, +4% precipitation)

Temperature Effect -0.566 -0.69
(0.100) (0.073

Precipitation Effect 0.373 0.026
(0.122) (0.011

Interaction Effect -0.520
(0.180)

Total Effect -0.712 -0.66•
(0.076)

5

1
i)

t)

5
•)(0.079

Panel B: Hadley AlFI Medium-Run (2010-2039) Scenario

Temperature Effect

Precipitation Effect

Interaction Effect

Total Effect

-1.358
(0.315)
0.373

(0.122)
-0.514
(0.308)
-1.498
(0.168)

Panel C: Hadley AIF1 Long-Run (2070-2099) Scenario

Temperature Effect

Precipitation Effect

Interaction Effect

Total Effect

-6.755
(1.608)
0.926

(0.303)
-1.329
(1.453)
-7.158
(0.870)

-1.414
(0.165)
0.026

(0.011)

-1.387
(0.171)

-6.506
(0.847)
0.064

(0.026)

-6.441
(0.860)

Notes: Projections are calculated as the discrete difference in yields (output per hectare) at the
projected climate versus the historical climate. Coefficients are obtained from bias-corrected
FGLS regressions of yields on growing season weather variables, regional cubic time trends
and district fixed effects, weighted by area cropped. Weather variables in column (1) are
growing-season degree-days, its square, harmful growing season degree days, total growing
season precipitation, its square and the interaction of precipitation with growing-season
degree-days and harmful degree-days. Column (2) substitutes monthly precipitation (and
squares) for aggregate precipitation, and drops the interactions. Sample: 218 districts with
output data for all years 1960-1999.



Table 4.B: Projected Impact of Climate Change on Major Crop Yields from Bins Regressions

National

(1)
North

(2)
Northwest

(3)
East

(4)
SI

Mean of Dependent Variable 15.215 19.555 10.436 10.858 14
Number of Observations 8720 2440 1440 440 4

Panel A: IPCC Medium-Run (2010-2039) S. Asia Scenario (Uniform +0.5 deg C, +4% precipitation)

Temperature Effect -0.727 -1.467 -0.888 -0.256 -0
(0.065) (0.201) (0.169) (0.207) (0.

Precipitation Effect 0.029 0.059 -0.015 -0.070 0.
(0.011) (0.020) (0.026) (0.066) (0.

Total Effect -0.699 -1.408 -0.903 -0.326 -0
(0.072) (0.208) (0.193) (0.249) (0.

Panel B: Hadley A F1 Medium-Run (2010-2039) Scenario

Temperature Effect

Precipitation Effect

Total Effect

-1.225
(0.298)
0.029

(0.011)
-1.196
(0.301)

-1.479
(1.389)
0.059

(0.020)
-1.420
(1.395)

-0.871
(0.399)
-0.015
(0.026)
-0.886
(0.417)

Panel C: Hadley AJFI Long-Run (2070-2099) Scenario

Temperature Effect

Precipitation Effect

Total Effect

-3.983
(0.919)
0.070

(0.026)
-3.913
(0.924)

-4.514
(4.643)
0.129

(0.049)
-4.385
(4.659)

-6.624
(1.667)
-0.046
(0.065)
-6.670
(1.693)

0.255
(0.330)
-0.070
(0.066)
0.185

(0.348)

2.276
(2.926)
-0.160
(0.175)
2.116

(3.075)

outh

(5)
.809
400

.452
080)
037
012)
.415
087)

-1.676
(0.447)
0.037

(0.012)
-1.639
(0.451)

-2.615
(0.986)
0.093

(0.028)
-2.521
(0.999)

Notes: Projections are calculated as the discrete difference in yields (output per hectare) at the projected climate
versus the historical climate. Coefficients are obtained from bias-corrected FGLS regressions of yields on growing
season days in one-degree (C) temperature bins, monthly precipitation (and squares), regional cubic time trends
and district fixed effects, weighted by area cropped. Sample: 218 districts with output data for all years 1960-1999.



Table 4.C: Comparing Climate Resiliency Over Time: 1960-1979 vs. 1980-1999

1960-1999

(1)
1960-1979

(2)
198

Mean of Dependent Variable 15.215 11.567 1
Number of Observations 8720 4360 4

Panel A: IPCC Medium-Run (2010-2039) S. Asia Scenario
(Uniform +0.5 deg C, +4% precipitation)

Temperature Effect -0.727 -0.242 -1
(0.065) (0.042) (0

Precipitation Effect 0.029 0.051 -
(0.011) (0.006) (0

Total Effect -0.699 -0.191 -
(0.072) (0.046) (0

Panel B: Hadley AJF1 Medium-Run (2010-2039) Scenario

Temperature Effect -1.225 -0.299 -2
(0.298) (0.139) (0

Precipitation Effect 0.029 0.051 -
(0.011) (0.006) (0

Total Effect -1.196 -0.247 -
(0.301) (0.144) (0

Panel C: Hadley AF1J Long-Run (2070-2099) Scenario

Temperature Effect

Precipitation Effect

Total Effect

-3.983
(0.919)
0.070

(0.026)
-3.913
(0.924)

-0.496
(0.457)
0.123

(0.015)
-0.372
(0.466)

0-1999

(3)
8.863
1360

1.189
'.127)
).006
.019)
1.195
.137)

2.034
'.583)
).006
.019)
2.040
'.584)

-7.007
(1.694)
-0.020
(0.046)
-7.026
(1.695)

Notes: Projections are calculated as the discrete difference in yields (output per
hectare) at the projected climate versus the historical climate. Coefficients are
obtained from bias-corrected FGLS regressions of yields on growing season days in
one-degree (C) temperature bins, monthly precipitation (and squares), regional cubic
time trends and district fixed effects, weighted by area cropped. Sample: 218
districts with output data for all years 1960-1999.



Table 5: Projected Impact of Climate Change on Major Crop Yields

Impact of Uniform One-Degree (C) Temperature Increase On:

Fertilizer Use Double-Cropping Agricultural Wage

(1) (2) (3)

Effect -5.556 -0.002 -0.118
(0.828) (0.001) (0.008)

Mean of Dependent Variable 125.3 1.2 7.0
N 7588 7570 7588

Notes: Projections are calculated as the discrete difference in yields (output per hectare) at the
projected climate versus the historical climate. Coefficients are obtained from bias-corrected
FGLS regressions of yields on growing season days in one-degree (C) temperature bins, monthly
precipitation (and squares), regional cubic time trends and district fixed effects. Sample: all 271
districts, 1960-1987.



Figure 1: Impact of Climate Change With Various Degrees of Adaptation
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Figure 2.A: Districts Included in SMD98 Study
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Notes: This map shows the 271 districts included in the Sanghi,
Mendelsohn and Dinar 1998 study. The states included are:
Haryana, Punjab and Uttar Pradesh (North); Gujarat, Rajasthan
(Northwest); Bihar, Orissa, West Bengal (East); Andhra Pradesh,
Karnakata, Madhya Pradesh, Maharastra, Tamil Nadu (South).
The major agricultural state excluded is Kerala.



Figure 2.B: Districts Included in Regressions
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Notes: This map shows the 218 districts with output data for all
years 1960-1999. The bulk of the lost districts (relative to the
SMD98 dataset) are from the East, especially Bihar and West
Bengal.



Figure 3:

Mean Growing-Season Days in Each Temperature Bin
1960-1999
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Notes: Each one-degree C bin is indicated by the upper limit, e.g. 20 indicates a day with mean temperature
in (19,20]. Growing season is June-September (122 days).

---
lli

I



Figure 4:
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Change in Distribution of Temperatures
Scenario: +.5 deg C mean temperature increase
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Notes: Each one-degree C bin is indicated by the upper limit, e.g. 30 correspondsto mean tempera
All temperatures below 22C and above 38C are grouped. Growing season is June-September (122
Years: 1960-1999; Sample: districts with output data for all years.
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Figure 5:

Change in Distribution of Growing Season Daily Mean Temperatures
National; 1990s to 2010-2039
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Notes: Each one-degree C bin is indicated by its upper limit, e.g. 30 corresponds to mean temperature (29,30].
Source: Hadley AlF1 model, rescaled. Growing season is June-September (120 days).



Figure 6:

Change in Distribution of Growing Season Daily Mean Temperatures
National; 1990s to 2070-2099
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Notes: Each one-degree C bin is indicated by its upper limit, e.g. 30 corresponds to mean temperature (29,30].
Source: Hadley AlF1 model, rescaled. Growing season is June-September (120 days).



Figure 7:

Residual Variation in Mean Temperatures
Regression: District Fixed Effects and Cubic Year Trend
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Notes: Each one-degree C bin is indicated by the upper limit, e.g. 30 corresponds to mean temperature (29,30].
All temperatures below 22C and above 38C are grouped. Growing season is June-September (122 days).
Years: 1960-1999; Sample: districts with output data for all years.
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Figure 8:

Estimated Impact of Temperature Bins on Yield
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Notes: Plots coefficients fromFGLS regression ofyield on nunber ofgrowing season days in each bin, plus district
fixed effects, nonthly precipitation (and squares) and regional cubic time trends. Each 1-degree C bin is indicated by
upper limit, e.g. 24 indicates a day in with mean tenperatures in (23,24] C. The (29,30] bin is the omitted
category, so estimates are relative to the effect ofa day in (29,30]. Tenperatures below 22 C and above 38C
are grouped. Sanple: 218 districts with output data for all years 1960-1999.



Figure 9.A:

Estimated Impact of Temperature Bins on Yield
1960-1979
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Notes: Plots coefficients from FGLSregression of yield on number of growing season days in each bin, plus district
fixed effects, monthly precipitation (and squares) and regional cubic time trends. Each 1-degree C bin is indicated bj
upper limit, e.g. 24 indicates a day in with mean temperatures in (23,24] C. The (29,30] bin is the omitted
category, so estimates are relative to the effect of a day in (29,30]. Temperatures below 22 C and above 38C
are grouped. Sample: 218 districts with output data for all years 1960-1999.

Figure 9.B:

Estimated Impact of Temperature Bins on Yield
1980-1999
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fixed effects, monthly precipitation (and squares) and regional cubic time trends. Each 1-degree C bin is indicated b3
upper limit, e.g. 24 indicates a day in with mean temperatures in (23,24] C. The (29,30] bin is the omitted
category, so estimates are relative to the effect of a day in (29,30]. Temperatures below 22 C and above 38C
are grouped. Sample: 218 districts with output data for all years 1960-1999.
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Appendix Table 2.A: Residual Variation in Growing Season Degree-Days with Alternative Upper Bounds

Panel 1: Degree-Day Upper Bound of33 C

District*year observations differing from predicted value by more than
Mean: 2,479.1; N:8720 60 deg-days (C) 120 deg-days (C) 180 deg-days (C) 240 deg-days (C) 300 deg-days (C)
Regressors RMSE Number Share Number Share Number Share Number Share Number Share
Constant only 204.38 6826 0.783 5069 0.581 3304 0.379 1730 0.198 994 0.114
District FEs 53.72 2168 0.249 235 0.027 40 0.005 2 0.000 0 0.000
District FEs, Linear Year 52.58 2058 0.236 206 0.024 33 0.004 0 0.000 0 0.000
District FEs, Quadratic Year 52.15 2031 0.233 212 0.024 36 0.004 1 0.000 0 0.000
District FEs, Cubic Year 52.10 2025 0.232 208 0.024 33 0.004 0 0.000 0 0.000
District and Year FEs 35.52 753 0.086 18 0.002 0 0.000 0 0.000 0 0.000
District and Year*Region FEs 28.51 374 0.043 3 0.000 0 0.000 0 0.000 0 0.000
District and Year*State FEs 21.29 104 0.012 2 0.000 0 0.000 0 0.000 0 0.000

Panel 2: Degree-Day Upper Bound of 34 C

District*year observations differing from predicted value by more than
Mean: 2,489.3; N:8720 60 deg-days (C) 120 deg-days (C) 180 deg-days (C) 240 deg-days (C) 300 deg-days (C)
Regressors RMSE Number Share Number Share Number Share Number Share Number Share
Constant only 211.53 6855 0.786 5146 0.590 3489 0.400 1984 0.228 1093 0.125
District FEs 56.43 2379 0.273 295 0.034 47 0.005 3 0.000 0 0.000
District FEs, Linear Year 55.28 2287 0.262 247 0.028 41 0.005 2 0.000 0 0.000
District FEs, Quadratic Year 54.83 2271 0.260 245 0.028 44 0.005 3 0.000 0 0.000
District FEs, Cubic Year 54.76 2264 0.260 244 0.028 42 0.005 2 0.000 0 0.000
District and Year FEs 37.00 853 0.098 22 0.003 0 0.000 0 0.000 0 0.000
District and Year*Region FEs 29.62 418 0.048 5 0.001 0 0.000 0 0.000 0 0.000
District and Year*State FEs 22.03 130 0.015 2 0.000 0 0.000 0 0.000 0 0.000

Panel 3: Degree-Day Upper Bound of 35 C

District*year observations differing from predicted value by more than
Mean: 2,495.9; N:8720 60 deg-days (C) 120 deg-days (C) 180 deg-days (C) 240 deg-days (C) 300 deg-days (C)
Regressors RMSE Number Share Number Share Number Share Number Share Number Share
Constant only 216.36 6876 0.789 5193 0.596 3602 0.413 2144 0.246 1165 0.134
District FEs 58.51 2517 0.289 325 0.037 55 0.006 5 0.001 0 0.000
District FEs, Linear Year 57.33 2419 0.277 282 0.032 48 0.006 3 0.000 0 0.000
District FEs, Quadratic Year 56.88 2424 0.278 278 0.032 52 0.006 5 0.001 0 0.000
District FEs, Cubic Year 56.78 2427 0.278 270 0.031 47 0.005 3 0.000 0 0.000
District and Year FEs 38.24 948 0.109 30 0.003 1 0.000 0 0.000 0 0.000
District and Year*Region FEs 30.55 477 0.055 8 0.001 0 0.000 0 0.000 0 0.000
District and Year*State FEs 22.71 143 0.016 3 0.000 0 0.000 0 0.000 0 0.000

Panel 4: Degree-Day Upper Bound of 36 C

District*year observations differing from predicted value by more than
Mean: 2,499.5; N:8720 60 deg-days (C) 120 deg-days (C) 180 deg-days (C) 240 deg-days (C) 300 deg-days (C)
Regressors RMSE Number Share Number Share Number Share Number Share Number Share
Constant only 219.12 6881 0.789 5224 0.599 3660 0.420 2246 0.258 1233 0.141
District FEs 59.91 2601 0.298 356 0.041 64 0.007 7 0.001 0 0.000
District FEs, Linear Year 58.72 2521 0.289 318 0.036 50 0.006 6 0.001 0 0.000
District FEs, Quadratic Year 58.24 2517 0.289 300 0.034 53 0.006 5 0.001 0 0.000
District FEs, Cubic Year 58.13 2519 0.289 300 0.034 48 0.006 5 0.001 0 0.000
District and Year FEs 39.13 1011 0.116 32 0.004 1 0.000 0 0.000 0 0.000
District and Year*Region FEs 31.23 519 0.060 9 0.001 0 0.000 0 0.000 0 0.000
District and Year*State FEs 23.24 170 0.019 3 0.000 0 0.000 0 0.000 0 0.000

Notes: Table counts residuals from regressions of district*year observations on regressors listed in row headings. Cell entries are number of
residuals of absolute value greater than or equal to the cutoffs given in the column headings.Years: 1960-1999; Sample: 218 districts with
output data for all years.





Chapter 2:

Estimating Quantile Treatment Effects in a Regression-
Discontinuity Design



1 Introduction

In the last 10 years, regression discontinuity (RD) has become increasingly popular in eco-

nomics as a quasi-experimental estimator of treatment effects. Interesting recent applications

include van der Klaauw (2002) on the effect of financial aid offers on college enrollment, Black

(1999) on valuation of school quality, Angrist and Lavy (1999) on the effect of class size on

student achievement, Black et al. (2003) on the impact of job training on earnings and the

duration of unemployment spells, Jacob and Lefgren (2004) on the educational impact of

summer school and grade retention and Oreopoulos (2006) on the effect of compulsory ed-

ucation on earnings. Each of these papers exploits an abrupt change in the probability of

receiving some treatment to estimate the mean causal effect of that treatment on some out-

come for those who, on the basis of some covariate, are close to this jump in probability. The

pioneering theoretical work of Hahn et al. (2001) has shown that this approach can produce

unbiased estimates of mean treatment effects, and comparisons of RD estimates with the

"gold standard" of randomized trials have shown that the RD method is often successful at

approximating the experimental measurements (Black et al., 2007; Cook and Wong, 2007).

However, for many of the applications mentioned above, the mean treatment effect is

not the only object of interest. For outcomes such as student achievement or earnings,

we might be interested in the distribution of effects. In the case of summer school, for

example, Jacob and Lefgren show that remedial education increases the mean of test scores,

but the distribution of the effect is also important. For example, it could be that weaker

students benefit most from the additional schoolwork while stronger students are negatively

impacted by peer effects. On the other hand, summer school could benefit the relatively

strong students and be less useful for the weaker students. In fact, Jacob and Lefgren

write that "there also exist methods (such as quantile regression analysis) for examining the

distribution of outcomes in treated and untreated states for individuals with similar observable

characteristics. Unfortunately, it is not straightforward to apply these methods in the context



of our regression discontinuity analysis."

The goal of this paper is to provide a straightforward method to estimate quantile treat-

ment effects in a regression discontinuity (RD) model. The link between RD and instrumen-

tal variables (IV) developed by Angrist and Lavy (1999) and Hahn et al. (2001) suggests

using quantile IV to estimate treatment effects in a quantile RD model. I use the inverse

quantile regression (IQR) method of Chernozhukov and Hansen (2006) to provide a simple,

implementable estimator for quantile regression discontinuity (QRD). I provide simulation

results on the effectiveness of the estimator using a simulated example based on Jacob and

Lefgren (2004) and an empirical example applying the estimator to the increase in the min-

imum drop-out age studied by Oreopoulos (2006). I also revisit the results of Oreopoulos

(2006) and show that, due to a data-processing error, his estimates are incorrect.' Not only

is the RD estimate of the effect on mean earnings insignificant, QRD estimates suggest no

detectable effect on other points of the earnings distribution.

This paper proceeds as follows. Section 2 provides a brief review of mean regression

discontinuity and establishes notation. Section 3 shows that quantile RD can be incorporated

into a quantile IV framework and discuss estimation procedures. Section 4 provides the

simulation example and Section 5 provides the empirical example. Section 6 concludes and

discusses avenues for further work.

2 Review of Regression Discontinuity Model

This treatment closely follows Imbens and Lemieux (2007). For simplicity, I provide a basic

setup with a binary treatment and no covariates. Consider an outcome variable Y such as

educational attainment or earnings. Each unit i in the population has potential outcomes

{Yj (0) , Y (1)} depending on whether or not she received the treatment. As usual, we do not

'This error was discovered independently by myself, Joe Shapiro of the MIT Department of Economics
and Paul Devereux and Robert Hart of University College Dublin and University of Stirling, respectively.



observe potential outcomes but the realized outcome, which we write as

Yi = TY, (1) + (1 - Ti) Y (0)

where Ti is an indicator of whether i received the treatment:

Ti = 1 {i received treatment}

We are interested in the average treatment effect, /1 = E [Y2 (1) - Yj (0)], where this averag-

ing may take place over certain subpopulations. However, because treatment may be chosen

endogenously, simple comparisons of means for the treated and untreated units will yield

biased estimates of P1.

Now, suppose that the probability of receiving the treatment changes discontinuously

depending on whether the value of a covariate Z, which we call the forcing variable or

running variable, exceeds some exogenously determined threshold, which we will label c:

lim P (T2 = 1 I Zi = z) # lim P (Ti = 1 I Zi = z)
zlc zTc

It is important to note that unit i's treatment status is not completely determined by whether

the value of unit i's forcing variable exceeds the threshold. This distinguishes this model,

commonly referred to as a "fuzzy regression discontinuity" from a "sharp regression disconti-

nuity," in which treatment depends deterministically on whether the value of unit i's forcing

variable exceeds the threshold. Without loss of generality, let the probability of treatment

increase when Z > c. For example, the probability of receiving an offer of financial aid from

a university may increase if an applicant's SAT score exceeds 1200.

There are two key assumptions for identification in the RD model. The first is that

the conditional regression functions for the outcome variable are continuous in the forcing



variable, i.e.

E [Y (1) I Z = z] and E [Y (0) I Z = z] are continuous in z (1)

That is, outcomes are allowed to depend on the value of the forcing variable, but this depen-

dence must be continuous, in contrast with the discontinuous dependence of the probability

of treatment on the forcing variable. This assumption could be violated if there is some other

treatment that also depends on the position of the forcing variable relative to the threshold.

For example, eligibility for Medicare leads to a discontinuous jump in health care coverage

at age 65, but there may be other government services for which eligibility or access change

discretely at age 65 (Card et al., 2004).

The second key assumption is that treatment status does not depend on potential out-

comes within some neighborhood of the cutoff point. This is often referred to as "ignorability

of treatment" and is written formally as

c - h < Zi < c + h Yi (0) , Y (1) _ Ti I Zi (2)

where h is a positive number defining the neighborhood of the cutoff point. This assumption

is most plausible if one believes that Z is somewhat random, for example a student's perfor-

mance on an exam, or if the subjects do not know the cutoff point c. It could be violated if

participants are able to manipulate their Z to sort onto the more desirable side of the cutoff.

When these two assumptions and a monotonicity assumption hold, Hahn et al. (2001)

show that the local average treatment effect (LATE), i.e. the average effect on those whose

treatment status was affected by their position relative to the cutoff, is identified. The

simplest estimator for the LATE is the familiar Wald estimator using just observations in



the h-neighborhood of the cutoff, i.e.

SE[Y I c -h < Z < c]-E[Yc< Z <c+h]

E [Tc-h Z< c]-E c[TIc Z <c+h] (3)

However, this assumes that the forcing variable has no effect on the outcome within the

h-neighborhood of the cutoff, which may be too strong.

To relax this assumption, Imbens and Lemieux (2007) recommend estimation by local

linear regression. For exposition, it is useful at this point to switch to a regression framework

rather than the potential outcomes framework used above. Write the structural model as a

simple linear model

Yi = o0 + i1Ti + 32 ,11 {Zi < c} (Zi - c) + 32,rl {Zi > c} (Zi - c) + eiiy (4)

which allows the forcing variable to affect Y and for the slope of this relationship to vary on

either side of the cutoff. We obtain the LATE estimate by estimating four separate pieces

with local linear regression. For the outcome variable y, estimate the reduced form as

( ,yl 2,y,l = argmin (Y - 0,, - 2,y,l (Zi - c)) 2

{i:c-h<Zi<c}

(il,y,r 2,y,r = arg min - 01,y,r - 2,y,r (Zi - c)) 2

{i:c<Z<<c}

l,y = 1l,y,r- l,y,l

and for the treatment variable, estimate the first stage as

= arg min E (Yi - 01,t,I - /2,t,l (Zi - c)) 2

{i:c-h<Zi<c}

= arg min c (Yi - ,t - 2,t,r ( - c)) 2

{i:c<Z•<~c}

= l31,t,r - )l,t,i

Oltb 32,t,l

(1 ''rI0 ,tr



Then the LATE estimate is calculated as the ratio of the reduced form to the first stage:

T 1-,y__ ýl1,y,r- l,y,1(5)

1,t ,t, - ltl

Imbens and Lemieux (2007) provide details on the choice of bandwidth h and weighting of

observations within the window.

There have been many extensions of this basic RD model, but two will be particularly

important for the exposition of quantile RD here. First, Hahn et al. (2001) show that

the Wald-type estimator in (5) is equivalent to an instrumental variables estk atlr. In this

approach, the structural model (4) is estimated by two-stage least squares, using 1 {Zi > c}

as an instrument for the endogenous Ti. The idea is that, once we have controlled for the

(piecewise) linear effect of Z on the outcome variable, the side of the cutoff on which the

unit happens to fall can be excluded from the structural equation. In other words, having

controlled for the influence of Z in a smooth way, whether or not Z exceeds the threshold

c affects the outcome only through its effect on the probability of treatment. Formally, and

suppressing the piecewise linearity of the influence of Z in (4) for simplicity of notation, we

have

E [1 {Zi > c} Eiy - 0 1 pl (Zi)]

where we use the notation p, (Z) to denote an nth-order polynomial in Z.

Second, when the forcing variable is discrete, as in Card et al. (2004) and Oreopoulos

(2006), it is not possible to restrict the data to arbitrarily small windows around the cutoff

point. Instead, standard practice is to control for a flexible polynomial in the forcing variable

and use data that are not so near the cutoff point. Lee and Card (2008) point out that

conventional or even heteroscedasticity-robust standard errors will overstate the precision

of the estimated coefficient, because they will not account for the error in estimating the

polynomial function. Instead, Lee and Card (2008) recommend clustering at the discrete



values of the forcing variable to obtain consistent standard errors.

3 Extending RD to Quantile Analysis

3.1 Quantile RD model

In this subsection, I show that an RD estimation strategy can be incorporated into the

quantile IV framework of Chernozhukov and Hansen (2005). In the next subsection, I then

discuss how this framework can be used to compute quantile RD estimates. Again, for

simplicity I provide a basic setup with a binary treatment variable and no covariates. The

most basic object of interest is the quantile treatment response (QTR) function q (t, z, T),

which is defined by the relationship

q (t, z, 7) : P (Y < q (t, z, 7) I T = t, Z = z) = 7 (6)

Note that, as in the structural regression equation (4) above, the forcing variable Z enters

the QTR function directly. We assume strict monotonicity, i.e. q (t, z, T) is strictly increasing

in 7. This rules out discrete outcome variables. It is convenient to rewrite the QTR function

as

Yt = q (t, z, Ut) ; Ut , U (0, 1)

where Ut is a rank variable that describes the relative position of individuals with the same

observables (here, T = t and Z = z). Ut can be thought of as unmeasured ability. It

is important to note that Ut in general depends on the treatment status, as its t-subscript

indicates. That is, if we consider all units with the same value of Z = z, the median individual

when all these units are exposed to the treatment, i.e. the individual with Ui,1 = 0.5, need

not be the median individual when the treatment is withheld from these units, in which

case Ui,o : 0.5. Restricting this evolution of ranks across treatment states will be key in



identification below.

Treatment status is determined by the selection equation

T - 6(1 {Z> c},Z, V) (7)

where 6 is an unknown function and V is an unobserved disturbance term. As above, Z is the

forcing variable and the presence of 1 {Z > c} allows for a discontinuous jump in treatment

probability at a cutoff threshold c.

We wish to obtain estimates of the quantile treatment effect (QTE), which for a binary

treatment variable is

q (1, z, -) - q (O, z, 7) (8)

If there is correlation between U and V, the disturbance terms in the structural and selection

equations, then ordinary quantile regression will not provide consistent estimates of the QTE

because of selection bias.

As in the mean RD model, it is the presence of the discontinuity in the probability of

treatment that provides an excludable instrument and allows us to identify the QTE. We

make three key assumptions:

Al. CONTINUITY: q(1, z,T) and q (O, z, 7) are continuous in z for all 7.

A2. INDEPENDENCE: Conditional on Z = z E (c - h, c + h), {Ut} are independent of

1 {Z > c}.

A3. RANK SIMILARITY: Conditional on (a) Z = z E (c - h, c + h), (b) 1 {Z > c} and

(c) V, the random variables {Ut} = {U 1 , U0 } have the same distribution.

The first assumption is exactly parallel to the continuity assumption in the mean RD

model. The second is analogous to the exclusion restriction in the mean RD model. It says

that, within the window around the cutoff, whether or not an individual happened to fall

above or below the cutoff is not related to her unobserved ability.



The third assumption, which does not have a counterpart in the mean IV framework, says

that the ranks of individuals with the same observables Z does not change systematically

between the untreated and treated states. As a simple example, imagine two students, A

and B, with the same end-of-year test score z. Student A has more ability than student

B, but happened to have a bad day on the end-of-year test. Assumption A3 says that if

we expect student A to outperform student B on an end-of-summer test if neither attends

summer school, we would also expect student A to outperform student B if both attend

summer school. It is important to note that this can still be satisfied if student A benefits

more from summer school than student B, if the two benefit the same amount, or if student

B benefits more. The main restriction imposed by Assumption A3 is that the weaker student

B cannot benefit by so much more than student A that, even though we expect student A

to outperform student B if both of them do not attend summer school, we expect student B

to outperform student A if they both attend summer school.

More generally, there should be no systematic "crossings" in the distribution when com-

paring treated and untreated states, although the distribution may expand or contract (in-

deed, could expand in some regions and contract in others). This need not always hold: one

might imagine a summer school so specifically targeted at weaker students that it damaged

stronger students enough that the quantiles crossed.

With these assumptions, the conditions for Theorem 1 of Chernozhukov and Hansen

(2005) are satisfied, yielding the following testable restriction: for all T E (0, 1),

P (Y < q (T, Z, 7) Z, 1{Z > c}) = 7 (9)

almost surely. This conditional moment restriction will form the basis of estimation. It is

important to note that we are conditioning not just on the forcing variable Z but also on

the excluded indicator 1 {Z > c}. The parallel in a non-RD quantile IV would be to condi-

tion on covariates X and an exogenous instrument W. This "conditioning on instruments"



approach is only valid because of the restrictions imposed by our assumptions, especially the

assumption of rank similarity.

3.2 Estimation

In this subsection, I discuss estimation of quantile treatment effects in the quantile RD model

described above. For exposition, I simplify the structural quantile response function to a

piecewise linear model, as in the mean RD case:

q (t, z, 7) = 0o (T) + 1 (T) Ti + 02,1 (7) 1 {Z i < c} (Zi - C) + 2,r (7) 1 { Zi > C1 (Zi - c) (10)

The coefficients are now written as functions of the quantile 7 to remind us that these

parameters can differ across quantiles. For example, the effect of summer school for the

student at the first quartile of the distribution (conditional on Z = z) may be greater than

the effect for a student at the third quartile, in which case 01 (0.25) > 01 (0.75).

This notation can help in understanding the rank similarity condition A3 above: although

•1 (.) can be decreasing as a function of T, it cannot be so sharply decreasing that lower-

ranking units overtake higher-ranking units. 2

A tempting, intuitive estimator is the quantile equivalent of the RD estimator given by

(5) above, i.e. use ordinary quantile regression to obtain estimates of each of the four pieces

for a given quantile of interest and then calculate the ratio of the differences as above. This

will not work for quantile RD, for two reasons. First, with a binary treatment, quantile

estimation of the first stage is not really sensible, since all quantiles will be either zero or
2The formal condition is: for all z, 7, 7', if q (0, z, 7) > q (0, z, 7') then q (1, z, T) > q (1, z, T'). To make this

concrete, first simplify the structural equation to q (t, , z, T) = o (T)+ 1 (T) Ti+/ 2 (T) Zi for ease of exposition.
The formal condition is now: if o0 (T) + /2 (T) Zi > o0 (T') + 2 (T') Zi, then 30 (T) + 1 (T) + 32 (T) Zi >

o0 (7') + -1 (T7) + 0 2 (T7) Zi, or, rearranging, P1 (7) - 01 (7') > (po (r') + /2 (7') Zi) - (0 (T) -+ 02 (T) Zi).
When 01 (T) > 31 (7'), this is automatically satisfied, because q (0, z, T) > q (0, z, 7') implies that the right-
hand side of the previous inequality is negative. When 31 (7) < 3 (T'), it is convenient to rewrite the
condition as 31 (7') - 31 (7) > (30 (T) + /2 (T) Zi) - (/o (T') + 02 (r') Zi), which is to say that the treatment
effect for the T'-quantile is not so much greater than the effect for the T-quantile that the T-quantile's initial
advantage, given by the right-hand side of this inequality, is overcome.



one. Second, and more fundamentally, the derivation of (5) depends heavily on the linearity

of the expectations operator. In particular, (5) requires that

E [1,y,r - 01,y,1] - E [/1,y,r] - E [01,y,/]

for the reduced form in the numerator and similarly for the first stage in the denominator.

However, the parallel is not true in the case of quantiles: it is not true that the quantile of

the difference is the difference of the quantiles.

To proceed with estimation, we must instead follow the Hahn et al. (2001) IV approach

to RD, but here, use quantile IV. In the previous subsection, I showed that, under the ap-

propriate conditions, the quantile RD model can be expressed in terms of the conditional

moment restriction given by (9). The analogy principle suggests that we could obtain para-

meter estimates by minimizing the empirical analog of the moment condition, which for our

simple linear case is

N* 1 { Y - 1 (T) Ti - (T) 1 { Z i > c} - X O (T)} = 7
{i : c-h<Zi<c+h}

where N* = {#i : c - h < Zi < c + h} and, for simplicity of notation, the exogenous

variables are written as Xi = (1 {Zi < c} (Zi - c) , 1 {Zi > c} (Zi - c) , 1)' with parameters

0 (T) (/2,1 (T) 502,r (T) , 0 (T))' and y (7) is the coefficient on the instrument. Cher-

nozhukov and Hansen (2006) show that this is equivalent to minimizing the criterion function

Q (7, , 0 1, ) = N* p, (Yi - 1 (7) Ti - 7 (T) 1 {Zi > c} - X:O (T)) (11)
{i : c-h<Zi<c+h}

where p, (-) is the standard T-quantile "check function":

, (s)= (- 1{s < 0})



Note that "conditioning on instruments" is readily apparent here, since the instrument

1 {Zi > c} appears directly in the objective function.

The coefficient of interest, 1 (7r), can be estimated using the "inverse quantile regres-

sion" method of Chernozhukov and Hansen (2006): Ol (T) is chosen as the value of /l that

minimizes y, the coefficient on the excluded instrument 1 {Zi > c}, in an ordinary quantile

regression of Y on T, 1 { Zi > c} and X. The intuition for this procedure is that, since the

instrument can be excluded from the structural equation, its coefficient in a regression of

the outcome on the treatment should be zero once we have conditioned on the exogenous

variables. In practice, the algorithm is as follows: for a given quantile T, (1) fix a value of Ol,

which we will call O3; (2) perform an ordinary quantile regression of Y - 3~T on 1 { Z > c}

and X, obtaining ' (p0,) and 0 (ij3) and; (3) calculate a quadratic form in 5 (0J); (4) repeat

over a suitable grid of values for 01, i.e. P,,...,l ,...,l 3; (5) let o1 (T) be the value of /3

that minimizes the quadratic form in ý (P3i).

Three approaches to conducting inference are possible. First, confidence intervals can be

constructed via an "inverse Wald statistic" procedure: if the middle matrix in the quadratic

form in ' (,Y) is consistent for the asymptotic variance of ý (PJ), then this quadratic form

is a proper Wald statistic taking a XI) distribution under the null hypothesis that 70 = 0.

The confidence interval for o1 (7) consists of those values of are those values of /J such that

the Wald statistic for ' (0i) does not reject yo = 0 at the confidence level chosen. Formally,

CI {aj: W Qý(Off)< CX2}

where CX2 is the appropriate critical value for the X i) distribution.3 This has theoretical

3 The Wald statistic need not be convex in /J and in some cases it may happen that the set CI will
incorporate nonadjacent values of 3j . In these cases, we set the left-hand endpoint of the confidence interval
to be the minimum 3{ such that the Wald statistic does not reject the null and the right-hand endpoint to
be the maximum such )j.



advantage of being robust to weak instruments and partial identification (Chernozhukov and

Hansen, 2008) and the practical advantage that the inputs are calculated during the estima-

tion process. Second, analytical estimated variance-covariance matrices can be calculated

following the formulae given in Section 4.3 of Chernozhukov and Hansen (2008). These have

the advantage of being computable for multiple quantiles simultaneously, which allows test-

ing of hypotheses across quantiles (e.g. uniform effects, increasing effects, etc.). However,

while the computed standard errors will be heteroscedasticity-robust, it is difficult to adapt

them to other complications such as clustering. Finally, standard errors can be computed by

bootstrapping. This can be easily adapted to accommodate clustering by sampling at the

cluster level, as recommended by Horowitz (2001). However, this approach may be compu-

tationally intensive, since B x J quantile regressions will be required to perform B bootstrap

repetitions over a grid of J points just for a single quantile.

4 Simulated Example

This section presents a series of simulation results based on the Jacob and Lefgren (2004)

study of the effects of summer school on educational achievement. Because students select

into summer school, a simple regression of a measure of educational achievement on summer

school and other observables likely would not provide an unbiased estimate of the effects

of summer school. However, Jacob and Lefgren take advantage of a policy change in the

Chicago Public Schools to implement a regression discontinuity design. In 1995, the Chicago

Public Schools (CPS) instituted a strict requirement for promotion from third, sixth and

eighth grades: all students had to score above grade-level thresholds on standardized math

and reading tests. Those who did not meet the threshold were required to attend six weeks

of summer school and re-take the test at the end of the summer to be promoted to the next

grade. Jacob and Lefgren use this sharp discontinuity in the probability of treatment to

identify the causal effects of summer school and grade retention. They find that summer



school increased academic achievement in reading and math for both third and sixth graders,

with the effect persisting for two years. The effects of grade retention are less clear: third

graders do not suffer and may benefit in the short run; sixth graders' math scores are

unaffected but their reading scores fall. The simulations in this section will show how this

mean RD study could be extended to examine quantile treatment effects. I first provide

a simple example of QRD estimation of a single quantile, the median, to introduce the

simulation procedure and describe the implementation of QRD in some detail. I then show

results of simulations over all nine deciles for a constant treatment effect, an increasing

treatment effect and a decreasing treatment effect.

The simulation is performed as follows. Each of 10,000 units i is randomly assigned a

test score Zi - U (0, 5) and a pair of disturbance terms

Ei e.N 0 1 p

where Ei is the disturbance to the structural (outcome) equation and ri is the disturbance

to the selection equation. Unit i's quantile index is then Ti = (Ei), where D (-) is the

standard normal CDF.4 Given these random disturbances, unit i's treatment status is given

by the sign of the latent variable

Ti = 7o0 + 1iZri + r21{Zi > c} + ri

i.e. Ti = 1 Ti* > 0}. The cutoff point c is chosen to be 2 so that roughly 40% of the

units will be below the cutoff and the parameters rwo, jl and 72 are chosen so that the

assignment probabilities roughly match those in the Jacob and Lefgren data: the probability

of treatment is about 0.9 just above the cutoff and roughly 0.2 just above the cutoff, with the
4Because Zi is generated independently of the disturbance terms, we do not have to calculate the quantile

conditional on Zi.



probabilities going towards zero (one) as the test score decreases (increases).5 The outcome

variable is then determined by the structural equation

i = A (Ti) Ti + 02 (Ti) Zi + ec

where the functions 01 (,r) and 02 (-i) will depend on the particular simulation. In this

simplest expository case, we are interested only in the median and set 01 (0.5) = 0.5 and

02 (0.5) = 1. In the context of the schooling example, this means that test scores next year

increase one-for-one (in terms of grade level) with this year's test score, and summer school

improves test scores by half a grade level. Note that for simplicity the slope to the right and to

the left of the cutoff are now constrained to be equal, i.e. 02,l (0.5) = 2,r (0.5) = 02 (0.5) = 1.

The parameter p is particularly important, because it induces correlation between the

selection and outcome equations and thus leads to bias. In this simulation, I set p = -0.3,

which corresponds to negative selection: for example, students whose parents anticipate

a worse outcome next year are more likely to encourage their students to attend summer

school. In this case, simple OLS or quantile regression would underestimate the effect of

summer school.

Figures (1) and (2) plot the treatment probability and mean of the outcome variable,

respectively, against the running variable, from a randomly chosen repetition of the simula-

tion. As one would hope, discontinuities in both the first stage and reduced form are plainly

visible.

For each repetition of the simulation, I run OLS, RD / two-stage least squares, ordinary

quantile regression and QRD/IVQR. Each of these is calculated over the full 10,000 obser-

vations and within a window of ±0.25 units around the cutoff of 2. Again, this window

corresponds roughly to that employed by Jacob and Lefgren and yields about 1,000 obser-

vations per repetition. The mechanics of QRD estimation are as follows. I use a grid with

5In the simulation, I set 7o = 1.4, 7rl = -0.2 and 7r2 = -1.4.



a width of 4 grade-level equivalents, with each grid is centered on the mean RD estimate

for that sample. There are 401 grid points in total, separated evenly by 0.01 grade-level

equivalents. I chose this spacing because it is an order of magnitude below what we might

consider the minimum economically significant increment of 0.1 grade-level equivalents but

also leads to a computationally feasible number of grid points. I follow the algorithm given

in Section 3.2 above: for each grid point Oj, I perform an ordinary median regression of

Yi - ýJTi on 1 {Zi > c}, Zi, and a constant. I then compute a Wald statistic in s (p.i), set

01 equal to the minimizing /3{, and compute a confidence interval containing all /i such

that the Wald statistic in ' (43) is less than the 90% critical value. In Figure (3), I plot

these W (' (,3)) over the set of grid points for an arbitrary repetition of the Monte Carlo

exercise. This figure should make clear the idea of inverse quantile regression estimation: the

point estimate, indicated by the solid vertical line, corresponds to the minimum value of the

objective function; the confidence interval, indicated by the dashed vertical lines, contains

all values of 01 for which the objective function falls below the critical value of the XI)

distribution, which is indicated by the solid horizontal line.

The results of this Monte Carlo exercise are summarized in Table 1. First, both OLS and

ordinary quantile regression exhibit large downward bias, as we would expect given negative

selection. Mean RD / 2SLS and QRD / IVQR both perform well. When all the observations

are used, the confidence intervals for mean RD are on average a bit narrower and the RMSE

smaller than for quantile RD, but this is not surprising since 2SLS is in fact the efficient

estimator in this case. Still, QRD is certainly competitive, as Figure (3), which plots kernel

densities of the two estimators, indicates. QRD also displays good size properties, rejecting

the truth 10.8% of the time when the intended size is 10%. When the data are restricted

to the ±0.25 window around the cutoff, the results are broadly similar but the gap between

the performance of RD and QRD widens.

I perform three variants of this Monte Carlo simulation looking at estimates across deciles:



first, for a constant treatment effect across deciles; then for a treatment effect that is increas-

ing in 7; and finally for a treatment effect that is decreasing in T. In the first, the treatment

effect is 0.5 for all quantiles, i.e. 01 (T) = P0 = 0.5. All other parameters are the same as

in the previous simulation. Table 2 and Figures (5) and (6) summarize the results of this

exercise. The QRD estimator performs well on average for all quantiles, but its performance

is best at central quantiles. For high and low quantiles, 0.1 and 0.9 in particular, the distri-

bution of the estimator tends to widens noticeably, as indicated by the widening 25/75 bars

and 5/95 whiskers in Figures (5) and (6). In the second variant of the Monte Carlo exercise,

the treatment effect is increasing linearly in the quantile index, i.e.

, (T) = T

with all other parameters the same. Table 3 and Figures (7) and (8) summarize the results

of this exercise, which are broadly similar to the results of the previous one: the estimator

performs well on average for all quantiles, but its distribution becomes increasingly dispersed

at high and low deciles. Finally, I run a Monte Carlo simulation with a decreasing treatment

effect:

31 (7) = 0.75 - 0.57

Table 4 and Figures (9) and (10) summarize the results, which largely mimic the results of

the previous two.

5 Empirical Application

5.1 Review of Oreopoulos (2006) results

The returns to education is one of the most heavily researched topics in economics. Because

an individual's level of schooling is likely correlated with unobserved characteristics that also



affect earnings, much recent research has focused on finding valid instruments for schooling

in hopes of obtaining consistent IV estimates of the returns. One strand of this literature has

used variation induced by compulsory schooling laws as an instrument for schooling (Angrist

and Krueger, 1991; Acemoglu and Angrist, 2000; Oreopoulos, 2003). However, many of these

instruments affect less than ten percent of the population. Since IV estimates yield estimates

reflecting the causal effect only for the subpopulation affected by the instrument, it is not

clear how applicable these estimates are to the larger population.

In a recent paper, Oreopoulos (2006) uses the increase in the minimum dropout age

in Great Britain from 14 to 15 in 1947, which, because of historically high dropout rates,

impacted nearly half the population.6 Because the effect of the legal change was so broad,

it is likely that estimates from this quasi-experiment will be more generally applicable. This

change took place in a single year and affected all cohorts born during or after 1933 (who

turned 14 in 1947 or after) and none born before, making a regression discontinuity design

applicable. Since the forcing variable, year of birth, is discrete, it is necessary to control for

a polynomial in year of birth and cluster standard errors by year of birth.

Oreopoulos uses data from the 1983-19987 UK General Household Surveys (GHHS) to

estimate the following set of equations: a first stage equation

Ei,t = 611 {YOBj > 1933} + 6 12P4 (YOBi) + 6/3Pn (AGEit) + Ei,t,2 (12)

where Ei,t is the age left full-time schooling for individual i surveyed in year t (the data are

a repeated cross-section, not a panel), YOBi is the year of birth for individual i, and AGEi,t

is individual i's age when surveyed in year t. Oreopoulos includes a quartic in year of birth

and varies the controls for age (none, a quartic and a full set of fixed effects); a reduced form
6 Oreopoulos also uses a similar change for Northern Ireland in 1957. My discussion focuses on the results

for Great Britain, because the Northern Ireland income data are reported only by category, which I cannot
use in my quantile RD estimates.

7 No survey was conducted in 1997.



equation

log Yit 7 1 {YOBi > 1933} + '2P4 (YOBi) + rp, (AGEi) + it,3 (13)

where Yit is real weekly earnings for individual i in year t and all other variables are as in

the first-stage equation (12); and a structural equation

log Yit = 31Ei,t +-t • 2  (YOBi) + 3ýp,n (AGEit) + 6i,t,1 (14)

which is estimated by OLS (for comparison) and two-stage least squares, with 1 {YOBi > 1933}

instrumenting for Ei,t In estimating equation (14), Oreopoulos collapses his data to year-

of-birth by age cell means, runs the regressions on the cell means, weighting by cell size,

and clusters the standard errors by year of birth. The point estimates computed in this way

will be numerically identical to the point estimates obtained by the Lee and Card (2008)

procedure of running the regressions on the micro data and clustering standard errors by

year of birth. However, collapsing to year-of-birth by age cell means will yield even more

conservative standard errors, since variation at the age level is lost.

Although Oreopoulos finds positive and significant effects of education on earnings, these

estimates are incorrect, likely due to an error either in downloading the raw individual-

level data from GHHS or in converting these micro-data to cell means. The exact cause of

the error cannot be determined, since Oreopoulos's raw data are no longer available. My

estimates of the first stage and reduced form are given in Table 5.8 I do find a positive

and highly significant first-stage relationship, although my point estimates are roughly 15

percentage points lower than the estimates in his Table 1. However, my estimates of the

reduced-form equation (13) yield much smaller point estimates and slightly larger standard

errors in two of three specifications. Some of these differences may be due to differences in the

8To maximize comparablility with Oreopoulos's results, I also collapse the data to year-of-birth by age
cell means and run the regressions on the cells, weighting by cell size and clustering on year of birth.



raw data used: I discovered that a coding error at the UK Data Archive, which houses and

disseminates the GHHS data, had caused all observations of earnings from the 1983 GHHS

to be coded as missing. By correcting this coding error, I was able to restore the 1983 data

to the sample. However, this turns out not to make much of a difference for the first stage

or reduced form, as is apparent in Table 7, where I restrict the sample to observations from

the 1984-1996 GHHS, making my sample as comparable to Oreopoulos's as possible. The

first stage estimates are virtually unaffected, while the reduced form estimates do increase

but not to the level of statistical significance and still well below Oreopoulos's estimates.

Table 6 reports the OLS and RD estimates of equation (14). Interestingly, my OLS

estimates are substantially higher than Oreopoulos's, given in his Table 2. As expected from

the first stage and reduced form results, my RD estimates are substantially smaller - roughly

8.5 to 10 log points as compared to his point estimates of 14.5 to 15 log points. Furthermore,

my estimated standard errors have doubled, eliminating any statistical significance. When

I restrict to the 1984-1998 sample, my reduced form point estimates increase, approaching

and even exceeding Oreopoulos's in one specification. However, the standard errors remain

high, so no results are statistically significant. These results are largely unchanged when I

restrict the sample to men only and when I reduce the order of the year-of-birth polynomial

to a quadratic. 9

5.2 Applying Quantile RD

Although the preceding section shows that no statistically significant effect can be detected

on the mean, we could still see effects at particular quantiles, for example if the benefits of

education tended to be high for those lower in the earnings distribution (conditional on their

9I took the latter step because the condition index of the [1 {YOB > 1933} p4 (YOB)j data matrix

is over 1,000, indicating severe multicollinearity and likely instability of estimates. The condition index

of 1 {YOB > 1933} : P2 (YOB)] was just 42, which is not too far in excess of the rule of thumb that a

condition index should not exceed 30 (Belsley, 1991).



covariates, in this case year of birth and age at time of survey). To explore this possibility, I

apply the quantile RD estimator developed in Section 2 to the raw GHHS data. The details

of the estimation procedure are as follows: for each quantile, I use a grid centered at 0.15 and

extending 0.5 units in either direction. Since the units are log points, this should encompass

any realistic impact on wages. The grid has 201 points, spaced 0.005 units apart. I use only

a second-degree polynomial in year of birth, since the multicollinearity of higher-order terms

with the indicator function 1 {YOB > 1933} causes even more computational difficulty in

quantile regression than it does in least squares. Similarly, I do not include age fixed-effects

in these models for computational reasons: in quantile regression, fixed effects cannot be

simply "partialled out" as in least squares, but must be computed directly, increasing the

computational burden tremendously. Since the age fixed effects made little difference in the

mean RD estimates, it seems likely that the costs of including them in the QRD estimates

exceed any benefits.

No strong results emerge from the quantile analysis, which is summarized in Table 9. The

causal effect of education on earnings is not estimated to be significant at any decile. One

interesting pattern is that the analytical standard errors dramatically overstate the precision

of the estimates when compared to the robust (i.e. dual) confidence interval. This points

to the need to check that the analytical standard errors are similar to the dual confidence

intervals before using the analytical variance-covariance matrix to test hypotheses across

quantiles. Another interesting phenomenon is that the dual confidence interval of the lowest

decile (T = 0.1) encompasses the right endpoint of the grid and that of the highest decile

(7 = 0.9) encompasses the left endpoint of the grid. This points to only partial identification

of the treatment effects at these quantiles, which is somewhat surprising given the strength

of the first stage.



6 Conclusion

This paper has shown that the quantile IV framework of Chernozhukov and Hansen (2005)

can be adapted to a regression discontinuity design, allowing estimation of quantile treatment

effects. Simulations show the estimator to be reasonably well-behaved, but an unexpectedly

weak reduced-form relationship in the empirical application limited the ability of the esti-

mator to provide insight.

This project could be usefully extended in two directions. The first is to apply the

estimator in an RD setup where the forcing variable is continuous, rather than discrete as

in this example. Jacob and Lefgren (2004) is an natural potential application, because its

design is relatively transparent and quantile treatment effects are certainly interesting in

the context of educational achievement. The second direction is to assess the validity of

the method by comparing QRD estimates to quantile estimates obtained from a randomized

trial. Here, the job training study Black et al. (2003) could be interesting, since Black et al.

(2007) have shown that mean RD estimates match experimental estimates from the same

sample reasonably well.
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Table 1: Monte Carlo Results -- Median Only

A: Estimation using all observations

Estimate of betal (truth=0.5)
Mean estimate
Mean width of 90% CI
RMSE
25th percentile
Median
75th percentile

Probability of rejecting truth
Probability of rejecting zero
Observations
Monte Carlo repetitions

OLS
0.061
0.091
0.440
0.043
0.060
0.081
1.000

10,000
500

B: Estimation using observations in +/- 0.25

Estimate of betal (truth=0.5)
Mean estimate
Mean width of 90% CI
RMSE
25th percentile
Median
75th percentile

Probability of rejecting truth
Probability of rejecting zero
Mean number of observations
Monte Carlo repetitions

OLS
0.049
0.258
0.457

-0.006
0.052
0.101
1.000

998
500

Estimator
2SLS QREG IVQR

0.497 0.062 0.499
0.200 0.114 0.234
0.060 0.440 0.075
0.457 0.040 0.450
0.503 0.060 0.500
0.535 0.087 0.550
0.092 1.000 0.108
1.000 1.000

10,000 10,000 10,000
500 500 500

window around cutoff
Estimator

2SLS QREG
0.496 0.043
0.662 0.329
0.196 0.467
0.357 -0.020
0.501 0.042
0.623 0.104
0.096 1.000
0.802

998
500

998
500

IVQR
0.503
0.815
0.243
0.350
0.500
0.655
0.096
0.614

998
500

nVl



Table 2: Comparison of IVQR Estimator Across Quantiles
Constant treatment effect: true betal = 0.5 for all quantiles

A. IVQR estimation using all observations

Estimate of betal
Mean estimate
Mean width of 90% CI
RMSE
25th percentile
Median
75th percentile

Probability of rejecting truth
Probability of rejecting zero
Observations
Monte Carlo repetitions

0.1
0.500
0.460
0.122
0.410
0.490
0.580
0.092
0.996

10,000
500

0.2
0.495
0.311
0.092
0.430
0.490
0.560
0.082
1.000

10,000
500

B: IVQR estimation using observations in +/- 0.25

Estimate of betal
Mean estimate
Mean width of 90% CI
RMSE
25th percentile
Median
75th percentile

Probability of rejecting truth
Probability of rejecting zero
Mean number of observations
Monte Carlo repetitions

0.1
0.590
2.016
0.521
0.285
0.500
0.855
0.090
0.362
1,001

500

0.2
0.517
1.187
0.339
0.300
0.500
0.720
0.088
0.500
1,001

500

0.3
0.496
0.270
0.081
0.450
0.490
0.550
0.080
1.000

10,000
500

Quantile
0.4 0.5

0.500 0.501
0.247 0.232
0.078 0.072
0.450 0.450
0.500 0.500
0.550 0.550
0.124 0.094
1.000 1.000

10,000 10,000
500 500

window around cutoff
Quantile

0.3 0.4 0.5
0.501 0.497 0.493
0.960 0.867 0.816
0.272 0.247 0.239
0.310 0.330 0.330
0.480 0.480 0.480
0.680 0.660 0.635
0.072 0.076 0.104
0.564 0.592 0.598
1,001 1,001 1,001
500 500 500

0.6
0.496
0.230
0.073
0.450
0.500
0.550
0.114
1.000

10,000
500

0.6
0.485
0.806
0.234
0.335
0.470
0.650
0.096
0.610

1,001
500

0.7
0.495
0.233
0.074
0.440
0.490
0.550
0.110
1.000

10,000
500

0.7
0.503
0.829
0.232
0.345
0.490
0.655
0.086
0.618
1,001

500

0.8
0.493
0.248
0.081
0.440
0.490
0.550
0.128
1.000

10,000
500

0.8
0.497
0.910
0.253
0.310
0.505
0.670
0.074
0.532
1,001

500

0.9
0.494
0.295
0.095
0.430
0.490
0.560
0.100
1.000

10,000
500

0.9
0.488
1.125
0.318
0.270
0.470
0.695
0.084
0.420

1,001
500



Table 3: Comparison of IVQR Estimator Across Quantiles
Increasing treatment effect: betal(T) = T

A. IVQR estimation using all observations

Estimate of betal 0.1
Mean estimate 0.101
Mean width of 90% CI 0.491
RMSE 0.126
25th percentile 0.010
Median 0.090
75th percentile 0.180

True value
Probability of rejecting truth
Probability of rejecting zero
Observations
Monte Carlo repetitions

0.1
0.094
0.202

10,000
500

1'

0.2
0.195
0.322
0.096
0.130
0.200
0.250

0.2
0.088
0.632
0,000

500

B: IVQR estimation using observations in +/- 0.25

Estimate of betal
Mean estimate
Mean width of 90% CI
RMSE
25th percentile
Median
75th percentile

True value
Probability of rejecting truth
Probability of rejecting zero
Mean number of observations
Monte Carlo repetitions

0.1
0.195
2.401
0.549

-0.140
0.115
0.470

0.1
0.104
0.108
1,001

500

0.2
0.210
1.280
0.356

-0.025
0.190
0.440

0.2
0.094
0.158
1,001

500

0.3
0.297
0.284
0.086
0.240
0.300
0.360

0.3
0.098
0.948

10,000
500

Quantile
0.4 0.5

0.401 0.501
0.264 0.253
0.085 0.078
0.350 0.450
0.400 0.500
0.460 0.555

0.4 0.5
0.120 0.106
1.000 1.000

10,000 10,000
500 500

window around cutoff
Quantile

0.3 0.4 0.5
0.299 0.397 0.493
1.060 0.972 0.932
0.303 0.283 0.274
0.100 0.210 0.310
0.280 0.370 0.470
0.500 0.580 0.670

0.3 0.4 0.5
0.076 0.082 0.104
0.244 0.360 0.504
1,001 1,001 1,001
500 500 500

0.6
0.596
0.251
0.080
0.550
0.600
0.650

0.6
0.118
1.000

10,000
500

0.6
0.585
0.921
0.270
0.420
0.575
0.770

0.6
0.098
0.672
1,001

500

0.7
0.695
0.254
0.080
0.640
0.690
0.750

0.7
0.114
1.000

10,000
500

0.7
0.702
0.943
0.265
0.520
0.680
0.870

0.7
0.094
0.760
1,001

500

0.8
0.792
0.269
0.087
0.730
0.795
0.850

0.8
0.126
1.000

10,000
500

0.8
0.796
1.011
0.286
0.590
0.800
0.990

0.8
0.068
0.816
1,001

500

0.9
0.893
0.312
0.099
0.820
0.890
0.960

0.9
0.094
1.000

10,000
500

0.9
0.887
1.216
0.348
0.670
0.880
1.115

0.9
0.094
0.766
1,001

500



Table 4: Comparison of IVQR Estimator Across Quantiles
Decreasing treatment effect: betal(0) = 0.75, linearly declining to betal(1) = 0.25

A. IVQR estimation using all observations

Estimate of betal
Mean estimate
Mean width of 90% CI
RMSE
25th percentile
Median
75th percentile

True value
Probability of rejecting truth
Probability of rejecting zero
Observations
Monte Carlo repetitions

0.1
0.701
0.523
0.121
0.610
0.690
0.780

0.7
0.088
1.000

10,000
500

0.2
0.645
0.303
0.090
0.580
0.640
0.710

0.65
0.084
1.000

10,000
500

0.3
0.597
0.260
0.078
0.550
0.590
0.650

0.6
0.086
1.000

10,000
500

B: IVQR estimation using observations in +/- 0.25 window

Estimate of betal
Mean estimate
Mean width of 90% CI
RMSE
25th percentile
Median
75th percentile

True value
Probability of rejecting truth
Probability of rejecting zero
Mean number of observations
Monte Carlo repetitions

0.1
0.789
2.128
0.510
0.490
0.700
1.050

0.7
0.096
0.626
1,001

500

0.2
0.662
1.164
0.321
0.440
0.650
0.860

0.65
0.086
0.758
1,001

500

0.3
0.601
0.897
0.254
0.430
0.580
0.775

0.6
0.078
0.764
1,001

500

Quantile
0.4 0.5

0.550 0.500
0.236 0.218
0.074 0.068
0.500 0.450
0.550 0.500
0.600 0.550

0.55 0.5
0.122 0.102
1.000 1.000

10,000 10,000
500 500

around cutoff
Quantile

0.4 0.5
0.547 0.491
0.803 0.749
0.229 0.219
0.400 0.340
0.530 0.480
0.700 0.630

0.55 0.5
0.086 0.108
0.724 0.688

1,001 1,001
500 500

0.6
0.446
0.216
0.070
0.400
0.450
0.490

0.45
0.116
1.000

10,000
500

0.6
0.436
0.738
0.216
0.300
0.430
0.580

0.45
0.094
0.616
1,001

500

0.7
0.396
0.220
0.071
0.350
0.395
0.450

0.4
0.118
1.000

10,000
500

0.7
0.398
0.763
0.216
0.250
0.380
0.550

0.4
0.080
0.516

1,001
500

0.8
0.344
0.236
0.077
0.290
0.350
0.400

0.35
0.138
0.998

10,000
500

0.8
0.345
0.855
0.236
0.180
0.350
0.510

0.35
0.070
0.352

1,001
500

0.9
0.294
0.286
0.092
0.230
0.300
0.360

0.3
0.100
0.960

10,000
500

0.9
0.285
1.089
0.310
0.075
0.270
0.490

0.3
0.090
0.220
1,001

500



Table 5 -- Estimated Effect of Minimum School-Leaving Age on Age Finished Full-Time Education and Log Earnings

Great Britain, ages 32-64, born 1921-1951, General Household Surveys 1983-1998

First stage -- dependent variable: age Reduced form -- dependent variable: Initial

Sample population finished full-time school log annual earnings sample size

(1) (2) (3) (4) (5) (6) (7)

Great Britain 0.298 *** 0.289 *** 0.296 *** 0.025 0.026 0.030 66115

[0.067] [0.068] [0.080] [0.031] [0.030] [0.033]

Number of cells 422 422 422 422 422 422

Birth cohort polynomial controls Quartic Quartic Quartic Quartic Quartic Quartic

Age polynomial controls No Quartic No No Quartic No

Age fixed effects No No Yes No No Yes

Notes: Sample: 32- to 65-year olds from the 1983 through 1998 General Household Surveys, aged 14 between 1935 and 1965. Data are

aggregated into cell means and regressions are weighted by cell size. Robust standard errors clustered by birth cohort are in brackets.

Table 6 -- OLS and RD Returns to (Compulsory) Schooling, Estimates for Log Annual Earnings

Great Britain, ages 32-64, born 1921-1951, General Household Surveys 1983-1998

Initial

Sample population Returns to schooling: OLS Returns to compulsory schooling: RD sample size

(1) (2) (3) (4) (5) (6) (7)

Great Britain 0.177 *** 0.175 *** 0.178 *** 0.086 0.096 0.099 66115

[0.014] [0.012] [0.012] [0.113] [0.116] [0.116]

Number of cells 422 422 422 422 422 422

Birth cohort polynomial controls Quartic Quartic Quartic Quartic Quartic Quartic

Age polynomial controls No Quartic No No Quartic No

Age fixed effects No No Yes No No Yes

Notes: Sample: 32- to 65-year olds from the 1983 through 1998 General Household Surveys, aged 14 between 1935 and 1965. Data are

aggregated into cell means and regressions are weighted by cell size. Robust standard errors clustered by birth cohort are in brackets.



Table 7 -- Estimated Effect of Minimum School-Leaving Age on Age Finished Full-Time Education and Log Earnings
Great Britain, ages 32-64, born 1921-1951, General Household Surveys 1984-1998

First stage -- dependent variable: age Reduced form -- dependent variable: Initial
Sample population finished full-time school log annual earnings sample size

(1) (2) (3) (4) (5) (6) (7)

Great Britain 0.305 *** 0.293 *** 0.293 *** 0.041 0.041 0.039 60666
[0.057] [0.060] [0.077] [0.033] [0.031] [0.037]

Number of cells 391 391 391 391 391 391
Birth cohort polynomial controls Quartic Quartic Quartic Quartic Quartic Quartic
Age polynomial controls No Quartic No No Quartic No
Age fixed effects No No Yes No No Yes

Notes: Sample: 32- to 65-year olds from the 1984 through 1996 General Household Surveys, aged 14 between 1935 and 1965. Data are
aggregated into cell means and regressions are weighted by cell size. Robust standard errors clustered by birth cohort are in brackets.

Table 8 -- OLS and RD Returns to (Compulsory) Schooling, Estimates for Log Annual Earnings
Great Britain, ages 32-64, born 1921-1951, General Household Surveys 1984-1998

Initial
Sample population Returns to schooling: OLS Returns to compulsory schooling: RD sample size

(1) (2) (3) (4) (5) (6) (7)

Great Britain 0.170 *** 0.170 *** 0.173 *** 0.125 0.130 0.167 60666
[0.013] [0.012] [0.012] [0.108] [0.103] [0.132]

Number of cells 391 391 391 391 391 391
Birth cohort polynomial controls Quartic Quartic Quartic Quartic Quartic Quartic
Age polynomial controls No Quartic No No Quartic No
Age fixed effects No No Yes No No Yes

Notes: Sample: 32- to 65-year olds from the 1984 through 1996 General Household Surveys, aged 14 between 1935 and 1965. Data are
aggregated into cell means and regressions are weighted by cell size. Robust standard errors clustered by birth cohort are in brackets.



Table 9 -- QRD Estimates of Effect of (Compulsory) Education on Earnings Quantiles
Great Britain, ages 32-64, born 1921-1951, General Household Surveys 1983-1998

Model A -- Exogenous Regressors: Year of Birth Quadratic
Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Point Estimate 0.040 0.130 -0.020 -0.025 0.000 0.020 -0.015 -0.315 -0.045

Dual CI Left Endpoint -0.100 -0.140 -0.110 -0.070 -0.065 -0.065 -0.135 -0.350 -0.350

Dual CI Right Endpoint 0.650 0.650 0.120 0.215 0.050 0.065 0.070 0.040 0.080

Analytical Standard Error 0.031 0.070 0.023 0.031 0.023 0.020 0.021 0.044 0.166

Model B -- Exogenous Regressors: Year ofBirth Quadratic, Age Quartic
Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Point Estimate -0.015 0.125 0.055 0.010 0.020 0.030 0.010 0.005 -0.185

Dual CI Left Endpoint -0.090 -0.050 -0.090 -0.055 -0.040 -0.010 -0.090 -0.350 -0.350

Dual CI Right Endpoint 0.650 0.640 0.175 0.215 0.070 0.080 0.105 0.060 0.085

Analytical Standard Error 0.032 0.044 0.047 0.032 0.018 0.014 0.019 0.011 0.020

Notes: Sample: 32- to 65-year olds from the 1983-1996 and 1998 General Household Surveys, aged 14 between 1935 and 1965.

Results are from a QRD/QIV regression of log annual earnings on age leaving full-time school, controlling for the exogenous

regressors noted. An indicator for year of birth after 1931 instruments for age leaving school. QRD/QIV implemented using a grid

of 201 points at 0.005 log point intervals, ranging from -0.35 to 0.65.



Chapter 3:

The Short- and Medium-Run Benefits of Sanitation

Co-authored with Esther Duflo and Michael Greenstone, both of the MIT Department of
Economics



Introduction

Lack of access to clean water and sanitation are two of the most significant threats to health and

welfare in the developing world. Approximately 17 percent of the world's population lack access to

improved water sources and 42 percent lack access to sanitary facilities. These privations have serious

consequences: diarrheal diseases kill roughly 1.8 million people each year, and diarrhea causes 17% of all

deaths of children under five years in developing counties (WHO 2005). Poor water quality also

contributes to other major diseases, including malaria, schisosomiasis, trachoma and worms (WHO

2004). Indeed, the Millenium Development Goals call for a fifty percent reduction in the share of

households worldwide without access to safe drinking water (UN 2007).

While a strong consensus exists regarding the severity of the problem, there is little robust

evidence on the effectiveness of potential solutions relevant to the rural poor. Piped water and sanitation

infrastructure have proved effective when the correct institutional incentives are present (Cutler and

Miller 2005; Watson 2006; Galiani, Gertler and Schagrodsky 2005). However, the large-scale

infrastructure investments required to provide in-home solutions are commonly believed to be too

expensive to construct or too difficult to maintain in a rural context, where homes are dispersed and

institutional support necessary for ongoing maintenance may be weak (Clasen and Haller 2008). As a

result, most studies have focused on "community-level infrastructure," solutions such as communal well

improvement that are short of piped water. The results have not been promising: in fact, a recent literature

review concludes that "there is little evidence that providing community-level rural water infrastructure

substantially reduces diarrheal disease or that this infrastructure can be effectively maintained.

Investments in communal water infrastructure short of piped water may serve other needs and may reduce

diarrhea in particular circumstances, but the case for prioritizing communal infrastructure provision needs

to be made rather than assumed" (Zwane and Kremer 2008).1

1 One promising avenue for further research is to investigate the effectiveness of household technologies, such as in-
home chlorination (Ashraf, Berry and Shapiro 2007; Kremer, Miguel, Null and Zwane 2008), or improving
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This paper presents the first medium-run evaluation of piped water and sanitation infrastructure in

a rural context. We examine a series of village-level interventions conducted by an Indian NGO, Gram

Vikas (GV), in Orissa, one of the poorest states in India. The program, called the Rural Health and

Environment Program (RHEP), consists of construction of a village water tank, household toilet and

bathing facilities with a tap for drinking water and piping to connect the household facilities to the central

water tank.

Several unusual features of the program make it compelling to analyze. First, the program

requires all households in affected villages to participate, so the estimated impacts capture all within-

village externalities. Second, service is initiated suddenly, unpredictably and at different times for

different villages, reducing concerns of confounding with other trends. Finally, and perhaps most

importantly, data on all outcomes are available beginning several years before the sanitation project

arrives and data collection continues for five years or more after service begins, which makes it possible

to assess medium-run impacts.

We find that RHEP led to substantial reductions in water-related disease. Episodes of severe

diarrhea declined by roughly one-third and serious cases of malaria declined by 20-40%. These results are

evident in the very first month that the sanitation system became operational. Further, they are lasting as

they are still evident five years later. These benefits were achieved at an annual cost per household of

roughly US$40 per year. While these results are notable, the program was implemented in a selected

sample of villages that may have stronger institutional capacity than the typical village.

The paper proceeds as follows. Section I describes the Rural Health and Environment Program

and how the features of the program noted above may allow for a credible impact evaluation. Section II

details the data sources and provides some summary statistics. Section III describes the econometric

methods and reports the empirical findings. Section IV discusses the results, provides a back-of-the-

envelope cost assessment and concludes.

individual hygienic practice, such as hand-washing (Luby et. al. 2006).
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I. The Rural Health and Environment Program

A. Program History, Goals and Components2

The Rural Health and Environment Program is an initiative of Gram Vikas, an NGO located in

Orissa, India. Orissa is perhaps the poorest state in India: over 46% of its population has Below Poverty

Line status, compared to the national average of 27.5%. 3 GV works with rural populations, many of them

members of Scheduled Castes and Scheduled Tribes4 , among which poverty rates are even higher: in

every RHEP village, at least 70% of residents are below the poverty line. Having worked with many of

these villages in the late 1980s and early 1990s in the development of biogas plants, GV determined that

waterborne diseases were major sources of mortality and morbidity, and that the establishment of

protected drinking water and improvement of sanitary conditions had the potential to improve villagers'

well-being.

As a response, GV developed the intervention package now known as RHEP. The basic

components of the program are a water tank storing water pumped from a safe source, piping from the

tank to each home in the village, and toilet and bathing rooms for each home. The bathing house is

perhaps unusual in a water intervention. Because of the high prevalence of gynecological and skin

diseases, GV, attributing these diseases to the need to bathe in the polluted waters of local ponds, deemed

it important for women to have a private space and clean water for bathing.

The program was piloted in 5 villages (340 households) in 1992. It was then expanded in four

phases: adding 40 villages (3,000 households) from 1995-1998, 27 villages (2,000 households) from

1999-2001, 38 villages (3,000 households) from 2001-2003 and 160 villages (8,000 households) from

2 Information in this section comes from Gram Vikas documents (Gram Vikas 2001, Gram Vikas 2004 and Gram
Vikas 2005) and interviews of Gram Vikas management and personnel by the authors.
3 Below Poverty Line (BPL) is an official status that confers access to certain grants and subsidies. The precise
definition varies from location to location, but can be generally understood as lacking the income necessary for
subsistence. For rural Orissa in 2004-2005, the official poverty line was 326 Rs. / month, or roughly US$0.24 per
day at market exchange rates or US$0.72 per day at purchasing power parity exchange rates. Source: "Poverty
Estimates for 2004-5," Planning Commission, Government of India, March 2007.
http://www.planningcommission.gov.in/news/prmar07.pdf. Accessed: 8 July, 2008.
4 Scheduled Castes, or dalits, are castes that have faced discrimination and receive government affirmative action;
Scheduled Tribes, or adivasis, are indigenous groups and also receive affirmative action. Both are official
designations.
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2003-2006.

Because the implementation timeline is important for our identification strategy, we provide some

detail on the typical sequence of events for implementing RHEP in a village. First, GV extension workers

identify a village well-suited to the program. Desirable characteristics are a strong sense of community

unity and good village leadership. This information may come from GV contacts with local elected

leaders, state government officials or pre-existing relationships with villages established through other

programs such as biogas. Sometimes representatives of villages neighboring existing RHEP villages will

actively seek out Gram Vikas.

Next, GV representatives meet informally with village leadership. If there is interest in starting a

program, a series of village meetings will be held to build participation and obtain 100% consensus for

participation in the program. This process of consensus-building usually takes 3-6 months, but can take

up to 18 months. GV insists on 100% participation because of the externalities inherent in sanitation: if

even a few villagers do not participate, they can transmit disease to their neighbors, reducing the benefits

of the program.

Once the village has reached 100% consensus, GV and the village enter a formal agreement. At

this time, data collection begins. The villagers begin construction of the toilet and bathing facilities,

following GV designs and guidance but using their own labor and locally acquired materials.

Simultaneously, the village must raise a "corpus fund" with average contributions of $20 per family.s

Wealthier households are expected to subsidize poorer households, although the exact subsidy program is

left up to village agreement. This fund is invested, with the interest set aside to be used to extend service

to any households that may be formed in the village after the initial construction and activation is

complete. Once all households in the village complete the walls of the toilet and bathing house (i.e. the

external structure is complete except for the roof), GV releases a cash subsidy of $50-60 per household,

which is used to provide inputs the villagers cannot provide themselves (e.g. ceramics, piping materials,

5 All monetary figures are given in 2005 U.S. dollars, converted from Indian rupees at the 1997-2006 average
market exchange rate of 45Rs./USD.
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etc.). The total cost of each structure is roughly $140, including the value of the villagers' unskilled labor

(priced at a wage rate of one dollar per day) and the materials gathered (rough stone, etc.).

Construction of the water supply usually begins when GV releases the subsidy and runs in

parallel to the completion of the toilet and bathing houses. The water supply consists of a safe water

source, a central water tank for the village, and piping from the tank to individual households. Since the

groundwater in Orissa is generally of good quality, the water source is usually a deep tubewell, although

in some hilly areas higher-elevation natural springs can feed the tank via gravity, making a motorized

pump unnecessary. The water tank (usually 80,000 liter capacity) is piped to each house, with each house

receiving three water taps: one each for the toilet and bathing rooms, and one inside the home. As with

the sanitary houses, villagers supply unskilled labor and locally available materials while Gram Vikas

provides skilled labor and specialized materials. Construction of the water supply requires 3-4 months of

work, but usually takes roughly one calendar year to complete because work is not continuous - villagers

supply their own labor outside of planting and harvest seasons. The cost of the water tank is about $175

per household, again including the value of villagers' labor and materials they collect.

Although some families inevitably complete their sanitary houses sooner than others, GV as a

rule does not activate the water supply until every households have completed its sanitary facility. GV

believes that households are primarily interested in obtaining running water for their homes, so turning on

the water to the home before the sanitary facility is complete could lead to villagers not completing the

project. Furthermore, GV believes that social pressure or cross-subsidization can help push lagging

households towards completion, and these forces would be muted if leading households received water

service. On the other hand, this delay does come with a cost, since some households with completed

sanitary houses are unable to connect to the water tank until the other households in the village complete

their structures.

Finally, villagers are responsible for operational costs, such as electricity to power the water

pump, maintenance and repairs, usually amounting to about $10 per household per year. GV provides

some training for villagers to provide maintenance and advises village committees on governance, but

does not directly intervene after the project is complete, other than to collect data.
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B. Challenges of Evaluation and Research Design

An evaluation of RHEP offers several advantages over previous efforts to measure the causal

effect of water and sanitation programs. Accurate measurement of the impact of water and sanitation

programs has proven difficult for several reasons, in particular the absence of a valid counterfactual for

outcomes in the absence of the sanitation program, the problem of measurement in the presence of

externalities, small sample sizes and short followup periods.6 The design of RHEP and GV's data-

collection efforts allow us to address each of these concerns, as we discuss in turn.

First and perhaps foremost, valid counterfactuals are not easy to obtain. Comparisons of

communities with and without a package of water and sanitation services are likely to be biased, because

communities that receive water and sanitation programs frequently differ significantly from those that do

not, both along observable and unobservable dimensions. Comparisons of outcomes before and after an

intervention, while controlling for time-invariant community unobservables, may confound program

effects with the evolution of other determinants of health. However, in the case of RHEP, the package of

water and sanitation services arrived suddenly, in principle on a single day for all households. Since it is

unlikely that other determinants of health outcomes would change simultaneously and just as suddenly, an

event study in this context has greater validity.' In addition, because the time at which the water will be

turned on is not known in advance, we are less concerned that anticipatory adjustment of compensating

behaviors (such as in-migration of sicklier relatives) will mask the program's effect.

Second, studies that compare households with and without sanitation services within a given

community will overlook potential external benefits to non-recipient households, which may be less

6 Our discussion is brief. For a more complete survey of the literature and associated issues, see Zwane and Kremer
(2007).
7 Gram Vikas works with RHEP villages on other projects, such as schoolbuilding, skills training, aquaculture and
sustainable forestry. While these projects are generally less directly related to the health outcomes we study, there
could be indirect effects, for example if increased income leads to the ability to purchase better health care services.
However, because the timing of these programs is not coordinated with switching on the water and because these
programs are more gradual, we are less concerned that we are confounding the effect of RHEP with the effects of
these programs. Furthermore, as detailed in the econometric methods section, we control for a linear trend in health
outcomes prior to the arrival of the water, which will pick up impact of these other programs to the extent that they
arrive gradually and have roughly linear effects on outcomes.

105



likely to contract communicable disease.8 Because RHEP is implemented and our data are recorded at the

village level, we can capture the total effect of the intervention within the village, i.e. direct benefits as

well as within-village externalities. Because villages are usually distant from each other, it is reasonable

to assume that most of the external benefits to improved sanitation will be within the village, i.e. between

neighbors rather than from residents of one village to another. This is especially likely in the Orissan

context because children, who are potential disease vectors, usually attend school within their own

village. 9 However, it is possible that there are some external benefits we are not capturing, for example

via rivers or interactions on market days. 10

Third, many studies of sanitation programs suffer from small sample sizes and short spans of

data. Small samples make precise measurement difficult, while short follow-up periods make it

impossible to assess anything other than the program's short-run impact. We have usable data from

roughly 100 RHEP villages (see the following section for a detailed discussion of which RHEP villages

are included in our sample), which improves the precision of our estimates relative to studies based on

just a handful of sites. Additionally, because data collection begins when GV and the village enter the

formal agreement - usually at least a year before the water is turned on and continues for three years or

more after the water arrives, we can assess the medium-run impact of the program rather than being

limited just to a short-run evaluation.

II. Data Sources and Summary Statistics

A. Data Sources"

The data for our study come from Gram Vikas's internal "Monthly Progress Reports" (MPRs),

8 In fact, simply comparing the health status of the two households would doubly undercount the benefits. Rather
than adding the improvement of the neighbor to the program's measured benefits, the neighbor's improvement
would be subtracted from the program's tally, since we are comparing the outcomes of the two households with
each other.
9 See Miguel and Kremer (2004) for a study of how to measure cross-village externalities when children from
different villages attend the same school. Their study is of Busia in western Kenya.
10 While we would undercount these cross-village benefits, we would only doubly undercount (as in the discussion
in footnote 8) if the benefits redounded to someone from another RHEP village included in the study. This is
somewhat unlikely, since our study is of roughly 100 villages out of literally thousands in the state.
1 As in section I.A, information in this section comes from GV documents (Gram Vikas 2001; Gram Vikas 2004;
Gram Vikas 2005) and interviews of GV management and personnel by the authors.
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which we scanned and had double-entered by a data-entry firm. These MPRs were compiled on a monthly

basis by GV personnel, either during monthly (or more frequent) visits or by GV staff residing on-site.

The MPRs contain detailed information on the status of RHEP (e.g. water tank construction, number of

households with and without competed toilet and bathing houses) and incidence of disease, in particular

water- and sanitation-related diseases such as diarrhea. Two aspects of this data-collection process are

particularly useful for our study. First, as mentioned above, data collection typically begins a year or more

before the water is activated and continues for at least three years thereafter. Second, the purpose of these

records is to provide information on the project's progress and conditions in the village. Because the

records are collected for internal purposes and not with an external evaluation in mind, we are confident

that they do not exaggerate the benefits of the program.

While the monthly data collection effort covers many aspects of village life, we focus our

exposition on the key data for our analysis: the stage of completion of RHEP and the occurrence of water-

related diseases. When a formal RHEP agreement is reached with a village, GV conducts a census of all

households and assigns an employee to supervise the project in that village. This village supervisor visits

the village frequently: usually once per week, although he or she may even take up part- or full-time

residence in the village. The supervisor goes house-to-house and records each household's progress

towards completing its individual sanitary house. The supervisor also records progress in construction of

the village water tank and piping. In our analysis, we code water improvement as beginning in the first

month when the water tank is recorded as operational. 12

Data on disease prevalence are also recorded monthly by the GV village supervisor, who draws

on a variety of sources. The primary source is the records of the village health clinic, but the supervisor

supplements this with discussions with the village health committee, village leadership and individual

visits with villagers themselves. Our analysis focuses on diarrhea and malaria, since these are the most

common water- and sanitation-related diseases for which data are recorded. 13 It is important to note that

12 For robustness, we also perform the analysis using alternative indicators for water improvement, such as water
tank completion and sanitary facility completion. The results are not substantially affected. See the results section.
13 Other diseases monitored include fever, typhoid, jaundice, cold and cough, night blindness, scabies, TB and
leprosy. We do not include these in the main analysis because they are either too scarce for any reasonably-sized
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disease episodes are only recorded if a resident is "checked" or "treated". "Checked" means that the

villager went for a consultation with a health worker or a doctor. "Treated" means that the villager

received treatment for the condition, again either from a health worker or from a doctor. This excludes

cases for which a villager does not seek a medical consultation, or cases when a villager seeks treatment

via home remedies or local healers. As a result, our measures likely understate the true prevalence of

these ailments, since time and expense mean that villagers are likely to seek treatment only in the most

serious cases. 14 We focus on the "treated" measure in our analysis but the results using the "checked"

variable are very similar, which is not surprising since the two measures have at least a 90% correlation

with each other in our data (see Appendix Table 1).

After our data-entry firm converted the paper records to electronic format, we performed some

cleaning operations to check for outliers, reconcile inconsistencies, etc. These operations are detailed in

the Data Appendix.

B. Sample Selection and Summary Statistics

The primary criterion for inclusion in our sample is that we can identify the month in which the

program "switches on," i.e. the water supply is activated. We will use z to indicate the month relative to

the month in which the water switches on, so z =-1 is one month before the water turns on, z =0 is the

month in which the water turns on, z =1 is one month after. We have 97 such villages, with 5,999 village-

by-month observations total. Some early RHEP villages are excluded because recordkeeping did not

begin until 1997. For many of these villages, we know only that the water was running at the beginning of

1997, but we do not know when the water supply started nor do we know any pre-intervention outcomes.

Figure 1 provides information on the distribution of these observations. The upper left-hand graph

treatment effect to be detected or are only weakly or indirectly related to water and sanitation conditions. Similarly,
data are recorded on mortality, child mortality, pregnancies carried to term and other outcomes of interest, but given
the rarity of these events, we do not have statistical power to detect any reasonably-sized effect.
14 In principle, medical treatment is available at Primary Health Centres (PHCs), which are typically no farther than
five to 10 kilometers from a village. However, medical personnel and doctors are frequently absent from these
PHCs, so villagers usually travel to the nearest town to seek treatment. This may involve a journey of up to 70
kilometers each way, as well as a minimum expenditure of 200 Rs. for treatment. For documentation of these and
other difficulties in obtaining health care in rural India (albeit in Rajasthan, not Orissa), see Banerjee, Deaton and
Duflo (2004).
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shows the number of observations month-by-month. Our sample grows over time, as more villages enter

RHEP and data collection continues for earlier participants. The lower left-hand graph also plots the

number of village-by-month observations for this sample, but this time arranged relative to the month in

which the water began to flow, i.e. in terms of r. By definition, the graph has its mode at r =0, since a

report in month r =0 is necessary for the village to be included in the analysis. The graph shows that it is

not uncommon to have data as much as a year before and four years after the water arrives. Finally, the

upper right-hand graph shows the distribution of months in which water supplies were activated for

villages in our sample. Importantly, there is no visible pattern of seasonality which might bias our results.

Nevertheless, we will include month-by-year fixed effects in our analysis.

Table 1 provides descriptive statistics for this sample and two sub-samples: columns (1)-(3)

correspond to Sample A, the "all observations with known t" sample described above; columns (4)-(6)

correspond to Sample B, in which we use only observations from 2 years prior to 5 years after the

activation of the water supply (i.e. t E [-24,59]) and only use observations from villages from which we

have at least six observations before and six observations after the activation of the water supply; columns

(7)-(9) correspond to Sample C, in which we further restrict the sample to observations within one year of

activation of the water supply (i.e. T E [-12,11]), with the same villages as in columns (4)-(6).

In sample A, the average village contains roughly 85 households and 477 residents, of which 178

are children. Reported school attendance is low, averaging less than 7 days per month, which is not

surprising considering high rates of teacher absenteeism (Chaudhury et. al. 2006; Duflo, Hanna and Ryan

2008). The prevalence of the water-related diseases of interest are perhaps lower than expected, likely

because only the most severe cases are reported. For example, the typical village-by-month observation

has less than one case of diarrhea checked or treated. This is surprising considering the overall poor state

of health in the villages: for example, 33 percent of children are borderline malnourished and an

additional 12 percent are severely malnourished. Samples B and C are broadly similar to Sample A,

although the number of villages and observations necessarily fall.

III. Econometric Methods and Empirical Results

A. Econometric Methods: Our estimates of program impacts follow two main strategies: an event
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study analysis in which we estimate month-by-month effects; and a panel approach in which we

summarize the overall impact of the program in the difference between mean outcomes before and after

the intervention. The event study analysis involves estimation of regression equations similar to
+11

Yvt = I asTvs + V, + STt + (I)
s=-12

where y ,vt denotes the outcome of interest, e.g. monthly cases of severe diarrhea, for village v in month t,

,V is an indicator for the sth month after the water improvement begins (starting at zero, i.e. s=O is the

month in which the water turns on) in village v, V, is a fixed effect for village v, Tt is a fixed effect for

month t and v,, is the disturbance term for village v in month t. We omit the rv,_1 indicator from the

regression, so our estimates of the coefficients a s are interpreted as the mean of the outcome variable

relative to the month before the water turns on.

A few aspects of equation (1) merit discussion. First, the presence of the village fixed effect Vv,

allows us to control nonparametrically for any mean differences across villages. Second, having multiple

observations in each month (from different villages) allows us to include year-by-month fixed effects T,

to control nonparametrically for aggregate monthly shocks across villages in our sample, for example

from a particularly heavy monsoon in a given month. Third, and most important, the combination of (a)

our knowledge of the sudden change in the availability of sanitation in month r,o0 and (b) the quick

biological response of our main outcome variables of interest, diarrhea and malaria, to a change in the

environment together give us a sharp prediction of a near-immediate change in the prevalence of these

diseases, which would be apparent in our results by negative estimates of az,a 2, etc. Since we have

relatively few observations for each r, as the lower left-hand graph in Figure (1) indicates, and we have

not imposed any restrictions at all on the month-by-month effects, we would not expect these month-by-

month estimates to be very precise. However, this regression will be informative about the integrity of the

identification strategy, since it may provide information on pre-program trends that might threaten our

experimental validity, and also will allow us to examine visually whether program impacts appear to

persist.

Our second approach is to estimate regressions such as
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y,t = aPOST,, + yV, + ST, + Ec (2)

where POST, indicates that the water supply has turned on in village v in month t, and all other variables

are as in equation (1). This will collapse the month-by-month (relative to program initiation) estimates

from equation (1) into a single, succinct measure of the program's impact. For example, in Sample C, a

represents our estimate of the program's impact in the first year, relative to the mean in the year leading

up to the activation of services.

We also estimate an important variant of the equation (2) in which we add a linear trend in r,,, as

in

,,t = aPOSTv, + prve+ V, +ST, + v, (3)

where r,, denotes how many months have passed since the water tank turned on village v. This allows us

to control for any linear trend in outcomes around the arrival of water services. For example, imagine that

the consensus-building necessary to launch RHEP improves local institutions, which in turn improves

health incomes (e.g. villagers trust each other more and therefore insure each other better, leading to

smoother consumption and therefore less malnutrition). Simply comparing outcomes before and after the

water turns on would then incorporate these health improvements, which should not be attributed to

RHEP per se. By adding a linear trend in r, we can control for these possible confounding effects,

providing they are approximately linear in the neighborhood of the intervention. Other programs or

behaviors that tend to "switch on" abruptly and simultaneously with RHEP would not be adequately

controlled for by this approach, but we have no reason to believe that this has taken place.

In order to formalize our analysis of the persistence of program effects, we also estimate models

separating the program effect in various sub-periods. For example, to see whether program effects persist

after 3 years, we estimate the following variant of equation (2):

yvt = a 0l{ 0< rt < 36} + al{, rv, 36} + yV, + STt + C, (4)

where ao represents the impact of the program in the first three years and a, the impact thereafter.

Several additional details relevant to the precision of the resulting estimates are worth noting.

First by using village-level aggregates as our unit of observation, we do not commit the error of treating

each household in the village as an independent observation (Kloek 1981; Moulton 1990). Second,
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because village outcomes are likely correlated over time, we compute standard errors clustered at the

village level, making our estimated standard errors robust to arbitrary autocorrelation patterns (Bertrand,

Duflo and Mullainathan 2004). Third, we weight each village-by-month observation by the inverse of the

number of observations of that village, as in probability-weighted sampling. We do this because an

observation from an infrequently-sampled village contains more information relative to an observation

from a frequently-sampled village and this is likely to improve the precision of our estimates.

B. Empirical Results

Our empirical analysis will focus on treated cases of diarrhea and malaria. We focus on these two

variables for three reasons. First and foremost, the health literature gives us strong ex-ante reason to

believe they are linked to water and sanitary conditions (WHO 2004). Second, the response of diarrhea

and malaria to improvements in water quality is likely to be rapid, unlike other plausibly liked health

outcomes such as malnutrition. This is important because our identification strategy is cleanest near the

month in which the water switches on. Third, these conditions are relatively common in our data, at least

relative to other important outcomes deaths and infant deaths. This gives us sufficient statistical power to

detect program effects of a plausible magnitude - detecting effects on very rare events would require a

much larger sample than we have.

We begin with discussion of the event-study methodology described by equation (1) above. We

run regressions using cases of diarrhea treated and cases of malaria treated as the independent variables

and over Samples A, B and C as defined in section I.B. 15 The estimation results are tabulated in Table 2,

but are perhaps more clearly communicated in graphical form, provided in Figure 2, which graphs the

point estimates and 95% confidence intervals for /-12,... ,+, 11 for Sample C. 16 Although the individual

estimates are not too precise, we see a clear downward shift after the water turns on. Reassuringly for the

validity of our approach, we do not see evidence of a downward trend prior to the start of improved water,

15 As discussed in Section II.A, we report only results for the "cases treated" measures here. However, we run all
regressions using the "cases checked" measures as well, and the results are very similar. For brevity, we do not
report these results here, but all results are available in the Online Supplement, which can be downloaded at
http://web.mit.edu/guiteras/Public/RHEP-supplement.pdf.
16 8-1 = 0 by definition, since r,_1 is omitted.
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although again these estimates are not very precise. Results for Samples A and B are tabulated in Table 2

and are broadly similar.

Figure 3 plots the results of a similar exercise, this time including indicators for each of the 24

months prior to and each of the 60 months following the beginning of water improvements, i.e. results

from estimating
+59

y vt= stvs + V +3T± +Evt (5)
s=-24

The results are similar to those in Figure 2, in that we do not see any clear pre-intervention trend of

improvement (although there is some evidence of relatively poor outcomes more than a year before the

water quality improves) and a discernable, if not statistically significant month-by-month, improvement

after the water turns on. Furthermore, this improvement appears to persist with similar magnitude,

although the estimates become ever noisier as time goes on. These regression results suggest that RHEP

did have a discernable impact on health outcomes, a finding which we explore further in the remainder of

this section.

To obtain a more precise estimate of overall program impact, we turn to the pre- versus post-

intervention measures obtained from estimation of equations (2) and (3). Again, we run regressions using

treated cases of diarrhea and malaria as the independent variables and over Samples A, B and C as

defined in section I.B. Table 3 reports the results. The upper panel, labeled Model 1, reports estimates of

a from equation (2) above. With respect to diarrhea, we find statistically significant and practically

meaningful reductions across all three specifications, with cases reduced from 0.356 (from a pre-

intervention mean of 1.11) to 0.59 (from a base of 1.18) per month depending on the sample and

definition of the dependent variable (cases checked versus cases treated). The evidence that RHEP

reduced cases of malaria is also strong, with all estimates negative, significant and large relative to the

pre-intervention mean.

The lower panel, labeled Model 2, reports estimates of a and # from equation (3) above, where

,6 represents the coefficient on a linear trend in rv,. The results are quite robust to the addition of this
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linear trend, as can be seen from the similarity of the point estimates and standard errors of the "level

change" variable (POST,, in equation (3) above) to our previous estimates of the "mean shift" variable in

model 1 variable (POST,, in equation (2)). Furthermore, the estimates of the "linear trend" variable (r,v

in equation (3)) are small in all 6 models and statistically significant in only 2 of 6 models, suggesting

that there is not much of a trend around the arrival of RHEP. This finding was foreshadowed by the

event-study figures.

We conduct several robustness checks to confirm that our results are not simply the product of a

certain specification or choice of variable definition. Tables 4 and 5 report results of our robustness

checks for the primary diseases of interest, diarrhea and malaria. Table 4 examines the results as we alter

our specification of equation (2). The original estimates of equation (2) are reproduced on the top row for

comparison with the estimates in the robustness checks. We alter the specification in the following ways:

different weighting schemes (unweighted, weight by mean village population); include additional fixed

effects (district-by-year); different samples (include villages with unknown r, include only villages with

3 years of post-intervention data or more, include only villages with less than 3 years of post-intervention

data, include only "early" program villages, include only "late" program villages); different methods of

data-cleaning (replace missing outcomes with zeros, replace zero outcomes with missing, perform no

cleaning on the data). While there are too many specifications to discuss individually, the clear pattern is

that results of statistically and practically significant health improvements persist. This is visible in Figure

4, which plots the 95% confidence interval from each specification using Sample B: the centers of all

confidence intervals are less than zero and most of the intervals are entirely contained in the negative

domain.
Table 5 contains the results of another series of robustness checks, in which we compare results

when we use different definitions of our key independent variable, the month in which the water supply is

activated. We use three different definitions: the month in which the water tank turns on (as in our main

estimates reported in Table 3); the month in which the tank is completed; the month is which 90% of the

latrines are complete. As before, we use Samples A, B and C as defined in Section I.B. In addition, we cut

the sample in the two new ways. Sample I considers all villages for which r is defined according to the
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measure given in the row heading, with the restriction that no other indicator of the program beginning

come before this indicator. That is, in the row labeled "tank complete," a village is included if and only if

(a) the month in which the tank is completed is known (and therefore r is defined) and (b) no other

indicator of water improvement come before the month in which the tank is complete. Sample II adds the

additional restriction that this measure be within 3 months of the water tank completion date recorded in

the ex-post inventory provided to us by Gram Vikas in 2007. As in Table 4, the results are reasonably

robust. Again, this is perhaps best communicated in graphical form, as in Figure 5, which plots the 95%

confidence interval from each specification using Sample B. There is slightly more variation here than in

Figure 4, since a few confidence intervals are centered above zero, but the overall pattern again is that, in

most cases, most or all of the confidence interval is below zero, indicating a program benefit.

Table 6 examines the estimated impact of RHEP using different outcome variables. First, we use

more detailed diarrhea measures that are only recorded from 1997-1999. In particular, the Monthly

Progress Reports for these years report cases of diarrhea among children (ages 0-18), number of days

children suffer from diarrhea and the number of workdays lost by adults to diarrhea. The evidence for a

policy benefit to children is weaker: only one estimate of six is statistically significant and two point

estimates have a positive sign. This is surprising, since the health literature emphasizes the benefits of

sanitation for children. This failure to find the expected result could be due to the limited sample size or

the rarity of the outcome in our data (villages report an average of 0.04-0.05 child cases of diarrhea per

month). We also look at other recorded health outcomes, such as malnutrition and fever, as well as total

population and number of children (which may proxy for mortality or in-migration toward environmental

amenities) and school attendance. The results are not particularly strong for any of these outcomes,

although the point estimates are generally indicative of improvement. It is perhaps not surprising that

these results are not as strong, since these are outcomes that may be only weakly linked to water quality

(e.g. fever), take a relatively long time to respond to water quality improvements (e.g. malnutrition) or are

constrained by other institutional factors (e.g. school attendance may be limited by teacher absence). This

may be a result of the limited sample size.
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In Table 7, we explore the question of whether village characteristics are correlated with

improvements within our sample. First, we calculate the predicted improvement in outcomes village-by-

village by interacting the POST,, dummy with indicator variables for each village (limiting the sample to

villages with at least six observations before and six observations after the water improvement), and

including these regressors in our basic estimation equation (5). That is, we estimate

Yvt = Cav(POST, x V)) +  YvV, + I6tTt + aPOST +Ev, (6)
v t v t

from which we av, the estimated impact of the program in village v. Ninety-five percent confidence

intervals for these estimates are plotted in increasing order in Figure 6.

Most villages are estimated to have benefitted from the program, although improvement is not

universal. We then regress these village-level improvements on village characteristics, including the share

of the village in the scheduled tribe or scheduled caste category, the pre-intervention prevalence of the

condition and the calendar month in which the program started in that village. No strong results emerge,

except for that the program appears to have been more successful at reducing malaria in villages where

pre-program malaria prevalence was high.

Finally, in Table 8 we report formal tests of the persistence of the program effect with regressions

such as that in equation (4) above. Panel (A) presents regressions in which we estimate the effect

separately for each of the first five years after the program is initiated, i.e.

yvt =( a xl rvte Yj})+(a 6 xlrvt 36})+ yV,+T, +6ve (7)

where Yj indicates that month t is in the jth year after the intervention for village v. That is, ai is the

estimated impact in the first year after service begins (months 0-11), a2 is the estimated impact in the

first year after service begins (month 12-23), and so on. The results for diarrhea are quite striking: the

effect persists in each of the subsequent five years and even afterwards, although the effect more than five

years out is no longer statistically significant. The impact on malaria, though, does seem to fade over

time. In Panel (B), we split the post-intervention period into just two sub-periods, the 36 months
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immediately after the intervention and all months thereafter (this is exactly equation (4) above). Again,

the effects appear to be persistent, even increasing (i.e. a larger negative point estimate) in the case of

malaria. Formally, we find no evidence of decreasing effects, based on the F-statistics and p-values for

tests of the equality of the estimated a i and a2 in panel (B).

IV. Caveats, Cost Assessment and Conclusion

IVA: Caveats

There are four main caveats to keep in mind when considering these results. First, as mentioned

in sections II.A and II.B, we have reason to believe that our data under-report the true prevalence of the

diseases in question, since it is likely that only the most severe cases are reported. Therefore, we do not

know how the program affects the overall burden of disease in the program villages. It could be that the

program's effects are concentrated largely on the most severe cases, so our results capture the majority of

the program's benefits. Alternatively, the program affects both severe cases (those recorded in our data)

and less-severe cases equally, in which case we could use our estimates to predict that the overall burden

of these diseases is reduced by the same proportion, i.e. 33-50 percent. Even more optimistically, it could

be that the program is least effective at reducing the number of severe cases, in which case even

predicting an equivalent reduction in less-severe cases would understate the benefits of the program. At

present, we do not have reason to favor any one of these three scenarios.

Second, our estimates are from a program that is provided to all households in a given village. As

we have discussed above, we view this as a methodological advantage, since we capture all intra-village

externalities. However, our results may be less informative about the impacts of a program that does not

reach all residents of target localities.

Third, the program we evaluate has a number of components. In particular, RHEP involves

provision of a communal water tank, piped water to the home, and household toilets and bathing facilities.

Our evaluation is of this package of services and therefore does not provide information on how effective

individual components might be.

Fourth, while we have argued that our event study methodology in likely to produce unbiased

117



estimates of the program's effects in these villages, it is important to note that this is a selected sample of

villages. GV partners with villages it believes capable of building the institutional capacity to complete

the project and to sustain the facilities after construction is finished. Furthermore, these villages are

sufficiently internally cooperative that they are able to produce 100% participation, a strictly necessary

condition for GV's involvement. These are important and perhaps unusual characteristics of a village, and

it should be kept in mind that a program technically similar to RHEP but targeted at villages lacking these

characteristics may be less successful.

IV.B: Costs

In order to consider how best to direct scarce development resources, it is important to estimate

the cost of the program. This necessarily involves some guesswork and imputation, in particular in

considering the value of villagers' labor and the basic materials villagers provide, but should yield a

ballpark estimate that, at a minimum, could be used to compare the cost of a program like RHEP with

other potential interventions. Table 9 presents a rough breakdown of costs per household in a "typical"

village of 50 households among construction of toilets and bath houses, construction of water supply and

project development costs (primarily GV staff time spent in organizing and capacity-building) and

between villagers' contributions and inputs purchased with external funds. 17 The value of villagers' labor

is assessed at US$1 per day, the local agricultural day labor wage. This may be an overstatement since

most work takes place outside the planting and harvest seasons, i.e. in times in which the opportunity cost

of villagers' time is perhaps lower. The approximate construction cost per household is $440 with annual

maintenance costs of roughly $11. If we assume an interest rate of 10% per year and given the intended

useful 20-year life of the tank and sanitary facilities, we can approximate the per-year cost at $58 per

household per year. For comparison, a yearly supply of dilute sodium hypochlorite disinfectant used to

treat water in many developing countries costs roughly $7 per year, and has been shown to reduce

diarrhea in young Kenyan children by up to 40% (Kremer et. al. 2008). Of course, a full cost-benefit

assessment of RHEP would require a more precise monetization of benefits, which we cannot provide, for

17 For more details on inputs and costs, see Gram Vikas 2001.
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several reasons: first, our measures are of just a subset of the health conditions likely impacted by RHEP;

second, there is no agreed-upon, stable mapping from health improvements to monetary values; third, we

have no data on other benefits of the program, such as water collection time saved or the amenity value of

private toilet and bathing facilities.

IV.C: Conclusion

Our study makes two key contributions, one methodological and one substantive. We show that it

is possible to obtain scientific evidence on the impact of a water and sanitation program even in the

absence of a randomized trial. To accomplish this, we combine detailed understanding of the

implementation of the program with ex-ante understanding of epidemiological mechanisms to create a

quasi-experimental research design.

On substantive grounds, we show that it is indeed possible for rural piped water to reduce the

prevalence of water-borne disease. This is perhaps contrary to the beliefs of the community of clean water

researchers (Clasen and Haller 2008). This suggests that, in addition to continuing research on the

benefits of household and point-of-use interventions, there is a place for continued research into the

provision of rural piped water infrastructure.
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Figure 1. The Timing of Observations

Notes: all graphs show all observations with known T. The upper right-hand graph overlays a kernel density plot which uses
an Epinechnikov kernel with a half-width of 10 months.
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Figure 2: Event Analysis Within Twelve Months of Beginning Water Improvement

Notes: these figures use observations with T in [-12,11]. The graphs correspond to Table 6 columns (3) and (6).
The points are parameter estimates for each value of T in a GLS regression which includes village fixed effects
and year fixed effects, with weights equal to the inverse of the number of months in which a village has non-
missing outcomes.
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Figure 3: Event Analysis for up to Five Years Beyond the Beginning of Water Improvement
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Notes: these figures use observations with T in [-24,59]. The graphs correspond to Table 6 columns (2) and (5).
The points are parameter estimates for each value of T in a GLS regression which includes village fixed effects
and year fixed effects, with weights equal to the inverse of the number of months in which a village has non-
missing outcomes.
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Figure 4: Distribution of Estimates of Program Impacts, by Estimation Method

Notes: each bar represents the 95% confidence interval for the coefficient on an indicator for the
water improvement beginning shown in columns (2) and (5) of Table 3, corresponding to Sample A
(observations with T in [-24,59]). In the baseline case, the coefficient is obtained from a GLS
regression which includes year and time fixed effects and which has weights equal to the inverse of
the number of observations. Each regression uses a different methodology. Additional information
in the notes accompanving Table 3.
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Figure 5: Distribution of Estimated Program Impact, by Definition of Program Start Month

Malaria Cases Treated

U E l

Notes: each bar represents the 95% confidence interval for the coefficient on an indicator for the
water improvement beginning, corresponding to the coefficients reported in columns (2) and (5) of
Table 4. The coefficient is obtained from a GLS regression which includes year and time fixed
effects and which has weights equal to the inverse of the number of observations. Each regression
uses a different definition of when the water improvement began. The baseline defines the
treatment variable according to when the tank began operation. The baseline regression uses
observations with T in [-24,59] from the sample of villages which have at least 6 non-missing
observations before and 6 non-missing observations after water improvement begins. The baseline
sample also uses the restriction that when the monthly data report other measures of when water
treatment begins, those measures must be no later than the measure used in this estimate.
Additional samples and restrictions explained in the notes accompanying Table 4.
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Figure 6: Distribution of Health Impacts by Village

Share of village-specific coefficients that are negative: 79%; share neg. and stat. signif.: 65%

Share of village-specific coefficients that are negative: 67%; share neg. and stat. signif.: 39%

Notes: Values below the x-axis represent cases of diarrhea or malaria prevented by the tank. Each vertical bar
represents the 95% confidence interval for the coefficient on the interaction of a village fixed effect with a T in
[0,11] indicator in a GLS regression with weights equal to the inverse of the number of village-specific
observations on the outcome of interest. The village-specific treatment effects are estimated for all villages
which have at least six T<0 observations and six T>0 observations. Regressions also include village fixed effects,
year fixed effects, and one indicator for T>12. Huber-White covariance matrix clustered within villages.
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Table 1. Description of the RHEP Village Data
Sample Sample A: Obs with known r Sample B: r E[-24,59] Sample C: T E[-12,11]

Mean N Villages Mean N Villages Mean N Villages
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Share of observations in each year:
Year 1997
Year 1998
Year 1999
Year 2000
Year 2001
Year 2002
Year 2003
Year 2004
Year 2005
Year 2006
Year 2007
Total

Months since began using water tank (T)

Monthly heath and education outcomes:
Diarrhea cases checked

Diarrhea cases treated

Days with diarrhea, children 0-18

Cases of diarrhea, children 0-18

Workdays lost to diarrhea

Malaria cases checked

Malaria cases treated

Fever cases checked

Fever cases treated

Borderline or severely malnourished1

Severely malnourished'

Households

People aged over 18

Children

Days of school attended

0.05
0.06
0.06
0.09
0.09
0.10
0.11
0.13
0.14
0.13
0.03
1.00

23.22
(31.73)

0.63
(1.43)
0.63

(1.43)
0.81

(1.43)
0.05

(0.26)
3.16

(6.80)
0.88
(2.06)
0.95

(2.09)
2.33

(3.61)
2.66

(3.66)
0.46

(0.20)
0.12

(0.14)
85.19

(54.71)
298.64

(199.92)
178.49

(115.58)
6.57

(3.83)

329
342
347
511
532
628
649
803
845
806
207

5999

0.06
0.06
0.07
0.09
0.10
0.12
0.11
0.13
0.13
0.11
0.02
1.00

5999 97 13.92
(20.88)

4,694 96 0.67
(1.45)

5,507 96 0.68
(1.45)

929 35 0.90
(1.52)

609 35 f
(0.22)

1,018 35 3.55
(7.24)

3,797 94 0.93
(2.05)

4,635 95 0.99
(2.12)

3,692 94 2.43
(3.80)

4,634 95 2.66
(3.80)

1,120 70 0.47
(0.20)

1,187 71 0.12
(0.15)

3,830 93 87.68
(53.59)

3,837 93 304.36
(195.31)

3,114 89 180.01
(110.33)

1,776 83 6.85
(4.01)

249
273
286
413
431
533
490
547
556
482
105

4365

0.07
0.14
0.09
0.04
0.10
0.12
0.11
0.12
0.11
0.07
0.01
1.00

4365 75 -0.23
(6.81)

3,511 74 0.85
(1.54)

4,077 74 0.87
(1.59)

740 25 1.00
(1.55)

468 25 0.04
(0.21)

808 25 3.87
(7.05)

2,792 73 0.86
(1.73)

3,360 75 0.93
(1.95)

2,732 75 2.36
(3.46)

3,359 75 2.56
(3.68)

917 56 0.44
(0.17)

971 56 0.11
(0.10)

2,815 73 91.29
(53.10)

2,863 75 311.35
(186.17)

2,400 74 179.96
(105.17)

1,358 69 6.56
(4.11)

Notes: Each observation represents one village-month-year, and N denotes the total number of observations used to calculate a particular mean. Standard
deviations for non-binary variables appear in parentheses. Sample A (columns (1), (2), and (3)) includes all villages where the the data report the month
when the water tank turned on (i.e. r is known) and where this date is no earlier than other measures of when the policy began (90% of latrines built, or
water tank built) from the monthly data. Sample B (columns (4), (5), and (6)) further restrict the sample to observations with T E[-24,59] in villages which
have at least 6 observations before and 6 observations after the water turns on. Sample C (columns (7), (8), and (9)) further restrict the sample to
observations with T E[-12,1 l].
1 Malnutrition data are the share of tested children that are malnourished. All tested children are aged 0-5 years. Borderline malnutrition denotes grade I
or II malnutrition by WHO standard, while malnourished indicates grade III or IV malntutrition by WHO standard.
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125
242
157
76
173
212
194
213
193
115
10

1710

1710 75

1,505 73

1,628 73

473 24

283 24

524 24

1,042 52

1,145 56

1,013 56

1,145 56

441 44

457 44

1,037 52

1,033 56

889 52

519 48
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Month
tank ol
r-=-12

T--1

-r=-10

Table 2. Health Outcomes Relative to Month when Water Improvement Begins
Outcome Diarrhea cases treated Malaria cases treated

Sample All with r in r in All with r in r in
known r [-24,59] [-12,11] known r [-24,59] [-12,11]

Ls since water
perational (r) (1) (2) (3) (4) (5) (6)

0.454 0.322 0.134 0.238 0.308 0.253
(0.230)* (0.186)* (0.297) (0.330) (0.364) (0.425)

-0.01 0.003 -0.162 -0.565 -0.54 -0.623
(0.140) (0.135) (0.244) (0.182)*** (0.195)*** (0.345)*
-0.017 0.057 0.024 -0.267 -0.32 -0.284

(0.171) (0.182) (0.258) (0.312) (0.339) (0.392)
0.24 0.423 0.267 -0.618 -0.615 -0.644

(0.203) (0.230)* (0.310) (0.213)*** (0.248)** (0.344)*
0.319 0.759 0.533 -0.519 -0.393 -0.452

(0.302) (0.275)*** (0.310)* (0.232)** (0.217)* (0.349)
0.112 0.373 0.084 -0.04 -0.168 -0.275

(0.238) (0.213)* (0.230) (0.311) (0.274) (0.378)
0.5 0.429 0.069 -0.291 -0.268 -0.316

(0.224)** (0.203)** (0.229) (0.258) (0.269) (0.339)
0.59 0.606 0.178 -0.19 -0.301 -0.388

(0.254)** (0.253)** (0.248) (0.264) (0.266) (0.357)
0.405 0.861 0.329 0.043 0.395 0.064

(0.354) (0.407)** (0.302) (0.507) (0.649) (0.365)
0.538 0.659 0.267 0.542 0.858 0.646

(0.243)** (0.300)** (0.299) (0.395) (0.479)* -(0.409)
0.386 0.517 0.216 -0.203 -0.012 -0.186

(0.219)* (0.237)** -(0.261) (0.253) (0.262) -(0.215)

T=0 -0.054 0.167 -0.224 -0.456 -0.187 -0.401
(0.150) (0.163) (0.248) (0.284) (0.281) (0.346)

r=l -0.252 -0.068 -0.478 -0.712 -0.386 -0.589
(0.150)* (0.171) (0.247)* (0.282)** (0.263) (0.366)

r-2 -0.267 -0.09 -0.419 -0.791 -0.411 -0.507
(0.126)** (0.156) (0.231)* (0.281)*** (0.269) (0.369)

T=3 -0.087 0.112 -0.288 -0.857 -0.426 -0.511
(0.146) (0.148) (0.223) (0.263)*** (0.193)** -(0.318)

r=4 -0.102 0.148 -0.291 -0.772 -0.503 -0.7
(0.150) (0.187) (0.242) (0.258)*** (0.224)** (0.327)**

T=5 -0.142 0.024 -0.366 -0.692 -0.628 -0.833
(0.106) (0.124) (0.228) (0.206)*** (0.221)*** (0.322)**

r=6 -0.233 -0.125 -0.548 -0.774 -0.581 -0.808
(0.109)** (0.110) (0.272)** (0.202)*** (0.198)*** (0.378)**

r=7 -0.265 -0.115 -0.498 -0.727 -0.49 -0.565
(0.125)** (0.127) (0.249)** (0.243)*** (0.238)** (0.362)

r=8 -0.082 0.025 -0.347 -0.192 -0.323 -0.355
(0.096) (0.129) (0.251) (0.280) (0.305) (0.409)

r-9 -0.102 -0.064 -0.514 0.404 -0.518 -0.721
(0.122) (0.129) (0.244)** (0.632) (0.182)*** (0.354)**

r=10 -0.074 -0.074 -0.609 -0.4 -0.509 -0.844
(0.135) (0.153) (0.247)** (0.215)* (0.192)*** (0.355)**

r=l1 -0.08 -0.248 -0.807 -0.143 -0.66 -1.022
(0.150) (0.104)** (0.266)*** (0.481) (0.160)*** (0.385)**

Observations 5507 4077 1628 4635 3360 1145
Villages 96 74 73 95 75 56
R-squared 0.35 0.38 0.46 0.28 0.29 0.45
Village FE YES YES YES YES YES YES
Month x year FE YES YES YES YES YES YES
Notes: Each observation is one village-month-year. Table presents GLS regressions with weight
of each observation in village i equal to 1/(total number of observations of village i). Includes only
villages where the date when water tank turned on is known. Huber-White standard errors in
parentheses are clustered within villages. r=-1 is omitted as the reference category. All regressions
include a constant.
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Table 3. The Effect of Water Improvement on Health
Outcome Diarrhea Cases Treated Malaria Cases Treated

Sample A: All with B: T in C:r in A: All with B: T in C: T in
known T [-24,59] [-12,11] known T [-24,59] [-12,11]

(1) (2) (3) (4) (5) (6)
Model 1:
Mean Shift -0.59 -0.587 -0.453 -0.473 -0.528 -0.479

(0.125)*** (0.139)*** (0.178)** (0.191)** (0.241)** (0.280)*
Observations 5507 4077 1628 4635 3360 1145
Villages 96 74 73 95 75 56
R-squared 0.35 0.37 0.45 0.27 0.29 0.43
Mean outcome r<0 1.08 1.09 1.18 1.33 1.28 1.15

Model 2:
Level Change -0.59 -0.587 -0.453 -0.473 -0.528 -0.479

(0.125)*** (0.139)*** (0.178)** (0.191)** (0.241)** (0.280)*
Linear Trend 0.007 -0.001 -0.014 -0.011 -0.008 -0.014

(0.002)*** -0.004 -0.012 (0.003)*** -0.005 -0.018
Observations 5507 4077 1628 4635 3360 1145
Villages 96 74 73 95 75 56
R-squared 0.35 0.37 0.45 0.27 0.29 0.43
Mean outcome T<0 1.08 1.09 1.18 1.33 1.28 1.15

Village FE YES YES YES YES YES YES
Month x yr FE YES YES YES YES YES YES
Note: Each observation is one village-month-year. Table presents GLS regressions with weight of
each observation in village i equal to 1/(total number of observations of village i). Asterisks denote
statistical significance at 90% (*), 95% (**), and 99% (***) confidence. Huber-White standard
errors clustered within villages. All regressions include a constant.
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Table 4. The Effect of Water Improvement on Diarrhea: Robustness to Different Specifications

Outcome Diarrhea Cases Treated Malaria Cases Treated
Sample A: All with B: r in C: T in A: All with B: r in C: zin

known r [-24,59] [-12,11] known z [-24,59] [-12,11]
(1) (2) (3) (4) (5) (6)

Original estimates -0.59 -0.587 -0.453 -0.473 -0.528 -0.479
(0.125)*** (0.139)*** (0.178)** (0.191)** (0.241)** (0.280)*

Observations 5507 4077 1628 4635 3360 1145
Villages 96 74 73 95 75 56

Include controls for # kids, #adults
Observations
Villages

Change Weighting:
Unweighted (OLS)

Observations
Villages

Weight by village size'

Observations
Villages

Use Additional Fixed Effects:

Include order-within-panel FE2

Observations
Villages

Include district x year FE

Observations
Villages

Modify the Sample Used:
Include obs with unknown ,

Observations
Villages

Villages observed through r=36 or later

Observations
Villages

Villages only observed through t=35 or earlier

Observations
Villages

Obs dates: 1997-2000

Observations
Villages

Obs dates: 2001-3/05

Observations
Villages

Obs dates: 4/05 or later

Observations
Villages

-0.757 -0.807 -0.286 -0.707 -0.646 -0.406
(0.213)*** (0.240)*** (0.296) (0.304)** (0.335)* (0.338)

2923 2301 853 3021 2369 879
85 71 50 88 74 52

-0.539 -0.524 -0.426 -0.453 -0.489 -0.479
(0.107)*** (0.110)*** (0.178)** (0.214)** (0.265)* (0.291)

5507 4077 1628 4635 3360 1145
96 74 73 95 75 56

-0.589 -0.567 -0.458 -0.244 -0.288 -0.174
(0.139)*** (0.160)*** (0.185)** (0.225) (0.246) (0.342)

5434 4041 1604 4620 3357 1142
92 73 72 93 74 55

-0.423 -0.39 -0.397 -0.254 -0.04 -0.451
(0.155)*** (0.184)** (0.182)** (0.231) (0.200) (0.270)

5507 4077 1628 4635 3360 1145
96 74 73 95 75 56

-0.616 -0.537 -0.441 -0.413 -0.363 -0.493
(0.100)*** (0.107)*** (0.179)** (0.174)** (0.190)* (0.277)*

5507 4077 1628 4635 3360 1145
96 74 73 95 75 56

-0.515 -0.44 -0.232 -0.489 -0.355 -0.386

(0.115)*** (0.098)*** (0.091)** (0.207)** (0.156)** (0.137)***
11230 11230 11230 10156 10156 10156
342 342 342 340 340 340

-0.609 -0.566 -0.386 -0.522 -0.499 -0.421
(0.142)*** (0.133)*** (0.213)* (0.333) (0.386) (0.401)

4334 3138 1105 3527 2465 647
58 49 49 58 49 32

-0.444 -0.502 -0.428 -0.335 -0.554 -0.47
(0.283) (0.238)** (0.179)** (0.260) (0.310)* (0.368)
1173 939 523 1108 895 498
38 25 24 37 26 24

-0.509 -0.482 -0.706 -14.801 0.075 -0.617
(0.223)** (0.220)** (0.287)** (0.112)*** (0.642) (1.160)

1519 1211 599 507 409 72
52 41 35 50 41 16

-0.541 -0.573 -0.264 -0.474 -0.362 -0.503
(0.209)** (0.237)** (0.270) (0.226)** (0.265) (0.330)
2736 2085 825 2838 2151 855
90 70 46 93 73 48

-0.355 -0.337 -0.421
(0.175)** (0.211) (0.251)

1252 781 204
73 47 17

-0.383 -0.752 -0.685
(0.256) (0.333)** (0.607)
1290 800 218

75 48 18
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Table 4 (Continued)
Outcome Diarrhea Cases Treated Malaria Cases Treated

Sample
A: All with B: t in C: i in A: All with B: T in C: t in

known z [-24,59] [-12,11] known t [-24,59] [-12,11]
(1) (2) (3) (4) (5) (6)

Modify Data Cleaning:
Replace missing outcomes as zero -0.48 -0.514 -0.416 -0.354 -0.373 -0.311

(0.109)*** (0.127)*** (0.171)** (0.144)** (0.177)** (0.180)*
Observations 5999 4365 1710 5999 4365 1710

Villages 97 75 75 97 75 75

Replace zero outcomes as missing -0.975 -0.984 -0.974 -0.505 -0.64 -0.512
(0.189)*** (0.218)*** (0.355)*** (0.289)* (0.318)** (0.597)

Observations 1492 1192 575 1609 1223 404

Villages 90 72 67 92 73 50

Use uncleaned data4  -0.677 -0.632 -0.466 -0.504 -0.471 -0.303
(0.182)*** (0.188)*** (0.260)* (0.206)** (0.242)* (0.208)

Observations 4826 3606 1361 4822 3602 1357

Villages 71 60 60 71 60 60

Village FE YES YES YES YES YES YES

Month x year FE YES YES YES YES YES YES
Note: Each observation is one village-month-year. GLS regression with weight of each observation in village i equal to 1/(total
number of observations of village i). Table entries present coefficients on Water Tank is in Use. Huber-White standard errors in
parentheses are clustered within villages. All regressions include a constant.

Village size measured by mean number of households, where mean is taken across all months in which a village appears.
2 An observation's order within a panel is the date on which the observation is recorded minus the first date in which the
3 These regressions use all observations in the data and the table presents the coefficient on a variable which equals one for the
4 The version of the data set used in these regressions have cleaning of village name and time codes and conversion of character
strings to numeric values but no cleaning of numeric values for any variables.
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Table 5: The Effect of Water Improvement on Diarrhea and Malaria, According to Different Definitions of
When Water Improvement Began

Outcome Diarrhea Cases Treated Malaria Cases Checked
Sample A: All with B: r in C: r in A: All with B: r in C: r in

known r [-24,59] [-12,11] known r [-24,59] [-12,11]
Treatment begins

Sample when (1) (2) (3) (4) (5) (6)
Original Tank turns on -0.59 -0.587 -0.453 -0.372 -0.348 -0.236

Observations
Villages

Original Tank built

Observations
Villages

Original 90% of latrines
complete
Observations
Villages

I Tank turns on

Observations
Villages

I Tank built

Observations
Villages

I 90% of latrines
complete
Observations
Villages

II Tank turns on

Observations
Villages

II Tank built

Observations
Villages

II 90% of latrines
complete
Observations
Villages

(0.125)***
5507

96

-0.574
(0.196)***

5507
96

-0.2
(0.137)

5507
96

-0.548
(0.122)***

11230
342

-0.483
(0.174)***

11230
342

0.092
(0.094)
11230
342

-0.684
(0.257)**

1625
30

-0.764
(0.226)***

1625
30

-0.549
(0.255)**

1625
30

(0.139)***
4077

74

-0.668
(0.237)***

3029
51

-0.192
(0.163)
2747

53

-0.562
(0.132)***

4924
90

-0.536
(0.217)**

4415
77

0.15
(0.104)
5562
126

-0.497
(0.233)**

1108
19

-0.91
(0.256)***

934
16

-0.438
(0.303)

717
12

(0.178)**
1628

73

-0.192
(0.291)

1091
50

0.179
(0.322)

1132
53

-0.353
(0.154)**

1955
89

-0.323
(0.237)

1639
76

0.268
(0.169)
2628
126

-0.168
(0.408)

403
18

-0.068
(0.385)
329
15

-0.091
(0.367)

267
12

(0.194)*
3797

94

-0.703
(0.344)**

3797
94

-0.505
(0.212)**

3797
94

-0.363
(0.180)**

7683
297

-0.646
(0.296)**

7683
297

0.197
(0.283)
7683
297

-0.606
(0.470)

1217
29

-0.997
(0.755)

1217
29

-0.903
(0.622)

1217
29

(0.233)
2792
73

-0.79
(0.386)**

2068
50

-0.141
(0.162)
2158
53

-0.409
(0.198)**

3440
89

-0.712
(0.396)*

3150
75

0.108
(0.179)
4337
126

-0.485
(0.416)

839
19

-1.027
(0.746)
780
16

-0.432
(0.541)

641
12

(0.233)
1042
52

-0.243
(0.352)
642
33

0.247

(0.283)
883
46

-0.171
(0.219)

1294
66

-0.997
(0.645)

1077
55

0.476

(0.217)**
2137

116

-0.489
(0.332)

308
14

-0.353

(0.443)
286
14

0.503
(0.934)

242
12

Village FE
Month x year FE

YES
YES

YES
YES

YES
YES

YES
YES

YES YES
YES YES

Note: Each observation is one village-month-year. GLS regression with weight of each observation in village i equal
to 1/(total number of observations of village i). Huber-White standard errors in parentheses are clustered within
villages. All regressions include a constant.

Original Sample: as in Tables 2 and 3
Sample I: in villages where the monthly data report other measures of when water treatment begins, those measures
must be no later than the measure used in this estimate
Sample II: as in sample I with the additional restriction that the report of when water treatment begins which is used
in this estimate must be within 3 months of when Gram Vikas' inventory indicates that the water tank is complete.
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Table 6. The Effect of Water Improvement on Other Outcomes
Sample A: All with B: tin C: t in

known T [-24,59] [-12,11]
Outcome (1) (2) (3)
Specific Diarrhea Measures Available in 1997-1999 Only:

Days with diarrhea, kids 0-18 -0.367 -0.28 -0.466
(0.174)** (0.166) (0.298)

Observations 929 740 473
Villages 35 25 24
Mean outcome r<0 1.19 1.23 1.29

Cases of diarrhea, kids 0-18 -0.008 0.003 0.086
(0.039) (0.028) (0.049)*

Observations 609 468 283
Villages 35 25 24
Mean outcome T<0 0.09 0.07 0.05

Workdays lost to diarrhea -1.586 -1.382 -2.661
(0.806)* (1.050) (1.109)**

Observations 1018 808 524
Villages 35 25 24
Mean outcome r<0 4.96 5.06 5.19

Other Health Outcomes:

Borderline malnourished' -0.059 -0.072 -0.042
(0.037) (0.042)* (0.033)

Observations 1120 917 441
Villages 70 56 44
Mean outcome T<0 0.46 0.46 0.45

Severely malnourished' -0.015 -0.007 -0.01
(0.017) (0.016) (0.021)

Observations 1187 971 457
Villages 71 56 44
Mean outcome T<0 0.13 0.13 0.12

Fever: cases treated -0.399 -0.622 -0.336
(0.305) (0.351)* (0.419)

Observations 4634 3359 1145
Villages 95 75 56
Mean outcome T<0 3.16 2.89 2.75

Population aged over 18 3.351 1.783 3.439
(2.546) (2.592) (3.606)

Observations 3837 2863 1033
Villages 93 75 56
Mean outcome T<0 337.03 325.46 323.07

Number of children in village 1.068 -0.282 0.286
(2.291) (1.910) (0.531)

Observations 3114 2400 889
Villages 89 74 52
Mean outcome r<0 194.55 184.94 183.28
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Table 6 (continued)
Sample A: All with B: r in C: r in

known r [-24,59] [-12,11]
Outcome (1) (2) (3)

Education Outcomes:
School: total days attended per child 0.374 0.416 1.026

(0.547) (0.543) (0.341)***
Observations 1776 1358 519
Villages 83 69 48
Mean outcome T<0 6.49 6.61 6.53

Village FE YES YES YES
Month x year FE YES YES YES

Note: Each observation is one village-month-year. GLS regression with weight of
each observation in village i equal to 1/(total number of observations of village i).
"Borderline malnourished" includes also children who are severely
malnourished. Huber-White standard errors in parentheses are clustered within
villages. All regressions include a constant.
1 Malnutrition is share of tested children, all of whom are aged 0-5 years.
Borderline malnutrition denotes grade I or II malnutrition by WHO standard,
while malnourished indicates grade III or IV malntutrition by WHO standard.
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Table 7: Correlates of Village-Specific Effects of Water Improvement on Health
Diarrhea Cases Treated Malaria Cases Treated

(1) (2)
Scheduled tribe or scheduled -0.009 0.489
caste (share of households) (0.260) (0.521)
Number of households 0.011 -0.004

-(0.007) (0.008)
Number of children -0.006 0.004

(0.003) (0.004)
Pre-treatment outcome 0.057 -0.257

-(0.153) (0.099)**

First month in panel' 0.006 0.011
-(0.008) (0.012)

# pre-treatment observations 0.027 -0.015
(0.014)* -(0.025)

# post-treatment observations 0.009 0.017
(0.009) (0.014)

Villages 63 48
R-squared 0.1 0.26

The dependent variable the estimated coefficient on the interaction of a village fixed
effect with a x E[0, 11] indicator (as plotted in Figure 6) in a GLS regression with
weights equal to the inverse of the number of village-specific observations on the
outcome of interest. Regressions also include village fixed effects, time fixed effects,
and one indicator for c112. ST/SC denotes the mean share of village households that
are scheduled tribe or scheduled caste. Population denotes the mean number of
housheolds in the village. Children denotes the mean number of children in the
village. Pre-treatment Diarrhea denotes the mean number of cases of diarrhea in the
village before water improvement began. All means are taken across all non-missing
observations within the village. All regressions include a constant.

1 First month in panel: March 1997=1, April 1997=2, ..., April 2007=126
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Table 8: Effect of Program on Health Outcomes,
by Post-Intervention Period

Outcome Diarrhea Cases Treated Malaria Cases Treated
Sample All with T in All with - in

known T [-24,59] known r [-24,59]

(1) (2) (3) (4)

Panel A: By 12-Month Period

T in [0,11]

- in [12,23]

T in [24,35]

T in [36,47]

Sin [48,59]

T 2 60

Observations

Villages

R-squared
Mean outcome T<0
F test: coeffs are equal

p-value: coeffs are equal

Panel B: Before 36 Months

T in [0,35]

T2>3 6

Observations

Villages

R-squared
Mean outcome T<0O

F test: coeffs are equal

p-value: coeffs are equal

Village FE

Month x yr FE

-0.568
(0.161)***

-0.704
(0.235)***

-0.77

(0.292)***
-0.605
(0.373)
-0.79

(0.450)*
-0.759
(0.59)
5408
95

0.35
1.08
2.3

0.05

and After 36
-0.552

(0.135)***
-0.423

(0.212)**
5408
95

0.35
1.08
1.04
0.31

YES
YES

-0.743
(0.203)***

-1.154
(0.345)***

-1.353
(0.461)***

-1.321
(0.584)**

-1.77
(0.714)**

4077
74

0.38
1.09
3.71
0.01

Months
-0.539

(0.148)***
-0.406

(0.231)*
4077

74
0.37
1.09
1.00
0.32

YES
YES

-0.435
(0.178)**

-0.117
(0.28)
0.239
(0.38)
0.083
(0.46)
0.308
(0.56)
0.539
(0.69)
4572

94
0.27

1.33

1.12

0.36

-0.492
(0.189)**

-0.584
(0.309)*

4572
94

0.27

1.33
0.21
0.65

YES
YES

-0.433
(0.258)*
-0.149
(0.42)
0.215
(0.59)
-0.026
(0.74)
0.272

(0.85)

3360
75

0.29
1.28
1.48
0.22

-0.68
(0.232)***

-1.033
(0.359)***

3360
75

0.29
1.28
2.08
0.15

YES
YES

Note: Each observation is one village-month-year. Table presents GLS regressions with
weight of each observation in village i equal to 1/(total number of observations of
village i). Asterisks denote statistical significance at 90% (*), 95% (**), and 99% (***)
confidence. Huber-White standard errors clustered within villages. All regressions
include a constant.
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Table 9: RHEP Costs per Household (US$)

Household External Total
Construction costs:
Toilet and bath house 66.7 77.8 144.4
Water supply 72.2 105.6 177.8
Project development 116.7 116.7
Total 138.9 300.0 438.9

Maintenance (annual) 11.1

Notes: Information from Gram Vikas (2001) and Gram Vikas (2004), as
well as authors' interviews with Gram Vikas staff. Costs calculated for a
"typical" village of 50 households. Figures in Indian rupees converted to
US dollars at 45 INR/USD. Value of village labor assumed to be $1/day,
roughly the wage for agricultural day labor. "Project development" costs
are primarily wages paid to Gram Vikas staff during startup and data
collection.
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DATA APPENDIX

This appendix describes preparation of the data for analysis. The original data were collected in three
separate formats - one format for 1997-1999, one for 2000-2001, and another for 2002-2005 - where
each format presented a slightly different set of variables. The original handwritten survey data were
scanned and transmitted to a data firm in India, which entered them into electronic records using double-
entry for accuracy. The original records called for English entries, but data were sometimes recorded in
Oriya (the predominant language in Orissa). Our data entry company assigned Oriya-literate employees to
our project. Gram Vikas also converted paper records to electronic format starting in 2002. Comparison
of the 2002-2005 data entered by GV to that entered by the data firm indicates that the data firm's version
had fewer errors, so for 2002-2005 we mainly use the Indian firm's version of the data, though we fill in
some gaps (presumably from paper records that were lost) with the GV-entered data. Because we only
scanned the paper records through 2005, all 2006 and 2007 data come from GV's data-entry. Although all
forms reported deaths, the total number of reported deaths was extremely small and hence not used in
analysis.

The most relevant differences between the survey forms are diarrhea variables included in 1997-1999
and excluded from other forms, and other variables which appear in all forms except those used in 1997-
99. The 1997-1999 form does not report on any illnesses other than diarrhea, but it does report the number
of cases of diarrhea for children, the number of days that children suffer diarrhea, and the number of
working days lost to diarrhea. Other forms do not report these more detailed diarrhea measures. Also, the
1997-1999 data do not report school attendance, the number of households, number of individuals, or the
number of children.

Basic data cleaning steps included the following:

* Correction of village names and code numbers
* Correction of incorrectly entered dates
* Conversion of numbers entered as strings.
* While most villages have continuous panels - every consecutive month is observed - some

observations were distant temporal outliers and appeared a year or more after all other observations
from the same village. Those outliers generally have values differing substantially from the other
values in the village, so we exclude them from the analysis.

By comparing against images of the original handwritten monthly survey documents we conclude that
most of these anomalies came from the original paper data forms recorded by the supervisor, rather than
from data-entry errors.

The data offer several differing reports of when the month in which the water improvement began,
and the paper's analysis focuses on the report which appears to be most reliable, though some
specifications use different definitions of when water improvement began. The different reports are the
following:

* Each month, the surveyor indicated whether the village water tank had begun operation
* Each month, the surveyor indicated whether construction of the village water tank had completed
* Each month, the surveyor recorded the number of latrines the village had built.
* In 2007, Gram Vikas compiled a list reporting, for each village that had a water tank built on 2005 or

before, the month when the village's water tank finished construction.

The first seems most reliable because it is operation rather than mere construction of the water tank
which should affect welfare measures. Also, monthly reports by a surveyor visiting the village are likely
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to more accurately reflect the state of the village water tank than a retrospective summary written ten
years later by GV will. While the first two reports have fairly high correlation, the correlation with these
dates and the ex-post GV dates is low. Some villages have reports that the water tank began operation
before water tank construction was complete or before latrine construction is complete. Since this should
in principle be impossible, we exclude these villages from analysis.

The main estimates also reflect cleaning of the underlying data for all variables. Much of the cleaning
uses redundant information in the village-level data. For example, population levels in a village are
smooth, so comparing adjacent time periods clarifies when outlier population values are typos.
Specifically, the following general rules for cleaning the data represent some of the more important:

* For all variables, extreme outlier values which can be identified as obvious typos are corrected, while
outliers which cannot be assigned a certain correct value are coded to be missing.

* Water tank variables (tank construction, usage, latrine construction) are defined to be nondecreasing, so
the first village report of when a tank is being used implies that the tank is in use for all future
months. This rule is the predominant reason why the cleaned data have slightly more usable
observations than the uncleaned data have.

* Some of the variables contain three separate reports for men, women, and the entire population. When
the values for men and women do not sum to the total village value, we identify the error by
comparing against subsequent or preceding months for the same village. Similarly, the total number
of malnutrition measurements taken should equal the sum of normal, borderline, and malnourished
children. Also the number of children tested for malnutrition should not exceed the number of
children in the village that month.

* In some years the data report the number of illnesses detected, and the number of cases of a particular
illness which are detected should not exceed the number checked or treated.

* Although some villages have both a village school and a non-formal education program, the school
attendance data only refer to the village school. School attendance must roughly correspond to the
number of days in the month when the village school was open.

* Population values (households, adults, children) which have the value zero are recoded to missing. The
total village population must roughly equal the number of children plus the number of adults.
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Appendix Figure 1 (Continued)
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Note: these figures use observations with r in [-24,59]. The points are parameter estimates for each value oft in
a GLS regression which includes village fixed effects and year fixed effects, with weights equal to the inverse of
the number of months in which a village has non-missing outcomes. Huber-White covariance matrix allows
within-village clustering.
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Appendix Figure Ib: Impact While Controlling for Number of Children and Adults.
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Appendix Figure 2: -12/11 month graphs for other outcomes
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Appendix Figure 2 (Continued)

Notes: these figures use observations with - in [-12,11]. The points are parameter estimates for each value of in
a GLS regression which includes village fixed effects and year fixed effects, with weights equal to the inverse of
the number of months in which a village has non-missing outcomes. Huber-White covariance matrix allows
within-village clustering.
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Appendix Figure 3: Comparison of Measures of Program Initiation

Tank Turn-on Versus Latrine Completion
Months=1 ..124

* * '

* *

0 25 50 75 100
First month when >90% latrines complete

* Latrines versus tank - 45 degree line]

Notes: in a village-level regression of "Month tank turns on" on "Month >90% latrines complete"
and a constant, the regression coefficient on "Month >90% latrines complete" is 0.82 with a Huber-
White standard error of 0.035. The regression uses observations on 120 villages.
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Tank Completion Versus Tank Turn-on
Months=1 124
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Month when tank is complete

100 125

I Tank completion v- turn-on - 45 degree line

Notes: in a village-level regression of "Month tank turns on" on "Month tank complete" and a
constant, the regression coefficient on "Month tank complete" is 0.98 with a Huber-White standard
error of 0.021. The regression uses observations on 109 villages. Beginning after March 2005
(month number 99), the data no longer report "tank completion" separately from "tank turn-on."
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Appendix Table 1: Pairwise Correlation Coefficients Between Health Outcome Variables
Diarrhea cases Diarrhea cases Malaria cases Malaria cases Fever cases Fever cases Borderline or severely Severely

checked treated checked treated checked treated malnourished malnourished

Panel A. All Observations
Diarrhea cases checked 1.00
Diarrhea cases treated 0.96 1.00
Malaria cases checked 0.13 0.14 1.00
Malaria cases treated 0.11 0.16 0.99 1.00
Fever cases checked 0.22 0.25 0.28 0.26 1.00
Fever cases treated 0.18 0.27 0.27 0.27 0.92 1.00
Borderline or severely malnourished -0.07 -0.07 0.05 0.00 0.08 0.06 1.00
Severely malnourished 0.09 0.05 0.04 0.00 -0.04 -0.05 0.38 1.00

Panel B. t in [-24,59]
Diarrhea cases checked 1.00
Diarrhea cases treated 0.97 1.00
Malaria cases checked 0.13 0.13 1.00
Malaria cases treated 0.11 0.17 0.99 1.00
Fever cases checked 0.18 0.19 0.28 0.27 1.00
Fever cases treated 0.15 0.25 0.28 0.27 0.91 1.00
Borderline or severely malnourished -0.09 -0.09 0.00 -0.04 0.04 0.03 1.00
Severely malnourished 0.08 0.04 0.01 -0.02 -0.06 -0.06 0.41 1.00

Panel C. r in [-12,11]
Diarrhea cases checked 1.00
Diarrhea cases treated 0.98 1.00
Malaria cases checked 0.08 0.08 1.00
Malaria cases treated 0.10 0.26 0.97 1.00
Fever cases checked 0.18 0.17 0.14 0.11 1.00
Fever cases treated 0.12 0.15 0.09 0.12 0.94 1.00
Borderline or severely malnourished -0.06 -0.06 -0.01 -0.11 0.03 0.05 1.00
Severely malnourished 0.30 0.22 0.21 0.07 0.18 0.15 0.07 1.00
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