
Uncertainty Analysis of Power Systems Using

Collocation

by

Joshua Adam Taylor

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE
ayoe 2o008]

May 2008

OF TECHNOLOGY

@ Massachusetts Institute of Technology 2008. All rights reserved.

Author ..................................
Department of Mechanical Engineering

May 9, 2008

Certified by ........................... ..........
* Franz Hover

Assistant Professor
Thesis Supervisor

A

A ccepted by ................................. ... .............
Lallit Anand

Chairman, Department Committee on Graduate Students

MASSACHULSETTS INSTIUTE
OF TECHNOLOGY

JUL 2 9 2008

LIBRARIES





Uncertainty Analysis of Power Systems Using Collocation

by

Joshua Adam Taylor

Submitted to the Department of Mechanical Engineering
on May 9, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

The next-generation all-electric ship represents a class of design and control problems
in which the system is too large to approach analytically, and even with many conven-
tional computational techniques. Additionally, numerous environmental interactions
and inaccurate system model information make uncertainty a necessary consideration.
Characterizing systems under uncertainty is essentially a problem of representing the
system as a function over a random space. This can be accomplished by sampling
the function, where in the case of the electric ship a "sample" is a simulation with
uncertain parameters set according to the location of the sample. For systems on the
scale of the electric ship, simulation is expensive, so we seek an accurate representa-
tion of the system from a minimal number of simulations. To this end, collocation
is employed to compute statistical moments, from which sensitivity can be inferred,
and to construct surrogate models with which interpolation can be used to propagate
PDF's. These techniques are applied to three large-scale electric ship models. The
conventional formulation for the sparse grid, a collocation algorithm, is modified to
yield improved performance. Theoretical bounds and computational examples are
given to support the modification. A dimension-adaptive collocation algorithm is im-
plemented in an unscented Kalman filter, and improvement over extended Kalman
and unscented filters is seen in two examples.
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Chapter 1

Introduction

Large-scale engineered systems pose a class of design problems for which there is

currently no existing comprehensive approach. The space of possible realizations can

be immense for such problems due to dimensionality, placing them well outside the

computational limits of traditional techniques. The all-electric ship is a representa-

tive example of large-scale systems, and its development is of significant interest to

the control and simulation communities [9,23,35]. Its superiority over current ships

includes high efficiency power transfer through the ship, rapid reconfiguration, layout

flexibility, and azimuthing thrusters providing enhanced maneuvering and hydrody-

namic efficiency; presently, this is only a potential. To find designs and corresponding

control strategies that attain this potential, the system must be considered as a whole;

from this perspective, it is the size of the problem that defines it.

Very few real systems can be truly described by a mathematical model. Reasons

for this include system parameters that can only be known to a certain accuracy,

unpredictable interaction with the environment, and dynamics unaccounted for in

model equations. Large-scale systems have numerous components and many modes

of interaction with the environment, and consequently tend to have many sources of

uncertainty.

A standard way to broaden the scope of a model is to represent uncertain aspects

of the actual system with random variables or processes, resulting in systems of

stochastic differential equations [22,29]. Each random variable in a model contributes



a dimension to the sample space of the model, which is the space of all possible

realizations. Large systems often have high-dimensional sample spaces, and because

they are usually analytically intractable, they suffer what is known as 'The Curse of

Dimensionality', a term coined by Richard Bellman to describe the computationally

difficulties that arise in high-dimensional spaces.

In this work, collocation algorithms for numerically solving stochastic differential

equations are explored. Information is extracted from the resulting solutions in the

form of statistical moments and probability distribution functions (PDF's), which are

respectively computed via numerical integration and interpolation. These tools are

applied to electric ship models and unscented Kalman filtering.

This thesis makes three basic contributions. First, a framework for analyzing

power system models under uncertainty is developed and applied to three different

systems, a notional electric ship model, a pulse power system, and a larger notional

electric ship model undergoing a charging event. For each system, sensitivity is in-

ferred from a different perspective. Second, a modification to the the sparse grid, a

collocation algorithm, is presented and justified via theoretical bounds and numerical

experiments. Third, a dimension-adaptive collocation algorithm is then implemented

within the unscented Kalman filter, and improvement is found over other filters on

two example systems.



Chapter 2

Uncertainty in Dynamic Systems:

Setting the Stage

Uncertainty can be incorporated into dynamical systems such as the electric ship

by modeling them with stochastic differential equations. In this chapter, a cursory

overview on stochastic differential equations and methods for solving them numer-

ically is given, followed by three examples of dynamical systems with uncertainty,

the latter of which is the all-electric ship. From a general perspective, we seek the

solution x : Q x R+ - R to the stochastic differential equation

L(t,w;x) = f(t,w), xo = g(w), t : +, w c 0, (2.1)

where L is the differential operator and Q2 the sample space [45]. Equation (2.1) may

contain both random variables and random processes. A random process may be

represented by a random variable at each moment in time; this however makes the

sample space Q infinite dimensional, a feature that cannot be directly accommodated

computationally. The Karhunen-Loeve expansion [14] offers a means to approximate

random processes using a finite number of random variables in a truncated spec-

tral expansion. Unfortunately, accurately representing a random process tends to

dramatically increase the dimension of Ql.

For all but the simplest of systems, (2.1) must be solved numerically. There



are multiple approaches, including brute force Monte Carlo simulation, polynomial

chaos [42], and collocation, the latter of which we focus on here.

Useful information is generally extracted from a solution x(t, w) to (2.1) through

integration, i.e. finding mean and variance trajectories, and interpolation, which

enables the construction of PDF's.

The expected value of a continuous random variable w and that of a function of

a continuous random variable g(w) are given respectively by

E[w] = j wp(w)dw, E[g(w)] = fg(w)p(w)dw, (2.2)

If we view equations in the form of (2.1) as functions of random variables, moments

of the trajectories can than be calculated as in (2.2):

E[x(t, w)] = 19 x(t, w)p(w)dw. (2.3)

x(t, w) is the solution to an ODE corresponding to a specific realization in Q. Rarely,

x(t, w) may be calculated analytically; more often it is obtained through simulation.

For large-scale systems, simulations can be computationally very expensive, so it is

desirable to employ an efficient discretization of (2.3), i.e. one in which high accuracy

is achieved from a minimal number of simulations. In the next three sections examples

of dynamical systems with uncertainty are given.

The examples in this chapter illustrate how uncertainty is incorporated into dy-

namical systems and the information that is gained from their solutions.

2.1 Uncertainty in a First Order System

This example demonstrates simply the calculations carried out on more complicated

systems later in this thesis. Consider the first order stochastic ordinary differential

equation

+ Rx = 0, x(0) = R2, (2.4)



where R1 and R2 are uniformly distributed random variables in the interval [0 1].

The analytical solution is given by

x(t, R) = R2e-Rt. (2.5)

The mean trajectory can then be computed analytically by integrating (2.5) multi-

plied by one (because R is uniform) over the system's random space, [0 1] x [0 1]:

E[x(t, R)] = 2-rlt drld2 =t).

The variance can be computed similarly, and is

var(x(t, R)) = /(r2e- r t - E[x(t)]) 2dridr2 = -1 - CT2 - t) 2

Notice that because this system has two random parameters, the moment calculations

are double integrals.

2.2 Uncertainty in a Double Pendulum

Now consider a double pendulum with uncertainty in the initial displacement of each

arm (Fig. 2-1). As in the previous example, this system has a two dimensional

random space. However, the double pendulum equations (see [37]) cannot be solved

analytically, and so (2.3) must be solved numerically for this system, both in the sense

that the solution of the system equations x(t, R) must be obtained through simulation

and that the statistical moment integrals must also be computed by discretizing the

random space.

Fig. 2-2 shows the mean trajectories with standard deviation envelopes for this

system. The solutions to the system equations were generated using the fourth order

Runge-Kutta scheme, and the moments were then computed using techniques de-

scribed in chapter 3. Notice that at about 2.3 seconds the variance grows very large.

This is because the system after that time is sensitive to the prescribed uncertainty,
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Figure 2-1: Double pendulum with uniform uncertainty in the initial positions.

meaning that it can exhibit a wide range of behavior depending on where in the ran-

dom space the system is realized. Mathematical definitions of sensitivity will be given

in chapter 5, and will be used to quantify the robustness of systems to uncertainty.

2.3 Uncertainty in the All-Electric Ship

Physically, uncertainty in the all-electric ship comes in many forms. Values of physical

parameters like capacitances, inertia constants, and flux leakages are only known to

manufacturers' specifications, and may change with time and use. There is significant

environmental interaction in the form of wind and waves; a large wave can partially

of fully expose the propellers, dramatically and suddenly altering the torque load

on the induction motors. Lastly, there is a diverse range of operating conditions,

with each mode utilizing the ship systems differently. Traveling long distances will

place the ship under fairly steady conditions, while in a combat scenario there will

be potentially heavy loading from propulsion and radar, irregular pulsed loads from

weapon systems, and the ultimate uncertainty, damage. Clearly, modeling the full

scope of uncertainty that might be seen by the all-electric ship (or any large-scale

system) would take one well outside of the framework presented here.

Simplified analysis is revealing nonetheless, and often simplifying one aspect of
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an analysis allows greater depth in another. By restricting the types of uncertainty

considered, the size of the system one can study is increased. Plainly, by allowing

only parametric and initial condition uncertainty in models of large-scale systems,

it becomes possible to study the effect of that uncertainty not on components or

portions of the systems, but on the systems as a whole. In chaper 5, such analysis is

applied to the all-electric ship.
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2.4 Summary

In this chapter, a brief overview of how uncertainty in dynamical systems can be

modeled with stochastic differential equations is given. Three illustrative examples

were shown.



Chapter 3

Technical Overview

In this chapter, collocation algorithms for solving stochastic differential equations

are presented, along with basic elements from which they can be constructed and

methods for extracting information from the resulting solutions.

Collocation approximates solutions to (2.1) by calculating solutions to determin-

istic differential equations corresponding to special points in the random space Q

and then using those solutions to construct a function over Q at each moment in

time. Monte Carlo methods differ only in the choice of points, using pseudo- or

quasi-random points rather than collocation points.

At this point, it is sensible to simplify the discussion from stochastic differential

equations to functions; a solution to a stochastic differential equation at a fixed time

is essentially a function over a random space, and in the case of collocation, finding

that solution amounts to approximating a function at each moment in time. Two

basic settings in which collocation algorithms are used are numerical integration and

interpolation of functions.

3.1 Numerical Integration

Probability says that means, variances, and higher moments of random variables

are integrals. These integrals must be computed numerically for large-scale systems,

and thus, because of 'The Curse of Dimensionality', become problems of efficiently



sampling a multi-dimensional random space; this is a quintessential aspect of this

work.

Numerical integration [6] is essentially a problem of efficiently characterizing a

function over a space by sampling it at discrete points. Considered here are algorithms

that can be expressed as a sum of function evaluations multiplied by weights, such

that

Sf(x)dx w wf(xi). (3.1)

Later, these algorithms are applied to (2.3) to compute moments of trajectories of

dynamical systems.

3.1.1 In One Dimension

Familiar one-dimensional numerical integration schemes (also called rules) are Rie-

mann sums, the trapezoidal rule, and Simpson's rule. These methods produce rel-

atively crude results in comparison with polynomial-based approaches, but have in

common that they can all be written in the form of (3.1), and thus, once the weights

and function evaluation points (sometimes called nodes) have been computed, are

identical in implementation. The set of points and weights comprising the level i

rule of a numerical integration scheme will be denoted (i. With this notation, one-

dimensional rules can be thought of as sequences. Denoting the exact integral I, (3.1)

can be written

I[f] • [f.

The theoretical underpinnings of polynomial methods differ substantially from

those of Riemann sums. Polynomials are fit to the integrand, and the resulting

polynomial function is then integrated. In general, the nodes are the roots of the

fitted polynomials. For this reason, these methods perform exceptionally well on very

smooth integrands that can be well approximated by a polynomial, and correspond-

ingly poorly on less smooth, badly behaved functions. Three different polynomial

methods are employed here.



Gaussian Quadrature

Gaussian quadrature [6,15,17,36] is perhaps the best known polynomial-based method,

famed for its 2n - 1 degree of polynomial exactness, meaning that with n function

evaluations, all integrands which are polynomials of order 2n - 1 or less will be in-

tegrated exactly. Gaussian quadrature utilizes orthogonal polynomials, for example

Legendre, Hermite, or Laguerre polynomials. Each set of orthogonal polynomials

is orthogonal with respect to a different inner product, the kernel of which is the

weighting function of the integral approximated by the associated rule. Legendre

polynomials are orthogonal with respect to a constant weighting function:

/1 0 fori j Ib Z

Li(x)Lj(x)dx a h H p n I f(x)dx wc wE f(XoL).21 for i = a i

Also of importance are the Hermite polynomials, which are orthogonal with respect

to the Gaussian weighting function:

00 e-X2/2 0 for i0j 0 e-x2/2
Hi (x) Hj (x) dx = for i j f(x)dx w (x').

J-oo 2n!2ir fori=j 2i

When approximating expectations of functions of random variables (2.2), the choice

of orthogonal polynomial should reflect the type of random variable, because a given

probability density function will often be identical to some orthogonal polynomial's

weighting function. Obviously, Legendre polynomials should be used for uniform

random variables, and Hermite polynomials for normal random variables.

Clenshaw-Curtis Quadrature

The nodes of Clenshaw-Curtis [4] quadratures are at the roots of Chebyshev poly-

nomials. In the past, the ease with which they could be computed was considered

a virtue of Clenshaw-Curtis quadratures; with modern computing power, this is no

longer a significant advantage. Clenshaw-Curtis only achieves n polynomial exact-

ness, but is known to exceed its theoretical performance expectations [41]. A further



advantage is nesting: the set of nodes for each level are contained in the nodes for all

successive levels. In section 3.1.2, it will be seen that this is desirable for the sparse

and dimension-adaptive grid formulations, where nesting allows function evaluations

to be reused.

Gauss-Kronrod-Patterson Quadrature

Gauss-Kronrod-Patterson quadratures [10,31, 33] are an extension of Gaussian rules

first developed by Kronrod and then iterated by Patterson to yield a sequence of

nested quadratures. The ng point Gaussian quadrature base level has a polynomial

exactness of 2ng - 1, and each successive level with m new points increases the

exactness by m. The overall exactness for an ng point Gaussian quadrature with

Zm Kronrod-Patterson extension points is then 2n, - 1 + T m.

In section 4.3 we find that, when using Gauss-Kronrod-Patterson quadrature be-

ginning with the three point Gaussian rule, shifting the index by one yields signifi-

cantly better results than what is achieved with conventional indexing, that is, with

the first level corresponding to a single point. We find a similar but smaller improve-

ment when the same shift is applied using Clenshaw-Curtis quadratures.

3.1.2 In Multiple Dimensions

One-dimensional numerical integration schemes are extended to multiple dimensions

by tensor products, which, in all implementations considered here, are more plainly

Cartesian products. For example, suppose o10 is the ten point Legendre polynomial

Gaussian quadrature. Then 510 0 10o is the one hundred point two-dimensional inte-

gral approximation, and i0o ® 4o 09 ® io is the one thousand point three-dimensional

integral approximation. It is through this exponential increase in points necessary to

maintain a constant level of discretization with increasing dimension that the Curse

of Dimensionality enters numerical integration. This example is a 'full grid' multidi-

mensional scheme. In the coming sections, sparse grids, dimension-adaptivity, and,

the alternatives to Cartesian product methods in high dimensions, Monte Carlo and



quasi-Monte Carlo will be discussed.

Full Grids

The d-dimensional, level q full grid collocation integral approximation, which we will

denote Fd, is the tensor product of d one dimensional, level q quadratures:

Fd[f] = 4q 0... 0 q4[f]

S,= •Z• =1 WIw. .,f(x,,..df. ,x ,ji) (3.2)

Wil,...,id = Wil ... " Wid

where mq is the number of points in 4 q. The full grid formulation is written here as

having identical component quadratures in each dimension for concision, but this is

not a requirement: any level of any valid rule may be used. This is often advantageous

to keep in mind; a function that is poorly behaved in some dimensions and relatively

smooth in others can be more efficiently integrated by using high level approximations

in the troublesome dimensions and lower level approximations in the others, rather

than by using the same high level quadrature in every dimension. The dimension-

adaptive introduced in section 3.1.2 does this automatically.

With some information about the function being integrated, the error for full

grid collocation with polynomial based component quadratures can be bounded. For

functions in Cr (functions with bounded mixed derivatives up to order r), the error

of full grid collocation is estimated by

II[f] - Ff[f]l = O(n-r/d) (3.3)

where nq is the total number of points in the grid. The factor of d in the exponent

is a manifestation of 'The Curse of Dimensionality'. As dimension grows, it causes

the error order to grow as well at an exponential rate. For low dimensional, smooth

integrands, a full grid is often the best choice among non-adaptive methods.



Sparse Grids

In 1963, Smolyak introduced what is now known as Smolyak's formula and is the

underlying formulation of all sparse grid methods [12, 21, 28, 34, 38, 43]. Rather than

using one high order tensor product, the sparse grid is a sum of lower order Cartesian

products, and tends to perform better in slightly higher dimension than full grid

approaches. Define the level i difference quadrature

Ai - (I)i - (i-1, 1 1 Il

Smolyak's formula can then be written

Sf[f]= S Ail -' Aid[f]. (3.4)
lili<q+d

where lill = il + + id.

At this point it becomes clear why nested component quadratures are preferred

for sparse grids. Nesting causes points of different grids in the sum to coincide, and

the number of common points increases with both the level and dimension of the

sparse grid.

The error for a sparse grid with polynomial based component quadratures can be

estimated in the same fashion as the full grid case:

I[f] - Sd[f] = O(nqlog(nq)(-1)(r+)). (3.5)

As with full grid collocation, the factor d eventually causes sparse grids to fall to 'The

Curse' as well, but not as quickly. The penalty incurred by dimension is less severe

because of the log(nq) term, and consequently sparse grid collocation is often superior

in mid-dimensional situations. Fig. 3-1 shows full and sparse grid examples.



Full grid Sparse grid

Figure 3-1: Left: Full grid with Legendre polynomial Gaussian quadrature. Right:
Sparse grid with Gauss-Kronrod-Patterson quadrature.

Dimension-Adaptivity

Reference [13] presents an adaptive algorithm which places points according to online

estimation of its convergence. The basic building block of the dimension-adaptive

algorithm is the difference grid A defined in the previous section. Let Ei[f] = I[f] -
Qi[f] be the error of some quadrature Qj, be it one or multidimensional. Because the

error is converging to zero, Ej >> Ei+1, and Ei _ Ej - Ei+1. Then

Ej f Ei - Ei+1 = I - Qi - I + Qi+l = Qi+1 - Qi = -i+l.

The algorithm builds an approximation from difference grids, and their magnitude,

which estimates the convergence of a dimension or combination of dimensions, indi-

cates which difference grids should be evaluated next. For example, suppose that for

a two dimensional integrand the evaluated difference grid with the largest magnitude

is A2 0 A3. Then, if they are valid difference grids, the next two grids to be evaluated

will be A3 ® A3 and A2 0 A4. Fig. 3-2 illustrates the behavior of the algorithm

on a test integral from section 4.1. To demonstrate the versatility of the algorithm,

the space has been divided into nine identical elements, inside each of which the

dimension-adaptive algorithm was executed. Multi-elements [20] is another powerful
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approach to numerical integration, but which is not explored here. The function is

CO along the central axes of the space, and analytic elsewhere. Grids that are of high

order in the dimension perpendicular to the Co ridges are evaluated, while relatively

low order grids are computed where the function is better behaved.

Nodes

_ . ...........

r··"o • - • •·".-• •:::!;••

Evaluations

Figure 3-2: Nine element Clenshaw-Curtis dimension-adaptive integration of the two
dimensional instantiation of test function five from [11]. The nodes chosen by the
algorithm are shown on the left, and the function evaluations at those points on the
right.

The algorithm (from [13]) is as follows:



Algorithm:

DimAdapt(f)

0=0

A={i}

r = Aif

77= gi

while i7 > tol

im = {i E A: gi = maxg}

A = A\im

O=OUim

for k = 1 : d

j = im +ek

if j - eq E O for all q = 1 : d

A=AUj

r = r+ Aif

l77 = r+ gj

end if

end for

end while

return r

Symbols:

O old index set

A active index set

Aif integral increment

gi local error indicator

71 global error estimate

ek kth unit vector

tol error tolerance

r computed integral value

Monte Carlo and Quasi-Monte Carlo

For all but trivial functions, Cartesian product based methods will invariably be-

come ineffective in high enough dimension. Although it is not the focus of this work,

it is worth discussing the high-dimensional alternative: Monte Carlo methods. Pure



Monte Carlo, or pseudo-randomness, converges according to the central limit theorem

at 1/1i¶, independently of dimension. Monte Carlo methods also do not depend on

the smoothness of the integrand, and for badly behaved functions are sometimes supe-

rior even in low dimensions. Quasi-Monte Carlo [3,27,39] methods offer improvement

to 1/n optimally and log(n)d/n in the worst case. None of these are attractive rates,

but in high dimensions it is often the best there is. Fig. 3-3 shows pseudo-random

and Sobol sequence quasi-random points.

Pseudo-random

.o"

Sobol

•

Figure 3-3: Left: 100
the Sobol sequence.

pseudo-random points. Right: 100 quasi-random points from

3.2 Interpolation

Interpolation [2, 7, 21] is closely tied to numerical integration, and often utilizes the

same function samples. In fact, with the exception of Monte Carlo, all of the al-

gorithms discussed in this chapter can be used to interpolate as well as integrate

functions (Monte Carlo is in a sense a more direct but sometimes less efficient route

to what interpolation provides). Essentially, rather than fitting polynomials to a

function and integrating the fit, we are now evaluating it.

The one-dimensional barycentric interpolation formula of the second form is prefer-



able for its numerical stability and computationally efficiency. It is given by

i=1X'i f (i ) 1Pq[f](X) M q= X II (36)
i=1 i -j=1 -

isi

Full, sparse, and dimension-adaptive interpolants formulas are constructed by tak-

ing Cartesian products of one dimensional interpolants, as with numerical integration.

The intent is to use interpolation to generate PDF's, i.e. histograms. A direct way

to accomplish this without interpolation is with Monte Carlo: evaluate a function or

simulate a system at a bunch of random points and sort the outcomes into bins. So

why then is interpolation necessary? Rather than direct evaluation, which can be

costly, instead apply Monte Carlo to the interpolant, which is always cheap to eval-

uate, and generate histograms of interpolated function values or system simulations.

Again consider the electric ship; one evaluation takes ten minutes, so directly applying

Monte Carlo to create a 1,000 point histogram would be time consuming. However,

suppose the response can be characterized with fair accuracy using 100 collocation

points. The simulation can now be interpolated 1,000 times to produce nearly the

same histogram (the similarity increases with the number of collocation points used)

in a trivial length of time.

Again consider the double pendulum example of section 2.2. Fig. 3-4 shows

interpolated trajectories overlaid on trajectories obtained by direct simulation corre-

sponding to the same realization of the uncertain parameters. Fig. 3-5 shows two

sets of histograms generated by the same Monte Carlo points, on the left generated

by interpolation and on the right by direct simulation.

There is strong agreement between the simulated and interpolated trajectories; it

is only near the end when the variance has grown large that any disparity is noticeable.

The histograms also agree fairly well. All have multiple modes, meaning that

each arm can have substantially different positions and velocities depending on where

in the random space the system is realized, and the interpolated histograms have

captured this feature.



Directly evaluated and interpolated trajectories

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2

0.5

0.5

2.5

2.5
time

Figure 3-4: Interpolated and directly
states.

evaluated trajectories of double pendulum

3.3 Summary

An overview of collocation algorithms for numerically solve stochastic differential

equations is given, along procedures for extracting statistical moments and PDF's

from the resulting solutions. Guidelines for using each algorithm are suggested, specif-

ically that full and sparse grids perform well on smooth functions in low and mid

dimensions, and that Monte Carlo or quasi-Monte Carlo will eventually become su-
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Directly evaluated histograms
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Figure 3-5: Interpolated and directly evaluated histograms of double pendulum states

at 2.5 seconds.

perior with increasing dimension, or even in lower dimensions if the function is poorly

behaved. The dimension-adaptive algorithm from [13] in many cases will outperform

the non-adaptive collocation methods.

I

=

Interpolated histograms





Chapter 4

Comparison of Integration

Methods

Numerical integration is perhaps the simplest setting in which to compare the per-

formance of the algorithms of the previous chapter. In this chapter, a comparison is

given using the scalar test functions from [11]. In section 4.3, numerical results and

theoretical justification are presented for a modification to conventional sparse grids

yielding improved performance.

4.1 Test functions

The six test functions from [11] are:

OSCILLATORY

PRODUCT PEAK

CORNER PEAK

GAUSSIAN

CO

f(x)
f(x)
f(x)

f(x)

f(x)

DISCONTINUOUS f(x) =

cos(2i-ul + E• aixi)

i (a + (x - i)2)- 1

(1+ E• ' aixi)- (d+l)

exp(- Zl a (xi - ui)2)

exp(- Z a lxi - uil)

0 xl > ul or 2 >U 2

exp(Ei= aixi) otherwise



where a and u are tunable parameters which respectively determine the difficulty of

the functions to integrate and the location of their features in the region of integration.

Plots of the two dimensional instantiation of each function are shown in Fig. 4.1. In

Oscillatory Product Peak

Corner Peak Gaussian

Discontinuous

Figure 4-1: Two dimensional test functions

the numerical experiments of the next section, a was chosen to make each integral

roughly the same difficulty, and u was generated randomly over a set of trials.



4.2 Convergence of Methods

The theoretical error estimates from section 3.1.2 say that full grids will perform

best on smooth integrands in low dimensions, sparse grids on smooth integrals in

mid-dimensional ranges, and Monte Carlo or quasi-Monte Carlo on high dimensional

integrands and even non-smooth integrands in low dimensions. Note that the compar-

ison given here is summary, but adequate; it is not necessary to show the performance

of every combination of one dimensional quadrature and multidimensional algorithm

on each test function in a full range of dimensions to capture the essence of when

each method is appropriate.

4.2.1 Non-adaptive methods

Fig. 4.2.1 shows convergence plots comparing full grid with Legendre polynomial

Gaussian Quadrature, sparse grid with Clenshaw-Curtis, Monte Carlo, and quasi-

Monte Carlo on the oscillatory, product peak, and corner peak test functions. Fig.

4.2.1 shows the same for the Gaussian, Co, and discontinuous test functions.

The oscillatory function is analytic, and as would be expected the collocation

algorithms are superior to Monte Carlo and quasi-Monte Carlo even into ten dimen-

sions, although the performance gap is decreasing. The full grid is superior in two

dimensions, roughly equivalent to the sparse grid in six dimensions, and inferior in

ten, also what is expected from the theoretical bounds.

The product peak, corner peak, and Gaussian functions have similar stories: full

grids are best in low dimensions, sparse grids in mid dimensions, and Monte Carlo

and quasi-Monte Carlo, if not the favorite by dimension ten, soon will be. Notice the

corner peak plot for ten dimensions: Monte Carlo is dramatically more efficient than

quasi-Monte Carlo. Quasi-Monte Carlo has 1/N convergence in the optimal case, but

depends on dimension in the worst case, as is clearly happening here.

The continuous and discontinuous functions are considerably more difficult than

the rest. Both have very low smoothnesses, and are therefore difficult to fit poly-

nomials to. Monte Carlo and quasi-Monte Carlo are arguably for the continuous
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function and clearly for the discontinuous function the best choice even as low as two

dimensions.
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4.2.2 Dimension-adaptivity

Figures 4.2.2 and 4.2.2 compare full and sparse grids with the dimension-adaptive

algorithm discussed in section 3.1.2, [13]. The dimension-adaptive algorithm is as

good as or superior to the best of the other methods in nearly all cases, with the

adaptivity 'running astray' only on the discontinuous function, for which a Monte

Carlo would be superior.
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-cr

-2
-b 102OL)
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100

Oscillatory Product Peak

10 102 10 102

Corner Peak Gaussian
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Continuous Discontinuous
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Number of function evaluations, log scale

Figure 4-4: Log-log plots of error versus number of function evaluations. Sparse grid
with Gauss-Kronrod-Patterson (SG-KP), full grid with Gaussian Quadrature (FG-
GQ), and dimension-adaptivity with Gauss-Kronrod-Patterson (DA-KP) in three di-
mensions are shown.

The performance of each method varies significantly across the different test func-

tions. No one method is universally superior, but prior knowledge of the integrand,
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Figure 4-5: Log-log plots of error versus number of function evaluations for algorithms
in six dimensions are shown.

such as smoothness and dimension, can provide information that is highly relevant to

choosing an approach. It is observed that among the non-adaptive methods, full grids

are superior in low dimensions, sparse grids in mid dimensions, and Monte Carlo and

quasi-Monte Carlo in high dimensions or for non-smooth integrands. The dimension-

adaptive algorithm in most cases outperforms the other grid methods, but should be

used cautiously, particularly on badly behaved functions.
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4.3 Sparse Grids with Shifted Indexing

A slight modification to the indexing of a sparse grid yields significant gains in conver-

gence in mid dimensional ranges, particularly for smoother functions. Over the next

few sections, the modification is described, then theoretically and computationally

bounded, and lastly results from numerical experiments are shown.

4.3.1 One-Dimensional Quadratures and Shifting

When using Kronrod-Patterson quadrature beginning with the three point Gaussian

rule, shifting the index by one yields significantly better results than what is achieved

with conventional indexing, .that is, with the first level corresponding to only one

point. A similar but smaller improvement is found when the same shift is applied

using Clenshaw-Curtis quadratures. A sparse grid with indices shifted a times will

be denoted Sfd• and the corresponding one-dimensional basis sequence by D..

4.3.2 Error Bounds

Effect of the Shift on Classical Bounds

The error of the shifted grid can be bounded in the same fashion as a conventionally

indexed sparse grid, by allowing the shift to propagate through to the final estimate.

Following the proof of [43] (see also [28]), the derivation of an error bound for the

d-dimensional, once-shifted sparse grid Sd,1 is sketched. Begin by estimating the error

of a one-dimensional quadrature as

|11 - 4i cr - 2 -, i > 0 (4.1)

where I• = max I - , o [f] - 0, 11|I = 2, and f has bounded mixed derivatives up to

order r. The result of removing the lowest one-dimensional quadrature is a shifting

of indices; the new error estimate is

1 - ~ c -r 2
- r(i+1) i > 0. (4.2)



The magnitudes of the one-dimensional once-shifted difference grids are bounded by

I 1, -< i i- k II -  4-I c, · 2- r(ik+l) -(1+ 2r).
Zk Z i

(4.3)

Making use of the property IA 0 BII = IIAII. IIBII, we have

.+-Sd+l _ .. aqII1+1 - +1,11 L ..•, . -s
2ill<q

II,- VP+l-1j1 [+ 2. Ilia - Sql 1 ,' so that
(4.4)

S .. . A I -I +1-i ( cd) - (1 + 
2r )d 2 -r(q+d+2)

lill- q

The result analogous to that in [43] is given by

IlId[f] - S• 5 c, -H - ( ) 2- r (q d)
where H = max(2 , (1+ 2. This yields-1

where He = max(2*+1, cr (1 + 2r)). This yields

Id[f] - Sqd~ll = O(qd-~ 2-r(q+d)), (4.5)

which is very similar to Smolyak's original estimate:

IldI[f] - S l = O(qd-l . 2-rq). (4.6)

The new bound differs by a factor of 2- r d from the original, which suggests an advan-

tage increasing with dimension. If the one-dimensional quadrature indexing is shifted

by a rather than 1, a substitution in the above bound gives

II •[f] - Sqd = O(qd-l. 2-r(q+ad))"



Next, a point-based bound is obtained for the once-shifted case, by estimating

the total number of points in the sparse grid and substituting for q. Assuming the

number of points in each one-dimensional quadrature mi < 2', the total number of

points n is approximated by

n < 2q+d - i O(q d- 1 2q+d).

Substituting this into the level bound above gives

Id [f] - S,= 0 (d1. (q

The inequality 2q+d _ cdn, q log(cdn) - d is then substituted to arrive at:

Id[f] - Sq-, = 0(n - r - (log(n) - d)(d-1)

The point-based bound corresponding to (4.6), the non-shifted estimate, is

Id[f] - Sd i = 0(n - ' - (log(n))(d-1)(r+l)),

which again differs by a term containing d, although here it is in the base instead of

the exponent.

The estimates in (4.1) and (4.2) are very crude, and as a result the bound in

(4.5) fails to thoroughly capture the behavior of the shifted scheme seen in numeri-

cal experiments, namely that there is an improvement in intermediate but not high

dimensions. In the next two sections, an exact calculation for the number of points

and a more precise formulation of one-dimensional quadrature errors is given, and

used them with (4.3) and (4.4) to arrive at a more accurate description of the shifted

sparse grid's performance.



The Number of Points

The exact number of points in the nested sparse grid Sd, can be directly computed

by Theorem 1 in [34]. Define 6i as the number of points used in d5 and not o( L and

set k = q - d. The total number of points is then given by

ni(d + k, d) = z~ E gC,k
j=o

where (d) 0 O if j > d, and c is defined by

q-j+l 1

cj, = -Cj-1, k - v , j = 1, k,
v=1 60

c0,k = 1.

One-Dimensional Bounds through Peano's Theorem

The Peano kernel [6] of a quadrature is defined as

Kp(t) - • Ej [(x - t)

(X - t+ = x-t >t
0 x<t

where p is the polynomial exactness and Ei the error of the quadrature 4i (Ei [g] = 0

for all polynomials g of order less than or equal to p). The quadrature error can be

written as

Ei[f] = I[f] - Di[f] = K(t)f (P+)(t)dt.

for all f in Cp+'. The error can then be approximated by either of

Ei[f] IKp, If (P+)(x) dx or Ei[f] < IIf(P+1)(t) IIJKpIdx



where 11-"1 denotes the sup norm. The magnitude of the difference grid (4.3) is esti-

mated with the second inequality above by fixing f(P+) (x)1 at one for all p. This

constraint on the function derivatives is a serious simplification, but can be relaxed

for cases where some properties of the function are known.

4.3.3 Numerical Results

As shown below, in the non-shifted case Kronrod-Patterson generally performs marginally

better than Clenshaw-Curtis based sparse grids. Kronrod-Patterson's polynomial

exactness is only slightly superior to that of Clenshaw-Curtis, and furthermore,

Clenshaw-Curtis has been known to exceed its theoretical expectations [41]. Dif-

ferences in polynomial exactness are mostly due to the three-point levels of each

sequence: the three point Kronrod-Patterson rule has Gaussian quadrature's poly-

nomial exactness of five, while Clenshaw Curtis only has a polynomial exactness of

two.

Computed Error Bounds

Now, using (4.4) and the results of the sections 4.3.2 and 4.3.2, bounds for the con-

ventional and shifted grids can be realistically computed and compared (Fig. 4-6).

Firstly, observe that the rate of convergence of both shifted grids is superior in all

dimensions, and, according to the crude estimate (4.5), further distancing itself from

the non-shifted grid as the dimensions grows. In the Kronrod-Patterson plots for a

single shift, a "knee" occurs in the non-shifted curves, after which a similar slope is

achieved. Assessment of performance for the two rules with and without the shift is

best summarized by noting where the shifted and non-shifted curves cross, i.e. where

the accuracy per effort is identical. By this criteria, it is evident that in higher di-

mensions a desired accuracy may be attainable with a non-shifted grid before the

shifted grid has become effective. The Kronrod-Patterson case, however, shows that

the benefits of the shift can be realized at much more relaxed tolerances.

Another point worth considering is the performance of sparse grids shifted more
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Figure 4-6: Theoretical error convergence of conventional, once-shifted, and twice-
shifted sparse grids with Clenshaw-Curtis and Kronrod-Patterson basis quadratures.

than once. Included in Fig. 4-6 are theoretical error curves for twice-shifted sparse

grids. The rates of convergence are even higher, and for Clenshaw-Curtis the crossing

with the non-shifted curve occurs at approximately the same location as that of the

once-shifted curve. However, the dramatic increase in points associated with each

shift can make higher order shifted grids unwieldly even in moderate dimensions, and

we do not have numerical experiments to verify these predictions.

Numerical Examples

As in section 4.2, the performance of sparse grids with shifted indexing is evaluated

on test integrals from [11], specifically the oscillatory, product peak, corner peak, and

Gaussian functions (the smooth ones).

Fig. 4-7 shows the performance of regular and shifted sparse grids. For Kronrod-

Patterson based grids, significant improvement is seen for the shown test integrals,

with the performance improvement due to the shift most noteworthy at dimension

Three dimension Nine dimensions

- -· - -· - -- - -



four. As predicted, only a minor improvement is evident with the shift only in low

dimensions when using Clenshaw-Curtis; at high dimensions, shifting is clearly un-

suitable.
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Figure 4-7: Error versus function evaluations for regular and shifted sparse grids using
Clenshaw-Curtis and Kronrod-Patterson quadratures

4.3.4 Discussion

It has been shown that for smooth functions, shifting the indexing of a sparse grid

yields improved accuracy which sometimes outweighs the associated increase in points.



The modified scheme is more effective with Kronrod-Patterson than with Clenshaw-

Curtis sequences, a difference which is suggested by the polynomial exactnesses of the

three point levels of each sequence. Intuitively, shifting succeeds because high fidelity

on one hyperplane is traded for evenly distributed high fidelity on three hyperplanes.

Hence, one would expect inferior performance for functions with weak dimensional

coupling.

4.4 Summary

The algorithms of the previous chapter are compared on six standard test functions,

and expectations for the performance of each algorithm were confirmed. A mod-

ification to the conventional sparse grid algorithm was presented and justified via

theoretical bounds and numerical examples.





Chapter 5

Stochastic Simulation of the

All-Electric Ship

In this chapter, collocation algorithms are applied to three large-scale models, two

describing an electric ship and the other a pulse power system. Sensitivity is inferred

for each system to demonstrate how information from stochastic simulation can be

interpreted.

5.1 ONR IPS Testbed

5.1.1 Deterministic Simulation

We simulate the Office of Naval Research Integrated Power System testbed (ONR

IPS) [23,32] (Fig. 5-1), varying parameters from the port and starboard AC systems,

which contains the starboard generator, bus, and propulsion.

First, we examine what happens in the model through deterministic simulation.

In zone three, a constant power load, a proportional-integral controller, and two

ship service converter modules are turned on, all at time zero. The zone three port

voltage, our representative voltage for zone three, rises from the start until about

0.15 seconds when it reaches 400 volts. At time 0.1 seconds, the starboard propulsion

current becomes non zero - this is when the motor and motor control turn on. At
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Bus
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PS: Power Supply SSIM: Ship Service Inverter Module

(3-0 AC to DC) (DC-AC Converter)
SSCM: Ship Service Conerter Module LB: Local Bank

(DC-DC Converter) MC: Motor Controller
CPL: Constant Power Load

Figure 5-1: Schematic for ONR IPS Testbed.

0.4 seconds, the system is loaded from the ship service inverter module in zone one,

and the power supply from the starboard AC system increases correspondingly (Fig.

5-2).

5.1.2 Probabilistic Simulation

In addition to determining mean behaviors, multidimensional techniques can be em-

ployed for sensitivity analysis, allowing for identification of not only individual sen-

sitive parameters, but also sensitive combinations of parameters. In our simulations,

we use both the integral (IS) and maximum (MS) over time of the variance solution

as a sensitivity metric.

IS = var(x(t))dt, MS = max{var(x(t))} (5.1)
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Figure 5-2: Deterministic trajectories for ONR IPS.

The analysis in the next section was done using the integral metric.

Non-Adaptive Simulation

We analyze results from a three dimensional, level four full grid collocation simulation

varying each uncertain parameter +1% from its mean. We considered all triples drawn

from the set:

* Bus

1, 7) C - Shunt Capacitance

I I I I I



2, 8) Cf - Filter Capacitance

3, 9) Lf - Filter Inductance

e Propulsion

4, 10) C - Filter Capacitance

5, 11) L - Filter Inductance

6, 12) Induction Motor Mechanical Load

where parameters 1-6 are starboard and 7-12 port. Fig. 5-3 shows time solutions for

the triple {1, 2, 3}.

Mean solution through time with standard deviation error bars: 0 to 0.5 seconds
50

0 0.1 0.2 0.3 0.4
Seconds

Start-up transient

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
Seconds

Figure 5-3: Starboard AC system generator abc-reference frame c current mean

(curve) and standard deviation (error bars) solutions for the triple containing star-
board bus shunt capacitance, filter capacitance and filter inductance for ONR IPS.

There are many ways to structure results from this sort of simulation, for example

the most sensitive triple for a specific output: we find that triple {1, 2, 3} is in fact the

most sensitive triple for the starboard generator currents according to the integrated

variance metric, and {1, 2, 5} by the maximum metric. We present results that lend

themselves easily to graphical analysis, but they are not the only perspectives.

t



For simulations in n dimensions, the interaction of pairs of uncertain parameters

can be viewed by considering all n-tuples containing the same n - 2 parameters. Fig.

5-4 shows all triples containing the starboard bus filter inductance (3). It can be seen

that the most influential pair on this plot is {1, 2}, which corresponds to what we

previously identified as the most sensitive triple.

Relative Integrated Variance

1
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6

7

10

11

1 2 3 4 5 6 7 8 9 10 11 12

Low sensitivity High Sensitivity

Figure 5-4: Two dimensional integrated variance analysis of the starboard AC system

generator abc-reference frame c current: all triples containing the starboard bus filter

inductance (3) for ONR IPS.

Taking the most influential triple, we now compare the sensitivity of different

output states. Since we are now comparing different outputs with differing units, we

normalize the integrated variance by the integral of the square of the deterministic

solution. The output states corresponding to each number are listed below.

* Zone 3 DC states

1) Load Voltage

2) Starboard Voltage

3) Starboard Current



4) Port Voltage

5) Port Current

* Starboard AC system states

6-8) Voltages a, b, c

9-11) Generator Currents a, b, c

12-14) Propulsion Currents a, b, c

15-17) Power Supply Currents a, b, c

The top plot in Fig. 5-5 shows the normalized integrated variances of the output

states, and we see that the three most sensitive outputs to the triple {1, 2, 3} are

the power supply currents. The lower plot is of the multi-dimensional sensitivity

(MS): the square root of the normalized variance divided by the sum of the variance

of the uncertain parameters in the simulation. This tells the ratio of the standard

deviation of the measured states to the standard deviation of the uncertain inputs.

There is an eightfold increase in the variation of the power supply currents, which

8 x 10-3 Integral sensitivity
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U,14
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Figure 5-5: Starboard AC system normalized integrated variances and multi-
dimensional sensitivity (MS) for ONR IPS.
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is not very reassuring. But this is only for ±1l% uncertainty. Fig. 5-6 shows the

integrated variances (above) and multi-dimensional sensitivities (below) of the power

supply currents for ±1 - 17% uncertainty. The near eightfold increase only occurs at

+1% uncertainty, and stays below 2 past ±5% uncertainty (although it does appear

to be slightly on the rise past ±15%).

State 16

0.03
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0.02
0.02

0.01 0.01

0.05 0.1 0.15
% individual parameter variation

5 5

4 4

3 3

2 2

1 1
0.05 0.1 0.15

% individual parameter variation

State 17

0.05 0.1 0.15

0.05 0.1 0.15

Figure 5-6: Multi-dimensional sensitivity (MS) of starboard power supply currents
for ±1 - 17% uncertainty for ONR IPS.

5.1.3 Adaptive Simulation

We now interpret the results of a two dimensional, dimension adaptive, four element

simulation of the uncertain pair {1, 2}, the bus shunt and filter capacitances. Fig.

5-7 shows the behavior of the dimension adaptive algorithm based on the integral

convergence of state 15, the a power supply current.

We can see from the small amount of computational effort expended that the

model is a relatively well behaved function of the bus shunt capacitance below its

mean, but that above a higher resolution is needed for an accurate result (Fig. 5-7).
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Figure 5-7: Record of dimension adaptive behavior in each element for a two dimen-
sional, four element simulation with uncertainty in the bus shunt and filter capac-
itances for ONR IPS. Each location on the plot represents a difference grid in the
corresponding element. Recently evaluated difference grids are denoted by + and
old difference grids by O. The title of each quadrant is the portion of the integral's
domain covered by that element. It also corresponds to the percent variation from
the mean of the uncertain couple.

Perhaps the most useful observation is the presence of higher order joint difference

grids in the [0 1] x [-1 0] element, which indicates that there is significant coupled

behavior when the shunt capacitance and the filter capacitance are respectively above

and below their means. This is not a measure of sensitivity; however, this sort of

coupling as a function suggests that high multidimensional sensitivity to uncertainty

in a set of parameters may be a result of the interaction between them.

Similar information can be inferred from higher dimensional simulations; we only

show a two dimensional result because it is easily presented graphically. The same

mean and variance analysis seen in the previous section can be obtained with dimen-

sion adaptive simulation, but we omit them here to avoid redundancy.
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5.2 Pulse Power System

We analyze uncertainty in a Simulink model describing the operation of a large pulse

load reflecting the power consumption of a rail gun [8]. The alternator is charged by

accelerating its rotor to 18,000 rpm, at which point the inverter and charging motor

are disconnected from the alternator and a shot is fired.

A six dimensional dimension-adaptive simulation using Clenshaw-Curtis points

was run, with ±10% uniform uncertainty in the alternator field winding resistance,

primary generator one field winding leakage inductance, inductance of charging motor

switches, and charging motor phase resistance, and ±5% uniform uncertainty in the

"on" configuration output rectifier diode resistance and charging motor excitation

flux.

Fig. 5-8 shows mean trajectories with standard deviations for a few states, and

5-9 shows histograms at t = 30 seconds. A total of 53 system evaluations were

required to attain an error tolerance of 10- 3 for the charging motor phase one stator

current. In most dimensions, the algorithm expended little effort, the highest order

joint grid evaluated being level four in the dimension corresponding to the charging

motor excitation flux and level three in that corresponding to the diode resistance,

indicating some coupling between those parameters. A level three full grid would have

used 729 points, taking much more time to achieve a comparable level of accuracy.

It can be seen from Fig. 5-8 that the generator field winding voltage and generator

speed are sensitive to the simulated uncertainty, the first during charging before the

shot is fired and the latter afterward. The distributions at 30 seconds appear to mostly

be Gaussian, with the exception of the generator speed, which is nearly uniformly.

5.3 RTDS

Uncertainty analysis was performed on a pulse load charging event for a notional all-

electric ship at the Center for Advanced Power Systems at Florida State University

using the dimension-adaptive algorithm (section 3.1.2, [13]). The system, a schematic
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of which is given in Fig. A-1, has two 36 MW main generators and two 4 MW auxiliary

generators. The load is comprised of two 36.5 MW propulsion motors, and maximum

4 MW ship service loads. A thorough description can be found in [25, 40]. The

notional system simulation was run on a real time digital simulator [24], on which

large power system simulations can be run in real-time with order 50ips time steps,

and into which physical hardware can be incorporated. The simulations carried out

for this analysis were run slower than real-time with a 15ps time step.

Fig. A-2 in appendix A shows interpolated versus actual values for the maximum

deviation from a nominal frequency for main generator one and auxiliary generator

two. Detailed results can be found in [26].

5.4 Discussion

Collocation was used to assess the behavior of three systems under mid-dimensional

uncertainty. There were significant computational savings over full and sparse grids

for simulations in which the dimension-adaptive algorithm was used, as was evidenced

by the uneven sampling of those systems' random spaces. Instructions for using a

Matlab implementation of the collocation algorithms is given in appendix B.



Chapter 6

Unscented Kalman Filtering with

Dimension-Adaptive Numerical

Integration

In this chapter, the dimension-adaptive algorithm is implemented in an unscented

Kalman filter. The performance of the new filter is evaluated on three example

systems from the literature.

6.1 Background

We want to estimate the state xk E Rn of the nonlinear discrete dynamical system

with process and measurement noise

Xk+1 = f(Xk, Uk, k) + wk

Zk = h(Xk, Uk, k) + rk,
(6.1)

where w and r are zero-mean, uncorrelated noise vectors with respective covariances

Q and R.



6.1.1 The Extended Kalman Filter

The Kalman filter produces optimal state estimates based on current and previous

measurements by first computing a prediction Xk+llk via a system model and then a

corrected prediction Xk+llk+1 with a measurement from the actual system. Both the

mean and covariance matrix P of the state are propagated with the filter. When f

and h in (6.1) are linear with system matrices A, B, C, and D, the predictor portion

is calculated by

Xk+l1k = Axklk + BUk

Pk+llk = APkLkA T + Q (6.2)

Zk+1 = Ckk+llk + Duk,

with correction

PvV = CPk+llkCT, Pxz - Pk+llkC T

L = Pz/(Pvv + R) (6.3)

Xk+ll|k+l = Xk+ll|k + L(Zk+1 - Zk+1)

Pk+llk+1 = Pk+llk - LP~.z

In the nonlinear case, the mean and output can be calculated in the same fashion

with the exact system model, but there is no analogous method for the covariance

matrix, so an approximation must be used instead. Traditionally, this has been done

by linearizing about kklk and then performing (6.2) and (6.3) with the system and

output Jacobians F and H. This is a shortcoming of the extended Kalman Filter:

important characteristics of the model are lost in the linearization, and the Jacobian

must be reevaluated at every time step, a tedious and computationally expensive

procedure.

6.1.2 The Unscented Kalman Filter

In [19], the necessity for linearization in the extended Kalman filter was circumvented

by numerically integrating for Pklk, P,zz, and P._. The original system equations are

evaluated at sigma points having the same mean and covariance as the state, and the



predicted mean and covariance are then calculated from the transformed points:

01 = X•-lk,

07i = -klk + :klk(V( + K)Pklk))i
oin = Xkjk - +jk(k + )Pklk))i,

W1 = K/(Tj + K)

wi = 1/2(r + K)

wi+ = 1/2(, + K),

where i = 2,..., r + 1. (A)i denotes the it h row of A, and the matrix B with square

root A is of the form ATA. The mean and covariances are then calculated by

(6.5)Xik+llk = • = I wif( 'i), Zk+1 - 1  wih(oi)

Pk+llk i= w(f() -k+llk)(f(Ui) - Xkllk) T

Pz = Z•i2" wi(f(ai) - k+|llk)(h(ai) - zk+1)T
(6.6)

PVV = i=l wi(h(cri) - k+l)(h(oi) - 2k+l)T

6.2 Dimension-Adaptive Unscented Kalman Fil-

tering

The sigma points of [19] are a type numerical integration, specifically one that assumes

a Gaussian distribution, as with Hermite polynomial Gaussian quadrature. It is clear

that the any valid numerical integration scheme could be used in place of the sigma

points, so it is sensible to employ a sophisticated technique. This has already been

done to some extent: [18] implemented the unscented filter with Gaussian quadrature,

and [16] with quasi-Monte Carlo. We propose a filter that uses the dimension-adaptive

integration scheme from [13] in place of the sigma points of the original unscented

filter.

(6.4)



6.3 Performance of the New Filter

We now compare unscented Kalman filters with Kronrod-Patterson dimension-adaptivity

(DA), Hermite polynomial Gaussian quadrature (GQ), and sigma points (SP) and

the extended Kalman filter (E) on the falling body tracking problem from [1], the

Kraichnan-Orszag system [30, 42], and a system based on the Lorenz system ex-

ample in [18]. Gaussian quadrature with Hermite polynomials integrates functions

over a Gaussian distribution, and is slightly superior to Legendre polynomial Gaus-

sian quadrature for this application. However, there is no standard nested Gaus-

sian distributed quadrature sequence, which is why we use the uniformly distributed

Kronrod-Patterson quadrature in the dimension adaptive filter.

Most of the previous literature present results via the absolute value of the mean

error for all trials alongside the error variance. For concision and because the relevant

information is retained, we alternatively give the mean of the absolute value of the

error in our experiments.

In each experiment 100 Monte Carlo simulations were performed. In this sections

figures, EKF stands for the extended Kalman filter, UKF the unscented Kalman filter,

GQKF the Gaussian quadrature Kalman filter of [18], and DAQKF the dimension-

adaptive quadrature Kalman filter.

6.3.1 Falling Body Problem

The equations of motion for the system are given by

=1 = -X 2 + W1

x2 = - exp(-yXl)x2xX3 + w2  (6.7)

with measurement

z M 2 (l - H) 2 + r, (6.8)



where - = 5 - 10- 5, M = 105, H = 105, and w and r are zero-mean uncorrelated

noises with covariances given by Q = 0 and R = 104, respectively. The process noise

is removed for the reason that it can mitigate linearization errors and thus actually

improve the the extended Kalman filter's performance. The initial state of the true

system is

x(0) =[3. 105 2. 104 10- 3 ]T.  (6.9)

The initial estimates for the simulated filter were

x(0)=[ 3 105 2104 3.10- 5 ]T

106 0 0 (6.10)

Polo = 0 4. 106 0

0 0 10-4

With the faulty initial estimate we are assuming the body to be heavier than it

actually is. Measurements are made at every second, with 64 fourth-order Runge-

Kutta system updates between each measurement.

Little to no improvement is seen over the Gaussian quadrature and sigma point

filters (Fig. 6-1).

6.3.2 The Kraichnan-Orszag System

The Kraichnan-Orszag three mode system can be highly oscillatory, depending on ini-

tial conditions, and, with infrequent measurements, represents a challenging filtering

and stochastic simulation problem. The system equations are

x1 = X2 X3 + W1

k2 = x 1x 3 + w2  (6.11)

63 = -2xlX 2 + w3.



Filter errors

0
r_U,-

C,,0~a-O
£1.

0L-

L 4C

o 20

10
- 3

10-4

10
- 5

5 10 15 20 25 30
Time (s)

Figure 6-1: Mean absolute error for position, velocity, and x 3 for falling body problem.

As with the falling body problem, the process noise covariance matrix is set Q = 0.

For the measurement we use

z =x + r, (6.12)

with measurement noise covariance R = 51. The initial state used in both the 'true'

and filter simulation of (6.11) is x(0) = [ 0 1 20 ]T, with initial covariance estimate

Po0 o = I. A fourth order Runge-Kutta solver with dt = 0.01 was used, with measure-

ments taken every every 20dt. Fig. 6-2 shows the corresponding state trajectories.



Three dimensional trajectory
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Figure 6-2: Trajectories of the Kraichnan-Orszag system.

Fig. 6-3 shows the errors of dimension-adaptive filters with different error toler-

ances. The filters with smaller tolerances outperform those with larger tolerances.

Initially, more points are used by the adaptive algorithm to compute more precise

means and covariances. As the filters' confidences grow, the covariances shrink, de-

creasing the size of the region being integrated over. Numerical integrals are easier

on smaller domains, and hence fewer points are used by the adaptive filter as the

covariance decreases.

These errors are very choppy; the reason for this is in the nature of the Kraichnan-

Orszag system. Fig. 6-4 shows a 'true' trajectory in black, and noisy trajectories

with noise added. The noisy trajectories sometimes take wrong turns at the corners,

causing the error to spike, and then return to the correct path at the next corner,

causing the error to spike. Once the variance has decreased sufficiently, the points

are close enough together that they all take the same path, and the error smoothens

out.

The dimension-adaptive filter outperforms all of the other filters on this exam-

ple (fig. 6-5). Initially, it expends a significantly larger effort than the others, but

States 1, 2, 3 versus time
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Figure 6-3: Error, variance, and mean number of points propagated for dimension-
adaptive filters with different error tolerances on Kraichnan-Orszag system.
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eventually only requires about the same effort as the unscented filter to achieve its

prescribed error.
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Figure 6-5: Performance of filters on the Kraichnan-Orszag system.

6.3.3 The Lorenz system

Many systems of interest follow trajectories like those of the Lorenz system, e.g.

electrical circuits [5] and lasers [44]. A comparison of is shown on an example based
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on the Lorenz system from [18]. The system equations are given by

-l = a(-xl + X2)

=2 = px 1 - X2 - X1X3  (6.13)

i3 = -3x 3 + x1x2 + 0.5w,

where a = 10, p = 28, and /3 = 8/3, which correspond to the well-known butter-

fly effect system. Fig. 6-6 show system trajectories for the parameters and initial

conditions used. The output is given by

States 1, 2, 3 versus time Three dimensional trajectory
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Figure 6-6: Trajectories of the Lorenz system.

= (x- 0.5)2 + x2 + x2 + 0.065r, (6.14)

and the noises w and r each have the same variance Q = R = dt.

An Euler step with dt = 0.01 is used. In [18], measurements were taken at every

time step; here instead we take measurements at 10dt.

The dimension-adaptive filter outperforms the other unscented filters, avoiding

the first three error spikes (Fig. 6-7). The number of points used goes above and

/

state 1
state 2

Sstate 3



below the 27 used by the Gauss-Hermite filter, depending on the number of points

needed to achieve accurate integration of the state and covariance. The extended

Kalman filter fails on this example, and so it is not shown.
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Figure 6-7: Performance of filters on the Lorenz system.
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6.4 Summary

A new filter using dimension-adaptive numerical integration within a conventional

unscented Kalman filter is presented. Performance gains were seen on two example

systems.





Chapter 7

Summary

Stochastic differential equations provide a framework for modeling systems with un-

certainty and informing design decisions, but for large-scale systems they are of-

ten hard to solve numerically because of high dimensional random spaces. Collo-

cation is an attractive approach for large-scale systems with moderate dimensional

ranges because of its 'black-box' implementation and the existence of sophisticated

tensor-product algorithms with which it can be used. In this work, full, sparse, and

dimension-adaptive [13] grid collocation with various polynomial-based component

quadratures were compared on standard test integrals [11] and then applied to com-

pute solutions to stochastic differential equations describing a notional electric ship

in standard operation, a pulse power system, and a charging event on a notional

electric ship. Statistical moments and PDF's were extracted from these solutions,

from which sensitivity was inferred. The capability to assess the behavior of a system

under uncertainty is a powerful design tool. It is an indicator of robust design and

control strategies; in the case of the electric ship, two such examples are safe load-

ing conditions or ranges of deviation from nominal behavior as a result of imprecise

system knowledge. A Matlab toolbox has been created and released to the Electric

Ship Research and Development Consortium Partners (appendix B). The results of

Chapter 5 were generated with this toolbox; there are also additional users at this

writing.

The sparse grid with shifted indexing, a modification to the conventional sparse



grid formulation, was presented, along with justification in the form of theoretical

bounds and numerical experiments. The dimension-adaptive grid collocation algo-

rithm was then applied to unscented Kalman filtering, and improvement over the

extended and other unscented Kalman filters was seen for two nonlinear filtering

problems. An adaptive unscented filter is promising because of its potential for com-

putational savings; in general less computational effort is required as the filter attains

greater confidence in its estimates. The gains for the examples shown, however, are

modest.

Future work includes collocation using locally adaptive grids, i.e. algorithms that

can adapt to regionally rather than dimensionally in the random space. Another

direction is the fusion of Monte Carlo and collocation. While at first seemingly counter

to what makes Monte Carlo work, which in part is that points are placed directly

into the multi-dimensional random space rather than built up from one-dimensional

bases, assigning certain 'easier' dimensions to collocation and the rest to an aggregate

Monte Carlo dimension may yield faster convergence, and be particularly effective if

done adaptively.



Appendix A
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Figure A-1: Schematic for RTDS notional all-electric ship at Florida State University.
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tric ship at Florida State University.



Appendix B

Readme for Matlab

implementation of Collocation

Algorithms

B.1 Overview and introduction

This appendix serves as a guide for the Matlab program Collocation.m, a set of

routines for numerically integrating and interpolating multi-dimensional functions on

the unit cube via tensor products of one dimensional rules. It can be downloaded

from http://web.mit.edu/hovergroup/docs.html. Monte Carlo and quasi-Monte Carlo

techniques are not part of its functionality, although in many situations, namely when

dealing with high-dimensional or low-smoothness functions, they are the best choice.

The approaches included are:

* Full grid tensor-product cubature

* Sparse grid tensor-product cubature [12, 28,38]

* Uniform-adaptive full or sparse grid tensor-product cubature

* Dimension-adaptive tensor-product quadrature [13]

* Uniform subspace splitting



Each approach is based on one-dimensional quadratures. Polynomial based rules have

the highest polynomial exactness, which is the highest degree polynomial a method

will integrate exactly using a fixed number of points. The available one-dimensional

basis quadratures are:

* Legendre polynomial Gaussian quadrature [36]

2n - 1 polynomial exactness, not nested, constant integration kernel.

* Hermite polynomial Gaussian quadrature

2n - 1 polynomial exactness, not nested, Gaussian integration kernel.

* Clenshaw-Curtis [4,41]

n polynomial exactness, nested, constant integration kernel.

* Kronrod-Patterson [10,31,33]

2n + m - 1 polynomial exactness, nested, constant integration kernel. Kronrod-

Patterson is a nested sequence of quadratures beginning with Gaussian quadra-

ture. n is the number of Gaussian quadrature points, and m the number of

extension points. Specifically, the sequence beginning with the three points

Legendre polynomial rule is included. The Kronrod-Patterson rule is not gen-

erated by a program, but read from a table that goes up to the seventh level

in a sequence. For this reason, it is important when using an adaptive grid to

set the maximum grid level below the highest available Kronrod-Patterson rule;

otherwise a higher rule will be called, and the program will return an error.

Gaussian quadrature has the highest polynomial exactness, but it is not nested, and

for this reason Clenshaw-Curtis and Kronrod-Patterson are superior choices for sparse

grids or adaptive integration.

B.2 Using Collocation.m

Collocation.m is called by

[outputs] = Collocation(q, d, @integrand, options)



where q is the level and d the dimension. q is only used as the non-adaptive default

level if no adaptive options are specified. @integrand is the function handle for the

integrand function. The outputs correspond to the solution to the integral plus what

is specified in the options, for example, if ...'numval', 1... is the only input after inte-

grand, the output will be [y, n], where y is the computed value of the integral and n

the number of function evaluations.

options:

e grid

- CC: Clenshaw-Curtis

- KPL3: Kronrod-Patterson

- Leg: Legendre polynomial Gaussian quadrature

- Her: Hermite polynomial Gaussian quadrature

* sf

- 0: full grid

- 1: sparse grid

* funin

- Additional inputs to the integrand function in addition to the evaluation

point.

* timer

- 1: Output the time taken.

* showgrid

- 1: In 2 dimensions, display the points and graph of the function as they are

evaluated. In the dimension adaptive case, the old and active index sets

for the current element are also shown. In 3 dimensions, the evaluation

points are plotted.



* variance

- 1: Calculate the variance.

* mea (Multi-Element Adaptivity)

- Inputs are specified as an array:

1. Number of partitions (1 if none)

2. Desired resolution for each grid element. For non-adaptive, input an

integer. That number will be the level in each partition.

3. Maximum grid level (to prevent the adaptivity from getting out of

control)

4. Adaptivity - 0: non or uniform adaptivity (depending on 2), 1: Di-

mension adaptivity

1: Return record of adaptive behavior

Adaptive criterion for time dependence: 0: Integral, 1: Maximum

For integrands with vector ranges, this specifies the output parameter

the adaptivity responds to (only for time dependent).

* numval

- 1: Return the number of function evaluations.

* timedep

- If the integrand returns vectors in time, this input should be a two element

array in the form [dt, t 1], where dt is the time step the simulation will be

splined to and t1 the end time of the simulation.

* nout

- In the time varying case, this is the number of function outputs.

* interp



- An n by d matrix, where n is the number of points being interpolated, d the

dimension, and each row a point being interpolated. Do not use subspace

splitting or Hermite polynomial Gaussian quadrature if using this feature.

* showprog

- 1: Display which grid is being evaluated and the current attained error

tolerance (dimension-adaptivity only).

The function f should be of the form

function y = f(x, funin) for scalar functions.

function [y, t] = f(x, funin) for functions that are vectors through time.

t is the vector of times the solutions is

splined to, of the form tl : dt : t2-

where x is a vector of the coordinates for the point to be evaluated and funin any

extra information for the function. If there are no additional inputs to the function,

keep an unused second input. It should return the function value at that point,

which can be a scalar or a vector(s) through time. A description of the output of f

is provided to the program through the options.

Sometimes there are multiple values of interest; this is often the case in large

scale dynamic simulation, when there are many states. Because each function eval-

uation can be costly, it is sensible to be able to integrate each state using one set of

simulations. In this case multiple states can be evaluated, and a matrix with rows

corresponding to states and columns to times is returned.

When function evaluations are very expensive, it is highly recommended to have

Collocation.m call an outer function which evaluates and writes to a file the function

value if it is a new evaluation point, and reads the function value from an existing

file if it has already been evaluated at that point. It may happen that a simulation

is stopped before all the grids have been computed, or more similar simulations are

run in the future; writing the evaluations to a file as the program goes prevents lost



or repetitive calculation. Below is an example of how such a program might look.

function y = outer (x, funin)

if f has previously been evaluated at x

read f(x, funin) from file

else

evaluate f(x, funin)

write f(x, funin) to a file

end

y = f(x, funin)

B.2.1 A warning about computational costs

Don't set the adaptive tolerance too small or the level of the non-adaptive grid too

high. Computational cost can increase exponentially: if a certain level takes an hour,

the next level up could take a year. For the adaptive grids, there is an option to impose

a maximum grid level. It's easy to get a feel for how long the program takes with the

test integrals (which are more difficult to accurately integrate than the ODE).

B.3 Description of each program

* Collocation files

-Collocation.rm

Interface program for user. Assembles options (see below) and calls sub-

programs.

- ColOutput.'rr

Calls multi-dimensional integration programs and assembles computed re-

sults.

- ColPartition.m

Partitions the region of integration into identical subspaces.



- ColFG.m

Generates and evaluates a full grid tensor-product quadrature.

- ColSG.m

Generates and evaluates a sparse grid tensor-product quadrature.

- ColSGIndexSets.m

Creates the index sets for the sparse grid.

- ColDiffGrid.m

Returns abscissas and weights for one-dimensional quadrature routines. If

specified, returns one dimensional difference grid.

- ColSortComb.m

Combines coincident points in sparse grids.

- ColAdaptUnif.m

Uniform adaptivity: evaluates higher order grids until adaptive tolerance

is reached.

- ColAdaptDim.m

Dimension adaptivity: the dimension adaptive algorithm from [13].

- ColAdaptDimGrid.m

Generates the grid for ColAdaptDim.m.

- ColAdaptDimValid.m

Checks that the next grid evaluated in ColAdaptDim.m is valid.

- CollnterpFG.m

Interpolates chosen interpolation points if a full grid has been used.

- ColInterpSGDA.m

Interpolates chosen interpolation points if a sparse of dimension-adaptive

grid has been used.

- CollnterpDiffb.m

Generates the one-dimensional difference coefficients for constructing sparse

and dimension-adaptive grid interpolants.



- FindLegendreRoots.m (from Numerical Recipes [36])

Returns the abscissas and weights for Legendre polynomial Gaussian quadra-

ture.

- HermQuad.m

Returns the abscissas and weights for Hermite polynomial Gaussian quadra-

ture.

- ClenshawCurtis.m

Returns abscissas and weights for Clenshaw-Curtis quadrature.

- KPL3.m

Returns abscissas and weights for Gauss-Kronrod-Patterson quadrature

beginning with the three point Legendre polynomial Gaussian quadrature.

* Auxiliary files

- TestIntegrand.m

Test functions, including those in [11].

- TestIntegrandSol.m

Exact solutions to test functions in TestIntegrand.m.

- Plots_D2.m

Plots two-dimensional instantiations of each test function.

- dirinit.m

Adds the directory to the Matlab path, so Collocation. can be called from

any location.

- CollocationDemo.m

Runs Collocation.m on test functions and a first order ODE.



B.4 Test functions

The ten test functions in TestIntegrals.m are shown below. The first six are from

[11].

OSCILLATORY

CORNER PEAK

PRODUCT PEAK

GAUSSIAN

CO

f(x) = cos(27rul + •Z•i aixi)

f(x) = (1 + E', aixi)-(d +l)

f(x) = H1i(ai- + (xi - u)2)

f(x) = exp(- =l1 a0(xi - ui)2)

f(x) = exp(- Ed aixj - ui|)

DISCONTINUOUS 0f(x) = d
exp(E, aixi)

xl > ul or x 2 > U2

otherwise

UNCOUPLED

MAX PRODUCT

ODD C o

ODD DISCONTINUOUS

f(x) = E=1 exp(ai(xi - ui))

uj + 1, 1)

f(x) = exp (- i odd(ailxi - ui )) exp (- i even(ai(xi - i)))

0
f(x) = exp(E-d aixi) otherwise

*a and u are tunable parameters.

All entries of a are positive and u is randomly generated. Run the program

Plots_D2.m to see the two dimensional instantiation of each function.

f(x) = d1 max(xi

3i odd s.t. xi > ui



B.5 Running CollocationDemo.m

The program CollocationDemo.m runs the package on some examples. Set type = 0

to integrate and interpolate the test functions above. Set type = 1 to evaluate the

expected value of the solution to the ODE.

x = lx x(0) = 2,

where p, and /12 are uniformly distributed random variables on the interval [0, 1].

The solution to the ODE is z =- A2 e- i't. This is treated as a vector valued function

in which each entry is a point in time. Notice that the expected value (what is being

calculated)
1

x = (1 - e-t)
2t

is not a solution to the ODE. You'll see that the dimension adaptive algorithm requires

a much smaller adaptive tolerance to achieve a good error for the variance; this is

because the integrand being adapted to is the mean and not the variance.

We evaluate the electric ship in the same fashion, except that rather than having

a closed form solution to evaluate, a simulation must be run at each point in the

integral's domain.

For sensitivity analysis we look at the variance solution, and either consider the

maximum of the variance through time or the integral of the variance through time.

Histograms of interpolated points are generated as well; the usefulness of this

feature is more apparent in the time dependent case, where straight Monte Carlo

simulation would be an overly expensive means of finding a PDF at later times.
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