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Chapter 1

Introduction

The weather system affects our lives at every moment. Our daily work and leisure activities are all

constrained by weather conditions. Many people remember a day when their great picnic plan was

ruined or when they get soaked wet by sudden rainfall. The current and future weather conditions

are particularly relevant to people such as seamen who risk their lives on the ocean. Furthermore,

if we had a better forecast system, we would have been able to avoid tragedies like the hurricane

Katrina incident by evacuating the area before the hurricane hit. For all these, the ability to predict

the future state of the weather system has been the prime interest of many researches supported by

many governments and individuals.

Numerical Weather Prediction The field of numerical weather prediction (NWP) studies on the

mathematical modeling of the weather system and, in turn, techniques for estimating the current

weather condition. In principle, if we know the mathematical model(dynamics) of the weather

system and the current condition of the system perfectly, we can exactly predict the future weather

state. It reduces to the simple problem of finding the numerical solution of the dynamics given the

initial weather conditions. In order to get good weather forecasts, we need to have accurate

* Weather dynamics: the mathematical model of the weather system

* Initial weather condition: the current state of the weather system, which will be provided as the

initial value for weather dynamics



For the first part, the advances in the mathematical and physical understanding of the weather

dynamics has lead to significant improvement in weather prediction over the several decades.

State Estimation and Data Assimilation This thesis is concerned with the problem of deter-

mining accurate initial conditions for the weather system. The weather dynamics are chaotic. It

is well known as butterfly effect that a single flap of a butterfly's wing could change the weather

condition significantly in the future. Formally, it means that the solution of weather dynamics are

very sensitive to the initial condition of the weather. Given two slightly different initial conditions,

the difference between the resulting two solution to the dynamics increases with the time of pre-

diction, how far we wish to predict. Thus, having the good estimate of initial weather condition is

as important as learning good model of the weather system.

To get the initial condition of the weather system, we have to make measurements of the sys-

tem. Quantities such as pressure, wind, temperature and humidity are of our interest. This is cur-

rently done by many types of observation system such as radiosonde stations, balloons, aircrafts,

and satellites [2]. However, the current measurements alone does not give enough information

about the current state as we do not have measurements at all parts of the world: we have lim-

ited number of sensors. Thus, we have to utilize information from the past measurements and the

prediction of how they would have affected the unobserved regions, which is inferred based, in

part, on the physical understanding of the system. In addition, the measurements are noisy as the

sensors have limited accuracy. We would guess the true state of the system by balancing between

noisy measurements and our prediction of the state. As we take more measurements of the system,

we would iteratively improve our guess. This iterative or recursive process is called state estima-

tion. In the context of NWP, the whole process of estimating weather conditions is called data

assimilation [26].

Ensemble-based Filtering for Estimating Nonlinear and Complex System As mentioned,

data assimilation refers to the process of combining all available information about the system in

order to get the best representation of the system. The representation is expected to provide the best

estimate of the current state of the system and also the uncertainty associated with the estimate.



For example, a weather forcast about possible rain usually includes an estimate for the probability

of precipitation. While we try to get the best estimate, we also wish to minimize the uncertainty.

In many state estimation problems, Bayesian filtering schemes are used to estimate the system.

It gives a principled and probabilistic way of getting the best estimate of the system given all past

measurements and the knowledge of the dynamics governing the system. Furthermore, it quantifies

the uncertainty of the estimates.

The Kalman Filter (KF) is probably the best known among these schemes and widely used

in many areas [47]. However, its applicability is rather restricted to simple systems where the

dynamics of the system is assumed to be linear. Its nonlinear extension, Extended Kalman Filter

(EKF), is widely used for estimation when the system is governed by nonlinear dynamics but still

can be well approximated locally by linear dynamics.

However, the high-nonlinearity of weather dynamics causes difficulties in applying these schemes

in the weather system estimation or data assimilation. Specifically, if the system dynamics are non-

linear, chaotic, and of large-scale, computationally intensive Monte-Carlo estimation techniques

are often used to well incorporate these characteristics of the dynamics [14]. In these schemes, the

condition of the weather system is represented by the distribution of large number of Monte-carlo

samples, each representing a possible state of the weather system. The best estimate of the system

is essentially decided through voting, by of these samples by taking the average value of the sam-

ples. The uncertainty of the estimate is decided by the spread of these samples, how much they

deviate from the best estimate. The Ensemble-based filtering [48] is a technique of this type, which

is intensively used for numerical weather prediction and many environmental sensing applications.

In this thesis, we adopt the ensemble-based filtering as our estimation framework.

Weather Targeting: an Informative Path Planning Problem A big problem with current data

assimilation is that the measurement instruments are unevenly distributed. The measurements on

big ocean area such as Pacific ocean are sparse compared to the measurements on land due to many

reasons such as maintenance cost and difficulty of deployment. This leads to inaccurate estimation

of the state at these regions.

The accuracy of the forecast within these regions suffers due to the sparse measurement avail-



ability as does the forecasting in other regions, as the weather system is an interconnected system,

where estimation error in one region propagates easily to other region when making predictions.

We can solve this problem by deploying mobile network of sensors such as aircrafts or Un-

manned Autonomous Vehicles(UAV) to these observation-sparse regions (see, for example, NOAA's

Winter Storm Reconnaissance Program [44]). As the weather system is complex, measurements

at different spots of the system may produce significantly different results in terms of improving

forecast performance [2, 33, 37]. Our goal, then, is to maximize the impact of the additional de-

ployments of mobile sensors by carefully selecting the spots or paths that these mobile sensors will

follow while taking measurements along the way. This is called weather targeting [2, 14].

The value, or information gain, that measurements provide are usually evaluated through in-

formation theoretic measures, quantifying how much information we acquire from a measurement,

within the estimation framework we choose: Typically, the information gain is interpreted as the

reduction in the uncertainty that is provided by the measurement The uncertainty is the expected

error of the estimation and we expect to improve the forecast through reducing the uncertainty. The

weather targeting through the use of mobile sensors is a special case of informative path planning

problem. Basically, the problem is to evaluate the information gain of candidate paths and choose

the best path which has the most information gain.

Computational Burden of Ensemble-based Filtering Ensemble-based filtering can better track

and estimate large-scale nonlinear systems, but it incurs significant computational cost for informa-

tive path planning. In ensemble-based filtering, an exact calculation of the information gain for a

particular path requires the full simulation of each path, which is a series of expensive Monte-Carlo

simulations with nonlinear integrations. Information gain of a path is essentially the difference of

current uncertainty and future uncertainty after taking a path. Therefore, an efficient way of cal-

culating the uncertainty in future is essential to address informative path planning in a large-scale

nonlinear system such as the weather system.

Learning Uncertainty Propagation We need the ability to emulate Monte-carlo simulations

in a computationally efficient way to evaluate the information gain of paths. In this thesis, we



propose a strategy by which to learn this nonlinear propagation of uncertainty using past samples

of Monte-Carlo simulations, using machine learning techniques. The general goal of learning is to

find an arbitrary function f(x) = y given enough past samples of (x, y) pairs, where x is a vector

of inputs or features and y is a scalar output or label. In our context, x is a representation of the

current uncertainty and y is future uncertainty, and we then seek to learn a mapping between the

current uncertainty and future uncertainty.

We will show that the function f, learned with past samples, is a computationally efficient

means to predict the future uncertainty given the current uncertainty, and is much faster than

Monte-carlo simulations. The problem of path selection then becomes one of applying this learned

function to evaluate information gain of paths. Among many machine learning tools available, we

will make use of regression to find a function f(x) = y whose output y is real value. Regression

has been studied for decades and there are many approaches that we have to try in finding the best

method for our data.

Thesis Statement Through the combined use of regression techniques, we will learn models of

the uncertainty propagation efficiently and accurately to replace computationally intensive Monte-

Carlo simulations in informative path planning. This will enable us to decrease the uncertainty

of the weather estimates more than current methods by enabling the evaluation of many more

candidate paths given the same amount of resources. The learning method and the path planning

method will be validated by the numerical experiments using the Lorenz-2003 model [32], an

idealized weather model.



Chapter 2

Background

In this chapter, we introduce the technical details that are necessary to formally define the informa-

tive path planning problem for the weather system estimation. The precise mathematical definition

of the problem is needed to attempt to solve the planning problem computationally and evaluate its

performance. Many of the details introduced in this chapter are generally applicable to the infor-

mative path planning problem in any system, but our focus is on the weather system, which may

well be the most challenging system to deal with.

The goal of the informative path planning in the weather system is to ultimately improve the

weather forecast. As explained in the introduction, a forecast requires that we have a mathemat-

ical model of the weather system and estimate the initial weather condition. In this chapter, we

first introduce mathematical modeling of the weather system. Then, we present the details of data

assimilation, the weather estimation process, and choose the ensemble-based filtering as the esti-

mation framework for our problem. Given the estimation framework, we define the informative

path planning problem as the uncertainty reduction of estimates in this framework. Having in-

troduced the ensemble-based filtering, we then describe the computational challenges of planning

within this framework.



2.1 Mathematical Modeling of the Weather System

Recent advances in numerical weather prediction (NWP) has enabled more precise mathematical

modeling of the weather system. A mathematical model of a dynamical system such as the weather

system is the mathematical representation of 1) the state of the weather system and 2) the dynamics

governing the change of the state. We first describe the two parts in general terms, which is

applicable to any dynamic system.

2.1.1 Gridspace Representation of Dynamic System

Mathematical representation of the state of a dynamic system is a collection of interacting state

variables. These variables are associated with some location in the world we are modeling. Weather

system can be abstracted as a collection of variables such as temperature and wind speed at differ-

ent points of the world. Though the actual world is continuous, we discretize it into a gridspace,

where a cell represents some rectangular space in the world. Then, we associate state variables

to each cell: for instance, a state variable associated with a cell represent the temperature of that

cell. An example gridspace is shown in Figure (2-1). Each dot is the center of a grid cell and

has associated state variables. Without loss of generality, we consider the case where a grid cell

is associated with only a single variable. We will use the notation xt E IRNS to denote the state

Figure 2-1: State variables over a gridspace; •i is a function of neighboring state variables ni.

vector at time t, which is the collection of all state variables in the system, where Ns is the total
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number of cells. Though gridspace may be 2D or 3D, we can always index them using a single

variable in some order. To denote an individual state variable of i-th cell, we will use x(i) E R.

2.1.2 Dynamics on the Gridspace

In a dynamic system such as the weather system, the state variables change over time through

interaction with other state variables, according to the actual or true dynamics of the system. It

is almost impossible to know the true dynamics of a system exactly. However, in many cases, we

can model the instantaneous change of the state variables through differential equations, model

dynamics, with some reasonable error. The dynamics of a state variable at a cell are usually

modeled as a function of the state variables of some spatial neighborhood of the cell: the physical

interaction between cells in a spatial neighborhood is assumed to be good enough to describe an

instant change at a cell. For the state variable of the i-th cell, its instant change is modeled as:

t (t) = fi(n(t)), iE [1, Ns] (2.1)

The term ni represents the state variables in the neighborhood of the i-th cell, which is defined as

n, = {xj: d(i,j) _• Ls} (2.2)

where d(i, j) is some distance measure between grid i and grid j, and L, is the radius of the

neighborhood. The right-hand side function fi : RInl- I- R can be an arbitrary nonlinear function.

A dynamic system is called a large-scale dynamic system when N, is a big number. A large-scale

system also may have a higher degree of coupling between state variables, meaning the size of

neighborhood Ini| is big.

Chaotic Weather System Dynamics In different dynamic systems, the function fi may have

different characteristics. It may be a linear function in simple systems or a complicated nonlin-

ear function for complex systems such as a weather system. Weather dynamics are especially

characterized by its highly nonlinear and chaotic behavior.



Definition (Chaotic Dynamics): A dynamic system is called chaotic, if it satisfies the following:

1. It is sensitive to initial conditions.

2. It is topologically mixing.

3. Its periodic orbits are dense.

Suppose that we do not exactly know the temperature of a cell; whether it is 80. 1"F or 80.2"F due

to noisy measurements. We would not really care about the difference of 0.1 E. However, if the

temperature has chaotic dynamics and we were to predict the future temperature, the difference

will be significant as the solutions of dynamics are sensitive to that 0.1 F difference. For instance,

20. I"F may give 22"F while 20.2"F gives 30"F as the solutions when we predict the temperature

of the cell a few days later.

The first property is most well known as the "butterfly effect". The "butterfly effect" states that

even a flap of a butterfly's wing could change the final status of the weather system vastly due to

chaotic dynamics. This is a fundamental limitation to weather prediction. The detailed description

of chaotic dynamics can be found in [16] and it is not in the scope of this thesis.

2.1.3 Lorenz-2003 Model

There are many weather system models, which differ in terms of the actual region they represent,

resolution of the gridspace, the complexity of the dynamics and so forth. Some of these models are

used for operational weather prediction such as the Navy's Coupled Ocean Atmosphere Prediction

System (COAMPS) [25]. However, it is the nonlinear and chaotic dynamics of these models that

differentiates them the most from other dynamic systems.

In this work, we use the Lorenz-2003 weather model [32] for all experiments and for method

validation. This is a reduced model that has a smaller number of variables than operational models

as a coarser resolution is used. Also, the dynamics are simpler in terms of the size of the spatial

neighborhood and the degree of coupling between variables. However, one should note that this

model is non-trivial. The Lorenz model is known for its nonlinear and chaotic behavior, and has



been used extensively in the validation of weather targeting methods [34, 31, 12]. The primary rea-

son of using this model instead of operational models is the computational constraint; operational

models run on supercomputers and its simulation time is still not much faster than real-time.

The Lorenz-2003 model is an extended model of the well-known Lorenz-95 model [34] that ad-

dresses multi-scale feature of the weather dynamics in addition to the basic aspects of the weather

motion such as energy dissipation, advection, and external forcing.

We use the two-dimensional Lorenz-2003 model, representing the mid-latitude region (20 -

70 deg) of the northern hemisphere. There are Lo = 36a longitudinal and Lat = 83 + 1 latitudinal

grids in Lorenz models. In the case where a = P = 1 it is the two-dimensional Lorenz-95

model[12]. The case of a = P = 2 it is the two-dimensional Lorenz-2003 model. Thus, there are

a total of 72 x 17 = 1224 state variables in the Lorenz-2003 model. The length-scale of the Lorenz

models are proportional to the inverse of a and 3 in each direction: the grid size for a = 3 = 2

amounts to 347 km x 347 km. The time-scale of the Lorenz models are such that 0.01 time units

are equivalent to 1.2 hours in real-time; the duration of 0.01 time units is equivalent to 1 (discrete)

timestep in the further discussions.

The equations of the Lorenz-2003 dynamics We introduce the actual equations of the Lorenz-

2003 dynamics here. Notice that the instant change of a state variable is a function of its neighbors

in these equations. Also, all state variables are governed by the same dynamics; we do not have

separate dynamics for each grid though it can be easily generalized to the case with separate dy-

namics by changing some parameters in the models. In this section, we use a two-dimensional

index (i, j) where i denotes the West-to-East grid index and j denotes the South-to-North grid in-

dex; xz(,j) is the state variable of (i, j)-th grid. The dynamic equations governing the state variables



is

k=+ La/2]

(ij) =- i-2a,j)(i-a,j) 2a/2 +1 +i-a+kj)X(i+k,j)
k=- L[a/2]

22 k=+ LO/2]
- (ij-20)(ij-0) k + 1 ?(ij-+k)X(i,j+k) (2.3)3(i,j23)T/(i,j/3) 21,/2] + 1 k=-LZ/2]

k=- [P/2j

where

k=+ La/2J2= 2J +1 k (i+kj) (2.4)
2 =- + /21

k=+ L[/2]

k=/2 +1 /2 X(i,j+k) (2.5)2L//2] + 1 E/2
k=- [ /2]

where t = /, Lon = 72 is the number of variables on the longitudinal axis and Lat is the number

of variables on the latitudinal axis. The equations contain quadratic, linear, and constant terms

representing advection, dissipation, and external forcing. The dynamics of the (i, j)-th grid point

depends on its longitudinal 2a-interval neighbors (and latitudinal 20) through the advection terms,

on itself by the dissipation term, and on the external forcing (F = 8 in this work).

The dynamics in (2.3) are subject to cyclic boundary conditions in longitudinal direction

X(i+Lon,j ) = X(i-Lon,j) = X(i,j)

and a constant advection condition

X(i,O) = .." = X(i,-[O/ 2J) = 3; X(i,Lat+1) = " X(i,Lat+LO/2J) = 0

is applied in the latitudinal direction.



Long-term dependency of the state variables As mentioned, the instantaneous change of the

xi (t), i (t), can be represented in terms of ni(t). Usually, IniI < N,; meaning that we only need

to know small number of variables to calculate the instantaneous change. However, it should be

noted that this local dependency does not mean that xi (t + At) is a function of ni (t) for finite At.

For the simplest example, consider a linear system:

ýi = clx 1i- + coxi + c+lxi+1, Vi {1..., Ns} (2.6)

with boundary conditions xo = XN,+1 = 0. Then, the mapping from x(t) to x(t + At) becomes

x(t + At) = eCAtx(t) = [EZ Atk k/k!] x(t) (2.7)

where C E RNX Nx is the tri-diagonal matrix with Ci-1,i = c-1, Ci-1,i = co, and Ci+l,i = c+1.

Even if C is sparse, C k can be fully populated; therefore, full knowledge of x(t) is needed to

calculate xi(t + At).exactly for finite At in general.

2.2 State Estimation (Data Assimilation)

Given a weather model, we can make a forecast if we know the initial condition or state of the

weather, to input into the model. We must estimate this initial condition from our current and past

measurements and also past predictions. This process is called state estimation in general and data

assimilation in the context of NWP.

Estimation of state is needed since it is impossible to know the state perfectly. Our sensors can

only take noisy measurements due to mechanical, electrical and other limitations. For instance, an

odometer in a car can only roughly tell us how far we have traveled. In addition, we have a limited

number of sensors. In the case of the weather system, we cannot put sensors everywhere in the

space of the earth. We must estimate the state of these regions through knowledge of dynamics

such as the Lorenz-2003 dynamics in equation (2.3) and the measured states of other regions.

A state estimation algorithm specifies how to combine the information from all measurements



seen so far and the dynamics. Furthermore, additional measurements may come in continually as

a stream and the estimates may need to be recursively updated efficiently.

Bayesian filtering is a probabilistic way of performing this task. In this thesis, we focus on

bayesian filtering as the state estimation technique. Its theory is well founded in probability theory,

and it has many forms depending on certain assumptions we have about the system. The Kalman

Filter (KF) is probably the most famous scheme among the family of Bayesian filters [9]. The

KF assumes that the dynamics of the system is linear and that the next state can be described by

linear combination of past states. It also assumes that the state variables are Normally distributed

(Gaussian). It is the most restricted form of Bayesian filters but it has been successfully applied

to many tasks [9]. However, as we have described, weather dynamics are highly nonlinear. As a

result, the assumption of linear dynamics in the KF does not hold. We may need more sophisticated

filtering techniques.

In the following sections, we first describe Bayesian filtering in general. Then, we introduce the

KF to motivate the use of bayesian filtering in state estimation. Finally, we describe the Ensemble-

based filtering that can be used for highly nonlinear systems such as the weather system, which is

the estimation technique used in this thesis.

2.2.1 Bayesian Filtering

In a Bayesian setting, we represent the noisy information about state variables x using a probability

distribution p(x). For instance, we may not know the exact value of the temperature but know

that it is around 80'F as sensed from a noisy sensor. We can represent this knowledge with a

probability distribution which assigns higher probability to 80'F and smaller probabilities to the

temperatures around 800 F. Bayesian filtering allows one to update this probability distribution

according to newly available information. The original distribution is called the prior distribution

and the updated one is called the posterior distribution.

In our state estimation problem, we have two sources of information. First, the measurements

give information about the current state with some sensor noise. Secondly, the model dynamics

predict the next state given the current state with some model error, the error between the ac-



tual dynamics of the system and our model dynamics. Formally, the measurements zt give noisy

information about the state variables xt. We may observe state variables directly or through a

transformation:

zt = h(xt, wt) (2.8)

where h can be arbitrary function and wt is the sensing noise. wt for all t is assumed to be sampled

from an identical noise distribution. The model dynamics predict the next state given the current

state with some model error:

Xt = f(xt-, rt-1) (2.9)

where f can be arbitrary function and rt-1 is the model error. rt for all t is assumed to be sampled

from an identical error distribution. Using these two source of information, we have two steps to

update the distribution: prediction(forecast) update and measurement(analysis) update.

Prediction update: p(xt-1 zo:t-1) I p(xt Izo:t-1) (2.10)

Measurement update: p(xtl zo:t-1) p(xtIzo:t) (2.11)

where Ztl:t2 = {Zt1 ,Ztl+l,- .- , Zt 2} and p(xlztl:t,) is the conditional probability distribution of x

given (past) measurements ztl:t 2. The actual mappings of the prediction and measurement updates

depend on the form of functions f and h as well as the form of the distributions.

Different schemes of Bayesian filtering assume different forms of the dynamics f and the

observation transformation function h. In addition, the probability distribution of x, the error

distribution and the noise distribution are assumed to be in some form. For example, the KF

assumes a Gaussian form for all these distributions.

In the next section, we describe the KF, which assumes the most basic form of the functions

and distribution.

Kalman Filter

In the KF, all probability distributions are assumed to be Gaussian which can be represented by a

mean vector and a covariance matrix. The dynamics are assumed to be linear functions and the



model error is additive Gaussian. This means that the next state of the state variables xt is a linear

transformation of the current state xt-1 with added Gaussian model error:

xt = Pxt_1 + rt-1

where P is the linear transformation or propagation matrix and rt-1 is from a Gaussian distribution

N(O, R), or rt-1 ' N(O, R). The measurements are also assumed to be linear functions of the state

variables with added Gaussian sensing noise:

zt = Hxt + wt

where H is the linear transformation or observation matrix and wt - N(O, Q).

As mentioned, the probability distribution of state variables x is represented by a Gaussian

distribution.

p(x) - N(y, E)

This means that we only need to keep track of p and E in updating the probability distribution of

x. Thus, the two update steps in Bayesian filtering become:

Prediction update: (At_l, 1E_, ) a (t {, E{t) (2.12)

Measurement update: (Af, Elt) E (gp, Ea) (2.13)

where the superscripts "f" and "a" denote the forecast and analysis, which is meteorological ter-

minology. We will use the this notation and terminology throughout this thesis.

The important property of a Gaussian distribution is that a linear transformation of Gaussians

is also a Gaussian distribution. The probability distribution of Px is a linear transformation of

x - N(p, E) is given by:

p(Px) - N(Ppa, PEPT) (2.14)

In addition, the sum of two Gaussian distributions are also Gaussian. For two Gaussian distribu-



tions p(x) - N(?p, Ex) and p(y) - N(,p, E,), the distribution of p(Ax + By) is given by:

p(Ax + By) - N(Ag, + BLpy, AExAT + BEyBT) (2.15)

Using these properties, the KF algorithm gives the following update equations for the prediction

and measurement update:

* Prediction update:

At = Pytl (2.16)

E{ = PEa P T + R (2.17)

* Measurement update:

Kt = EfHT(HEf HT + Q)- 1  (2.18)

At = Af + Kt(zt - Hyl) (2.19)

Ea = (I - KtH) Ef (2.20)

Kt is called the Kalman gain matrix and specifies the optimal balancing between the prior dis-

tribution and the new measurement, in a maximum likelihood sense. The exact derivation of the

Kalman gain matrix and the update equations of the KF can be found in [9]. Computationally,

the KF algorithm is simple linear algebraic operations on the mean vector and covariance matrix,

which can be efficiently calculated using standard linear algebra algorithms. Note that the prop-

erties of Gaussian distributions in equation (2.14) and equation (2.15) play important roles in the

efficiency of the KF algorithm.

However, the assumptions of the KF are too restrictive. In most cases, the dynamics are not

linear so that we must resort to another form of Bayesian filter, which can deal with nonlinear

dynamics.



Extended Kalman Filter

Extended Kalman Filter(EKF) extends the KF by allowing a nonlinear dynamics function f and

nonlinear observation function h, while noises are still assumed to be additive. It deals with the

nonlinearity through the linearization of these functions via Taylor expansion.

Specifically, the form of the dynamics in the EKF is:

xt = f(xt-1) + rt-1 (2.21)

where f is a nonlinear function and rt-_1 ' N(O, R).

The form of measurement function is:

zt = h(xt) + wt (2.22)

where h is a nonlinear observation function and wt - N(O, Q).

Recall that p(x) ' N(/p, E). First, let us look at the dynamics in the prediction update. To

approximate the effect of nonlinear dynamics, given the current distribution p(xt-1), f is linearized

around the current mean /Lt- via Taylor expansion:

xt = f(xt-1) ~ f(Ot-1) + f'(/it-1)(xt-i --It-1) + rt-1 (2.23)

= f (pt-1) + Pt(xt-x - pt-1) + rt-1 (2.24)

where Pt is the jacobian matrix of f at lt-1. The measurement function is also approximated simi-

larly and Ht is the jacobian matrix of h at pt-1. The reason for linearizing around the current mean

/t'-1 is simple as it is the best guess of xt-_ and it may minimize the error of the approximation.

Unfortunately, the posterior distribution of a Gaussian prior distribution p(xt) through a non-

linear function is not a Gaussian; it's not a linear transformation of a Gaussian anymore. However,

it is approximated by a Gaussian, meaning only the mean and the covariance of the non-Gaussian

posterior distribution are exactly calculated. Thus, in the EKF, there are two sources of error due to

nonlinearity; linearization of nonlinear function and a Gaussian approximation of a non-Gaussian



distribution.

Finally, the prediction and measurement update for the EKF are given by:

* Prediction update:

f4 = f (~- 1)  (2.25)

Ef = ptE _1Pt + R (2.26)

* Measurement update:

Kt = {HtT(H,{HtT + Q)-1 (2.27)

1t• = Alt + Kt(zt - Htp) (2.28)

f = (I - KtHt)Ef (2.29)

Note that now the propagation matrix Pt and the observation matrix Ht is indexed by time, as the

result of linearization will be different every time.

The applicability of the EKF depend on the local linearity of dynamics f and observation func-

tion h. However, it is not appropriate to use in weather estimation as weather dynamics are signif-

icantly more nonlinear and complicated than the dynamics in typical applications of the EKF such

as robot navigation [30]. In the next section, we introduce the Ensemble Kalman Filter(EnKF),

which is the Monte-Carlo extension of the EKF which does not use linearization but use Monte-

Carlo method to approximate the nonlinear propagation of the probability distribution.

2.2.2 Ensemble Kalman Filter: an Ensemble-based Filtering Scheme

Ensemble Kalman Filter(EnKF) is Monte-Carlo (ensemble) extension of the Extended Kalman

Filter (EKF), which better tracks highly nonlinear systems such as the weather system used in this

work [48]. 1

'For implementation, Ensemble Square Root Filter (EnSRF), a variant of EnKF, is used for its numerical advan-
tages. However, it does not affect the further discussion.



In the KF and EKF, we only kept the mean vector and covariance matrix of the Gaussian

distribution of state variables. In the EnKF, we use ensemble which is a pool of Monte-carlo

samples to represent the distribution of state variables. Each Monte-carlo sample in ensemble is

called ensemble member and each ensemble member represents a possible state of the weather

variables. Formally, ensemble is represented by the ensemble matrix X E RNS xNe

X = x 2 ... XNe]  (2.30)

where x i E RNs is the i-th ensemble member representing a possible state of state variables x and

Ne is the size of the ensemble (number of Monte-Carlo samples).

Like the KF and EKF, the EnKF approximates the probability distribution of x by a Gaus-

sian distribution. Specifically, EnKF uses the mean of ensemble x and the perturbation matrix of

ensemble X to approximate the mean /t and the covariance E of p(x) - N(p, E):

X= EkE[1,Ne[]Xk" X N-(X-X01 e) (2.31)

S E XXT (2.32)
Ne-1

where 0 denotes the Kronecker product and -y 1 is an inflation factor used to avoid underesti-

mation of the covariance E due to the finite size of ensemble Ne [48].

It is the prediction step that differentiates EnKF from other two filters. In prediction step, EnKF

propagates the ensemble through the nonlinear dynamics without linearization, corresponding to

applying the nonlinear dynamics to each ensemble member:

x = f(x_-,), i E [1, Ne] (2.33)

In our case, the dynamics f is given in a form of differential equation : so that equation (2.33) is

a nonlinear integration:

t

Note that the model error r 1_, may be different for each ensemble member. Then, using equa-



tion (2.31) and equation (2.32), we get the forecast mean At and the forecast covariance E{. Due

to this nonlinear propagation without linearization, EnKF is able to track the nonlinear propagation

of the probability distribution better than the EKF [49].

In this work, we assume that the state variables are directly observed without loss of generality.

Furthermore, there may be different number of measurements at different times; we observe a

fraction of the state variables in the system through a limited number of sensors which operate at

different times.

The form of measurement function is now:

zt = Htxt + wt (2.35)

Ht is defined by:

Ht(i, j)= 1, if i = j and xi is observed; (2.36)
0, if i Z j or xi is not observed.

Note that Ht is a N, x N, matrix with the rank N.

In sum, the prediction update and measurement update of the EnKF are given by:

* Prediction update:

x = f(x_),i E [1, Ne] (2.37)

f4 = xt (2.38)
E 1 --- T

S= - XtXt (2.39)
Ne - 1

* Measurement update:

Kt = EtHt(HtE HtT + Qt) - 1  (2.40)

At = •t{ + Kt(zt - Htlz) (2.41)

Ef = (I - KtHt)Eft (2.42)



Note that the observation matrix Ht and noise matrix Qt are indexed with time. It is to consider

the cases where we have different number of measurements at different times.

2.2.3 Computational Complexity of the Updates

The EnKF is a computationally intensive estimation framework. In this section, we discuss the

computational cost of the two updates in the EnKF.

The prediction update involves the nonlinear integration of every state variables per each en-

semble member. Let Ns be the number of state variables, Ne be the number of ensemble members

and Cit be the nontrivial cost of the nonlinear integration of one variable through the dynamics

such as the Lorenz dynamics in equation (2.3). Note that Ne has to be Q(N 2) for a reasonable

estimation of the system with bounded error growth [22]. Then, the nonlinear propagation, the in-

tegration of every state variables, takes O(CintNsNe) = Q(N a) computations. After the propaga-

tion, to get a forecast covariance Ef from the ensemble, one has to calculate the sample covariance

of the ensemble. It takes O(NNe) to fill up the total N2 entries of the covariance matrix. Thus,

the cost of the prediction update is given by:

The cost of the prediction update: Q (CitNsNe + NNe) = Q (CitN,3 + N,) = Q(N,4)

where we assume Cit < N, and Ne = Q(N ).

In the measurement update, updating all N, variables of the system given N observations, the

rank of Ht and Qt becomes both N. Then, the inversion of the matrix (Ht•f H7 + Q) takes O(N 3 ).

The matrix multiplications in equation (2.40) and equation (2.42) involve the covariance matrix of

size Ns x Ns and the rank N matrices, which takes O(N2N). Thus, the cost of measurement

update is given by:

The cost of measurement update: O(NsN + N3 )

Usually, N < Ns.



2.2.4 EnKF in Operation

Figure 2-2(a) shows an example true state of the Lorenz-96 weather model (top) over the 36 x 9

state variables. The bottom frame shows the estimated state at the same time. This estimate is

computed by EnKF using 200 ensemble members. Observations are taken at 66 fixed (routine)

locations represented by blue circles; note that there are regions where routine observations are

sparse, representing areas such as open ocean where regular measurements are hard to acquire.

Figure 2-2(b) (top) shows the squared analysis error between true state and ensemble estimates

from the upper figure, that is, the actual forecast error. The lower panel shows the ensemble

variance, that is, the expected squared forecast error. Note that the expected and true error are

largely correlated.



(a) True vs. Estimated State
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(b) Performance Analysis

Figure 2-2: (a) Top panel: the true state of the Lorenz system, an idealized weather model, where the intensity
correlates with the state value. Lower panel: The estimated state of the system, using ensemble kalman filter with 200
ensemble members. (b) Top panel: the actual forecast error. Lower panel: the ensemble variance.
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2.3 Weather Targeting: an Informative Path Planning

A big problem with current data assimilation is that the measurement instruments are unevenly

distributed. The measurements on big ocean area such as Pacific ocean are sparse compared to the

measurements on land due to many reasons such as maintenance cost and difficulty of deployment.

Figure (2-2)(b) shows an example of this case. The middle area is modeled as the Pacific ocean

and the observations in the area are sparse.

This leads to inaccurate estimation of the state at these regions. In Figure (2-2)(b), the error

of the estimates of the ocean is higher than other region. In turn, it leads to poor forecast of the

regions but also of other regions as the weather system is an interconnected system. The Lorenz

dynamics in equation (2.3) shows the example of weather dynamics where the future state of the

variables depend on the other variables greatly.

We attempt to solve this problem by deploying mobile network of sensors such as Unmanned

Autonomous Vehicles(UAV)s to these observation-sparse regions [44]. As the weather system is

complex, measurements at different locations may produce significantly different results in terms

of improving forecast performance [2, 33, 37].

Our goal, then, is to maximize the impact of the additional deployments of mobile sensors by

carefully selecting the spots or paths that these mobile sensors will follow while taking measure-

ments along the way. This is called weather targeting or adaptive observation [2, 14].

Strictly, the goal of original weather targeting is to improve the forecast of some region at some

day; for instance, 4-days forecast at two days later from now at California, by choosing or targeting

spots of the weather system for mobile sensors to take measurements. There are three important

times in the problem; planning time Tp, forecast time Tf, and verification time T,.

* Verification time T,: the time that forecast will be tested. For instance, 4-days forecast of 9th

Sep 2008 will be verified at 13th Sep 2008. Then, T, is 13th Sep 2008.

* Forecast time Tf: the time to give forecasts about the weather of T,. Tf was 9th Sep 2008 in the

above example.

* Planning time Tp: the planning starts at Tp and the entire planning, execution and forecasting



has to be done by Tf. For instance, Tp may be a few days before Tf.

Fighting directly with the error of forecast is hard problem and we often choose to minimize the

uncertainty of the weather condition at time T, or Tf. This problem is discussed in detail in [14].

Note that we have limited time to plan a path for a mobile sensor from Tp as the plan has to be

executed and forecast has to be made before the deadline Tf.

Weather targeting is a special case of informative path planning. The goal of informative

path planning is to maximize some information gain, or uncertainty reduction, over the possible

choices of measurements. The information gain is usually evaluated through information theoretic

measures within the estimation framework of the problem.

To describe the problem more formally, we first start with the review of information theoretic

measures of uncertainty, which we will use in this thesis. Then, we will formally define the infor-

mative path planning problem that we attempt to solve in this thesis.

2.3.1 Information Theoretic Measures of Uncertainty

There are two standard information theoretic measures of uncertainty of a probability distribution:

trace and entropy of covariance. They have simple mathematical formula for Gaussian case. We

will also explain the intuition behind the metrics. Then, we will define information gain, which is

the value of certain information.

Trace

The trace of a square matrix is simply the sum of diagonals of the matrix. For a multivariate

Gaussian case,

Definition (Trace for Gaussian) For a n-multivariate Gaussian random vector x, with its mean

vector p and covariance matrix E, its trace is:

H(x) = Z(ii)
i=1



An useful property to note is that the trace of a symmetric (thus square) matrix is actually the

sum of eigenvalues.

Proposition 2.3.1 The trace of a symmetric matrix is the sum of eigenvalues of the matrix

Remember that eigenvalues correspond to the size of the principal components, how stretched

a component is to its direction. Therefore, the trace of a covariance matrix roughly corresponds to

the circumference of the covariance ellipse. Thus, it may represents the uncertainty of a probability

distribution. The smaller the circumference is the more certain (peaked) the distribution is.

Entropy

Roughly, entropy measures the volume of information in a probability distribution. Low entropy

corresponds to a peaked distribution, which in turn corresponds to a distribution with low un-

certainty. There is high entropy in distributions like a uniform distribution. In fact, a uniform

distribution is most uncertain as every states are equally likely. For continuous random variables,

it is also called differential entropy. Conditional entropy is the entropy of a distribution conditioned

on new observations.

Definition (Differential Entropy) Given a probability distribution P(x) of a variable X and obser-

vations A, differential entropy and conditional differential entropy are defined as:

H(X) = j P(x) log P(x)dx (2.43)

H(XIA) = P(x, a) log P(xla)dadx = H(X, A) - H(A) (2.44)

Not every probability distributions have the analytical solutions for the integral above. Fortu-

nately, Gaussian distribution has the solution for the integral as in the theorem below [?].

Theorem 2.3.2 (Differential Entropy for Gaussian) For n-multivariate Gaussian random vector

x, with its mean vector p1 and covariance matrix E, its differential entropy is:

H(x) = In (2re)n det E2



Note that the determinant of a symmetric matrix is product of its eigenvalues and that is why it

roughly represent the volume of the uncertainty.

Proposition 2.3.3 The determinant of a symmetric matrix is the product of eigenvalues of the

matrix

Information Gain(IG)

Information gain defines how much more certain and peaked a probability distribution has become

after taking observations from the initial state.

Definition (Information Gain) Information gain I of observations A is defined as:

I(x; A) = H(x) - H(x|A)

where H(x) and H(xlA) are the uncertainty and conditional uncertainty of probability distribution

of x given.observations A. H is either, trace or covariance.

Intuitively, information gain is positive when the uncertainty of a distribution decreases by obser-

vations and negative otherwise.

2.3.2 Formal Definition of Informative Path Planning

Mathematically, this work addresses the following path planning problem in gridworld described

in Section (2.1.1) with a Bayesian state estimation scheme in Section (2.2.1):

p* = argminJ'(E )
pEP

subject to Ef = F(Et), Vk E [0, K- 1]tk+l (2.45)

t= M(EYk,pk), Vk [1, K]

Ea = given,

where F(.) represents the uncertainty propagation via a prediction step, while M(.,p) denotes

the uncertainty evolution via an update step with measurement taken at the location p. p -



{P, P2,'' ,PK} E K represents the sequence of grid points that the sensor platform will visit

over the time window [t1 , tK].

The set P is the feasible set of p that satisfies certain constraints such as motion of the sensing

platforms. J(.) is the objective function that we want to minimize; trace or entropy. In other words,

the informative path planning tries to minimize the size of uncertainty at the end of the planning

window, where the size is parameterized by the trace or determinant of the final covariance.

Note that we only concern the evolution of E not of x. In linear filtering case, E can be

propagated through linear dynamics without the knowledge of the true measurements. However,

in nonlinear filtering case, the true measurements actually change the propagation of E. We can

only approximately get E without the actual measurements.

2.3.3 Related Work

There has been a number of interesting studies for sensor placement strategies [23, 17]. However,

these studies focus on finding informative locations for static sensors and most do not consider

path selection for mobile sensors. Also, the temporal correlation of measurements are usually not

included, instead focusing on spatial correlations between measurements. Observation selection

using principal components of ensemble perturbation and its linear transformation was examined

in [35], and other work in adaptive sensor placement based on the EnKF used greedy strategies

such as randomly choosing one of predefined set of paths [4].

Krause 2006

The work of Krause et al.[28] considers selecting observations for spatial monitoring. Gaussian

Process(GP) was used to model the environment. GP is able to provide the estimate and the

uncertainty of the estimate at every point in R2 space. Basically, it interpolates the values of

observed points to give estimates for non-observed points. It provides the uncertainty information

by defining a spatial prior information between two points in the model; the estimate of a point

becomes more certain if there are more measurements around it.

Given the uncertainty information from GP, the algorithm chooses locations that maximize the



information gain through a greedy but efficient algorithm, with the help of the sub-modularity of

information gain measure.

However, the temporal correlation of observations were not considered in this setting. An

observation at time t has different informative value at other time t' in weather targeting problem

because the environment is dynamic and the estimates should be propagated through the knowledge

of dynamics at every timestep. The work was mostly interested in a rather static environment.

Hanlim 2007

The work of Choi et al. [14] examines targeting of mobile sensor network with EnKF, but their

techniques still requires integration of ensemble members through dynamics, which is computa-

tionally intensive. Also, it assumes that the order of observation sequences is not critical to achieve

computational feasibility. Basically, it propagates the ensemble to the end of the planning horizon

by executing the prediction update multiple times. Then, it calculates an extended covariance ma-

trix where not only spatial correlation but also temporal correlation is included. For every path, the

same extended covariance is used. The measurement updates are done on the extended covariance

depending on the locations that a path choose to visit. The effect of measurement is to linearly de-

crease the uncertainty. It is a linear measurement approximation to the true nonlinear uncertainty

propagation, as the prediction update and measurement update have to be iterated in turn to give

the true future uncertainty.



Chapter 3

Path Selection through Regression of

Uncertainty Propagation

The informative path planning requires the prediction of future uncertainties at different times in

-the estimation framework. In Bayesian filtering schemes, it requires a multiple iteration of the

prediction update F(.) and the measurement update M(-, -) of the filter.

Ensemble-based filtering, specifically EnKF, is an computationally-expensive estimation frame-

work that we have to use for highly nonlinear and complex weather system. Unfortunately, F(-)

and M(., -) are computationally expensive in this framework. Computing F(.) requires long se-

ries of complex nonlinear integrations for each member of ensemble. Furthermore, if the state

dimension is very large, evaluation of M(., -) is also very expensive.

Learning for Real-time Informative Path Planning Especially, we are concerned with real-

time operation of mobile sensing platforms. With limited planning time before actual execution,

constant feedback from the environment, and limited computational resources, we wish to have the

flexibility to choose a reasonable planning horizon K and the region of interest (ROI) around the

measurement locations, where the observations are likely to have the most impact.

For the measurement update, it is often approximated by localizing the effect of a measurement

to a small region around the measurement, called localized measurement update of EnKF. It even



shows the better performance than the original measurement update as it ignores spurious corre-

lations between two variables which are very far from each other [22]. Thus, we can localize the

effect of the measurement to a ROI using the localized measurement update.

However, the prediction update still requires full Monte-carlo simulations, nonlinear integra-

tions of all variables per each ensemble member even if we are only interested in the uncertainty

of a ROI. If only we can emulate the Monte-carlo simulations in a computationally efficient way,

we can solve the informative path planning problem through fast evaluation of information gain of

paths.

In this chapter, we propose to learn the nonlinear uncertainty propagation through regression

using past samples of Monte-Carlo simulations. Our approach is to learn only the prediction update

and use the localized measurement update of EnKF. Let R = {ci ci E [1, Ns], i E [1, IRI]}: the

cells of the system belong to a ROI. The learned prediction update will be able to calculate quickly

the covariance matrix of a ROI at next timestep E[(R) using only a small part of the current

covariance matrix E'-. This step can be recursively done through using the prediction as the input

to the next timestep. It will enable us to predict Ef{+K(R) where K is the planning horizon much

faster than original EnKF. By replacing the original prediction update with the learned prediction

update, we will be able to evaluate information gain of candidate paths much faster, rendering the

informative path planning problem feasible.

In Section (3.1), we will first describe the regression methods. Then, we will formulate the

regression problem to learn the uncertainty propagation (covariance updates) in ensemble-based

filtering and explain how it can enable fast informative path planning in Section (3.2). Also, the

challenges for the learning problem will be discussed, including the nonlinearity of the models

we have to learn. Finally, we will show our first attempt to learn the uncertainty propagation and

discuss the problems in Section (3.3).

3.1 Regression

Regression is a general learning problem of finding a (target) function or mapping f from input x

to real-valued output y; f(x) = y, y E R. The input will be assumed to be a vector of real values



without the loss of generality. For example, suppose that we wish to learn the temperature of a city

the next day given the temperature of the current day. Then, the learned function f should give

the temperature of the next day, y, with reasonable accuracy given the temperature of some day, z,

as the input. Here, we are interested in supervised regression. It means that we will get training

samples to estimate the function f; the pairs of input and output. In the case of above example, we

have past examples of how the temperature of the next day was given the temperature of some day.

Let inputs be X = (x1, X2, ... , xn) and outputs be y = (yi, y2, ..., yn), where n is the number

of training samples. The goal is not to perfectly fit the training samples as in

f(xi) = Yi (3.1)

This is easy as we can just let f be

f(x) = yi, if x is equal to xi, the i-th training sample; (3.2)
0, Otherwise.

Rather, we want to find f which will generalizes well to new samples as well as training samples.

This will be done by restricting the form of possible functions and choosing a good loss function

of residuals, ci = yi - f(xi), from which we may predict the future performance.

We may assume different properties for the function f. The most basic form of regression is to

assume that f is linear function of input xi. In that case, f can be represented by

f(xi) = o3 + 3lzil + f 2Xi2 + ...3mXim (3.3)

where ps are the unknown coefficients and xij is j-th entry of a training sample xi. The size of

each input xi is assumed to be m. /0 is called a bias term. We can rewrite equation (3.3) as

f(xi) = 0o + 3T xi (3.4)

where 3 is a vector of size m, [/31p;/3; ...; P3m]. In addition, by extending the original feature vector



x to x' = [1; x], we can rewrite equation (3.3) as

f (xi) = O'Tx' (3.5)

where /3' is a vector of size m + 1, [/3o; /31;/2; ...; Im,]. We use this form throughout the thesis.

Then, the estimation or learning of f is to find the coefficients / through minimizing some

loss function of prediction errors, ei = f(xi) - yi, i G [1, n]. The loss function should be a good

indicator of the prediction performance of the learned function f. Different learning algorithms use

different loss functions and it will lead to different estimation of f given the same training samples.

We first introduce the most basic linear regression algorithm, the Least Squares Regression(LSR).

3.1.1 Linear Regression Algorithms

Least Squares Regression

The most well-known and basic regression technique is the Least-Squares Regression (LSR). It

finds the function which minimizes the squared sum of errors over training samples. Let SSE(3)

be the sum of squared error over the training samples given the coefficients /,

n

SSE(3) = (yi - f(xi)) 2  (3.6)
i=1
n m

= (yi- 0/3 - xij3j)2 (3.7)
i=1 j=1

Then, the LSR finds / which has the minimum SSE(3).

From a statistical point of view, this is maximum likelihood estimation(MLE) assuming that

errors are independent random samples from a gaussian distribution. Also, the LSR is a very

intuitive estimation which averages error over given samples.

The solution 3 can be found by different derivations. It is often easier to work with matrix form



of equation (3.7) as follows,

SSE(P) = (y - XP)T(y - XO) (3.8)

where X is n x (m + 1) matrix of inputs [xl; x2; ...; x,], where the original input is extended with

a bias term, and y is n x 1 vector of outputs [Yl; Y2.;... Yn] -

The first derivation is using differentiation. Differentiating equation (3.8) with respect to f, we

get

OSSE
= -2XT(y - XP) (3.9)

02SSE = -2XTX 
(3.10)

If we set equation (3.9) to 0, we get

X T (y - XO) = 0 (3.11)

= (XTX)-1XTy (3.12)

equation (3.12) is often called normal equation and gives the unique solution of the LSR. The

derivations of the solution for other regression algorithms are similar to the above derivation.

Actually inverting the matrix XTX is not desirable due to the computational load of inverse

operation as well as the numerical instability. In practice, it is usually done via Cholesky decom-

position of XTX or QR decomposition of X. With n observations and m features, the Cholesky

decomposition takes m3 + nm2/2 and the QR decomposition takes nm 2.

Cholesky Decomposition for LSR Given a positive definite matrix E, there exist many matrices

C such that E = CCT . Cholesky decomposition finds the C which is lower triangular. We will

write it as L to emphasize that it's lower triangular. We can also use upper triangular matrix R



where LT = R,

LLT = RTR (3.13)

Note that the inverse or the transpose of a triangular matrix is also triangular. Solving a linear

system which corresponds to a triangular matrix is straightforward, as it's already in the form

where back-substitution can be used directly.

Given the cholesky decomposition of E = XTX, we can rewrite equation (3.12) as

/ = (RTR ) - I XTy (3.14)

(RTR)/ = XTy (3.15)

RTw = XTy (3.16)

where R/ is substituted by w. Now, we solve two linear systems to get 3.

1. Solve the lower triangular system RTw = XTy to get w

2. Solve the upper triangular system RO = w to get /

Cholesky decomposition is a general technique which can be used to solve most of the regres-

sion problems introduced in this thesis.

Regularized Least Squares

The LSR algorithm is known to be numerically instable and sensitive to the training set; using

different training set may lead to significantly different estimation of function f. This sensitivity to

training set is problematic as we expect the function to generalize well to new examples; it must be

less sensitive to specific choice of training samples. This problem is solved by regularization [20].

Regularization is to put the extra information or prior over the regression coefficients /3. We

would prefer to have small /3 2 as big 1/12 means that the function is less smooth and thus more

sensitive to training samples [20]. Thus, we penalize the norm of regression coefficients through



adding regularization penalty to the original loss function of the LSR. Effectively, we get biased

estimates of p with lower variance through regularization.

The Regularized Least Squares(RLS) algorithm minimizes the sum of the squared-error of the

training samples with regularization penalty,

mmin I(Xp -y)11 2 + A3T  (3.17)

where A is regularization parameter which controls the contribution of the L2-norm of regression

coefficients / to the total loss function; small A encourages big /3P12 and big A encourages small

1312
To minimize (6.6), we set the derivative of (6.6) with respect to /3 to 0, and get

= (XTX + AI)-1XTy. (3.18)

The RLS and regularization technique has been proven successful in learning functions which

can generalize well [20, 50, 38]. Specifically, the RLS perform better than the LSR with the careful

selection of A through some model selection criteria such as cross-validation.

3.1.2 Nonlinear Regression Algorithms

In many regression problems, often linear regression is not enough to learn the good mapping

between X and y; the relationship between the input and the output is not linear. For instance, the

dynamics in the weather models are nonlinear so that the input of the dynamics and the output has

a nonlinear relationship. In that case, we have to use nonlinear regression algorithms.

There are two ways of doing nonlinear regression:

* Linear regression with explicit higher-order features: One can build higher-order feature set

from original feature set. We will discuss how linear regression with this higher-order feature

set is nonlinear regression with original feature set.

* Kernel regression with implicit higher-order features: Through the use of kernels, one can learn a



nonlinear function in original feature space. Kernel implicitly maps original features into higher-

dimensional space. For example, Gaussian kernel maps features into infinite-dimensional space,

which is not possibly done through explicit feature construction.

We introduce the two methods in the following sections.

Nonlinear Regression through Feature Transformation

One should note that linear function form in equation (3.3) is fairly flexible and it can model

nonlinear functions of original input by some nonlinear transformation of original input. For a

simple example, we may transform original sample

xi = (Zil, Xi2, ... im)

to

= (Xil, X2 X22 2 2... i?1' X 2
X i  ily i i2, i2 • ... im i

by adding squared terms of original features; this is called basis expansions. Then, a linear function

of x' will be a nonlinear or quadratic function of original feature xi.

Nonlinear Regression through Kernel methods

Kernel Regularized Least Squares Kernel methods use implicit higher-order feature mapping;

it does not require explicit higher-order feature construction as in Section (3.1.2). We derive the

Kernel Regularized Least Squares (KRLS) algorithm from the original RLS solution to show an

example of kernel methods.

Let X be a row concatenation of training samples and y be a column vector of labels. The

original RLS minimizes the sum of the squared-error of the training samples with a regularization

penalty,

min {II(XP/- y)112 +• T/)} (3.19)
'3



where 0 is a column vector of regression coefficient(weights), and A is a regularization parameter

which controls the L2-norm of weights 3. To minimize (6.6), we set the derivative of (6.6) with

respect to w to 0, and get

0 = (XTX + AI)-IXTy. (3.20)

The prediction for a new sample x* is given by

y* = PTx* (3.21)

Now, let O(x) be a mapping of the original features x to a higher-dimensional space; for instance,

basis expansions. The solution of the RLS in equation (3.20) using the new features O(x) can be

written as:

0 = (K + AI)-'K'Ty.

where

... (x( )TO(Xn))

... ...

O(Xl)

K' = ..

K is called the kernel matrix. The prediction for a new sample )(x*) is now given by

K is called the kernel matrix. The prediction for a new sample O(x*) is now given by

y* = p3T(x*) = YT(K + AI)-lK'¢(x*) = YT(K + AI)-'K*

where

(3.26)

k q(xn)q(x*)

Note that the prediction for a new sample, the solution of the model, only depend on the inner prod-

(3.22)

(3.23)

(3.24)

(3.25)

)St~(x*)

O(X1)T ( X 1 )

K = (Xn..(X

K* =



ucts of features. Thus, instead of choosing a mapping q to explicitly build a higher-order feature

set, we can use a kernel function k(xi, xj) = O(xi)O(xj) to build the kernel matrix K and the ma-

trix K*. The mapping q is chosen implicitly through the choice of the kernel function. Intuitively,

kernel function k defines some similarity or distance metric between two samples. However, note

that the solution of regression is not parameterized; the function f has to be reconstructed for each

prediction through the calculations of kernel function k to build the matrix K*.

A kernel function should satisfy Mercer conditions [10]. Mercer conditions basically requires

the kernel matrix to be positive semidefinite; the inverse of K + Al should exist.

The examples of kernel functions Two popular kernels are polynomial kernel and Gaussian

kernel:

* Polynomial Kernel (of degree d): K(xi, xj) = (x TXj)d

* Gaussian Kernel (of bandwidth r): K(xi, xj) = exp(- Ixi2)

It may be beneficial to discuss some characteristics of kernels. For polynomial kernel, a higher d

will increase the capacity of a classifier so that the resulting classifier can have more complex deci-

sion boundary. Basically, d-th polynomial kernel includes the effect of up-to-d-th order interaction

terms of original features. The Gaussian kernel maps the original features to a infinite-dimensional

space. The influence of a sample to other sample will be controlled by the bandwidth parameter a.

Support Vector Machines Support Vector Machines (SVM) is another very popular kernel

method, which is regarded as the state-of-the-art learning algorithm [15]. The SVM minimizes

the hinge-loss function, or the E-tube loss function, instead of the squared-error loss in the KRLS.

The hinge-loss function is not smooth function, encouraging sparsity in the solution; only a fraction

of the training samples contribute to the solution. For more details, refer to [39].

The actual computation of the KRLS is to solve a simple linear system while the SVM needs

a quadratic solver. Through the use of well-developed linear solvers, the KRLS can be computa-

tionally quite effective in practice. In our experiments, the KRLS was much faster than the SVM

using a same type of kernel.



The KRLS has shown comparable generalization results to the state-of-the-art SVM [39, 51].

Compared to the SVM, the KRLS also enjoy fast and exact incremental updates of the solution

when a new training sample is available [18, 46].

3.2 Applying Regression to Learn Uncertainty Propagation

We have described the basic regression algorithms. As described, (supervised) regression is to

find the target function f given training samples; features X = (x1, X2, ... , x,) and labels y =

(y1, y2, ..., Yn).

In this section, we attempt to use regression to learn uncertainty propagation in ensemble-based

filtering. In propagating the uncertainty for one timestep in ensemble-based filtering, there are two

update steps; prediction and measurement update. To propagate the uncertainty multiple timesteps

we have to iterate these two steps; for k-step lookahead planning, we have to iterate the two updates

for k times.

We expect to replace the iteration of two updates with some learned function(model) f or a

set of functions F which can be evaluated faster than the original updates. For instance, we may

replace k iterations of updates with a direct mapping f from the current covariance to the trace of

the final covariance after k iterations:

f: Et ý- tr{Et+k(R)} (3.27)

The evaluation of f should be faster than the updates through a series of Monte-carlo simulations

for prediction update and linear algebra operations for measurement update. However, the accuracy

of f will be very important. It the error of the prediction through f is too high, we cannot use it

for reliable informative path planning.

In using regression, we have to decide

1. What to learn: Section (3.2.1)

2. What features to use: Section (3.2.2)



3. What algorithms to use: Section (3.2.3)

In deciding what to learn, we have to consider the fact that as the target function f is more compli-

cated, we will need more training samples, good features and sophisticated method to learn. Pre-

liminary result showed us that learning certain functions, such as the function in equation (3.27),

is extremely hard. Also, we may want to learn common functions which can be applied to differ-

ent paths of different lengths. If we decide on the target function, we have to generate features x

from each training sample. In our case, the most obvious features are state estimates itself such

as mean and covariance of ensemble distribution. Other possible features may be related to struc-

ture of routine network. In terms of algorithms, there are many regression algorithms that we can

choose from, which may have different computational requirements, sample complexity, capacity

of learning and generalization performance.

3.2.1 Learning the Prediction Update of Ensemble-based Filtering

In this thesis, we propose to learn the (one timestep) prediction update of ensemble-based filtering.

Remember that the prediction update is the computationally expensive part of ensemble-based

filtering, which is done through Monte-carlo simulations. In addition, prediction update has to be

done at every timestep to get the forecast covariance of next timestep while measurement update

has to be done only when a measurement is available. Furthermore, the measurement update can be

done exactly as in ensemble-based filtering if we have the forecast covariance. If we can emulate

the original expensive prediction update through the learned prediction update, we can use it to

evaluate any path of any length faster than original ensemble-based filtering.

Learning the prediction update will be done by learning the propagation functions of each

covariance entries, which is the set of functions F:

FT = { f(ij), (i, j) E (1...N, 1..N)} (3.28)

(ij) : E(i,j)(EaI) - Ef{(i, j) for all t (3.29)

where E(i,j) is some feature extractor for the propagation function of the (i, j)-th entry of covari-



ance. Recall that 4_ - = _-1 if there is no measurement at time t - 1. In that case, we will

assume that a measurement update with zero computational cost is done on Etf1 to get E•_1. To

learn the functions F, we will use the past samples of Monte-Carlo simulations in ensemble-based

filtering as training samples.

Note that unlike the original prediction update, we can only update a part of the analysis covari-

ance Ea . For instance, we can get Et[(R) from E_ 1 by only applying functions fi,j, (i, j) E R.

Also, remember that the original measurement update can be done locally on a part of the covari-

ance matrix. These two properties will enable to evaluate the uncertainty of ROI faster after taking

a path.

Recursive prediction for multistep updates

Note that one application of F give only the covariance of the next timestep but the covariance

after a number of timesteps is needed for evaluating the information gain of a path at that time. We

will use recursive prediction to resolve this. Recursive prediction is to use predicted values of a

function as the input to the function. Suppose we are given the analysis covariance E'. To predict

the forecast covariance tf:

1. Predict Ef from Eg.

2. Do measurement update on E• to get ZE.

3. Predict E{ from E

4. Repeat until we get Et.

This is recursive prediction as we are using the predicted covariances as the input to get the covari-

ance of next timestep.

Applying the propagation functions for path selection

Once we have learned the functions F, we can predict the uncertainty of the system after taking

a series of observations by applying the propagation functions for prediction update and using



the original measurement update. Given the uncertainty at future time through it, path planning

problem becomes trivial as to choose the path which reduces the uncertainty the most, as in the

algorithm 1.

Algorithm 1 Path Selection Algorithm

Input: Initial (analysis) covariance E' and learned models F.
for all paths pk do

for all locations it E pk do
Propagate (needed) elements of the covariance E(i, j) according to the learned model
F(i,j)
Perform measurement update at location It.

end for
Compute the posterior trace of the R sub-block of E, E(R).

end for
Return the path with minimum posterior trace of E(R).

3.2.2 Spatial Neighborhood Features
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Figure 3-1: Correlation coefficient(score) between Ef (k, k) and E 1 (k + i, k + i), i [-2, 2] from 4000 samples.
The coefficient is the biggest for CE_1 (0, 0) and roughly decrease with distance. Correlation score is an indicator for
the usefulness of -C1 (k + i, k + i) as a feature to learn the propagation function f(k,k)



For many physical systems, the dynamics are inspired by actual physical phenomena which

often has the spatial locality of interaction at any moment. Hence, the next state of a variable is

strongly affected by its small spatial neighbors as in equation (2.1).

We conjecture that the uncertainty of a variable, a collective behavior of Monte-Carlo samples,

will also depend largely on small spatial neighbors, with trade-off between accuracy and size of

spatial neighborhood. Figure (3-1) shows the correlation score between a part of analysis covari-

ance Ea_ 1(k + i, k + i),i E [-2, 2] and Ef (k, k) for some k. The correlation score between a

feature and labels is a good indicator of the usefulness of that feature to learn the function of la-

bels [24]. It shows the evidence that the propagation functions may be learned using the features

extracted from a spatial neighborhood.

Therefore, in learning a model f(i,j) to predict a covariance element E(i, j), we will extract

features from the statistics of the spatial neighborhood of grid cells i and j. Let the spatial neigh-

borhood of grid cell i be Ni. Ni is defined as a set of grid cells {l 1 111 - i112 < L} within some

distance L. The possible features are:

* Mean estimates of neighbors (Mean): p(Ni) p(Nj)

* Covariance diagonal elements (Var): E(Ni, Ni) E(Nj, Nj)

* Covariance rows or columns (CovR): E(i, Ni) E(i, Nj)

* Covariance blocks (CovB): E(Ni) E(Nj)

where E(Ni) = {E(i,j)li,j E Ni} and E(i, Ni) = {E(i, k)jk E Ni}. We gave names for each

type of features such as "Mean" and "Var".

In sum, for a model f (i, j), the features X and labels y are given as

E(EO) E~(i,j)

X= y=

SE(rcwl) (i, j)

where E is a feature extractor to extract one or combination of the possible features listed above.



3.2.3 Computational Requirements

Note that we have to learn a set of function F where the IF• is a nontrivial number. Thus, learning

or training time of an algorithm is important in solving the problem. Especially, if we do online

learning where one constantly improves the learned functions F, the learning time will be ever

more critical. An algorithm with very high accuracy but very slow learning time is useless in that

case.

Another concern is that we have to apply F multiple times. To get future uncertainty after K

timesteps from the current state, we have to apply a subset F' of F for K times, which is total

O(• F' x K x C) times where C is the computation time of a model and /F'1 is again nontrivial.

C has to be small enough.



3.3 Experiments

In this section, we apply regression algorithms to the data to learn the prediction step of ensemble-

based filtering. First, we introduce the concept of normalization, which is often important in

practice. Then, we show the results of linear regression and nonlinear regression. Surprisingly, the

best performance of linear regression is comparable to the nonlinear regression though the target

functions are expected to be nonlinear. Furthermore, nonlinear regression is prone to overfit so that

it performs poorer than linear regression in many cases. We speculate on the reason why nonlinear

regression did not work and suggest a solution at the end.

3.3.1 Normalization

We first introduce normalization, which is to normalize each feature of input vectors to the [- 1, 1]

range. Normalization is important in practice as prediction result often significantly differ de-

pending on the normalization scheme used [1]. Normalizing features make each feature have the

similar average magnitude so that they can be penalized fairly in regularization. Also, it renders

the regression problem more numerically stable in many cases; for instance, the linear sum of fea-

tures 1X1z + 3
2X2 + ... + /mzm is not dominated by a single feature xi for some i, if features are

normalized.

There are many ways to do normalization. One standard approach is fitting a normal distri-

bution on the data and standardize data as in table 3.3.1. We are going to use the method in the

normalization method in our experiments. One advantage of the method is that it is less sensitive

to extreme values. Other popular normalization method choose the minimum and maximum value

of a feature and scale the feature by: The method assumes that each feature is normally distributed.

However, in many cases, the features are not exactly normally distributed and we may lose some

information in the features through normalization step.

One possible remedy is to find a transformation that changes a original feature to a normally

distributed variable. For instance, the distribution of a variance, E(ij) where i = j, is originally

more close to X2 distributed and it becomes close to normally distributed by log transformation as

in Figure (3-2). Also, a covariance term, E(ij) where i = j, is close to normally distributed after



1. Given features matrix X, n x d matrix, where n is the number of samples and d is the number
of features, let x' be the column vector of i-th feature of size n.

2. Fit a normal distribution for each feature xi: get

n n

j=1 j=1

3. Standardize each feature: xj for all i and j

Table 3.1: Normalization through fitting a normal distribution

transformed into a correlation term as in Figure (3-3).
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Figure 3-2: Normalization plot of empirical distribution of a variance (4000 samples) before/after log transformation.
A distribution is more like normal distribution if the blue dots are more like a straight line.

It is not clear a priori how normalization would affect the prediction result and it has to be

decided by experiments. In the table 3.2, we show the result of the prediction using the LSR

and the RLS with different methods of normalization. In this thesis, we will use the Normalized

Mean Squared Error (NMSE) as the error measure. Different size of spatial neighborhood and the

quadratic basis expansion of original features for nonlinear regression are also tested. For the RLS,

the best regularization parameter A is chosen by 5-fold cross validation.

From the tables 3.2, we see that normalization method didn't change the result much except

the normalization after transformation case, where the prediction performance was the worst. This

is contrary to the many other problems where normalization changes the result of prediction sig-
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Figure 3-3: Normalization plot of empirical distribution of a covariance (4000 samples) before/after correlation trans-
formation. A distribution is more like normal distribution if the blue dots are more like a straight line.

Features
Model Var(L=O) Var(L=1) q(Var(L=l)) Cov(L=1)

without normalization
LSR 2.7E-3 3.1E-3 6.3E-3 5.5E-3
RLS 2.7E-3 3.1E-3 6.2E-3 5.5E-3

with normalization
LSR 2.7E-3 3.1E-3 6.3E-3 5.5E-3
RLS 2.7E-3 3.1E-3 6.3E-3 5.5E-3

with normalization after transformation
LSR 1.2E-1 1.5E-1 4.9E-2 2.1E-1
RLS 1.2E-1 1.5E-1 4.9E-2 2.1E-1

Table 3.2: Test error (NMSE) (3000 training samples and 1000 test samples) with various methods of normalization
of features. L is the length of spatial neighborhood. q(x) is the quadratic basis expansion of the original feature vector
x. The simple linear model using Var(L=0), f((E(i, j)) = •o + 01Ep,1 (i, j), performed the best regardless of the
normalization method used. The normalization after transformation method performed poorly.

nificantly. It was true for all feature type tested in the table 3.2.

Normalization method using the transformation beforehand performed the worst. It may be

due to the fact that the transformation itself is nonlinear; both correlation and log transformation

nonlinearly transforms the features.

Due to the small effect of normalization, in following experiments, we do not report specific

normalization method used and only report the best results.

Note also that the nonlinear regression using the quadratic expansion of original features did

not perform better than linear regression. However, further experiments are needed to approve or

disapprove the usefulness of nonlinear regression in our learning problem.
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3.3.2 Nonlinear Regression Result

The original dynamics of weather system is nonlinear. In prediction step of ensemble-based filter-

ing, each ensemble member is propagated through that nonlinear dynamics and we take the sample

covariance of the ensemble as the forecast covariance. This results in nonlinear propagation of

uncertainty. Thus, the propagation functions F are also expected to be nonlinear functions, which

can be better learned by nonlinear regression methods.

In this section, we experiment with nonlinear regression with both implicit and explicit nonlin-

ear features. For explicit nonlinear features, RLS was used. For implicit nonlinear features, kernel

methods such as KRLS and SVM were tested.

Features
Model Var(L=O) Var(L=l) Var(L=2)
RLS 2.7E-3 (3.9E-3) 3.1E-3 (1.9E-3) 7.5E-3 (1.3E-3)

Features
Model q(Var(L=O)) q(Var(L= 1)) q(Var(L=2))
RLS 2.7E-3 (3.9E-3) 6.3E-3 (5.8E-4) 9.3E-2 (2.8E-7)

Features
q(CovR(L=O)) q(CovR(L=1)) q(CovR(L=2))

RLS 2.7E-3 (3.9E-3) 6.2E-3 (4.7E-4) 1.OE-1 (1.8E-7)

Baseline performance(simple linear regression): 2.7E-3 (3.9E-3)

Table 3.3: Test and training error of nonlinear regression with explicit higher-order features (NMSE). Train error is in
the parenthesis. Test and training error of linear regression is shown on the top for comparison. q(x) is the quadratic
basis expansion of the original feature x. The best generalization(test error) performance was the same for nonlinear
and linear regression. The training error of nonlinear regression was much lower, implying the overfitting of training
samples.

The prediction result with explicit nonlinear features is shown in the table 3.3. The regular-

ization parameter for RLS was chosen through 5-fold cross validation of training samples. The

original features x are expanded through quadratic basis expansion:

X = [Xh, 2, .h.,Xd]e [e2, fXa 1 2 d , XlX2 XlX3, ..., XlXd, f, d-e1d] (3.30)

Thus, RLS on the new features is quadratic function of the original features x. We see that the



training error decrease significantly with more features; q(Var(L=2)) and q((CovR(L=2)) showed

the lowest training error. However, the test error was worse than even the simplest linear model

using Var(L=O); f (Ef (i, j)) = /0 + pC,_1 (i, j). The simple linear model was more consistent in

train and test error.

The prediction result with kernel methods is shown in the table 3.4. It was much slower than

RLS in this case as d < n; RLS models takes O(d) to evaluate and SVM or KRLS takes O(n 2+nd)

to evaluate. The trend is similar to the result in the table 3.3 that training error is smaller with the

more number of features but test error is worse.

In sum, nonlinear regression clearly overfit the data and give worse generalization performance

than simple linear regression. However, nonlinear regression fits the training samples better due

to its increased modeling capacity; the training error of nonlinear regression was much lower than

training error of linear regression.

So far, in terms of the generalization performance, the simplest linear model using Var(L=O)

as the feature was the best. However, we would believe that the linear model would not be good

enough for capturing the nonlinear propagation of uncertainty and there should be better models.

We speculate that there is locality or nonstationarity in the function we are learning. It means

that the function is changing over the training samples and we cannot fit a single function on all

training samples. In the next section, we experiment with local regression which only uses a few

number of recent samples to learn a local model.

Features
Model Var(L=O) Var(L=l) Var(L=2)

Gaussian SVM (a = 10-3) 1.4E-2 (4.9E-8) 7.5E-3 (3.6E-8) 9.9E-3 (2.2E-7)
Poly KRLS (d = 3) 2.7E-3 2.7E-3 4.8E-2

Baseline performance(simple linear regression): 2.7E-3

Table 3.4: Nonlinear regression result(NMSE) with kernel methods. a is the bandwidth of the Gaussian kernel. d is
the degree of polynomial kernel. The best performance was the same for nonlinear and linear regression.



3.3.3 Local Regression Result

In 3.3.2, we applied nonlinear regression to fit a global function. In other words, it was assumed

that one function is good enough to fit all training samples. Thus, we trained the function only

once using all training samples and applied the same function to all test samples. There is another

regression technique which is called local regression. It uses only a few number of recent samples

to learn a local model. In our case, we will use a few number of recent, in terms of time, prediction

update samples to learn the prediction update for the current timestep.

For instance, given a sequence of covariances

=- t-W+1

F(tw+:)= 5t-W+2

F(Ea_) = Ef

where W is very small, we will use these samples as the train set to learn the prediction update for

time t.

Features
Model Var(L=O) Var(L=l) p(Var(L=l))

LSR (global) 2.7E-3 6.3E-3 9.3E-2
Local RLS (W=20) 5.8E-4 2. 1 E-7 2.5E-7

Table 3.5: Local regression results (NMSE): Only recent 20 samples are used to train a model. For every prediction,
a new model was trained. Local model performed significantly better than global linear models.

The result of local regression was shown in the table 3.5. The local model learned through

RLS with the small train set of size W=20 performed much better than the models learned with all

training samples. The regularization parameter was chosen by learning and testing local models

with different parameter in the train set. In the next chapter, we will discuss local models in much

more detail, however, we will stop short of showing the fact here.



3.4 Summary

In this chapter, we formulated the problem of learning the prediction update of ensemble-based

filtering. It was to learn the prediction update by learning propagation functions for each entry

in the covariance matrix. The learned prediction update will be the flexible mean to evaluate the

information gain of any path of any length, though we expect that the accuracy will decrease with

the length of planning window, due to the accumulation of the errors in recursive prediction.

Considering spatial correlation of variables, we proposed to extract features from a spatial

neighborhood of the covariance entry we are to predict. The correlation score was the initial

evidence to show the validity of this approach. Then, we proposed to use nonlinear regression

as we expected a nonlinear relationship of the input, the prior covariance, and the output, the

posterior covariance. However, nonlinear models seriously overfit the train set as its generalization

performance was worse than simple linear models.

At the end, we showed that the local regression worked better than global regression. In the

next chapter, local learning will be described in detail and we will finally apply learned prediction

update to path selection.



Chapter 4

Local Regression of Uncertainty

Propagation: Cure for Nonstationarity

In Section (3.3), we formulated the learning problem of learning the prediction update, or equiva-

lently propagation functions, of ensemble-based filtering.

Though the original prediction update nonlinearly propagates the uncertainty, nonlinear regres-

sion methods were not able to learn the propagation functions well to generalize to new samples,

and performed worse than simple linear regression method. At the end of Section (3.3), we showed

some evidence that local learning, using a few training samples, of the propagation functions would

work better than global learning, using all training samples.

Local learning [6] is to deal with nonstationarity. Nonstationarity here means that the function,

the mapping between features and labels, is changing over the samples. In global learning case,

we assumed that there is a function f which satisfies

f(xi) = yi + Ei, E[e'] = o2, E[EiEj] = 0 for i # j (4.1)

with some small a for all training samples (xi, yi). However, if the function is nonstationary, we

basically have to assume f is different for all samples

ffx,(xi) = yi +f i, E[e'] = a2, E[EEj] = 0 for i f j (4.2)



The hope is that f is changing smoothly over the sample space that learning the function f,,,, with

training samples similar to xi, is possible.

Note that the lack of good representations or features of the samples can be a possible reason

for the nonstationarity of a function. In Section (3.3), the mean (the first moment) and the co-

variance (the second moment) of ensemble distributions were suggested as the features. However,

an ensemble distribution can only be approximated by these two moments; the next state of the

distribution also depends on other moments and ultimately individual ensemble members. As a

result, two ensemble distributions with the same mean and covariance can still behave differently;

F(CE) # F(E,), t $ t' even if VE = E,. We may attempt to use the higher moments of a en-

semble distribution as the features. However, using more features would cause overfitting, require

more training samples and is computationally expensive so we have to make a trade-off. Espe-

cially, if we were to use recursive predictions, features have to be predicted as well for a recursive

prediction, thus using many features for a one-step prediction would not be desirable.

Some of the existing approaches of nonstationary regression will be introduced in Section (4.1).

One of the distinct characteristics of our learning problem is that the training samples are tempo-

rally ordered; the filter generates the samples of the prediction update in temporal order. It will

be explained that the sliding-window approach, which choose training samples from a temporal

window around the current sample, is suitable for our purpose.

Especially, we introduce the sliding-window KRLS in Section (4.2) which is the combination

of the KRLS and the sliding-window approach. We show that the sliding-window KRLS gives

much better accuracy than global models in Section (3.3), in learning the propagation functions to

give one-step and multi-step prediction of uncertainty propagation. It is also fast due to the small

size of models.

Finally, in Section (4.3), we show the result of path selection using the learned propagation

functions. It is able to reduce the uncertainty of a ROI significantly better than greedy methods

and much faster than original ensemble-based filtering updates.



4.1 Nonstationary Regression Methods

Dealing with nonstationarity has been the topic of many research in physics and statistics, espe-

cially for predicting nonlinear chaotic system [5, 19, 29, 21]. Many machine learning researchers

have found that local learning worked better than global learning in many cases such as the hand-

writing recognition task [6, 27]. The basic approach is to learn local models through utilizing only

a fraction of training samples: the local training samples. Different approaches choose different

samples as the local training samples. We will introduce two popular approaches in the following

sections.

4.1.1 Sliding Window Approach

The sliding-window approach can be applied to data which has a temporal order. The local training

samples are defined as the samples of recent past; a small size of temporal window is used to choose

the training samples. It assumes that the target function is smoothly changing temporally.

Suppose that we have the training samples X = (Xl, X2 , ...xt) and y = (y, Y2 ..Yt) where

(xi, yi) is earlier generated sample than (xj, yj) if i < j. We have a new sample xt+l and wish

to predict yt+l. To learn ft(xt+l) = Yt+l, we use the temporal window of size W to select the

training samples Xt = (xt-w+, ... , xt) and Yt = (Yt-w±+1, ... , t). For the next new sample Xt+ 2 ,

the temporal window would be moved forward to include (Xt+l, Yt+l) as a training sample.

By moving the window forward every time, the dynamic change of the target function can be

approximately estimated. The computational advantage of the algorithm is that only recent samples

has to be kept, assuming small size of temporal window. In addition, one can utilize online learning

methods which allow fast update of a model when adding a new sample to the training set [45].

However, it has limitations. This approach can be applied only for the cases where the target

function doesn't change significantly within the temporal window; The target function is assumed

to be changing over time but still a single function is learned over the training samples. The window

has to be small enough so that the dynamic change can be captured. On the other hand, if the

window is too small, the regression problem become ill-posed; we may have more parameters to

estimate than the number of training samples. We can partly solve this problem with regularization.



In sum, in applying the sliding-window approach, the assumption of the smoothness of the

function change over time has to be valid and the size of temporal window has to be chosen

carefully.

4.1.2 Locally Weighted Regression Approach

Another approach to local learning is the Locally Weighted Regression (LWR) [40]. In the LWR,

the local training samples are chosen by k-nearest neighbor search, given some distance metric

between samples. The local training samples are weighted according to the distance metric and

weighted regression is done on the local training samples to learn the target function. We introduce

the weighted version of the LSR and the RLS in the next sections.

The LWR generalizes the sliding-window approach as it can use any distance metric; the

sliding-window approach used the temporal distance to choose the local training samples.

The LWR would work if we have samples densely located in the sample space. In other words,

sufficient number of samples are needed to find good neighbors of the new sample that the pre-

diction is made for. The training process involves the search of k-nearest neighbors, which can be

computationally expensive. This search has to be done for every new models and a new model has

to be trained on the new training samples. It is contrasted to the sliding-window approach where

one can utilize some online learning algorithm to efficiently update the models. It also implies that

all samples has to be kept in some database for a nearest neighbor search. With the sliding-window

approach, we only need to keep a few recent samples.

In sum, the LWR is a general local learning technique which can deal with any distance metric

between samples. However, it has computational disadvantages over the sliding-window approach

due to its generality.

Weighted Regression Algorithms

In this section, the weighted version of regression algorithms are introduced. Applying these

algorithms combined with a nearest neighbor search is the LWR.



Weighted Least Squares The optimization problem of the Weighted Least Squares (WLS) al-

gorithm is given by

SSE(3, w) = wi(yi - f (Xi)) 2  (4.3)
i=1

n m

= wi(Yi - /3o - ijj) 2  (4.4)
i=-i j=1

= (y - XP) T W(y - XO) (4.5)

where wi is the weight of sample i and W is the diagonal matrix of weights.

The solution of WLS is given by

= (XTWX)-IXTWy (4.6)

Weighted Regularized Least Squares From equation (4.6) and equation (3.20), it is easy to see

that the solution of the Weighted Regularized Least Squares (WRLS) is given by

= (XTWX + AI)-IXTWy. (4.7)

4.1.3 Local RLS with Global Prior

We propose another possible solution to learn local models. It is to learn local models with a prior

from global learning. Specifically, we use the RLS to get the model coefficients of the global model

and use it as the prior instead of the zero-prior in fitting a local model with the RLS.

The algorithm can be used either with the LWR or the sliding-window approach. In both cases,

the information from not only neighbors but all samples will be included in the regression problem,

so that the solution is expected to be less sensitive to neighborhood size k or temporal window size

W. In the next section, we derive the RLS algorithm with a nonzero prior.



Regularized Least Squares with Nonzero Prior

The RLS in equation (6.6) uses the prior / = 0. The optimization problem for the case where

S/0 is

mim II(X/3 - y)ll 2 + ( - )T(P -) ) (4.8)

If the covariance 1E of / is also available, we may minimize

min I(X/3- y) 2 + (/3- )TEp(/3- ) (4.9)

To minimize (4.8), we set the derivative of (4.8) with respect to / to 0, and get

3 = (XTX + AI)- (XTy + A/). (4.10)

To minimize (4.9), we set the derivative of (4.9) with respect to P to 0, and get

3 = (XTX + AEX)-i(XTy + Af). (4.11)

Solving these problems are just as easy as solving the LSR or the RLS problems.

4.2 Sliding-window KRLS

As we explained in Section (4.1.1), the sliding-window approach has the computational advantage

over the LWR in that neighbor search is not needed. The training samples are given sequentially

from the filter in our case; we just get a new sample from the filter and discard the oldest sample

to get the new training set.

It is possible to use the sliding-window approach with any learning algorithm. We introduce

the sliding-window KRLS algorithm which uses the sliding-window approach with KRLS. KRLS

has a few advantages over other methods for the sliding-window approach.

* Efficient nonlinear model: Due to the use of kernel, computation time of the sliding-window

KRLS is proportional to the window size w, which is fixed regardless of the dimension of the re-



sulting model. In contrast, the running time of nonlinear models with explicit nonlinear features

is proportional to the features size, which can increase fast with the dimension of the model.

* Exact incremental update: An exact solution for incremental update with a new training sample

is available. Other kernel methods such as SVM does not have this property.

In the following section, the algorithm for exact incremental update is described. Then, a

technique to further improve the speed of the sliding-window KRLS will be introduced. These two

algorithms will make the sliding-window KRLS very suitable for learning uncertainty propagation

and real-time informative path planning.

4.2.1 Incremental Update of KRLS

In the KRLS, exact update of the models with a new training sample is possible, which can save

the training time in updating models. Here, we assume the case where the oldest training sample

is discarded thus fixing the training set size at all time.. From the KRLS solution in Section (3.1.2),

we see that the inverse of the kernel matrix is required to make a prediction. In other words, the

training process is essentially to build the kernel matrix and get the inverse of the kernel matrix.

Let the training set at time t be

Xt = (xt-w+1, Xt-W+2, ... , Xt), Yt = (Yt-W+1, Yt-W+2, ..., Yt) (4.12)

and the new training set at time t + 1 be

Xt+1 = (Xt-W+2,Xt-W+3, ..., Xt+l), Yt = (Yt-W+2, Yt-W+3, ..., Yt+) (4.13)

Given a (regularized) kernel matrix Kt of the samples Xt and its inverse matrix K l', we can get

the inverse of the new kernel matrix Kt+l from K 1- in O(W 2 ), compared to O(W3 ) required to

perform an inversion of Kt+l directly without K -1' [46]. Thus, the initial training takes O(W 3)



but the update takes O(W 2). The algorithm is described below.

(a b f gKt= K- = (9 T
b T  C g H

Kt+l = (4.14)

Then, the inverse of the new kernel matrix Kt+l is given by:

K 1 ( H ( I + d d T H g ) - H d g

,= (4.15)
-(Hd)Tg 

g

g = (e - dT Hd)- 1

4.2.2 Faster Kernel Matrix Building

Examining the set of features in Section 3.2.2, neighboring learners f(g1 ,12) and f(1 ,12+1) will clearly

share features, and in fact many models share features. Let a training sample xi = Eý and xi(1) =

E(l1, N1). Then, an entry of the kernel matrix for f(11,12) with kernel function k is

k(xi, Xj) = k([Xi(l1); Xi(12)], [Xj(1); Xj(12)])

If k is a polynomial kernel function,

k([x (ll); x (12)], [Xj (11); Xj (12)1)

= ([xi(li); Xi(12)]T[xj(ll); xj(12)] + a)d

= (x,(l1 )Txj( 1 ) + Xi(12 )TXj(l 2) + a)d

= (ki, (xi, xj) + k2 (Xi, xj)+ a)d



where kl (x) = x(11)Tx(l1 ). Similarly, the kernel matrix entry for f(11,+1) is

(ki,(xi,xj) + k(12+l)(xi, x) + a)d

As a result, k1l (xi, xj) does not need to be calculated again. We assume that a kernel evaluation

takes O(m), where m is the number of the features. Then building a kernel matrix takes O(W 2m),

which is significant as W < m in our case. In recursive prediction, one has to build additional

models to predict features and need to build kernel matrices. So, we build partial kernel matrices

K1 for each k, separately, which takes O(W 2 ), and add the matrices when needed, which takes

O(W 2). Suppose that we use the all covariance elements as features with a polynomial kernel. In

an r-step recursion tree with branching factor m, a naive algorithm would take O(W 2m = mi),

as a new kernel matrix would be built at every node except the root. Sharing of partial kernel

matrices take O(½W 2(m + 1) i mi). So, we build matrices 2 times faster, and it is actually

faster than that as neighbors of grids overlap and we need to build fewer partial kernel matrices.

4.2.3 Learned Model Accuracy

In this section, we compare the predicted covariance from the sliding window KRLS with the full

EnKF covariance. Figure 4-1 shows contiguous one-step prediction of covariance between two

neighboring grid cells. The sliding-window KRLS prediction at time t is made with the model

trained with the training set in the sliding window of size W = 10; Xt = (xt-w, ... , xt- 1), yt =

(yt-w, ..., yt-1). The model was trained again at every timestep with the new training set. As

a comparison, we also trained an (global) SVM with 500 samples (t=-499,...,0), before making

predictions at t=1, the first sample at Figure (4-1).

Both models used a polynomial kernel of degree 3. The top figure shows the covariance of

two grid cells from the full EnKF model, the KRLS-predicted covariance and the SVM-predicted

covariance. The lower figure shows the error between each model and the EnKF covariance. The

result shows that sliding-window approach achieved very low prediction error compared to global

SVM predictor.
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Figure 4-1: One-step prediction accuracy of a single covariance entry. An SVM model was trained with 500 timestep
samples of the time series before prediction time. A KRLS model was trained at every timestep with sliding-window
of size 10. Both methods used a polynomial kernel of degree 3. The top graph shows predictions and the ground truth
from the full EnKF. The bottom graph shows the difference between the learned models and the ground truth.

Table 4.1 shows the recursive prediction performance using different kernels and features with

the KRLS algorithm in the Lorenz 2003 models. The ground truth was the result of a full EnKF

prediction update executed for 5 timesteps. The prediction results for the learned models were the

result of using the predictor recursively 5 times. The nonlinear kernels were significantly better

(3 - 10 times) than linear kernels in accuracy represented by the mean absolute error (MAE).

Using all covariance elements (CovB) as features provide a slight reduction in error. It is though

slower than the case using the features CovR as there are more entries to predict in recursive

predictions.

0
(D
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Figure 4-2: Recursive prediction with different size of spatial neighborhood. It shows that using and predicting
uncertainty of bigger neighborhood gave better prediction for long time steps.

As a final validation, we also learned a model of the ensemble mean, although the mean value

itself is not relevant in predicting information gain and choosing sensor trajectories. The results

of the mean prediction performance are given in 4.2, and again show that the best prediction was

achieved using sliding window regression.

The effect of spatial neighborhood size L is shown in Figure (4-2). With larger spatial neigh-

borhood, the model performed better in recursive prediction. However, it is also more computa-

tionally demanding as it needs more features to be predicted. A trade-off has to be made between

the accuracy and speed in this case.

4.3 Experimental Results of Path Selection

Given the ability to predict the change in covariance of the EnKF efficiently, we can now use the

learned function to identify sensor trajectories that maximize information gain of some region of

interest. We define the region of interest as a set of grids R = {gi gi c [1, Ns], i C [1, JR ]}. The

rr nrrr



Features
Kernel CovR CovB

Linear (W=20) 0.109 0.0764
Poly (d=3,W=10) 0.0252 0.0222
Poly (d=3,W=20) 0.0261 0.0181
Poly (d=5,W=20) 0.0746 0.0448

Table 4.1: Mean absolute error (10-2) over 100 test samples with Lorenz-2003 model. Baseline was the EnKF
with 1000 ensemble members. Each model recursively predicted the trace of covariance after 5 forecast updates.
W is sliding-window size, d is the degree of polynomial kernel. The feature sets were covariance rows and blocks
respectively, of neighbors in distance 1

Features
Model Auto Mean p(Mean)

SVM(Gaussian) 0.047 0.084 0.13
SVM(Linear) 0.012 0.14 0.038
RLS(W=15) 0.0045 0.0004 0.00004

Propagation of ensemble mean: 0.0055
Propagation of 1/4 ensembles: 0.00035

Table 4.2: Normalized mean squared error(NMSE) of predicting the ensemble mean x(i). The ground truth is from
the full EnKF. 500 training samples were used for SVM. W is sliding-window size. Auto: 10-timestep time series of
x(i), Mean: the ensemble mean of neighbors x(Ni), p(Mean): explicit product features of x(Ni), which is similar to
use polynomial kernel of degree 2

measure of information gain is the change in the trace of the R sub-block of the covariance E(R).

Without loss of generality, we consider the case where R is 5x5 region and the planning horizon

K is 10. We assumed that an agent moves from one cell to other cell in every 2 timesteps. At the

first timestep at the cell, the agent takes an measurement of the cell. Thus, the agent takes total 5

measurements in the ROI R within the planning horizon K = 10. The specific choice was made

by the fact that this planning problem was a part of the multi-level planning scheme, where 5x5

region was chosen by a high-level planner and assigned to a local planner to optimize the local

path in the region.

A sample scenario of path planning in that case is given in figure 4-3. Given the initial state

of the EnKF, an agent plans to observe a sequence of 5 locations, one for every two timesteps, in

the region of interest before arriving at the end point. We fixed the start point and there were three

choices of end point, thus there were a total of 51 choices of paths in this case. The execution

result of the best and worst path is given in figure 4-4. The best path decreased the uncertainty of
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Figure 4-3: Original state of the EnKF at planning time. The best path and worst path are shown. The rectangle
represent the local region of interest that we plan to minimize the uncertainty (trace of covariance).
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Figure 4-4: The variance of the EnKF after path execution. The best path decreased the uncertainty of the region by
15% while the worst path increased it by 1.5%. The average reduction of 51 paths was 8.3% with standard deviation
of 4.6%.

the region by 15% while the worst path actually increased the uncertainty 1.5%. The average re-
duction was 8.3% with standard deviation of 4.6% for 51 paths. It shows that targeting informative

locations is critical for the goal of uncertainty reduction.

The simple algorithm given in Algorithm 1 tells how to select the path with the learned propa-

gation functions. The path selected by the KRLS predictions was compared with a baseline greedy
strategy. The greedy strategy chooses a path with most uncertainty at current time t; this strategy is
quite common in practice [23]. In other words, it chooses path pi with largest tr(Et(Pi)) where Pi
is the set of grid locations that pi visits. While greedy strategies perform reasonably in the general

___
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Figure 4-5: Accumulated difference of trace between the best and model/greedy for 50 trials of 5 x 2-timestep planning
in Lorenz-2003 model

case, our prediction model allows us to evaluate the effect of sensing into the future and capture

spatio-temporal effects.

As shown in figure 4-5, the performance gap between greedy and model planning increased as

we executed more plans.

4.3.1 Computation Time

The error between the predicted covariance from the learned model and full EnKF propagation is

substantially compensated by the computational advantage as in Table 4.3.

In particular, the computation time of full EnKF propagation scales with the model size, which

is proportional to the number of grids Ns and the size of the ensemble Ne, as given in Sec-

tion (2.2.3). The path evaluation in the Lorenz 2003 model incurs a substantial cost because the

complexity of this model requires a large ensemble set.

In contrast, the computation time of the model prediction only depends on the size of neighbor-

hood and sliding-window size and is independent of the model size, so that the computation time

in both the Lorenz-95 and Lorenz-2003 models was approximately equivalent. Our approach actu-

ally is expected to improve with large ensemble size as the initial estimate becomes more accurate

and stable (smooth) [22], thus providing less noisy training samples.
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Figure 4-6: Accumulated difference of trace between the best and model/greedy for 50 trials of 5 x 2-timestep planning
in Lorenz-95 model

Full Propagation
KRLS Prediction

Lorenz-95
(Ne=400)

13.42s
12.65s

Lorenz-2003
(Ne=1000)
1984.48s

14.97s

Table 4.3: Average computation time for path planning in two weather models. A total of 51 paths were evaluated
using full propagation of the EnKF and the KRLS prediction. The computation time of the KRLS prediction planning
was independent of the chosen weather model, while the EnKF computation time increases severely as the model size
grows. (Pentium-4 3.0 Ghz Dual Core was used.)

4.4 Conclusions

We showed that the sliding-window KRLS algorithm successfully approximates the nonlinear evo

lution of covariance in the EnKF for multiple timesteps, and makes fast informative path selection

possible.

The learner trains on covariance samples generated by the EnKF during the standard prediction

update, but does not require additional EnKF updates at the planning time. The efficiency of the

KRLS prediction allows a large set of candidate trajectories to be considered quickly. The approach

scales independently of actual model size, which makes it possible to use this approach in large

models. It is expected to perform even better with large ensemble size of the EnKF, which is

limited by computational resources but expected to increase continually.

However, there is an assumption to be hold for this method to work. Using the sliding-window

76



approach is to assume that the learned propagation functions will be valid in the planning horizon.

Due to the nonstationarity, this assumption will break with longer planning horizon. The predict

and measurement updates could change the trajectory of uncertainty significantly after a few iter-

ations and break the assumption. In addition, the prediction error will be accumulated in recursive

predictions. The current approach does not deal with this problem explicitly.

In the next chapter, we will try to solve the first problem by building models which is valid for

longer timesteps. In the future, we want to deal with the propagation of errors explicitly. There is

an approach in Gaussian Process(GP) framework to deal with this propagation of error [11]. We

would like to apply similar concept to our problem in the future.



Chapter 5

Improving Generalization with Time-series

Features

5.1 Overview

In Section (4), we were able to learn the models of uncertainty propagation with good accuracy

using the sliding-window KRLS. The models enable fast selection of informative path which was

significantly better than the path selected by a greedy algorithm.

The fundamental assumption in the approach was that the local models are accurate enough

within the planning window. However, we note that the measurement update could change the

uncertainty greatly in some cases, breaking the assumption; the new sample may differ too much

from the samples in the sliding-window or the local training samples that we may need a new

local model after a measurement update. The problem is that we do not have the training samples

to learn the new local model in the sliding-window. The efficiency of the sliding-window KRLS

approach was from the fact that it kept only small number of samples. The LWR may be suitable

for resolving this issue but it is computationally expensive as we have to retrieve the local training

samples from a database of all past samples.

Here, we pay more attention to the fact that we can treat the data as time-series. In the previous

sections, we tried to fit functions with single timestep features extracted from a spatial neighbor-



hood:

f(E(,j) (Et-1)) = Et(i,j)

where E(i,j) is the feature extractor for learning E(i, j). However, it is also possible to fit functions

using time-series features of degree k:

f(E'(ij,)(E(t-k):t-1)) = Et(ij)

where Eti:t 2 = {tl 1, tl+l, ... , Et 2 } and E'(i,j) is the feature extractor that extract features from a

time-series Et :t2 instead of a single E for learning E(i, j). The latter is called time-series regres-

sion and has been used for many signal processing problems where the data is a stream of signals

[8]. The first case is the special case of time-series regression with k = 1. Note that there are two

types of covariances at time t; forecast covariance E{ and analysis covariance E'. We will deal

with this issue later in Section (5.3). Figure (5-1) shows why time-series regression with k > 1

Figure 5-1: The possible benefit of time-series regression. Three artificial time-series are shown. x 2 and x* are close
at one-point of time-series at t. However, if we look at the whole trajectory instead of a point, x1 is closer to x*. To
better predict x* at time t + 1, we can look at xl instead of x2.



may work better than k = 1. By looking at a longer profile, one can get a better representation

of the time-series. Suppose we want to make a prediction for the time-series x* in Figure (5-1) at

time t + 1 by looking at the value of z* up to time t and training samples that we have observed

from the source of the time-series; and we have only xz and X2 as training samples. If we want to

use a single neighbor to make the prediction, we should choose xz over X2 as the nearest neighbor.

In this chapter, we attempt to improve the generalization of the models of uncertainty propa-

gation using higher-order time-series features. In Section (5.2), the classical models of time-series

will be introduced and further motivate the use of time-series regression. In Section (5.3), we will

discuss ways to model the evolution of covariances as a time-series. In Section (5.4), the result

of learning global models using time-series features will be presented, which we expect to per-

form better than global models learned using a single timestep features. In Section (5.5), we will

also attempt to improve the result of local regression using time-series features. Finally, the result

of path selection using the models will be presented, and we show that it can achieve significant

improvement in terms of accuracy and computation time over other methods.

5.2 Classic Linear Time-series Models

As there is a large literature in time-series regression, it may be beneficial to look at previous works

first. [7] provides a good reference for time-series modeling.

Autoregressive(AR) model

Definition (AR(d) model): The autoregressive(AR) model of an order d is written as AR(d) and

defined by

Xt = lzXt- -+ !32Xt-2 + ... /dXtd + Wt

where wt is a purely random process where E[wt] = 0, E[wtwt,] = 0 and E[wtwt] = a 2

Once we have the model, we can generate a one-step forecast by:

=t = P- xt-1 (5.1)



where xt-1 = [xt-1; Xt-2; ... ; Xt-d]. The name autoregressive comes from the fact that the value of

x at time t is regressed on past values of itself; x at time t - 1 and so on. wt term can be regarded

as prediction error term, which is modeled as a random process.

If the function 3Tx models the time-series well so that there is no more structure to be modeled

in the data,the error term wt at time t would appear as white noise; it will not be correlated with

the other error terms wt, t = t'. A sample time-series of AR(1) model is shown in Figure (5-2(a)).

Taken's Theorem Using AR to model a time series may be justified by Taken's theorem [41].

Taken's theorem tells us that we can reconstruct a dynamical system of many state variables using

the time series of a state variable (or a scalar measurement function of the variables) of the system,
which is what AR does.

A samole AR(II orocess A sample ARMA1 11 nrocess

time time

(a) AR(1) model xt = -0.8xt-1 + Wt (b) ARMA(1,1) model xt = -0.8xtl - 0.5 wtl + Wt

Figure 5-2: Sample time-series of AR and ARMA. A simple linear function generates seemingly complicated time-
series.

x
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Autoregressive moving average model(ARMA)

Definition (ARMA(p,q) model): The autoregressive moving average model of an order (p,q) is

written as ARMA(p,q) and defined by

Xt = /lXtl + 02Xt_2 + -... pXt- p + OlWt-1 + O2Wt-2 -+ -. CqWt-q + Wt (5.2)

-= TXt_ 1 + aTwt_1 + Wt  (5.3)

where 0 is a p x 1 vector and a is a q x 1 vector.

The autoregressive-moving average (ARMA) model has the moving average (MA) term aTw.

Note that AR is a special case of ARMA with q = 0. The literature suggests that ARMA is

appropriate when a system is a function of its own behavior and a series of unobserved factors,

which is modeled by the MA part. For example, stock prices may be modeled by observed prices

and unobserved effects of activities of market participants. A sample time-series of ARMA(1,1) is

shown in Figure (5-2(b)).

Once we have the model, we can generate a one-step forecast by:

/t+1 = OTXt + ozTWt (5.4)

where we can get wt by the prediction error at time t: wt = xt - Jit. Note that we can only make

a one-step prediction with this model as we need the last prediction error, though we may treat the

errors as missing values to make longer step predictions.

A stochastic version of ARMA is introduced in [42]. It treats observations xt as a random

variable instead of a fixed value. The stochastic version provides a smoothing technique that

produces more accurate estimates.

Autoregressive integrated moving average model(ARIMA)

ARIMA extends ARMA by adding difference of values of a time-series at two or more time lags as

features. For instance, Axt = xt--1 or oA 2xt = (Xt-Xtl)-(Xt- -Xt-2) = Xt- 2Xt-1+Xt-2 are



added as features. It was shown that the difference operation tends to render time-series stationary

in many cases. An evidence is shown in Figure (5-3) that higher-order difference operation makes

the time-series appear more structured and predictable. However, we note that the class of linear

Figure 5-3: The d-th order finite differences
appears model predictable.

of covariance time-series. As the order becomes higher, the time-series

functions which can be learned with ARIMA is the same as the ones with ARMA. The difference

operation and the features generated does not add modeling capacity to linear models of the data.

It can be proved in a way similar to theorem 5.3.1. Still, the fact that it has worked well in practice

suggests that the difference operation is helpful in extracting a good feature set.

5.3 Time-series Modeling of Uncertainty Propagation

To use time-series regression in our problem, we have to model the evolution of covariance as a

time-series. It was mentioned that there are two kinds of covariances at time t in our setting. One

is from the prediction update EZ{, and the other is from the measurement update E'. To deal with

4th dr



this, we may simply extend the definition of Et:t, to:

F,1 Et:t'-- E ,f , a -f EaFt {ft + 1)t+ ... V (5.5)

That is not the only choice. We can also use:

F2: "t:t- {••f•a _- yf -  a - I f Z Ea _ - (5.6)
t t t+ t+l t+ t ' t '

= { I , ut, IEt+_ Ut+1l...) t ut, }  (5.7)

F 2 models the change of Et through the measurement update at time t as exogenous control input

ut. Note that in propagating uncertainty in ensemble-based filtering, the prediction update always

changes the values of covariances but the measurement update does not. It only changes the covari-

ances when new measurements are available. Thus, it may be natural to model the measurement

update as control input to autoregressive time-series of covariances, which is changed through the

prediction update at every timestep.

Actually, the set of linear models using F1 is the same as the set of linear models using F 2. In

other words, one can model any linear model that uses F 2 by using F1 instead, and vice versa.

Theorem 5.3.1 (Equivalence of linear models of F 1 and F 2): The set of linear models of F 1 are

the same as the set of linear models of F 2.

Proof: Consider the case k = 0. A linear model of F1 is

o10 + /311 f + /312Z t

A linear model of F 2 is

0/20 + /3 21Zt ± /322 (Z )

Given the vector /3, we can choose /21 = (311 + /12) and /22 = /12 such that the two models

become identical. We can generalize this argument to k > 0 case easily. I

Thus, it may appear that the choice of F1 and F 2 does not matter in our problem. However,

in the nonlinear case, the choice of F1 and F2 could make a difference. Suppose there are two



samples of the time-series E1:2 and E3:4 and there were no measurements at times t = 1, ..., 4.

Using F 1, the features will be

E1:2 = 1 2 2 - l22

E3:4 = { "14, ), 4 `4J= 34, 3, 4•,

Using F 2, the features will be

-1:2 = {••, 0, 2f , 0}

C3:4 = {E~, 0E, 0O}

In nonlinear regression the interaction between features plays an important role, so that the dif-

ference between 0 and the nonzero values will make a difference. In addition, the second and the

fourth of the four features are the same value 0 for E1:2 and E3:4 using F 2, but have different values

using F1 . So, we may have to try different choice of features in a nonlinear regression case.

5.4 Learning Global Models with Time-series Features

In Section (3.3.2), we showed that learning global models of uncertainty propagation using all

training samples and single timestep features was unsuccessful; a simple linear model performed

the best and nonlinear models overfit the data.

In this section, we experiment with time-series features for learning global models. we have

explained the possible benefit of time-series features in representing the covariance evolution. The

expectation is that the time-series features combined with nonlinear regression will enable better

learning of uncertainty propagation.

Table (5.2) shows the prediction performance of global models using time-series features. On

the top of the table, the linear models of quadratic and cubic basis expansion of original features

were tested along with the linear model of the original features. The result shows that the predic-

tion error decreases with the degree of time-series features, proving the usefulness of time-series

features.



We also compared the result with local regression with one timestep features. The sliding-

window KRLS approach was used as in the last chapter. It is shown that global models with

time-series features perform better than the local models.

The application of higher-order time-series of spatial features with L > 0 performed better

than with L = 0 in linear RLS. Its quadratic and cubic basis expansions were not tested. Note

that quadratic and cubic basis expansions quickly increases the number of features; quadratic basis

expansion increases the number of features d to and cubic basis expansion increases it to
2

( ). Due to the increased number of features, the regression algorithms may run into compu-

tational issue. In this case, partial basis expansion which limits the choices may have to be used

instead.

Degree of time-series
Model 1 5 10

Features: Var(L=0)
RLS 2.8E-3 ± 4.6E-3 3.2E-6 ± 1.3E-5 5.4E-7 ± 2.6E-6

RLS(quadratic) 2.8E-3 ± 5.1E-3 9.2E-7 ± 4.OE-6 2.3E-7 ± 1.1E-6
RLS(cubic) 3.OE-3 ± 5.9E-3 4.6E-7 ± 2.OE-6 2.3E-7 ± 9.1E-7

Features: Var(L= 1)
RLS 2.8E-3 ± 4.6E-3 3.OE-6 ± 1.1E-5 4.2E-7 ± 2.4E-6

Local Poly KRLS (w = 10, d = 3) 2.OE-5 ± 4.5E-5
Local Poly KRLS (w = 20, d = 3) 1.6E-5 ± 2.9E-5

Features: Var(L=2)
Local Poly KRLS (w = 10, d = 3) 2.3E-5 ± 6.8E-5
Local Poly KRLS (w = 20, d = 3) 1.1E-5 ± 2.8E-5

Table 5.1: Time-series regression result(NMSE) (3200 training samples and 800 test samples): with time-series fea-
tures, the prediction performance was significantly improved. Nonlinear regression with explicit nonlinear features
through quadratic and cubic basis expansion were tested and performed better than linear model counterpart.

However, global modeling of the data has its limitations. Figure (5.4) shows the train and test

error of linear and nonlinear AR(20) models. The prediction error still shows some trend: the error

is bigger or smaller in some regions than in others, suggesting that the error is structured and not

random. There are local variations in the data that are not captured by global models.

Still, the prediction error for global modeling is much lower than the error for the local models



used in the last chapter, which were able to choose good paths for informative path planning. We
expect to see a better performance of path selection with the new models.
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Figure 5-4: Training and test error of linear and nonlinear AR(20) model. Though the average size of error is small,
the magnitude depends on the region. Nonlinear model overfit in this case as the train error is smaller than linear
model but test error is bigger.

5.5 Improving Local Models with Time-series Features

We expect that time-series features will also be able to improve local models. Preliminary attempts

to utilize local regression with time-series features are presented in this section.

Table (5.2) shows the prediction performance of various local and global models using time-

series features. We explain the LWR and the local RLS with a global prior methods in the sections

below. The result shows that the direct application of the sliding-window approach, local RLS,

tend to show varying performance, that is sensitive to the degree of time-series features and the

sliding-window size. This is not desirable, as there are many models to be learned in our problem

setting. We cannot simply choose the best model by trying different parameters for each propa-

gation function in F. However, using lower degree time-series features seems to work well with

sliding-window approach. It appears that using higher degree time-series features is prone to over-

fit as the train set consists only of the small number of samples in the sliding-window, compared

to features we get from the time-series. In addition, the samples in the sliding-window may not be
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the best training samples to learn the local model.

The problem of finding better training samples is tested with the LWR and the overfitting issue

is tested with the local RLS with a global prior.

5.5.1 Locally Weighted Regression

Due to the unsatisfactory results with sliding-window learning with time-series features, we have

tried locally weighted regression (LWR). Though there is much debate about appropriate weight

functions, here we try a simple weight function, which is just to calculate Euclidean distance

between samples. The weight of a sample xj for fitting a function to a sample xi is:

1
w(xi, xj) = 2xi - x 2

Figure (5.5.1) shows that the locally weighted model performed better than the global AR(10)

model. The error variance decreased significantly as well.

However, LWR requires finding a set of nearest neighbors and fitting a function with the set

every time for prediction. This will slow down our path planning algorithm. Furthermore, unlike

sliding-window KRLS, there is no recursive solution for adding or deleting a sample into the

nearest neighbors set. We expect that one can solve this problem by using nearest neighbor search

with a pre-trained model database. We leave this to future work.

5.5.2 Local RLS with Global Prior

Another technique we tried is to use the sliding-window approach with a global prior. We see

that global models with time-series features perform well but still the errors are heteroscedastic.

Also, local learning with time-series features is prone to overfitting. A reasonable solution is to

learn local models using the sliding-window approach with some prior knowledge about the global

model. Effectively, this will constrain the flexibility of the local model so that it balances between

deviation from the global model and local training error. This approach maintains the compu-

tational advantage of the sliding-window approach while possibly enjoying better generalization
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Figure 5-5: Test error (MAE) of global and locally weighted linear AR(10) model.

performance of higher-order time-series features.

Using RLS as the learning algorithm, we can put the prior over model coefficients, as in 4.1.3.

This simply replaces the zero-prior on coefficients in the original RLS with the global model coef-

ficients, so that the deviation from the global model is penalized.

We expect that we need to use different regularization parameters for global and local learning.

This multi-stage approach of regularization, where we use multiple regularization parameters to

iteratively fit models, is tested in other problems such as explicit feature selection. It is reported to

give better results [36] than single-stage regularization.

From Table (5.2), we see that the (linear) RLS with a global prior performs better than some

nonlinear global models and linear local models without a global prior. Further experiments are

needed to verify the approaches we introduced in this section. However, the initial result is encour-

aging.

I I



Degree of time-series
Model 5 10 20

Features: Var(L=O)
RLS(quadratic) 3.5E-6 1.1E-7 1.8E-7

Poly KRLS (d = 3) 5.1E-7 2.7E-7 1.4E-6
Gaussian SVM (a2 = 10- 3) 1.3E-2 1.4E-2 9.2E-3

Local RLS(w = 10) 2.5E-7 1.OE-5 4.4E-5
Local RLS(w = 20) 5.5E-7 1.OE-5 8.OE-7

LWR (K = 50) 3.1E-6 7.5E-8 3.4E-7
Local RLS with Global Prior (w = 10) 2.7E-6 6.3E-7 4.OE-7

Table 5.2: Time-series regression result (NMSE) (3200 training samples and 800 test samples): Various local and
global models with time-series features were tested. LSR of 50 nearest neighbors with degree 10 time-series features
performed the best. However, further experiments are warranted to prove the better performance of the method.

5.6 Experimental Results of Path Selection

Here, we conduct another path selection experiment. Compared to 4.3, we do not use the features

from spatial neighborhood in this section, meaning that we use pure autoregressive time-series

features. This gives a significant computational advantage, especially for recursive predictions; we

do not need to predict covariance entries beyond the region of interest (ROI). Before, we had to

predict covariances of cells outside the ROI for recursive predictions as these entries are needed

to generate spatial neighborhood features. For instance, suppose 1 is the one-cell ROI. Using the

covariance block features CovB(L= 1) to learn the propagation functions, the prediction of the next

state of Et(l, 1) is given by

Et+1(1, 1) = f(l,) (Et(NL)) (5.8)

To make a recursive prediction to get t+2 (l, 1), we use

t+2(l, 1) = f(,) (Et+ (N1)) (5.9)

However, we do not know the entries of tt+l(Nj) except Et+l(l, 1) which was predicted at the

last step. Thus, the other entries has to be predicted as well though they are not of the ROI. In

contrast, with pure autoregressive time-series features, recursive predictions requires no additional

predictions for generating features.



We also use global models in this experiment, meaning that we do not need to retrain models

every timestep. Thus, the computation time will be even faster than in 4.3.

We report that the accuracy of path planning using AR global models was better than sliding-

window KRLS with faster computation time. In the future, we expect to improve the accuracy with

local AR models using LWS or RLS with global prior algorithms.

Figure (5.6) shows the accumulated trace difference between the greedy planning and our plan-

ning method. Our planning method does better than the greedy method though, in some cases, we

may choose the same path as the greedy method. Only the cases where two algorithms pick differ-

ent path is shown.
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Figure 5-6: Accumulated difference of trace between global AR(20) model prediction and greedy of 5 x 1-timestep
planning in Lorenz-2003 model



5.6.1 Computation Time

We show that AR prediction is much faster than full propagation and also faster than sliding-

window KRLS. This is proved with the lower time complexity of the algorithm as in Table (5.3).

The actual computation time in our simulation is shown in Table (5.4). We need additional training

time in case we update models online. The online update is also fast for RLS as KRLS as it

provides recursive solution.

Complexity
Full Propagation Q(CintNeNs + NeR 2 )
KRLS Prediction O((dw + w2 )R 2)

AR Prediction O(dR2)

Table 5.3: The computational complexity of the algorithms for the one-step prediction update. Cit is the nontrivial
cost of nonlinear dynamics integration of one state variable. Ne is the ensemble size. Ns is the number of state
variables in the system. Ne has to be Q(N,) [22]. R is the size of the region of interest. d is the size of the features
for AR models. d < Ne, R < Ns in our case so that AR prediction is significantly faster.

Lorenz-2003
(Ne=1000)

Full Propagation 1984.48s
KRLS Prediction 14.97s

AR(20) Prediction 6.81s

Table 5.4: Average computation time for path planning for different methods. A total of 51 paths were evaluated using
full propagation of EnKF, KRLS prediction and AR prediction (Pentium-4 3.0 Ghz Dual Core was used).

5.7 Conclusions

In this chapter, we experimented with the use of higher-order time-series features. The success of

classical linear time-series models in many applications of signal processing motivated the use of

time-series features in learning the prediction update of EnKF. There were two sources of change

in the covariance evolution: the prediction update and the measurement update. The past effects of

both update steps were incorporated into the time-series features.

The result of learning the prediction update was significantly improved with the use of time-

series features. Combined with the spatial neighborhood features, the result was improved more.



We expected that recursive predictions would be more accurate with the global models as the

models will be still valid for the new states of the covariances during the predictions. We showed

its accuracy indirectly through the result of path selection.

With the global AR models, we are able to evaluate all candidate paths much faster than full

propagation and even the sliding-window KRLS models. The training was done before the plan-

ning and no additional training was needed. The result of path selection was close to the optimal

solution, as shown in Figure (5.6). The information gain achieved with the new models appears

much better than the result of using local models, though the direct comparison was not made.

However, the global models were not able to capture all local variations. In the future, we aim

to further improve the models by local modeling strategies with the use of time-series features.



Chapter 6

Explicit Feature Selection

Kernel method has been very popular in recent machine learning literature [15]. However, we argue

that kernel method may have a few problems especially for the uncertainty prediction problem in

our setting where many number of predictions has to be made and there are many possible features

which are not certain to be useful a priori.

Kernel method implicitly maps original features into higher-dimensional space and find a linear

regressor in that space. For instance, using a Gaussian kernel, one can map original features into a

infinite-dimensional space. As we fit a function in higher-dimensional space, the modeling capacity

is greater than in the original feature space. Simply, there are more functions that we can represent

with the new features. Combined with careful regularization as in the SVM or KRLS algorithms,

kernel methods has worked well in practice to find complex functions.

However, this approach has a number of problems. First, the model is non-parametric so that

the model for a new sample needs to be constructed for every predictions. The KRLS algorithm in

equation (3.25) shows that one needs to calculate the kernel matrix between original samples and

the new sample, K(X, x*), to get the prediction for the new sample x*. If the training set size is n

and the original feature size is m, assuming that kernel calculation takes O(m), this costs O(nm)

for every prediction. This is just to build a model and the actual prediction takes O(n2 ), so the total

time for a prediction is O(n 2 + nm). This is compared to the RLS which takes O(m) calculations

for one prediction.



This is significant for our planning problem as we make many prediction repeatedly, one for

every covariance entry at each timestep. Especially, if the model is a global model trained with

many training samples, this becomes almost infeasible.

Second, there are two sources of overfitting, original features and its kernelized form, and we

have to control both. Using kernelized method and original features, one may find the best kernel

(with best kernel parameters) according to some model selection criterion such as cross-validation.

However, we also have choices of what to use as original features. In our case, we have spatio-

temporal neighborhood of a cell (its value) that would be helpful to predict its value of the next

timestep. We can choose different size of spatio-temporal neighborhood to include as features.

Furthermore, we can extract lots of features from samples, such as ratio, difference, or boolean

features (for example, a feature describes if the value went 'up' or 'down' at last time step). These

features can't be created through implicit kernel mapping and has to be constructed manually.

When we train a kernelized model with these many features, it's hard to select the model as we

have to select the right kernel as well as the right feature set.

Another consequence is that kernelized method may not produce a good model when there are

many redundant and noisy features. Suppose that we only use boolean features so that

j = 1, the boolean feature corresponding to xij is true; (6.1)
- 1, Otherwise.

Imagine a bad case scenario where x has only one good feature and all others are noisy and

non-discriminative features (e.g. all have same values). The polynomial kernel of degree d,

Kpoy=d(X,X 2 ) = (xTx2 + i)d , calculates the inner product of two samples. The inner prod-

uct of any two sample will be dominated by noisy features. For example, if xl = [01111...1] and

x2 = [11111...1], where only the first feature is discriminative,

Kpoly=d(X, X2) = (0 + (T - 1))d = (T - 1)d  (6.2)

SKpoly=d(Xl, X1) = (T- i)d (6.3)

SKpoly=d(X2, x2) = Td (6.4)



In these cases, one has to filter features first, which is feature selection. However, if we were to

filter features first, we may better do feature selection and model selection simultaneously. It can

be done with embedded feature selection, which is explained in the following section.

6.1 Background

[24] provides a good introduction to feature selection. We would distinguish between feature

selection and model selection in that feature selection is to find good or relevant features before

building a model and model selection is to choose a good model using the given features.

However, there are many choices to define what relevant means. Different method of feature

selection choose to use different criteria. The feature selection can be categorized into

* Filters methods

* Wrappers

* Embedded methods

6.1.1 Filters methods

Filters method is to rank features according to some scoring statistic. A popular one is correlation

score between a feature of samples and the label of the samples.

Definition Correlation score:
Cov(Xi,y)

Scorr = (6.5)vVar(Xi)Var(y)

where Xi is a column vector of i-th feature of all samples.

The correlation score tells you how much a feature tend to move together (in the same or opposite

direction) with labels. If some features are almost independent with correlation score near 0, we

may safely remove it from consideration. Filters methods is preprocessing and fast.

However, there is no explicit criteria to choose the threshold, which we remove features with

the scores below than that. For instance, it is hard to decide whether we will remove features with



correlation score below 0.1 or 0.2. Also, a filter method doesn't consider the algorithm we will

use to learn a model. Different algorithm may prefer different features. One algorithm may not be

able to exploit a feature with low score so that it just becomes noise, but other may be. We would

like to know how these features actually contribute to prediction performance, and that leads into

'Wrappers'.

6.1.2 Wrappers

Wrappers is basically a strategy to choose subsets of features to find the best subset for a given

learning algorithm. The best subset is chosen according to some criteria such as cross-validation.

There are two main approaches:

* backward elimination: start with all features and eliminate one iteratively

* forward selection: start with no features and add one iteratively

with some stopping criteria. However, as one can guess, this require huge amount of computation.

Basically, one need to train model multiple times for each stage of feature selection. For forward

selection, if we select a variable every stage among remaining variables, we need to run the learning

algorithm O(m!) times, where m is the number of features.

6.1.3 Embedded methods (Lasso)

In embedded methods, model selection and feature selection becomes indistinguishable as a learn-

ing algorithm gives a sparsified model which only uses a subset of features, with only one training

process. This is usually done by sparsifying regularization.

Lasso [43] was introduced as an embedded method of feature selection. Recall that the original

RLS equation was given by:

min II(X3 - y)112 + A3T (6.6)

where A is regularization parameter which controls the contribution of the L2-norm of regression

coefficients p to the total loss function; small A encourages big 1312 and big A encourages small

lJ2.



However, in the original RLS, a coefficient will be usually not zero due to the squared penalty

for the coefficients 3 [43]. Basically, the contribution of A/i for some i to the loss function in

equation (6.6) increase or decrease with the magnitude of Oi.

In the Lasso, instead of L2-norm of regression coefficients, L1-norm of regression coefficients

are penalized. Thus, the optimization problem of Lasso is

d

min II(X -y) 2 + AZ /i (6.7)
i-i

Using L -norm as the penalty, the contribution of the change of a coefficient Aoi for some i to the

loss function in equation (6.7) does not depend on the magnitude of p/; it encourages sparsification.

The above optimization problem is not quadratic and cannot be solved as quickly as the original

RLS problem. Still, the problem is convex and there are optimization algorithms available to solve

the problem [43, 36]. In the following section, we will experiment with sparsification property of

Lasso and the generalization performance of the solution produced by Lasso.

6.2 Result

We compare the generalization performance and sparsity of the resulting model, using the RLS and

Lasso, in learning a global model. The target function is the prediction update of the full EnKF in

the Lorenz-2003 model with 1000 ensemble members.

In building explicit nonlinear features, we choose to allow only a certain degree of interaction

between features. For example, let a sample covariance evolution of t-timesteps be

11:t(i) = [E (i)f , E (i)m, a i2 i)f 2 (i )a, ..., t(i) f , t(i)a]  (6.8)

= [ I (i), E2(0), ..., i t(i)] (6.9)

where Et(i) represents [Et(i)f, Et(i)a ] for simplicity. We only allowed to use the interaction terms



Model Timesteps
5 10 20 40

RLS 1.02E-06 (10) 3.73E-07 (20) 2.17E-07 (38) 1.90E-07 (78)
Lasso 1.23E-06 (10) 7.55E-07 (15) 4.56E-07 (30) 2.54E-07 (30)

Table 6.1: NMSE of 1-step forecast predictions of a variance on 1000 test samples. 4000 samples were used to train.
Only first order features were used. The numbers inside the parenthesis are the size of the model (the number of non-
zero coefficients). RLS always outperform Lasso in terms of prediction accuracy. However, the model size of Lasso is
always smaller. For 40-timesteps case, Lasso's model is twice smaller. The model size difference will be critical with
more features.

Model Timesteps
5 10 20

RLS 6.8E-07 ± 2.2E-06 (42) 1.6E-07 + 4.9E-07 (92) 0.85E-07 - 2.9E-7 (192)
Lasso 9.5E-07 + 3.7E-06 (28) 2.5E-07 ± 8.4E-07 (77) 1.4E-07 + 6.6E-7 (140)

Table 6.2: NMSE of 1-step forecast predictions of a covariance on 1000 test samples. 4000 samples were used to
train. First and second order (2 degree of interaction) features were used. The numbers inside the parenthesis are the
size of the model (the number of non-zero coefficients). RLS always outperform Lasso in terms of prediction accuracy.
However, the model size of Lasso is always smaller.

of first k-timesteps.

(6.10)

(6.11)

It was primarily for computational efficiency and numerical problems, as the number of features

increase greatly with the higher-order basis expansions.

The tables 6.2, 6.2 and 6.2 show the result of feature selection and prediction performance. The

Lasso solution is compared with the RLS solution.

Model Timesteps
5 10

RLS 6.4E-07 + 2.3E-06 (150) 1.5E-07 ± 5.5E-07 (330)
Lasso 8.2E-07 ± 2.5E-06 (103) 2.4E-07 ± 9.3E-07 (218)

Table 6.3: NMSE of 1-step forecast prediction of a covariance on 1000 test samples. 4000 samples were used to train.
Covariance and mean were used this time. First and second order (4 degree of interaction) features were used. With
mean as features, the prediction performance got a little better, but not significantly.

E(i)2:t [1 (i)1(i), 1(i) (i), ... 1 (i)k(i), ... ,

E2 (i)2 (i)> ... , E(i)Ek+l(i), -- t(i) E t(i)]



6.3 Discussion

The result suggest that the RLS has always better prediction performance than the Lasso. However,

other concern is the model size. In informative path planning, to get the future uncertainties, we

have to use the models recursively for each entry of the covariance. If the model size is m and

we have n2 entries to predict for future t timesteps, the time complexity is O(mn 2t). For the

Lasso solution, m will be smaller than the RLS solution. Though a sparse model would only allow

constant-time speed-up, it would be still valuable for certain cases when real-time operation is

critical.

We also have not tried to use many other possible feature sets due to time limitations. When

one can generate a huge set of relevant features, it would be valuable to use an embedded feature

selection method such as the Lasso.
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Chapter 7

Conclusion and Future Work

In this work, we have introduced and attempted to solve an informative path planning problem

in a highly dynamic weather system. The EnKF, a standard nonlinear estimation technique and

spatio-temporal model, was used to estimate state of the weather system and also to model the

uncertainty of the state estimate.

The goal of the planning problem was to maximize the uncertainty reduction, or equivalently

the information gain, in the estimation framework. For that purpose, the information gain of each

candidate path had to be evaluated with the multiple iteration of the uncertainty propagation proce-

dures in the EnKF. However, the procedures in the EnKF are computationally-intensive; it involves

a series of Monte-carlo simulations. The exact evaluation of information gain in the EnKF would

only allow only few paths to be evaluated due to the timing constraints.

We explored a variety of regression approaches to learn models of uncertainty propagation

in the EnKF. In Chapter 3, we formulated the learning problem to learn the prediction update,

the "propagation" functions, of the EnKF with spatial neighborhood features. After an initial

training period, the learned functions were expected to provide a fast means to predict the future

uncertainties within a planning horizon.

The prediction update was expected to be a nonlinear function thus nonlinear regression algo-

rithms were applied. However, the direct application of state-of-art nonlinear regression algorithms

failed to learn the uncertainty propagation accurately, failing short to improve over simple linear
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models.

The nonstationarity, or locality, of the propagation functions were suspected and we investi-

gated local regression approaches in Chapter 4. The sliding-window KRLS algorithm was proved

to be successful in learning the propagation functions accurately so that multi-step propagations

of uncertainty was predicted with good accuracy. The efficiency of the KRLS prediction allowed

a large set of candidate trajectories to be considered quickly. The path selected with the learned

functions was shown to be significantly better in reducing the uncertainty of the estimates. The

computation was almost free, compared to the EnKF.

However, the limitation of the local models in Chapter 4 was essentially its locality. The local

models may not be the valid function for the new state of covariance after a few timesteps. The

new state of uncertainty requires a new local model, thus a new set of training samples, that we do

not have in the sliding-window.

In Chapter 5, we introduced time-series features to improve the generalization of the learned

models. Instead of looking at a single point of the covariance evolution, we used the history of

evolution as the features. This increased the modeling capacity and we were able to learn global

models of evolution utilizing all the training samples. The models were tested for informative path

selection and showed the improvement in terms of accuracy and speed over local models.

Still, it was shown that there is local trend, heteroscedasticity, in the prediction errors and local

modeling with time-series features would be able to improve over global models. The RLS with

a global prior method and the Locally Weighted Regression (LWR) method both showed some

promise in improving the prediction. We achieved the best prediction with the LWR approach

but it is not computationally-efficient, as multiple nearest neighbor search is required to train new

models at every timestep.

In future work, we would like to propose a computationally-efficient solution to the locality of

models by building a database of models. Local models can be trained beforehand using the LWR

and later retrieved by a nearest neighbor search. We may use only one or a few neighbors. It was

shown that averaging models of neighbors gave better result [3]. There are many nearest neighbor

search method with log(n) complexity, thus rendering this approach feasible. Also, by training
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models beforehand, we do not need to train models in execution time of informative path planning.

The database can be incrementally updated or rebuilt after some period of operation by a separate

thread of computations.

Another important problem is to deal with the accumulation of errors in recursive prediction.

In our approach, we did not deal with it explicitly. There are approaches with various regression

methods that explicitly aims to improve recursive prediction [3, 11]. With some modification, we

may be able to adapt the works to our problem.

In terms of improving the weather forecast, our approach will be tested in operational weather

models combined with some high-level planner such as the one in [13]. Additionally, all learning

approaches are expected to perform even better with larger ensemble, whose size is limited by

computational resources but expected to increase continually. We would like to confirm the utility

of the approach in the operational models estimated with large ensemble.
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