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Abstract

The thesis seeks a better understanding of liquidity generation process of financial markets
and attempts to find a quantitative measure of market liquidity. Various statistical model-
ing techniques are introduced to model order flow generation, which is a liquidity genera-
tion process of the market. The order flow model successively replicates various statistical
properties of price returns including fat-tailed distribution of returns, no autocorrelation
of returns and strong positive autocorrelation of transaction signs. While attempting to
explain how the order flow model satisfies Efficient Market Hypothesis (EMH), I discovered
a method of calibrating market liquidity from order flow data.
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Chapter 1

Introduction

Modern financial markets provide a vast amount of microscopic data on the behaviors of

agents who make buying and selling decisions of financial instruments. For the past few

decades, availability of data made it possible to either validate or challenge theoretical

models in finance theory through empirical analyses. In this thesis, I propose an extra step

towards the better understanding of market microstructure. This is achieved by introducing

statistical models that can be trained using the empirical data. Then the resulting models

can simulate infinite number of possible scenarios of outcomes, which follow statistical

regularities. These models are more realistic than the theoretical ones with fewer realistic

assumptions, and can be better tested.

1.1 Major Contributions

This thesis focuses on the modeling of a liquidity generation process of financial markets

and derives a quantitative measure for market liquidity. In the first part of this thesis,

I demonstrate statistical modeling techniques to model order flow generation, which is a

liquidity generation process for financial markets. I implement the model and through

simulation, I demonstrate the order flow model successfully replicates various statistical

properties of price returns, such as clustered volatility, fat-tailed return distribution, and

no predictability of future returns. In the second half of this thesis, I argue that the

change in market liquidity explains how my order flow model satisfies the weak form of

the Efficient Market Hypothesis (EMH), which asserts that future price returns cannot be

predicted from past returns. This is not an obvious result since the order flow model has



a predictable transaction sign process (i.e. buyer or seller initiated trades) as one of its

components. A method of quantifying market liquidity from order flow data is introduced

to explain this result. I also present the periodicity of change in liquidity discovered in the

real market data.

1.2 Outline

The following is the outline of my thesis. In Chapter 2, I describe the data set from the

London Stock Exchange including the market mechanisms and detailed summary statistics.

In Chapter 3 I build a market model based on real market data, which can simulate known

statistical properties of the real market. I propose an approach to empirically model the

aggregated behavior of the trading crowd, which involves modeling the time sequence of

orders placed/canceled in the market called the order flow. In Chapter 4, I propose a

parametric model of limit order removal times. The term removal time refers to both limit

order execution and cancellation times. I show that using a standard statistical technique

to model removal times cannot accurately model the removal time's diffusive behavior and

therefore introduce a better approach of modeling it. In Chapter 5, I compare the simulated

data from our order flow model to the empirical data. For comparison, I focus on three

statistical properties of stock returns: fat-tailed distribution of returns, clustered volatility,

and no autocorrelation of returns. Although there is no direct link between the statistics

of placement/cancellation processes and the statistics of price returns, the results show

that the model can successfully replicate the statistical properties of stock returns. In

Chapter 6, I introduce a method of calibrating market liquidity from the order flow data.

I verify the method by showing the correlation between order sign predictability and the

liquidity measure. This explains why the price return series is not autocorrelated when

the transact sign series is a long memory process. This result shows how the return series

satisfy the efficient market hypothesis (EMH). I also applied the method on real order flow

data and identified patterns in change in market liquidity. I conclude in Chapter 7.



Chapter 2

London Stock Exchange Data

All results presented in this thesis are from stocks traded on the London Stock Exchange

(LSE) over the period of May 2, 2000 to December 31, 2002. I used LSE data to train/verify

the model and to perform various statistical analyses. In this chapter I provide a general

overview of the LSE's market mechanism and its data.

Although the market mechanisms differ slightly from one exchange to another, the LSE

is one of the largest exchanges in the world; therefore, by studying the LSE we can focus

on those characteristics that are common in large exchanges. Also, due to its large data

size, we can conduct meaningful statistical analyses. The trades in LSE can occur from

two different systems, via electronic limit order book, which is referred to as the on-book

market, or via retail service provider (RSP), which is referred to as the off-book quotation

market. Empirically it is known that the electronic open limit order book is the dominant

mechanism for price formation (LSEbulletin, 2001). The off-book trades mostly consist of

large block trades and 75% of them are executed within the best bid/ask prices in the limit

order book. In my analysis I used the order, quote, trade data from the Stock Exchange

Electronic Trading System (SETS), which is one of the trading services the LSE offers for

on-book trading based on the electronic open limit order book. In SETS, upon submission

of orders from market participants, the orders are routed to the central order book and are

automatically executed. The off-book trades are not used in the analysis because trading

times are reported manually, which results in unpredictable reporting time lags. Although

the data set only consists of orders that are executed through SETS, it is the dominant

mechanism for the price formation, and thus, I believe that it is a sufficient data set for the



study.

2.1 Order Matching Mechanism

In the LSE, market participants submit mainly two types of orders to SETS - limit and

market. A limit order is an order to transact a prespecified number of shares at a prespecified

price. When there is no matching order that can fulfill these conditions, the limit order

will remain in the limit order book until one or more matching orders arrive. In contrast,

a market order is an order to transact a prespecified number of shares at the best market

price1 . As long as there are matching limit orders, the market orders will be executed

immediately as they arrive in the central limit order book. The SETS is an order-driven

market, in which there are no market makers2 , and liquidity is solely generated by limit

orders submitted by market participants. The participants can choose whether to submit

limit or market orders based on their preferences. If they want immediate execution, they

will prefer a market order, but there is a risk of having orders executed at undesirable

price(s). If they want guaranteed execution price, they will prefer a limit order, but in this

case they bear a risk of having to wait a long time until execution, or even of getting no

execution at all. When orders arrive in the central limit order book, an execution priority is

given to each order. For market orders priority is based on order of arrival. For limit orders

priority is based on price and then on order of arrival. The difference between the highest

buy and the lowest sell price defines the bid-ask spread. When the size and/or price of an

order is modified before execution, a new timestamp is assigned to the order and priority is

assigned accordingly. When an order is partially executed, it keeps the original timestamp

with no change in execution priority.

2.2 Limit Order Removal Times

As mentioned earlier a market order is guaranteed an immediate execution whereas a limit

order is not. While a limit order remains in the order book, it can be either executed or

1The best market price refers to the best ask price when it is a buy order and the best bid price when
it is a sell order. When the size of a market order is larger than the size of all the limit orders at the best
price, the remaining part of the market order, if any, will transact at the next best price.

2Market makers are designated person(s) or firm(s) by the exchange to quote bid and ask price in the
market.



canceled. In Chapter 3 & 4 we present an order removal times model, which attempts

to model limit order execution (time-to-fill) and cancellation (time-to-cancel) times. Both

time-to-fill and time-to-cancel describe a time duration of limit order remaining in the

order book. Depending on how the order is removed from the book - either by execution

or cancellation - the duration is identified accordingly.

2.2.1 Event Time

Throughout my thesis, I will measure removal times in terms of event time. Instead of

measuring time in seconds the event time measures it in number of events. An event is

defined to be an occurrence that causes change in the order book. In our case, order

submissions and cancellations are events, but executions are not. An execution occurs

simultaneously with a market order submission and I define such as a single event. This

simplifies my studies especially the order flow model in Chapter 3, because I do not have

to worry about modeling the actual time intervals between the events. Also other studies

have shown that using event time instead of calendar time does not significantly change the

results of their analyses (Farmer et al., 2004). Although I do not report in Chapter 4, I

have similar results when I model removal times in terms of calendar time.

2.2.2 Time-to-Fill and Time-to-Cancel

When the limit order's price and/or size gets modified before execution, they receive new

timestamps. To handle the modification in the most natural way, I simply divide a modified

order into multiple orders separated by the time when the limit price and/or size of the

order is modified. This is the same as concurrently receiving an order cancellation and a

new order submission at the time of the modification. Also, there is no guarantee that

limit orders are fully executed at a single point in time. When a limit order is partially

executed it becomes ambiguous to define the time-to-fill of that order. To remedy this, we

need to consider all the possible scenarios of limit order executions and cancellations. There

are four possibilities for limit order execution and cancellation: (1) full execution without

partial fill, (2) full execution with partial fill(s), (3) cancellation after partial fill(s), and (4)

cancellation without partial fill. Full execution without partial fill and cancellation without

partial fill are the simplest cases - they will just be considered as single limit orders with

apparent durations for time-to-fill or time-to-cancel. For full execution with partial fill(s),



I define the time-to-fill to be the duration for the order to be fully executed regardless of

how many partial fills occurred before the full execution. Cancellation with partial fill(s)

is more complicated because part of the order generates a time-to-fill and the other part

generates a time-to-cancel. In order to resolve this ambiguity, I separate the orders so that

one will be a full execution with partial fill(s) and the other will be a cancellation without

partial fill. (Both orders are placed at the same original time.) For example, consider a buy

order of 2,000 shares at price £10.00 is placed at time t = 0, 1,000 shares are executed at

t = 10, and the rest are canceled at t = 15. I treat this as two 1,000 buy orders at price

£10.00, placed at t = 0. One of these is fully executed at t = 10, and the other is canceled

at t = 15. This separation into multiple orders does not affect price formation.

2.3 Trading Periods: Auction vs. Continuous

The trading day in the LSE contains 3 main trading periods: opening auction, continuous

trading, and closing auction3 . I define auction orders and continuous orders to be orders

placed during auction and continuous periods respectively. The market opens with the

opening auction at 7:50 am, which ends roughly at 8:00 am. After the opening auction the

continuous trading period begins. Then at 4:30 pm the continuous trading period closes

and the closing auction begins and lasts for roughly 5 minutes. Unlike continuous orders,

auction orders will stay in the order book without execution until the end of the auction

period. At the end of each auction period, the LSE calculates a common clearing price

using a matching algorithm and executes the matching orders in the limit order book at

a common price. In order to prevent traders from manipulating the clearing price of the

stock, the auction ending time varies randomly within 30 seconds. In this framework the

auction orders' times-to-fill or times-to-cancel are ill defined. When the auction orders are

executed at the end of the auction period, they are executed all at once regardless of their

placement time. Also, when they are cleared either by execution or cancellation during

the continuous trading period (which is followed by the end of the opening auction), the

time duration of orders left in the order book during the auction period cannot be included

in the calculation of time-to-fill or time-to-cancel since the order matching did not occur

continuously during that period. For this reason including auction orders will bias the
3 The closing auction period was introduced on May 20, 2000.
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Figure 2-1: Three types of continuous order execution (cancellation) scenarios. The A, B,
C, and D indicate different states of limit order book. The arrow for each order indicates
order placement time and execution (cancellation) time.

analysis and thus I discard them.

Similarly, limit order removal times can be ill defined for some of the continuous orders

as well. Figure 2-1 shows three types of continuous order removal scenarios. Order type 1

is the case where the order is placed during continuous trading and removed in the same

period. This is the most common case for limit order removal, and the one in which time-

to-fill and time-to-cancel are clearly defined. Order types 2 and 3 correspond to orders

placed during the continuous period and carried over to the next trading period. Type 2

corresponds to the case in which an order is placed in one continuous trading period and

removed in a subsequent period. One may argue that we can define removing time to be

the time that the order remained in the book only during continuous trading. However,

this is not an accurate measure since the state of the limit order book at the opening of

the closing auction is very different from its state at the closing of the opening auction -

indicated by B and C in the figure. In the data set an average of 98% of the orders in the

order book during the closing auction are either canceled or executed during the auction.

Thus, the states of limit order books B and C in the figure are very different. Lastly,

order type 3 indicates carried over continuous orders that are removed during an auction.

Similar to auction orders, they are removed during the auction when continuous matching

is suspended, so the removal time is ill defined. Among these three types of continuous

orders, I only used order type 1 in my analyses and discarded type 2 and 3. In the data set

approximately 97% of the continuous orders are type 1 orders.



2.4 Summary Statistics

Table 2.1 & 2.2 show the summary statistics of 9 stocks that I analyzed in the data set. The

list consists of stocks with a range of different average trading volumes. Table 2.1 shows

that on average 0.21% of orders are auction orders, and 1.87% are type 2 & 3 continuous

orders. This shows that discarding auction orders and carried-over continuous orders will

have little effect in my analyses. Table 2.1 also shows that type 1 continuous orders are

almost equally divided into buy and sell orders. Table 2.2 shows summary statistics of type

1 limit and market orders traded during the continuous trading period.

I categorized limit and market orders in terms of their net effects on the limit order

book. The effective market orders are those that resulted in immediate execution. This

includes the market orders that transacted a prespecified number of shares at a market

price as defined in Section 2.1. Similar to market orders, crossed limit orders are limit

orders with a prespecified price that is better than the current opposite best, resulting in

immediate execution. Their net effect is the same as that of market orders, and thus we

categorize them as effective market orders. Effective limit orders are those that do not result

in immediate execution. Effective limit orders consist of canceled limit orders, which are

removed from the order book before execution, and filled limit orders, which are executed.



Symbol # Auction # Carried Over Continuous Orders - Type 1
Orders (%) Orders - Type 2 & 3 (%) # obs % buy % sell

AZN 3,423 (0.14) 28,483 (1.15) 2,444,477 50.52 49.48

BLT 2,977 (0.28) 15,984 (1.51) 1,039,153 51.68 48.32

BSY 3,130 (0.22) 28,682 (2.02) 1,390,002 50.46 49.54

LLOY 3,054 (0.14) 34,405 (1.63) 2,077,984 51.06 48.94

PRU 2,771 (0.18) 23,588 (1.55) 1,496,505 50.39 49.61

RTO 2,984 (0.40) 16,317 (2.16) 738,189 49.77 50.23

RTR 3,141 (0.20) 29,378 (1.89) 1,526,973 50.52 49.48

TSCO 2,885 (0.23) 24,426 (1.91) 1,254,989 50.76 49.24

VOD 3,772 (0.12) 93,909 (3.01) 3,030,508 51.21 48.79

Table 2.1: Summary statistics of auction, carried-over, and continuous orders from May 2,
2000 to December 31, 2002 of 9 individual stocks listed in the LSE. Auction orders are those
placed before 8:00 am or after 4:30 pm. The carried-over orders are those placed between
8:00 am and 4:30 pm and not executed or canceled on the same day. Continuous orders are
those placed between 8:00 am and 4:30 pm and are either executed or canceled on the same
day.

Effective Limit Orders Effective Market Orders
Symbol # obs % filled % canceled # obs % market % crossed

AZN 1,846,940 0.31 0.69 597,537 0.26 0.74

BLT 763,987 0.32 0.68 275,166 0.30 0.70

BSY 1,015,668 0.35 0.65 374,334 0.25 0.75

LLOY 1,451,678 0.39 0.61 626,306 0.32 0.68

PRU 1,086,915 0.34 0.66 409,590 0.32 0.68

RTO 518,675 0.36 0.64 219,514 0.29 0.71

RTR 1,096,126 0.35 0.65 430,847 0.29 0.71

TSCO 847,986 0.44 0.56 407,003 0.31 0.69

VOD 1,958,101 0.50 0.50 1,072,407 0.28 0.72

Table 2.2: Summary statistics of effective limit and effective market continuous orders (Type
1) from May 2, 2000 to December 31, 2002 of 9 individual stocks listed in the LSE. The
filled and canceled orders are continuous limit orders that are either executed or canceled.
The crossed limit orders are buy(sell) orders with limit price higher(lower) than the ask(bid)
price, which result in immediate execution.



Chapter 3

Stock Order Flow Model

3.1 Introduction

In this chapter I introduce a stock order flow model based on the statistical description of or-

der placement and cancellation. Such model is often referred to as "zero intelligence" model

since it randomly generates orders without any notion of rationality of agents. This mod-

eling approach contrasts with earlier market models based on the assumption that traders

make rational probabilistic decisions based on available information (Glosten and Milgrom,

1985; Kyle, 1985). Surprisingly absence of rationality assumptions in "zero intelligence"

models have shown to be capable of replicating various market behaviors.

3.1.1 Related Work

The order flow model introduced in this chapter is much in the same spirit as in a long list of

other market models, which attempt to describe order flow as a statistical process. Similar

to the model based on rationality assumption, they show a "zero intelligence" model can

be used to make strong predictions based on a compact set of assumptions. For instance,

Mendelson (1982) studied the behavior of prices and quantities from a model with ran-

dom order placement with periodic clearing suggesting the possible implications of market

conditions. Maslov (2000) studied a simple model of a limit order-driven market, which

traders randomly choose to place different types of orders. He showed that despite of such

minimalistic settings, the price pattern generated by the model has realistic features such

as power law tails of the returns and volatility clustering. Challet and Stinchcombe (2001)



introduced a model of limit order markets based on the Island ECN order book data. From

the model they observed power law tails of the returns and volatility clustering. Bouchaud

et al. (2002) studied statistical properties of the order book of stocks traded in the Paris

Bourse. They found the statistics of limit order prices follow power-law around the current

bid-ask quotes, and the shape of average order book can be reproduced using simple "zero

intelligence" model. Smith et al. (2003) and Daniels et al. (2003) introduced a model which

the order arrival and cancellation are defined to be Poisson random processes. They found

that such simplified market model is capable of inducing anomalous diffusion and tempo-

ral structure of prices. Later Farmer and Mike (2006) further improved this model with

different order placement and cancellation processes and show that the model is capable of

replicating statistical properties such as distribution of the volatility and the bid-ask spread

of some stocks they used for training.

3.1.2 Our Approach

I introduce a new approach of modeling order flow, which is complementary to the models

studied earlier. In the earlier models, various unrealistic assumptions were made such as

neglecting long memory of order signs, or overlooking complexity of order placement and

cancellation processes. Although some simplification is inevitable, I attempt to create an

order flow model closer to reality by applying various statistical modeling techniques.

The order flow model represents placement or cancellation of four types of orders -

market1 buy, market sell, limit 2 buy, and limit sell orders. There are three variables, which

are used to model such orders:

1. Order sign V: A variable indicating whether the order is buy or sell order.

2. Order price p: A variable for the price of an order. An order is considered a market

order if the price generated by the model crosses the opposite best price3 in the order

book.

3. Cancellation time 7: A variable indicating how long the order will remain in the order

book for execution. If an order is not executed within this time period, it is canceled.

The event time is used and this only applies to limit orders since all market orders

'A market order is an order to buy or sell a stock at the current market price.
2A limit order is an order to buy or sell a security at a specific price.
3 A best bid price for a sell order generated and a best ask price for a buy order generated.



gets executed immediately except for unrealistic market state where no limit orders

are present in the order book.

I made couple of simplifications in my order flow model. First, the model only simulates

orders consist of all three components listed above. Some of the simulated orders will

have price crossing the opposite best price, which are identified as effective market orders

resulting immediate executions. These orders are similar to ordinary market orders with

no price embedded in their order description. Therefore when I train the price model, I

cannot ignore market orders with missing price. Instead, I attached hypothetical prices to

market orders based on the price at which the market order is executed. I will go over

this in more detail when I describe the price model in Section 3.3. Second, an order size

is fixed in the model. This is justified by the study of the on-book market of the LSE

by Farmer et al. (2004). The study showed that orders that remove more than the depth at

the opposite best quote are rare. Similarly, Bouchaud et al. (2002) also showed in his "zero

intelligence" model that the size distribution play a minor role in reproducing the shape

of average order book. Third, the model simulates order flow in event time. The event in

event time is defined to be either arrival or cancellation of an order. This implies the model

does not require to simulate order arrival times. In reality the actual calendar time (such

as in seconds) between the events will not be uniform, however, simulating order flows in

event time will not change the price formation.

In the rest of this chapter I describe each component - order sign, price, and cancellation

time - of the model in more detail.

3.2 Order Sign Model

In the previous studies by Lillo and Farmer (2004) and Bouchaud et al. (2004), the long

memory effect of supply and demand in the market data is introduced. In the study, they

analyzed data from the London Stock Exchange, the Paris Bourse, and the New York Stock

Exchange and showed that the strong autocorrelation of buyer/seller initiated trades4 are

universal. This was due to a stream of buy and sell orders being autocorrelated, which

implies a buy order is likely to arrive in the market after stream of buy orders and vice
4Buyer initiated trades are trades occurred by market buy orders and seller initiated trades are trades

occurred by market sell orders.



0.1

0.08

0.06

0.04

0.02

0

-002

- Unscrambled Transaction Signs AZN

- Scrambled Transaction Signs AZN

I I I I I I I a I

0 100 200 300 400 500 600 700 800 900 1000
Lags

Figure 3-1: Autocorrelation of transaction sign series for the stock AZN (black). The same

transaction sign series is randomly reordered to kill the autocorrelation (red).

versa. Figure 3-1 shows the autocorrelation function of transaction sign series for the stock

AZN in black (+1 for buyer and -1 for seller initiated orders). If the model assumes IID

order signs, the autocorrelation function of simulated transaction signs will look similar

to the plot shown in red in Figure 3-1 where the original transaction signs are randomly

reordered.

The Hurst exponent of the transaction sign series for AZN is 0.6753, which indicates

the long memory process5 . In the following section we introduce fractional autoregressive

moving average model (FARIMA), which can simulate long memory process of transaction

sign series.

3.2.1 FARIMA Model

In order to model strongly autocorrelated stream of buy and sell initiated trades, we

used fractional autoregressive integrated moving average (FARIMA) model introduced by

Granger and Joyeux (1980) and Hosking (1981). FARIMA (sometimes called fractional

ARIMA or ARFIMA) is a generalization of autoregressive moving average model (ARIMA)

introduced by Box and Jenkins (1970), which is generally referred to as an ARIMA(p, d, q)

with integer values p, d, q > 0 where p, d, q are the order of the autoregressive, integrated,

5If the Hurst exponent is 0.5 < H < 1, the process is a long memory process.

_ _



and moving average part respectively. Given the time series data It where 't's are real

numbers at time t, ARIMA(p, d, q) model is given by

1 - • iLi (1 - L)dpt= i + iL i Et, (3.1)
i=1 i=1

where L is the lag operator, qi and 0i are the parameters of the autoregressive and moving

average part of the model respectively, and et are the error terms with zero mean and

variance ao .

In Equation 3.1 the level of term-by-term differencing is expressed with the lag operator

L and integrated parameter d. Since d is defined to be an integer greater than or equal to

0, (1 - L)d can be expressed as

(1 - L)d ( 1)k k, (3.2)
k=o

where the binomial coefficients can be expressed in terms of gamma function r(-) as

(d) d! F(d + 1) (33)
k k!(d - k)! F(k + 1)r(d - k + 1)(3.3)

FARIMA models are a natural extension of the ARIMA models by allowing the param-

eter d of integrated part of the model to be a real value within the range of -1 < d < .

Since F(-) is defined for all real numbers, Equation 3.3 can be used to extended the model

for the real numbers of this range. As shown by Granger and Joyeux (1980) and Hosking

(1981), the range of d that is interesting in the context of long memory process is 0 < d < 1

Also parameters p and q allow for more flexible modeling of short range properties whereas

the parameter d determines the long term behavior.

In my model, I use FARIMA(O, d, 0), which only focuses on the long term behavior of

the time series data. When we set p, q = 0, the FARIMA(0, d, 0) process can be represented

as an infinite moving average or an infinite autoregressive process with coefficient that can

be given explicitly (Hosking, 1981). This result becomes useful when we want to predict

future observations from a close to infinite past. For the prediction from a finite past of size



k (which can be a very large number), the best linear predictor xt is

k

I Et = -- kjlt-j, (3.4)
j=1

where /3 kj is

kj _(k) F(j-d)F(k-d-j+ 1)(35)

j j F(-d)r(k - d + 1)

Also the estimated parameter d of FARIMA process has a following relation

d = - -(3.6)
2'

where H is estimated Hurst exponent of the time series data. This can be shown by deriving

spectral density of FARIMA model as a function of spectral density of ARMA model which

is equal to FARIMA(p, 0, q). The detailed derivation of this can be found in Hosking (1981)

and Beran (1994, Chapter 2).

For my order sign model, I first model transaction sign series of a stock - series of

buyer/seller initiated trades - with FARIMA(0, d, 0). In this case, time series variable Tt

holds +1 (-1) for buyer (seller) initiated transactions. The parameter d of FARIMA model

is derived from Equation 3.6 using the estimated Hurst exponent ftH of transaction sign

series data. In the rest of this section I explain how the order signs can be generated from

this model.

3.2.2 Order Sign Generation

From a FARIMA(0, d, 0) model trained with transaction signs, I can simulate an order sign

at time t using transaction sign predictor 't. This can be computed from Equation 3.3

using previously generated transaction signs. If we represent a buyer and a seller initiated

order as +1 and -1 respectively, the transaction sign predictor 'lt is

it = (+1)P(buy) + (-1)P(sell), (3.7)
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Figure 3-2: Autocorrelation of the actual (left) and the simulated (right) transaction sign
series for stock AZN. The FARIMA(0, d, 0) model with d = 0.1753 is used. 10,000 past order
signs are used to compute the sign predictor lit using Equation 3.4. 568,563 transaction
signs are simulated from the model which is equal to the actual number of transaction signs
in the data set.

and the probability of transaction being a buyer initiated at time t is

~i t+1P(buy) = 2 (3.8)

Then I generate order sign ot (buy or sell) based on this probability. Note that transac-

tion (buyer or seller initiated) will only occur when generated order is an effective market

order. If effective limit order is generated, the transaction series will not change, therefore,

the probability of order sign will not change. This way, the simulation will generate long

memory transaction sign series similar to the stock data used for training.

Figure 3-2 shows autocorrelation functions of actual and simulated transaction signs for

the stock AZN in both linear and log-log scale. The FARIMA(0, d, 0) with d = 0.1753 is

used to compute order sign probabilities. To calculate the transaction sign predictor IIt,

past 10,000 signs are used. The figure shows the FARIMA model successfully generates

transaction signs with long memory similar to the actual data. The estimated parameter

of order sign model for all 9 stocks are shown in Appendix A.1. It shows the parameter

estimates d for remaining 8 stocks are also within the range of 0 < d < 1 implying long

memory processes.



3.3 Price Model

In this section I introduce an architecture of modeling order price generation using a vari-

ant of Hidden Markov Models (HMM) called an Input-Output Hidden Markov Model

(IOHMM) (Rabiner, 1989; Bengio, 1999). IOHMMs are well suited model to generate

prices sequentially over time from conditional distributions. Before I go into details about

the IOHMMs I will address the statistical properties of time series data of order prices

observed from the data.

The order price is defined as a difference between logarithm of order price and the

logarithm of same best price. Thus, the order price Pt for a limit order placed at time t is

defined as

P log(Pbid,t) - log(Pl,t) if buy order (3.9)
t log(p,t) - log(Pask,t) if sell order.

For example when a limit buy order of £5.10 is placed in the market and the current bid

price in the market is £5.11, then the price is the difference of the logarithm of current

bid price and the logarithm of its limit price, which is 0.002 in this case. Similarly the

order price for limit sell order is calculated by taking a difference of the logarithm of limit

price and the logarithm of current ask price. By this definition having negative (positive)

pt refers to more (less) aggressive orders relative to the same best price.

In the data set, not all orders have price information. Market order is an order without

a prespecified price which gets executed immediately. For these orders I attached a hypo-

thetical price by referring to price at which the orders are executed. When a market order

is executed at more than one price by removing more than the depth at the opposite best

price, I define hypothetical price to be the latest executed price of that order. For example

when a part of market buy order gets executed at ask price of £5.10 and rest at next ask

price of £5.11, the hypothetical price for this order is £5.11. The rationale behind this

is such market order has the same effect as limit order with the same order size and the

hypothetical price as its limit price.

Figure 3-3 shows the empirical probability density functions (PDFs) of order prices of

stock AZN in semi-log scale. The figure shows the price distributions for buy and sell orders

are indifferent. Also the distributions are asymmetric indicating given the same magnitude



U.
aa1.

0j
Placement Price

Figure 3-3: Empirical PDFs of order price for buy (line) and sell (dotted line) orders of
stock AZN.

of price IptI, relatively smaller number of aggressive orders (pt < 0) are placed compare to

the non-aggressive orders (Pt > 0).

In addition to asymmetric distribution, the data show that bid-ask spread is relevant

to price distributions. The bid-ask spread at time t is defined as a difference between the

logarithm of ask and the logarithm of bid prices at time t,

Xt = log(pask,t) - log(pbid,t). (3.10)

Figure 3-4 shows the empirical PDFs of stock AZN conditioning on bid-ask spread xt for

buy (left) and sell (right) orders. For both buy and sell, the PDFs for orders placed while

the spread is tight (xt <_ 0.0025) has a heavier tail than the PDFs for order placed while

the spread is wide (xt > 0.0025). This implies order price pt is dependent of spread xt.

Also this has an interesting implication regarding traders' order placing behavior. When

bid-ask spread is wide, it shows that traders seeking immediacy will place aggressive orders

with higher probability than the time when bid-ask spread is tight. Also for traders seeking

better price will place less aggressive orders with higher probability when the bid-ask spread

is wide.

The order price model is to simulate price of orders forming asymmetric distribution as

shown in Figure 3-3, which also has dependence to spread as shown in Figure 3-4. Since

I am modeling sequence of order prices dependent on bid-ask spread, I use a variant of
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Figure 3-4: Empirical PDFs of order price of stock AZN conditioning on bid/ask spread at
time t defined as xt. The PDFs for orders placed while xt < 0.0025 and xt > 0.0025 are
plotted separately for buy orders (left) and sell orders (right).

Hidden Markov Model called Input-Output Hidden Markov Model (IOHMM).

3.3.1 Input-Output Hidden Markov Models (IOHMMs)

A Hidden Markov Model (HMM) is a probabilistic model widely used to learn data with

sequential structure. The sequential structure exists in various applications and HMMs have

been applied to problems such as natural language processing, handwriting recognition,

pattern recognition in molecular biology, fault detection, and gesture recognition to name

the few.

The HMM assumes the system being modeled to be a Markov process with unknown

number of "hidden" states. In order to model order prices sequentially placed in the market

that is also dependent on bid-ask spread, I use a variant of HMM called an Input-Output

Hidden Markov Model (IOHMM). The IOHMM presents similarities to HMMs, but it also

allows to map input sequences to output sequences using the same processing style as

recurrent neural networks. Unlike recurrent neural networks, IOHMMs consider a proba-

bility distribution over a discrete state dynamical system instead of continuous state. The

IOHMM is defined by

* m: A number of discrete states.

* P(so): Initial state distribution where state at time 0 to be so = sl, ..., sm.
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Figure 3-5: Bayesian network describing IOHMM for order placement price model. st, pt,
and xt in the diagram refer to hidden state, price, and bid-ask spread at time t respectively.

* P(st+l1st): State transition probabilities from st to st+l.

* P(ptlst, xt): Output probability of output Pt given state st and input value xt at time

t. The state variable st is discrete and the input variable xt can be both discrete and

continuous. In the price model, I use conditional mixture Gaussian for the output

probability with continuous conditional variable xt, which is a bid-ask spread at time

In addition to state and output variables st and pt, IOHMM has additional input vari-

able xt denoting an input value at time t. Similar to HMMs, IOHMMs are simplified by

introducing two crucial conditional independence assumptions.

P(st+lSO, Si, ...,st,pop, , ...,pt, o, x1, ...,xt) = P(st+l t), (3.11)

P(Ptlso, sl,...,st,Po,p, ...-,Pt-,1 XO, xx,...,xt) = P(ptlst, xt),

which implies the state variable st will summarize all the past values of the state sequences

and both state and input variables st and xt will summarize all the past values of the output

sequences.

Figure 3-5 shows the Bayesian network describing IOHMM for the order price model.

A variable st indicating the state at time t can be loosely defined as a market state and

with additional market information of bid-ask spread xt, the model outputs price pt. The

figure describes the conditional independence assumptions described in Equation 3.11 where

given a state and a bid-ask spread at time t (indicated with variables st and xt respectively),

the probability of price Pt is independent from previous market states and bid-ask spreads.



Similarly, the model describes only current state st is relevant to determine the next state

st+l, in other words, the transition of next state is independent from all the other previous

bid-ask spreads and states given the current market state.

3.3.2 A Supervised Learning Algorithm

Training of IOHMM price model is similar to ordinary HMM model except the output

probability is a conditional distribution over not only the given state st but also the real-

valued input variable of bid-ask spread xt. Like HMM, learning of IOHMM is derived from

the maximum likelihood principle. Given the training data of N pairs of input-output

sequences, which in our case are the prices pt's and bid-ask spreads xt's of a particular

stock, the likelihood function is given by

N

L(O) = pP(pTh "xT,, 0), (3.12)
n=1

where 0 denotes set of parameters for initial state Po(so), state transition P1(st+11st), and

output P(ptlst, xt) probability distributions of IOHMM. In the training set, each input-

output sequence represents the price pT" and bid-ask spread xT " within a single trading

day. The data set has 675 days of trading data (N = 675) and each day has variable

number of input-output pairs - for example, a stock AZN has Tn ranging from 446 to 9,682

pairs.

The maximization of Equation 3.12 involves parameter estimation with missing data,

where the missing (or hidden) variable is the state sequence sl, ..., sT, for each input-output

sequence 1, .., N. I use Expectation-Maximization (EM) algorithm to maximize the above

likelihood function with hidden states. The EM algorithm formalized in Dempster et al.

(1977) solves maximum likelihood estimation (MLE) problem using an iterative approach

consisting of two parts: an estimation step (E-step) and a maximization step (M-step).

Before breaking down the algorithm into these two steps it is necessary to formulate how

EM computes the likelihood of IOHMM of Equation 3.12 when the state sequences are

not observable from the training data. The derivation of this problem for more generalized

version of IOHMM where the transition probabilities also have dependencies on input values

is described in Bengio and Frasconi (1995) and Bengio and Frasconi (1996).

The EM algorithm attempts to estimate complete data likelihood, which consist of



input, output, and state sequences. Assuming we have a complete data D, including the

state sequences and set of parameters for IOHMM 0, the complete data likelihood is defined

as

N

Lc(O; Dc)= p(pf, sf IXT"; 0). (3.13)
n=1

Using IOHMM's conditional independence assumption stated in Equation 3.11, we can

rewrite Equation 3.13 as following

N Tn

Le(O;Dc) = J I P(ptlst, xt; )P(stlst-1; ) (3.14)
n=1 t=1

N Tn S S

S H 1itI P(ptlst = i,j xt; )Zip(5 = ist-i =j; )ZitlZj,t-1
n=1 t=1 i=1j=1

where zi,t is an indicator variable that zi,t = 1 if the state at time t is i and zi,t = 0 otherwise.

Since the value of state sequence is not observable from the training data, I cannot directly

compute the complete data likelihood. Instead I formulate expected complete data log-

likelihood using auxiliary function which integrates the logarithm of likelihood function

(Equation 3.14) over the distribution of state paths S = {s";n = 1, ... , N} using the

parameter estimate 9 from the previous iteration6. Given the observable output and input

sequences P = {p";n = 1,..., N} and X = {xT"; n = 1,..., N}, and previously estimated

model parameter 0, the auxiliary function Q(0; 0) is defined as

Q(O; ) = Es 1[c(0;Dc)P ,X,9] (3.15)

N Tn S

= Zs [zi,t lpT, x lT  log P(ptlst = i, xt; 9)
n=l t=l i=1

S

+s Es [Zit, z,t- pr, xT, 9] log P(st = ist-l = j; 0)
j=1

N Tn S

= i,t log P(ptlst = i, xt; 0)
n=l t=l i=1

S

+ E ijt log P(st = ilst-1 = j; 9)
j=1

6For the first iteration C is picked randomly.



where given the model and the observed input-output sequences, %i,t is defined as the

probability of being in state i at time t, and ýij,t is defined as the probability of being in

state j at time t - 1, and state i at time t. The following formulates these two probability

measures

Yi,t = P(st = ip T, x; ); (3.16)

iij,t = P(st-1 = j, st = ipT, ; ).

Note that Equation 3.16 can be computed with known input-output sequences pT and

x', and previously estimated parameter 0. In order to compute i',t and ýij,t efficiently, I

use forward-backward procedure introduced in Baum and Egon (1967) and Baum and Sell

(1968). The forward probability ai,t is defined as

ai,t = P(Pl, St = i 4) (3.17)
s

= P(pI, st = i, st-1 = Axt)
j=1

= P(tlpt-7', St = i, st-1 = j, xt)
j=1

P(st = ilpt7-, st-1 = j, x )P(p X, st-1 = jixl)
S

= P(ptlst = i, xt)P(st = ilstl = j)aj,t-1
j=1

where the simplified forward equation consists of output and state transition probabilities of

the IOHMM. The last step of Equation 3.17 is using conditional independence assumption

of the model shown in Equation 3.11 to simplify the computation. It also shows that forward

probability ai,t is computed recursively starting with initial forward probability at time 0

equal to the initial state probability: ci,o = P(st = i).



Similar to forward probability, a backward probability fi,t is defined as

4i,t = P(p+st = i,xT) (3.18)
S

= Zt P(pT+l, st+l = -- jlSt i,XT)
j=1

s

= P(Pt+Pt+2, St+l = j, St = it T )

j=1

P(pt+2ls+x = j, st = i, •t )P(st+= jl2 = i, UT)
S

= P(pt+llst+l = j, xt)P(st+l = jlst = i)j,t+l
j=1

where the backward probability can also be computed recursively starting with initial con-

dition ai,T = 1. From this we can see that the forward and backward procedures for the

IOHMM is similar to HMM, except additional input condition is included.

Using Equations 3.17 and 3.18, I can compute Ti,t and (ij,t as following using the forward,

backward, output and transition probabilities as following

Ti,t = P(st = ip, x T )  (3.19)

- P(st = i,pTIxT)/P(pT'IT)

SP(p1, st = i•X•)P(pý 1 st = i, xT)/P(pTIxz )

Ojt/i,t

EjS=1 aj,tj,to

Jij,t = P(st-1 = , t = ipT, xT) (3.20)

SP(st-1 = j, st = i,p PTX)/P(pT Ix)

= P(pt7, st-1 = l) P(p = i, t)" P(st = ilst-1 = j)

-P(ptlst = i, XT)/P(pTlzT )

aj,t- 1P(ptlst = i, xt)P(st = i st-1 = j)i,t

As mentioned earlier the EM algorithm is an iterative approach consisting of two parts:

* E-step (Estimation): The algorithm computes posterior probabilities yil,t and ýij,t

for all states i and time t using previously estimated model parameter 9 and set of

input-output training sequences.



* M-step (Maximization): The algorithm searches for new model parameter 0' that

maximizes the auxiliary function Q(0; 0).

The algorithm iterates the expectation and maximization steps until the improvement

of expected complete log-likelihoods over iteration falls below certain threshold.

For the M-step, maximization of parameter 0 depends on the choice of models for transi-

tion and output probabilities. But regardless of the choice of models, the auxiliary function

(Equation 3.15) can be broken down into two separate maximization problems. For each

state j = 1, .., S, I find parameter estimate 01 for transition probability where it optimizes

the following maximization problem,

N T, S

max E E E ýij,t log P(st = ilst-1 = j; 01). (3.21)
n=l t=1 i=1

Similarly for output probabilities, I find parameter 02 that optimizes the following maxi-

mization problem for each state j

N Tn

max2 E Et "j,t log P(pt st = j, Xt; 02). (3.22)
n=1 t=1

In the rest of this section I describe the M-step specific to the choice of models of output

and transition probabilities.

State Transition Probability

For my price model, solving Equation 3.21 is simple because the transition probability

does not depend on real-valued bid-ask spread xt. Since the state variable st are discrete

and finite, the transition probability behaves like lookup tables addressed by the state

symbols. I use Lagrange multiplier A to find transition probability values, which maximizes

Equation 3.21 with constraint that transition probability from state j to all i's sums to 1.

Let's call aij = P(st = ilst-1 = j), then

9 N Tl S =S EN1 ij
Sýij,t log aij + A1 - aiLn=1 ( + A. (3.23)

9 n= 1t= i=1 i= 1



By setting Equation 3.23 equal to 0, we get

E _ =1 1ETi ,,,t E 1 ET=1 1,,,taj - = = N t= (3.24)
n=1 t=1 7),t

Output Probability

Solving Equation 3.22 requires bit more work. For each state in the model, output probabil-

ity describes conditional distribution of prices conditioning on the market's bid-ask spread.

For this I used mixture of conditional Gaussian distributions. Given state i and mixture k,

distribution for output probability of the model is

1 ( pt - B j kxt - Ijk)2  (3.25)
P(ptlst = j, mt = k, xt) = exp - 2k (3.25)Ujk /27 2a2

where parameters Pjik, Bjk, and 2k refers to mean, regression coefficient for conditional

variable, and variance of the conditional Gaussian of state j and mixture k. As shown in

Equation 3.25, defining output probability as Gaussian mixture requires additional discrete

mixture variable mt. This requires rewriting the posterior probability in Equation 3.22 to

incorporate the mixture variable. The new posterior wjk,t for state j, mixture k at time t

can be derived as

Wjk,t = P(st = j, mt = kipT, xT )  (3.26)

P(ptlst = j, mt = k, p ,pT, T)P(st = j, mt = kjpt l,p1 , x )

P(ptlpt1-, p1,, T)

P(ptlst = j, mt = k, xt)P(mt = kjst = j)
= ,t" E t•K P (p t s t = j, mt = i, Xt)

which is a function of posterior yj,t defined in Equation 3.19, and posterior mixture and

output probabilities with parameters Bjk, /jk, and 2k. This results re-writing our expected

complete log-likelihood in Equation 3.22 as

N Tn M 1 N T, M- B - 2

E E E "jkt 10g -"k- - - - Pt - kl2t -ljk) (3.27)n=1 t=1 k=1 n=1 t=1 k=1 ,t



In M-step we compute parameter estimates for output probabilities, which maximize

the above log-likelihood. For output probability of state j and mixture k, differentiating

the new log-likelihood respect to parameters Bjk, Ijk, and a2k result following equations

l 1 T

OB - jk,t(Pt - Bjkt - /jk)Xt = 0, (3.28)
Bjk ajk n=1 t=1

N Tn

_- _ ZZ Wjk,t(Pt -BjkXt - Pjk) = 0,
acjk Ojk n=l t=l

N Tn N Tn

( = - 1  'k jk,-t k,t (Pt - BjkXt - jk) 2 = 0.

k) n=1 t=l n=1 t=1

For each output probability for state j and mixture k, the set of new parameter estimates

can be computed by solving Equation 3.28 with posteriors Wjk,t, Bjfk, jk, and training

input-output sequences x T and pT as following

Bjk n=1 t=1 jk,tPtXt - ijk n=1 t wjk,tXt (3.29)
n= EtT=l jk,t 2

n=1 =1 1 Wjk,tPt - jk N=l 1

O'jk EN I )n= N t=1 Wjk,t

Next, new mixture probabilities can be estimated with posterior .jk,t by solving the

following maximization problem, which is a part of Equation 3.27 where the mixture prob-

ability is used.

N Tn M

max E :1 E CDjk,t log P(ptlst = j, mt = k, xt; 02). (3.30)
0n=1 t=1 k=1

Similar to the method for estimating a transition probability of our model, I use Lagrange

multiplier and constraint EM P(mt = kIst = j) = 1 to solve for optimal P(mt = klst = j)

for all state j's and mixture m's.

P(t = k = j) T
P(mt = kjst = j) = t=1 (jk, (3.31)E1=1 Et=1 fPl,t
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Figure 3-6: Change in out-of-sample log-likelihoods for stock AZN. Out of 675 trading
days, 30% of them are randomly selected as out-of-sample and remaining 70% are used for
training.

Initial State Probability

Lastly, estimating initial probability P(sl) for the model is the simplest of all. After es-

timating transition and output parameters 0 using methods described earlier, we compute

initial probability as

P(si = i) = P(si = ip1 ,x ;0) = j',i,. (3.32)

Size of IOHMM

Using the supervised learning method discussed so far, I can train IOHMM price model.

However, before discussing the performances of the model it is essential to address the issue

of selecting size of IOHMM. Although I introduced a rigorous way of estimating model

parameters of IOHMM with given number of mixtures and states, it is not so clear how

many mixtures and states are appropriate to model prices. Unfortunately, there is no known

method for solving model selection problem for IOHMMs with firm theoretical ground.

Therefore based on the empirical findings, I follow an Occam's Razor principle and

identify the smallest possible size of IOHMM that I think is the good representation of

the price process. For number of mixtures, I use 2 mixtures of Gaussians for each state to

model asymmetric distribution of prices shown in Figure 3-3 and 3-4. For number of states,



I tested how much improvement is made as a result of adding an extra state to the model

in terms of improvement in out-of-sample likelihoods. Such test is done by first randomly

selecting 30% of 675 trading days from our data as out-of-sample set. Let IOHMM(S)

denote IOHMM with S number of states. I train IOHMM(S) with remaining 70% of the

data, and compute the log-likelihood of 30% of out-of-sample data using the trained model.

I do this for various number of states and plot the out-of-sample likelihoods over different

number of states.

Figure 3-6 shows the change in out-of-sample log-likelihoods for stock AZN over number

of states. From the figure, we no longer observe significant increase in out-of-sample log-

likelihoods when S > 12. From this result I choose S = 12 for the stock AZN. The same

method is applied to remaining 8 stocks and the resulting number of hidden states ranges

from 10 to 16. The estimated parameters of price model for all 9 stocks are shown in

Appendix A.2.

3.3.3 Price Generation

Once the IOHMM price model is trained with the actual sequence of price (pt) and bid-ask

spread (xt) data, I use this model to generate a new sequence of price for the simulated

orders. At the beginning of simulation, an initial state is randomly chosen using the initial

state probabilities P(si) as prior. Then for given state st and bid-ask spread xt at time t,

I generate a price from the following mixture of Gaussians

K

P(ptlSt = i, xt) = P(mt = klst = i)P(ptlst = i,mt = k, zt), (3.33)
k=1

where i is the state at time t and K is the number of mixture components where in our

case K = 2. Once the price pt is generated, I generate the next state st+l using the state

transition probability P(st+ 1st).
Figure 3-7 shows PDFs of actual and simulated prices for the stock AZN. The sequence

of bid-ask spread of length 2,328,429 from the actual data is used for simulation. To show

how the price model reacts to the different sizes of bid-ask spread, I separately plot prices

with bid-ask spread smaller (left) and greater (right) than 0.0025. The figure shows the

price model successfully generates prices close to the actual data.
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Figure 3-7: Empirical PDFs of the actual and the simulated price for the stock AZN. Total

of 2,328,429 prices are simulated. The left (right) figure shows a price distribution when

bid-ask spread xt is xt <0.0025 (xt > 0.0025).

3.4 Cancellation Time Model

The last component of the order flow model is a cancellation time model, which determines

the duration of orders remaining in the order book. Every order has its cancellation time

assigned by the cancellation time model. If an order gets executed before this duration, the

cancellation time has no effect. The details of modeling method requires much space not

feasible to put them in a single section. Thus in this section, I only describe an overview of

the problem and the result. I explain the details of modeling method in Chapter 4.

The difficulty of modeling cancellation time is caused by missing data. Some orders are

executed before they are canceled, therefore, their cancellation times are not known. In

addition to this, since I do not have a full data describing the cancellation process, it is

also not clear which statistical model to use and how to test it. In Chapter 4, I introduce a

statistical technique, which helps overcoming the missing data problem and I also introduce

a method indirectly verifying our estimated model.

The parametric form I introduce for the cancellation time model is called a q-Weibull

distribution, which is a generalized form of a Weibull distribution. I will denote a PDF of

cancellation time 7 as fc(r) and its functional form has 3 parameters

fc(r) = (2 - q) •) eq (  , (3.34)
XA \A

|



where q-exponential function eq is defined as e' [1 - (1- q)r]1/(1 - ) ] if 1 - (1 - q)r7 0

and e-' = 0 if 1 - (1 - q)r < 0.

The estimated parameters of cancellation time model for all 9 stocks are shown in Ap-

pendix A.3. In Chapter 4, I introduce conditional variables, price and size of order, and

study their effects on cancellation time. However, in order flow model, I use marginal

distribution shown in Equation 3.34 to generate cancellation times since such effects are

negligible. In Chapter 4, I also show that the order price has a very little effect on cancel-

lation times and since the order flow model simulates orders with fixed size, the effect of

order size on cancellation time can be safely ignored.

3.5 Discussion

This chapter introduces a stock order flow model consists of three sub-models - order sign,

price, and cancellation time. Each sub-model simulates a component of order, and when

they are combined, it simulates an order flow. The combining of these three components

and results of simulations are discussed in Chapter 5.

In this chapter, I show how each component of order flow model can be modeled. The

methods can be summarized as follows:

* The order signs are modeled with FARIMA model, which simulates buy/sell order

signs forming a long memory transaction sign series. The estimated parameter of

FARIMA model will ensure that actual and simulated transaction sign series to have

similar Hurst exponents.

* The order price is modeled with IOHMM, which simulates a sequence of prices de-

pendent on bid-ask spread. The result shows that IOHMM can successfully model

asymmetry of price distribution and the dependence on bid-ask spread.

* The cancellation time is modeled with q-Weibull distribution. The details about the

modeling method and results are not presented in this chapter. Chapter 4 is partly

dedicated for this.



Chapter 4

Limit Order Removal Times Model

4.0 Preface

Part of this chapter is a continuation of modeling stock order flow described in Chapter 3.4.

In this chapter I introduce removal time model comprised of limit order cancellation and

execution time models. A cancellation time model I describe here is used in the order flow

model.

4.1 Introduction

One of the widely used methods for trading financial securities is placing a limit order.

A limit order is an order to transact a prespecified number of shares at a prespecified

price, which gives the trader a control over the price at which the order is executed 1 . The

primary advantage of a limit order is the absence of price risk by guaranteeing the execution

price, but downside of it is the prespecified price can delay or even indefinitely prevent the

execution. Therefore, when traders are faced with a decision placing a limit order, it is

useful to know how much delay to expect.

In this chapter I propose a parametric model of limit order removal times, which can be

used as a tool for understanding expected lifetime of limit orders in the market. The limit

order execution times cannot be understood only with execution times from market data

since limit order removals happen in two ways - execution and cancellation. The execution
1Here I denote limit order as effective limit order, which its prespecified price is not crossing the opposite

best price (i.e. greater than best bid price when sell and lesser than best ask price when buy).



and the cancellation are two sides of same coin such that the observed execution times in

the market data are results of executions occurred before the cancellation and vice versa.

Thus to model execution times (time-to-fill) of limit orders, it is essential to also model

cancellation times (time-to-cancel) of limit orders. Throughout this chapter I use the term

"removal time" to refer to both time-to-fill and time-to-cancel.

The parametric form I introduce for the removal time model is a q-Weibull distribution,

which is a generalized form of Weibull distribution. The q-Weibull distribution captures

the diffusive behavior of the removal times studied by Eisler et al. (2007), which shows

that limit order removal times decay asymptotically in time as a power law. Also I extend

our approach to a conditional model and show that it captures similar effects of limit price

and limit size on the limit order removal times studied by Lo et al. (2002). Several other

studies explore the probability of limit order execution. Angel (1994), Hollifield et al.

(1999), Battalio et al. (1999), Biais et al. (1995), Handa and Schwartz (1996), Harris and

Hasbrouck (1996), Keim and Madhavan (1995), McInish and Wood (1986), and Petersen

and Fialkowski (1994) are a few examples. Although none of these papers attempt to model

removal times as I introduce in this paper, my model can be used as a tool to further study

the issues they address.

4.1.1 Outline

The chapter is organized as follows: In Section 4.2 I identify problems of modeling limit

order execution times when cancellation times are ignored and vice versa. In Section 4.3 I

show that using a standard statistical technique to model removal times cannot accurately

model the removal time's diffusive behavior and introduce a better approach of modeling

it. In Section 4.4 I show the performance of the model by simulating removal times and

comparing them with the empirical data. Then I extend the analysis to the conditional

model and report additional findings. I conclude in Section 4.5.

4.2 Data Censoring and Survival Analysis

The survival analysis is a statistical analysis of death or failure time in biological or mechan-

ical systems Cox and Oakes (1984); Kalbfleisch and Prentice (1980); Miller (1981). Since

the goal is to model limit order removal times, which can be viewed as death or failure time



of limit orders, I apply this technique. The advantage of a survival analysis is its ability to

accommodate censored observations. For example, when modeling time-to-fill some orders

are canceled before they are executed, therefore their execution times are "censored" due

to their earlier cancellations. Although we do not know the time-to-fill of canceled orders,

their time-to-cancel yields useful information - we know that they are not executed for

at least a certain period of time. Despite the fact that the canceled orders do not have

execution times, ignoring them can dramatically bias the time-to-fill estimation. A similar

argument can be made when modeling the time-to-cancel of limit orders. In this case the

executed orders are censored observations.

The survival analysis involves estimating the survival function S(r), which is the inverse

cumulative density function F(7),

S(r) = 1 - F(7). (4.1)

The survival function S(r) can be estimated using either parametric or non-parametric

methods. In both cases it will attempt to model the survival function using both censored

and uncensored observations. The technical details of applying survival analysis on the data

set will be explained in Section 4.3.

The amount of censored observations is directly related to how much we can benefit

from the survival analysis. In this analysis such gains are inevitable since I am modeling

time-to-fill and time-to-cancel simultaneously, which can be viewed as opposite sides of the

same coin. When we have a data set with high cancellation rate, modeling time-to-cancel

will not benefit much since the amount of censored observations is small, but modeling

time-to-fill will benefit a lot due to high censoring rate and vice versa.

In the rest of this section I introduce a parametric form for time-to-fill and time-to-

cancel models. Before applying the survival analysis I first focus on model parameter

estimation only using the observed (uncensored) data and demonstrate the adaptiveness

of the parametric form on the data set. Then I introduce removal time generation model

which describes how the censoring occurs in our framework. Lastly I show ignoring the

censored observations will lead to a biased removal time models, which makes applying

survival analysis necessary.



4.2.1 Fitting Observed Data

One natural approach to modeling time-to-fill and time-to-cancel is to use the observed

(uncensored) data. In this section I focus on choosing parametric form for the removal time

models only using the observed data.

Exploring analysis of observed time-to-fill and time-to-cancel suggested the Weibull

distribution as a possible candidate functional form, which is one of the most widely used

distributions in survival data (Cox and Oakes, 1984). I found, however, that where the

Weibull distribution fits the body well, it failed to fit the fat tails of the data. This led me

to propose a more generalized parametric family called the q-Weibull.

The Weibull distribution is used to describe positive-valued random variables. The

functional form of the PDF f,(x) of the Weibull distribution is given by Hallinan (1993);

Johnson et al. (1994)

fw(7) = A e- , (4.2)

where a, A > 0. The survival and hazard rate of Weibull distribution Sw(r) and hw(r) are

defined as

Sw(r) = 1 -j f,(u)du = 1 - e- ), (4.3)

hw (7") = = (4.4)1 - Fw (7) A GA)

The survival function S(7-) is the probability an event has not been removed after time 7

and the hazard rate2 is the estimate of relative risk which in this case is a probability of

removal of an order relative to a probability of survival at time 7. Note that PDF, survival,

hazard rate functions are different ways formulating the same removal time process and they

all share the same parameters. From Equation 4.4, we can see that the Weibull distribution

can have monotonically increasing, decreasing, or constant hazard rate when a is greater,

lesser, or equal to 1. In the context of our analysis, an increasing (decreasing) hazard rate

indicates orders being likely to be removed in a faster (slower) rate as 7 increases.
2A hazard rate is also called a failure rate.



Because the observed time-to-fills and time-to-cancels are heavy tailed distributions I in-

troduce a generalization of the Weibull distribution, called the q-Weibull distribution (Picoli

et al., 2003). The extra parameter q gives an extra degree of freedom to fit a distribution

with a tail that decays as a power law. The PDF of the q-Weibull distribution can be

written as3

fq(r) = (2 - q) () e (4.5)

The PDF of q-Weibull distribution is derived from Weibull distribution in Equation 4.2 by

replacing the exponential function with generalized q-exponential function.

The q-exponential function is defined as e-' - [1 - (1 - q)r]1/11- q)] if 1 - (1 - q)r > 0

and e - ' 0 if 1 - (1 - q)- < 0. Also note that the generalization introduces two more

parameter constraints: q : 2 and A(1/(1 - q)) 1 /a > max(r) when q < 1. The q-exponential

function is a generalization of the exponential function, that converges to it when q = 1

that arises from optimizing the Tsallis entropy (Tsallis, 1988; Gell-Mann and Tsallis, 2004).

As the parameter q becomes greater than 1 the tail of the distribution gets fatter, and

conversely when q becomes smaller than 1, the tail gets thinner. When the tail decays

faster than the Weibull distribution (q < 1) the probability goes to zero for a finite value

of r due to its fast decay. Therefore, the newly introduced constraint forces all samples

to have valid probabilities. Also, note that when we take the limit as q -+ 1, the normal

Boltzmann-Gibbs entropy is recovered and therefore, in our case, it will converge back to

the normal Weibull distribution in Equation 4.2.

The survival function for the q-Weibull survival function is

Sqw(r) = 1 - fq,(u)du = 1 - (1 - q) (4.6)

When the tail parameter q > 1 the q-Weibull distribution asymptotically converges to a

power law of the form P( 7r) cc r-' for large r. The tail exponent y can be written in

terms of q and a as -y = a - (q - 2)/(1 - q) when q > 1.

The q-Weibull distribution is a generalized form of several other distributions. As al-

ready mentioned, in the limit q -+ 1 the q-Weibull distribution converges to the Weibull

distribution. Taking the limit as a -+ 1 reduces to a q-exponential. Taking the limits q -+ 1
3The (2 - q) in fq,(7) is to satisfy fo fqw(u)du = 1.
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Figure 4-1: Different shapes of the hazard function hqw(r) for the q-Weibull distribution.
The values for q and A are fixed to 1.5 and 1000 respectively. The a values are varied - 1,
1.5, and 1.9

and a --+ 1 simultaneously gives an exponential distribution, and taking the limit as q --+ 1,

a --+ 2, and A --, v23 together gives a Rayleigh distribution.

The hazard function for the q-Weibull distribution, hqw(r), is defined as

.f s (7) (2 - q) (Z c(-1
hq( (7) T) A (4.7)1 - Fqw(r) 1 - (1 - q) () (

Unlike Weibull distribution the hazard function for the q-Weibull distribution can be non-

monotonic when a > 1 and q > 1. Figure 6-6 shows the different shapes of q-Weibull

hazard functions when a is varied. When a > 1 and q > 1, the hazard rate function is

non-monotonic.

Figure 4-2 shows Weibull and q-Weibull fits to the observed time-to-fills and time-to-

cancels of stock AZN. The survival plots are shown in log-log scale to emphasize the tail

behavior of removal times4 . As shown in the figure the empirical survival plot shows slower

decay than normal Weibull can model resulting a poor fit towards large 7. In contrast

q-Weibull introduces an extra parameter q, which controls the fatness of the tail resulting

a better fit.

Next we need to check if the resulting models are good models for the underlying removal

time processes. By ignoring the censored data, one critical fact I ignored is that time-to-fill

process is a censoring process of time-to-cancel process and vice versa. Do these models

4I refer all removal times in event times.
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Figure 4-2: Weibull and q-Weibull fits to the empirical survival probabilities of observed
time-to-fills (left) and observed time-to-cancels (right) of stock AZN. The censored observa-
tions are ignored. For the observed time-to-fill estimated Weibull parameters are a = 0.57
and A = 24.18, and estimated q-Weibull parameters are q = 1.30, a = 0.62 and A = 6.30.
For the observed time-to-cancel estimated Weibull parameters are a = 0.60 and A = 29.01,
and estimated q-Weibull parameters are q = 1.35, a = 0.71 and A = 7.53.

really describe the distributions of time-to-fill and time-to-cancel of limit orders? To test

this, I introduce removal time generation model describing how the censoring occurs in this

framework. Then using the removal time generation model I can test if my estimated time-

to-fill and time-to-cancel models simulate observed removal times similar to the empirical

data.

4.2.2 Tr-Generation Model

In this subsection I introduce a removal time generation model describing how censoring

occurs. I define the time-to-fill of an order to be the time it takes for an order to be fully

executed in the market. Market participants who place a limit order are allowed to cancel

it at anytime as long as the order is not executed. In the data set an average of 72% of limit

orders are canceled before execution. In order to understand how time-to-fill and time-to-

cancel are observed in the data set, it is important to model an underlying mechanism of

time-to-fill and time-to-cancel, which we call the 7-generation model.

Let's define Tro bs as the observed time5 order i took to get either executed or canceled

in the order book. All orders will eventually be removed from the book either by execution

5The removal times are measured in event time.

Observed Time-to-Fill



or cancellation. Although we cannot always directly observe these, I define two underlying

distributions Pe(r) and Pc(r), which determine the order i's execution and cancellation

times, re and rc .

When the order is placed, the market will determine when the order will be executed

according to Pe(r) and the market participants will decide when the order will be canceled

according to Pc(r). From this mechanism, the orders will either be executed or canceled

whichever one occurs first. From the data set we can also see if order i was canceled

or executed, therefore, we introduced an indicator function Ie(i) which outputs 1 for the

executed order and 0 for the canceled order. In summary, the model that generates observed

time-to-fill or observed time-to-cancel of an order i is as follows6:

ff Pc (r), 47 - Pe(r) (4.8)

ribs = min(-ri , rif), Ie(i) = {0, 1}

where the underlying removal time distributions Pe(r) and Pc(r) are unknown, and rifbs

and Ie(i) are known from the data.

Now we can simulate the ir-generation process of Equation 4.8 with previously es-

timated removal time models using q-Weibull distributions, Pe(7) and Pc(r). In sec-

tion 4.2.1, I ignored the censored data and assumed that De(r) = P(ribs8Ie(i) = 1) and

pc(r) = P(TobsIIe(i) = 0). If censored data does not bias the underlying removal time pro-

cesses too much, the simulated observed time-to-fills and time-to-cancels by r-generation

model will form similar distributions to the empirical ones.

To simulate removal times for N orders, we sampled time-to-fill and time-to-cancel

values, ie and if, for i = 1...N from estimated removal time distributions, Pe(r) and Pc(r).

Once a (ri, ric) pair is generated for an order i, we take the minimum of the two as the

observed removal time r7bs of an order i, and set the value of indicator function Ie(i) to be

1 when r' is picked and 0 otherwise.

Figure 4-3 shows the survival plots of empirical and simulated observed time-to-fills and

time-to-cancels. For simulated removal times 1,843,713 orders are simulated, which is equal

to the number of orders in the empirical data. The figure shows after censoring mechanism

is introduced by the r-generation model, the simulated observed removal time for both
6The symbol ",-" in Equation 4.8 means "sampled from" a given conditional distribution.
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Figure 4-3: Survival plots of actual vs. simulated observed removal times for stock AZN:
observed time-to-fills (left) and observed time-to-cancels (right). For simulated observed
removal times q-Weibull distribution is used only using the uncensored data.

time-to-fill and time-to-cancel have drastically different distributions to the empirical ones.

This indicates ignoring censored data during estimation will lead to biased removal time

processes and therefore, applying survival analysis technique is necessary.

In the next section I introduce technical details of various model estimation methods

using the survival analysis technique with q-Weibull distributions.

4.3 Estimation Methods

As I described in discussing the r-generation model in section 4.2, the market data does not

contain full information about removal times - if an order is executed, its time-to-cancel is

unknown and if an order is canceled its time-to-fill is unknown. I have shown that these

censored data can lead to biased models. For instance when modeling underlying time-to-

fill process, some limit orders are canceled before execution and more persistent orders are

much more likely to be canceled, which biases the time-to-fill distribution towards shorter

execution times.

In this section, I introduce a survival analysis technique that deals with cases like this.

I first discuss two ways of applying survival analysis in modeling limit order removal times

using q-Weibull distributions - maximum likelihood estimation, and least squares fitting

of Kaplan-Meier estimators. However, I find that when we are using to model fat-tailed

distributions such as q-Weibull, this technique does not work well when the number of

Observed Time-to-Fill



censored observations dominates the number of uncensored observations. I introduce a

third method of resolving this issue.

The examples of modeling methods will be shown for time-to-fill distribution for the

stock AZN. The same methods can be applied to other stock data or to model time-to-

cancel process.

4.3.1 Maximum Likelihood Estimation (MLE)

Under the parametric method the survival analysis defines likelihood function Le(O) for

time-to-fill with the q-Weibull distribution as

N

Le(0) = fqw(r; 0)Ie(i)Sqw(7i; 0)1- Ie(i), (4.9)
i=1

where 0 is the set of q-Weibull parameters {q, a, A}, N is the number of orders, ri is the

removal time of order i, and Ie(i) is the indicator function having 1 for executed orders and

0 for canceled orders.

Unlike ordinary MLE technique our likelihood function Le(O) in Equation 4.9 not only

consists of products of probability densities fqw(7) of the time-to-fill of executed orders,

but also products of survival probabilities Sq,(r) of the time-to-cancel of canceled orders,

which are uncensored and censored observations respectively. Also note that fqw(7) and

Sq(7r) share the same q-Weibull parameters 0. By maximizing the above likelihood Le(O)

we can obtain a time-to-fill model, which can correctly simulate potential time-to-fill of

every orders so that some orders will remain (survive) in the order book long enough for

the time-to-cancel model to identify them as canceled orders.

The likelihood for the time-to-cancel model Lc(O) is the same as Equation 4.9, except

the time-to-cancel and the time-to-fill are applied to maximize probability densities and

survival probabilities respectively by swapping Ie(i) and 1 - Ie(i).

When estimating parameters using MLE it is more convenient to maximize the log-

likelihood function for q-Weibull,

le(q, a, A) = Zlog( (2 q)- () Q - e1 + (4.10)i=1A

log I - (1 - q) i
i= 1A
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Figure 4-4: q-Weibull MLE estimation for Pe(r) for the stock AZN. Change in log-likelihood
l~(a, 'xlq) given different values of q. The optimal value for q, which results the maxi­
mum log-likelihood is q* = 1.75 (left). Contour plot of log-likelihood l~(a, 'xlq* = 1.75)
of maximization problem (eqn 4.10) given optimal q* (right). The optimal a and ,X are
(a*,'x*) = (1.25,17.76). In this data set, 77.49% of orders are canceled.

Finding an optimal set of parameters that maximizes the Equation 4.10 is difficult since the

log-likelihood function is not convex, which results in multiple local maxima. To simplify

the computation we fix q and perform the optimization over a and ,X only, which results in

a unique maximum, then exhaustively search over q to find the values (q*, a* , ,X*) with the

maximum log-likelihood.

Figure 4-4 shows the result of MLE algorithm described above for the time-to-fill distri­

bution Pe(r) for the stock AZN. Since we estimate time-to-fill, cancellation times are used

as censored observations. The left figure plots total log-likelihoods of the AZN data set for

various q values and the right figure is a contour plot of log-likelihoods given an optimal q*,

illustrating that there is a unique maximum for fixed q.

4.3.2 Kaplan-Meier Estimators and Least Squares Fit

Another way of applying survival analysis is to use a non-parametric estimator using the

statistical technique developed by Kaplan and Meier (1958). By using the product limit

method, Kaplan and Meier developed a non-parametric maximum likelihood estimate of

58



0.995

0.99

0.985

0.99

* 0.975

0.97

0.965

0.96

0.965

S 2 Lea Squares Fit
10

8

6

4-

2

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 -2 0In[ S(
q In[(1-S -q)

Figure 4-5: q-Weibull least squares fit for Pe(r) of stock AZN: The change in R2 over
different q's (left). The optimal value q* is 1.67. The plot of Equation 4.12 for q* and its
least squares fit (right). The optimal a and A are (a*, A*) = (1.00, 25.23). In this data set,
77.49% of orders are canceled.

Se(T) of the form

Se(T) ( 1  nj= 1 - d .) (4.11)

To estimate time-to-fill, Tj is the time until j executions are observed, nj is the number

of orders that are remaining without execution or cancellation prior to time Tj, and dj is

the number of executions at time Tj. This treats canceled orders as censored observations.

Similarly a non-parametric estimate for the time-to-cancel survival function can be obtained

by taking executed orders as censored observations.

Once we obtain a non-parametric estimator of the survival function I fit it with the

q-Weibull survival function using least squares. This is conveniently done by rearranging

the q-Weibull survival function in Equation 4.6 into linear form and setting Sqw,,() = Se(7)

and r = "#, where Se(T) is the Kaplan-Meier estimate for -.

In() I- -In - ( + In(A). (4.12)a 1-q

In order to apply the least squares method to Equation 4.12, q needs to be known.

Therefore, as I did for the MLE estimation, I fix q and perform an exhaustive search. For

the optimal q* the plot for Equation 4.12 will be the straightest line, with slope 1/a* and

I I

1
0I



intercept ln(A*). The optimal q* is found by maximizing R 2 over q.

Figure 4-5 shows the result using this method. The left figure shows the change of R 2

over different q's, and the right figure compares Equation 4.12 for q* to the Kaplan-Meier

estimator.

4.3.3 Inconsistency with Estimation Methods and Improvement

Although two estimation methods introduced are applied to the same data, the q-Weibull

parameter estimates significantly differs from one another. The estimated q-Weibull pa-

rameters {q*, **, A*} for time-to-fill model for AZN are {1.75,1.25,17.76} for MLE, and

{1.67, 1.00, 25.23} for least squares fit to Kaplan-Meier estimators. Moreover, due to censor-

ing, we cannot directly compare the results to the true underlying time-to-fill distribution,

which leads to having no direct way of finding which of these two are the better estimates.

A possible reason that leads to such inconsistency is high censoring rate. The set of AZN

orders we tested has 77.49% of canceled orders and since I am estimating time-to-fill model

in the previous examples, canceled orders are censored observations.

The censoring in our data set is not a uniform random event. For both time-to-fill

and time-to-cancel models, when 7 increases the probability of an observation becoming a

censored one will increase. This will cause relatively larger loss of information on the tail

of the distribution than the body. Since the q-Weibull has a parameter q which is sensitive

to the tail, we cannot accurately estimate q when the censor rate is too high.

I propose an alternative estimation method that works better for high censoring rates.

When the data set has a high cancellation rate we can use canceled orders to model cancel-

lation and then using the resulting model as a parameter model for the censoring process

for time-to-fill.

Define the PDF function for observed time-to-fill, P(TObSlr e(i) = 1), as fobs(T). Then

we can formulate feobs(T) in terms of time-to-fill and time-to-cancel distributions,

febs(T) fe(T)(1 - Fc(T)) _ fe(T)Sc(T) (4.13)
fo= fe(u)(1 - Fc(u))du fo' fe(u)Sc(u)du

The T-generation model explains why the equality in Equation 4.13 holds. For order

i, T~e and rfi are sampled from distributions fe(T) and fc(T). If -.r < 7ic the order will be

executed after -r and if 7rie > -_c it will be canceled after riC. Thus the probability that



order i is executed after time rf is fe(T4).* 7 fc(u)du - the probability of rie is sampled

from fe(7) multiplied by the probability that a value greater than 7f will be sampled from

fc(r). Then febs(r) will be the normalized distribution of the above probabilities for all

r's. For observed time-to-cancel distribution fgbs(r), the same equality condition will hold

by swapping time-to-fill and time-to-cancel distributions in Equation 4.13. Also note that

fo fe(u)Sc(u)du is the average probability of execution re, which can be directly measured

from the data set.

We can use Equation 4.13 to yield a better time-to-fill model by the following: If the

majority of orders in data set are canceled (censored) orders, we can find a fairly accurate

q-Weibull estimate for the time-to-cancel model using the Kaplan-Meier estimator with

least squares fitting as we explained in section 4.3.2. The observed time-to-fill in the data

set feobs(7) can be estimated with q-Weibull distribution. Given the empirical execution

rate ie, the Kaplan-Meier estimators for the time-to-cancel survival function Sc(r), and the

PDF of observed time-to-fill from the data set hfbs(7), the PDF of underlying time-to-fill

fe(r) can be solved with the following Equation

fbs (T) fe
fe (7) ) (4.14)

Once we run the above method, Equation 4.14 will yield set of (7, fe(r)) pairs, which are

non-parametric estimators of fe(r). Similar to what we did in section 4.3.2 with Kaplan-

Meier estimators, we can apply q-Weibull least squares fit on these set of non-parametric

estimators to find q-Weibull parameters for time-to-fill model. When there are more exe-

cuted orders than canceled orders, we can apply a similar method to model time-to-cancel

by swapping time-to-fill and time-to-cancel in Equation 4.14.

To compare the estimation methods I test them on synthetic data generated by the

r-generation model. Several sets of arbitrary q-Weibull parameters for Pe(7) and Pc(7) are

picked to vary the cancellation rate. Since the time-to-fill and time-to-cancel models are

known we can compare the performance of the estimation methods.

To simulate N orders I based on an assumption that observed removal times are emerged

from the T-generation model I described in Section 4.2.2. I sampled time-to-fill and time-

to-cancel values, 4r and riC, for i = 1...N from known distributions, Pe(r) and Pc(-). Once

a (4-, rc) pair is generated for an order i, we take the minimum of the two as the observed
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Figure 4-6: Comparison of q-Weibull tail parameter estimates of synthetic data sets with
various cancellation probabilities. The survival analysis was used to exploit the censored
observations. For each cancellation probability, 100 data sets with 10,000 orders are used
to calculate the mean of tail estimates. The left plot shows q vs probability of cancellation
for actual, least squares fit of Kaplan-Meier estimators, MLE, and Alternative estimation
methods. The right plot shows the absolute difference between actual and estimated tail
parameters of the three estimation methods for various probabilities of cancellations.

removal time riobs of an order i, and set the value of indicator function Ie(i) to be 1 when

7ie is picked and 0 otherwise. For each data set 10,000 orders are generated.

Using the synthetic data I estimated q-Weibull parameters for the time-to-fill model us-

ing three estimation methods. I repeated data generation and estimation 100 times for each

parameter set. In Figure 4-6 the plot on the left compares the actual and mean of estimated

values of q for all three estimation methods and for various probabilities of cancellation. A

larger probability of cancellation implies a larger number of censored observations in the

synthetic data set. The result in the figure shows that as the number of censored observation

increases it is more difficult to estimate the tail parameter q. Also it shows the alternative

estimation method introduced produces a better tail estimates than the other two methods.

The left plot shows the difference in tail estimates more clearly. The y-axis of the plot is

the absolute difference between the actual and mean of estimated tail parameters. It shows

that the tail estimates from the alternative method are consistently better than the other

two estimates.

The amount of inaccuracy of tail parameter estimates shown here affects the overall

distributions significantly. Figure 4-7 is a plot of the absolute difference between the actual

and estimated survival functions ISet (r) -Sactual(7) over various T'S for synthetic data with

cancellation probability of 0.90. The result shows that the alternative method estimated

___
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Figure 4-7: Absolute difference between actual and estimated survival functions ISest(T) -
Sactua (Tr) using three different estimation methods. Arbitrary set of q-Weibull parameters
for time-to-fill and time-to-cancel are used to generate orders with cancellation probability
of 0.9. The 95% confidence intervals are calculated using 100 generations of synthetic data
set with 10,000 orders in each set.

significantly more accurate estimates when the fraction of censored observations is high.

4.4 Empirical Analysis

I now turn to the empirical analysis of limit order removal time data of 9 stocks in LSE using

our r-generation model. I first focus on unconditional removal time model, and then extend

this to conditional model by introducing conditional variables. I show that introduced

survival analysis technique can successfully model underlying removal time processes, which

simulate observed time-to-fills and time-to-cancels close to the empirical distributions. Then

I discuss the effects of introduced conditional variables on the limit order removal times,

and economic implications of change in tail exponent of removal time distributions over

conditional variables. Lastly I compare our modeling method to the previously known

method for modeling time-to-fill using first passage time analysis.

4.4.1 Unconditional Model: With vs. Without Censored Data

As shown in Figure 4-3 ignoring censored observations in modeling time-to-fill and time-

to-cancel processes as P:e(T) = P(TrObslIe(i) = 1) and Pc(T) = P(TrbslIe(i) = 0) results

inaccurate models, which fail to simulate observed removal time distributions close to the

T
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Figure 4-8: Survival plots of empirical vs. simulated observed removal times of stock AZN
with and without censored data: observed time-to-fills (left) and observed time-to-cancels
(right). The q-Weibull distribution is used for both removal time models. When modeling
removal times with censored data, 69.18% of them are canceled orders, therefore, time-to-
fill model is indirectly modeled deriving from the estimate of time-to-cancel model and the
observed time-to-fill distribution as we described in Section 4.3.3.

empirical ones. An alternative modeling method using the survival analysis is introduced in

Section 4.3 with detailed estimation method to overcome the difficulty of modeling fat tailed

distribution when the number of censored observations dominates the number of uncensored

observations.

Figure 4-8 illustrates how much the removal time models are improved when censored

data are included in the estimation. In stock AZN 69.18% of orders are canceled orders,

which the number of censored dominates the number of uncensored observations when

modeling time-to-fill. Therefore in estimating time-to-cancel we use the least square fit

of Kaplan-Meier estimators described in Section 4.3.2, and in estimating time-to-fill we

derive the parameter estimates from the time-to-cancel model and the observed time-to-

fill distribution as described in Section 4.3.3. In simulating both observed time-to-fill and

time-to-cancel the new method results significantly better removal time models than the

ones modeled without the censored data. The same analyses are done with rest of the 8

stocks7. Table 4.1 and 4.2 report estimated q-Weibull parameters for time-to-fill and time-

to-cancel respectively. Also using the parameter estimates, Figure 4-9 and 4-10 show the

estimated removal time models simulate observed time-to-fills and time-to-cancels close to

the empirical distributions for all stocks.

7Other 8 stocks we analyzed are BLT, BSY, LLOY, PRU, RTO, RTR, TSCO, and VOD.

Observed Time-to-Fill



Stock q a A

AZN 1.80 0.9459 6.0002

BLT 1.73 0.8483 7.4387

BSY 1.79 0.9430 4.4881

LLOY 1.81 1.0275 3.6813

PRU 1.80 0.9804 4.5808

RTO 1.76 0.9423 5.2043

RTR 1.80 0.9970 3.6883

TSCO 1.77 0.9655 4.2397

VOD 1.06 0.3241 86.0865

Table 4.1: q-Weibull parameter estimates of execution time (time-to-fill) model for the 9
stocks.

Stock q a A

AZN 1.43 0.7024 9.3382

BLT 1.48 0.8020 6.4889

BSY 1.43 0.7197 9.8304

LLOY 1.38 0.6461 15.1451

PRU 1.50 0.8786 8.6154

RTO 1.38 0.6637 9.5057

RTR 1.40 0.6534 8.5210

TSCO 1.32 0.5983 22.1437

VOD 1.09 0.4153 118.5829

Table 4.2: q-Weibull parameter estimates of cancellation time (time-to-cancel) model for
the 9 stocks.
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4.4.2 Conditional Model

I now extend the estimation method to model conditional removal time model. There are

many micro and macro economic variables that can be introduced to model their effects on

limit order removal times. In this section I study two variables which are directly related

to the limit order conditions, the price and size of a limit order.

Conditional Variables

In order to understand how the removal times are affected by order size and limit price I in-

troduce two conditional variables s and Ap and model underlying conditional distributions8

Pe(-l.) and Pc(-r- ) based on an assumption that observed removal times are generated from

r-generation model.

The size of an order s is represented in monetary terms since the number of shares has

a different meaning depending on price. The size is defined as

s = Pf x (# of shares), (4.15)

where pf is the limit price.

The mid-point price is defined as the average of the logarithm of the best bid and ask

prices Pmid = (log(Pbid) + log(pask))/2 at the time of limit order submission. To see the

effect of the limit order price on removal times we use the distance between the order's limit

price and the mid-point price Ap, defined as

f Pmid - log (p) if buy order (4.16)
1 log(p) - Pmid if sell order.

Larger Ap corresponds to less aggressive order placement and larger expected order

removal time. Similarly, as the size of order s increases we expect larger expected order

removal times.

The parameters for the conditional distributions of order removal times are estimated

by dividing the data set into bins such that each bin will contain orders with certain ranges

of conditional values. The bins containing the largest s's and Ap's are discarded in the

analysis since the variance of conditional values are too large. Using each subset we estimate
8The "." in Pe(7 I-) and Pc(r I.) represents either s or Ap
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the ten stocks used in our analysis to plot the figure. The other seven stocks follow similar
patterns to those are shown here.

parameters for conditional distributions for time-to-cancel, Pc(r"s) and Pc(rlAp), and time-

to-fill, Pe(rIs) and Pe(rlAp).

When the data set is divided into bins based on conditionals, the proportions of executed

and canceled orders can be dramatically shifted. For instance, the 69.18% of entire AZN

data are canceled orders, but when the data set is divided based on Ap the amount of

canceled orders ranges from 30% to 90%. Figure 4-11 shows cancellation probabilities of

orders as a function of mean of Ap and s in each bin for 3 stocks among the 9 stocks we

studied. The remaining 6 stocks show similar effects. The figure shows that the probability

of cancellation does not change on s (left) but increases as Ap gets larger (right).

From this result one may conclude the patterns of market participants' order cancellation

behavior such that Ap plays an dominant role when traders make cancellation decisions.

This is an incorrect observation since we do not know how time-to-fill model will change

as Ap increases. If expected time-to-fill dramatically increases over Ap, we may see the

same result even with the absence of change in traders' cancellation behavior. Therefore,

in order to understand the conditional effects on both time-to-fill and time-to-cancel, it is

important to correctly model the r-generation process from market data using estimation

methods described in Section 4.3.

-- AZN ---- LLOY -- RTR

Size vs. Cancellation & p vs. Cancellation
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Figure 4-12: Autocorrelation of removal times for the stock AZN. For both observed time-
to-fill (left) and observed time-to-cancel (right), the autocorrelation function decays slowly.
The removal times are ordered by the time of removal.

Modeling Parameter Change with Cubic Splines

Our goal is to find a parametric form for the conditional distributions Pe(l.-) and Pc(TI.)

as a function of conditional values. In this subsection I introduce a method for modeling

q-Weibull parameter change on conditional values using smoothing cubic splines.

Before applying smoothing method with cubic splines I calculate confidence intervals

for the parameter estimates using the empirical bootstrap method (Efron, 1979, 1981).

The method first creates multiple sets (100 sets in our analysis) of orders sampled with

replacement from the empirical distribution. Each set contains the same number of orders

as in the original bin. Then I model the time-to-fill and the time-to-cancel of each sampled

set with our estimation method. By the central limit theorem, I assume that the sample

of bootstrap parameters are normally distributed. From this I can calculate the confidence

intervals for the parameter estimates using the means and variances.

One important issue with the bootstrap method that needs to be addressed is the positive

autocorrelation of removal times. Figure 4-12 shows the autocorrelation of both time-to-fill

and time-to-cancel for the stock AZN, ordered by the time of order removal. In both cases

the observations have strong positive autocorrelations. This means the confidence intervals

to be overly optimistic.

The estimated q-Weibull parameters for each bin and their confidence intervals describe

conditional distribution of removal times given certain range of conditional values - i.e.

Observed Time-to-Fill
• 0

i'



Pe(rla < Ap < b) where a and b are the minimum and the maximum of Ap in the bin. To

model the parameter change given a fixed conditional value instead of the range, a cubic

spline smoothing technique is used. A cubic spline is a set of piecewise third-order polyno-

mials joined together with conditions that ensure continuity. A non-parametric regression

using a cubic spline (Schoenberg, 1964; Reinsch, 1967) will be used to learn a function

describing q-Weibull parameters given conditional values. For example a cubic smoothing

spline describing the change in tail parameter q of conditional time-to-fill Pe(rIAp) is a

function gq(Ap) that minimizes the following equation,

n max(,api)
S(qi - gq(P ) 2  n( ) gq(u)2du, (4.17)
i=1 in(IIap2 )

where qi is a tail parameter estimate for i-th bin with conditional mean LAp, and 6 is a

smoothing parameter. By minimizing Equation 4.17 we are minimizing the residual sum of

squares and the amount of curvature of the spline - to quantify the curvature, the equation

integrates the square of the second derivative of the spline function ggq. The former will make

the function gq close to the data and the latter will make gq smoother. The smoothness

parameter 6 determines how much weight to place on these contradictory demands. For

6 = 0, minimizing Equation 4.17 will result in a linear least squares fit and for 6 = 1 it will

result in cubic spline interpolation.

Choosing a good smoothing parameter 6 is an important aspect in finding a smoothing

cubic spline function. Among various methods proposed in the literature (Wahba, 1975;

Silverman, 1985), I used leave-one-out cross-validation to pick 6. Let's define [k] be the

cubic spline minimizing the following function,

nS-g'] p))22 + max(papi)
S- ) + (1 ) g(u)2d. (4.18)

i=1,j k min(Cai)

The leave one out cross-validation function is

1 n [k] 2
V(Y) = y -- g Xk)) , (4.19)

k=1

and the cross-validation estimate of 6 is the minimizer of Equation 4.19. The smoothing

cubic splines for the other two q-Weibull parameters a and A can be written similar to



Equation 4.18 and 4.19 by replacing qi with ai or Ai and the spline function gq to g, or g\.

Once we find the cubic splines describing the parameter change over conditional values

we can combine them with Equation 4.6 and express conditional survival function of limit

order removal time model. For example the survival function for time-to-fill conditioned on

Ap is

2-- gq.(AP)2 -9g,5 1 6(Ap)
,(4.20)

The conditional survival function for time-to-cancel or with the other conditional variable

s can be similarly derived, which is similar to Equation 4.20.

In summary the estimation method first utilizes the survival analysis and the q-Weibull

parameter estimation method described in Section 4.3 to exploit censored observations and

effectively fit the parameters for the q-Weibull distributions. Then using the empirical

bootstrap method, I compute the bootstrap estimates for the confidence intervals of the

parameter estimates. Lastly, I model the parameter change given conditional variables s

and Ap using cubic smoothing splines. In the end, the final product of this modeling method

is a conditional survival function for time-to-fill and time-to-cancel, S,(-r ls), S'(r IAp),

S,,(-'rs), and Sc,(rjAp), for each stock.

Figures 4-13 and 4-14 show the change in q-Weibull parameters of conditional survival

functions for time-to-fill and time-to-cancel of stock AZN respectively. One of the important

difference among the models is change in scale parameter A. When comparing two different

survival functions S' (r) and Sq2w(-), the overall scale of T's sampled from them will be

determined by their scale parameters A, and A2. When the range of A, is much greater than

the range of A2, the samples from Slw(r) will generally have much greater variance than

the samples from Sq2(r). If the scale parameters are similar (A,1 A2), then it becomes

meaningful to compare their shape and tail parameters a's and q's to study the differences

of two models. Therefore, to see how the conditional variables s and Ap affect the limit

order removal times, I first compare the range of scale parameters.

Figure 4-13 (a) and (b) shows change in scale parameters for time-to-fill models condi-

tioning on s and Ap respectively for the stock AZN. For both conditional variables, the scale

parameters increase as conditional increases. This indicates when the limit order is an large

order or it is placed far away from the price currently trading at, it will take longer time to



get executed, which is intuitively correct. What is more interesting is the amount of increase

in scale parameters when the conditional variables increase. To observe the difference, the

figure shows the changes in A's in same scale in y-axis. For the stock AZN, it shows that

the Ap contributes to much faster increase in A. This indicates that the major determinant

of time-to-fill of limit orders for the stock is not the size of the order, but the price. This

effect may be explained by market participants' behavior. When placing limit orders, they

place orders with s within the range that will make a small difference in execution times by

chopping the orders into smaller pieces. As a result, unlike Ap, we don't see a significant

increase in time-to-fill since we only have data set with limit orders within such range.

A similar comparison is performed for time-to-cancel figure 4-14 (a) and (b). Here we

observe an opposite effect - the major determinant of time-to-cancel is not the price, but

the size of an order. Also, it is worth noting that the behavior is more complex than it was

for time-to-fill.

In summary, I identified that execution and cancellation times are mainly determined

by the price and the size of an order respectively. In the next section, I will verify this result

by simulating r-generation model and showing that it can generate observed removal times

similar to the empirical ones.
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Figure 4-13: q-Weibull parameter estimates for the conditional time-to-fill model for the
stock AZN. The 95% confidence intervals are calculated using the empirical bootstrap
method. Cubic smoothing splines are used to model the parameter change over s and
Ap. (a) Pe(rls): time-to-fill conditioning on s. (b) Pe(rIAp): time-to-fill conditioning on
Ap.
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Time-to-Cancel Model
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Figure 4-14: q-Weibull parameter estimates for the conditional time-to-cancel model for

the stock AZN. The 95% confidence intervals are calculated using the empirical bootstrap

method. The cubic smoothing splines are used to model the parameter change over s and

Ap. (a) Pc(rls): time-to-cancel conditioning on s. (b) Pc(rlAp): time-to-cancel condition-

ing on Ap.
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Simulation of -r-Generation with Conditional Model

In order to check if the choice of our model is valid we need to run the test with real data.

Since we cannot get complete information about time-to-fill and time-to-cancel from the

data set I tested how closely the model can simulate the observed time-to-fills and observed

time-to-cancels. To test this N orders are simulated, where N is the number of orders in

the data set. For each order i I used its empirical conditional value Api and si to compute

the conditional survival function of time-to-fill and time-to-cancel from our model (Equa-

tion 4.20). Since I discarded very large Ap's and s's during model estimation, I discarded

orders with conditional values falling beyond the range of our smoothing splines functions.

Then, similar to the method I used to generate the synthetic data earlier, I sampled rie and

r-C from estimated conditional time-to-fill and time-to-cancel survival functions and set the

execution parameter Ie(i) accordingly.

Figures 4-15 and 4-16 show quantile-quantile plots of real versus simulated order removal

times for the stock AZN. There are four possible ways of simulating the removal times using

different combinations of conditional variables: (a) S.w(rlAp) and Sw(-'rs), (b) S,,(rlAp)

and S,(- Ap), (c) S.(Qrls) and Sq.(rIs), (d) Sqe(rIs) and Sq(rIAp). Each plot in the

figure shows the quantile-quantile plot with simulated orders generated from these possible

combinations.

The figures confirm the findings from the previous analysis that conditional variables

Ap and s are the major determinants of time-to-fill and time-to-cancel respectively. The

figure 4-15 and 4-16 (a)'s are the quantile-quantile plots of observed time-to-fill and time-to-

cancel where the conditional variable Ap and s are used respectively to derive the survival

functions. Among the results, they follow most closely to the 45 degree line, which indicate

the closest fit to the real data. The next closest one is when Ap's are used for both execution

and cancellation times (figure 4-15 & 4-16 (b)). Although the goodness-of-fit for observed

time-to-cancel is almost indistinguishable from the previous one, it results less good fit for

the observed time-to-fill. The other two cases where execution times are generated using

the order size s result much worse fits, which clearly indicates s is not an important factor

determining the time-to-fill.

Figures 4-17 and 4-18 show the survival plots of actual and simulated observed time-to-

fill and time-to-cancel for rest of the 8 stocks. Here I used Ap and s to simulate execution



and cancellation time respectively. This result verifies that our choice of using Ap and s

to formulate conditional time-to-fill and time-to-cancel models respectively is the plausible

one. All models observed removal times close to the actual distributions.

In the remaining part of this section I will discuss the economic implications of the

change in the tail exponent of the conditional model. Also I will compare our modeling

method to the previously known method for modeling time-to-fill using first passage time

instead of the survival analysis.
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Figure 4-15: Quantile-Quantile plots for observed time-to-fill for stock AZN. In generating

observed time-to-fills, all four possible combinations of conditional variables are used in

ir-generation model: (a) Ap for time-to-fill and s for time-to-cancel, (b) Ap for both time-
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Figure 4-17: Survival plots of actual vs. simulated observed time-to-fills of 8 stocks from
conditional model using Ap and s as conditional variables for time-to-fill and time-to-cancel
respectively.
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4.4.3 Tail Exponent y of Removal Times

When the q-Weibull distribution has a fat tail (q > 1) it asymptotically converges to a

power law of the form P(> 7) oc 7 for large T. The tail exponent 7 can be written in

terms of the tail and shape parameters q and a as

q-2
y ax (4.21)1 -q

I can combine Equation 4.21 with the smoothing splines describing the changes of q

and a over conditional values. Since we know that Ap and s are mainly determining the

execution times and cancellation times respectively, I replace q and a in Equation 4.21 with

spline functions g 6(Ap) and g<j(Ap) for time-to-fill, and gC(s) and gc,(s) for time-to-
cancel. Then I can write tail exponents for time-to-fill and time-to-cancel as,

gq9,(Ap) - 2 gq (s) - 2
Yp = g,(Ap) x and 'c = gC,6(s) gq,(s (4.22)1 - gqb (Ap) 1 - gq,(s)

What Equation 4.22 describes is the change in tail exponent of removal time distributions

over different conditional values Ap and s.

Unlike A, the parameters q and a are very sensitive to the exogenous factors I ignored in

my analysis. For instance, the volatility of market or the imbalance of supply and demand

can have a large effect on the shape and the tail of the time-to-fill distribution. Also the

heterogeneity of market participants' cancellation behavior or their order placing strategies

can significantly affect the shape and tail of time-to-cancel distributions. Although such

outside factors can affect the tail exponents, some interesting regularities are observed

Figure 4-19 shows ,p as a function of Ap for time-to-fill, and -yc as function of s for

time-to-cancel for the stocks RIO, SDR, and AZN. The range of tail exponents of each

stock varies significantly, which makes identifying patterns difficult when we plot them

altogether. Therefore I chose three stocks with similar range. Such large variance in tail

exponents across different stocks is also related to the positive autocorrelations of removal

times shown earlier.

For all stocks 7/p generally slopes downward as Ap increases. The smaller tail exponents

indicate a fatter tail, therefore, this implies when a limit order is placed further away from

the current price its time-to-fill distribution has a heavier tail. This implies a slower rate
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time-to-cancel conditioning on s's (right).

of decay of the time-to-fill survival function, meaning as the order gets placed further away

from the current price the rate of increase in the probability of the order not being executed

for very long period of time increases.

With some stocks for small Ap I observed an increase in jp as Ap increases. This

suggests that more aggressive orders have fatter tails, which is opposite from the previous

observation. In Figure 4-19 (left) we can observe these patterns near negative regions of

Ap. This may be due to chasing orders in situations when there exists a large imbalance

between supply and demand in the order book. For example when there are many more

buyers than sellers in the market, the price will go up. In this case the chasing orders are

buy orders placed very near the trading price (small Ap). Since the price is rising, the

time-to-fill will be longer than the usual case where there is no such imbalance. If more

aggressive orders are placed when the imbalance is greater, such patterns can be observed.

For 7,c we generally observe downward slope as function of s, which implies that the

time-to-cancel distribution has heavier tails for larger order sizes. The stocks RIO and

AZN in figure 4-19 (right) show such patterns. This implies that market participants who

place larger orders will generally have more patience. In some stocks, I observed a peak

or multiple peaks creating a 'U' pattern similar to the stock SDR in figure 4-19 (left). My

hypothesis is that such pattern emerges as result of the heterogeneity of market participants

having different cancellation strategies or the cluster of participants with similar cancellation

strategies but different size in trading capitals. Although such explanations of these patterns

_nr
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Stock y (time-to-fill) 7yc (time-to-cancel)
5 percentile 95 percentile 5 percentile 95 percentile

AVZ 0.52 0.67 0.78 0.98

AZN 0.47 0.61 0.69 1.06

DEB 0.82 1.74 0.90 1.70

MNU 2.55 - 0.67 2.25

RIO 0.64 0.72 0.66 1.18

RNK 0.96 1.44 0.93 1.15

SAB 0.65 0.86 0.80 1.02

SCR 0.83 6.54 0.89 0.97

SDR 0.48 0.77 0.73 0.99

SGC 1.05 2.96 0.83 1.44

Table 4.3: 5 and 95 percentiles of tail exponents predicted from are removal time models.
The missing value indicates that q < 1, which means the q-Weibull does not asymptotically
converge to a power law.

are not closely verified in this study, it can be studied rigorously using individual's trading

patterns from the data.

In many cases the tail exponents of removal time distributions had values smaller than

1, which indicates the first moments of removal times do not exist. Table 4.3 shows 5 and

95 percentiles of y,'s and %y's computed from the conditional values in the data set. The

missing value indicates having q < 1, which does not asymptotically converge to power law.

This is significant because when we measure the removal times, we cannot describe the

measure in terms of expectation. For example when the time-to-fill model estimates tail

exponent less than 1, the model implies the expected time-to-fill is infinite because far too

many orders have probability of not executing for significantly long period of time.

An alternative way of thinking about removal time measure is by putting an upper limit

on time. For example if the upper limit is T, we can compute a probability of order being

executed between 1 and T seconds and the expected time-to-fill within this range,

{Probability of order removal within T seconds} = 1 - S' (T) (4.23)
T

{Expected removal time within T seconds} = C (fr) -r.
T=1

Figure 4-20 shows the change in expected removal times and mean of empirical observed

removal times over different conditional values for the stock AZN. The expected removal

times are calculated using one continuous trading period (8 1/2 hours) as the upper limit
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Figure 4-20: Expected and empirical removal times vs the size s and the price improvements
Ap. The left plot shows time-to-cancel given s, and the right plot shows time-to-fill given
Ap.

T in Equation 4.23. For both time-to-fill and time-to-cancel, our model predicts higher

removal times than the observed times. Since our model predicts removal times assuming

that no censoring will occur, its expectation is a prediction of true removal times rather than

the observed one after censoring. The difference in the two gets larger as conditional values

increase, which indicates the recovery of the problem of biased censoring - the removal

times are biased towards shorter times.

Next I will explore the prospect of measuring time-to-fill indirectly via constructing

hypothetical execution times from transaction data. I will use the above time-to-fill measure

to compare the results.

4.4.4 Time-to-Fill Measures Using First Passage Time vs. Our Method

When modeling time-to-fill, another way of exploring the information contained in can-

celed orders is to construct hypothetical limit order executions using empirical data. This

approach was first proposed by Handa and Schwartz (1996) and has been used by Angel

(1994), Battalio et al. (1999), and others.

The first passage time is defined to be the first time the transaction price reaches or

crosses the limit price. For example suppose a canceled buy order is placed at £100.00. The

first time after the order placement that a transaction occurs at a price equal to or lower

than £100.00 is the first passage time of that canceled order.

Lo et al. (2002) compared first passage times and actual limit orders using New York

4t0(]
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Stock Exchange data from 1994 to 1995. From the statistical tests they revealed some serious

biases, which makes the first passage time an unreliable indicator of actual execution times.

The major problem with the first passage time approach is it only refers to a lower bound

of execution time of a canceled order. This is because the approach ignores the placement

of the canceled order in the queue. If the order is at the top of the queue, the first passage

time is equal to the actual execution time, however, if the order is at the bottom of the

queue, the order may not be filled with first incoming effective market order, thus, the

actual execution time may be greater than the first passage time. In NYSE data, Lo et al.

(2002) showed that such effect generates significant biases. The biases were stronger with

illiquid stocks since the lower placement in the queue will result a longer delay in those

stocks.

In this section I explore if such bias exists in LSE data. Our data is not only more

recent, but also has smaller tick size, therefore the delay due to placement may be small

enough to ignore. To compare our time-to-fill model with the first passage time approach I

apply the following procedure: I first merge all the transaction data into one time sequence

ignoring the daily boundary. The closing time between daily boundaries are ignored. The

reason for doing this is many canceled orders will be thrown out if we only use a single

day transaction data. Having all the transaction data stitched together into one sequence

will help us to retain most of the canceled order in our analysis. Then for every canceled

order I compute its first passage time by tracing the transaction prices from the actual

placement time of the order. If the condition for the first passage time is not met, I treat

the observation as missing.

With hypothetical time-to-fills generated from first passage time approach for canceled

and observed time-to-fills for executed orders, we can fit the data with our q-Weibull time-

to-fill model. In this case none of the orders are canceled, thus, the survival analysis is not

used. Once we have a set of parameter estimates, we can use Equation 4.23 to calculate

the time-to-fill measure within an upper time limit T.

Figure 4-21 and 4-22 show the change in time-to-fill measures over Ap of first passage

time and our model for the stock AZN and DEB using upper time limit of 3,600 seconds

(1 hour). These two stocks are picked to represent liquid and illiquid stocks in our data

set respectively. For stock AZN in Figure 4-21 we can see both methods produce similar

time-to-fill measures except for large Ap's. This is due to orders with large Ap's being



thrown out by not meeting the first passage time condition.

The difference gets greater when the method is applied to an illiquid stock. For stock

DEB in Figure 4-22 we see expected time-to-fill measures are lower when the first passage

time approach is applied. This indicates bias of first passage time due to ignoring placement

in a queue is still significant.
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Figure 4-21: The comparison between the first passage time and our model based on survival
analysis using time-to-fill measures for the stock AZN. The upper limit of 3,600 seconds is
used for calculation (T = 3600 in Equation 4.23). The left figure shows expected time-to-fill
within 3,600 seconds. The right figure shows execution probability within 3,600 seconds.
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Figure 4-22: The comparison between the first passage time and our model based on survival
analysis using time-to-fill measures for the stock DEB. The upper limit of 3,600 seconds is
used for calculation (T = 3600 in Equation 4.23). The left figure shows expected time-to-fill
within 3,600 seconds. The right figure shows execution probability within 3,600 seconds.
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4.5 Conclusion

This chapter presents parametric models of limit order execution and cancellation times.

By introducing generalized Weibull distribution, namely q-Weibull, I show the model fits

the data remarkably well including removal time's diffusive behavior decaying asymptoti-

cally in time as a power law. When there are too many censored observations in the data, I

find that survival analysis cannot accurately estimate the tail part of the q-Weibull distri-

bution. Since time-to-fill process is a censoring process of time-to-cancel and vice versa, I

overcome this problem by fist modeling one of the removal time processes with less number

of censored observations, then deriving the other process from it. I show that resulting re-

moval time model simulates observed time-to-fills and time-to-cancels close to the empirical

distributions.

I also extend the modeling method to estimate conditional removal times introducing

limit price and limit size as conditional variables. Using smoothing splines to model the

change of parameter estimates over different conditional values, I present a parametric form

for the conditional limit order removal time model. I find that time-to-fills and time-to-

cancels are quite sensitive to limit price and limit size respectively. Given the values of

these conditionals I show that conditional model simulates observed removal times closer

to the empirical distributions.

I also explore the changes in tail exponents of the conditional removal time model over

different conditional values. I find that as the limit order is placed at a price farther away

from the midpoint price, the tail exponent of time-to-fill model becomes smaller indicating

fatter tail. Similar to time-to-fill, time-to-cancel distributions generally results fatter tail

when the limit size becomes larger. The fatter tail implies slower rate of decay of survival

probabilities meaning we expect more un-executed and un-cancelled orders given Tr for time-

to-fill and time-to-cancel respectively.

Lastly I explore an alternative method of dealing with censored data problem using

empirical first-passage times widely used in other literatures (Handa and Schwartz, 1996;

Angel, 1994; Battalio et al., 1999). The method already has a limitation of dealing censored

data problem only when modeling time-to-fills because it can only provide hypothetical

time-to-fills. Similar to the result shown in Lo et al. (2002), the method performs very

poorly especially when we model time-to-fills for illiquid stocks.



Chapter 5

Order Flow Simulation

5.1 Introduction

In this chapter I describe a procedure of simulating order flow using the model described

in Chapter 3. I then compare the price return statistics of simulated data to the empirical

data. For the comparison, I focus on three statistical properties of stock returns: fat-tailed

distribution of returns, clustered volatility, and no autocorrelation of returns.

The order flow model simulates order placement and cancellation using three compo-

nents: order sign, price, and cancellation time models. There is no direct link between the

statistics of placement/cancellation processes and the statistics of resulting price returns.

Surprisingly, the results show that the model can successfully replicate the statistical prop-

erties of stock returns observed in the empirical data.

5.2 Simulation Procedure

The order flow is simulated using order placement and cancellation models described in

Chapter 3 and 4. A price of an order is sampled from IOHMM, which simulates price

sequences conditioned on previous state and bid/ask spread. A side (buy or sell) of an

order is sampled from FARIMA model, which simulates long memory process of transaction

signs. Finally a cancellation time of an order is simulated from q-Weibull distribution

estimated from the empirical data using survival analysis. As in the LSE, a simple double

auction market mechanism is used to match the order and from this, transaction prices are

simulated. Figure 5-1 depicts the procedure of order flow simulation.
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Figure 5-1: Description of Order Flow Simulation

5.3 Simulation Results

In this section, I compare the statistical properties of the empirical stock returns to the

simulated returns. There has been many empirical studies of statistical properties of stock

returns - fat-tailed returns distributions, clustered volatility, and market efficiency. I will

address all three properties of price returns and show that our order flow model can suc-

cessfully replicate them.

5.3.1 Fat-Tailed Returns

A price return at time t is a logarithm difference of mid-prices at time t and t - 1,

rt = log(pt) - log(pt-1), (5.1)

where a mid-price at time t is an average of bid and ask prices at time t,

Pask,t + Pbid,t (5.2)
t2 (5.2)

Figure 5-2 shows the probability densities of acutal (black) and simulated price (red)

returns in semi-logarithmic scale. It shows the simulated order flow formed a fat-tailed

return distribution close to the actual data. The figure also shows the probability density

function of Gaussian (green), which has a parabolic shape in semi-logarithmic scale. Both

the actual and the simulated returns have fatter tail than the Gaussian density.



L.
0
a.

-6 -4 -2 0 2 4 6 8
Return x10l

Figure 5-2: The PDFs of actual (black) and simulated (red) returns for the stock AZN. The

Gaussian PDF (green) is also shown to emphasize the fat-tail of return distributions. 106

event times are simulated from the order flow model.

5.3.2 Clustered Volatility

Figure 5-3 shows autocorrelation of absolute return series Irtl of both actual and simulated

data. Having a positive autocorrelation of absolute returns indicates a large (small) price

moves are more likely to be followed by large (small) price moves. The figure shows the

simulated data closely replicates the well known pheneomenon of clustered volatility.

5.3.3 Market Efficiency

The weak form of Efficient Market Hypothesis (EMH) asserts that future price returns

cannot be predicted from past returns (Fama, 1965; Samuelson, 1965; Fama, 1970). This

can be verified by the autocorrelation function of price returns. Figure 5-4 shows the

autocorrelation of actual and simulated returns. Similar to actual data, the simulated data

showed no autocorrelation, which leads to an interesting puzzle of price returns. Let's

describe return rt as the following

rt = 'ItPI(vt) + 77t, (5.3)
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Figure 5-3: Autocorrelation of actual (black) and simulated (red) absolute return series Ir|
for the stock AZN. 106 event times are simulated from the order flow model.
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Figure 5-4: Autocorrelation of actual (black) and simulated (red) return series r for the
stock AZN. 106 event times are simulated from the order flow model.

Figure 5-3: Autocorrelation of actual (black) and simulated (red) absolute return series Irl

for the stock AZN. 106 event times are simulated from the order flow model.



where Lt is an transaction sign of an order flow, PI(vt) is a price impact of order size vt,

and qt is a random noise. If Equation 5.3 is a true description of returns and assuming the

variance of random noise 7t is small, return series has to be positively autocorrelated in both

actual and simulated cases since we know that transaction signs are postively autocorrelated.

An alternative description of price return is introduced by Lillo and Farmer (2004),

rt = = +t r(t, (5.4)

where (t is a measure of liquidity of the market at time t. If the transaction sign Tt and

the liquidity Ct are positively correlated, we can explain the market efficiency. In Chapter 6

I introduce a possible measure of market liquidity (t to show how simulated price returns

can satisfy the weak form of EMH. The further details of theory of price impact and market

liquidity described in this section are described in Gerig (2007).

5.4 Conclusion

We simulated an artificial "zero intelligence" order book and showed that the model repli-

cates statistical properties of price returns, such as clustered volatility, fat-tailed return

distribution, and no predictability of future returns. We argued that the change in market

liquidity explains how the order flow model satisfies the weak form of the Efficient Mar-

ket Hypothesis (EMH), which asserts that future price returns cannot be predicted from

past returns. This is not an obvious result since the order flow model has a predictable

transaction sign process (i.e. buyer or seller initiated trades) as one of its components. In

Chapter 6, we introduce a method of quantifying market liquidity from order flow data to

explain this result.



Chapter 6

Liquidity Measure

6.1 Introduction

The term liquidity refers to different aspects of markets, such as price impact, time-to-fill,

and probability of fill of various orders. Generally, liquidity means an ability to quickly

trade stocks without causing a significant impact on the stock price. Although the term

liquidity is widely used in finance literatures, its meaning is loosely defined and there is no

quantitative measure for it.

In Chapter 5, I showed that our order flow model simulates price return series rt with

no autocorrelation even when the transact sign series 't is a long memory process. Such

phenomenon can be explained from the following model of price return. Here I assume that

random noise rlt in Equation 6.1 is small enough so that it has almost no effect on price

returns. It is safe to ignore the noise since it is not clear what the noise variable is referring

to in the return model. Therefore, the modified price return model is,

rt = tPI(vt) (6.1)

where PI(vt) is a price impact function of order size vt, and (t is a liquidity measure.

Our order flow model simulates long memory transact signs 't, and since all the volume

vt are fixed, we can assume that the price impact PI(vt) is constant for every transactions.

In order for this model to simulate a series of returns with no autocorrelation, a liquidity

measure (t has to scale down the price impact PI(vt) when the transact signs are highly

predictive. This means the predictability of transact sign %t and liquidity measure (t are



positively correlated.

In this chapter we introduce a possible quantitative measure of market liquidity (t, which

affects price returns to become a no memory process.

6.2 Liquidity Measure

The quantitative measure of market liquidity is derived by answering the following questions.

Given a current market state:

* What is the expected cost of immediacy paid by traders who place market orders (i.e.

liquidity takers)?

* In order to save this expected cost, what is the expected wait time for traders who

place limit orders (i.e. liquidity providers)?

To compute the expected wait time for saving the expected cost of immediate executions,

the above two questions need to be answered. Notice that the liquidity measure I am

proposing is the relative measure, meaning the increase (decrease) in liquidity can occur in

two ways. For instance a longer expected wait time refers to a greater market liquidity and

this can occur by liquidity takers (market order placers) taking lesser liquidities (standing

limit orders) by placing lesser market orders, or liquidity providers (limit order placers)

providing more liquidities by placing more limit orders. In both cases, the expected wait

time will increase indicating increase in liquidity. The similar argument can be made for

the shorter expected wait time, which refers to decrease in market liquidity.

Our approach is to measure (t using the orders placed within the fixed interval in event

times. The expected cost of market orders are computed by taking an average of the

absolute differences of the transacted price and the same best price of market orders. For

instance when a share of buy market order is transacted at £10.10 and the same best price

(bid price) at that time is at £10.00, the cost paid by the trader who submitted this market

order is £0.10. I defined this to be the cost of the market order since a share could have

been bought at the bid price (£10.00) by waiting. Therefore the average cost of market

order Pm is defined as

1 Nm
Pm = Pi,m - Pi,sbl, (6.2)

m i=1



where Nm is the number of market orders submitted, Pi,m is the i'th market order's trans-

acted price, and Pi,sb is the same best price when the i'th market order is submitted.

Equation 6.2 provides the answer to the first question mentioned above - the expected cost

paid by liquidity takers for the immediate transactions.

The expected wait time for liquidity providers to save Pm by placing limit orders can

be computed using the limit order data. First let's assume that all the limit orders in our

order flow data are executed. Then the average gain P, by waiting is

1 Nt
P = - IPi,t - Pi,ob, 1 (6.3)

i=1

where NI is the number of limit orders submitted, pi,j is the i'th limit order's limit price, and

Pi,ob is the opposite best price when the i'th limit order is submitted. However, Equation 6.3

assumes the wait time 7 is long enough that all the limit orders are executed. To compute

the expected gain pi by waiting for a particular wait time r, we introduce our q-Weibull

time-to-fill model defined in Chapter 4 to this equation

S= (1 - Se (7))Pt (6.4)

= 1 1 (1Pi,, - Pi,ob 1,
i=l

where Se(r) is a survival probability, and q, a, A are the q-Weibull parameters of the time-

to-fill model. Then the expected wait time 7 for liquidity providers to save pm can be solved

by setting the Equation 6.2 equal to the Equation 6.4, and solving for 7

I

• . (6.5)

Based on the analyses which I describe in the following sections, I found that the loga-

rithm of 7 turns out to be a plausible measure for market liquidity

t = log(7). (6.6)

7T=



In the following section, I compute liquidity measures of simulated order flow and explain

how the return series model (Equation 6.1) can produce a no memory return series.

6.3 Analyses on Simulated Data

Using simulated order flow, liquidity measures (t's are computed. I used 1,000 events

window of order flow data, and the window is moved 500 events at each step to compute

the next (t. This makes each window to contain 500 overlapping events with the prior

window. I have simulated order flow of 1 million events, which results 1,999 Ct's. Initially I

computed two different liquidity measures for each window - buy and sell liquidities. The

buy (sell) liquidity is computed using only buy (sell) orders, which refers to a liquidity of

demand (supply) side of the order book.

To see how liquidities change over predictability of transaction signs, I compute trans-

action sign probability for each transaction using FARIMA model introduced in Chapter 3.

From this I separately compute averages of (1) P(buy) - 0.5 when P(buy) > 0.5, and (2)

P(sell) - 0.5 when P(sell) > 0.5. The greater these values refers to the greater deviation

from chance meaning greater predictability of transaction signs.

Figure 6-1 shows correlations of buy/sell liquidities and predictability of buy/sell trans-

action signs for the stock AZN. The high predictability of a buyer initiated transaction

means there has been more buyer initiated transactions in the past. This is due to the

fact that the transaction sign series are strongly and positively autocorrelated. Since there

were more buyer initiated transactions in the past, we expect less liquidities in the supply

side of the order book. Also more buyer initiated transactions means less seller initiated

transactions, therefore, this will result more liquidities in the demand side of the order

book. This explains the strong positive and negative correlations of predictability of buy

transaction signs versus buy and sell liquidities in figure 6-1 (a) & (c) respectively. The

similar argument can be made to explain the figure 6-1 (b) & (d) with the case when there

is high predictability of seller initiated transaction. The same analysis is applied to the

remaining 8 stocks and the results are persistent throughout all of them. The Pearson's

linear correlation coefficient p's are reported in Table 6.1.
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Figure 6-1: Correlations of buy/sell transaction sign predictabilities vs. buy/sell liquidities
for the stock AZN. Pearson's linear correlation coefficient p's are reported in the figure.

Symbol Buy Liquidity Sell Liquidity
Buy Predictability Sell Predictability Buy Predictability Sell Predictability

AZN 0.65 -0.57 ' -0.60 0.68
BLT 0.51 -0.43 -0.41 0.50
BSY 0.56 -0.45 -0.39 0.55

LLOY 0.72 -0.63 -0.63 0.72
PRU 0.68 -0.59 -0.56 0.64
RTO 0.64 -0.48 -0.34 0.50
RTR 0.66 -0.58 -0.54 0.62

TSCO 0.67 -0.51 -0.56 0.66
VOD 0.64 -0.49 -0.66 0.71

Table 6.1: Pearson's correlation coefficients of
buy/sell liquidities for all 9 stocks.
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Figure 6-2: Correlation of transaction sign predictability vs. total liquidity for the stock
AZN. Pearson's linear correlation coefficient p is reported in the figure.

Stock AZN BLT BSY LLOY PRU RTO RTR TSCO VOD

p 0.45 0.28 0.33 0.27 0.23 0.43 0.37 0.53 0.42

Table 6.2: Pearson's correlation coeffiencts of transaction sign predictability vs. total liq-
uidity for all 9 stocks.

To explain how the price return model of Equation 6.1 can generate the return series rt

with zero autocorrelation, we need to compute the total liquidity and the average transaction

sign predictability of the market. The total liquidity is computed using both buy and sell

orders. Similarly the average transaction sign predictability is computed by averaging the

absolute value of transaction sign probabilities deviating from chance, which is I P(buy)-0.51.

Figure 6-2 shows a correlation of average transaction sign predictor versus the total market

liquidity measure for the stock AZN. The figure shows a positive correlation between the

predictability of Jt and the liquidity measure (t, and this explains why the proposed return

model generates return series with no memory even when the transaction signs have strong

positive autocorrelation. The same analysis is applied to the remaining 8 stocks and the

results are persistent across all stocks.

In addition to this, I simulate price return series directly from the price return model

u. As
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Figure 6-3: Autocorrelation of simulated transaction signs and price return series for the
stock AZN

suggested in Equation 6.1. From simulated order flow, I first compute the probability of

transaction sign Jt and the liquidity measure (t at time t, then infer the price return rt

from the price return model. Figure 6-3 shows the autocorrelations of simulated transac-

tion signs and price returns. It shows that although the transactions signs are positively

autocorrelated, the autocorrelation of price returns quickly dies out.

If transaction signs 1 t's have strong positive autocorrelation and are positively corre-

lated with liquidity measures (t's, the liquidity measure should also be positively autocor-

related. Figure 6-4 shows autocorrelation functions of buy, sell, and total liquidities of the

stock AZN. Every other liquidity values are used to avoid the bias due to overlapping win-

dows. In all three cases - especially the total liquidity - we see a positive autocorrelation.

This result has a very interesting implication - by seeing the past liquidities we can predict

the future liquidity.
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Figure 6-4: Autocorrelation functions of (a) buy, (b) sell, and (c) total liquidity measure for
the stock AZN. Every other liquidity values are used to avoid the bias due to overlapping
windows.
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6.4 Analysis of Real Data

In this section we use our method of measuring market liquidity on a real data set. The

window size of 1,000 event times is used to calculate total liquidities. Figure 6-5 shows the

change in total liquidities over time for the stock AZN. The figure shows a monthly pattern

in change in liquidity.

AZN

Figure 6-5: Change in total liquidities for the stock AZN.

Figure 6-6 shows change in total liquidities for the remaining 8 stocks. Similar to AZN,

all 8 stocks seem to have similar patterns in change in market liquidity.

6.5 Discussion

In this chapter we introduce a method of calibrating market liquidity from the order flow

data. We verify our method by showing the correlation between order sign predictability

and the liquidity measure. This explains why the price return series is not autocorrelated

when the transact sign series is a long memory process.

We also applied our method on real order flow data and identified patterns in change in

market liquidity.
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Chapter 7

Conclusion

In the first part of this thesis, I demonstrated statistical modeling techniques to model

order flow generation, which is a liquidity generation process for financial markets. I have

shown that simulation of the order flow model successfully replicates various statistical

properties of price returns, such as clustered volatility, fat-tailed return distribution, and

no predictability of future returns.

In the second half of the thesis, I argued that the change in market liquidity explains

how my order flow model satisfies the weak form of the Efficient Market Hypothesis (EMH),

which asserts that future price returns cannot be predicted from past returns. This is not

an obvious result since the order flow model has a predictable transaction sign process (i.e.

buyer or seller initiated trades) as one of its components. Then a method of quantifying

market liquidity from order flow data is introduced to explain this result.

The method of quantifying market liquidity introduced in the thesis introduces a new

set of interesting future research topics in financial markets. For instance, I have shown

that there exists some interesting patterns of liquidity measures in the real market data. A

study of why such patterns emerges from the market data may help us better understand

the market dynamics. Another interesting study is to integrate the liquidity measure into

existing financial models.
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Appendix A

Order Flow Model Parameter

Estimates

A.1 Order Sign Model Parameter Estimates

Symbol d

AZN 0.1753

BLT 0.2012

BSY 0.1847

LLOY 0.2002

PRU 0.1800

RTO 0.2293

RTR 0.2411

TSCO 0.1933

VOD 0.2772

Table A.1: FARMA(0, d, 0)
parameter estimates for the 9
stocks.

An expected transact sign will be computed from
FARIMA(0, d, 0) model using the following equation,

k

4t = • •3kj'I't-j,
j=1

where It-j is a transact sign at time t - j. Given a
gamma function F(.), 3 kj is

k F(k)j (- d)F(k - d- j + 1)

Then at time t, the order sign 4t can be sampled
according to the following probabilities,

t + 1
P(buy) = , P(sell) = 1 - P(buy).2
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A.2 Price Model Parameter Estimates

A price series is modeled with an IOHMM. The top table shows parameter estimates for

the output probabilities. At time t, a price pt is sampled from the following conditional

probability. Given state i and bid-ask spread xt,

2

P(ptlst = i, xt) = ZP(mt = klst = i)P(ptlSt = i, mt = k,xt).
k=1

All of our price models use 2 mixture components and values of P(mt = klSt = i) for k = 1, 2

are shown in the first two columns of the top table. The rest of the table show parameters

for the second conditional probability in the above equation, which is a conditional Gaussian

as the following,

1 ( (pt - Bjkt - jk) 2

P(ptlst = j, mt = k, xt) = exp (-2 k
Ojki/r 2a 2

The next two tables are values for transition and initial state probabilities P(St =

jlStl = i) and P(S1 = i). Since IOHMM states are discrete, values are presented as

lookup tables.
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AZN

Wi,m Bi,m ]li,m OTi,m

m=1 m=2 m= 1 m=2 m=1 m=2 m=1 m=2

1 0.047 0.953 -16.70 -83.06 0.088 0.526 0.106 0.189
2 0.656 0.344 -29.87 -30.59 3.579 0.104 17.853 0.120
3 0.508 0.492 -9.92 -21.53 -0.072 -0.048 0.058 0.070
4 0.026 0.974 -72.36 -355.42 -2.155 1.135 0.046 0.311
5 0.891 0.109 -70.10 -175.50 0.269 0.194 0.165 0.108
6 0.999 0.001 -388.65 -25.10 0.032 0.288 0.021 0.190
7 0.743 0.257 -70.17 -109.74 1.128 -0.012 0.337 0.089
8 0.888 0.112 -52.76 -7.90 0.273 -0.042 0.162 0.053
9 0.034 0.966 -193.70 -146.42 0.085 0.294 0.067 0.169
10 0.264 0.736 -171.01 -2.95 1.428 -0.060 1.674 0.050
11 0.003 0.997 -70.72 -6.40 -2.166 0.023 0.048 0.069
12 0.310 0.690 -116.18 -36.66 -0.606 -0.083 0.416 0.601

Table A.2: Parameter estimates of IOHMM output probability of order price
model for stock AZN. The output pt's are scaled by its standard deviation
0.0026.

1 2 3 4 5 6 7 8 9 10 11 12

1 0.161 0.009 0.000 0.007 0.001 0.054 0.003 0.598 0.007 0.001 0.159 0.000
2 0.002 0.611 0.005 0.024 0.009 0.092 0.004 0.029 0.029 0.085 0.105 0.006
3 0.000 0.001 0.793 0.000 0.000 0.203 0.000 0.000 0.002 0.000 0.000 0.000
4 0.003 0.023 0.001 0.287 0.009 0.191 0.007 0.073 0.019 0.340 0.046 0.001
5 0.008 0.044 0.003 0.041 0.186 0.471 0.000 0.012 0.096 0.032 0.106 0.000
6 0.028 0.018 0.135 0.050 0.035 0.294 0.002 0.041 0.147 0.211 0.034 0.003
7 0.001 0.002 0.000 0.007 0.000 0.004 0.969 0.002 0.000 0.015 0.000 0.000
8 0.160 0.011 0.000 0.032 0.001 0.067 0.001 0.673 0.008 0.008 0.039 0.000
9 0.010 0.012 0.005 0.030 0.011 0.522 0.000 0.008 0.387 0.010 0.004 0.000

10 0.000 0.011 0.000 0.044 0.001 0.127 0.003 0.004 0.010 0.791 0.008 0.000
11 0.010 0.013 0.000 0.011 0.006 0.040 0.000 0.015 0.001 0.007 0.897 0.000
12 0.000 0.040 0.008 0.017 0.000 0.060 0.000 0.000 0.001 0.018 0.000 0.856

Table A.3: IOHMM transition probabilities of order price model for stock AZN.

1
2
3
4
5
6
7
8
9
10
11
12

P(Si = i)

0.000
0.462
0.000
0.005
0.000
0.110
0.000
0.000
0.000
0.292
0.045
0.086

Table A.4: IOHMM initial
state probabilities of order
price model for stock AZN.



BLT

Wim Bi,m i,m im

m=l m=2 m= m=2 m=l m=2 m=1 m=2

1 0.704 0.296 0.58 -21.35 -0.103 6.012 0.064 5.082
2 0.040 0.960 -96.25 0.82 -1.595 -0.261 0.712 0.069
3 0.974 0.026 -52.85 -111.36 0.709 -3.515 0.158 2.270
4 0.623 0.377 -97.69 -27.58 -1.310 -0.102 0.226 1.153
5 0.023 0.977 -279.92 -64.36 -0.088 0.680 1.967 0.114
6 0.170 0.830 -34.08 -106.32 0.118 1.310 1.094 16.855
7 0.041 0.959 -221.54 -120.33 -0.074 0.473 0.093 0.276
8 0.186 0.814 -194.13 -60.65 0.022 1.827 0.201 1.875
9 0.158 0.842 -197.67 -103.20 -0.082 1.116 0.127 0.632

10 0.451 0.549 -4.00 -76.44 -1.149 -0.911 0.077 0.260
11 0.501 0.499 4.37 -145.49 -0.530 -1.821 0.362 0.565
12 0.967 0.033 -1.27 -44.07 -0.110 -1.929 0.067 0.217
13 0.094 0.906 -245.64 16.20 -0.720 0.139 0.617 0.218
14 0.001 0.999 79.96 -75.23 -7.917 0.271 2.223 0.260
15 0.132 0.868 -368.75 -11.24 0.092 -0.038 0.030 0.082
16 0.393 0.607 -354.17 -88.04 0.016 0.136 0.018 0.236

Table A.5: Parameter estimates of IOHMM output probability of order price
model for stock BLT. The output pt's are scaled by its standard deviation
0.0028.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.449 0.001 0.012 0.000 0.018 0.028 0.006 0.025 0.024 0.000 0.000 0.062 0.010 0.018 0.106 0.242
2 0.001 0.687 0.000 0.009 0.000 0.096 0.000 0.008 0.000 0.118 0.011 0.000 0.000 0.000 0.000 0.071
3 0.010 0.000 0.061 0.000 0.004 0.000 0.002 0.004 0.000 0.000 0.000 0.151 0.011 0.031 0.650 0.076
4 0.000 0.064 0.000 0.755 0.000 0.012 0.000 0.020 0.000 0.039 0.008 0.000 0.000 0.000 0.000 0.101
5 0.033 0.000 0.002 0.000 0.205 0.000 0.036 0.007 0.000 0.000 0.000 0.035 0.014 0.422 0.246 0.001
6 0.050 0.226 0.000 0.006 0.000 0.603 0.000 0.002 0.002 0.017 0.003 0.001 0.000 0.000 0.000 0.089
7 0.043 0.000 0.010 0.000 0.275 0.000 0.045 0.018 0.005 0.000 0.000 0.070 0.068 0.369 0.094 0.003
8 0.038 0.000 0.000 0.000 0.002 0.000 0.002 0.254 0.020 0.000 0.000 0.306 0.008 0.008 0.063 0.298
9 0.014 0.000 0.002 0.000 0.002 0.000 0.001 0.034 0.575 0.000 0.000 0.301 0.018 0.044 0.006 0.003
10 0.001 0.445 0.000 0.015 0.000 0.045 0.000 0.002 0.001 0.356 0.005 0.000 0.000 0.000 0.000 0.128
11 0.001 0.128 0.000 0.032 0.000 0.052 0.000 0.004 0.000 0.022 0.751 0.000 0.000 0.000 0.000 0.009
12 0.006 0.000 0.023 0.000 0.002 0.000 0.002 0.081 0.069 0.000 0.000 0.721 0.003 0.001 0.005 0.087
13 0.016 0.000 0.032 0.000 0.032 0.000 0.017 0.029 0.074 0.000 0.000 0.025 0.759 0.009 0.005 0.001
14 0.002 0.000 0.014 0.000 0.176 0.000 0.017 0.002 0.009 0.000 0.000 0.002 0.003 0.768 0.007 0.001
15 0.005 0.000 0.047 0.000 0.013 0.000 0.001 0.003 0.000 0.000 0.000 0.005 0.000 0.003 0.908 0.015
16 0.014 0.006 0.016 0.002 0.000 0.005 0.000 0.043 0.003 0.001 0.000 0.026 0.000 0.000 0.011 0.872

Table A.6: IOHMM transition probabilities of order price model for stock BLT.

P(Si = i)

0.131
0.237
0.000
0.019
0.000
0.388
0.000
0.002
0.000
0.098
0.055
0.070
0.000
0.000
0.000
0.000

Table A.7: IOHMM initial
state probabilities of order
price model for stock BLT.

i



BSY

Wi,m Bi,m ti,m mi,m

m=1 m=2 m=1 m=2 m=1 m=2 m=1 m=2

1 0.190 0.810 -16.75 -1.52 -2.569 -0.150 5.891 0.108
2 0.393 0.607 -152.77 -29.12 -0.639 -0.195 0.706 0.817
3 0.443 0.557 -105.00 -0.66 1.596 -0.111 0.955 0.086
4 0.089 0.911 -26.28 -17.52 -0.631 4.169 0.266 9.850
5 0.626 0.374 -5.87 -5.10 -0.060 -0.071 0.074 0.068
6 0.745 0.255 -17.58 -102.14 -1.444 -1.379 0.239 9.247
7 0.015 0.985 -322.91 -134.35 -0.556 0.531 0.835 0.255
8 0.503 0.497 -6.98 -318.00 -0.102 0.046 0.066 0.023
9 0.414 0.586 -13.53 -158.15 -0.221 -0.101 0.117 0.090

10 0.668 0.332 -61.36 -4.55 0.525 -0.023 0.259 0.118
11 0.995 0.005 -5.46 -120.61 -0.057 -1.669 0.071 0.121
12 0.287 0.713 19.69 -244.63 2.825 0.868 6.672 0.329

Table A.8: Parameter estimates of IOHMM output probability of order price
model for stock BSY. The output pt's are scaled by its standard deviation
0.0032.

1 2 3 4 5 6 7 8 9 10 11 12

1 0.725 0.007 0.003 0.259 0.000 0.004 0.000 0.001 0.001 0.000 0.000 0.000
2 0.009 0.886 0.002 0.025 0.000 0.002 0.000 0.061 0.011 0.000 0.000 0.004
3 0.000 0.000 0.664 0.008 0.029 0.034 0.062 0.089 0.001 0.001 0.032 0.080
4 0.182 0.012 0.035 0.573 0.016 0.000 0.013 0.102 0.013 0.002 0.048 0.003
5 0.000 0.000 0.004 0.000 0.349 0.004 0.051 0.221 0.000 0.025 0.312 0.033
6 0.001 0.001 0.680 0.000 0.000 0.076 0.005 0.211 0.000 0.000 0.000 0.025
7 0.000 0.000 0.037 0.000 0.037 0.006 0.259 0.419 0.000 0.123 0.073 0.046
8 0.000 0.001 0.037 0.003 0.016 0.006 0.139 0.580 0.011 0.075 0.039 0.093
9 0.000 0.004 0.000 0.002 0.000 0.000 0.000 0.124 0.865 0.000 0.000 0.005
10 0.000 0.000 0.005 0.000 0.040 0.004 0.275 0.255 0.000 0.260 0.138 0.023
11 0.000 0.000 0.002 0.000 0.070 0.004 0.022 0.109 0.000 0.009 0.771 0.014
12 0.000 0.000 0.050 0.003 0.028 0.003 0.031 0.566 0.000 0.041 0.072 0.205

Table A.9: IOHMM transition probabilities of order price model for stock BSY.

1
2
3
4
5
6
7
8
9
10
11
12

P(Si = i)

0.476
0.007
0.104
0.327
0.000
0.000
0.007
0.063
0.000
0.005
0.000
0.011

Table A.10: IOHMM initial
state probabilities of order
price model for stock BSY.

i



LLOY

Wi,m Bi,m , i,m 0i,m

m=1 m=2 m=1 m=2 m=1 m=2 m=1 m=2

1 0.443 0.557 -156.81 -2.25 1.810 -0.140 1.689 0.080
2 0.679 0.321 54.29 -78.95 2.860 0.150 13.252 0.151
3 0.073 0.927 -105.01 130.44 -2.032 0.693 0.060 0.508
4 0.138 0.862 -13.86 -111.04 0.253 -0.019 0.611 0.066
5 0.582 0.418 -16.57 -16.89 -0.011 -0.005 0.092 0.094
6 0.037 0.963 373.31 -35.20 0.872 0.204 3.299 0.201
7 0.040 0.960 116.86 -121.47 -1.797 0.478 0.144 0.235
8 0.702 0.298 -13.60 -369.78 -0.027 -0.262 0.904 0.383
9 0.291 0.709 -28.06 -354.38 -0.076 0.066 0.068 0.026

10 0.997 0.003 -311.18 -212.55 1.092 0.353 0.338 0.147

Table A.11: Parameter estimates of IOHMM output probability of order price
model for stock LLOY. The output pt's are scaled by its standard deviation
0.0029.

1 2 3 4 5 6 7 8 9 10

1 0.853 0.016 0.001 0.001 0.022 0.000 0.003 0.001 0.082 0.020
2 0.024 0.485 0.000 0.012 0.207 0.000 0.005 0.002 0.255 0.011
3 0.015 0.006 0.076 0.000 0.372 0.075 0.159 0.000 0.269 0.027
4 0.000 0.001 0.000 0.626 0.000 0.000 0.000 0.000 0.372 0.001
5 0.002 0.025 0.011 0.001 0.643 0.010 0.026 0.000 0.271 0.011
6 0.000 0.000 0.015 0.000 0.065 0.899 0.002 0.000 0.017 0.001
7 0.004 0.011 0.136 0.000 0.196 0.011 0.232 0.000 0.296 0.115
8 0.034 0.022 0.000 0.000 0.000 0.000 0.000 0.905 0.019 0.020
9 0.027 0.028 0.023 0.111 0.255 0.008 0.053 0.001 0.410 0.082
10 0.056 0.021 0.005 0.001 0.092 0.005 0.091 0.000 0.481 0.248

Table A.12: IOHMM transition probabilities of order price model for stock LLOY.

i

1
2
3
4
5
6
7
8
9
10

P(S1 = i)

0.439
0.367
0.000
0.000
0.041
0.024
0.000
0.021
0.101
0.007

Table A.13: IOHMM initial
state probabilities of order
price model for stock LLOY.



PRU

Wi,m Bi'm ]Ji,m 01i,m

m=1 m=2 m=l m=2 m=1 m=2 m=1 m=2

1 0.982 0.018 -22.84 -213.79 0.060 0.317 0.155 0.249
2 0.006 0.994 -43.15 -84.95 0.473 0.659 0.291 0.315
3 0.831 0.169 -1.86 -197.77 -0.130 -0.631 0.067 0.685
4 0.987 0.013 -3.99 -66.34 -0.070 -1.596 0.079 0.223
5 0.059 0.941 -287.77 -40.53 -0.307 0.349 0.358 0.870
6 0.853 0.147 -11.95 -42.32 0.118 0.783 0.197 0.254
7 0.347 0.653 -0.37 -0.13 -0.133 -0.135 0.064 0.063
8 0.350 0.650 -178.83 -318.19 0.697 0.007 0.315 0.017
9 0.164 0.836 -68.06 -1.12 0.539 -0.084 0.557 0.061
10 0.042 0.958 -106.03 -0.93 0.255 -0.081 0.223 0.060
11 0.967 0.033 -2.59 -41.73 -0.086 -0.357 0.101 0.772
12 0.991 0.009 -18.24 -47.45 1.380 0.435 0.825 0.328
13 0.462 0.538 -6.46 -13.49 7.090 -0.056 2.248 0.117
14 0.437 0.563 -16.49 -180.28 -0.163 -0.055 0.072 0.063
15 0.447 0.553 55.54 -145.76 2.925 1.917 1.710 12.273
16 0.014 0.986 -9.87 -81.15 0.289 0.003 0.310 0.085

Table A.14: Parameter estimates of IOHMM output probability of order price
model for stock PRU. The output pt's are scaled by its standard deviation
0.0031.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.461 0.053 0.008 0.037 0.000 0.002 0.003 0.392 0.000 0.000 0.001 0.010 0.003 0.001 0.022 0.008
2 0.451 0.054 0.030 0.178 0.000 0.008 0.006 0.172 0.000 0.000 0.009 0.021 0.004 0.001 0.045 0.020
3 0.014 0.010 0.365 0.013 0.010 0.000 0.013 0.393 0.000 0.002 0.004 0.115 0.004 0.001 0.045 0.011
4 0.026 0.005 0.011 0.745 0.001 0.000 0.005 0.149 0.000 0.000 0.008 0.030 0.002 0.000 0.009 0.008
5 0.000 0.000 0.015 0.002 0.907 0.000 0.002 0.000 0.000 0.000 0.015 0.015 0.010 0.000 0.031 0.002
6 0.003 0.001 0.000 0.004 0.000 0.962 0.000 0.016 0.001 0.000 0.000 0.000 0.000 0.000 0.008 0.004
7 0.014 0.011 0.019 0.010 0.004 0.000 0.179 0.269 0.001 0.020 0.000 0.055 0.002 0.070 0.039 0.306
8 0.262 0.021 0.054 0.117 0.000 0.002 0.018 0.403 0.000 0.012 0.006 0.035 0.005 0.008 0.026 0.029
9 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.002 0.378 0.560 0.000 0.000 0.003 0.034 0.003 0.018
10 0.000 0.000 0.002 0.001 0.000 0.000 0.007 0.012 0.274 0.692 0.000 0.001 0.001 0.002 0.005 0.003
11 0.010 0.007 0.005 0.053 0.012 0.000 0.000 0.060 0.001 0.002 0.537 0.100 0.012 0.000 0.191 0.010
12 0.076 0.019 0.067 0.254 0.000 0.002 0.035 0.125 0.000 0.002 0.109 0.237 0.004 0.001 0.047 0.021
13 0.038 0.004 0.020 0.046 0.017 0.002 0.007 0.132 0.012 0.018 0.031 0.014 0.555 0.004 0.051 0.049
14 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.066 0.014 0.003 0.000 0.001 0.000 0.897 0.002 0.006
15 0.079 0.006 0.060 0.087 0.021 0.014 0.014 0.228 0.007 0.015 0.223 0.036 0.025 0.004 0.155 0.026
16 0.002 0.018 0.004 0.001 0.000 0.000 0.035 0.540 0.003 0.002 0.002 0.024 0.002 0.015 0.011 0.341

Table A.15: IOHMM transition probabilities of order price model for stock PRU.

P(Si = i)

0.008
0.036
0.008
0.005
0.111
0.000
0.000
0.074
0.037
0.020
0.375
0.031
0.141
0.000
0.143
0.009

Table A.16: IOHMM initial
state probabilities of order
price model for stock PRU.

i



RTO

Wi,m Bi,m Ai,m ai,m

m=1 m=2 m=1 m=2 m=1 m=2 m=1 m=2

1 0.258 0.742 1.43 -188.96 -0.304 0.014 0.087 0.099
2 0.093 0.907 -132.00 -4.88 0.538 -0.085 0.390 0.067
3 0.927 0.073 34.31 -187.43 2.863 -1.222 5.916 0.678
4 0.452 0.548 -36.60 -282.89 0.013 0.030 0.140 0.020
5 0.500 0.500 -207.13 -16.32 -0.539 -0.326 0.679 0.815
6 0.741 0.259 -0.77 -72.96 -1.228 -0.088 9.945 1.382
7 0.556 0.444 -115.42 -164.43 0.924 0.373 1.205 0.237
8 0.094 0.906 -133.63 -8.86 -1.666 -0.030 0.062 0.088
9 0.223 0.777 -46.98 -0.77 0.662 -0.124 1.525 0.074

10 0.513 0.487 12.04 -108.61 0.004 0.455 0.141 0.331

Table A.17: Parameter estimates of IOHMM output probability of order price
model for stock RTO. The output pt's are scaled by its standard deviation
0.0036.

Table A.18: IOHMM transition probabilities of order price model for stock RTO.

i

1
2
3
4
5
6
7
8
9
10

P(SI = i)

0.000
0.000
0.087
0.027
0.000
0.367
0.000
0.000
0.519
0.000

Table A.19: IOHMM initial
state probabilities of order
price model for stock RTO.



RTR

Wi,m Bi,m ILi,m aim

m=1 m=2 m=1 m=2 m= m=2 m=1 m=2 m=1 m=2

1 0.753 0.247 -63.85 13.44 -0.779 -0.324 0.259 0.234
2 0.544 0.456 -4.92 -299.91 -0.105 -0.001 0.086 0.016
3 0.323 0.677 -61.23 -0.88 1.833 -0.114 1.571 0.098
4 0.990 0.010 -55.85 -16.54 0.370 0.036 0.353 0.183
5 0.162 0.838 -148.06 -186.10 0.054 0.756 0.138 0.449
6 0.862 0.138 -1.62 -64.74 5.729 -0.181 3.323 0.545
7 0.425 0.575 -6.30 -5.67 -0.058 -0.061 0.085 0.083
8 0.997 0.003 -147.28 -73.16 1.010 -0.877 6.176 0.249
9 0.242 0.758 -203.38 -14.57 -1.062 -0.151 0.439 0.336
10 0.417 0.583 0.33 -212.17 -0.069 -0.973 0.149 0.666
11 0.602 0.398 -95.50 -35.07 -0.158 -0.230 0.114 0.092
12 0.968 0.032 -83.69 -128.62 -1.619 -1.348 0.232 2.245

Table A.20: Parameter estimates of IOHMM output probability of order price
model for stock RTR. The output pt's are scaled by its standard deviation
0.0033.

1 2 3 4 5 6 7 8 9 10 11 12

1 0.751 0.074 0.048 0.001 0.021 0.021 0.000 0.064 0.018 0.000 0.001 0.000
2 0.001 0.621 0.069 0.100 0.151 0.007 0.034 0.008 0.000 0.002 0.003 0.004
3 0.003 0.249 0.540 0.034 0.066 0.026 0.027 0.052 0.002 0.000 0.001 0.001
4 0.000 0.354 0.017 0.434 0.116 0.004 0.062 0.004 0.000 0.005 0.001 0.004
5 0.000 0.495 0.059 0.160 0.233 0.004 0.039 0.002 0.000 0.005 0.002 0.001
6 0.017 0.372 0.181 0.058 0.040 0.209 0.066 0.032 0.018 0.000 0.007 0.000
7 0.000 0.130 0.005 0.019 0.017 0.002 0.821 0.000 0.000 0.000 0.001 0.006
8 0.010 0.081 0.420 0.016 0.014 0.023 0.000 0.425 0.010 0.000 0.000 0.000
9 0.023 0.009 0.018 0.001 0.001 0.031 0.000 0.044 0.869 0.000 0.000 0.004

10 0.000 0.125 0.054 0.181 0.573 0.000 0.016 0.001 0.001 0.048 0.001 0.000
11 0.003 0.069 0.002 0.003 0.011 0.002 0.002 0.000 0.000 0.000 0.908 0.001
12 0.000 0.475 0.247 0.044 0.017 0.000 0.194 0.000 0.000 0.001 0.001 0.020

Table A.21: IOHMM transition probabilities of order price model for stock RTR.

i

1
2
3
4
5
6
7
8
9
10
11
12

Table A.22:

P(Si = i)

0.057
0.051
0.517
0.001
0.000
0.141
0.000
0.123
0.090
0.001
0.000
0.018

IOHMM initial
state probabilities of order
price model for stock RTR.



TSCO

Wi,m Bi,m 1
1
i,m O'i,m

m=1 m=2 m= m=2 m=1 m=2 m=1 m=2

1 0.969 0.031 -4.27 -258.91 -0.397 -2.041 0.014 0.026
2 0.832 0.168 86.23 6.34 2.177 -1.122 13.537 0.150
3 0.877 0.123 -375.59 -158.10 -0.000 0.186 0.010 1.004
4 0.883 0.117 -151.10 -51.77 -0.270 0.472 0.099 1.155
5 0.077 0.923 -344.75 -40.36 -0.524 -0.162 0.167 1.236
6 0.750 0.250 25.59 -146.15 0.839 0.126 0.136 0.493
7 0.432 0.568 -328.59 -15.90 1.108 -0.403 0.413 0.024
8 0.239 0.761 -130.83 3.45 1.764 0.423 1.988 0.020
9 0.728 0.272 -69.72 2.07 1.697 -0.321 16.046 0.148

10 0.230 0.770 -4.41 -0.05 -0.397 0.000 0.014 0.010

Table A.23: Parameter estimates of IOHMM output probability of order price
model for stock TSCO. The output pt's are scaled by its standard deviation
0.0027.

tN3

1 2 3 4 5 6 7 8 9 10

1 0.426 0.003 0.032 0.000 0.000 0.000 0.050 0.128 0.001 0.359
2 0.037 0.204 0.177 0.001 0.000 0.015 0.171 0.050 0.004 0.341
3 0.012 0.023 0.276 0.017 0.002 0.017 0.230 0.089 0.003 0.333
4 0.001 0.002 0.247 0.744 0.000 0.000 0.003 0.000 0.000 0.003
5 0.001 0.030 0.033 0.003 0.860 0.003 0.019 0.004 0.046 0.001
6 0.000 0.019 0.071 0.000 0.000 0.505 0.076 0.066 0.000 0.263
7 0.005 0.025 0.341 0.000 0.000 0.021 0.138 0.131 0.000 0.338
8 0.067 0.023 0.159 0.000 0.000 0.010 0.117 0.163 0.001 0.460
9 0.004 0.066 0.016 0.000 0.036 0.003 0.004 0.005 0.839 0.029
10 0.066 0.023 0.212 0.000 0.000 0.006 0.089 0.111 0.000 0.494

Table A.24: IOHMM transition probabilities of order price model for stock TSCO.

i

1
2
3
4
5
6
7
8
9
10

Table A.25:

P(Si = i)

0.000
0.000
0.041
0.000
0.134
0.000
0.000
0.038
0.652
0.135

IOHMM initial
state probabilities of order
price model for stock TSCO.



VOD

Wi,m Bi,m Iim im

m=1 m= 2 m= 1 m=2 m= 1 m=2 m=l m=2

1 0.585 0.415 -275.98 -110.37 0.005 0.223 0.014 0.194
2 0.519 0.481 -56.68 477.13 -0.486 2.114 0.021 3.845
3 0.172 0.828 -52.52 -40.34 -0.498 -0.529 0.021 0.021
4 0.561 0.439 -38.02 -39.93 -0.093 -0.089 0.074 0.074
5 0.450 0.550 0.27 -3.84 -0.231 -0.222 0.057 0.058
6 0.527 0.473 -51.87 -49.92 -0.497 -0.503 0.021 0.021
7 0.994 0.006 -100.81 -248.50 2.701 -0.024 8.412 0.024
8 0.883 0.117 -23.13 -223.56 -0.063 1.707 0.069 3.161
9 0.038 0.962 -131.59 40.46 -0.377 0.547 0.017 0.022

10 0.047 0.953 -28.51 0.48 -1.489 -0.001 0.205 0.010
11 0.091 0.909 -77.48 142.17 -0.443 1.024 0.023 0.166
12 0.342 0.658 41.72 -32.13 0.853 -0.062 0.361 0.107
13 0.799 0.201 -146.76 -132.12 -2.937 -0.797 3.403 0.108
14 0.145 0.855 -138.39 -104.20 -0.792 -0.949 0.117 0.050

Table A.26: Parameter estimates of IOHMM output probability of order price
model for stock VOD. The output pt's are scaled by its standard deviation
0.0036.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.648 0.000 0.000 0.069 0.075 0.000 0.047 0.086 0.000 0.003 0.000 0.072 0.000 0.000
2 0.000 0.213 0.169 0.000 0.000 0.014 0.000 0.000 0.129 0.375 0.086 0.000 0.006 0.008
3 0.000 0.049 0.369 0.000 0.000 0.001 0.000 0.000 0.126 0.382 0.059 0.000 0.005 0.009
4 0.536 0.000 0.000 0.331 0.000 0.000 0.109 0.000 0.000 0.000 0.000 0.023 0.000 0.000
5 0.162 0.000 0.000 0.000 0.465 0.000 0.005 0.368 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.003 0.001 0.000 0.000 0.218 0.000 0.000 0.520 0.205 0.051 0.000 0.000 0.002
7 0.478 0.000 0.001 0.170 0.034 0.000 0.257 0.038 0.000 0.005 0.001 0.014 0.000 0.000
8 0.281 0.000 0.000 0.000 0.315 0.000 0.010 0.394 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.064 0.177 0.000 0.000 0.055 0.000 0.000 0.233 0.404 0.051 0.000 0.004 0.010

10 0.004 0.074 0.246 0.000 0.000 0.027 0.000 0.000 0.164 0.427 0.045 0.000 0.005 0.008
11 0.001 0.172 0.155 0.000 0.000 0.033 0.000 0.000 0.159 0.363 0.102 0.000 0.005 0.011
12 0.300 0.000 0.000 0.004 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.684 0.000 0.000
13 0.000 0.127 0.261 0.000 0.000 0.000 0.000 0.000 0.128 0.295 0.036 0.000 0.151 0.001
14 0.000 0.022 0.247 0.000 0.000 0.022 0.001 0.000 0.178 0.201 0.058 0.000 0.001 0.270

Table A.27: IOHMM transition probabilities of order price model for stock VOD.

P(Si = i)

0.306
0.048
0.045
0.058
0.001
0.001
0.382
0.025
0.036
0.054
0.009
0.000
0.022
0.013

Table A.28: IOHMM initial
state probabilities of order
price model for stock VOD.



A.3 Cancellation Time Model Parameter Estimates

A cancellation time is modeled with a q-Weibull distribution. The functional form for

q-Weibull PDF is

fc(7) =(2 - q) eq

where q-exponential function eq is defined as e-' = [1 - (1 - q)rT]1(1-)] if 1 - (1 - q)-7 0

and e-' 0 if 1 - (1 - q)7 < 0. The table below shows q-Weibull parameter estimates for

all 9 stocks. The times are measured in event times.

Stock q a A

AZN 1.43 0.7024 9.3382
BLT 1.48 0.8020 6.4889
BSY 1.43 0.7197 9.8304
LLOY 1.38 0.6461 15.1451
PRU 1.50 0.8786 8.6154
RTO 1.38 0.6637 9.5057
RTR 1.40 0.6534 8.5210
TSCO 1.32 0.5983 22.1437
VOD 1.09 0.4153 118.5829

Table A.29: q-Weibull parameter estimates of cancellation time model for the 9 stocks.
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Appendix B

MIT Web Market Simulator

B.1 Introduction

In order to conduct the order flow simulations and the market experiments described in

Chapter 5 and Appendix C respectively, we developed a software which replicates the mech-

anisms of real-world market. The MIT Web Market is a software market implemented in

Java, which provides a platform for different types of electronic markets on the World Wide

Web. The software is designed to be used as control laboratory for software and/or human

agents based simulations and experiments.

B.2 Technical Description

In this section we first describe the design of MIT Web Market software in abstract level

and then discuss how the code is modularized for object-oriented programming.

B.2.1 Abstract Level Design

An abstract level design of the system concretely defines roles of electronic market in ab-

stract level as shown in Figure B-1. The main roles are broken down into pieces as the

following: order routing, match/execution, clearance/settlement, information dissemina-

tion, market administration, and market surveillance.

When an order is received from a trader (client), the market is responsible for rout-

ing the order to an appropriate internal order book, where market-makers (or auctioneers)

can match it with other order(s). When multiple securities are traded, each order needs
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Figure B-1: An Abstract Level Design of MIT Web Market

to be routed to an appropriate market-maker (or an auctioneer) who handles the same

security. After orders are matched and executed, the role of the MIT Web Market is to

clear and settle the orders. The clearing/settling simply means updating the market in-

formation such as last traded price, and each trader's portfolio information. After order is

matched/executed and cleared/settled, traders are notified of updated market information

and their portfolio holdings, which is the role defined as information dissemination. Addi-

tionally, a market surveillance has to be taken place while orders are routed and executed.

The market surveillance is to monitor the orders to make sure that they are not violating

the pre-defined market rules. Lastly, the system needs to be capable of administrating the

rules of the market in terms of order matching, executing, clearing, and settling.

B.2.2 Component Level Design

After the roles of MIT Web Market are defined in abstract level, the system is designed into

several modules to fulfill such roles. The MIT Web Market architecture is implemented in

Java 1.5 with Oracle Database 11g, which consists of four main modules: market server,

automated market-makers, database, and Graphic User Interface (GUI) for human traders.

The market participants access the market via Java applet, which gets downloaded into their

Web browser. The Java language provides several advantages such as portability, dynamic

loading, multi-threading, and object serialization, which make it a convenient platform for
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Database

Figure B-2: A Component Level Design of MIT Web Market

implementing the inherent complexity of the market simulator. These factors are especially

advantageous to our system since it uses Web technology. They made it possible for all

users to interact with the system from any platforms and trade securities concurrently in

the market. Also they have made possible to build a robust system with relatively limited

time. The Figure B-2 represents the associations between modules. In rest of this section,

we describe each module in more detail.

Market Server Module (webmarket.server package)

The market server module serves six major functions: order match/execution, information

dissemination, order routing, clearance/settlement, market administration, and brokerage

service.

1. Order Match/Execution - The order match/execution plays a central role in handling

and executing the orders. One of the principal advantages of object-oriented pro-

gramming is that we can easily incorporate different types of order match/execution

schemes into the system.

2. Information Dissemination - The information dissemination provides various market

information to traders. The market server disseminates information in two ways; one

is to disseminate information to all traders participating in the market, and the other

is to disseminate information to a specific trader. In order to disseminate information

to all traders, the market server uses 'Ticker Tape', which is an object storing public
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information. All traders have direct access to the 'Ticker Tape'. Security information

are placed on the 'Ticker Tape' when the security is traded, or when the bid/ask prices

are altered by newly placed orders. The 'Ticker Tape' also provides other general

market information - whether market is open or closed, opening time of market,

duration of sessions, and other market news. In order to disseminate information to

a specific trader, market server directly sends information to the trader using private

channel. Each client maintains the channel for direct communication with the market

server. The private information such as trade confirmation and portfolio holdings are

sent through this channel. The market server is designed to privately send any kind

of text information using this channel.

3. Order Routing - The automatic order routing comes naturally as part of the system.

In market server, an order execution module can be an auctioneer (auction algorithm),

a specialist (monopolistic market-maker) or competitive dealers (multiple market-

makers). An auctioneer is a computer algorithm that matches order according to a

set of pre-determined rules. The routing mechanisms are particularly easy to build

under this simple rule-based algorithm. In the other hand, specialist or competitive

dealer models add complexities to order routing. The automated market-maker(s) are

intelligent agent(s) providing price discovery and liquidity to the market and they are

designed to maintain proprietary positions and therefore bear risks. Since automated

market-makers are separate module in our system, we separately discuss this in the

later section.

4. Clearance/Settlement - After a trade has taken place, the market server clears the

transaction between two counter-parties by transferring cash and securities between

buyer's and seller's accounts. The role of market server as a clearinghouse is to up-

date trader's portfolio in the database. The server creates a JDBC connection to the

database and updates information. After the update, the market server provides up-

dated portfolio information to the owner of that portfolio. Such design also contributes

to flexibility of the market structure. It can be implemented with different settlement

rules and clearing procedures that may apply to different securities. For example,

futures market has different settlement rules from those of the options market.
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Figure B-3: A Console Window for Market Server

5. Market Administration - In order to administer the market, the system provides

a console window for market administrator as depicted in Figure B-3. The console

window is to serve five major roles: opening and closing of the market, monitoring

traders who are participating in the market, monitoring the market-makers, configur-

ing duration of sessions, and disseminate general market information to traders.

6. Brokerage Service - The essence of the brokerage service is the maintenance of ac-

counts. Traders open accounts through simple registration process. When a new

trader opens up an account, the market server accesses the information stored in the

database on how the initial portfolio shall be created. Based on this information, the

market server assigns pre-defined amount of fictitious money and shares of securities

to the newly created account.
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Market-Maker Module (webmarket.emm package)

The MIT Web Market is a highly configurable market in two major aspects, the market

institutional structures (trading mechanisms) and the types of securities to be traded. The

market structure is abstracted in the model of market-makers and auctioneers. Specifically,

for each security traded in the market, different types of software market-makers can be

integrated into the market in a "plug-and-play" manner.

In the current MIT Web Market system, market-maker is not responsible for checking

general market rules, but may wish to impose additional rules on its own clients for transac-

tions placed through the market-maker itself. If so, market-maker should give appropriate

error message of the rules that are violated to the trader. If no rules are violated, and the

order is actually placed, then the market-maker must note the order to its back-end office.

In addition, if this order allows some sales to proceed, the market-maker may note the sale

on its back-end office to consummate the sales. Each market-maker should strive to fulfill

orders eventually, of course; however, there is no requirement that it be done immediately.

Also, multiple market-makers can handle the same security.

GUI Module for Human Traders (webmarket.client package)

The human traders can access the market using GUI interface developed in Java applet.

The applet consists of two parts: sign up/login, and trading interface. In sign up/login,

trader can either register herself as a new user or login to the market with pre-existing

user ID and password. The challenge/response scheme is used to avoid transmitting the

password over the network. The login window is depicted in Figure B-4.

After logging in, the client side protocol allows trader to do the followings using trading

interface: place and cancel orders, obtain updates on ongoing market activity, and obtain

information on its own portfolio.

1. Place and Cancel Orders - Orders are placed by creating an "Order" object and

sending it to the market server. While orders are not executed, they can be canceled

by the client. The client applet keeps track of order IDs that are previously placed,

which are assigned by the market server. The client protocol sends order cancellation

request along with order ID and market server uses the ID to identify the order for

cancellation. If the order is not executed, the order gets canceled.
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Figure B-4: A Sign up/Login Window for Trader

2. Obtain Updates on Ongoing Market Activity - The updates are obtained in one of

two ways. The updates on market activity may be read out sequentially, or client may

request to update the information from the server. The server periodically informs

the ongoing sales, or other events as they have been declared of interest to a particular

client.

3. Obtain Information on Portfolio - The number of shares held in given security are

obtained by sending a holding information request to the server. The client needs

to supply the security ID to receive the information. The client can also request

information of amount of cash held in her portfolio in similar way.

As shown in Figure B-5, the trading interface consists of five panels: market news,

trade, chart, order status, and quote/portfolio information. The information displayed in

this window are obtained in two ways; 1. public information such as quote information

or general market information are obtained from 'Ticker Tape' object where the market

server posts public market information. 2. private information such as trader's portfolio

are obtained from private channel between the market server and the trader.

1. Market News Panel - The purpose of the market news panel is to disseminate general

market information. Information such as market state (whether market is open or

closed), duration of the market, and etc.
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Figure B-5: A Trading Interface for Trader

2. Trade Panel-- Traders can place orders using trade panel. From the pull-down menu,
trader chooses a security that she wants to buy or sell, and specify size and price of

an order. There are four types of orders which can be placed: market buy, market

sell, limit buy, and limit sell. When market order is placed, the price is ignored by the

system. If trader places an order violating the market rules, such as placing short sell

when short position is not allowed, the order is ignored by the system and the order

rejection message is displayed.

3. Chart Panel - The chart shows the price movement of particular security chosen

by the trader. The trader can choose a security from pull-down menu. The chart

also shows current time which is synchronized with server side time and also time

remaining if there is a pre-defined duration of the market. The bid/ask prices are

shown in the graph by red triangles, and the last prices are shown in blue horizontal

line. At the bottom of the graph, the traded volumes are shown in bar graph.

4. Order Status Panel - There are two types of order status information: open orders,
and transactions. The open order panel displays list of orders that are placed by the
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trader, but yet been executed. The transactions panel displays executed orders that

are placed by the trader. A trader is allowed to cancel an order if the order is listed

in the open orders panel. Once an order is executed and listed in transactions panel,

it cannot be canceled.

5. Quote/Portfolio Panel - The quote/portfolio panel is to display bid/ask prices, last

traded price, and total traded volume of securities. It also displays trader's portfolio

information. The client applet receives security information from 'Ticker Tape' object

and displays them in the quote side of the panel. It also receives trader's portfolio

information through private channel, calculates the market value of the portfolio, and

displays them in the portfolio side of the panel.

Database Module

One of the important advantages of the integration of sub-systems is sharing of information

among them. A centralized database is the core of such system. Despite the fact that the

whole system may consist of a collection of geographically dispersed servers, the MIT Web

Market can be viewed as a centralized system in terms of its abstract architecture. Note that

within this concept, a centralized market is capable of accommodating fragmented market

structures. One scenario is that within a single market, there can be multiple market-makers

dealing with the same security. The market-makers receive orders via the same order routing

system and are monitored by the same surveillance units. More importantly, the centralized

database stores market information, security information and trader information that are

shared by different sub-systems. For instance, both the brokerage and clearing service need

to access the account information of an investor after a transaction. Consider the following

sequence of how a investor's trading request is served. The investor places an order via

some trading software provided by the brokerage service. The order arrives at the market

electronically, and is further transmitted to one of the market-makers who executes the

order and reports the trade information to the market. The market in turn disseminates

new trade and quote information to all traders connected to the market. Simultaneously, the

clearinghouse is notified of the execution. It clears the trade and makes appropriate portfolio

adjustments for the two parties involved in the trade (updating cash and security position

information, for example), and notify the brokerage service for the updates. Updated
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Figure B-6: An Entity Relationship Diagram (ERD) of MIT Web Market Database

portfolio information is then sent to the two investors who participate in the trade.

The MIT Web Market uses Oracle Database 11g and it is designed based on the Entity

Relationship Diagram (ERD) depicted in Figure B-6. The database is divided into two

groups of tables; tables for defining the market, and tables for storing trading information.

1. Defining Market - There are four entities that defines the market; security informa-

tion, users, initial value of portfolios, and market session. In order to setup a market,

all of those information need to be provided. When trader registers as a new user,

the trader's information are stored in the 'users' table. At the same time, the trader's

initial portfolio is created in the 'portfolios' table based on the initial value, which are

pre-defined in the database.

2. Storing Trading Information - There are mainly two types of trading information.

One is order information and the other is sales information. The order information

are created by users and they are used to route orders to execute them. After the

execution, the sales information are stored in 'sale log' table. It is important to sepa-

rate the two in the database since the first one is needed to show quote information,
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and the second one is used to determine the price of securities.

B.3 Summary

In summary, the main features of the MIT Web Market Simulator are: automation in

the trading mechanism (automated market-makers), flexible design that can accommodate

various types of market structure, environment that allows interactions between electronic

agents and human traders. The potential applications of the software are various financial

or non-financial markets, educational or experimental markets, and tools for research in

market micro-structure, which I have demonstrated in this thesis.
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Appendix C

Securities Trading of Concepts

(STOC)

C.0 Preface

In addition to the research relating to financial markets, the following presents my work in

using market as a tool for aggregating people's preferences. The idea is to apply the market

mechanism to collect consumer preferences towards product concepts through trading. This

work was done in collaboration with Dr. Nicholas Tung Chan and Prof. Ely Dahan (UCLA)

along with two of my research advisors Profs. Andrew W. Lo and Tomaso Poggio.

C.1 Introduction

Markets are well-known to be an efficient tool for collecting and aggregating diverse in-

formation regarding the value of commodities and assets (Hayek, 1945). They have been

particularly successful in the domain of financial securities. In this chapter, we explore

a novel application of the price-discovery mechanism of financial markets to marketing

research using securities trading of concepts (STOC) to collect consumer preferences on

product concepts. This application is motivated by the need for reliable, accurate, fast

and economical means to gauge consumer preferences during new product development.

It relies on the belief that markets are efficient in aggregating privately held information

such as individual preferences and expectations of others preferences. It also exploits the

incentive-compatible nature of markets, i.e. the fact that over- or under-valuing securities
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reduces the participants rewards, and the preferences of most participants for competing in

games over responding to direct surveys.

In particular, we present results for multiple market experiments with live subjects in

which participants express their preferences over new product concepts by trading virtual

securities. The resulting securities prices are compared against preferences measured in

separate studies of the same products using various stated-choice and revealed preference

approaches: rank-ordered choice, the virtual concept testing (VCT) methodology developed

by Dahan and Srinivasan (2000), and actual purchase decisions under controlled conditions

and in actual product markets. We find that results across different market experiments in

three product categories - bicycle pumps, laptop computer messenger bags and crossover

vehicles - are, with one notable exception, reliable across repeated tests and predictive of

stated-choice and revealed preference results. To gain a better understanding of how the

STOC method may be achieving these results, we relate our market experiments with some

classic examples from the experimental economics literature.

The essence of the STOC methodology centers around the establishment of virtual

stock markets that trade virtual securities, each associated with an underlying product or

service concept that can either exist or be at the conceptual or prototype stage. Upon

entering a concept market, each participant receives an initial portfolio of cash (virtual

or real) and virtual stocks. Participants are also provided with detailed information on

the products (stocks) that includes specifications, images, and multimedia illustrations. A

typical objective of the STOC game might be for each participant to maximize the value of

his or her portfolio, evaluated at the last price prior to the closing of the market. Markets

are typically open for 20 to 30 minutes. If participants play with real money, they will have

the opportunity to profit from trading and will conversely bear the risk of losing money. The

financial stakes in the game provide incentives for participants to reveal true preferences,

process information and conduct research. If fictitious money is used, prizes can be awarded

according to individuals performances. One can also reward all participants simply for their

service.

As in real financial markets, stock prices are determined by supply and demand, which

depend on participants evaluation of their own and others preferences for the underlying

products. Thus, at the market equilibrium, prices should fully reflect all participants ag-

gregate preference of the products. Traders make trading decisions just as they would in a
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financial stock market: they assess the values of the stocks, sell over-valued ones and buy

undervalued ones, essentially voting on the worth of the underlying products. In this way,

a stocks price becomes a convenient index of a products consumer value.

There are, of course, several well-established methods for estimating consumer prefer-

ences, e.g., surveys (Burchill and Brodie, 1997), voice-of-the-customer methods (Griffin and

Hauser, 1993), conjoint analysis (Srinivasan and Shocker, 1973; Green and Wind, 1975;

Green and Srinivasan, 1990), concept tests (Urban et al., 1990; Dahan and Hauser, 2002),

and focus groups (Calder, 1977; Fern, 1982). However, concept markets may be a useful

alternative to these methods for several reasons:

1. Accuracy: In order to win the game, participants have the incentive to trade accord-

ing to the best, most up-to-date knowledge because of their financial stake in the

market. STOC also captures, continuously, the ever changing pulse of the market for

all participants since they can express their opinions multiple times during the course

of the market rather than responding only once to a survey question.

2. Interactive Learning: A STOC market participant not only evaluates concepts on his

or her own behalf, but also considers the opinions of the public at large. Furthermore,

participants can observe others valuations of the virtual products and update and

adjust their own valuations dynamically in the market environment. In short, learning

is a crucial element in these markets.

3. Scalability: Unlike surveys, in which the number of questions asked is limited by the

capacity of each respondent to answer, markets are intrinsically scalable due to the

fact that each trader need only evaluate a small subset of the universe of securities. In

fact, the efficiency of the market, and therefore the quality of data collected, improves

with the number of participants. This extends to the number of product concepts

that may be evaluated since there is no requirement that each respondent trade

every security, the bounded rationality of the traders does not limit the number of

concepts that can be evaluated in a STOC market.

4. Integrated Product Concepts: The STOC method is particularly useful relative to

conjoint methods when a product cannot be easily quantified, delineated or repre-

sented by a set of attributes (for example, a movie script, fashion item, car body
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style or piece of art). Market participants evaluate the concepts directly and market

prices effectively reflect the overall viability of the concepts, including the ability of

a concept to fulfill unarticulated needs. All that is required is a thorough description

(and visualization) of each concept.

Of course, market-based methods for eliciting information also have certain limitations.

Unlike typical marketing research techniques in which information is collected from individ-

uals and aggregated in subsequent analysis, the market method focuses on aggregate beliefs

and preferences. Individual heterogeneity is not captured well in the end, even though it

enters the trading process in the form of differences in security valuation. Virtual concepts

markets may be vulnerable to price manipulations and speculative bubbles because the val-

ues of virtual securities hinge on the aggregate beliefs, which are endogenously determined

within the same market. Traders may form false beliefs that could cause prices to deviate

from their fundamentals. And all of the behavioral critiques that have been leveled against

the Efficient Markets Hypothesis in the financial economics literature apply to concepts

markets as well. For these reasons, the market method must be applied with caution, and

the consistency of the results must be checked through repeated STOC markets or other

means of validation. The greatest level of vulnerability may occur when traders have a poor

sense of their own preferences or of those of other people. This might occur, for example,

when the product category is too new for traders to grasp, or when the stimuli shown prior

to trading are unclear or confusing (as we demonstrate in one instance shortly). A number

of practical issues arise in attempting to infer consumer preferences via the STOC method.

For example:

* How many traders are needed?

* How knowledgeable does each participant need to be of the product category and

concepts being studied? Of the target market?

* Do they need to be experienced at trading securities?

* What strategy do traders adopt in order to win the game?

* Are traders driven more by objectivity or personal biases?

* For how long must trading proceed in order to collect useful data?
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o What, exactly, is being measured by STOC?

The present research attempts to answer many of these questions by positioning STOC

in the context of prior experimental economics and prediction markets research, and by

evaluating the results of empirical experiments in three product categories.

In Section C.2, we outline the market research alternatives to STOC which also mea-

sure preferences for product concepts. These include virtual concept tests of bike pumps,

a simulated store selling laptop bags and stated choice surveys and longitudinal revealed

preference sales data for crossover vehicles. We then summarize relevant research from the

prediction markets and experimental economics literature. Section C.3 introduces the three

product categories that are tested in this research, the designs of the securities represent-

ing product concepts in those three categories, and the market mechanism used to trade

these securities. In Section C.4 we conjecture on how STOC works by considering alter-

native strategies that traders might employ, and show how stock prices capture consensus

preferences. Section C.5 presents results from multiple STOC experiments, and develops

a taxonomy of internal and external validity testing. We conclude in Section C.6 with a

discussion of the results, possible extensions and limitations.

C.2 Background

To validate the STOC method, we compare it against alternative methods of measuring

preferences for new product concepts. We also position STOC in the context of prior work

on prediction markets and experimental economics.

C.2.1 Prior methods of measuring product concept preferences

Concept testing enables new product development teams to identify those concepts most

preferred by consumers. Dahan and Srinivasan (2000) present a virtual concept testing

(VCT) methodology employing the Internet with virtual prototypes in place of real, physical

ones. The goal of their study is to identify the most preferred of nine bicycle bump concepts

versus the two commercially available products depicted in Figure C-2. The authors find

that static images of the bike pumps on the Internet produce market share predictions that

closely resemble those for real physical prototypes examined in person. We employ their

physical prototype and static web virtual concept test results for bicycle pumps in hopes of
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validating the STOC method. Both bicycle pump STOC tests, conducted on the other side

of the country and six years after Dahan and Srinivasan collected their data, were conducted

with the same group of traders as a method of confirming test-to-test reproducibility as well

as external validity.

Dahan and Hauser (2002) add multiple web-based market research methods to the mix,

applying them to the eight existing and yet-to-be-released crossover vehicles depicted in

Figure C-3. They also demonstrate a high degree of correlation between web-based concept

testing and respondents self-stated-choices as measured by simple surveys. We test STOC in

four independent crossover vehicle experiments and compare our results against self-stated

data in three of them and against virtual concept testing (VCT) in all four. We estimate

VCT preferences at the individual level in two ways: including both product preferences

and vehicle prices to determine each traders utility score, and utilizing product preferences

alone, excluding the effect of vehicle prices. In each case, we then aggregate individual

preferences to generate market share estimates.

Toubia et al. (2003) develop a new polyhedral adaptive approach to conjoint analysis,

and test it against existing adaptive and static conjoint methods using the example of

customizable laptop PC messenger bags sold for real money through a simulated store. Their

work demonstrates the effectiveness of their method, but more importantly for the present

research offers an excellent data set for validating STOC. We focus on eight randomly

chosen bags, representing a range of popularity (market share) actually sold to 43% of the

respondents in their research. Two STOC tests were run to measure preferences for the

same eight bags, but utilizing two different forms of stimuli: the table shown in Figure C-4

and the individual images shown in Figure C-6.

Additionally, in the six years following the crossover vehicle STOC tests, that is from

2001-2006, we also collected unit sales data for each of the eight vehicles from Wards Au-

tomotive News. These data are used as a test of external validity and the predictive power

of the STOC method.

We are grateful for the cooperation of the aforementioned researchers who enabled us

to adopt the identical product concept illustrations in our STOC tests. Thus, we are

able to compare results for identical market research problems using STOC versus each

of the prior methods. We attempt to validate our method in the eight STOC trading

tests conducted from 2000 to 2002, as summarized in Table C.1. Traders in the first six



tests were MBA students, but additional tests included attendees from the MIT Center

for Electronic Business conference (crossover vehicle test 3) and more senior managers

attending executive education classes (crossover vehicle test 4). All eight tests were run

under controlled conditions in a business school trading laboratory.
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Table C.1: Data Collected for each Product Category

For each of the above tests, STOC user interface was employed as shown in Figure C-7,

and each test ran in under one hour including instructions and wrap up.

C.2.2 Prediction Markets

Non-financial prediction markets have been established for political elections, movie box

office estimation, and other real world outcomes. The Iowa Electronic Markets (IEM)

pioneered prediction markets for the purpose of forecasting election results (Forsythe et al.,

1993). The IEM was founded for research and educational purposes. Trading profits from

the market provide incentives for traders to collect and process information about future

events. The IEM features real-money futures markets in which contract payoffs depend

on the outcome of political and economic events. IEMs predictions have outperformed
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most national polls. Similarly, the Hollywood Stock Exchange, HSX.com, has provided

accurate predictions of movie box office results (Spann and Skiera, 2003). The Foresight

Exchange (FX) , predict the probability of future events occurring such as changes in the

environment, scientific breakthroughs, the collapse of companies, or political and news

outcomes. Companies such as Hewlett Packard, Microsoft, Best Buy and Google have

employed prediction markets to forecast printer sales, software release dates, consumer

electronics sales, and software take-up rates.

Prediction markets share with STOC the benefits of information aggregation, the joy

of competitive play, the ability to learn from others and the incentive to be accurate.

Prediction markets focus on actual outcomes, operate for weeks, months, and sometimes

years, and incorporate private information and news as it happens. STOC markets, in

contrast, focus on concepts that may never come into existence, and therefore may never

have actual outcomes, run for 10-60 minutes typically, and are not influenced by outside

news. In fact, the only information available to STOC traders is the personal preferences

they hold, their expectations of others preferences, and whatever they learn by observing

STOC price movements.

C.2.3 Rational Expectations (RE) Models and Experimental Markets

Our trading experiments are closely related to the literatures in rational expectations (RE)

models with asymmetric information and experimental markets. In a standard asymmetric

information RE model (Grossman, 1981), heterogeneous agents with diverse information

trade with each other and, under certain conditions, the market will converge to an equi-

librium in which prices fully reveal all relevant information. The most important criterion

for convergence is that agents condition their beliefs on market information. In particu-

lar, agents make inferences from market prices and quantities about other agents private

information.

The RE model has received considerable attention in the study of experimental mar-

kets (Plott and Sunder, 1982, 1988; Forsythe and Lundholm, 1990; Davis and Holt, 1993).

Studies of the informational efficiency of a market relative to the RE benchmark fall into

two categories: markets with fully informed agents (insiders) and uninformed agents, and

markets with many partially informed agents. In various experimental markets with human

subjects, the results for both market structures are the same: markets eventually converge
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to the RE equilibrium, i.e., information aggregation and dissemination occur successfully.

STOC trading share some characteristics with such experimental economics markets,

and information aggregation and dissemination provide compelling explanation for the suc-

cess of our STOC market. For example, traders who possess superior information about the

products or have high confidence in their beliefs can be considered insiders. On the other

hand, traders who have little knowledge or opinion of the products can be regarded as the

uninformed. The interaction between the insider and uninformed constitutes information

dissemination. What is intriguing about this scenario is that even when a subset of traders

ignores the underlying product information and only focuses on market information, the

market still converges to efficient prices that aggregate all the relevant information and

beliefs.

Alternatively, individual traders may form their own beliefs about the products, ac-

knowledging that market prices will depend on aggregate beliefs. This is similar to the

information aggregation scenario in which there are no insiders, but where all traders are

partially informed. Even in this case, where no single trader has full information, an RE

equilibrium will be reached under very general conditions (Grossman, 1981; Davis and Holt,

1993, Chapter 7).

However, there is one important difference between our STOC market and the other

exchanges in the experimental markets literature. In a typical experimental market, subjects

preferences and their information set are fixed and assigned by the researchers. Therefore,

even before trading begins, theoretical equilibrium prices can be calculated. In contrast,

in a STOC market, neither the subjects preferences nor their information sets are knownin

fact, these are what STOC market trading experiments are meant to discover. This suggests

an important practical consideration in implementing STOC markets: the composition of

traders should match the population of target consumers as closely as possible, or at least

include traders with insight into the preferences of these consumers. For example, if the

target population for a particular product is teenage female consumers, a STOC market

consisting of middle-age males may not yield particularly useful preference rankings for

that product. However, if the cross section of traders in a STOC market is representative

of the target population, the force of market rationality will ensure that the price-discovery

mechanism will provide an accurate measure of aggregate preferences.
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C.3 Design of Markets and Securities

In addition to presenting full product concepts, we educated traders about the product

attributes and attribute levels using Consumer Reports-style ratings as in Figure C-1.
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Figure C-I: Attributes for Bike Pumps, Crossover Vehicles and Laptop PC Messenger Bags

In our eight tests, the STOC method is applied to the product concepts described

in Dahan and Srinivasan (2000) (Figure C-2), Dahan and Hauser (2002) (Figure C-3) and

Toubia et al. (2003) (Figure C-4).

In order to anchor the value of the fictitious currency in the case of bike pumps, one of

the eleven securities - Cyclone - has its price fixed at $10 and is not traded. Thus, Cyclone

serves as a reference price or numeraire security. For example, if a trader thinks that TRS

is worth twice as much as Cyclone, he or she would pay up to $20 for one share of TRS.

The stocks of the ten freely traded concepts may be priced at any level, depending on the

supply and demand in the market, i.e. the willingness of at least one trader to buy at the

price at which another trader is willing to sell.

The eight crossover vehicles in Figure 3 were tested in 2000 and 2001 and consisted of

three already released at the time (Lexus, Mercedes and BMW) and five yet-to-be-released

vehicles (Pontiac, Acura, Buick, Audi and Toyota).

The eight laptop PC messenger bags shown in Figure 4 and Figure 5 were part of the

controlled study described in Toubia et al. (2003) in which 330 first year MBA students

were provided cash towards the purchase of a customized laptop PC messenger bag. These
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Figure C-4: 8 Laptop PC Messenger Bags
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Figure C-5: Laptop PC Messenger Bags Depicted Without the Attribute Data Table

eight bags include designs that ranged from low to medium to high popularity amongst the

143 respondents to the original study who bought them from a simulated store with actual

cash.

In the first laptop bag STOC test, traders saw the eight laptop bags in the table shown

in Figure C-4. In test 2, the eight laptop bags were depicted as simpler images, four of which

are reproduced in Figure C-6, leaving out the table of product attributes and simply showing

nine product attributes visually rather than verbally. The eight laptop PC messenger bags

depicted in the two types of experiments are identical.

The reason that a new set of stimuli were created to represent the same eight bags,

frankly, was that the tabular form of presenting the bags was not well-received nor under-

stood by the traders. In section C.5, this will become more apparent when the trading

results of the two STOC tests are analyzed.

Each stock security represents a particular bike pump, crossover vehicle, or laptop PC

messenger bag. The objective of traders in the STOC game is to maximize the value of ones
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Figure C-6: Typical Product Information for Bike Pumps, Crossover Vehicles, and Laptop

PC Messenger Bags

portfolio at market close. The value of a portfolio is calculated as the sum of the cash on

hand plus the total market value of the stocks, as determined by the closing market price.

Participants strive to maximize their profits by trading the stocks by buying low and selling

high. Beyond the stimuli they are shown, the only available information on which to base

trading decisions is (1) their own preferences for the product concepts, (2) their perceptions

of others preferences, and any (3) information they can glean from the trading dynamics

of the game. Fictitious money is used in the markets, but top players may be rewarded

with actual prizes and recognition by their trading peers. This provides the participants an

incentive to perform well in the experiments. In these eight tests, peer recognition was the

only incentive offered.

Each trader is provided with an identical portfolio that consists of $10,000 of cash and

100 shares of each security. No borrowing or short-selling is permitted in the market.

Participants trade the securities through the graphical user interface shown in Figure C-7.

Market information available to the traders includes the last transaction price and size,

current bid/ask prices and sizes, and a historical price and volume chart for each security.

A trader can submit either a limit or market order to trade, or cancel an outstanding

order that has not been executed. The markets are typical double auction markets with no

market-makers. A transaction occurs when a market or limit order matches with a limit
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Figure C-7: STOC Trading User Interface

order on the opposite side of the market. All prices are specified in sixteenths of a dollar.

The trading prices (lines) and volumes (bars) for a sample security in the two bike pump

tests are shown in Figure C-8. We note that price converges to approximately $25 in both

tests.

For analysis, we focus on the trading data, which consists of the time series of trading

prices and quantities (pl,i, ql,i), (P2,i, ,i)... (PT,i, Ti,i), where i is the index for the ith

product and is the total number of the cleared trades for the ith product. Our hypothesis

is that prices reveal market consensus of relative preferences for each product concept. In

particular, we propose that a products market share can be predicted by its relative STOC

price. In addition to the closing price, we consider other metrics that take into account all

transactions during the session: the high, low, mean, median and volume weighted average

prices. The high, low, mean and median prices are calculated from the time series of trade
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Figure C-8: Price and Volume History of AirStik for Test 1 (left) and Test 2 (right).

prices P1,i, p,i, ., PTi,i; the volume-weighted average price (VWAP) is computed as follows:

VWAP = t = Pti t,i (C.1)
t=1 qt,i

The mean, high and low prices are sensitive to outliers - a small number of transactions

that occur at extreme prices. All but VWAP ignore the volume in a transaction and treat

all trades equally. Volume can be regarded as a measure of the amount of information

in a transaction. A trade with higher volume may well be more informative than one

with lower volume, since traders are risking more when they trade larger quantities of

a stock. In our markets, volume is also related to how confident the traders are at the

corresponding transaction price. VWAP effectively summarizes the prices by considering

the amount of information and confidence behind the trades. In practice, VWAP has been

a widely accepted benchmark price in financial markets. It is a commonly used metric for

the evaluation of trade executions. So we might expect VWAP to more fully capture the

consensus preferences of the traders.

Now given a price statistic pi, which can be the high, low, closing, mean, median or

volume weighted average prices, we can arbitrarily compute predicted market share as the

relative market capitalization,

MS Pin p (C.2)
NMSi N -j=1 pjn j=1 Pj

where N is the number of securities comprising the market and n is the total number of
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shares for a security, which is equal for each security (each trader is given an identical

endowment of each security prior to trading). Among the four price statistics, we expect

the median price and VWAP to be particularly robust against potential price volatility.

C.4 Possible Trading Strategies

Our market tests are intended to aggregate diverse preferences or beliefs from all traders.

We have evidence that the traders individual preferences prior to the STOC game were

quite heterogeneous as reflected in stated-choice surveys and virtual concept tests run prior

to the start of each game.

Ones beliefs and preferences, and the trading strategy based upon them, may derive

from three related elements:

1. Product Information. This is what a participant knows about the underlying products.

All participants are provided with the same facts and specifications of the products,

but they may have obtained extra product information from their personal experience

outside the experiments.

2. Personal Preferences. This is what surveys and polls typically collect. Although the

aggregate preference of the whole market is the object of interest, ones personal view

and biases may contribute to trading decisions.

3. Assessments of Others Preferences. A participant may form opinions and expectations

of what others think so as to make profitable trading decisions. This adds a significant

element of gaming and competition to the STOC method.

To get a sense of traders strategies before and after playing the STOC game, we surveyed

the 77 traders in the two crossover vehicle STOC games, as summarized in Figure C-9.

We note that trader attitudes are quite heterogeneous for all three questions, narrowing

slightly after trading, but not shifting in a statistically significant way. The picture that

forms is that traders strategies encompass both self preferences and expectations of others

preferences. Traders expect their target prices for buying and selling will vary considerably

throughout the game, even though no new outside information is added after the start of

trading. We can therefore infer that traders expect to learn from each other through the
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Figure C-9: Crossover Vehicle Trader Attitudes Before and After Trading (n = 77)

pricing mechanism. And traders focus slightly more on the gaming aspect of STOC than

they do on the product concepts underlying the securities.

How are preferences aggregated in STOC markets? Not only do traders form their own

assessment of value, but they also infer the stocks market value from the market itself.

In typical experimental economics markets, both the preferences of the traders and the

state of nature (for example, the probability distribution of a security payoff) are known to

the researchers (Plott and Sunder, 1982, 1988; Forsythe and Lundholm, 1990; O'Brien and

Srivastava, 1991). Traders are assigned preferences that specify securities payoffs in various

possible states. The theoretical equilibrium (rational expectations equilibrium) prices can

be derived given full information of the markets. The main focus of these experiments

is whether and under what conditions rational expectations equilibria can be attained in

double auction markets. Some attempts have been made to understand the convergence of

prices and how learning occurs in the market as a whole. But it is unclear how individual

human traders learn and react to the market. Attempts to model the trading strategies of

individual traders from the market data may be overly ambitious. Below we try to shed

some light on some possible strategies employed by different types of traders.

The objective of the trading game is to predict the final prices of the securities, trade
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accordingly, thereby maximizing ones final portfolio value. A trader may form an assessment

of the fair values of the securities before trading begins. This assessment may naively

take into account only her own preferences for the underlying products, or, if she is more

sophisticated, what she perceives as the preferences of others. The trader then bases her

trading decisions on her beliefs: she buys undervalued stocks and sells over-valued ones.

During the course of trading, she may either maintain her valuations or update her beliefs

in real time, conditioning on her observation of the market dynamics. Learning has taken

place if the latter approach is adopted. But learning is a rather complex process because

ones expectations of prices affect prices, prices are used to infer others assessments, and the

inference of others assessments in turn affects both prices and expectations of prices.

Some traders may take a dramatically different approach by largely ignoring all funda-

mental information about the underlying products and focusing on stock market dynamics

only. These traders play the roles of speculators or market-makers who try to gain from the

market by taking advantage of price volatility, providing liquidity, or looking for arbitrage

opportunities. Their presence may introduce mixed effects to the market. While they could

enhance liquidity on one hand, they may also introduce speculative bubbles and excess

volatility into the market.

In summary, STOC participants may include some combination of nave traders, long-

term investors, and predatory arbitrageurs. The dynamics of the interactions between

different groups within a given population is quite complex (Farmer and Lo, 1999; Farmer,

2002) and are beyond the scope of our study, but the principal of information revelation

via the price-discovery process is the key to the STOC markets ability to infer aggregate

preferences for concepts.

C.5 Results of STOC Tests

The outcomes of the eight STOC tests for three product categories which are summarized

in Table C.1 led to our first key result regarding which metric best summarizes trading. In

Figure C-10, we see that Volume-Weighted Average Prices (VWAP) fit the validation data

better and more consistently than five alternative metrics.

In subsequent results, therefore, we utilize VWAP outcomes to check internal and ex-

ternal validity. Recall that VWAP summarizes all of the trades made from start to finish
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Performance of (6) Potential STOC Metrics in Five Empirical Tests
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Figure C-10: Which STOC Metric Correlates Best to Validation Data?
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during a trading game, weighting each trade price by the number of shares traded. Closing

and High prices, which do not depend on all trades but rather depend exclusively on the

final or highest trade for each security, had the worst fits with the validation data. One

potential cause of the poor correlation is that in early tests we allowed market orders, in

which a trader does not specify a price, and is therefore vulnerable to executing a trade at

an unreasonable price. After seeing this occur in approximately 1% of trades in our two

bicycle pump tests, we eliminated the option of placing market orders and required each

trader to specify a price by placing limit orders. We note that the VWAP and median

metrics are less sensitive to a small number of trades at extreme prices.

Another explanation for the dramatic difference in correlation indicates that STOC

markets, unlike prediction markets, behave more like traditional market research in which

data is sampled from distributions with stationary means. In financial and prediction

markets, this is not the case as security prices do not have stationary means due to the

continuous arrival of new information. In our case, each STOC trade is similar to a survey

response, and additional traders and greater trading time increase the sample size.

Shin and Dahan (2007) develop a statistical model to test whether STOC market data

implies stationary on non-stationary security prices. They analyze the same trading data as

in the present research, and employ unit-root tests to verify the stationarity or lack thereof

of the mean prices for each security. The a coefficients in their model are highly correlated

to our VWAP data, and their results support the conclusion that an ideal STOC metric

should include all trades.

We wanted to see whether traders were consistent from test 1 to test 2, and whether

the preference consensus represented by the STOC results matched those of Dahan and

Srinivasan (2000). To verify the validity of the market method, we ask two questions: (1)

whether the results from the market method are consistent across different experiments,

and (2) how close the results from the markets are to those from Dahan and Srinivasan

(2000).

We find that the top three products (Skitzo, Silver Bullet and Epic), in terms of predicted

market share and rankings, are the same in the two experiments, as well as in the original

Web Static data in the original Virtual Concept Test research. In a typical concept testing

process, it is important to be able to identify the best designs so as to allocate resources to

those opportunities with the greatest potential, and STOC seems to fulfill this role well.
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Test 2 STOC Simulated
Image Format Store Sales

Test 1 STOCTest I STOC -0.14 -0.05Table Format

Test 2 STOC :0.8** 0.80**Image Format .............

Significance Level: **p < 0.05

Table C.3: Correlations Between (2) Laptop Bag STOC Tests and Simulated Store Unit
Sales

the two tests, namely the stimuli. For the STOC method to perform well in capturing

consensus preferences, traders must understand the product concepts reasonably well, so

the quality of stimuli is crucial. While the feature table seems to have confounded or

confused the traders, the full product images must have resonated with them. Extensive

pre-testing of STOC stimuli is advised.

The most complete data set we analyzed comes from the crossover vehicle case and the

four STOC tests conducted using those eight stimuli. Key correlation results are summa-

rized in Table C.4, with significant results in bold, and all are calculated within each group

of traders. Self-stated survey data represent the normed market shares for vehicles ranked

by each individual in the top 3 out of eight choices. VCT w/Prices represent vehicle market

shares based on scoring in the top three of eight vehicles using Dahan and Srinivasan (2000)

methodology and accounting for the price of each vehicle when calculating utility. VCT NO

Prices is the same calculation, but based only upon vehicle preferences without accounting

for vehicle prices in the utility calculations. And, as before, "STOC" represents the normed

marker shares based on the volume-weighted average prices of each of the eight securities.

Several significant results are captured in Table C.4, including the following five:

1. STOC vs. Actual Sales: The first row of the table, in which correlations to actual

2001-2006 unit sales of the eight vehicles were calculated for each method, reveals

that all four STOC tests failed to predict actual sales. This result confirms our earlier

analysis that STOC markets are not prediction markets, but rather measure a form

of underlying preferences among the traders as we shall see shortly.

2. Self-Stated Choices and VCT w/Prices vs. Actual Share: Self-stated choices and
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Stated w/Pricee Prices STOC Stated w/Prices Price STOC Stlted w/Priesa NO Prices STOC w/Prices NO Prices STOC
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Tet al
VCTNO Prim

Teal
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Self-Stted
Teot2

VCTu•'Psiem

Test2

VCTNOPrice

STOCe2
STOC

0.74" 0.19 029

0.94*"" -0.3 -0.2

0.10 0.81"* 0.72"*

0.07 0.65* 0.62*

0.49 0.00 0.07

0.95"" -0.0 -0.0

0.00 0.76" 0.66*

0.07 0.68* 0.57

0.72" 0.12 0.07

0.5*** -0.3 -0.2

0.19 0.3"** L73"*

O.7* 0.31 0.19

.185"

Significaece level: *p<0.10, **p<O.05, "'*p<.01, ***"p<0.001

Table C.4: Correlations Between (4) Crossover Vehicle STOC Tests and Validation Data
from Actual Unit Sales, Self-Stated Choices, and Virtual Concept Tests

Virtual Concept Testing with pricing did predict actual unit sales (correlations in the

0.42 to 0.63 range), though not in the statistical significance sense. One explanation

for the superiority of these two measures over STOC is that there is an important

difference between what people prefer, and what they are willing to pay for. STOC

seems to zero in on preference rather than willingness-to-pay. Also, vehicle prices were

not emphasized in STOC tests 1, 2 and 4, and were only featured prominently during

STOC test 3, which was the only STOC test with some predictive value (0.52, but

not significant).

3. STOC Test-to-Test Reproducibility: We saw with bike pumps that test-to-test relia-

bility between STOC games using the same stimuli and same traders was quite good.

In the crossover case, we can go further and measure test-to-test reliability across

different groups of traders. Five of the six pairings of STOC tests reveal reasonably

strong correlations between 0.57 and 0.92. But STOC tests 3 and 4 were not in agree-

ment at all (correlation of 0.19), possibly because in STOC Test 3, where vehicle prices

were emphasized, the higher-priced Audi, Mercedes and BMW vehicles garnered only

33% share. Test 4 had only 16 traders and vehicle prices were not emphasized, and
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the three highest-priced vehicles garnered a whopping 64% share.

4. Stated Choice and VCT Test-Test Reproducibility: We note that the four VCT

w/Price tests correlated amazingly well with each other (0.81 to 0.97) as did the

VCT NO Price Tests (0.76 to 0.96). Similarly, aggregate Self-Stated data were highly

correlated (0.84 to 0.91). So even though individual preferences were extremely het-

erogeneous, and group sample sizes were small (n = 16 to 49), aggregate preferences

across groups were quite similar.

5. STOC vs. VCT with and Without Prices: STOC correlates remarkably well with

the virtual concept test results when vehicle prices are not factored in (correlations

of 0.80, 0.97, 0.72 and 0.83, respectively, for STOC tests 1 through 4). There was no

correlation between the STOC tests and VCT with vehicle prices (-0.10 to 0.31). In

short, STOC traders seem to focus on the vehicles when trading, but neither on the

prices of those vehicles nor on the willingness-to-pay those vehicle prices.

We consider the degree of correlation within and across multiple tests and measures re-

markable considering that most of the vehicles studied had not even entered the market and

that the individuals comprising the trading groups were heterogeneous in their preferences

and backgrounds.

C.6 Conclusions

In this paper we study a novel application of the market mechanism: the use of securities

markets to aggregate and infer diverse consumer preferences. We implement this idea in

the specific context of three product-concept testing studies that aim to predict potential

market share for between eight to eleven product prototypes. The results from three seven of

eight tests show remarkably high consistency among themselves, and significant correlation

with independent preference measurement techniques. We note the importance of clear

and salient stimuli, and the need for training and priming traders prior to the start of

STOC games. We also caution that while the STOC methodology is particularly effective

at screening most preferred concepts from among a larger set, it appears to be less effective

at measuring price sensitivity or predicting actual sales. Of course, prediction markets can

be designed to perform the latter, and other choice-based market research techniques are
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ideal for measuring price sensitivity.

The efficacy of STOC markets at identifying winning concepts may not be particularly

surprising to economists. After all, Keynes (1958) commented on the similarities between

stock selection and a beauty contest over a half-century ago:

... professional investment may be likened to those newspaper competitions in

which the competitors have to pick out the six prettiest faces from a hundred

photographs, the prize being awarded to the competitor whose choice most nearly

corresponds to the average preferences of the competitors as a whole ...

The analogy is perhaps more accurate for describing what happens in financial markets

and STOC games in the short run. After all, over the long run financial stock prices

depend not only on investors subjective beliefs and expectations of others, but also on

other objective information such as companies earning potentials and valuations of assets.

On the other hand, the trading experiments presented in this paper are precisely beauty

contests, since values of the virtual securities are derived endogenously from the preferences

of the market participants, and their expectations of others preferences, both of which are

largely subjective. To improve the reliability of STOC markets, one may need to anchor

the values of the securities to some objective fundamental variables of the corresponding

products. To test predictions of market shares, for example, one could compare security

values with the realized market shares of the subset of existing products, or, barring the

existence of real market share data, with the outcomes of actual customer choice surveys.

We hope to refine STOC market methods along these lines in future research.
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