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Abstract

This thesis extends the Statistical Saliency Model to include motion as a feature,
enabling it to compute the saliency of video sequences more effectively. The motion
feature is represented as optical flow and incorporated into the model. The model is
validated by testing its capability in predicting reaction time performance in a
driving simulator. We find that the model does help predict reaction time and some
eye-movements in some simulated driving tasks.
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Chapter 1

Background

This thesis is primarily concerned with extending the work of the Statistical
Saliency Model [19] to incorporate motion, and to apply it to predict behavior
in some driving tasks. We begin with understanding the psychophysical basis of
the model, detailing the mathematical model, showing how it would be useful in
a driving application, then illustrating some experiments conducted in this work.

1.1 Introduction

The human visual system is a complex and evolutionarily advantageous system in
the human brain, comprising between a third to half of the brain’s volume. The
sensory inputs from the retina is piped to the visual cortex and parsed as some
internal representation in the brain. This representation is, for the most part,
stable and unaffected by top-down cognitive processes (i.e. one cannot by force
of will change the color of this paper to blue). In addition, we are not conscious
of every detail within a scene. For example, we are only able to track a limited
number of objects at a time when presented with a stimulus with multiple moving
objects [3]. These are some of the pieces of evidence that imply the processes of
cognition and attention do not have instantaneous and complete knowledge of the
visual information that the brain encodes. However, there cannot be complete
independence between these processes, because we know that there exist some
classes of stimuli that involuntarily attract our attention, i.e. the “pop-out” effect
(Treisman et al [24]). This will be discussed in more detail below.

We consider the idea that the pop-out effect is on the extreme end of a
spectrum of bottom-up mechanisms in attracting attention to a region of interest
in the visual environment. Our notion of visual saliency is that the degree to
which a given spatial location differs from its surroundings, is predictive of the

3
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likelihood of attention applied to that location, regardless of the task at hand.
We first look at why attention is needed in the first place, and then consider
saliency as a task independent mechanism that helps select the important parts
of the scene for attention to be applied.

1.2 Attention

The inquiry into the nature of consciousness and attention have grasped in turn
the consciousness and attention of many philosophers and scientists over the
ages [10]. For the purposes of this paper, we concern ourselves with bottom-
up attention. The brain receives a tremendous amount of sensory input from
millions of neurons. If the processing capacity of the brain is unable to handle
such a massive amount of information, then it would be a positive survival trait
to be able to discard the information which it does not need to survive and to
attend to the information which it does need to survive.

As summarized in [16], the brain pays attention to things that are going to
be damaging (i.e. that lion is going to attack me), nourishing (i.e. that fruit is
edible), a potential mate (i.e. it wants to mate with me) [14], or some previously
known pattern [5]. Brains also pay attention to novel stimuli in order to categorize
it into one of the previously mentioned categories. For the purposes of this paper,
it is sufficient to focus on a loose definition of bottom-up attention — the process of
simple, low-level visual features computed in early vision (< 150ms) attracting
attention to spatial regions, regardless of the task at hand, and we start with
some of the experiments that shed light on how this might work.

1.3 Saliency and Visual Search

When subjects in a visual search experiment were given the task of finding a
particular target in the middle of some distractors in a stimuli, Treisman found
that there are some targets that ‘pop-out’. These targets are so easily and quickly
identified that the time it takes for the subjects to find the target remains constant
regardless of the number of distractor items in the stimuli. Figure 1.1 shows an
example of a pop-out stimuli. In common with all the stimuli that exhibited
this pop-out phenomena, was that the target differed significantly from all its
distractors in at least a single feature (i.e. a green bar among red, or a horizontal
bar among diagonal bars, etc).

In contrast to the pop-out phenomena, there exist search tasks, for which the
reaction time to find the target grows linearly with the number of distractors. One
example of this is the task of searching for a target gray horizontal bar, among
white horizontal bar distractors, and gray vertical bar distractors (see Figure
1.2). These stimuli have two populations of distractors, where each population



1.3. SALIENCY AND VISUAL SEARCH d

Figure 1.1: Visual Pop-out

shares at least one feature with the target. This concept is represented in Figure
1.3. If looking at only one feature at a time, we notice that there is no way to
distinguish the target from both populations of distractors, and it is necessary to
jointly consider both feature distributions in order to make the distinction.

Treisman proposed the Feature Integration Theory (FIT) [24] in order to
explain these results. These experiments provide psychophysical evidence that
the visual cortex represents visual stimuli with some number of separate feature
maps (i.e. orientation, luminance, etc) extracted from visual input. FIT states
that the reason why conjunctive search shows a reaction time proportional to
the number of objects in the screen is that these parallel feature maps require
an attentional spotlight to ‘bind’ the various feature maps together in order to
‘know’ that some object is the target.

While FIT predicted that conjunctive search would not have the ‘pop-out’ ef-
fect, and was validated by results of most conjunctive search experiments, there
also existed some conjunctive searches (for example color and depth) which ac-
tually do exhibit pop-out. The main contribution of FIT can be thought of as
asserting a representation of vision as parallel feature maps, but this alone is
insufficient to explain the results from visual search experiments. Visual search
remains a problem that has yet to be solved in general, but there exist many mod-
els which explain a great variety of phenomena [8, 27, 25]. What experiments
have shown is that how much distractor objects differ from the target within
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Figure 1.2: Conjunction Search: The target is a dark horizontal bar

the feature maps has been a strong indicator of how fast a subject will find the
target, and has been the motivating idea behind the notion of bottom-up visual
attention.

1.4 Related Work

Wolfe et al. proposed the Guided Search model which uses discriminability in
simple features to guide attention [8]. In addition, it simulates attentional ca-
pacity by introducing a bottleneck for information processing ability to limit the
number of objects that are ‘considered’ in order to more closely model the human
performance in typical visual search tasks. In some ways, this is an implemen-
tation of the FIT. This model however, is restricted to visual stimuli for which
we know the location and size of every object, and their distribution in feature
spaces, and has not been extended to be able to process arbitrary real-world
stimuli.

Koch and Ullman proposed a neural mechanism for bottom-up visual atten-
tion [11], which was the basis for a later implementation as a computational
bottom-up saliency model by Koch and Itti [13]. Their model quantifies saliency
as the difference in mean of a location compared to its surround, in multiple
single dimensional feature maps. Saliency is computed by filtering the feature
maps with a center surround filter to extract the difference in means, allowing
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Figure 1.3: Distribution of features in a conjunctive search task

the model to be applied to actual images. However, this model does not take
into account distractor variance — that when distractors have a lot of variance,
the reaction time is slower than when the distractors are homogeneous.

Rosenholtz proposed a simple statistical outlier based approach, further refin-
ing the notion of discriminability or saliency, which does take distractor variances
into account [22, 19]. This model will be discussed in detail in the following chap-
ter.

1.5 Motivation

Not only does visual saliency present an interesting intellectual problem, but also
does it have many practical real-world applications. Having a model of what
humans are likely to attend to can be used to bridge the gap between humans
and computer interactions — in a sense, allowing the computer a very simplified
‘theory of mind’ of its user. Computer programmers, user interface designers,
and advertisement makers have implicitly been using saliency for a long time
intuitively to attract a person’s attention — the blinking of text on webpages,
flashing neon signs, etc.

In a driving context, allowing an intelligent vehicle to know what its driver is
attending to, allows the intelligent vehicle to alert the driver to threats that the
driver has not attended to. For example, suppose an intelligent vehicle had both
cameras showing the visual field outside the windshield, and a laser range finder
which allows the vehicle to identify objects in close proximity. If a pedestrian
wearing black at night suddenly crosses the street, the cameras would only know
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that there is not a lot of saliency in the scene since the pedestrian does not
differ much from its surrounding. However, the laser range finder would have less
problems identifying it as a threat since it functions by sending out a laser signal
and records the reflections of the signal — and will detect the pedestrian without
trouble. Then, knowing that the threat exists, and that the driver is unlikely to
have noticed the threat, the vehicle can then alert the driver to the unnoticed
threat. This thesis focuses on a driving application for saliency, and makes the
case for why saliency would matter for this application.



Chapter 2

Bottom-up Saliency

As mentioned previously, saliency can be viewed as a component in a visual
search model that tries to explain why some visual search tasks are easier from
a bottom-up perspective. The Statistical Saliency Model makes the claim that a
location is more likely to attract attention depending on how much of a statistical
outlier it is in a multi-dimensional feature space compared to the distribution
of its surrounding in the same feature space. We first describe the algorithm
qualitatively, then delve into the details. This thesis is focused on extending the
Statistical Saliency Model which was previously implemented and tested on static
stimuli, to the domain of videos or dynamic stimuli, and testing the efficacy of
its predictions on a practical application.

2.1 Statistical Saliency Model

The center-surround differencing as a measure of saliency as proposed by [13],
does not translate easily to features that span more than one dimension. This is
because if a feature has more say two dimensions, the difference between the cen-
ter and surround will then be two-dimensional instead of a single scalar value
quantifying how salient it is. Some examples of features that span multiple
dimensions include color (which in [13] is dealt with by means of color oppo-
nency), and motion which typically requires two dimensions to describe. An
alternative approach to the center-surround differencing is proposed by Rosen-
holtz [22, 19, 20, 21], which takes on a signal detection approach.

While the center-surround differencing uses only local mean features to com-
pute saliency, there has been evidence that the representation of feature maps,
in addition to the spatially local mean of the features, includes a measure of
variance or uncertainty which may either be implicitly or explicitly encoded. For

9
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Figure 2.1: Top Left: The stimulus is composed two side-by-side squares of a
bright center surrounded by a darker surround, such that the mean of the centers
and surrounds of both sides are equal, but the variance of the left side is much
higher than on the right side. Top Right: The luminance saliency map output
from Itti’s algorithm. Bottom Right: The luminance saliency map output from
the Statistical Saliency Model. Bottom Left: A plot showing the profile takes
across the stimulus of the profile and the two saliency outputs.

purposes of computational simplicity, we approximate what the neural system
might encode, by estimating for each spatial location — a local mean z, the mean
of the surrounding location u, and the covariance matrix of the surrounding
location ¥ for a given feature space. These three parameters can be used to
compute the Mahalanobis distance, s = /(z — p)TE(x — ), which nicely cor-
responds to a quantitative measure of the ‘outlier-ness of a spatial location for

a multi-dimensional feature. Intuitively, it corresponds to how many ‘standard
deviations’ away the target is from its surround in a given feature space.

In addition to being easily extendible to feature spaces that span more than
one dimension, it has the benefit of taking the variance of the surrounding dis-
tribution into account when deciding how salient a spatial location is. Figure
2.1 shows a comparison of luminance saliency as center-surround differencing to
compared to Mahalanobis distance. Notice that the side of the image with no
variance in the surround is more discriminable (i.e. salient) according to the
Mahalanobis distance and human perception.
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2.2 Modeling

In order to tractably implement our saliency model, we make simplifications
in modeling the physical and biological processes. The physical input we are
concerned with is an infinite dimensional spectrum of electromagnetic waves,
localized at a region in space-time. Since we concern ourselves with only what
humans are able to detect, we only need consider the spectrum of visible light,
which we can detect with sensors tuned to red, green, and blue. We then sample
the continuous spatial region into discrete, equally-spaced spatial coordinates,
and sample time at equally spaced intervals to obtain a snapshot of visible light
at a regularly sampled time interval. This is then a spatio-temporal volume
representing the visible light at a region of space over time (e.g. the CCD array
of a video camera).

The goal is to obtain a value of saliency for each discrete space-time coordi-
nate. We compute the saliency for each point on the image as though the eye
were fixated on it, noting that if the eye weren'’t fixated on it, the visual attention
applied would not be very significantly different anyway. Then we can obtain the
static saliency computation by considering each frame independently, and com-
puting the saliency contribution from the features we extract — Color, Contrast,
and Orientation. By extracting the optical flow from the spatio-temporal volume
(i.e. the video), we can then compute motion saliency as well.

In order to more closely match human perception which is able to perform the
same computations at multiple scales, we extract the features at high resolution,
and successively shrink the image and perform the computations again. This
method for image processing on multiple scales is called the Gaussian pyramid
[1]. We apply this for each frame in the video. The pyramid may not necessarily
be dyadic which is just a size ratio difference between levels of » = 0.5, but may
instead have an arbitrary ratio of image size between levels, 0 < r < 1.0. This is
done by successive smoothing and resampling with bilinear interpolation to resize
the image. The features at every scale level of the pyramid are then extracted.
Since it is not known what value of r is optimal, we have settled on an arbitrary
choice of r = 0.75 to use in our model. Then, for each of these feature maps at
every scale level in the pyramid, we compute the local saliency at every location.

2.3 Static Saliency

2.3.1 Color

While the direct physical representation of the three-dimensional color feature is
useful for modeling the spectrum falling onto the retina, we are more interested
in the perceptual space that the spectrum is effectively mapped to by the visual
system. The CIELab color space was developed to map colors to a perceptually
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CiELab: Luminance ClELab:a ClELab: b

Figure 2.2: CIELab color space from the image

uniform space (i.e. the perceptual difference between two colors is proportional
to the Euclidean distance in CIELab space), and is therefore the feature space of
choice for this model.

We note that the saliency model put forth by Itti [13] makes explicit use of
color-opponency (that the visual system records differences in the responses of the
three different cones (color receptors) in the retina) in their computation of color
saliency. Color-opponency theory makes the case for three opponent channels —
(red-green), (blue-yellow), and (black-white). We implicitly use color-opponency
by means of the CIELab color space. CIELab essentially tries to use the ideas
and results from color-opponency in finding a mapping from RGB color space
to a perceptually uniform space. In trying to make this a perceptually uniform
space, CIELab also partially accounts for the effect of Weber’s Law in luminance
perception — that the smallest noticeable difference from a given starting amount
of luminance is always some constant fraction of the given starting luminance.

CIELab does a relatively good job in modeling a perceptually uniform color
space, but does not model it perfectly. However, given its simplicity in computa-
tion and its decent performance in modeling perception of color, we use it as the
three-dimensional feature space in which to compute color saliency. Please refer
to [4] for details of how to convert from RGB color space to CIELab.

We provide an example of extracting CIELab from an image 2.2. The q
channel is a rough representation of ‘redness’ versus ‘greenness’ (for example, the
red brake lights have large values in the a channel in the sample figure), while the
b channel is a rough representation of ‘yellowness’ versus ’blueness’ (for example,
the blue sky has small values in the b channel in the sample figure).
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Contrast Filter x 107 Contrast Filter Profile

Figure 2.3: Contrast Filter

2.3.2 Contrast

While color has a direct and easily measurable physical cause, item size is harder
to measure directly. Item size is one of the many features shown to exhibit pop-
out. It is a very difficult problem to obtain a measure of size, because in an
arbitrary image, we do not know where objects are and where their boundaries
lie.

There has been much progress in the field of image segmentation to obtain
these object boundaries more quickly and in a more perceptually accurate man-
ner. However, since these methods are both computationally intensive and some
do not have stable outputs, we instead use a simple alternative — luminance
contrast.

The contrast feature map is obtained by filtering the luminance channel (from
the CIELab colorspace) with a simple Difference of Gaussians filter (see Figure
2.3), then squaring the result to obtain contrast energy. If we make the simplifying
assumption that an object consists of a closed shape of uniform luminance, this
feature gives an estimate of how large an object is by essentially counting the
number of nearby spatial locations that exhibits the change in luminance that
occur at the boundary of two objects or surfaces. This contrast energy is also
a stand-in for shape - a measure of ‘textureness’. As shown in 2.4 we notice
that the image has two populations of textures — and the contrast energy can
distinguish between the two.

Figure 2.5 shows an image and the extracted contrast energy map. We provide
the code for extracting contrast energy in the Appendix.
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Figure 2.4: Contrast Energy as a measure of ‘textureness’

Contrast Energy

Figure 2.5: Extracting Contrast Energy from an image

2.3.3 Orientation

The orientation feature maps we use are based on those used in [12]. We use a
two-dimensional feature representation for orientation, with the first dimension
corresponding to horizontal (0 degrees) - vertical (90 degrees) opponency, and the
other corresponding to opponency in the two diagonal (45 degrees and 135 de-
grees) orientations. This is essentially a version of steerable filters [6], extracting
some measure of the best angle response to a steerable orientation filter.

We first extract the responses to a horizontal, vertical, left and right diagonal
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Figure 2.6: Orientation Filters

filters (see Figure 2.6) from the luminance map from the previously mentioned
CIELab color space representation of the input image. These responses are then
spatially pooled and squared to obtain the orientation ‘energy’. Then, we obtain
horizontal-vertical opponency by taking the difference between the horizontal and
vertical energy and dividing it by the total energy (which is just the sum of the
four orientation energy computations). In the same way, we use the two diagonal
orientations to find the left diagonal - right diagonal opponency. As an example
we show an image’s orientation features extracted in Figure 2.7. We also provide
the code for extracting this feature in the appendix.

2.4 Motion Saliency

The focus of the thesis is the extension of the computational form of the Statistical
Saliency Model to the domain of dynamic stimuli. Ideally, we would like to use
a feature space that closely models the representation of motion in the visual
cortex. However, it is both not clear exactly how motion is encoded, nor how
to compute what is encoded from the retinal image. Cortical analysis reveals
that there are brain cells that are tuned to specific directions of motion, and is
consistent with the local representation of spatial-frequency based representation
of motion extracted through various local spatio-temporal filters of the stimuli
[26, 2]. These local estimates are thought to be integrated to form a global motion
field [17] in order to correct the mistakes that the local filters may make.

We consider optical flow as a feature representation of motion for it’s simplic-
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O fnergy:

Figure 2.7: Extracting Orientation Energy from an image

ity in formulation, its representational power, and compatibility with local flow
estimation and some aspects of global motion. Optical flow encapsulates the idea
of finding a correspondence for every pixel between successive frames in a video
sequence. We then have for every pixel, its motion to the next frame. Thus, for
every spatial location, we have a horizontal and vertical displacement, forming a
two-dimensional feature space.

We once again are faced with a representation choice — to encode optical
flow as horizontal and vertical displacements, or to encode it as a magnitude
and direction. As Rosenholtz points out in [20], representing optical flow as
a two-component spatial displacement as a feature for motion would allow the
Statistical Saliency Model to perform closer to psychophysical observations as
compared to when represented as magnitude and direction.

2.4.1 Motion Estimation

As a proxy for the actual motion extraction used by the brain, we use the highly
accurate algorithm developed by Brox et al [23] in estimating the optical flow for
our stimuli. Ideally, we would like to know the actual 3D motion of every object,
then project it to a 2D representation. However, we are only given the images
presented in two (or maybe more) frames in a video, restricting us to the domain
of pixels instead of objects.
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Figure 2.8: A white box moving to the right in a black background offers local
motion estimates along the left and right borders but nowhere else

Color and Gradient Constancy Assumption

In order to track pixels from frame to frame, we start with the assumption that
pixels generally do not change their color from frame to frame. This leads to a
natural goal of finding the displacement of that pixel into the next frame, so as
to minimize the difference in color.

However, there are some cases when a change in illumination (i.e. due to the
sun suddenly being hidden by clouds, or vice versa) makes this assumption false.
The gradient of the pixel however, does not change under an illumination change
because they are a measure of boundaries of objects or regions. Thus, in addition
to the color constancy assumption, we assume that the gradient of the pixel is
constant across frames.

These two constraints together form the evidence of motion given the data,
providing a local estimate of motion. However, that is insufficient to solve the
problem of finding optical flow that is consistent with perception, in regions of
low contrast or noisy regions. For example, consider a large white box on a black
background as shown in Figure 2.8. If this white box were to move to the right
by one pixel, the local estimates of motion would indicate that there is strong
evidence that there is motion to the right at the left and right edges of the box,
and strong evidence that there is no motion along the top and bottom edges of
the box. However, there is no discriminating what type of motion if any, lies at
the center of the box using the local evidence. But we know that the top, bottom,
and center of the box has moved to the right along with the left and right sides.
Therefore, there must be a mechanism for propagating the information about
motion to ambiguous regions in the image.
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Piecewise Smoothness Assumption

The piecewise-smoothness assumption, makes the claim that the optical flow field
smoothly varies within a region of space. This allows to infer the motion of a pixel
in locations whose motions are locally ambiguous, but when taken into context
of the larger picture, are determined. It allows for discontinuities to account for
the fact that objects can move independently of each other allowing the optical
flow to be discontinuous at the boundary of objects.

This assumption additionally helps minimize the impact of noisy data, by
weighing the evidence from the surrounding pixels. This results in more robust
estimates of optical flow under noisy inputs.

Multi-scale estimation

One problem with implementing the optical flow from these assumptions, is that
most methods make the simplifying approximation of the spatio-temporal stimuli
as a first order Taylor series approximation, and is thus only able to capture
linear relationships which tend to hold for only small motions (less than a pixel).
Unfortunately, optical flow is often non-linear and involve motion that is far
more than a single pixel. To overcome this difficulty, we find the optical flow at a
very low resolution to obtain the large motions, and interpolate this motion to a
higher resolution of the image and warp the current video frame toward the next
frame and compute the optical flow after correcting for the larger motion. This
is repeated at successively higher resolutions until the original resolution case is
solved to get our final optical flow output.

Implementing such assumptions to obtain optical flow involves finding the
horizontal and vertical displacements that maximize the objective function (i.e.
what motion best satisfies the previously mentioned assumptions). We refer the
interested reader to (23] for the details on computing the optical flow. For our
purposes, we note that we are interested in the theoretical limit, assuming we
can get the best optical flow estimate possible, and then proceeding to compute
motion saliency. We consider this a module which we can replace with a better
method for estimating optical flow that is more consistent with human perception
and cortical representation when available.

Figure 2.9 shows the optical flow estimate from two frames of video.

The effect of ‘flicker’ can also be classified as a manifestation of motion saliency
in an optical flow representation. Essentially, the displacements of the pixels are
infinite, causing high saliency, and attract a lot of attention.
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Figure 2.9: Extracting Optical Flow from two video frames

2.5 Computing Saliency

The entire process of computing saliency can then be summarized as per Figure
2.10. The input stimuli is a discrete spatio-temporal volume with each spatio-
temporal coordinate specifying a color. For each slice in that volume at time {,
we extract color, orientation, and contrast features, and in addition, when we
take two successive slices, t and ¢ + 1 we extract the optical flow specifying the
motion between the two time-slices.

We then proceed to compute the saliency for each feature map, by calculating
the Mahalanobis distance between the mean feature value of a spatial location,
compared to the neighboring distribution of feature values. We estimate the local
mean feature, &, with a spatially weighted average according to a two dimensional
normal distribution. Similarly, for the two other estimated parameters which
involve the surround, we weigh each neighboring location’s contribution according
to a ‘donut’ like shape. This shape is produced by taking a two dimensional
normal distribution with a larger standard deviation (i.e. larger pooling area)
than that of the local mean computation, and subtracting the weights used to
compute the local mean and then renormalized to be a valid discrete probability
distribution. See Figure 2.11 for an image showing what these spatial weights
look like.

The left image in figure 2.12 shows how the motion saliency of the point
in the center of the red circle is computed according to the Statistical Saliency
Model. Each pixel within the red circle around the target location is marked by
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Figure 2.10: Saliency Process

a red dot in optical flow space in the center image. Similarly, each pixels in the
blue neighboring area are marked by a blue dot in optical flow space in the center
image. We then compute the mean of the target distribution (the red dots), z, the
mean of the distractor distribution (the blue dots), u, and the covariance matrix
computed as though the distractor distribution were a two dimensional Gaussian
distribution, ¥, as shown in the right image. The green and black ellipses around
the mean show the Mahalanobis distance, s = V(@ — w)TE(x - 4), at the 2D
equivalent of 1 standard deviation and the target’s Mahalanobis distance from
the surrounding pixels’ distribution. The optical flow feature dimensions for the
entire two-frame image sequence are shown in Figure 2.9.

This computation is done for every spatial location in the feature map at
multiple scales in the Gaussian pyramid. Then we let the saliency contribution
for each spatial location be the sum over all the scales (i.e. by resizing all the
saliency maps computed back up to the original scale via linear interpolation then
adding them together). In order to combine the saliency information across the
multiple saliency maps for every feature, we assign equal weight to each saliency

map, s;, to obtain our master saliency map, s,, = \/ > s?. We caution that we
have not tested this combination strategy in detail. We based this decision on
some simple test cases — there weren’t a consistent set of small variations from
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Figure 2.12: Computing the saliency of a given location

equal weights on each feature map that performed significantly better than the

equal weight strategy.

This chapter discussed in detail the Statistical Saliency Model and its im-
plementation. While the model is based on some psychophysical evidence, we
feel strongly that these theories need to be tested extensively in more realistic
environments, such as in a driving context as will be discussed in the next chapter.






Chapter 3

Saliency in a Driving Environment

3.1 Driving

Because we are interested in understanding saliency in relation to everyday life,
we take the approach of using more realistic stimuli and contexts. Previously,
most stimuli used in trying to test the efficacy of saliency models tended to be
very well controlled, and very simple visual stimuli in a lab environment, like
Figures 1.1 and 1.2. While the models put forth in explaining a variety of visual
search tasks have been successful, they have been limited to simple stimuli which
are rarely encountered in real life. There is little work showing whether what we
learned in the laboratory can carry over to what we see in everyday life.

Both as an application and as an opportunity to better understand saliency
and visual attention in a real-world environment, we look at the visual environ-
ment within the task of driving. In considering the context of driving, the visual
field we are interested in takes on some characteristics that are not present in an
arbitrary visual environment.

Viewed as a tool to aid the task of driving, visual saliency could potentially be
used as part of an intelligent vehicle in modeling the perception of the driver to
help the intelligent vehicle assist the driver in making decisions quickly and safely.
By identifying the salient regions in the visual environment, we are effectively
marking the most likely locations a driver is looking at. In combination with a
threat detection system, we can then identify threats that drivers are unlikely to
notice.

23
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3.2 Thought Experiment: Information Processing Ability
in Drivers

Driving is a very complicated behavior. The typical driving scenario involves
driving on a road with a few lanes, oncoming cars on the other side of the road,
cars ahead on the same lane, and cars going in the same direction in a parallel
lane. A driver might have to stop at intersections, merge into traffic, interpret
signs and lights at the sides of the road, or painted onto roads, etc.

A naive characterization of the task of driving might require, while keeping
in mind directions for where to go and controlling the pedals, steering wheel,
and gear shift, an almost instantaneous interpretation of the light field to extract
where objects are, what these things are, whether, where and how fast these
objects are moving, self motion, whether any collisions are going to occur, and
more. Further complicating the task, these objects may be traffic signs informing
the driver of road conditions to expect or regulations to obey. We have clearly
not managed to carry out this task perfectly, as evidenced by the number of
accidents, but on the other hand one typically expects not to get into an accident
commuting to or from work with great likelihood. Accidents are the exception
instead of the norm. This begs the question, how do drivers manage to perform
such a complicated task with relatively few critical mistakes that cause accidents?

As a thought experiment, one might imagine the ideal driver, who has infinite
information processing capacity and speed, whom we shall call Driver Infinity.
This driver makes the optimal decision with respect to controlling the steering,
acceleration, brakes, and gears of the car in order to carry out the driving task,
minimizing the chance of an accident, and following the rules of the road, given
the information about the visual world, provided to this driver. Driver Infinity
would then perform better as more information about the driving environment is
added. We first simplify this situation by considering only the visual information
that can be gathered by looking out the front windshield of a car. Then the
maximum amount of information that can be obtained is the highest resolution
possible image of the visual environment in front of the car sampled at the highest
possible framerate.

Driver Infinity might then know every single detail about the environment —
such as the location of rocks and potholes on the ground, and subtly maneuver the
vehicle in order to minimize the likelihood of a tire puncture or other mechanical
failures, in addition to tracking all the other vehicles on the scene, and where the
drivers of these vehicles are looking at in order to model what they may be aware
of, and estimate the likely behaviors of these vehicles.

We then might be curious, how much of the visual input is really necessary?
If we remove parts of the visual stimuli, can Driver Infinity still perform well as a
driver? How much can we remove before this driver becomes prone to accidents,
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or is unable to drive? We might imagine an inverse relationship between driving
performance and information provided. Let us suppose that driving performance
can be somehow quantified into a number, and the instantaneous driving perfor-
mance at time ¢ is D; which varies from D; = 0 being the worst performance, up
to D; = 100 which is the best possible driving performance.

Not all parts of the visual input are equal — parts of the visual scene are
more important than others, for example the visual input indicating a mountain
range many miles away in the distance would be less important to the driving
task than the visual input indicating the car ahead is making an emergency stop.
To quantify this notion, we now define a one dimensional visual information
variable, V; € [0,100] where V; = 0 indicates zero visual information which also
corresponds to the worst possible input for Driver Infinity and V; = 100 indicates
the maximum amount of visual information or the best possible input for Driver
Infinity, at time ¢t. We then calibrate V; such that if Driver Infinity were given as
input V4, Driver infinity would have a driving performance D; = V.

In this paradigm we have two variables we can vary — the information pro-
cessing capacity of the driver, and the information from the visual environment
fed to the driver. Let us consider some driver models: Driver Ten, and Driver
Twenty, who are respectively able to process up to ten, and twenty units of visual
information per second.

If a constant stream of 10 units of visual information per second were sent
to Driver Ten and Driver Twenty, they would both perform at the best possible
driver performance, D; = 10, given the information. Driver Twenty would have
no problems reaching the best possible driver performance, D; = 20 when given
an input of 20 units of visual information per second, but Driver Ten would take
two seconds to process every second of input and thus be unable to keep up,
and even if Driver Ten were able to instantaneously detect the best 10 units of
information to process every second, Driver Ten would only be able to perform
at D; = 10. However, there is a cost in having to consider more information than
one is able to process, making D; = 10 the theoretical maximum performance of
Driver Ten when given 20 units of information per second, but whose performance
is less than the maximum due to having too much information to handle.

There have been many attentional studies showing that the serial processing
is indeed limited, especially concerning tasks that involve effortful thinking, while
the essentially parallel tasks of attention and intuition are unfettered [9, 18]. The
complex task of driving possibly involves both the fast and parallel (i.e. interpret-
ing motion, recognizing objects, etc) as well as the slow and serial computations
(i.e. reading signs, searching for non-salient threats, etc).

As mentioned in Chapter 1, the human brain can selectively attend to visual
input. This is consistent with a view of an information processing brain that has
a limited information processing capacity. By selecting the information that is
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most useful the brain reduces the amount of workload so it may attempt to keep
a decent performance under the flow of constant information, much like Driver
Ten. Because it is not possible to know ahead of time what parts of the visual
environment is most useful, the visual system must first accept every part of the
visual input, but later decide what parts are most useful for the task at hand. We
might then speculate that the bottom-up attention process which selects subsets
of the visual scene corresponds makes use of the fast and parallel nature of low-
level visual processing to pick out a small set of useful information to pass down
the chain of processes to the slower and serial reasoning systems in the brain.

And indeed, this is what we have found in human vision. The Feature Inte-
gration Theory as mentioned in Chapter 1 posits a serial attentional binding step
to integrate the various information extracted via parallel processing.

There has been much research on how attentional systems in humans work
that shed light on why it is not necessary for humans to be conscious about many
of the things that are going on in a driving environment, but instead need only
pay attention to a subset of important aspects of the driving visual environment.
However, what is most salient in the visual scene may not correspond to the most
important part of the visual scene according to our measure of visual information.
For example, a well camouflaged person standing in the middle of a highway is not
salient, but is very important towards the task of driving. While this spectrum
of saliency and importance spans a scope beyond this work, this view of a driver
as an entity that is fed visual information, will recognize the separation of the
two concepts, and acknowledge that there is an overlap between the two. This is
partially explored in the experiments we conducted.

3.3 Visual Environment while Driving

Compared to an arbitrary visual stimuli, the driving task has a distinct and
characteristic set of features. Roads, signs, cars, ego-motion, traffic lights, seen
at a variety of speeds, are some of the features of this visual stimuli.

A driving environment includes the constant motion of the car mostly mov-
ing forwards, occasionally turning, and rarely reversing. See Figure 3.1 for an
example of the motions involved in a typical driving environment. The camera
is moving forward causing a looming motion, and in addition, there are indepen-
dent moving cars in front and on parallel sides of the road. In this scene, we note
that the car ahead is not moving relative to the motion of the camera, while the
two cars flanking the car ahead are moving at a significant speed relative to the
camera.

We note that in this scene, if we had simply taken the difference between
successive frames, the resulting information only tells us there was some slight
change in the flanking cars. The magnitude of motion gives us information about
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Figure 3.1: Motion in a driving environment

the motion of the scene, but if we were to use the magnitude of motion solely
as a determination of what attracts attention, we would not predict that the
car ahead which is moving differently from the cars around it should be paid
attention to. When we look at the saliency map computed from the optical flow
field, we note that the three closest cars are salient, assigning more saliency to
the car that corresponded to the greatest motion magnitude.

This chapter has discussed the motivation for why a vision scientist might
want to apply the models and theories developed in a lab into a driving context,
as well as how saliency can be used as a strong tool in modeling driver behaviors.
In the next chapter, we test our model in some behavioral experiments.






Chapter 4

Experiments

We explore the idea that saliency affects driving performance by varying the
saliency in a simulated driving task, and measuring driver performance. If per-
formance improves with visual saliency, while the visual information is somewhat
constant, then we show that a process akin to visual saliency is at least part
of a mechanism that guides a human driver’s attention and has an impact on
performance.

4.1 Drive Simulator Experiment

We put our theory to the test in seeing whether a bottom-up saliency model is
predictive of observed behaviors within a driving task. We make the hypothesis
that driver performance, as measured by how quickly a driver is able to detect a
pedestrian, can be predicted by how salient that pedestrian is.

4.1.1 STISIM Drive Simulator

We had subjects steer a simulated car using the STISIM Drive Simulator [7]
whose speed was set to a constant 40mph on a relatively straight road with no
intersections or stops. We added some minor road curvature in order to increase
the cognitive load. The road was divided into 1000t segments and within each
segment contained some combination of background clutter variables (See table
4.1) in order to change the saliency of the target pedestrian. The number of
distracting objects in visual search tasks is known to have a significant influence
on search time. Subjects were given the task of detecting a pedestrian about to
cross the road, by pressing a button on the steering wheel. The road had two
lanes, separated by a double yellow line.

29



30 CHAPTER 4. EXPERIMENTS

The STISIM drive simulator consists of a car shell with pedals and steering
wheel connected to the STISIM drive simulator. The simulator was run on a
Dell XPS 600 computer with a 3GHz Pentium D processor, and 1GB Ram. The
screen is 152cm away from the subject, and is 94cm by 58cm, which translates
to about a visual angle of about 34 deg by 20 deg.

Pedestrians | Cars Trees Buildings
{0,5,10} | {0,3} | {None, Few, Many} | {None, Few, Many}

Table 4.1: Scene Clutter Variables

Target Pedestrian
{Left, Right, Absent}

Table 4.2: Target Variable

We discuss the target variable, and the nominal clutter variables — pedestrians,
cars, buildings, and trees in detail below. In each stretch of 1000ft, a subject
drove through some combination of number of distracting pedestrians, oncoming
cars, buildings and background trees, and tried to detect a target pedestrian
trying to cross the road (see Figure 4.2). It took between 15 to 20 seconds to
complete each trial.

We had a total of 18 male and 2 female subjects whose ages were between 25
and 70 years old. Each subject drove for two sessions of 15 minutes with a small
break between the two sessions. There were approximately 120 trials of 1000 f¢
comprising some selection of variables, per subject. The simulation that each
subject participates in was randomly generated so that the 120 trials spanned
a selection of the variables in a random order. Each trial was also randomized
to vary the visual appearance of the buildings, trees, pedestrians, cars and road
curvature.

Target Pedestrian

The target pedestrian was either absent, or trying to cross the road from the left
or right side of the road. If the target were present, the target pedestrian would
have started walking from the sidewalk towards the road and stopped at the edge
of the road. This event was triggered when the subject’s car was 450t from the
target. The target pedestrian then walked at a speed such that if the pedestrian
were to carry on walking onto the road, the pedestrian would collide with the
subject’s car.

Subjects were asked to mark the pedestrian target by pressing a “left” or
“right” button located on the steering wheel in the simulator, in order to indi-
cate whether the pedestrian were crossing from the left or right side of the road
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Figure 4.1: STISIM Experiment Screenshot 1

Figure 4.2: STISIM Experiment Screenshot 2

respectively. The drivers were asked to press the correct button as soon as they
noticed a pedestrian moving towards the road or if they noticed a pedestrian
standing at the side of the road as though about to cross. We recorded the
response time and incorrect responses.

The target pedestrian had the same appearance as the distractor pedestrians
as discussed in more detail below.

Pedestrians

Within each trial, there would be 0, 5, or 10 distracting pedestrians who simply
walked along the sidewalks either to or from the horizon on either side of the
road. They all walked at similar speeds to each other, approximately 5ft from
the road. There were some number of model pedestrians which the STISIM drive
simulator can render. Some examples are shown in Figure 4.3.
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Figure 4.3: Some pedestrians in STISIM

Figure 4.4: Some cars in STISIM

Cars

On the oncoming side of the street, during a trial, there may be 0, or 3 cars
traveling at around 40mph.

Buildings

Buildings on either side of the street constituted a static clutter variable. In each
1000ft stretch in a trial. There would be one of three conditions encountered
within each trial: no buildings, some sparsely located buildings, or densely packed
buildings on both sides of the road. In Figure 4.5 we show some sample buildings
that the STISIM Drive simulator had rendered.

Trees

Similarly, within each trial, there were trees (see Figure 4.6) on either side of the
road. There were also 3 possible choices within each trial — no trees, a few trees,
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Figure 4.5: Buildings in STISIM

Figure 4.6: Some types of trees in STISIM

or densely packed trees on both sides of the road.

4.1.2 Results

We first look at the correlation between reaction time to detect the pedestrian
versus the nominal clutter variables, then correlate the reaction time to visual
saliency. We separate the cases of when the pedestrian is crossing from the left
and when the pedestrian is crossing from the right side of the road because the
car is driving on the right lane, which makes the visual appearance of both cases
asymmetric. Because some subjects are simply faster than others, we also try to
normalize the reaction time for each subject by subtracting the subject’s mean
reaction time and dividing by the standard deviation for that subject to obtain
the z-score for each reaction time. In the following parts we refer to this as the
normalized reaction time.

Nominal correlations

As mentioned in Chapter 1 in conjunction visual search tasks (and many other
complex visual search tasks) the number of items in a visual stimuli have a very
strong influence on the reaction time. We find some significant but small corre-
lations between the nominal measure of set size and normalized reaction time.
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Table 4.3 shows the Pearson Correlation coefficients between nominal clutter and
normalized reaction time.

Nominal clutter variable | Right: r | Left: r
Number of Buildings 06395 | .03137
Number of Cars .05210 | .14268
Number of Pedestrians .07868 | .00496
Number of Trees .14009 | .04906

Table 4.3: Correlation coefficient between nominal clutter and normalized reac-
tion time

These correlations are small because the nominal clutter can be thought of
as a pseudo-measure of set size, but it does not consider the visual scene, and
the ‘effective’ set size or the area in which a subject is searching in to find the
pedestrian is not every single object on the scene. As can be seen in the sample
snapshots, we notice that the number of objects is not very useful because of
their high variability in the scene.

Correlation of reaction time with visual saliency

We computed static and motion saliency, then obtained the combined saliency
map. In addition to the saliency maps, we also have for each frame in a video,
an approximate bounding box of the location of the pedestrian. This bounding
box was estimated via a semi-supervised labeling of the pedestrian location. To
speed up computations, we ran our algorithm on a lower resolution of the video.

We picked some sample images and show the corresponding saliency maps.
Figures 4.7, 4.8, 4.9, and 4.10 respectively show a snapshot taken at random from
the video corpus, in a trial with many trees, a low clutter trial, and a high clutter
trial. We notice that the road markings (i.e. yellow double line, etc) are always
salient, and that motion saliency tends to pick out the pedestrian even when
most of the static features are having trouble. Color saliency is most admissive,
and allows the boundary of the vehicle and the road be very salient. Some of
the more mundane and less informative areas which are salient according to this
bottom up model, we expect are inhibited by top-down processes after learning
the task of driving. In the highly cluttered scene, the saliency of everything else
seem to overwhelm that of the target. This is an example where the saliency
model predicts a slow reaction time in subjects.

For this application, in order to account for the clutter in the background, we
define the saliency signal as the ratio of the mean saliency of the target to the
mean saliency of the entire scene because presumably eye movements occur not
just as a function of local saliency, but as a function of local saliency compared to
everything else. Thus, we try to predict the time at which the subject detects the
target by finding the first time when the saliency signal exceeds some threshold
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Figure 4.7: A randomly selected snapshot from the video with its corresponding
saliency maps

ratio. We hypothesize that when something is very salient it would attract the
attention of the subject as well as enable the subject to discriminate whether or
not it is the target. We then look at how well this predicts the observed reaction
time by looking at the Pearson Correlation Coefficient between the predicted
reaction time and the normalized reaction time. Figures 4.11 and 4.12 show the
plots for correlation between reaction time and predicted reaction time according
to the different saliency maps. The reaction times were quantized to fixed sized
bins, and each point corresponds to the mid value of the reaction time bin, and
the mean value of the predicted time of values in the bin. The error bars show
the standard deviation within the bin. We note that for the case of pedestrians
crossing from the left, that there seems to be a nonlinearity involved, and so the
Pearson Correlation Coefficient computed are underestimates of the correlation
relationship.

As seen in the plots, we find that our predicted reaction time based on saliency
does indeed correlate with normalized reaction time.

4.2 Eye Movements Analysis

In addition to recording the reaction time, for a small subset of the subjects, we
also recorded eye-movements. We used a faceLAB [15] eye-tracking setup with a
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Figure 4.8: A snapshot from a trial with many trees

pair of cameras. To synchronize the simulator with the eye-tracking machine, we
used a crossover patch ethernet cable with the Network Time Protocol client on
the faceLAB computer, and the STISIM Drive simulator running the server.

Instead of trying to predict reaction time, we can also look at how closely
saliency can predict eye-movements. However we do need to keep in mind the
caveat that attention applied to a spatial location does not necessarily correspond
to someone fixating on that spatial location.

Eye movements were recorded for 6 subjects. We try to observe how much
of the eye-movements we can explain by essentially considering how much our
saliency maps intersect with the eye-movements. We can essentially try to eval-
uate this by letting the saliency map be a probability distribution of estimated
eye gaze intersection, and computing the probability that the observed eye-gazes
were generated by the probability density map we had estimated from the saliency
information. To evaluate this, we also compute the probability that it was gen-
erated from a uniform distribution over the video (i.e. every spatial location is
equally likely).

Let the observed eye-tracking data, which comprises a z and y coordinate
for every frame in the video, ¢, be denoted by (z,y);. Then the probability
of observing (z,y); is denoted by P;,[(z,y):] where s is one of the candidate
probability distributions computed at time t.
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Figure 4.9: A snapshot from a trial with little clutter

We define the uniform distribution as
1
P'u[(wa y)t] = E—ﬁ
where w and h are respectively the width and height of the video.

We assume that the saliency map is proportional to the probability distribu-
tion of that saliency map. And in order to account for eye-tracking estimation
noise, we compute the probability of observing the eye tracking location by in-
tegrating over a uniformly weighted disc centered at (z,y); with a radius of 1°
(i.e. place a disc of 1° centered at (z,y);). Then the probability of observing
(z,y)t is just the saliency at that location divided by the sum over the entire
saliency map at that time frame. We also look at how this might vary depending
on an exponentiation, v applied to the saliency map before the normalization to
a probability distribution.

In order to incorporate a simple measure of top-down influence, we modulate
the saliency map with a preference to look at the center of the image. We
combine contributions from a Gaussian distribution and the saliency map, with
a weighting parameter 0 < a < 1. In our experiments, we find that o = % is a
reasonable parameter choice.

Poar,[(z,y)d] = % > Ula, b (2,9);1°) x (axsal[(a, b)e] +(1—) X N(a, b; (cz, ¢ ); o))
(a:b)
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Figure 4.10: A snapshot from a trial with a lot of clutter

Where Z =3, ), salt[(u,v)]" is the normalization constant, U(z, y; p;7) is
a uniformly weighted disc centered at (z,y) with radius r, and N(xz,y;u;0) is
a bivariate normal distribution centered at u with both dimensions independent
and equal standard deviation on both spatial dimensions, o, and (cg,cy) is the
center of the image.

For evaluation, we compute the probability that the eye-gaze observations
were generated by a given distribution P;. For simplicity in computations, we
assume that there are no correlations across time, so that the probability of
observing (z1,y1): and (z2,y2)t+1, can be simplified as

Py[(z1,y1)t A (22, Y2)e41] = Ps[(@1,y1)e) Ps[(2, y2)s+1]

Let D = {(z1,v1)1, (z2,¥2)2, .-, (Tw,yg)7} denote entire sequence of obser-
vations. We are interested in finding the probability that this sequence of obser-
vations were generated by a given distribution, which we call the likelihood of
the observations given the probability distribution.

Ps[D] = Pyf(z1,91)1 A (22,92)2 A ... A (@7, y7)T)
Py[(x1,y1)1] Ps[(22, y2)2]... Ps[(x7, y7)71]
= [Liz1.7 Psl(%i, yi)d]
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Figure 4.11: Reaction Time correlation with Predicted Time for a pedestrian
crossing from the left. t is the threshold used, and r is the Pearson Correlation
Coefficient. Error bars are standard deviation for that bin.

Then, in order to allow numerical stability in computations as these numbers
will become very close to zero rapidly as we are multiplying many numbers be-
tween 0 and 1, we compute the log likelihood, log Ps[D] = log [ [, 1 Ps[(xi, ¥:)i]
simplified as,

log Ps[D] = ) log Py[(:,:)i]
i=1..T

Table 4.4 shows the results on the videos. We found that 2° provided a local
maxima with respect to maximizing the likelihood on our data. We also found
that the choice of v between a range of values between .125 and 2 made little
difference (within 5 percent of the values) in the likelihood of the data.

These results indicate that our measure of saliency has a predictive power a
few orders of magnitudes better than random chance, about an order of magni-
tude better than a model simply predicting we look at the road ahead of us all
the time.

We find that saliency does in fact predict better than chance and some simple



40 CHAPTER 4. EXPERIMENTS
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Figure 4.12: Reaction Time correlation with Predicted Time for a pedestrian
crossing from the right. ¢ is the threshold used, and r is the Pearson Correlation
Coeflicient. Error bars are standard deviation for that bin.

Probability Distribution log likelihood | ratio to uniform dist
Uniform —1.6199 x 10° 1
Combined Saliency y =1 a =0 | —1.6102 x 108 9.7 x 10°
Normal distribution o = 2° ~1.5776 x 106 4.23 % 16%
Combined Saliency vy =1 a = .5 | —1.4445 x 106 1.754 x 10°

Table 4.4: Probability of eye movements given saliency

measures. These results indicate that we can indeed use saliency to predict some
proportion of driver behaviors. However, we still cannot predict a lot of the
driver’s behavior. We have also shown in these stimuli that the saliency model
predicts that many of the objects that drivers are told to keep in mind while
driving such as lane diving lines, and cars which are relatively close, are naturally
salient.

In this chapter, we have shown that the saliency model we have developed can
predict a significant proportion of what a driver either looks at or pays attention
to. We discuss how we can take this further in the next chapter.



Chapter 5

Discussion

5.1 Summary

In summary, we have shown in this thesis, the implementation of the Statistical
Saliency Model for video sequences, along with the extension of the model to
add an optical flow feature in order to capture motion saliency. By essentially
performing a statistical test to find outliers, we can identify spatial regions that
are likely to attract attention.

Additionally, we have applied the saliency algorithm to stimuli that are more
complex and realistic. The results we found in the experiments we conducted
show that the algorithm does well in predicting certain behaviors in a driving
simulation environment.

5.2 Future Work

5.2.1 Further Investigations and Extensions of the Model

From a modeling point of view, we would like to examine in detail how the
different feature maps interact with each other in influencing the tendency to
attract attention. For instance, the perception of motion of an object often
requires the object to have features that we can track across time in a video,
thereby making the object salient in both color and motion. This model as is,
does not take time beyond that of estimating optical flow into account, and so
ignores many physiological effects such as adaptation.

Additionally, this model incorporates information in an isotropic manner.
This may not be the correct thing to do as it incorporates information across
boundaries of surfaces and objects thus blurring the distinctions.

The human eye and brain both compensate for a lot of the jittery and noisy
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motion to give us the percept of a smooth continuous dynamic stimuli. In or-
der to model this better, we think that stabilizing a video would yield better
performance. The analysis of how ego-motion affects a person’s attraction to
objects are also not well understood. Some unanswered questions on this include
whether or not the brain compensates for ego-motion since it expects one to do
this motion anyway, and so it is not surprising or salient.

5.2.2 Future Directions

Some of the future work we want to focus on include trying to answer the question
of how much top-down influence is exerted in driving scenarios, and can we
develop a model for this influence on driving behaviors.

Another promising and interesting direction of this research is the incorpo-
ration of machine learning into predicting saliency or driver behaviors. One can
imagine having a machine learn by example what is considered salient and what
is not, to build a computer representation and model of how a human would
perceive.
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Appendix A

Code

A.1 Statistical Saliency Model

The following matlab code computes the local saliency according to the Statistical
Saliency Model at a single scale given the feature in the 2 — D matrix, img.

function std = sally(img, prm)
% std = sally(img, prm)
% Input arguments

% img - height x width x d input image, where d is the number of dims
% prm - optional parameters argument

% prm.noise - noise in variance, if scalar, noise is applied

% equally to each dimension,

% if vector noise(k) is applied to variance

% in the k-th dimension

% prm.filterScale - target pooling scale

% prm.distractorRelativeSize - relative size of distr. pooling
YA scale

A prm.cosmeticBlur - size of cosmetic gaussian blur

% Output

yA std - height x width saliency map

TIIIKKh ST Do hoToToTo o oo ool
% PARAMETER HANDLING %
WIS SIS I DTl Tololo ol e
% grab some size info

[nr nc nd] = size(img);
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1 = nr * nc;
% grab given parameters or use default if no parameters were provided.
if ("exist(’prm’,’var’))
prm = [];
end
[noise tSigma dSigma blur] = processParams(prm,nd);

Tl T ToTo ot o oo to o oo o o oo o

% INITIALIZATION h

Tl loToToTo o toto o to oo oo o o o o e

img = single(img); % for speedier convolution

% Useful Kernels and constants %

% the filter for getting the target region

sFilt = fspecial(’gaussian’,ceil(2*tSigma)#*2+1,tSigma);
% the filter for getting the distractor region (kind of)
bFilt = fspecial(’gaussian’,ceil(2*dSigma)*2+1,dSigma);
% normalizing constant calculations

maxS = max(sFilt(:)); maxB = max(bFilt(:)); k = maxB / maxS;
smallK = k/(1-k); bigk = 1/(1-k);

T T T oo oo ToTo oo Fo o to o o oo

% Here we go!! %

YANNAAAA AN AN Y AN A

% compute the mean of the target and distractor distributions
meanT = nconv2(sFilt, img);

meanD = bigK * nconv2(bFilt, img) - smallK * meanT;

% compute the covariance matrices for the distractor distributions
covarD = zeros(nd,nd,nc*nr);
for ii =1 : nd
for jj = ii : nd

cross = img(:,:,ii).*img(:,:,3j);

exIJT = nconv2(sFilt, cross);

exIJD = bigK*nconv2(bFilt, cross);

cvd = (exIJD - smallK*exIJT) - (meanD(:,:,ii).*meanD(:,:,jj));

% add noise to the variance

if (i == jj)

cvd = cvd + noise(ii);

end
covarD(ii,jj,:) = cvd(:); covarD(jj,ii,:) = cvd(:);
end
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end
% compute the inverse and determinants of the covariance matrices
inversD = invMats(covarD);

% Compute the mahalanobis distance from the mean of the target distribution
% to the mean of the distractor distribution.

meanD reshape (meanD, [nr*nc,nd])’; meanT = reshape(meanT, [nr*nc,nd])’;
mTD mahalanobis(meanT, meanD, inversD, nd, 1);

std = sqrt(mTD); std = reshape(std, [nr nc]l);

% final blur for cosmetic purposes

if (blur)
g = fspecial(’gaussian’,ceil(tSigma*2)*2+1, tSigma*2);
std = imfilter(std, g,’replicate’);

end

return

VYA SN AN YANA Y YA AAA
% HELPER FUNCTIONS %
VAN AN YA YA AN AN
% computes [x - mu] * invcov * [x - mul, nd = # dimensions, 1 = # pixels
function md = mahalanobis(x,mu,invcov,nd,l)
xMinusMu = x - mu;
xMinusMuRep = repmat(reshape(xMinusMu, [nd,1,1]),[1,nd,1]);
xMinusMuTimesInvers = sum(xMinusMuRep .* invcov, 2);
xMinusMuTimesInversTimesXMinusMu =
sum(reshape (xMinusMu, [nd, 1,1]) . *xMinusMuTimesInvers,1) ;
nd = reshape (xMinusMuTimesInversTimesXMinusMu, [1,1]);
return

% (covars)~(-1) for each k in covars(:,:,k)
% handles special cases for 1,2, and 3 dimensions, otherwise slowly
% iterates for each pixel
function [invs dets] = invMats(covars)
[nd nd 1] = size(covars);
if (nd == 1)
dets = reshape(covars, [1 1]);
invs = 1./covars;
elseif (nd == 2)
a = covars(1,1,:); b = covars(1,2,:); ¢ = covars(2,2,:);
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dets = a.*¢c - b."2;

invs(1,1,:) = c; invs(1,2,:) = -b;
invs(2,1,:) = -b; invs(2,2,:) = a;
invs = invs ./ repmat(dets,[2 2 1]);
dets = dets(:);

elseif (nd == 3)
a = covars(1,1,:); b = covars(1,2,:); ¢ = covars(1,3,:);
d = covars(2,2,:); e = covars(2,3,:); f = covars(3,3,:);
dets = a.*d.*f-a.*e. 2-b." 2. %f+2%b.*Cc.*xe~C."2.%d;
invs(1,1,:) = d.*f-e."2; invs(1,2,:) = -b.*f+c.*e;
invs(1,3,:) = b.*e-c.*d;
invs(2,1,:) = invs(1,2,:); invs(2,2,:) = a.*f-c."2;
invs(2,3,:) = -a.*e+b.*c;
invs(3,1,:) = invs(1,3,:); invs(3,2,:) = invs(2,3,:);
invs(3,3,:) = a.*d-b."2;
invs = invs ./ repmat(dets,[3 3 1]);
dets = dets(:);

else
invs = zeros(nd,nd,l);
dets = zeros(l);

for ii=1:1
invs(:,:,ii) = inv(covars(:,:,ii));
dets(ii) = det(covars(:,:,ii));
end
end
dets = dets’;
return

function [noise tSigma dSigma blur] = processParams(prm,nd)
if (“isfield(prm,’noise’))
.001;

noise
else

noise = prm.noise;
end
if (numel(noise) == 1)
noise = noise * ones(nd,1);
end
if (“isfield(prm,’filterScale’))
tSigma = 7/2;
else
tSigma = prm.filterScale;
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end
if ("isfield(prm,’distractorRelativeSize’))
dSigma = 4 * tSigma;
else
dSigma = prm.distractorRelativeSize * tSigma;
end
if ("isfield(prm,’cosmeticBlur?’))
blur = 2.3 * tSigma;
else
blur = prm.cosmeticBlur;
end
return

function s = nconv2(kernel, img, border)
if ("exist(’border’,’var’))
border = ’replicate’;
end
[h w d] = size(img);
img(:,:,d+1) = ones(h,w);

u = imfilter(img,kernel,border);
s = sum(kernel(:)) * u ./ repmat(u(:,:,end),[1 1 d+1]);
s =8(:,:,1:d);

return

A.2 Extracting orientation
The following extracts orientation features given the luminance image.

function ori = ftOrientation(lum)
% ori = ftOrientation(lum)
% Input arguments

% lum - height x width input CIELab Luminance of image
% Output

h ori - height x width x 2 orientation feature map
noise = 1;

sigma = 16/14 * 1.75;

poolSc = 1.75 ;
g = fspecial(’gaussian’, 2*ceil(poolSc)+1, poolSc);
[h,v,r,1] = orientFilts(sigma);

% orientation energy



hi = imfilter(lum, h, ’replicate’); hi = hi."2;
vi = imfilter(lum, v, ’replicate’); vi = vi."2;
ri = imfilter(lum, r, ’replicate’); ri = ri."2;
1i = imfilter(lum, 1, ’replicate’); 1li = 1i.°2;

% pool with scale
hi
vi = imfilter(vi, g, ’replicate’);

imfilter(hi, g, ’replicate’);

ri = imfilter(ri, g, ’replicate’);
1i = imfilter(1li, g, ’replicate’);

tot = hi + vi + 1i + ri + noise;

hv = (hi - vi) ./ tot;

dd = (ri - 1i) ./ tot;

ori = zeros(size(hv,1), size(hv,2), 2);
ori(:,:,1) = hv;

ori(:,:,2) = dd;

return

function [H,V,R,L] = orientFilts(sigma)
h = ceil(3*sigma);
x = repmat(-h:h, [2%¥h+1,1]);
y =%
Gb = exp(-.5*((x/sigma). 2+(y/sigma)."2));
Gb = Gb ./ sum(Gb(:));

APPENDIX A.

Ga = exp(-.5*%((x/sigma). 2+((y-sigma)/sigma)."2));

Ga = Ga ./ sum(Ga(:));

Gec = exp(-.5*((x/sigma) . 2+((y+sigma)/sigma)."2));

Gec = Ge ./ sum(Gc(:));

H = -Ga+2*Gb-Gc;

V =H;

GGa = imrotate(Ga, 45, ’bicubic’, ’crop’);
GGa = GGa/sum(GGa(:));

GGb = imrotate(Gb, 45, ’bicubic’, ’crop’);
GGb = GGb/sum(GGb(:));

GGc = imrotate(Gec, 45, ’bicubic’, ’crop’);
GGc = GGc/sum(GGe(:));

R = -GGa+2*GGb-GGc;

GGa = imrotate(Ga, -45, ’bicubic’, ’crop’);

CODE
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GGa = GGa/sum(GGa(:));
GGb = imrotate(Gb, -45, ’bicubic’, ’crop’);
GGb = GGb/sum(GGb(:));
GGc = imrotate(Gc, -45, ’bicubic’, ’crop’);
GGc = GGc/sum(GGc(:));

L = -GGa+2*GGb-GGc;
return

A.3 Extracting Contrast
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The following matlab code extracts the contrast energy feature from the lumi-

nance image.

function c = ftContrast(lum)
% ¢ = ftContrast(lum)
% Input arguments

YA lum - height x width input CIELab Luminance of image
% Output
% ¢ - height x width contrast feature map

a=8; % 1/2 tap size

sigma = 5.33/2;

sigi = 0.71xsigma; sigo = 1.14*sigma;

t=-a:a;

gi = exp(-t."2/(2%sigi~2)); gi = gi/sum(gi);

go = exp(-t. 2/(2*sigo~2)); go = go/sum(go);
innerFilt = gi’ * gi;

outerFilt = go’ * go;

imfilter(l, innerFilt - outerFilt,’replicate’);
c.”2;

[+
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