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Abstract

Automatic detection of communication errors in conversational systems typically rely only
on acoustic cues. However, perceptual studies have indicated that speakers do exhibit visual
communication error cues passively during the system's conversational turn. In this thesis,
we introduce novel algorithms for face and body gesture recognition and present the first
automatic system for detecting communication errors using facial expressions during the
system's turn. This is useful as it detects communication problems before the user speaks
a reply. To detect communication problems accurately and efficiently we develop novel
extensions to hidden-state discriminative methods. We also present results that show when
human subjects become aware that the conversational system is capable of receiving visual
input, they become more communicative visually yet naturally.
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Chapter 1

Introduction

Many spoken dialogue systems have difficulty detecting the occurrence of communication

errors. By our definition, a communication error occurs when the conversational system

misinterprets the user and makes an erroneous reply. Considerable research has been in-

vested in monitoring audio cues to detect such communication errors. Various researchers

have shown that human users change their speaking style when they encounter a problem

with a conversational system [59]. For example, users tend to speak slower or louder when

speech recognition errors occur. These problems motivated the monitoring of prosodic as-

pects of a speaker's utterances. Different studies using prosodic features to detect commu-

nication errors automatically have achieved varying results. For example, Oviatt et al. [59]

showed that hyper-articulation in speakers is highly indicative of system errors. However,

Ang et al. [1] conducted a separate study and contradicted Oviatt's findings. Another group

of researchers demonstrated the use of speech recognition confidence scores [3, 22] to de-

tect errors robustly. Hirschberg et al. [41], showed otherwise and that a combination of

prosody features and the confidence scores attained better accuracy.

A recent perceptual study [5] indicated that conversational error detection can be im-

proved significantly if visual modalities are taken into account when the speaker is listen-

ing. This study showed that human observers performed better at recognizing communi-

cation errors when they were given the visual footage when the speaker is listening to the

system's response as compared to when only audio recordings were provided. This insight

motivates us to detect communication errors automatically by using the non-verbal facial
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Figure 1-1: Diagram illustrating a speaker encountering a communication error. Notice

that during the system's conversational turn (from time tl to time t2), where it is giving an

erroneous reply, the speaker twitched his eyes naturally to signal an error. This suggests

that visual analysis during the system turn may be useful.

expressions of the speakers when the system is making its reply. Figure 1-1 illustrates the

reaction of a user experiencing a speech recognition error from a conversational system.

Notice that when the system is giving its reply, the co-occurring facial expressions can be

indicative of the communication state. In most existing work, when a system makes an

erroneous reply, errors are detected only during the speaker's next turn in the conversa-

tion, but the above insight shows that we can possibly detect errors within the same turn.

Systems could potentially benefit from this early feedback to improve the quality of the

conversation.

Figure 1-2 shows several other facial expressions that co-occurred with communication

errors in various datasets we have collected (which we will describe in detail in Chap-

ters 4.3 and 5). From this figure, different negative-valence emotions typically occur with

a communication error e.g. frustration, disgust, confusion etc. It is difficult to precisely

determine the emotions that are involved in communication error, so we have taken the

approach of detecting error conditions directly from perceptual signals, rather than via an

intermediate emotion representation. Note that we are not claiming that we can detect

communication errors in all scenarios; rather, the detection attains high accuracy during

specific types of replies by the system. An instance where our mechanism may break down

could be where no speech recognition error occurred, but the speaker did not like the path

the course of the conversation was taking and he/she may roll his/her eyes. Clearly the

distinction between error and frustration is a subtle one; as described in more detail in later

chapters we presume ground truth is available for training, marking with boolean labels

which dialog turns resulted in a communication error.

IOo~LUtM i



Figure 1-2: Images of different subjects during a communication error. Notice that different
emotions are conveyed e.g. frustration, confusion, disgust etc, but they all occur during
a communication error. Our work will not detect these emotions, but instead focus on
detecting communication errors using these indicative visual cues.

Detecting communication errors robustly, faces many challenges. First, there is a large

variety of expressions that are indicative of an error, e.g. from subtle expressions like a

stare or a frown, to highly distinctive ones like a pout or a sulk. The model needs to learn

this high variability of expressions and recognize them as the same error state. Second,

while a single image frame of the expression may not be distinct, the sequential dynamics

of these frames and the motion patterns of some expressions become highly indicative of an

error, e.g. a head shake, where the speaker typically begins with his head in a frontal pose,

shifts his gaze to the left/right and reverses the direction after. This implies that the model

should incorporate a structure that learns these sequence dynamics accurately. Lastly, in

the sequential dynamics of these expressions, communication errors and non-errors may

share a common structure. For example, a neutral, frontal face usually precedes or follows

a pouting expression, which conveys a communication error. This neutral, frontal face also

occurs frequently when the system reply is correct. Hence, learning a common structure

between different error states could potentially be useful. Given these challenges and con-

straints, we will argue that a hidden state model is the most appropriate solution. Hidden

state models can capture the within class structure and the between structure by the use of

hidden states.

We begin by presenting a model which shares features between gesture classes in Hid-

den Markov Models (HMMs), and then proceed to explore the use of discriminative hidden

state models, including Hidden Conditional Random Fields and Latent Dynamic Condi-



tional Random Fields. At the end of the thesis, we develop a novel voting Latent Dynamic

Conditional Random Fields method for the segmented gesture classification task which is

significantly easier to train than HCRFs due to the use of an a priori partitioned latent

space; this method was also empirically more accurate in most cases we tested, perhaps

due to better convergence at the expense of latent space optimality.

1.1 Contributions

In this thesis, we develop a communication error detector by analyzing the speaker's facial

expressions.

The key contributions of this thesis are:

* The first automatic system for detecting communication errors using facial expres-

sions during the system's turn.

* Demonstrating that Gaussian Mixture Models-Linear Discriminant Analysis (GMM-

LDA) and Hidden Conditional Random Fields(HCRF) are useful models for visual

gesture recognition.

* Developing a voting Latent Dynamic Conditional Random Fields algorithm for effi-

cient segmented gesture recognition.

1.2 Thesis Roadmap

The rest of this thesis will describe the various contributions in detail. In the next chap-

ter, I will review related work. Before addressing visual conversational error detection,

I will present several preliminary methods I have shown to be useful for visual gesture

recognition and which motivated my later results: in Chapter ??, I will describe my ex-

periments applying Gaussian Mixture Models (GMMs) and Linear Discriminant Analysis

(LDA) for arm gesture recognition and in Chapter 3.2 I will present experiments demon-

strating Hidden Conditional Random Fields to be a useful model for arm and head gesture



recognition. After describing gesture recognition experiments, Chapter 4 describes our ap-

proach in detecting communication errors and the techniques I have used for face and head

tracking. In the following chapter, I will describe using Hidden Conditional Random Fields

for communication error detection. Chapter 5 will introduce voting Latent Dynamic Ran-

dom Fields and how we use it for detecting communication errors. I conclude in Chapter 6

by discussing future work and limitations of our results so far.





Chapter 2

Related Work

In this chapter, I frame the problem setting for my research and overview related work.

Many factors need to be considered: namely, the audio cues, the visual cues, the simultane-

ous audiovisual cues and the turn of the conversation (system or speaker) etc. I will divide

related work generally into three categories, namely, audiovisual emotion recognition (au-

diovisual), system error detection (audio) and facial expression analysis (visual).

2.1 Audio cues

There has been considerable research activity in the domain of detecting communication

problems using audio cues. All of these are focused on the audio cues produced during the

speaker's turn. Oviatt [59] showed that there is a pattern of hyper-articulation in speakers

when they are trying to correct system errors. The speaker's hyperarticulation subsequently

leads to even worse recognition performance, due to deviations from trained acoustic and

language models [72]. This work demonstrated that prosody features and statistics like

pause durations, average pitch, pitch range etc were useful, but no machine learning method

was used to learn and detect these errors automatically. Apart from prosodic features, an-

other possible approach was to use recognition confidence scores to reject any unreliable

recognizer hypotheses, either caused by hyperarticulation, or due to other reasons such

as out-of-vocabulary words, noise interference, etc. Several works [3, 22] have focused

on using these scores, and proposed schemes that work mainly at the frame, phoneme,



or word level. For instance, word-level confidence annotation assigns a reliability tag to

each word token in the decoder hypothesis. Typically a two-class annotation scheme is

used, which marks the word instance correct or incorrect. However, this type of model is

not always sufficient for dialog systems. Hirschberg et al. [41] subsequently developed an

automated system that used a combination of prosody features and speech recognizer confi-

dence scores to detect errors. In this system, a rule based classification model was used for

error learning and detection. Mixed results, however, were attained during evaluation using

different datasets. In the first dataset, the speech recordings were manually segmented, and

using only prosody to predict system errors, outperformed using automatic speech recog-

nition (ASR) confidence scores, whereas in the second dataset, the combination of ASR

confidences scores and prosody scores produced better results.

This suggests that additional higher level features could be incorporated to improve er-

ror detection. Hirschberg et al. [42] used a combination of prosody features and other lexi-

cal features available to the speech recognizer such as dialog history etc. to detect speaker

corrections. This combination of different audio features detected corrections more accu-

rately than traditional methods for ASR rejection. However, in this work, experiments were

evaluated on a speaker-dependent model. A more recent work by Skantze et. al [73] also

affirmed that a combination of word confidence scores, contextual and lexical features im-

prove error detection. Although the detection is automatic, it suffers from high dependence

on confidence scores of specific content words, which is not sufficient for dialog systems.

A related issue regards detecting the emotional state of a user, because humans some-

times extend their inter-personal behavior into their interaction with computers. For exam-

ple, users might express their satisfaction verbally or prosodically when a system works

well for them; on the other hand, they tend to get frustrated and angry when a system

keeps making errors. Thus, it is useful for a dialogue system to detect user emotion and

react properly. Ang et al. [1] collected a naturally occurring dataset consisting of speak-

ers engaged in an air travel reservation task that itself gives rise to emotions. This work

used a combination of prosodic, langauge model and ASR features. Results show that a

prosodic model can predict whether an utterance is neutral versus annoyed or frustrated

with an accuracy on par with that of human interlabeler agreement. Accuracy increases



when discriminating frustration from other utterances, and when using only those utter-

ances on which labelers originally agreed. However, human interlabeler agreement in this

dataset was only 71% and the speakers utterances were very short e.g. yes or no, which

may not be sufficient in representing the variability of words a speaker will utter under

varying emotional states. The "frustrated" vs else experiment also involved very little data.

At the same time, this work suggested that hyper-articulation may not be a good predictor

of annoyance or frustration, which is a conflict with other previous work [59]. In gen-

eral, research on emotion detection in speech has not found a unified set of features that

is indicative of errors consistently in different experimental settings, and obtaining objec-

tive ground truth remains challenging. Finding good acoustic cues for various emotional

modes remains an interesting research problem. It is also desirable to use data from real

interactions between a user and a computer, rather than data in simulated or acted mood, to

carry out the experiments. In real interactions, the speaker's visual facial expressions can

provide important cues to indicate communication errors.

2.2 Visual cues

Most of the vision community working on tracking face or head features do not focus their

attention on detecting communication errors in conversational systems. Instead, their at-

tention is turned towards facial expression analysis. There are two main streams in the

current research, namely facial affect (emotion) detection and facial action unit detection.

Facial affect detection aims to draw high level classifications e.g. emotional states, person-

ality etc., from a given display of facial expressions. This can be achieved by passing the

extracted facial features e.g. from an active appearance model (AAM), directly into a ma-

chine learning algorithm like Support Vector Machines (SVMs) for direct evaluation [2].

Research involving Facial Action units (AUs), on the other hand, attempt to provide a

quantitative description of the face, by means of assigning intermediate labels, while the

inference or classification using these labels is left to another high order decision maker.

For example, a brow furrow can be judged as anger in an affect detection approach and as a

facial movement that lowers and pulls the eyebrows closer together in an facial action unit



approach. The most commonly used method for manual labeling facial actions is Facial

Action Coding System (FACS) proposed by Ekman et al. [27]. FACS is a comprehen-

sive and anatomically based system that is used to measure all visually discernible facial

movements in terms of facial Action Units.

There is some controversy over the need to use FACS for facial expression analysis.

Many surveys claimed [63, 97, 21] that action units are independent of interpretation, hence

they can be used for any high-level decision making process including recognition of ba-

sic emotions according to Emotional FACS (EMFACS) rules 1. The labeling for the facial

action units has been a manual process, which requires a trained human observer, although

recently, there has been a considerable amount of work on automated estimation of FAC

primitives. In addition, in existing systems that do not use FACS [2], facial features ex-

tracted from images are also independent of interpretation, and the higher order inference

is left to machine learning algorithms. Lastly, the approach of using FACs is not tested by

the developmental psychology community. Does a baby infant decompose his parent's fa-

cial expressions into action units before making the inference about his parent's emotional

state? Or does the baby simply use the overall appearance (texture and shape) of the face

to make the inference? To the best of our knowledge, there has been no such study. On the

other hand, for psychology studies, a clear, unambiguous approach is required for human

coders to discover or establish the relationship between facial behavior with cognitive state,

and FACS by far has been the most objective method available.

As for interpretation or classification categories, most of the existing efforts classify

expressions into the six basic emotions (fear, sadness, happiness, anger, disgust, surprise).

These classification categories are proposed by Ekman [26] and discrete emotion theorists,

who suggest that these six emotions are universally displayed and have a marked reference

representation in our affective lives. There are a few efforts to detect non-basic affective

states from deliberately displayed facial expressions. For example, Gu and Ji and Ji et

al. [35, 38] used facial action units as features to a Dynamic Bayesian Network(DBN) to

detect fatigue. Yeasin et. al [91] implemented a two-stage classification approach that

first recognizes six universal facial expressions, and later computes the levels of interest by

lhttp://face-and-emotion.com/dataface/general/homepage.jsp



mapping the facial expressions into a 3-D affect space.

The following works mentioned in this paragraph are closest to our thesis as they all use

visual analysis of a user's frustration or disagreement in an interactive setting. El Kaliouby

et al. [29], proposed an automated DBN system that uses head motion and facial action

units to classify the following mental states: agreement, disagreement, interest, concen-

tration, uncertainty, thought, but the dataset consisted of emotions performed on demand

and were not necessarily reflective of realistic conversation. Teeters et. al [78] extended

El Kaliouby's work and presented a wearable camera system for real time classification of

the same mental states in a human-to-human social interaction setting as a self-reflection

tool. Communication errors could possibly have been inferred from the detection of several

mental states, but to our knowledge, there was no attempt to learn such an association and

no analysis on how the conversation state could be correlated to the mental state. Kapoor

et al. [46] used a Gaussian process classification technique to detect user frustration and

included several other modalities like skin conductance, mouse pressure as feature inputs.

In a separate work, Kapoor and Picard [45] used a mixture of Gaussian processes for multi-

sensory fusion to detect interest in children. Both works were not directly evaluated in a

conversational dialog setting.

In all these works, with the exception of [45, 46], the facial expressions are deliberate

or exaggerated displays. Studies have shown that people do different things with their faces

when posing versus during a spontaneous experience. Ekman et al. [28] found that directed

facial action tasks differ in timing from spontaneously occurring behavior. Cohn et al. [19]

showed that spontaneous smiles were of smaller amplitude and had a larger and more con-

sistent relation between amplitude and duration than deliberate smiles. Valstar et al. [81]

developed a multimodal approach to distinguish between posed and spontaneous smiles

and attained a 94% accuracy. Tian et. al. [77] found that many people are able to raise their

outer brows spontaneously while leaving their inner brows at rest but few can perform this

action voluntarily. Valstar et al. [80] showed that the temporal dynamics of brow actions

like velocity, duration, and order of occurrence of brow actions are highly relevant param-

eters for distinguishing posed from spontaneous brow actions. Littlewort et al. [50] found

that the lower eye brow action unit was the key feature in distinguishing between faked



pain from spontaneous pain expressions. Given these recent spate of findings, there has

been a growing effort on automatic analysis of spontaneous facial expressions. Some of

them study automatic recognition of Action Units rather than emotions from spontaneous

facial displays. For example, Valstar et al. [81] and Cohn et al. [19] analyzed the muscle

activity of orbicularis oculi (action unit 6), zygomaticus major (action unit 12), depressor

anguli oris (action unit 15), and mentalis (action unit 17) for distinguishing posed smiles

from spontaneous ones.

In general, the extracted visual features can be divided into two types: 2D spatio-

temporal features or 3D face models. For 2D spatio-temporal facial features, the extracted

features are typically either geometric features such as the shapes of the facial components

(eyes, mouth, etc.) and the location of facial salient points (corners of the eyes, mouth,

etc.) or appearance features representing the facial texture including wrinkles, bulges, and

furrows. For geometric-feature based methods, Chang et al. [15] used a shape model that

consisted of 58 facial landmarks. The shape model is based on manifold embedding and

probabilistic modeling in the embedded space. In his system, however, all of the learn-

ing/recognition is offline and far from real time. There is no rescue strategy when the

system fails, which is necessary in a practical system. Pantic and her colleagues [64, 81]

extracted a set of facial characteristic points around the mouth, eyes, eyebrows, nose, and

chin. They use a point-based model composed of two 2D facial views, the frontal and the

side view. Multiple feature detectors are applied to each prominent facial feature, and the

best of the detected features are selected. This system cannot deal with minor inaccuracies

of the extracted facial data and it deals merely with images of faces without facial hair or

glasses. For appearance-feature based methods, Bartlett et al. [8] and Guo and Dyer [36]

used Gabor wavelets as inputs to their classifier for Action Unit recognition. Although

recognition rates are high, Gabor wavelets are inefficient in memory usage and slow due

to the high redundancy of the Gabor representation. A more efficient representation is

proposed by Whitehill and Omlin [89] who used boosted Haar features.

A few approaches to automatic facial expression analysis are based on 3D face models.

Huang and his colleagues [18, 71, 88, 95] used features extracted by a 3D face tracker

called Piecewise Bezier Volume Deformation Tracker [76]. This model calculates corre-



spondences based on the geometry using a 3D deformable/morphable model. While the

recovered low dimensional model can be used effectively in classification, the low degree

of freedom in this model is not a sufficient representation of spontaneous facial expres-

sions, since many distinct characteristics lie in the subtle details such as the wrinkles and

the furrows that are generated by highly local skin deformations. Cohn et al. [20] fo-

cused on analysis of brow action units and head movement based on a cylindrical head

model [90]. Chang et al. [15] and Yin et al. [83, 92] used 3D expression data for facial

expression recognition. In general, the advantage of 3D face models is that they may yield

view-independent facial expression recognition, which is important for spontaneous facial

expression recognition because the subject can be recorded in less controlled, real-world

settings. However, the trade off would be the the lower degree of freedom in the model.

For a more detailed survey of machine analysis of facial expressions and the state of

the art methods, readers are referred to two comprehensive reviews by Fasel et al. [30] and

Pantic et al. [63].

2.3 Audiovisual cues

A comprehensive survey of using audiovisual cues for emotion recognition can be found

in [23, 97]. The most recent and relevant work was presented by Zeng et al. [94], who used

a voting method to combine the facial expression and prosody-based emotion classifiers to

improve affect recognition. However, due to the higher frame rates coming from the audio

classifier, the voting mechanism is biased more to audio cues than visual cues. In addition,

their facial expression tracker requires initialization from a neutral expression. Chen [16]

fused the scores of facial feature and prosody classifiers occurring sequentially in time. In

this work, however, a pure facial expression is assumed to precede and follow a spoken

sentence, which is not a realistic assumption and automatic segmentation of this facial

expression is poorly defined. Yoshitomi et al. [93], used a weighted sum of neural network

classifiers to combine audio and visual features. Song et al. [74] proposed a tripled hidden

Markov Model (HMM) to perform audio visual emotion recognition. The key advantage of

this model was allowing asynchrony of the audio and visual observation sequences while



preserving their natural correlation over time. All these audiovisual methods however, were

evaluated on facial expressions or emotions that are deliberately produced upon request.

There are several recent efforts on detecting spontaneous affect audiovisually under

various data collection scenarios. Caridakis et al. [13] used data collected in Wizard of

OZ scenarios. In this system, as visual input, facial animation parameters (FAPs) were

extracted from key facial feature points e.g. eyes, nostrils, mouth etc, per frame, while

segmented-based prosodic features were extracted as audio input. Both features are passed

into a Recurrent Neural Network(RNN) for evaluation into four categories. Zeng et al. [96],

used the data collected in a psychological research interview (Adult Attachment Interview).

This work proposed an Adaboost multi-stream hidden Markov model (AMHMM) to inte-

grate audio and visual affective information. The sample size of the datasets collected for

evaluation by Caridakis et al. [13] and Zeng et al. [96] is very small, containing four [13]

or two subjects [96] respectively.

Note that all the above techniques for visual analysis of emotion that occur during the

speakers turn, could be applied to communication error detection during the system's turn.

The key difference lies in the features used. Typically, affect recognition in audiovisual

analysis like Zeng et al. [94, 96] and Chen et al. [16] during the speaker's turn, will suffer

from poorer discrimination of facial expression among different affect. This is because

movements of facial features are related to both affective states and the co-occurring content

of speech. Hence, during the speaker's turn, features that represent the facial movements

around the mouth may not be very useful. On the other hand, for the task of communication

error detection, during the system's turn, the subject is listening in silence most of the

time, and all facial motion features can be used. These facial motion features are typically

very subtle, occur at very small regions of the face, and happen almost instantaneously.

However, the 3D-models used in [94, 96, 20, 71] have a low degree of freedom and may not

be sufficient in representing the high degree of freedom of motions in the face. Likewise,

the features used in [45, 29, 78], only track the lips, the eyes and the eyebrows; other

regions around the face e.g. cheeks (see Figure 4-2), which we will show in Chapter 4.2,

are also very useful indicators of communication errors.

We believe our work [87] is the first one to detect communication errors visually during



Table 2.1: Breakdown of related work using visual cues.

Work Types of Features Classification
Chang et al. [15] Active shape model(ASM) GMM in embedded space
Kapoor et al. [45] Various Mixture of Gaussian processes

Wang et al. [87](and this thesis) Optical Flow Hidden state models
Zeng et al. [94] PBVD Naive Bayes
Caridakis [13] FAP Recurrent Neural Networks
Chen et al. [16] PBVD SNoW

Bartlett et al. [7] Gabor filters Adaboost
Whitehill and Omlin [89] Haar features Adaboost

Lucey et al. [53] Active Appearance Model(AAM) SVM

PBVD: Piecewise Bezier Volume Deformation
GMM: Gaussian Mixture Model
FAP: Facial Animation Points
SNoW: Sparse Network of Winnows

the conversational system's reply. Our work is motivated by a perceptual study conducted

by Barkhuysen et al. [5], which showed that human observers performed better at detecting

errors when they only view the visual footage of the speaker listening to the response of the

system than when they only use audio cues. Previous works only use the speaker's audio

and/or visual features in the next conversational turn to detect errors, but this psychological

insight shows that we could detect the errors earlier within the current turn. In addition,

we are only concerned with a binary detection of communication errors, without the need

for labeling the specific emotions. As such, our labeling process is very simple and unam-

biguous. A speaker makes a query, and the system gives a reply. If the reply is incorrect,

a communication error has occurred. A table summarizing related work in conversational

systems is shown in Table 2.2 and a table summarizing related work using visual cues is

shown in Table 2.1.



Table 2.2: Breakdown of related work specific
thesis is not limited to visual cues only.

to conversational systems. Note that this

Emotion / Turn
Work Communication Input of

detection? conversation
Oviatt et al. [59]

Shriberg et al. [72]
Hirschberg et al. [42] Communication Audio only Speaker

Ang et al. [1]
Bansal et al. [3]
Wang et al. [87] Communication Mostly System
(and this thesis) Visual

Kapoor et al. [45] Emotion Visual+others Not conversational,
learning setting

Teeters et. al [78] Emotion Visual only Not conversational,
social setting

El Kaliouby et al. [29] Emotion Visual only Not conversational,
pre-recorded enactment

Zeng et al. [94, 96]
Caridakis [13] Emotion Audiovisual Speaker
Chen et al. [16]



Chapter 3

Gesture Recognition with discriminative

models

In this chapter, we will describe two techniques we have explored to improve gesture recog-

nition that predated our work on communication error detection. Communication error

detection is a type of gesture recognition problem and the algorithms from our gesture

recognition analysis led to the development of the algorithm for error detection that we

will show later. In our introduction, we defined our problem as detecting a communication

error given a pre-segmented sequence of observations. This problem can also be framed

as making two possible interpretations, error or no error, from a given sequence. Such a

formulation is analogous to a "two class" segmented gesture recognition problem (as illus-

trated in Figure 3-1). Readers who are only interested in communication error detection

can skip this chapter and proceed directly to Chapter 4.

The key intuition driving the design of the algorithms is that many human gestures

classes, while distinct at specific key frames, still share some common features or states.

For example, Figure 3-2 shows two subjects articulating two different arm gesture se-

quences. The top image sequence is a gesture telling the computer screen to shrink lat-

erally, while the bottom sequence is a gesture telling the system to display the next screen.

If we just compare frame a and frame d, we can see two distinctive body poses, which tells

the two gestures apart. However, if we only look at frames b,c and e, the body poses look

very similar. This suggests that a model which allows different gesture classes to share



Gesture= Flip Forward
? or Expand ?

Figure 3-1: Diagram illustrating the similarity between error detection (system diagram on
the left) and gesture recognition (system diagram on the right).

Frame a

Frame c

Frame b

Frame eFrame d

Figure 3-2: Two gesture sequences displayed from frame to frame. The top sequence is agesture commanding the system to shrink the screen in size, while the bottom sequence isa gesture asking the system to switch to the next screen. The body poses in frames a and dare very different from one another, however, the body poses in frames b, c and e are verysimilar. This suggests that models that allow shared features could be useful.

--7 -

Error? No error?
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common body poses will be useful. At the same time, we can tell the two gestures in Fig-

ure 3-2 apart from the sequential dynamics between image frames. This suggests that a

model should incorporate a structure that learns the pose transitions. A hidden state model

becomes the most appropriate because the hidden states have the dual purpose of allowing

the sharing of features between classes, and of learning the sequential structure of the ges-

tures. To share features, common poses in difference gesture classes can be assigned the

same hidden state label. In practice, fully observable models are not as successful because

the observations do not provide a complete description of gesture sequences and to allow

for sharing of features between classes, fully observable state labels will be required. We

begin with discriminative vector quantizing features in HMMs, which provide evidence

that sharing features is useful.

3.1 Discriminative Vector Quantization

One of the most common approaches for gesture recognition is based on the Hidden Markov

Model (HMMs) [69]. Typically, a separate HMM model is trained per gesture class, and

during evaluation, a test sequence is passed into each HMM model, and the model with the

highest scoring likelihood is the interpreted class of the test sequence. The drawback with

this approach is that the HMM models are trained independently of one another, without

allowing the features to share a common subspace before training or evaluation. To over-

come this, we have shown [84] how Linear Discriminant Analysis (LDA), a technique used

in feature separation of phonemes in speech recognition [43], can improve the performance

of an arm gesture recognition system.'

We propose modeling body gestures using elementary units, called "gestemes" [44].

Gestemes are estimated in the following way:

An input feature vector, fn is a vector of K consecutive poses.

fn = (HIm, rn+l, ... , ,i n+K-1)
T

1The material in this section was previously published in [84] S. Wang and D. Demirdjian "Inferring body
pose using speech content". In Proc. ICMI, October 2005, Trento, Italy.



Such a feature vector incorporates information about the pose and motion dynamics. We

assume that there are B gestemes that model all the features in our L classes of gestures. A

Gaussian Mixture Model containing B centers was estimated using a set of training feature

vectors. All the Gaussians are assumed to have full covariances. Parameters for the B

Gaussians are determined from the set of training feature vectors fn, 1 < n < N, using the

EM algorithm to maximize a global likelihood function given below:

N B

L J og 6ip(fnli)
n=1 i=1

where p(f, i) is a single component of the mixture of Gaussians, and 6i is the ith compo-

nent's mixing proportion.

Once this likelihood is maximized, each Gaussian cluster is assigned a unique label.

The probabilities of each training feature belonging to each cluster, p(i fn) are evaluated to

determine the most likely cluster they belong to.

Lf, = arg maxp(i f,)

where Lf," is the best scoring Gaussian's label assigned to training feature fn. After this

classification of the feature vectors into gesteme clusters, a projection matrix, that separates

these feature vectors in an optimal way, is estimated by running LDA on these labelled

training features.

Suppose there are B labels, then the within class expected covariance is:

B

Sl= pi, Ai
i=1

where pi is the prior probability and Ai is the covariance of Gaussian i respectively.

The mean of the whole mixture of Gaussians is computed as

B

Uoverall Pi Ui
i=1

40



where ui is the mean of each Gaussian component.

The between class variance is then computed as

Sb = Uj - Uoverall) X (U - Uoverall)
T

Assuming a class-independent transform, the optimizing criterion, J(w) is computed

as

J(w) = (Sw) - 1 x Sb

The projection matrix, r, is found as the eigenvector matrix of J(w) and the projected

feature vector, f.' becomes

fn = rT fn

These projected feature vectors, which are more distinct between classes, and less dis-

persed within each class, are then used for training the HMM to classify the features by the

gesture classes.

Appendix 3.5 will describe the dataset we have used and the experiments conducted

for evaluating this method. Our results confirm that discriminative vector quantization

is a useful technique. By combining GMM and LDA together, we show that the error

rates for the gesture recognition decreased significantly. However, the Hidden Markov

Model has the unrealistic assumption that observations are conditionally independent. At

the same time, the gestures are trained in separate models; a single discriminative model

that is jointly trained on all gesture classes can potentially learn a better partition between

the gesture classes. With this insight, we proceed to the next chapter and apply Hidden

Conditional Random Fields to allow sharing of the features using hidden states.

3.2 Hidden Conditional Random Fields (HCRFs)

In Section 3.1, shared features were passed into Hidden Markov Models(HMMs) for eval-

uation. However, these models assume that observations are conditionally independent.



This restriction makes it difficult or impossible to accommodate long-range dependencies

among observations or multiple overlapping features of the observations. To overcome this

constraint, we turn our attention to hidden conditional random fields (HCRFs).

Conditional random fields use an exponential distribution to model the entire sequence

given the observation sequence [12, 24, 49]. This avoids the independence assumption be-

tween observations, and allows non-local dependencies between state and observations. A

Markov assumption may still be enforced in the state sequence, allowing inference to be

performed efficiently using dynamic programming. CRFs assign a label for each observa-

tion (e.g., each time point in a sequence), and they neither capture hidden states nor directly

provide a way to estimate the conditional probability of a class label for an entire sequence.

We propose a model for gesture recognition which incorporates hidden state variables

in a discriminative multi-class random field model, extending previous models for spatial

CRFs [67] into the temporal domain 2. By allowing a classification model with hidden

states, no a-priori segmentation into substructures is needed, and labels at individual obser-

vations are optimally combined to form a class conditional estimate.

This hidden state conditional random field model can be used either as a gesture class

detector, where a single class is discriminatively trained against all other gestures, or as a

multi-way gesture classifier, where discriminative models for multiple gestures are simulta-

neously trained. The latter approach has the potential to share useful hidden state structures

across the different classification tasks, allowing higher recognition rates.

3.3 HCRFs: A Review

We will review HCRFs as described in [67]. We wish to learn a mapping of observations

x to class labels y E Y, where x is a vector of m local observations, x = {Xl, 2, ... Xm},

and each local observation xj is represented by a feature vector q(xj) E CRd.

An HCRF models the conditional probability of a class label given a set of observations

2The material in this section was previously published in [85] S. Wang, A. Quattoni, L. Morency,
D. Demirdjian and T. Darrell, "Hidden Conditional Random Fields for Gesture Recognition". In CVPR
2006, New York City, USA.



Figure 3-3: HMM model. Suppose there are n gesture classes we need to classify. n HMM

models are trained, and during evaluation a test sequence of m observations is passed into

each HMM model. The highest scoring model is the interpreted gesture class.

~0*
00 -

Figure 3-4: CRF Model. A single exponential model is trained on all gesture classes. Given
an observation sequence x, which is a vector of m frames, a class label Yj is assigned per
frame. During evaluation, the highest scoring sequence of labels Y where Y is a vector of
m labels is assigned.
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Figure 3-5: HCRF Model. A single exponential model like the Conditional Random Field
model, trained on all gesture classes. However, an intermediate level of hidden states is
included. During training, the distribution of hidden states is learned per class. During
evaluation, a single class label Y is assigned.

by:

P(y I x, 0) = P(y S I X, 0) E s T(Y(3.1)
s Zy'CY,sESm e'(y',s,x;0)

where s = {sl, s2, ... , Sm}, each si E S captures the unique underlying structure of each

class and S is the set of hidden states in the model. If we assume that s is observed and

that there is a single class label y then the conditional probability of s given x becomes a

regular CRE The potential function 'IF(y, s, x; 0) E R, parameterized by 0, measures the

compatibility between a label, a set of observations and a configuration of the hidden states.

Following previous work on CRFs [49, 12], we use the following objective function in

training the parameters:

L(O) = log P(y I xi,) - 11012 (3.2)
i=1

where n is the total number of training sequences. The first term in Eq. 3.2 is the log-

likelihood of the data; the second term is the log of a Gaussian prior with variance o2 ,

i.e., P(0) exp (_ 112) . We use gradient ascent to search for the optimal parameter

values, 0* = arg maxo L(O). For our experiments we used a Quasi-Newton optimization



technique [55].

3.4 HCRFs for Gesture Recognition

HCRFs-discriminative models that contain hidden states-are well-suited to the problem

of gesture recognition. Quattoni [67] developed a discriminative hidden state approach

where the underlying graphical model captured spatial dependencies between hidden ob-

ject parts. In this work, we modify the original HCRF approach to model sequences where

the underlying graphical model captures temporal dependencies across frames, and to in-

corporate long range dependencies.

Our goal is to distinguish between different gesture classes. To achieve this goal, we

learn a state distribution among the different gesture classes in a discriminative manner.

Generative models can require a considerable number of observations for certain gesture

classes. In addition, generative models may not learn a shared common structure among

gesture classes nor uncover the distinctive configuration that sets one gesture class uniquely

against others. For example, the flip-back gesture used in the arm gesture experiments (see

Figure 3-6) consists of four parts: 1) lifting one arm up, 2) lifting the other arm up, 3)

crossing one arm over the other and 4) returning both arms to their starting position. We

could use the fact that when we observe the joints in a particular configuration (see FB

illustration in Figure 3-6) we can predict with certainty the flip-back gesture. Therefore,

we would expect that this gesture would be easier to learn with a discriminative model.

We would also like a model that incorporates long range dependencies (i.e., that the state at

time t can depend on observations that happened earlier or later in the sequence.) An HCRF

can learn a discriminative state distribution and can be easily extended to incorporate long

range dependencies.

To incorporate long range dependencies, we modify the potential function I in Equa-

tion 1 to include a window parameter w that defines the amount of past and future history

to be used when predicting the state at time t. Here, 'I(y, s, x; 0, w) E R is defined as a

potential function parameterized by 0 and w.
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The graph E is a chain where each node corresponds to a hidden state variable at time t;

p(x, j, w) is a vector that can include any feature of the observation sequence for a specific

window size w. (i.e. for window size w, observations from t - w to t + w are used to

compute the features.)

The parameter vector 0 is made up of three components: 0 = [0e ,y 0s]. We use the

notation 0s[sj] to refer to the parameters 0, that correspond to state sj E S. Similarly,

0, [y, sj] stands for parameters that correspond to class y and state sj and Oe[y, s), sk] refers

to parameters that correspond to class y and the pair of states sj and Sk.

The inner product ýp(x, j, w) -0, [sj] can be interpreted as a measure of the compatibility

between the observation sequence and the state at time j at window size w. Each parameter

0,y[y, sj] can be interpreted as a measure of the compatibility between a hidden state k and

a gesture y. Finally, each parameter Oe[y, sj, ski measures the compatibility between pairs

of consecutive states j and k and the gesture y.

Given a new test sequence x, and parameter values 0* learned from training examples,

we will take the label for the sequence to be:

arg max P(y I x, w, 0*). (3.4)
yEY

Since E is a chain, there are exact methods for inference and parameter estimation as

both the objective function and its gradient can be written in terms of marginal distribu-

tions over the hidden state variables. These distributions can be computed using belief

propagation [65].



FB SV EV DB PB EH

Figure 3-6: Illustrations of the six gesture classes for the experiments. Below each image

is the abbreviation for the gesture class. These gesture classes are: FB - Flip Back, SV -

Shrink Vertically, EV - Expand Vertically, DB - Double Back, PB - Point and Back, EH -

Expand Horizontally. The green arrows are the motion trajectory of the fingertip and the

numbers next to the arrows symbolize the order of these arrows. A detailed description of

these gestures appears in Section 3.6.

3.5 Gesture recognition using discriminative vector quan-

tization: datasets, experiments and results

In this section, we will describe the datasets, experiments and results using discriminative

vector quantization described in Section 3.1.

3.5.1 Arm Gesture Dataset

We labeled eleven gestures for an HMM-based recognizer to classify using discriminative

vector quantization described in Section 3.1. Gesture data was collected and gathered from

thirteen users. These users were asked to perform the gestures in front of a stereo camera.

From each image frame, a 3D cylindrical body model, consisting of a head, torso, arms and

forearms was estimated using a stereo-tracking algorithm [25]. The estimated body pose

sequences of these gestures were collected.

Half of these samples were used for training the HMM recognizer and for linear dis-

criminant analysis, while the other half was used for testing. Examples of these gestures

are shown in Figure 3-7.



Figure 3-7: Images of a user articulating 4 different gestures.

3.5.2 Experiments and Results

We experimented with different techniques or different types of features, while varying the

feature length (the feature length is the number of consecutive poses used to form each

feature vector), and our results are plotted in Figure 3-8. In the first technique, we applied

LDA to pose features and sent the projected features, f, = I'Tf, to train the HMM (the

plot from this technique is labelled LDA Features in the figure). In the second technique,

we simply used pose features, fn to train the HMM (labelled as pose features in the figure).

In the third technique, we used velocity from consecutive poses as features for training the

HMM (labelled as velocity features, v,J). A velocity feature is given as

"/, = f- - f"

In the fourth technique, we simply used both pose and velocity features for training the

HMM (labelled as velocity and pose features). A velocity and pose feature is given as

In the fifth technique, we applied principal component analysis on the pose features

(labelled as PCA). The components that contribute to 98% of the energy were extracted,

and the projected pose features were used to train the HMM. In the last technique, we

applied kernel principal component analysis (kPCA) on the pose features, and used the

projected features to train the HMM. We used a Gaussian kernel for the projection. The

Gaussian kernel function k(x, y) is given by:
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Figure 3-8: Error rates of using different types of features vs their feature length. The graph

shows that the LDA-based approach produced lower error rates consistently over different

feature lengths.

k(x, y) = e 3.

and we used a a value of 10. We did not display results using other kernel functions as they

performed significantly worse.

From Figure 3-8, pose features projected into the LDA subspace performed consistently

better than the other 5 techniques. The error rate of the kPCA technique did not perform as

well as we expected. We are currently investigating this matter.

We trained the HMM 50 times using the various techniques or feature types at a constant

feature length of 4, and tabulated the statistics of the error rates. Our results are given in

Table 3.1. As a comparison to pose features, the error rate was divided by a factor of 1.5 by

applying LDA. The standard deviation of the error rate from our LDA-based approach was

also relatively low compared to other techniques, which proves that this approach produced

better results consistently.

Our results confirm that sharing features is a useful technique. By combining GMM

and LDA together, we show that the error rates for the gesture recognition decreased sig-

nificantly. With this insight, we proceed to the next section and apply Hidden Conditional

Random Fields to allow sharing of the features using hidden states.

- - LDA Features
Pose Features

0 Velocity and Pose Features
- Velocity Features

, PCA
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Avg Error Rate, M(%) Std Error Rate, r(%)
Pose Features fn 12.16 2.05
LDA Features f'n 7.98 1.68

PCA 26.73 1.84
kPCA 25.09 3.6

Velocity Features vn 17.6 13.81
Velocity and Pose Features '/n 1.82 2.86

Table 3.1: Statistics of Error Rates of various techniques or feature types using a constant
feature length of 4. The standard deviation and the average error rate of the LDA features
is smaller than the other feature types. This shows that LDA features will lower the error
rate consistently

3.6 Gesture recognition using Hidden Conditional Ran-

dom Fields: datasets, experiments and results

In this section, we will describe the datasets, experiments and results using HCRFs de-

scribed in Section 3.2.

3.6.1 Arm Gesture Dataset

We defined six arm gestures for the experiments (see Figure 3-6). In the Expand Horizon-

tally (EH) arm gesture, the user starts with both arms close to the hips, moves both arms

laterally apart and retracts back to the resting position. In the Expand Vertically (EV) arm

gesture, the arms move vertically apart and return to the resting position. In the Shrink

Vertically (SV) gesture, both arms begin from the hips, move vertically together and back

to the hips. In the Point and Back (PB) gesture, the user points with one hand and beck-

ons with the other. In the Double Back (DB) gesture, both arms beckon towards the user.

Lastly, in the Flip Back (FB) gesture, the user simulates holding a book with one hand

while the other hand makes a flipping motion, to mimic flipping the pages of the book.

Users were asked to perform these gestures at a distance of 1.5 meters in front of a stereo

camera. We used the Digiclops stereo camera from PointGrey Research Inc to acquire the

stereo images. From each image frame, a 3D cylindrical body model, consisting of a head,

torso, arms and forearms, was estimated using a stereo-tracking algorithm [25]. Figure 3-9

shows a gesture sequence with the estimated body model superimposed on the user. From



Figure 3-9: Sample image sequence with the estimated body pose superimposed on the

user in each frame. The user is articulating the Expand Vertically (EV) gesture.

these body models, both the joint angles and the relative co-ordinates of the joints of the

arms are used as observations for our experiments and were manually segmented into six

arm gesture classes. Thirteen users were asked to perform these six gestures; an average of

90 gestures per class were collected.

3.6.2 Experiments and Results

We describe the various models used in our experiments before we proceed to discuss the

results. Figures 3-3, 3-4 and 3-5 show graphical representations of the HMM model, the

CRF model, and the HCRF (multi-class) model used in our experiments.

HMM Model - As a first baseline, we trained a HMM model per class. Each model had

four states and used a single Gaussian observation model. During evaluation, test sequences

were passed through each of these models, and the model with the highest likelihood was

selected as the recognized gesture.

CRF Model - As a second baseline, we trained a single CRF chain model where every

gesture class had a corresponding state. In this case, the CRF predicts labels for each frame

in a sequence, not the entire sequence. During evaluation, we found the Viterbi path under

the CRF model, and assigned the sequence label based on the most frequently occurring

gesture label per frame. We ran additional experiments that incorporated different long

range dependencies (i.e. using different window sizes w, as described in Section 4).

HCRF (one-vs-all) Model - For each gesture class, we trained a separate HCRF model

to discriminate the gesture class from other classes. Each HCRF was trained using six

hidden states. For a given test sequence, we compared the probabilities for each single



Models Accuracy (%)
HMM w = 0 84.22
CRF w = 0 86.03
CRF w = 1 81.75

HCRF (one-vs-all) w = 0 87.49
HCRF (multi-class) w = 0 91.64
HCRF (multi-class) w = 1 93.81

Table 3.2: Comparisons of recognition performance (percentage accuracy) for body poses
estimated from image sequences.

HCRF, and the highest scoring HCRF model is selected as the recognized gesture.

HCRF (multi-class) Model - We trained a single HCRF using twelve hidden states.

Test sequences were run with this model and the gesture class with the highest probability

was selected as the recognized gesture. We also conducted experiments that incorporated

different long range dependencies in the same way as described in the CRF experiments.

For the HMM model, the number of Gaussian mixtures and states were set by minimiz-

ing the error on training data, and for hidden state models the number of hidden states was

set in a similar fashion.

For the training process, the CRF models for the arm and head gesture dataset took

about 200 iterations to train. The HCRF models for the arm and head gesture dataset

required 300 and 400 iterations for training respectively.

Table 3.2 summarizes results for the arm gesture recognition experiments. In these ex-

periments the CRF performed better than HMMs at window size zero. At window size

one, however, the CRF performance was poorer; this may be due to overfitting when train-

ing the CRF model parameters. Both multi-class and one-vs-all HCRFs perform better

than HMMs and CRFs. The most significant improvement in performance was obtained

when we used a multi-class HCRF, suggesting that it is important to jointly learn the best

discriminative structure.

Figure 3-10 shows the distribution of states for different gesture classes learned by the

best performing model (multi-class HCRF) in the arm gesture experiment. This graph was

obtained by computing the Viterbi path for each sequence (i.e. the most likely assignment

for the hidden state variables) and counting the number of times that a given state occurred
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Figure 3-10: Graph showing the distribution of the hidden states for each gesture class. The
numbers in each pie represent the hidden state label, and the area enclosed by the number
represents the proportion.
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Models Accuracy (%)
HCRF w = 0 86.44
HCRF w = 1 96.81
HCRF w = 2 97.75

Table 3.3: Experiment on 3 arm gesture classes using the multi-class HCRF with different
window sizes. The 3 different gesture classes are: EV-Expand Vertically, SV-Shrink Ver-
tically and FB-Flip Back. The gesture recognition accuracy increases as more long range
dependencies are incorporated.

among those sequences. As we can see, the model has found a unique distribution of hidden

states for each gesture, and there is a significant amount of state sharing among different

gesture classes. The state assignment for each image frame of various gesture classes is

illustrated in Figure 3-11. Here, we see that body poses that are visually more unique

for a gesture class are assigned very distinct hidden states, while body poses common

between different gesture classes are assigned the same states. For example, frames of the

FB gesture are uniquely assigned a state of one while the SV and DB gesture class have

visibly similar frames that share the hidden state four.

The arm gesture results with varying window sizes are shown in Table 3.3. From these

results, it is clear that incorporating some amount of contextual dependency is important,

since the HCRF performance improved with increasing window size.

In summary, we presented a discriminative hidden-state approach for gesture recog-

nition. Our model combined the two main advantages of previous approaches to gesture

recognition: the ability of CRFs to use long range dependencies, and the ability of HMMs

to model latent structure. By regarding the sequence label as a random variable we can train

a single joint model for all the gestures and share hidden states between them. Our results

have shown that HCRFs outperform both CRFs and HMMs for certain gesture recogni-

tion tasks. For arm gestures, the multi-class HCRF model outperformed HMMs and CRFs

even when long range dependencies were not used, demonstrating the advantages of joint

discriminative learning.

With this success in arm and head gestures, we proceed to apply HCRFs to the task

communication error detection. For communication error detection, the features used are

different. Unlike the arm and head gestures described in this chapter, the head motion and
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Figure 3-11: Articulation of the six gesture classes. The first few consecutive frames of
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facial features were estimated from monocular images. We describe the estimation of these

features in the next chapter.



Chapter 4

Automatic Recognition of visual

communication errors: initial results

In this chapter, we will describe our approach to detect visual communication errors and

the resources used for extracting the facial motion features and head motion features.

4.1 Approach

As described in the introduction, we propose detecting communication errors visually while

the speaker is listening to the system's reply. An approach overview is illustrated in Fig-

ure 4-1. The speaker is instructed to achieve a task with the system, e.g. an air/train ticket

reservation, and video footage of the speaker's face and head is captured throughout the

conversation. During the interaction, video footage of the speaker is segmented per con-

versation turn. Each segment's boundaries are illustrated in Figure 4-1, where the segment

of interest starts from time t1 and ends at time t 2. In this segment of interest, the system

is giving its reply, while the speaker is listening. For each image frame in this video seg-

ment, facial motion features and head pose features are estimated. These visual features

are subsequently evaluated by various gesture recognition models, described in Chapter ??,

trained for communication error detection.

To train the gesture recognition models, the visual features are manually labeled by

a human coder. From the related work section, the reader can see that building a robust
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Figure 4-1: Diagram illustrating a speaker encountering a communication error. Notice
that during the system's conversation turn (from time t1 to time t2), where it is giving an
erroneous reply, the speaker raised her eye brows and spouted to signal an error. We will
use this video segment during the system's conversational turn to detect communication
errors.
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machine learning system for recognition of fine grained affective states is still in its pre-

liminary stages. This is due to the need to have several human coders to label the data, but

human coders themselves have considerable labeling variation. In our approach, we avoid

this ambiguity in labeling by only defining two coarse states: communication errors and

non errors. If the system's reply is not relevant to answering the spoken content in the pre-

ceding speaker's turn, the video footage of the speaker during the system's reply is labeled

as a communication error. This labeling framework can be verified by the transcript of the

conversations and video footage, and our approach avoids subjective labeling of the fine

expression variation among multiple human coders.

During the system's turn of the conversation, several different replies can occur. In

a reservation system, the system can request more information, verify the last reservation,

confirm the reservation, or acknowledge its mistake. When the system is enquiring for more

information, we do not expect the speaker's visual expressions to be indicative of an error.

Perceptual studies by Barkhuysen et al. [5] have found visual footage to be indicative of

communication errors during verification replies. For this thesis, the video footage captured

in the following types of replies will be used for evaluation:

* Verification: when a system is trying to verify its interpretation. For example, the

system can say

"So you want to travel from Boston to San Francisco on Monday, is that correct?"

If the system is incorrect, the video segment during this reply will be labeled as a

verification error.

* Confirmation: when the system assumes it has made a correct interpretation. The

system can say

"Your reservation is now confirmed. Goodbye."

If the system is incorrect, the video segment occurring during this reply will be la-

beled as a confirmation error.

* Apology: when the system is assumes it had made a mistake and apologizes for it.

The system can say



"I am sorry I made a mistake. Let's start over. Which city do you want to travel

from?"

If the system is incorrect, the video segment occurring during this reply will be la-

beled as an apology error.

All apology, confirmation, and verification errors are communication errors.

Once the error is detected, the erroneous reply could be followed by a corrective re-

sponse. The system could say "Sorry I realize I made a mistake, do you want to start

over?" etc. Many corrective strategies exist and this thesis will not explore and examine

the different correction strategies. Our focus is on developing a framework for communi-

cation error detection using visual cues extracted during the system's turn.

In our framework, head motion is decomposed into two distinct components. The first

component consists of the 3D rigid motion, 6, of the head. The second component consists

of the local motion, Vf, generated by the non-rigid parts of the face (e.g. mouth, lips, eyes).



4.2 Visual and Audio Feature Extraction

In this section, we will describe the various audio and visual features extracted for our

experiments on communication error detection. We rely on the implementation of [56]

and [82] to extract the visual features, as described below. Two types of features are ex-

tracted, namely facial feature motion and head motion.

4.2.1 Head Motion and Pose Estimation

Head motion is estimated using a 3D model-based tracking algorithm. In our approach,

the head of the user is modeled using a 3D mesh, which consists of a set of 3D points

M = (Xi, Yi, Zi).
Following [56], let R and t be the rotation and translation of the head between time t

and t + 1. In case of small motions, the rotation R can be parameterized by:

R = I + Wz 0 -Wx (4.1)

The rigid transformation can then be parameterized by a 6-vector 6 = (wx, wy, wz, t)T .

Given the location and orientation of the model (i.e. location of the points AMi) at time t,

the rigid motion 6 of the head is estimated as follows:

Let Mi' be the 3D location of point Mf at time t + 1. Let mi and rn' be the respective

projections of Mi and Mf in the image. Let f and (u0 , vo) be the focal length and principal

point location of the camera respectively. Using the camera as the reference, we can write:

1 1mi = P m Z PM (4.2)

where P is the camera-projection matrix defined as

P = f 0 o (4.3)
0 f v0



If the face moves rigidly then all points Mi move according to the same rigid transfor-

mation, i.e. Mi = RMi + t. Let U'i = m' - mi be the optical flow estimated at point mi. By

combining eq. (4.2) and (4.1) for all i's, 6 can be found as the solution of a linear system

A6 = b (4.4)

where A is a matrix and b a vector, whose entries depend on f, (uo, vo), Mi and i'i (for all

i's).

If the head performs a perfectly rigid motion (i.e. all points Mi perform the same rigid

transformation), eq. (4.4) can be solved exactly using a standard linear least-squares tech-

nique. However, in order to account for outliers, i.e., points Mi corresponding to non-rigid

parts of the face (e.g., eyes, mouth), a robust estimation algorithm needs to be used. Be-

cause of its simplicity and performance, we chose to employ the RANSAC [39] algorithm.

The RANSAC algorithm is able to find the dominant rigid motion of the face even if half

the points Mi perform some 'outlier' motions.

Our face tracking algorithm is initialized with the Viola-Jones face detector [82]. In

order to compensate for drift, we implemented our face motion and pose estimation al-

gorithm in a keyframe-based estimation framework similar to [56]. The size of our head

motion features is six dimensions.

4.2.2 Facial Motion Features

Let 6 be the dominant rigid motion of the face. The facial motion features are defined as

the head motion-compensated optical flow, i.e., the optical flow between the images It and

It+1 from which the motion 6 has been 'subtracted'. The facial motion features correspond

to the local non-rigid motion generated by the muscles of the face only (e.g., lips, jaw, eyes)

independently from the global head motion.

In order to estimate the motion-compensated optical flow, we proceed as follows:

Following [86], let Ni = (Xf, y N, Z•) be the 3D coordinates of point Mi undergoing

the exact rigid transformation 6, i.e. Ni = RMi + t. Let ni = - PNi be the projection



Figure 4-2: Our visual feature motion estimation algorithm consists of estimating the rigid

motion component and compensated optical flow on the face surface. In the two images

above, the blue box represents the estimated rigid head motion. The estimated optical flow

points are represented as red points on the face. The blue or green streaks in certain regions

of their faces represent significant flow motion. The regions where the blue or green streaks

occurred are also indicative of a communication error.

of Ni in the image. We defined the motion-compensated optical flow il as the discrepancy

between the rigid motion-induced flow v'i = ni - mi and the measured optical flow 'i.

1
Sn- - i P (R + t) - m-

In our framework, the facial motion features are defined as:

In each given image, there are 144 motion-compensated optical flow points (in a square

12 x 12 grid) estimated. As a result, the size of the facial motion features is 288 dimensions.

For each video segment of interest, a sequence of facial motion and head motion fea-

tures are extracted. For each given image frame, the combined facial motion and head

motion features created a feature size of 294 dimensions (288 from facial motion features

and six from head motion features). We used principal component analysis(PCA) to reduce

this high dimensionality and projected the features to a new 10-dimensional subspace. This

10 dimensional subspace was selected as it constituted 90% of the cumulative energy of the



eigenvectors.

The sequence of projected features is passed into the various models described in Chap-

ters ?? for training and evaluation. In our initial experiments, we also used audio features,

which we describe in the next section.

4.2.3 Audio Feature Extraction

We use three kinds of audio features that were used by [94]: the intensity E, the pitch, F0,

and the first formant frequency, F1. The audio feature vector Af is then defined as:

Af = (E, Fo, F1 ) (4.5)

These features are computed at every 10 msecs using the speech analysis software,

PRAAT [10]. The intensity E is computed as: E = log(=• (x[i] - z)2) where N is the

window length and x[i] is the ith sample in that window and z is the local average signal

value. In our computation (and for the rest of this section) we used a window length of 40

samples. The pitch F0 is estimated as the reciprocal of the fundamental period as described

in [11]. In our experiments, we set the search range of the pitch to be 75 - 1000 Hz. As for

the computation of the first formant frequency, F1, a segment of N samples is extracted for

every time step of 1 msec. This segment is multiplied by a Gaussian-like window and the

LPC coefficients are computed. This first formant is then extracted using these coefficients

by the Burg algorithm described in [17].

In previous work [71] syllable rate was used as an audio feature and the dataset con-

sisted of subjects speaking. However, in our work, our audio data consists of spoken as

well as non-spoken words, e.g. exclamations, gasps or humming, which we want to model

for automatic problem detection, and our speech recognizer had a lot of difficulty comput-

ing an accurate syllable rate. Of the 219 utterances processed by the speech recognizer,

97 utterances have an incorrect number of hypothesized vowel phones. On average, these

incorrectly recognized utterances have 2.73 syllables more than the hypothesized ones.

The visual features were extracted during the system's turn, while the audio features

were extracted during the speaker's turn. These estimated visual and audio features are



subsequently passed into the HCRF model. At the end of the conversation turn, the output

scores from the HCRF model in individual streams are combined together by late fusion,

which was described in subsection 4.4.1.

We describe the datasets collected and experiments in the next chapter.



4.3 Communication error detection using Hidden Condi-

tional Random Fields

In this chapter, we describe experiments that use Hidden Conditional Random Fields with

features in both audio and visual streams to recognize visual communication error detec-

tion. Each stream used a Hidden Conditional Random Field as a model for communication

error detection. We adopted the approach described previously in Section 4.1, where video

footage of the speaker was segmented automatically per conversation turn. For the exper-

iments in this Chapter, the audio stream was segmented in the same fashion. The head

motion and facial motion features described in Section 4.2 were extracted from the video

segments and passed into a model e.g. an HCRF, for evaluation. We proceed to describe

the multimodal fusion model, the audio features and the hidden camera dataset in the next

section.

4.4 Hidden camera dataset: experiments and results

For this experiment, we selected HMMs as a baseline model for comparison against the

HCRFs. Both models were used to detect communication errors on the individual visual

and audio streams. The output scores from these models are subsequently used for multi-

modal fusion.

4.4.1 Multimodal Fusion Strategies

We combined the results of audio and visual classification within the same conversation

turn. We used two common late-fusion strategies as described in [48].

Let the feature input to the j-th classifier, j = 1,..., R be xj, and the winning label be

h,. A uniform prior across all classes was assumed and we used four different combination

strategies.
R

PRODUCT rule: h = arg max P(Wk xIj)
j=1



We multiplied the probabilities of the visual feature classifier and the audio feature classi-

fier, and picked the winning class based on the highest scoring multiplication.
R

SUM rule: h -- arg max P(wklxj).
j=1

We added the probabilities of the visual feature classifier and the audio feature classifier,

and picked the winning class based on the highest scoring sum.

4.4.2 Audio and Visual Features

For this hidden camera dataset, the visual features were extracted during the system's turn

of the conversation. Details of these features were described in Section 4.2. The audio

features (also described in Section 4.2) were extracted when the subject was speaking to

the system. Note that for a given system's turn, the visual features were extracted, and in

the following speaker's turn, the audio features were extracted.

4.4.3 Hidden Camera Dataset

We collected an audio-visual database where the facial expressions and the audio cues

would correspond to the actual conversational state of the subject. There were several de-

sign issues we had to consider to minimize bias of our data collection experiment. These

issues were approached in a similar fashion as the database collected for natural facial

expressions [71]. First, the subjects cannot know that they are being tested for their com-

munication state. Such knowledge can influence their communication state and invalidate

the results. Second, the presence of anyone in the same room as the subject conducting the

experiment could bias the subjects behavior (e.g. more inhibited facial expressions or more

politely spoken words). Subjects have to conduct the experiment alone.

We set up a conversational kiosk with a hidden camera and two microphones (one

hidden, one visible). This conversational kiosk contained a web-based restaurant query

speech interface that was developed by Gruenstein et al [34]. This interface consisted of

a display showing a Google map with restaurant icons as shown in Figure 4-5. Users

communicated with this speech interface via a click-to-talk methodology, i.e. they clicked

an icon on the web interface whenever they wanted to speak. Figure 4-4 illustrates a subject



sitting in front of the interface. Subjects were told they were supposed to test this system

and tell us what they liked or disliked about it at the end of the experiment. They were

given a list of restaurants to query for information. To make the queries more challenging,

we instructed them to ask for information about French restaurants (the names of which

are difficult to pronounce for a non-native speaker) in the area. The subjects had to make

the queries in sequential order, and repeat the query in any way they wished (e.g. repeating

the same question, or using a different phrase) when the system did not respond correctly.

They could only proceed to the next query when the system displayed the correct restaurant

information on the display. The purpose of this sequential query was to create a need to

solve the communication problem when it occurs. Subjects were also instructed that they

could only leave the room once the system successfully answered all their queries.

Here is a sample transcript:

Computer: "Welcome to the web browser, I can find information

about the restaurants for you. What can I do for you?"

Speaker: "Show me restaurants in Cambridge."

Computer: "Here are the restaurants in Cambridge." (A Google

map of the restaurants is displayed. A similar snapshot of

this map is exhibited in Figure4-5.)

Apart from the microphone array used by the speech interface, audio and video of the

user were recorded throughout the whole experiment. The video was recorded at 15 Hz and

the audio at 44kHz. The second microphone was hidden, to disturb the experiment as little

as possible while detecting any paralinguistic cues or speech that indicate communication

problems in a private setting. At the end of the experiment, we procured agreement for

the use of the audio-visual footage from the subjects for our analysis and experiments. A

total of 6 subjects performed the study. Figure 4-3 shows two sample images captured

from a subject. On average we collected 40 error segments and 23 non-error segments per

subject. 90% of this data was used to train the model while the remaining 10% was used

for evaluation.



Figure 4-3: Sample images of a subject in the hidden camera dataset. The first image is an

example of the subject in a non-error state, and the second image is an example of an error-

state. Note that in this setup, the subject has no knowledge of the hidden camera capturing

his footage.

Figure 4-4: Photo of a subject testing the system in the hidden camera dataset. The subject
communicates with the system via the microphone array in front of the computer screen.

Note that the camera and the second microphone recording the user are not visible in this

picture.



Map Satellite Hybrid Focus
Radiun ?adius

i 2u !ih mtrp1s$ Results

french
TAquitainc
fAujourdhui
TBeacon Hill
Bistro
%BrassEric Jo
IThe Butcher
Shop
fCafe Au Lait
fCaffe Umbra
Clio

%Iamersleys
Bistro
*, . -

System: Radius is located at 8 High Street in Downtown in Boston. It
serves French, and Vegetarian food. Th phone number is (617)

Doa ton e
LW. OWla MWAVAew

Figure 4-5: Photo of the restaurant query system. Subjects clicked on a button whenever
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4.4.4 Visual Features Classification

Facial motion features, Vf, described in Section 4.2 are used as observations for training

and testing. We plot the Receiver Operating Characteristics (ROC) curves to display the

detection results, using the methodology described in [31]. A detailed explanation on plot-

ting ROC curves for our experiments can be found in Appendix ??. Figure 4-6 shows the

results of the classifiers described in Section ?? using visual features. From this figure,

HCRF performs better than HMMs for visual feature classification.

4.4.5 Audio Features Classification

Using audio features, Af, from Section 4.2 as observations, we trained two classification

models, the HMM and the HCRF model. Figure 4-6 shows the ROC curves for the differ-

ent classifiers. From this figure, both HCRFs and HMMs perform poorly for audio feature

classification. We think this is due to two reasons: a noisy environment during data col-

lection (subjects were speaking to a microphone array) and the use of only three acoustic

characteristics as our audio features which shows that such features are not very indicative

of communication problems.

4.4.6 Audio-Visual Classification

We compared the performance of HMMs and HCRFs in late fusion experiments. Figure 4-7

shows the ROC curve of the combining the various classifiers using the SUM and PROD-

UCT rule described in Section 4.4.1. Most of the fusion cases perform slightly poorer than

those using the single visual classification stream. This poorer fusion performance may be

due to the poor audio classification. However, using the SUM rule to combine the HCRF

classifiers produced a better result.

4.4.7 ROC curves in this dataset

Certain results shown in this section were previously reported in [86]; note that in [86] con-

vex hull smoothing of ROC plots was not performed (and thus the resulting ROC curves



Figure 4-6: (top) ROC curves showing the performance of the different classifiers of visual
features. (bottom) ROC curves showing the performance of the different classifiers using
audio features. From this figure, HMMS and HCRFs do not perform well on the audio
features, while HCRFs perform much better than HMMs on visual features.
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Figure 4-7: (top) ROC curve showing the performance of different classifiers using PROD-
UCT rule for fusion. (bottom) ROC curve showing the performance of different classifiers
using SUM rule for fusion. Both curves show that in most fusion cases, there is a lightly
poorer performance in fusion. However, late fusion by using the SUM rule to combine the
HCRF classifiers in audio and visual stream improved the performance significantly.

included potentially suboptimal operating points), while in this Chapter we show primary

results using convex-hull ROC plots. See Appendix A for details. (Note that certain base-

line plots in this chapter are plotted without convex hull smoothing, as described below.)

In these experiments, we evaluated different classification and fusion methods for de-

tecting communication errors in a conversational system. Despite the poor performance of

the audio features, the SUM fusion strategy of our HCRF classifiers have improved error

detection. In the dataset however, since the subjects were participating in the experiment

on a voluntary basis, we question if the facial expressions were truly representative of real-

istic scenarios. From an interface design point of view, the camera should not be concealed



from the subject. We collected another dataset with a different setup to address this issue.

4.5 Motivation dataset : dataset, experiments and results

We collected a new dataset, which we will describe as the "motivation" dataset from on. For

this dataset, we only used HMMs as a model for error detection. We want to investigate how

effective an automated approach is in detecting communication errors in an unconstrained,

natural setting. To do so, we isolate each subject in a room and keep the camera capturing

the video footage as unobtrusive as possible. A web-based restaurant query application,

which the subjects have to communicate with to retrieve information, is set up on a laptop.

This is the same application that was described in the hidden camera dataset. Subjects have

to click the "click to talk" button in order to speak to the system. A standard automatic

speech recognition system is used.

For each subject, a practice session is conducted before two experiments. In the practice

session, the subject is given a walk-through of the system and a guided session by a human

expert. In the first experiment, the subject is instructed to perform a series of tasks querying

for information about local restaurants. There is no time limit on completing the tasks. In

the second experiment, the subject has to perform the same task as in the first experiment.

However, to mirror the amount of motivation present in real-life situations, he/she is further

informed that there will be a significantly higher monetary reward if the tasks are completed

within a time limit. To induce more communication errors, the subject has to query for

restaurants that are problematic to pronounce e.g. restaurants with French names etc. On

average, subjects completed the first experiment in 15 minutes. For the second experiment,

a ten minute time limit for completing the tasks is imposed. Data from a total of seventeen

subjects is collected.

This natural dataset is potentially challenging to analyze in many ways. For instance,

subjects express themselves at different times during the system's response. Some subjects

express their frustration at the end of the system's reply and some express it in the middle

of the reply. Most of them are completely unexpressive regardless of the state of the inter-

action. In addition, many subjects do not stay in full view of the camera as it is not natural



Figure 4-8: Sample images of a subject in the motivation dataset. The first image is an

example of the subject in a non-error state, and the second image is an example of an

error-state. Note that in this setup, the camera is visible to the subject.

for them to do so when they are not highly conscious of the presence of the camera. Due

to unforseen problems in data collection, there are many video sequences where more than

50% of the face is occluded most of the time. These are excluded from our analysis. As

a result, thirteen subjects' video footage is used for our experiments. On average, 20 error

segments and 15 non-error segments were collected per subject.

Figure 4-8 shows two sample images of a subject interacting with the system.

4.5.1 Experiments and Results

On the motivation dataset, we conduct a six-fold cross validation with randomly generated

partitions, making sure our Hidden Markov models are not trained on any data coming

from a subject in the test set. In the same manner as described in the experiments on

the synthetic dataset, we compute and plot the averaged ROC curve with error bars for

communication error detection. This is shown in Figure 4-9. From this figure, however,

the detection accuracy is only slightly above chance but is statistically significant (a paired

t-test produced p = 0.013). To compare against human performance, we conducted a

human perception experiment, where video segments evaluated by the HMMs are also

evaluated by four human observers. The results of the four human observers are denoted

as four green circles in Figure 4-9. The difference in detection accuracy between humans

and HMMs is not statistically significant after performing a paired t-test (p - 0.36). This
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Figure 4-9: Average ROC curve and error bars for detecting communication errors in a
natural environment. The green circles represent the performance of four human observers.

shows that the detection accuracy by HMMs is indistinguishable from human performance.

Similar performances by humans and machines may indicate that the challenging nature of

this dataset outweighs the choice of the visual features or the choice of the classifier. The

results also indicate that a motivated setting actually reduces facial expressibility. Note that

we actually conducted HCRF experiments as well, but they were not significantly better

than HMMs.

We also experimented with a simple fusion of the confidence scores provided by the

speech recognizer from [34]in the same conversation turn (i.e. we used the confidence

scores that were evaluated by the speech recognizer at the end of the speaker's turn and we

used the visual features in the following system's turn). We used the SUM rule described

in Section 4.4.1 to combine the speech confidence scores with the HMM visual feature

classifier. We computed the average area under the ROC curve for the individual classifica-

tion and for the fusion classification. For the individual visual and audio streams, the areas

were 0.58 and 0.70 respectively, while the area using fusion was 0.71. Our results show

that when audio is available, it is more reliable.



Figure 4-10: Sample images of a subject in the posed expression dataset. The left image

is an example of the subject in a non-error state, and the right image is an example of an

error-state.

4.6 Posed Expressions : dataset, experiments and results

In this dataset, each subject is asked to pose in front of a camera and demonstrate non-verbal

facial expressions that would occur when he/she is listening to the response of a conver-

sational system. For communication errors, the subject presumes the system is giving an

incorrect reply. Subjects posed facial expressions depicting varying levels or frustration or

confusion. For non-communication errors or neutral situations, each subject presumes the

system is giving a correct reply. To vary the intensity of the expressions, scenarios contain-

ing different numbers of correct system replies are presented before the subject is asked to

articulate his/her facial expression.

Eight posed facial expressions, each lasting on average three seconds, are collected per

subject. Data from a total of ten subjects is collected and the facial motion and head pose

features are extracted for our experiments. Figure 4-10 shows two sample images collected

in this dataset.

4.6.1 Experiments and Results

On this posed expression dataset, the facial motion and head pose features were passed into

a HMM classifier for evaluation. We used leave-one-out cross validation (nine subjects'

dataset were used for training and the remaining one was used for testing), with randomly
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Figure 4-11: Average ROC curve and error bars for detecting communication errors on a
staged dataset. The red line, which is used as a reference here, represents detection accuracy
at 50%.

generated partitions. For each test set, we plot the ROC curve for communication error
detection. We compute the mean and standard deviation of these individual ROC curves
and plot an averaged ROC curve with error bars shown in Figure 4-11. From this figure,
the detection rate was significantly above chance; however, this performance was evaluated

on a staged dataset and the performance on a natural dataset may differ.

We conducted an additional experiment comparing the performance of HMMs in us-

ing different visual features. We compared using facial motion features only, head motion

features only, and the combination of both. We projected the facial motion features, which

was 288 dimensions, to a 10-dimensional subspace using PCA before passing them into

a HMM classifier for evaluation and the head motion features, which consisted of six di-

mensions, were passed directly into a HMM classifier for evaluation. The combined set

of facial and head motion features was projected into a ten dimensional subspace before

evaluation by a HMM classifier. In the same fashion as the previous experiment, we used

leave-one-out cross validation (nine subjects' expressions were used for training and the
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Figure 4-12: Average areas under the ROC curve and the error bars that are using different
visual features. From this figure, using the combination of the facial and head motion
features performed better.

remaining one was used for testing), with randomly generated partitions. For each test set,

we plot the ROC curve for communication error detection. We compute the mean and stan-

dard deviation of these ROC curves and plot an averaged area under the ROC curve with

error bars in Figure 4-12.

4.7 Preliminary findings

In this chapter, our experiments on the various datasets attained mixed results. In the hidden
camera dataset, the visual stream HCRF classifier had a high accuracy of error detection,

however, during fusion, only the SUM rule HCRF classifier performed better. In the moti-
vation dataset, the HMM classifier and human perception performance were barely above
chance, indicating the challenging nature of this dataset and that most human speakers
were not expressive in a motivated setting. HCRF experiments were also conducted on this
dataset, but the results were not significantly better than HMMs.

Apart from issues with our experiments, we collected three datasets under various set-
tings to detect communication errors. A key issue that surfaced during these experiments
was that the camera was passively monitoring the speaker and the speaker was not aware
that camera could be an active visual feedback to the system. Would the speaker become
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more expressive if he/she is aware of this visual feedback? From a user interface point

of view, shouldn't the speaker know that he/she could provide visual feedback? Another

variable we did not explore was the effect of avatars, or human-like characters on facial

expressivity.

In the next chapter, we will introduce voting Latent Dynamic Random Fields that will

prove to perform more consistently, and the dataset we will collect will inform the speaker

of the active feedback.



Chapter 5

Efficient Learning of Visual

Communication Errors: Voting Latent

Dynamic Conditional Random Fields

In this chapter, we will introduce voting Latent Dynamic Conditional Random Fields for

communication error detection. We have used HCRFs as a model for communication error

detection in previous experiments. Initial experimental results with HCRFs were extremely

poor due to the small amount of usable data, and the challenging nature of the motivation

dataset described in Section 4.5. HCRFs may seem well-suited to this problem of com-

munication error detection based on our experimental results in the hidden camera dataset,

however, in practice, HCRFs tend to overfit and perform poorly when less training data is

available. This is due to the need to find optimal values for a high number of free parame-

ters in the HCRF model. In addition, the HCRF is not a convex function due to the potential

function representing the binding between the hidden states to the gesture class label. We

introduce a new variant of the CRF, which we name as Voting Latent Dynamic Conditional

Random Fields(VLDCRFs). Before we can introduce Voting LDCRFs, we will describe

LDCRFs in detail in the next section.



5.1 Latent Dynamic Conditional Random Fields (LDCRFs)

The Latent Dynamic Conditional Random Field, developed by Morency et al. [58], is a

discriminative model that is originally designed to predict a sequence of labels given a

sequence of observations. The LDCRF is a model that combines the strengths of the CRF

and the HCRE Like the CRF, the LDCRF learns the transition dynamics between classes.

At the same time, the LDCRF incorporates hidden states like the HCRF, and learns the

internal structure of each class. The LDCRF differs from the HCRF by assigning a class

label per observation, and does not share the hidden states between classes. In addition,

the hidden states are only shared within the same class. By binding a disjoint set of hidden

states to each class label, inference on the LDCRF is more efficiently computed using belief

propagation during training and testing than the HCRF.

In our task of communication error detection, we want to predict a single label given a

pre-segmented sequence of observations but the LDCRF predicts a sequence of labels. We

will describe how LDCRFs are applied to gesture recognition in unsegmented sequences,

how it has a smaller complexity than HCRFs, and later show an additional voting scheme

that transforms this LDCRF model to predict a single label for our purpose.

5.2 LDCRFs for unsegmented gesture recognition

Following [58], in unsegmented gesture recognition, the goal is to predict a label per frame

given a sequence of video frames. This means our task is to learn a mapping between a se-

quence of observations x = {X_ , 2, ... m} and a sequence of labels y = {yi, Y2, .. , Ym}-

Each yj is a class label for the jth frame of a video sequence and is a member of a set

Y of possible class labels. Each frame observation xj is represented by a feature vector

0 (xj) E Rda. The feature vector in our case, would be the projected facial motion and head

motion features. A set of hidden variables h = hi, h2, ..., hm, not observed in the training

sequence, are assumed in the model. These hidden variables represent the internal structure

of a gesture class. From these assumptions, a latent conditional model is defined as:



P(ylx,0) = I:P(ylh,x, )P(hlx, 0)
h

where 0 are the parameters of the model.

Unlike the HCRF, the hidden states are not shared between class labels. Each hidden

state belongs to a set 7-y,, of hidden states, and each class label yj has a unique set Hy,

of hidden states. The union of all hy sets forms the set of all possible hidden states 7-I.

By establishing this deterministic mapping between the hidden states H., and the class

label yj, P(ylh, x, 9) = 0 for all sequences which have any hj V Hyj. Following [58],

Equation 5.1 becomes simplified as:

P(Yjx, ) = (5.2)P(hlx, 0)
h:Vhj EHy

P(h x, 9) has the same general form as a typical CRF model:

P(hlx, 0) oc exp( Ok - Fk(h, x)) (5.3)

and Fk is defined as

m

Fk(h,x) = fk(hj-1l,hj,x,j) (5.4)
j=1

where a feature function fk(hj-1, hj, x, j) is computed at each observation xj of the ob-

servation sequence x. Each feature function is either a state function Sk(hj, x, j), which

(5.1)



depends on a single hidden variable, or a transition function tk(hj-1, hj, x, j), which de-

pends on pairs of hidden variables.

Following [85, 67, 58], assuming the training set consists of n labeled sequences (xi, yi),

we use the following objective function to learn the parameter 0*:

L(O) --= logP(yilIx) - 012 (5.5)
i=1

Following [58], the first term in Equation 5.5 is the log-likelihood of the training data.

The second term is the log of a Gaussian prior with variance u 2, i.e., P(O) exp(-- ll 012).

We use gradient ascent to search for the optimal parameter values, 0* = arg maxo L(O),

under this criterion. Further details about training the parameters can be found in [58].

During testing, given a new test sequence x, the most probable label sequence y* is

estimated as:

y* = arg max 3 P(hlx, 0*). (5.6)
h:VhiEHy

where the parameter values 0* are learned from training examples. The label yj of frame j

is estimated in two steps. First, we compute the marginal probabilities P(hj = a x, 0*) for

all possible hidden states a E H. Second, the marginal probabilities are summed according

to the disjoint sets of hidden states Hj and the label associated with the optimal set is

chosen.

Although both the LDCRF and HDCRF use the same objective function Eq. 3.2 to

train their parameters, this function breaks down into a much simpler one, Eq. 5.2, for

the LDCRF. This is because specific hidden states are clamped to a class label. For the

HCRF, there is no such disjoint set of hidden states associated to a label, and integrating

the exponential function e1(Y,s,x;O,w) across all class labels is required (see Eq. 3.2). For

example, for the LDCRF model, during training, the gradient of the objective function

L(O) is computed as:



-L(O) P(h = aly,x,O)sk(j,a,x) - E P(h = a,y' x,O)sk(j,a,x) (5.7)
j,a y ,j,a

where

S P(hlx, O)
h:hj =aAVhj EHyj

P(hj = a y, x, O) = (5.8)
E P(h x, 0)

h:Vhj EHyj

Eq. 5.8 is shown in [58] to be computable in O(m) using belief propagation, where rn is

the number of observations in the sequence. However, the same function is shown in [?] to

be computable in O( Y m), where Y is the set of possible class labels. Hence, the LDCRF's

training complexity is less than the HCRF and the HCRF will tend to overfit faster than

the LDCRF whenever the training data size is small. Given these unique properties of the

LDCRF, we attempt to fold LDCRF back into the segmented task by using a voting scheme.

5.3 Voting Latent Dynamic Conditional Random Fields

for communication error detection

In the LDCRF, the most probable label sequence y* = {yl, y2, .., yO} is estimated given

an observation sequence x = {x 1, x 2, ..., xm}. However, in our error detection problem,

our sequences are pre-segmented and we only need a single most probable label given an

observation sequence. We find the most probable label by finding the majority vote of the

most probable label per frame.

Suppose we are given a sequence of labels y* = {yl, y, .., y;m}, then the final assigned

label Y* is given as:



m

Y = argmax f (y, 1)
i=1

where

1 • yi = 1

and I is a member of the set of Y possible class labels.

This method makes use of the simpler objective function of the LDCRF for learning the

parameters, and associate each label with a disjoint set of hidden states. Unlike the HCRF,

estimating the overall class of the segment requires a few steps. First, the label yj of frame

j is estimated by computing all the marginal probabilities P(hj = aix, 0*) for all possible

hidden states a E H. Then, the marginal probabilities are summed according to the disjoint

sets of hidden states Hj and the label associated with the optimal set is chosen for a given

frame. Finally, we count the label associated to each frame in the segment, and choose

the label with the highest vote count. Now that we have introduced voting LDCRFs, we

proceed to the next section to describe the datasets and experiments that use this model.



Figure 5-1: Sample images of a subject in the Tilburg dataset. The left image is an example

of the subject in an error state, and the right image is an example of a non-error state. Note

that in this setup, the camera is visible to the subject.

5.4 Voting LDCRF datasets and experiments

In this section, we describe the datasets we have acquired or collected for evaluating voting

LDCRFs and discuss the results.

5.4.1 Tilburg Dataset

For preliminary evaluation of communication error detection in natural settings, we ac-

quired the dataset collected by Barkhuysen et al. [5] for system questions. In this dataset,

subjects have made a train ticket reservation and are listening to system verification ques-

tions. Nine subjects' video footage during the system's verification response is used for our

experiments. Here is an example of a system verification question without errors:

User: Amsterdam

System: So you want to travel to Amsterdam?

And an example verification question with error:

User: Rotterdam

System: So you want to travel to Amsterdam?

More details of this dataset could be found in [5].



Passive Input Active Input
No avatar display Partition 1 Partition 3

Avatar display Partition 2 Partition 4

Table 5.1: Breakdown of the Active-Avatar dataset, we have two variables: type of input
and type of display. This produces four partitions. The number in each entry represents the
partition number, which we use as a reference later on.

5.4.2 Active-Avatar Dataset

A subject's facial expressivity could be dependent on internal and external factors. One

possible internal factor could be the subject's knowledge of the presence of the camera and

knowledge that their expressions are an active input. External factors could be the presence

of an avatar as a display which makes the speaker feel more engaged in the conversation or

the content of the conversation. In this dataset, we controlled for two variables: active vs

passive input and avatar vs no-avatar displays. Active input means the subject is briefed that

the computer recognizes his/her facial expressions, and with this knowledge, the subject

would feel more inclined to be expressive visually to improve the communication process.

On the other hand, the subject may be briefed that the camera is just capturing visual

footage passively and not actively recognizing the subject's face, which counts as passive

input. The other variable we controlled for was the presence of a visual display. This

display is in the form of an avatar while the other option is no display at all. In total, four

partitions were created. Table 5.4.2 shows the breakdown of the four partitions and their

different attributes. Four Wizard-of-Oz experiments, which represents these four partitions,

were conducted. Each subject can only take part in two of the experiments, not all of them.

The subjects were randomly assigned the two experiments that will either cue the subject to

express himself/herself, or just interact normally with passive observation by the camera.

To be clear, using Table 5.4.2 as a reference, a subject can only take part in Parts 1 and 2 or

Parts 3 and 4. In both experiments, the subject was instructed to make airline reservations

with a conversational system. Unknown to the subject, a human was actually manipulating

the response of the system. In the first experiment, there was no visual display (Part 1 or 3

in Table 5.4.2). In the second experiment, the subject can choose between three different

avatars to interact with on the laptop display (Part 2 or 4 in Table 5.4.2). Figure 5-2 shows



the three avatars subjects can choose from for interaction.

Here is a sample transcript of the briefing given by the computer prior to the first exper-

iment:

Computer: "Welcome to the Vision Interface kiosk. I can

make airline reservations for you. Which city do you want

to travel from?"

Speaker: "Boston."

Here is a sample transcript of the briefing given by the computer prior to the second

experiment:

Computer: "Welcome to the VIP kiosk. I can make airline

reservations for you. In anytime during the conversation,

if I give an incorrect reply, you can express your disagreement

using facial expressions in a natural manner. For example,

you can roll your eyes, frown, shake your head to express

your disagreement. Do you understand?"

Speaker: "Yes."

Computer: "Okie. Let's begin. Which city do you want to

travel from?"

In both experiments, three types of communication errors occurred: verification, con-

firmation and apology errors. Here is a sample transcript containing a verification error

followed by a confirmation error,

Computer: "So you want to travel from Boston to San Diego

on Monday at 9 am. Is that correct?"

Speaker: "No."

Computer: "Your reservation is now confirmed. Good bye!"



Figure 5-2: Avatars used for visual feedback. In the dataset accompanied with visual feed-
back, subjects can select from one of these three avatars for interaction.

Here is a sample transcript containing a correct verification followed by an erroneous

apology,

Computer:

on Monday

"So you want to travel from Boston to San Diego

at 9 am. Is that correct?"

Speaker: "Yes."

Computer: "I am sorry I made a mistake. Let's start over.

Which city do you want to travel from?"

Twenty subjects' video footage during the occurrence of these errors were used for our

experiments.

Active-Avatar dataset: feature extraction and pre-processing In this dataset, there is

a slight difference in the feature pre-processing step that was not done in previous datasets.

Preliminary results using facial and head motion features projected onto a ten-dimensional

subspace did not produce any meaningful results for all models and we increased the size

of the projected subspace to 20 dimensions.

We describe the experiments and results on these datasets in the next section.



Dataset Hidden Type of Type of Methods
Name Camera? Visual Input Display used

Hidden Camera Dataset Y Passive Map display HMMs, HCRFs
Motivation Dataset N Passive Map display HMMs, HCRFs

Synthetic Expressions N Active None HMMs
Tilburg Univ. [5] N Passive None HMMs, HCRFs, VLDCRFs

Active-Avatar dataset Part 1 N Passive None HMMs, HCRFs, VLDCRFs
Active-Avatar dataset Part 2 N Passive Avatar display HMMs, HCRFs, VLDCRFs
Active-Avatar dataset Part 3 N Active None HMMs, HCRFs, VLDCRFs
Active-Avatar dataset Part 4 N Active Avatar display HMMs, HCRFs, VLDCRFs

Table 5.2: Breakdown of datasets collected for communication error detection

5.4.3 Tilburg Dataset: experiments and results

On this dataset, we conducted several experiments. In the first experiment, we compared

the performance of a user-independent model versus human performance. We conducted

a nine-fold cross validation and made sure our Hidden Markov models were not trained

on any data coming from a subject in the test set. In the same manner as described in the

experiments on the staged dataset, we compute and plot the averaged ROC curve with error

bars for communication error detection. This is shown in Figure 4-9, where the averaged

ROC curve was plotted in a solid blue line. To compare against human performance, we

conducted a human perception experiment, where video segments evaluated by the HMMs

were also evaluated by four human observers. These four human observers did not view

any sample video footage of the subjects before the evaluation. The results of the four hu-

man observers were denoted as four green circles in Figure 4-9. The difference in detection

accuracy between humans and HMMs was not statistically significant after performing a

paired t-test (p = 0.78). This showed that the detection accuracy by HMMs was indistin-

guishable from human performance.

In the second experiment, we compared various models against the human performance

reported in [5]. We trained and tested HMMs, HCRFs, LDCRFs and voting LDCRFs, such

that video clips from the same subject were used in training and testing. Note that we made

sure the test set consisted of the same clips used for human evaluation in [5]. On average,

each subject had fifteen video clips used in the training set and three video clips for the test

set. The ROC curves of the various models are plotted in Figure 4-9. From this experiment
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Figure 5-3: ROC curves for detecting communication errors using various algorithms for
the second experiment.

onwards, all the ROC curves are plotted using Algorithm 2 described in Appendix A, except

for the HCRF and LDCRF curves which are plotted using Algorithm 1. We did not have

time to recompute convex-smoothed HCRF and LDCRF curves before submission of this

thesis, but the reader can inspect the curves and see that they are significantly inferior

whether convex smoothed or not. From this figure, voting LDCRFs performed best among

the four models.
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Figure 5-4: ROC curves for detecting communication errors using partition 1.

5.4.4 Active-Avatar Dataset: experiments and results

There are four partitions in this dataset (see Table 5.4.2). In each partition, we compared

various models against human performance in the same manner as the second experiment

in the Tilburg dataset.

We trained and tested HMMs, HCRFs, LDCRFs and voting LDCRFs, such that video

clips from the same subject were used in training and testing. We also made sure the test set

consisted of the same clips used for human evaluation. There were four human evaluators.

Figures 5-4, 5-5, 5-6 and 5-7 show the ROC curves of various models in partitions 1, 2, 3

and 4 respectively. In all these curves, the average human performance is denoted by an

orange star. We further plot an averaged ROC curve over these four experiments, and the

averaged ROC curves are shown in Figure 5-8. In all these figures, the voting LDCRFs has

a high detection accuracy and performs better consistently than the other models.

As a further analysis of the voting LDCRFs, we examined the voting pattern per frame

of a test sequence. This frame-by-frame analysis is displayed in Figure 5-9. The top row
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Figure 5-5: ROC curves for detecting communication errors using partition 2.

displays the original frames, the 2nd row displays the corresponding face tracker superim-

posed on the original frame. The table below the frames shows the cumulative vote count

for errors versus non-errors as the sequence progresses from the left to the right. The bot-

tom row shows the words spoken by the system at the same time. These words were part

of the reply "So you want to travel from Boston to San Francisco on Monday at 9 am. Is

that correct?". From this figure, the cumulative error vote started increasing synchronously

with the frames that were more indicative of an error i.e. when the subject rolled up his

eyes beginning from the third frame.

In a second experiment, we explored two issues in communication error detection. We

questioned if speakers will be more expressive when they have knowledge of active visual

input to the system than if the system was just passively monitoring them, regardless of the

presence of an avatar. We also explored the performance of the models and speaker expres-

sivity if avatars are on display compared against no display, regardless of the knowledge of

the speaker (active visual input or not). We combined the partitions in the first experiment
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Figure 5-6: ROC curves for detecting communication errors using partition 3.
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Figure 5-7: ROC curves for detecting communication errors using partition 4.

to form new ones. Here is the breakdown of the new partitions and their constituents:

* Passive partition: combination of partitions 1 and 2

* Active partition: combination of partitions 3 and 4

* No display partition: combination of partitions 1 and 3

* Avatar display partition: combination of partitions 2 and 4

In each of these new partitions, we compared various models against human perfor-

mance. We trained HMMs, HCRFs, LDCRFs and voting LDCRFs. The training and the

testing sets are exactly the same ones in the first experiment. Figures 5-10, 5-11, 5-12

and 5-13 show the ROC curves of various models in the passive, active, no display, and

avatar display partitions respectively. The average human performance is denoted by an or-

ange star in each figure. We were expecting the active partition's curves to be much better

than the passive partition, and that the avatar partition's curves to be much better than the
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Figure 5-8: Averaged ROC curves for detecting communication errors using all partitions.
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No Error
cumulative count

Error cumulative
count

System Reply

46 47 47 47 47 47 47 47 47

84 84 85 86 87 88 89 90 91

on Mon .......

Figure 5-9: Diagram showing a breakdown of a portion of an error test sequence into
frames. The top row displays the original frames, the 2nd row displays the corresponding
face tracker superimposed on the original frame. The table below the frames show the cu-
mulative vote count for errors versus non-errors. The bottom row shows the words spoken
by the system at the same time. These words were part of the reply ""So you want to travel
from Boston to San Francisco on Monday at 9 am?"

no avatar partition. From the avatar and no avatar figures (Figures 5-12 and 5-13), the dif-

ference in performance of the ROC curves is not significant. The performance of the avatar

curve was poorer compared to experiments using the individual partition 4, but better than

that of partition 2. This implies that knowledge of active visual input has a significant effect

on human subjects when they are interacting in the presence of an avatar and that detection

models for partitions 1 and 2 should be trained and evaluated separately.

On the other hand, the figures in the passive and active partitions (see Figures 5-10

and 5-11) contradict with our expectations. The voting ldcrf ROC curve in the passive

partition performs much better than the same curve in the active partition. One interesting

thing to note is that the voting ldcrf performed better than (or is almost as good as) human

perception in the passive partition. This could imply several things: first, humans are poor

evaluators of passive expressions. Second, the active partition's performance is poorer than

the individual partitions 3 and 4 in the first experiment, which implies that the expressions

the models learn in partition 3 were different from the ones the models learn in partition

4. This tells us that the avatar has a different effect on facial expressivity on the human
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Figure 5-10: ROC curves for detecting communication errors using the passive partition.

subject compared to no avatars, and that our models should not mix the datasets in the

two scenarios together during training. Third, in the passive partition, the presence of

an avatar does not create significant change in performance of the models, implying that

the expressions in partitions 1 and 2 are very similar. From this second experiment, we

conclude that when users have active knowledge of visual input, separate models should be

trained for interacting with and without an avatar.

From the first and second experiment, we can conclude that voting LDCRFs performed

better consistently in all scenarios of communication errors. This conclusion is clearly

shown in the plots using partitions 1, 2, 3, 4 and the averaged roc curve of these four

partitions (Figures 5-4, 5-5, 5-6, 5-7 and 5-8). This supports our claim that we have

devised a scheme for automatic communication error detection.
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Figure 5-11: ROC curves for detecting communication errors using the active partition.

100



0o
a-
I-

False positive rate

Figure 5-12: ROC curves for detecting communication errors using the no display partition.
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Figure 5-13: ROC curves for detecting communication errors using the avatar display par-
tition.
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Chapter 6

Conclusion

In this thesis, we have introduced the first automatic system for detecting communication

errors using facial expressions during the system's turn. This is useful as it detects com-

munication problems within the same conversation turn, unlike previous work that detects

errors in the next turn or speaker's turn. Our experiments show that humans do exhibit

passive, emotional facial expressions e.g. frustration, confusion that can be indicative of a

communication error during the system's reply. When human subjects become aware that

the conversational system is capable of receiving visual input, they become more commu-

nicative visually yet naturally, and our system becomes more successful at detecting the

errors. Any conversational system can benefit from this additional cue to change the course

of the dialogue and improve user satisfaction.

The success in this automatic error detection system stems from our prior contribu-

tions on exploring gesture recognition models. We first developed a discriminative vector

quantization model and showed it was useful for visual gesture recognition. Quantizing

the features was analogous to sharing features between gesture classes, and it improved the

accuracy of arm gesture recognition significantly. The insight gained from sharing features

served as a prelude to our next model. By sharing hidden states across all class labels,

we demonstrated that Hidden Conditional Random Fields was a useful model for gesture

recognition.

Given our success in arm and head gesture recognition, we applied HCRFs to commu-

nication error detection. We attained mixed results due to a smaller and more challenging
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dataset. Subsequently, we embarked on finding a better model, and we introduced voting

Latent Dynamic Random Fields for efficient learning and applied it to visual communica-

tion error detection during the system's turn.

Although this algorithm is the first one for visual communication error detection during

the system's turn, other previous works on visual prosody analysis like Graf et al. [40] dur-

ing the speaker's turn can also be applied to detecting errors in the system's turn. One key

difference would lie in the features used. For tracking visual prosody during the speaker's

turn, use of facial motion features around the mouth is difficult due to the large variabil-

ity of the words that could possibly be spoken. Detecting communication errors during

the system's turn can make use of these features instead, since the speaker is listening in

silence. At the very same time, most visual prosody methods use a discriminative model

like Support Vector Machines to detect the emotion at the frame level. Such models, while

discriminative, do not learn the sequential dynamics between frames, nor learn the hidden

structures like the voting latent dynamic conditional random field proposed in this thesis.

Learning the hidden structure is useful for analysis and future post processing. In this the-

sis, however, we have not demonstrated the additional advantage of learning this hidden

structure.

6.1 Limitations

The models we have used can only provide the likelihood of an error at a given image frame

and do not provide a breakdown of the face into different regions or components. Finding

out which regions or components of the face that are highly indicative of an error will be

useful. The facial motion features are optical flow velocities in a 12 by 12 grid around the

face, which is highly dependent on finding the correct pose of the head. This optical flow

method suffers from some drift. For example, for a given frame, the optical flow velocities

that map to a specific region of the face, e.g. eyes, will map to the eye brows several frames

later. Nevertheless, our voting LDCRF has managed to detect errors successfully despite

such limitations. Our error detection model only makes the inference at the end of the

system's turn of the conversation. For practical purposes in real time scenarios, a model
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that makes the inference in the middle of the system's turn could potentially be more useful.

6.2 Future Work

Future work can be divided into three categories: facial expression tracking, recognition

models and dialogue strategies.

Facial expression tracking

There are many challenges confronting facial tracking to this day. Facial expressions

are very subtle spatially and temporally. For a camera capturing visual footage at 30 Hz, the

significant expression may occur only in a few frames. At the same time, some subjects'

expressions only consist of a minute displacement of their facial muscles that are barely

visible to the human eye. A face tracker with a low degree of freedom will have difficulty

capturing this subtle movement. A possible approach could combine a 3D model based

tracker like the Piecewise Bezier Volume Deformation Tracker [76] with appearance-based

features like Gabor wavelets [36] or boosted Haar features [89]. Such a tracker does not

exist at the time of writing this thesis.

Recognition models

For practical purposes, a model that makes the inference in the middle of the system's

turn could potentially be more useful. This could be running a window size of 300 msecs

over the video sequence, and making an inference at every window frame. However, this

method may suffer from many false positives. To boost the performance, we would find

out if there is a significant correlation between the timing of the expression with the co-

occurring words spoken by the system. A cursory inspection of the videos show that most

subject express the communication error at the end of the spoken sentence, however, sub-

jects that express their error earlier usually do so when a key noun was spoken. This

implies two things: a multisensory model that includes parts of speech tags as features or a

user-specific model that could improve detection accuracy. Both models will be explored.

Another challenge facing error detection models is the requirement of large amounts of

data, which is affirmed by our mixed results in HCRFs. Experiments with the motivation

dataset has shown that audio cues can be an additional redundant modality. We could
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explore adapting the visual and audio classifier to a particular user or noise condition in the

same fashion as Christodias et al [9].

Dialogue Strategy

The most interesting component to follow this thesis is the dialogue management strat-

egy that will use this automatic visual error detection mechanism. Visual error detection can

improve context resolution if the speaker expresses an error during a co-occurring spoken

word. Suppose in an airline reservation system, an error was detected when the destination

was spoken, the dialogue manager could either:

1. "barge in" by interrupting the speaker's turn and say "I am sorry I did not get the

destination correctly, could you repeat it again?"

2. wait for following speaker's turn to be complete, disregard the content in his/her turn

and say "I am sorry I did not get the destination correctly, could you repeat it again?"

On the other hand, if the system cannot detect a strong co-occurrence of the spoken

word with the detected error, the dialogue manager could adopt a more generic correction

by saying something like:

"I am sorry I made a mistake, which did I get wrong? The destination city,the source

city or the time? Please say source, destination or time."

User studies will be conducted to figure out which of these two options or other better

strategies should be adopted for improving the conversation.

Another interesting issue to explore is the system design architecture for the automatic

"barge-in". Typically, the system has a task/process waiting in the pipeline, which will be

turning the microphone on for the speaker's turn. Once the error is detected, the system has

to either kill this task waiting in the pipeline or postpone it to the next conversation turn.

106



Appendix A

Plotting ROC curves

In this section, we will describe two algorithms, enumerated as algorithm 1 and 2, that

were used for plotting the Receiver Operating Characteristics (ROC) curve. All the ROC

curves in this thesis were plotted based on Algorithm 2. However, in the hidden camera

dataset, the curves published in [86] were plotted based on Algorithm 1. We will describe

their differences here. Before we do so, we will give a brief introduction to how we plot

our ROC curves in this thesis.

A.1 ROC curves: a brief introduction

In communication error detection, for a given test sequence x, our classifier yields a prob-

ability score, which represents the degree to which this sequence is a member of the com-

munication error class. Different thresholds may be applied to this score to predict the class

membership:

P(y= 1Ix) >

where y is the class label, and the label assignment 1 represents an error. If the classifier

output is above or equal to the threshold 7, the classifier produces an error, else a non-error.
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Figure A-1: Confusion matrix and the performance metrics calculated for this thesis.

Given a classifier, a threshold and a test sequence, there are four possible outcomes:

1. True positive - the test sequence is an error and is classified correctly as an error.

2. True Negative - the test sequence is a non-error and is classified correctly as a non-

error.

3. False positive - the test sequence is a non-error and is incorrectly classified as an

error.

4. False negative - the test sequence is an error and is incorrectly classified as a non-

error.

With a classifier and a set of test sequences, we can construct a confusion matrix illus-

trated in Figure A-1.

In the same figure, we used two common metrics, the true positive rate and the false

positive rate. The true positive rate is estimated as :

No. errors correctly classified
tp rate =

Total no. of errors in the test set

and the false positive rate is estimated as:
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No. non - errors incorrectly classified
fp rate =

Total no. of non - errors in the test set

ROC graphs are two-dimensional graphs where the true positive rate is plotted on the

y-axis and the false positive rate is plotted on the x-axis. At each given threshold 7 in

Eqn. A.1, an (fp rate,tp rate) pair is produced and plotted as a point on the ROC graph.

If we vary the threshold from -oo to oc, we will produce a curve through the ROC graph.

Algorithm 1, based on this idea, is described below:

Algorithm 1: Conceptual method for creating an ROC curve.
Input: L, the set of test sequences sorted according to their classifier's probability in

ascending order, q(i), the classifier's probability that sequence i is an error;

min and max, the smallest and largest values returned by q; increment, the

smallest difference between any two q values.

i for y = min to max by increment do

2 FP = 0; TP = 0;

3 foreach i E L do

4 if q(i) 7y then

5 if i is an error sequence then

6 TP = TP+1;

7 else

s FP = FP + 1;

9 end

to end

11 end

12 Add point (-, T) to ROC curve;

13 end

y is increasing from the lowest threshold to the highest one and at each given 7, we

compute an ( TP, ) pair to plot on the ROC curve. Algorithm 1, however, suffers from

creating concavities in the curve. When the threshold is incremented by one step and only a

small test set is available, it is possible that only the number of true positives have changed,
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resulting only in the change in true positive rate. A portion of the ROC curve would contain

an "L" segment. This is evident in the ROC curves published in [86], which are plotted in

the left column of Figure A-2. By definition, a classifier is potentially optimal if and only

if it lies on the convex hull [4]. Figure A-3 shows the HCRF ROC curve plotted in [86] for

visual features classification. The points a, b are located on the convex hull. Each of these

points corresponds to a specific probability threshold, thus segment C corresponds to a

probability interval. However, segment C is a concave area. Following page three of [32], a

concave area means that the ranking obtained from the classifier in this probability interval

is worse than random. One way to repair this concavity is by ignoring the probabilistic

score calculated by the classifier in this interval, and output a constant score (e.g., the mid-

point of the interval). Assuming that ties are broken by assigning a random rank, this would

replace the concave region of the ROC curve with the line segment ab. If this procedure is

followed for all concavities, this corresponds to constructing the convex hull by discretising

the probability scores. More details about removing concavities can be found in [32]. Given

this solution, Algorithm 2 is simply the convex hull of the curve generated from Algorithm

1. The ROC curves based on Algorithm 2 are plotted in the right columns of Figure A-

2. For the completeness of this thesis, the original unsmoothed ROC curves generated

from Algorithm 1 in the Tilburg dataset and the Active-Avatar datasets are plotted here

(see Figures A-4, A-5, A-6, A-7, A-8, A-9, A-10, A-11, A-12) with their corresponding

smoothed ROC curves.
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Figure A-2: (top graphs) ROC curves showing the performance of the different classifiers

of visual features. The left curve shows the ROC curve plotted using Algorithm 1 and

the right shows the same curve plotted using Algorithm 2. (bottom graphs) ROC curves

showing the performance of the different classifiers using prosody features. The left curve

shows the ROC curve plotted using Algorithm 1 and the right shows the same curve plotted

using Algorithm 2. Notice that the graphs in the left column contain many L segments or

segments that are made up of sums of multiple step functions.
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Figure A-3: The HCRF ROC curve from visual features classification and its convex hull.
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Figure A-4: ROC curves for detecting communication errors using various algorithms for
the second experiment of the Tilburg dataset. The raw unsmoothed curve is displayed the
left figure while the convex-smoothed version of the same curve is displayed on the right.
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Figure A-5: ROC curves for detecting communication errors using partition 1 of the Active-

Avatar dataset. The raw unsmoothed curve is displayed the left figure while the convex-

smoothed version of the same curve is displayed on the right.
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Figure A-6: ROC curves for detecting communication errors using partition 2 of the Active-

Avatar dataset. The raw unsmoothed curve is displayed the left figure while the convex-

smoothed version of the same curve is displayed on the right.
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Figure A-7: ROC curves for detecting communication errors using partition 3 of the Active-
Avatar dataset. The raw unsmoothed curve is displayed the left figure while the convex-
smoothed version of the same curve is displayed on the right.
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Figure A-8: ROC curves for detecting communication errors using partition 4 of the Active-
Avatar dataset. The raw unsmoothed curve is displayed the left figure while the convex-
smoothed version of the same curve is displayed on the right.
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Figure A-9: ROC
the Active-Avatar
convex-smoothed

curves for detecting communication errors using the passive partition of

dataset. The raw unsmoothed curve is displayed the left figure while the

version of the same curve is displayed on the right.
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Figure A-10: ROC curves for detecting communication errors using the active partition of

the Active-Avatar dataset. The raw unsmoothed curve is displayed the left figure while the

convex-smoothed version of the same curve is displayed on the right.
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Figure A-11: ROC curves for detecting communication errors using the no display partition
of the Active-Avatar dataset. The raw unsmoothed curve is displayed the left figure while
the convex-smoothed version of the same curve is displayed on the right.
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Figure A-12: ROC curves for detecting communication errors using the avatar partition of
the Active-Avatar dataset. The raw unsmoothed curve is displayed the left figure while the
convex-smoothed version of the same curve is displayed on the right.
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Appendix B

Briefing.Notes

This section presents the pre-experiment notes subjects had to read before they participated

in our experiments described in Chapters 3 and 5.

B.1 Hidden Camera Dataset

You are asked to try out a restaurant application developed by one of our research groups in

MIT. This application provides information about restaurants in the Greater Boston Area.

It takes your speech as audio input. Whenever you are about to speak to the system, you

will have to:

1. Face the microphone.

2. Click on the "Listen" Button on the bottom right.

3. Once you see the green words "Listening" displayed, you

system.

4. As you are talking to the system, the words "Recording

played simultaneously.

can begin speaking to the

Started" are visually dis-

5. Once you are done speaking, the words in red "Done Listening" will be appear to

signal the end of the recording.
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Below is a sequence of questions you will need to ask the system for information about

restaurants. You have to ask the questions in SEQUENTIAL ORDER. You can only proceed

to the next question when your current question is answered correctly. You can rephrase

your question to induce the correct response from the system. When you are done with

the questions, you may leave the room. The information you need to retrieve are displayed

below: Questions:

1. Ask for a display/listing of restaurants in Cambridge, or say something like, "Show

me the restaurants in Cambridge."

2. Ask for a display/listing of pizza restaurants in Cambridge.

3. Ask for a display/listing of French restaurants in Boston.

4. Ask for information about the restaurant Les Zygomates.

5. Ask for information about the restaurant Les'palier.
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B.2 Motivation Dataset

You are asked to try out a restaurant application developed by one of our research groups in

MIT. This application provides information about restaurants in the Greater Boston Area.

It takes your speech as audio input. Whenever you are about to speak to the system, you

will have to:

1. Face the microphone and the web camera.

2. Click on the "Listen" Button on the bottom right.

3. Once you see the green words "Listening" displayed, you can begin speaking to the

system.

4. As you are talking to the system, the words "Recording Started" are visually dis-

played simultaneously.

5. Once you are done speaking, the words in red "Done Listening" will be appear to

signal the end of the recording.

During the whole interaction, please keep your head in front of the camera. You will

be given a sequence of questions you will need to ask the system for information about

restaurants, and you will have to write the answer on the sheet of paper provided next to

the visual display. You have to ask the questions in SEQUENTIAL ORDER. You can only

proceed to the next question when your current question is answered correctly. You can

rephrase your question to induce the correct response from the system. On the right of the

display lists the possible words you can say to the system. There will be three sessions of

this experiment. The first session is a practice session, followed by two performance based

sessions. For each session, once you complete the tasks, you may leave the room.

1st Session: Practice

Retrieve the following information from the system by asking questions, and write your

answer using the pen and paper provided next to the computer.

Questions:
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1. Ask for a display/listing of restaurants in Cambridge, or say something like, "Show

me the restaurants in Cambridge."

2. Ask for a display/listing of pizza restaurants in Cambridge.

3. Ask for a display/listing of French restaurants in Boston.

4. Ask for the phone number of the restaurant Ten Tables.

5. Ask for information about the restaurant .

120



2nd Session: $10 reward

Retrieve the following information from the system by asking questions, and write your

answer using the pen and paper provided next to the computer. Once you complete all the

questions, and you may leave the room and you will be awarded $10.

Questions:

1. Ask for a display/listing of restaurants in Cambridge, or say something like, "Show

me the restaurants in Cambridge."

2. Ask for a display/listing of pizza restaurants in Cambridge.

3. Ask for a display/listing of French restaurants in Boston.

4. Ask for the phone number of the restaurant Ten Tables.

5. Ask for information about the restaurant .
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3rd Session: $10/$50 reward

Retrieve the following information from the system by asking questions, and write

your answer using the pen and paper provided next to the computer. You are given only 10

minutes to retrieve all the information A timer in front of you will indicate your remaining

time. If you complete all the tasks within 10 minutes, you will be awarded $50, else you

will only get $10.

Questions:

1. Ask for a display/listing of restaurants in Cambridge, or say something like, "Show

me the restaurants in Cambridge."

2. Find the phone number of the restaurant Caffe Umbra.

3. Find the phone number of the restaurant Les Zygomates.

4. Find the phone number of the restaurant Les'palier.

5. Find the nearest subway station near the restaurant King and I.
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B.3 Synthetic Expressions

Nonverbal gestures: In the following scenarios, you are required to articulate the non-

verbal facial expression of interest. You have to read the paragraphs to have an idea of the

expression expected of you. When you are done reading, click on the record button to start

recording, wait 2 secs, articulate your expression, wait another 2 secs, then click the same

button to stop recording.

Practice Session:

Scene 1:

Scenario - You are interested in this guy/lady. You happen to get this rare chance to

speak with him/her along the hallway. You are engaged in a really good conversation

with him/her. Suddenly, a friend appeared and obnoxiously interrupted your conversation.

You are annoyed but you did not say anything. The guy/lady did not see it, but someone

observing you from afar can tell you are bit annoyed.

Express your annoyance without words: (click button and wait 2 sec)-express non-

verbally- (wait 2 secs, click to stop recording)

Scene 2:

Scenario - You are in a TV game called "Jeopardy". The host asked you a question

"What is Victor Zue's favorite color?" This is a $ 400 question, you are not sure of the

answer and you did not want to make a random guess as a wrong answer would deduct

$ 400. The audience could tell that you are uncertain about your answer from your facial

expression.

Express your uncertainty without words: (click button and wait 2 sec) -express non-

verbally- (wait 2 secs, click to stop recording)

Scene 3:

Scenario - You are in a TV game called "Jeopardy". This is the sudden death round.

The host will ask a question and any participant could press the buzzer to answer it. You

are very excited as you have a good chance to win this game. You listen intently as host is

about to ask his question.

Show that you are listening intently without words: (click button and wait 2 sec) --
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express non-verbally- - (wait 2 secs, click to stop recording)
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Nonverbal Positive Expressions

Scene 1: Scenario - You received news that you won $50000 in a lottery. You are in

jubilant mood. Everyone could tell you something really good just happened to you.

Express your jubilance without words: (click button and wait 2 sec) -- express non-

verbally- (wait 2 secs, click to stop recording)

Scene 2: Scenario - You received an email from your boss congratulating you of a job

well done. You are very happy with his/her comments. You feel that your efforts have been

reciprocated. You are very satisfied.

Express your satisfaction without words: (click button and wait 2 sec) -express non-

verbally- (wait 2 secs, click to stop recording)

Scene 3: Scenario - You are making an air ticket reservation on the phone with an auto-

mated speech recognition system. You always thought that the automated system had many

difficulties recognizing your speech correctly and you are always hesitant about using them.

Surprisingly, in this conversation, the whole reservation process went very smoothly. There

were no errors in recognition of your speech. You were satisfied with the performance of

the system.

Express your satisfaction without words: (click button and wait 2 sec) -express non-

verbally- (wait 2 secs, click to stop recording)

Scene 4:

Scenario - You are in a TV game called "Jeopardy". This is the sudden death round.

The host will ask a question and any participant could press the buzzer to answer it. You

are very excited as you have a good chance to win this game. You listen intently as host is

about to ask his question.

Show that you are listening intently without words: (click button and wait 2 sec) --

express non-verbally- (wait 2 secs, click to stop recording)
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Nonverbal Negative Expressions

Scene 1: Scenario - You are making an air ticket reservation on the phone with an

automated speech recognition system. As you listen intently at the system reply to your

query, you hear an incorrect reply. This is the first incorrect reply you have heard. You are

annoyed as you have to repeat your query.

Express your annoyance without words: (click button and wait 2 sec) -- express non-

verbally-- (wait 2 secs, click to stop recording)

Scene 2: Scenario - You are making an air ticket reservation on the phone with an auto-

mated speech recognition system. As you listen intently at the system reply to your query,

you hear an incorrect reply. This is the 10th time the system has given you an incorrect

reply. You are livid. You are angry beyond words and you wish to throw something at the

phone.

Express your anger without words: (click button and wait 2 sec) -express non-

verbally- (wait 2 secs, click to stop recording)

Scene 3: Scenario - You are in a TV game called "Jeopardy". The host asked you a

question "What is Victor Zue's favorite color?" This is a $ 400 question, you are not sure

of the answer and you did not want to make a random guess as a wrong answer would

deduct $ 400. The audience could tell that you are uncertain about your answer from your

facial expression.

Express your uncertainty without words: (click button and wait 2 sec) -express non-

verbally- (wait 2 secs, click to stop recording)

Scene 4: Scenario - You are in a TV game called "Jeopardy". This is the sudden death

round. The host will ask a question and any participant could press the buzzer to answer

it. The winner of this round gets to walk away with $ 100000. You are very excited

as you think you have a good chance to win this game. The host asked his question.

You figured out the answer and quickly pressed the buzzer. Unfortunately some other

participant managed to press the buzzer before you by just a split second and that person

won the money. You could not hide your disappointment as you knew how close you were

in getting the huge prize.

Express your disappointment without words: (click button and wait 2 sec) -express
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non-verbally- - (wait 2 secs, click to stop recording)
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B.4 Active vs Passive Inputs

You are about to make airline reservations with a conversational system. You will be given

the source city, destination city, departure time and the day of your departure. You are

supposed to speak to the system to complete the reservation. The system will guide you

through to make the reservation. For each task that is successfully completed, you will hear

the sentence, "Your reservation is now confirmed. Good bye!"

Here are four reservations you have to make:

1. From Boston to San Francisco on Monday at 9 am.

2. From Boston to San Diego on Monday at 9 am.

3. From Allston to San Francisco on Monday at 9 am.

4. From Boston to San Pablo on Tuesday at 9 am.

You will need to repeat these 4 reservations under two different settings as instructed

by the experimenter.
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