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Abstract

This thesis is a study of erasures in cryptographic protocols. Erasing old data and keys
is an important capability of honest parties in cryptographic protocols. It is useful
in many settings, including proactive security in the presence of a mobile adversary,
adaptive security in the presence of an adaptive adversary, forward security, and
intrusion resilience. Some of these settings, such as achieving proactive security, is
provably impossible without some form of erasures. Other settings, such as designing
protocols that are secure against adaptive adversaries, are much simpler to achieve
when erasures are allowed. Protocols for all these contexts typically assume the ability
to perfectly erase information. Unfortunately, as amply demonstrated in the systems
literature, perfect erasures are hard to implement in practice.

We propose a model of imperfect or partial erasures where erasure instructions are
only partially effective and leave almost all the data intact, thus giving the honest
parties only a limited capability to dispose old data. Nonetheless, we show how to
design protocols for all of the above settings (including proactive security, adaptive
security, forward security, and intrusion resilience) for which this weak form of erasures
suffices.

We do not have to invent entirely new protocols, but rather show how to automat-
ically modify protocols relying on perfect erasures into ones for which partial erasures
suffices. Stated most generally, we provide a compiler that transforms any protocol
relying on perfect erasures for security into one with the same functionality that re-
mains secure even if the erasures are only partial. The key idea is a new redundant
representation of secret data which can still be computed on, and yet is rendered
useless when partially erased. We prove that any such compiler must incur a cost
in additional storage, and that our compiler is near optimal in terms of its storage
overhead.

We also give computationally more efficient compilers for a number of special cases:
(1) when all the computations on secrets can be done in constant parallel time (NCo);
(2) for a class of proactive secret sharing protocols where we leave the protocol intact
except for changing the representation of the shares of the secret and the instructions
that modify the shares (to correspondingly modify the new representation instead).
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Chapter 1

Introduction

As anyone who has ever tried to erase an old white board knows, it is often easier

to erase a large amount of information imperfectly than to erase a small amount of

information perfectly.

In cryptographic protocol design, perfect erasures, namely the complete disposal

of old, sensitive data and keys, is an important ability of honest parties in fighting

future break-ins, as this leaves no trace of sensitive data for the adversary to recover.

Examples where perfect erasures have been used extensively include the following

(elaborated in Chapter 3):

* Proactive Security: One example where some form of erasures is provably

necessary is in the setting of proactive security [74]. Here time is split into fixed

size intervals, or time periods, and a mobile adversary is considered. A mobile

adversary can corrupt different parties in different time periods, subject to an

upper bound on the total number of corrupted parties per time period. Namely,

the identity of the corrupted parties may change from one time period to the

next. Ostrovsky and Yung [74] studied the question of achieving general secure

computation and presented an information theoretic solution robust against

mobile adversaries. At the heart of their solution (as in all subsequent papers

on proactive security, for instance [41, 37, 50, 15, 65]) is a secret sharing method

in which at the end of every time period, the old shares held by parties are



first replaced by new shares and then erased. It is easy to see that proactive

secret sharing would be impossible to achieve without some form of erasures:

otherwise a mobile adversary which is able to corrupt every single party in some

time period or another can eventually recover all old shares for some single time

period and recover the secret.

" Forward Security: Erasures are essential to even define (as well as solve)

forward security [45, 25]. Forward security is an approach taken to tackle the

key exposure problem, so that exposure of long-term secret information does

not compromise the security of previous sessions. This notion was first pro-

posed in the context of key-exchange protocols by Giinther [45], Diffie, Van-

Oorschot, and Weiner [25], and by Anderson [2] for the challenging setting of

non-interactive public-key encryption. Again, the lifetime of the system is di-

vided into N intervals (or time periods). The receiver initially stores the secret

key SKo and this secret key "evolves" with time: at the beginning of time pe-

riod i (or, one can think of it as the end of time period i - 1), the receiver

applies some function to the previous key SKi-1 to derive the current one SKi;

then SKi-1 is erased and SKi is used for all secret cryptographic operations

during period i. To make such a scheme viable, the public (encryption) key re-

mains fixed throughout the lifetime of the scheme. A forward-secure encryption

scheme guarantees that even if an adversary learns SKi (for some i), messages

encrypted during all time periods prior to i remain secret. Obviously, forward

security is provably impossible to achieve without some form of erasures.

* Intrusion-Resilience: Intrusion resilience is a strengthening of forward secu-

rity [56] which can be viewed as combination of forward and backward security,

i.e. an adversary that attacks the system and gets the current key at time t

cannot compromise the security of sessions either before t (forward security) or

after (backward security). Again as in the case of forward security it is straight-

forward to see that intrusion resilience is impossible to achieve without some

form of erasures.



Adaptive Security: An example of a different flavor of the utility of erasures

is in adaptive security, which guards against adversaries that can choose which

future parties to corrupt as the protocol proceeds, based on information already

gathered. Erasures are useful in this context since they limit the information

the adversary sees upon corrupting a party. Indeed, although protocols have

been designed which remain secure even without erasures, these tend to be much

more complex than those that rely on data erasures [57, 14, 8, 76].

Unfortunately, perfect erasures of data are hard to achieve in practice and thus

it is problematic to assume that they are available, as pointed out by Jarecki and

Lysyanskaya [57] in their study of adaptive adversaries versus static adversaries in

the context of threshold secret sharing.

Some of the difficulties in implementing perfect erasures are illustrated in the

works of Hughes and Coughlin, Garfinkel, and Vaarala [52, 53, 38, 81]. The root

cause of the difficulties is that systems are actually designed to preserve data, rather

than to erase them. Erasures present difficulties at both the hardware level (e.g. due

to physical properties of the storage media) and at the software level (e.g. due to the

complications with respect to system bookkeeping and backups). At the hardware

level, e.g. for hard drives, the Department of Defense recommends overwriting with

various bit patterns [73]. This takes the order of days to complete per 100GB, and

is not fully effective because modern hard drives use block replacement and usually

employ some form of error correction. For main memory, due to "ion migration", there

is the memory remanence effect - previous states of memory can be determined even

after power off. At the software/operating systems level, many operating systems

detect and remap bad sectors of the hard drive on the fly. Such a remapping is

stored in the drive's file system, thus providing a software layer of hard disk defect

management. Original data can remain in the bad sectors and be recoverable to a

certain extent, even if these sectors are labeled "bad" and are not considered part

of the storage anymore. Erasures also complicates the management of the virtual

memory system: sensitive data in memory might be paged onto the hard drive. In

fact the entire memory contents will be saved onto the hard drive when a system



hibernates. Chapter 4 elaborates on the difficulties of implementing perfect erasures.

1.1 New Model: Partial Erasures

In light of the above difficulties, we propose to study protocols that can guarantee

security even when only imperfect or partial erasures are available.

The first question to be addressed is how to model erasures that are only partially

effective. One option is to simply assume that each erasure operation succeeds with

some probability. However, such a modeling does not capture all the difficulties

described above. In particular, it allows obtaining essentially perfect erasures by

applying the erasure operation several times on a memory location; therefore such

a model is unlikely to yield interesting or effective algorithms. In addition, such

modeling does not take into account potential dependencies among information in

neighboring locations.

We thus take a much more conservative approach (elaborated in Chapter 5).

Specifically, we model partial erasures by a length-shrinking function h: {0, 1)m -

{0, 1)}' LJ, that shrinks stored information by a given fraction 0 < 4 _ 1. We call q

the leakage fraction and h the partial-erasing function. When 4 = 0 then we get the

perfect erasures case; when ¢ = 1 nothing is ever erased. For the rest of the thesis

we can think of ¢ being a value close to 1 (namely, the size of what remains after

data is partially erased is close to the original size). Note that we do not require that

¢ be a constant - for instance, for reasonable settings of the parameters, it may be

Iy-close to 1, where a is a security parameter of the protocol in question.

The shrinking function itself may be chosen arbitrarily, subject to the leakage

fraction constraint. That is, one may view it as being chosen adversarially in the

worst possible way. In particular, it is not limited to outputting exact bits, and any

length-shrinking function (efficiently computable or not) on the inputs is allowed.

This modeling captures the fact that the remaining information may be a function of

multiple neighboring bits rather than on a single bit. It also captures the fact that

repeated erasures may sometimes not be more effective than a single one.



The function h is assumed to be a function only of the storage contents to be

erased. Furthermore, for simplicity we assume that h is fixed in advance - our schemes

remain secure without any modification even if the adversary chooses a new hi prior

to each new erasure. This choice seems to adequately capture erasures that are only

partially successful due to the physical properties of the storage media. (Indeed,

physical properties of the storage are mostly fixed at the factory; from then on the

behavior of the hardware only depends on what is written.) However, this modeling

may not adequately capture situations where the failure to erase comes from interac-

tions with an operating system, for instance memory swapping, and caching. In order

to capture this sort of erasure failures, one might want to let h depend on information

other than the contents to be erased, or alternatively to be determined adaptively as

the computation evolves.

We treat m, the input or block length of h, as a system parameter. (For instance,

m might be determined by the physical properties of the storage media in use.) The

larger m is, the more difficult it is to replace perfect erasures by partial erasures,

because the shrinking function h gets to correlate more bits at a time and thus the

adversary learns more information from the partially erased data. One can generalize

the current model to consider the cases where h is applied to variable-length blocks,

and where the block locations are variable.

We can view partial erasures as a special case in the more general framework of

side channel attacks which takes into account the physical nature of computation, as

opposed to an idealized, abstract computation model like Turing Machines (which

can, among other things, overwrite data). See [69] for an elegant model of compu-

tation which explicitly captures physical attacks, and for schemes that are provably

secure against all physically observable attacks. We stress that in this work we focus

only on partial erasures. In particular, the adversary is not allowed physical access

to the parties before corruption, and so is not allowed to measure say the time or

power taken to do some computation, or to monitor the electromagnetic radiation.

If these side channel attacks are a concern, then they have to be dealt with in other

ways - for instance using provably secure schemes given in [69], or using heuristic



countermeasures like shielding the hardware to reduce radiation, power filtering and

balancing, and injecting noise to the side channel.

1.2 Our Memory Model

We envision that processors participating in protocols can store data (secret and

otherwise) in the CPU registers, as well as in the cache, main memory (RAM), and

hard drives. We assume all types of storage are only partially erasable with the

exception of a constant number of constant size CPU registers, which are assumed

to be perfectly erasable. We call this memory model the register model. We remark

that it seems very reasonable to assume that a constant number of constant size

CPU registers can be effectively erased, whereas the main memory, hard drives, etc.

cannot.

We emphasize that having a constant number of constant size registers being

perfectly erasable just means that we have perfect erasures only for some constant

amount of space. This limitation ensures that we cannot use the registers to (effec-

tively) perfectly erase all other types of storage and thus trivially circumvent the lack

of perfect erasures for them, since at no time can the registers hold any non-negligible

part of the secret.

We shall use these perfectly erasable registers to perform intermediate local com-

putations during the execution of our protocols. This will allow us to effectively ignore

the traces of these computations, which would otherwise be very messy to analyze.

1.3 Results and Techniques

Our main result is a compiler that on input any protocol that relies on perfect erasures

for its security (proofs), outputs a protocol with the same functionality that remains

secure even if the erasures are only partial. We assume that the original protocol

uses two types of storage - one that is (perfectly) erasable, and one that is persistent

(never going to be erased). Of course, this persistent part need not be changed, so



in the sequel we will ignore this part of the storage, and our transformation applies

only to the erasable part. (In particular, in the case of a single secret, the erasable

part is a single secret.) Consequently, when we focus on the erasable part of the

storage and analyze the storage and computation costs of our transformation, we will

be overstating the costs: in reality, a large part of the storage is persistent, and there

is no storage or computation blow up for this part.

1.3.1 Main Idea

The idea, elaborated in Chapter 6, is to write secrets in an encoded form so that, on

the one hand, the secret can be explicitly extracted from its encoded form, and on

the other hand loss of even a small part of the encoded form results in complete loss

of the entire secret. (In that sense, our encoding achieves a goal which is the exact

opposite of the goal in constructing error correcting codes.)

Perhaps surprisingly, our encoding results in expanding the secret so that the

encoded information is longer than the original. We will prove that expanding the

secret is essential in this model (see more discussion below). This expansion of secrets

seems a bit strange at first, since now there is more data to be erased (although only

partially). However, we argue that it is often easier to erase a large amount of data

imperfectly than to erase even one bit perfectly.

We describe the compiler in two steps. First we describe a special case where

there is only a single secret to be erased. Next we describe the complete compiler.

Our technique for the case of a single secret is inspired by results in the bounded

storage model, introduced by Maurer [67, 68]. Work by Lu [63] casted results in the

bounded storage model in terms of randomness extractors [72], which are functions

that when given a source with some randomness, "purifies" and outputs an almost

random string.

At a high level, in order to make an n-bit secret s partially erasable, we choose

random strings R, X and store (R, X, Ext(R, X) E s), where Ext is a strong extractor

that takes R as seed and X as input, and generates an n-bit output. (That is,

(R, Ext(R, X)) is statistically close to uniform as long as the input X has sufficient



min-entropy.) To erase s, we apply the imperfect erasure operation on X. Both R

and Ext(R, X) @ s are left intact.

For the sake of analysis, assume that iXI = m, where m is the input length for

the partial erasure function h. Recall that erasing X amounts to replacing X with

a string h(X) whose length is Om bits. Then, with high probability (except with

probability at most 2-(1-€)m/2), X would have about (1 - ¢)m/2 min-entropy left

given h(X). This means that, as long as (1 - ¢)m/2 > n, the output of the extractor

is roughly 2-(1-0)IX|/ 2-close to uniform even given the seed R and the partially erased

source, h(X). Consequently, the secret s is effectively erased.

There is however a snag in the above description: in order to employ this scheme,

one has to evaluate the extractor Ext without leaving any trace of the intermediate

storage used during the evaluation. Recall that in our model the size of the perfectly

erasable memory is constant independently of n, the length of the secret. This means

that Ext should be computable with constant amount of space, even when the output

length tends to infinity. We identify several such extractors; one such extractor that

will give us good parameters (see below) is universal hashing with Toeplitz matrices

[66]. It would seem superficially that locally computable strong extractors [82] can

be used, but unfortunately they cannot, as we show in theorem 6.3.9 on page 97.

1.3.2 The General Compiler

Now let us move on to describe the general compiler, elaborated in Chapter 7. Since

the stored data is represented differently now, one has to make sure that computations

on the stored data can still be done, and in addition that the computations be in the

register model (so that the process will not leak too much useful information).

Suppose we want to compute some function g (represented as a circuit) on some

secret s, only now, s is replaced by a representation that is partially erasable, and we

would like to make sure that we can still compute g(s). We are going to evaluate the

circuit in a gate-by-gate manner where the gate inputs are in expanded form. The

inputs are reconstructed in the registers, and the gate is evaluated to get an output,

which is in turn expanded and stored outside of the registers (see Figure 1-1). In



Original Computation New Computation

PE(X(s[i], s[]))

\ "Expansion" /

X(s[i], s[j])

in the registers

s[i] s[j] s[i] s[j]
S\/

/ "Contraction"

PE(s)

(PE(o) is the partially erasable form of its argument)

Figure 1-1: Computations Involving Secret s

more detail, consider a gate X, that takes the i-th and the j-th bit of s as the input.

First we reconstruct the two bits s[i] and s[j] in the registers, evaluate the gate, and

then output the result of this intermediate computation in partially erasable form

into the main memory. We do this for each gate, which may have either s or the

results of intermediate computations as input. One concern is that since some small

(negligible) amount of information is leaked at each partial erasure, then perhaps the

overall amount of information learned by the adversary during the entire computation

is large. We show that this is not the case. Specifically, we show that as long as the

number of erasure operations is sub-exponential, the overall amount of information

gathered by the adversary on the erased data is negligible.

'1

:



Throughout, we describe the construction as a general compiler, but it could be

implemented as a transparent layer between the existing code and the CPU hard-

ware. This transparent layer could for instance be implemented in hardware, to get

a commodity processor that automatically makes all the secrets partially erasable.

For maximum generality we formulate our results in the Universally Composable

(UC) framework. In particular we use the notion of UC-emulation, which is a very

tight notion of correspondence between the emulated and emulating protocols. Our

analysis applies to essentially any type of corruption - adaptive, proactive, passive,

active, etc. That is, we show:

Theorem 1.3.1 (informal). For any protocol IIorg that uses perfect erasures, the

protocol IInew := COMPILER(Ilorg) UC-emulates Ifog, using only partial erasures in

the register model. For leakage fraction of q, if Iog uses n bits of storage then HIIn,

uses about 12-n bits of storage. Assuming 0 > 1/4, if IIorg uses n bits of storage then

Hnew uses about -,-n bits of storage, for 1 < c < 2 a constant.

Optimality of the scheme. One of the main cost parameters of such compilers

is the expansion factor, namely the amount by which they increase the (erasable

part of the) storage used by the scheme. That is, a compiler has expansion factor

T if whenever Hor, uses n bits of storage, IIn,, uses at most Tn bits of storage. It

can be seen that our compiler has expansion factor T < 1 + v(n) where v is a

negligible function. If we are given that ¢ > 1/4, then our compiler has expansion

factor T < 0 + v(n) where v is a negligible function and 1 < c < 2 is a constant.

We show that our construction is at most twice the optimal in this respect. That

is, we show that any such compiler would necessarily have an expansion of roughly

T> •-•. This bound holds even for the simplest case of compiling even a single secret

into one that is partially erasable. Roughly speaking, the argument is as follows. If we

do not want to leak any information on a secret of n bits the function h must shrink

the expanded version of s by at least n bits. However, h shrinks by only (1 - ¢)Tn

bits and therefore, (1 - 0) Tn > n = 'I > 1

24



1.3.3 Some Specific Solutions

In addition to the general compiler, we describe some special-tailored solutions to two

specific cases. The first case is where all the functions to be evaluated on the secrets

can be computable by NCo circuits, elaborated in Chapter 8. The second case is the

case for all known proactive secret sharing schemes, elaborated in Chapter 9. These

solutions are computationally more efficient since they do not require running the

compiler on a gate-by-gate basis. In particular, in the first case, since each output bit

can be computed with only a constant number of input bits, we can afford to keep all

the input bits required in the registers and compute each output bit in "one-shot". In

the second case of proactive secret sharing, we can apply our expanded representation

directly to the secret and its shares, and correspondingly modify the instructions that

operate on the shares, leaving the rest of the protocol intact. In both cases we avoid

partially erasable computation at the gate level, and thus the resulting protocols are

more efficient computation wise than via the general compiler. Note that this greater

efficiency also translates into tighter security - for instance if the original protocol

assumed some timing guarantees, then the new protocol need not assume a timing

that is much looser than the original.

1.3.4 Resistance Against a Practical Class of Attacks

As a side benefit of using our compiler, attacks like the "cold reboot" attacks employed

by [47] could effectively be ruled out. Their attack is a recent example of exploiting

the remanence effect on DRAM to break popular disk encryption schemes.

First, they experimentally characterize the extent and predictability of memory

remanence and report that remanence times can be increased dramatically with simple

techniques. They observed that at room temperature, the time until complete data

loss (in various memory technology they tested) varies between approximately 2.5

and 35 seconds. By discharging inverted cans of "canned air" duster spray directly

onto the chips, they obtained surface temperatures of approximately -50"C. At these

temperatures, it was found that about 0.1% of bits decayed after 60 seconds and fewer



than 1% of bits decayed even after 10 minutes without power. However, this decay

rate increases dramatically with time: even if the RAM modules were submerged in

liquid nitrogen (ca. -196 'C), roughly 0.17% would have decayed after 60 minutes out

of the computer.

Second, they offer new algorithms for finding cryptographic keys in memory images

and for correcting errors caused by bit decay.

Third, combining their first two techniques of increasing remanence time and key

extraction, they show that their attack is practical by mounting attacks on popular

disk encryption systems - BitLocker, FileVault, dm-crypt, and TrueCrypt - using

no special devices or materials. They exploited the remanence effect to attack these

systems by recovering the key (permanently residing on a "secure", inaccessible part

of the disk) that was loaded into main memory (while the user was using the disk).

Fourth, they conclude that the memory remanence effect severely limits the ability

of an operating system to protect cryptographic key material from an attacker with

physical access, and discuss several strategies for partially mitigating these risks,

noting that there is no simple remedy that would eliminate them.

If our techniques are used to store secrets and compute on them in a partially

erasable way, then the system would be "resistant" to the freezing attacks in the

following sense. Decide how long you are willing to wait around your computer after

power off- say 10 seconds, to prevent the adversary from physically accessing it before

10 seconds have elapsed. Experimentally characterize (or look up) what the decay

rate r for your memory technology is after 10 seconds. (We stress that [47] observed

that newer memory technology exhibits higher decay rates and those that they tested

completely decayed after 2.5 to 35 seconds.) Then, choosing the parameters for the

expanded form such that (1 - 0) < r would effectively rule out the attack. In other

words, once 10 seconds have passed, the partial erasures that occurred "naturally"

(due to the physical characteristics of RAM), would in effect be as good as perfect

erasures.

Notice one subtle point here: that this does not require the honest parties to

explicitly issue an "erase" command on the RAM. This is certainly good for security



since otherwise, the component issuing the "erase" command would then itself be

susceptible to attack/circumvention. For instance, if the BIOS is coded so that it

zeros out the RAM before the system boots, then the attacker can just code a modified

BIOS which does not perform zeroization and move the RAM chips to that system; if

the OS scrubs memory before shutting down, then the attacker can briefly cut power

to the machine, then restore the power and boot a custom kernel.

1.4 Related Work

1.4.1 The Bounded Storage Model (BSM)

Much of modern cryptography relies on computational assumptions on the adversary.

The Bounded Storage Model (BSM) proposed by Maurer [67, 68], makes in contrast

assumptions on the storage capabilities of the adversary. These assumptions enables

novel approaches to the secure communication problem as follows.

As usual communicating parties A and B begin with a short initial secret key

k. They use this key k and access to a very long public random string R in order

to derive a longer key X which will enable them to communicate privately over the

public channel by simply using X as a one-time pad. The key (or one-time pad)

derivation protocol takes place in two phases.

Phase I: During this phase all parties (A, B, and the adversary) have access to

the long random string R. A and B (non-interactively) apply a public key-deriving

function f to (k, R) to derive the long key X that they can use as a one-time pad.

The adversary which has access to R is space bounded, and cannot store all of R.

This is formalized by modeling the adversary's storage with a length-shrinking storage

function he, i.e. a function he : {O, 1}* -+ {0, 1}* s.t. Vx, Jh(x< , where ¢ is a

constant 0 < ¢ < 1 which is called the storage fraction of the adversary (or of function

he). The best the adversary can do at this phase is to store hO(R).

Phase II: The common random string disappears. In this phase, the honest parties

use their derived key X to encrypt their communication. The question is, how much



information can the adversary find about X? A sequence of works including [68, 7,

33] culminated in showing that, for ¢ arbitrarily close to 1, there exists an explicit

key-deriving function f such that, X = f(k, R) is e-close to uniform given k, ho(R).

Namely, even if the adversary is given the initial secret key k at this point (in phase

II), on top of he(R) that it stored in phase I, it still cannot distinguish X apart from

random with probability more than e.

The ideas emerging from the BSM research inspire a way to capture some weak

form of erasures. In particular, the information about R (the long common random

string) stored by the bounded-space adversary in the BSM model was captured by

computing an arbitrary length-shrinking function applied to R. In the partial erasures

setting we will use the same kind of length-shrinking function to capture the act of

partially erasing old shares of a secret.

However, the settings of the BSM and partial erasures are fundamentally different.

In the BSM possibility is proved by putting limitations on the adversary (storage),

whereas in our work possibility is achieved in spite of putting limitations on the

honest parties (erasing capability). Thus, although some of techniques are similar the

underlying setup is entirely different.

From a technical point of view there are two differences we emphasize as well.

Firstly, the extractors that we use must be computable with the constant number

of constant size registers, whereas in the BSM the extractors are not necessarily

computable with constant size memory.

Secondly, in the BSM, it is assumed that the adversary's storage bound remains

the same as time goes by, namely a constant fraction ¢ of r, the length of Ri.

Whenever the adversary gets access to new information (e.g. Ri+1 ), it has to up-

date the information Qj kept in its storage (e.g. by applying some update function

g : {0, 1} x {0, 1}' - f{0, 1}r, on (Ri+l,Qji) to get Qi+I). The same assumption

holds for results in the bounded retrieval model [24, 22, 31, 32, 34]. For instance [34]

constructs intrusion resilient secret sharing schemes by making the secret shares large

and assuming that the adversary will never be able to retrieve any piece completely.

On the other hand, for partial erasures this bound on the storage is unreasonable,



and we allow the adversary's storage to grow with time, namely he gets 5 fraction of

some Ri for each erasure operation.

1.4.2 Exposure Resilient Functions (ERF)

Exposure-resilient functions, or ERFs, were introduced by Canetti et al. [12, 26]. An

£-ERF is a threshold function with a random input, which if the adversary learns all

but f bits of the input, cannot distinguish the output of the function from random.

Formally, a function f : {0, 1}m -* {0, 1}" is f-ERF if for any choice of m - f bits

and for x $ {0, 1}m and u {0$ , 1}n , given the m - f bits of x, f(x) and u are

indistinguishable, either perfectly, statistically or computationally.

The ERF objectives seem very similar to partial erasures. However, the settings

are different. It turns out that in partial erasures we would think about our inputs as

consisting of two parts, so to aid comparison, below we use the same notation, (R, k),

to denote the input.

In ERFs:

(a) There is a fixed known function f.

(b) The adversary chooses up to m - £ bits of (R, k).

(c) The adversary sees his choice of the bits of (R, k).

(d) The adversary attempts to guess f(R, k), using his knowledge of (R, k).

In partial erasures:

(a) There is a fixed known function f.

(b) The adversary chooses a shrinking function h(.) to apply on k, leaving up to

m - £ bits.

(c) The adversary sees the result of function h(.) applied on k, and also sees inde-

pendently chosen new data R.

(d) The adversary attempts to guess f(R, k), using his knowledge of h(k) and R.



Notice that in (b) for ERFs, it is crucial that the adversary only gets to choose exact

bits of (R, k) to see, otherwise he can just compute f(R, k) and store (parts of) it.

On the other hand, in (b) for partial erasures, the adversary can get to store h(k),

which represents arbitrary m - f bits of information about k. This is because R will

only be seen by the adversary later (in (c)), and will thus be independent of h(o) and

k regardless of whether h(o) outputs only exact bits of its input or not.

Therefore, due to the difference in settings, ERFs can only tolerate adversaries

knowing m - f exact bits, whereas partial erasures can tolerate leakage of m - f

arbitrary bits of information.

1.4.3 Encryption as Erasures

One straightforward way of achieving secure erasures is to keep the data in encrypted

form and the key on some secure part of the storage that is assumed to be perfectly

erasable. When the data is to be erased, erasing the key suffices. Without the key,

the encrypted data is useless, and so in this sense the data has been erased.

In more detail, as Di Crescenzo et al. [21] noted, one simple but inefficient way

to implement erasable memory can be obtained by using the crypto-paging concept

of Yee [83]. Assume that we have a linear amount of perfectly erasable memory

Perfect, and we want to make the other part of the memory Persistent (poly sized)

into an erasable one, despite the fact that what is stored in Persistent remains

there forever. The preprocessing stage consists of choosing a secret key kI for an

encryption scheme (Gen, Enc, Dec), storing it in Perfect, and using it to encrypt

the contents (say C1, C2) to be stored in Persistent. When CI is to be erased,

Persistent = Enck (C1, C2) is decrypted and a new key k2 is chosen (replacing k1)

and used to encrypt C2, which is then stored back to Persistent. If the adversary

breaks in at this time, he gets Enck& (C1, C2), Enck 2(C2), and k2, so he recovers C2.

However, without k1, C1 is effectively erased. Di Crescenzo et al. improve on the

efficiency of this scheme.

To achieve statistical security, Shannon's classic result [80] implies that this secure

part of the storage has to be of size at least as large as the other part, so such a solution



is not too interesting. On the other hand if only computational security is desired,

then this secure part of the storage only needs to be linear in the security parameter,

and the other part of the storage can be polynomial.

In contrast, using our compiler, we achieve statistical security only assuming that

constant sized registers are perfectly erasable. Even without using our general com-

piler, we can directly apply our ideas to the "encrypted erasures" described above, to

get computationally secure erasures. The advantage of using our ideas here is that the

assumption is weakened (from having perfect erasures for a linear storage to having

perfect erasures for a constant sized storage).

1.5 Organization

In this chapter we gave an overview of the utility of perfect erasures, and the diffi-

culties in implementing them. As such, we proposed a model of imperfect or partial

erasures, in which only the constant number of constant size CPU registers need to

be perfectly erasable. We then sketched our main result, a compiler that essentially

replaces the use of perfect erasures in protocols by partial erasures, and discussed its

optimality. We also discussed related work.

The chapters that follow will elaborate on these points in the same order. We

start with some preliminaries in Chapter 2. In Chapter 3 we give a high level survey

of the protocols that use perfect erasures, either because of efficiency reasons or

impossibility results and lack of other tools/assumptions. In Chapter 4 we look at

the difficulties in implementing perfect erasures in practice. In Chapter 5 we give the

precise model of computation we are working with, and in Chapter 6 we introduce

our main idea of keeping secrets in a partially erasable manner. Building on this

idea, in Chapter 7 we give our main result, a compiler that on input any protocol

relying on perfect erasures for security, outputs one with the same functionality that

remains secure even if the erasures are only partial. The input protocol could be one

that is adaptively secure, forward secure, intrusion resilient, proactively secure, etc.

As an example, we will apply our general compiler to Beaver and Haber's adaptively



secure encryption protocol. In Chapters 8 and 9 we describe special-tailored (and thus

computationally more efficient) solutions to two specific cases: in Chapter 8 we look

at the case where all the functions to be evaluated on the secrets can be computable

in constant parallel time, NCo, and in Chapter 9 we look at secret sharing in the

mobile adversary model with partial erasures. In Chapter 10 we conclude with some

remarks.



Chapter 2

Preliminaries

2.1 Statistical Distance and Entropy

Definition 2.1.1 (Statistical Distance). Suppose that X and Y are two discrete

random variables over the same finite set Z. The statistical distance between X and

Y is defined as:

A(X; Y) := P( = z) - P(Y = z).
zEZ

We will write Un to denote the uniform distribution over {0, 1}n, and UA to denote

the uniform distribution over the set A.

Definition 2.1.2 (Statistical Distance from Uniform). We define the statistical dis-

tance from uniform to be:

d(X) := A(X; Ux).

Also define:

d(X|Y) := P(Y= y) -d(X Y = y)

= EP(Y=Y))E P(X=xY
U/ x

=y) 1-

Notice that this is just a short hand for A(X, Y; Uz, Y), and if this quantity is

small, it means that X is as good as random, even in the presence of Y. We say



that a random variable X is 6-uniform given Y to mean that d(XIY) < 6. Note

that the notation of d(XIY) is some what non-standard in probability theory, which

would have been written E[d(XIY)] instead, but is consistent with the notation used

in information theory (e.g., jumping a bit ahead, the conditional entropy H(XIY) is

also an expected value).

A lemma we will use later on is:

Lemma 2.1.3.

d(XIY) < 2d(XY).

d(X Y) = P(Y = y) P(X = xIY =y)
y x

= '- P(X=xY=y)-- P(

+ -2 Ix< E EP(X x=Y Y) -Xyy X

= d(XY) + d(Y)

< 2d(XY).

(2.1)

1

Y = y)

Definition 2.1.4 (Guessing Probability). Let X be a discrete random variable taking

values on a finite set X. The guessing probability -y(X) of X is defined to be:

y(X) := max {P(X = x)}.
xEX

Definition 2.1.5 (Collision Probability). Let X be a discrete random variable taking

Proof.



values on a finite set X. The collision probability K(X) of X is defined to be:

K(X) := EP(X = x)2 .
xEX

Theorem 2.1.6. Let X be a discrete random variable taking values on a finite set X

of size IXI, such that X is 6-uniform on X. Let y denote y(X) and K denote r(X).

Then we have:

1. I >-
T- li

2. -2 < <_< 1 + ±6

Proof.

1. This follows from the fact that if n real numbers al,..., a, sum to 1, then the

sum of their squares have to be at least 1/n:

0< (ai- 1/n) 2 = 2(a - 2ai/n + 1/n 2) -- -i1/n.

Taking ai := P(X = zi) and n := X, we see that by definition, , = I Zc,
and this completes the proof.

2. Let x* := arg maxxex{P(X = x)}.

First inequality, y2 < K:

S:= P(X = X)2

xEX

= E P(X = x) 2 + P (X = x *) 2

XEX\{x*}

= E P(X = x) 2 + 2

XEX\{x*}



Second inequality, K < -y:

E:= ZP(X = x) 2

xEX

-< EP(X = x)P(X = x*)
xEX

= P(X = x*) P(X = x)
xEX

Third inequality, y i + 6:

:= max P(XES) - ISCx |X|

1
- P(X = *) - II

Theorem 2.1.7. Let X be a discrete random variable taking values on a finite set X

of size IXI, such that X is 6-uniform on X. Let K denote K(X). Then we have:

1 + 462

-IX

Proof. If 6 = 0 the theorem follows from theorem 2.1.6. So let us assume that 6 >

0. By definition 6 := EXEXI P(X = x) - I, and we can define qx to be q,

1 P(X = x) - 4. Then we have that qx are real numbers such that Exexq = 1,

and:

qx = 0
xEX



S q)2
xEX

462 x
xEX "I '

and therefore,

-< q2

variable X is defined to be: xEX4 1

Definition 2.1.8 (Min Entropy). The min-entropy Hoo(X) of a discrete random

variable X is defin(X)ed to be:

A random variable X is said to be a k-source if it has min-entropy k, i.e., H,(X) =

k. The min-entropy H,(X) of a random variable X is a "worst-case" measure of the

randomness, in the sense that if H,(X) = k, then maxXEx P(X = x) _< -, which

implies that the support of X must be at least 2
k . By the birthday paradox, we

expect to have to take more than 2 k/2 samples before we see a collision.

Definition 2.1.9 (Renyi Entropy). The Renyi entropy H2(X) of a discrete random

variable X is defined to be:

H2 (X) := log2 X)



Definition 2.1.10 (Shannon Entropy). The Shannon entropy H(X) of a discrete

random variable X is defined to be:

H(X) := P(X = )log 2 (P(X = ))

Definition 2.1.11 (Joint and Conditional Shannon Entropy). Define the joint Shan-

non entropy between discrete random variables X and Y to be:

Z P(X=,Y = y) log2
(x,y)EXxy

P(X=X,Y=y)

and the conditional entropy of X given Y to be:

H(XIY) := P(Y = y)H(XIY = y). (2.2)
Y

Theorem 2.1.12 (Chain Rule for Shannon Entropy). Let X and Y be discrete ran-

dom variables. Then:

H(X, Y) = H(X) + H(Y|X) = H(Y) + H(XIY). (2.3)

Proof.

E P(X =x,Y =y) log2
(X,y)EXxy

= P(X
(X),y)Exy

= x)P(Y = ylX

P(X = x,Y = y)

=)log
2 P(X = x)

+ 1 P(X = x)P(Y = y|X = )) 10g2+ X P(XX=x)PP(Y = y(X = X)log(
(x,y)EXxy

= EP(X=
XEX

+ZP(X
xEX

x) log2 ( P(X = X)) P(Y
yYE

= ) Z P(Y = yIX = X) log2
yEy

= yX = )

P(Y = ylX = x)
= H(X) + H(YIX).

H(X, Y) :=

H(X, Y)



The symmetric equality, reversing the roles of X and Y, can be obtained by noting

that the proof above does not use anything particular about X versus Y. O

Let X 1, ..., X, be discrete random variables. The above theorem can be easily

generalized to:

(2.4)H(Xi, ...I X,) = H (Xi|X1, ..., Xi-1).
i=1

Definition 2.1.13 (Mutual Information). The mutual information between two dis-

crete random variables X and Y is defined to be:

I(X; Y) :=
SP(X=,Y=y)log( P(X = X, Y = y)

SEP(X = x, Y = y) log 2 p = xY y)

(X,)EXXYP(X = )P(Y = y)

From definitions 2.1.10, 2.1.11, and 2.1.13, it is easy to show that:

I(X; Y) = H(X) - H(XIY) = H(Y) - H(YIX).

(2.5)

(2.6)

Definition 2.1.14 (Conditional Mutual Information). The conditional mutual in-

formation of discrete random variables X and Y given Z is defined by:

I(X; YIZ) := H(XIZ) - H(XIY, Z). (2.7)

Theorem 2.1.15 (Difference in Unconditional and Conditional Mutual Information

is Symmetric). For discrete random variables X, Y, and Z,

I(X; Y) - I(X; YIZ) = I(X; Z) - I(X; ZIY) = I(Y; Z) - I(Y; ZIX). (2.8)

I(X; Y) - I(X; YIZ) (2.6,2.7)

(2.6,2.7)

(H(X) - H(XIY)) - (H(XIZ) - H(XIY, Z))

(H(X) - H(XIZ)) - (H(XIY) - H(XIY, Z))

I(X; Z) - I(X; ZIY).

Proof.



The symmetric equality, reversing the roles of X and Y, can be obtained by noting

that the proof above does not use anything particular about X, Y, or Z. O

Theorem 2.1.16 (Chain Rule for Mutual Information). Let X 1, ..., X, be discrete

random variables. Then:

n

I(X1, ... , Xn;Y) = I (Xi; YX1, ...,XIi).
i=1

Proof.

(2. n n

( .X4; Y) -) H(X i, ... , X ) - H(XI, ... , X , Y)

n(2.4) I(X ; Y|Xl, ... , Xi_ 1 ) .

i=1

(2.9)

Lemma 2.1.17 (Statistical Distance and Entropy). If X is a discrete random variable

taking values in X := {0, 1}", and d(X) < 1/4, then:

n - H(X) < 2d(X) log 2
2d(X)

2
d(X) 2 < n - H(X).In 2

(2.10)

(2.11)

Proof. This lemma is a special case of theorem 16.3.2 and lemma 16.3.1 of [19]. The

function f(t) = -t log t is concave, positive between 0 and 1, with f(0) = f(1) = 0.

Consider the chord of the function from t to t + v, where v < 1. The maximum-2
of the absolute slope of the chord is at either end, when t = 0 or 1 - v. Hence for

0 < t < 1 - v, we have:

If(t) - f(t + v) I < max{f(v), f(1 - v)} = -v log v.

and:

(2.12)



Let Y be a random variable uniform on {0, 1}", and g(z) := IP(X = z) - P(Y = z)I

= P(X = z) - 1 . We are given that d(X):= • z xe P(X = x) - 1; in

other words, the L1 distance between X and Y is I|X - YII = ZEZx g(z) 5 1. Then,

n - H(X) = H(Y)- H(X) I

= ( - P(Y = z) logP(Y
zEX

< 1 (-P(Y
zEX

= z) + P(X = z) log P(X = z))

= z) log P(Y = z) + P(X = z) log P(X = z)) I

1< If (P(Y = z)) - f(P(Y
zEX

(2.12)
& E -g(z) log g(z)

zEX

xg() log
zEX - Yll1

S-X - YI1A
zEX

g(z) log
IIX - Y|11

g(z)
IIX- YII1 -Y
g(z)

| X-Y111

g(z) log IIX - YII1
zEX

-g(z) log g(z)
-= IIx - 1 IX - Y 1l

-I1X - Y11 log |IX - Y| 1

< lX - YJi1 log JX - IIX - Yjj log IjX - YjI 1

Ixl
IIX - Y l|1

2"
- 2d(X) log 2

2d(X)t

For the second inequality, we refer the reader to [19].

Analogous versions of these inequalities hold in the case where the distributions

involved are conditional, i.e.,

2"
n - H(XIY ) 5 2d(XIY ) log 2

2d(XIY)'



and:

2-d(XIY)2 < n - H(XIY).In 2

2.2 Cryptographic Primitives

2.2.1 Hash Functions

Definition 2.2.1 (Universal Hash Functions). We say that Rt is a universal family

of hash functions from X to y if for all x, x' E X such that x $ x', and H uniform

from 1-H, we have that:

PH (H(x) = H(x')) <

Definition 2.2.2 (E-almost Universal Hash Functions). We say that W7- is an E-almost

universal family of hash functions from X to Y if for all x, x' E X such that x Z x',

and H uniform from R, we have that:

PH (H(x) = H(x')) < e.

Theorem 2.2.3 (The Leftover Hash Lemma [49]). Let 7- be a universal family of

hash functions from X to Y. Let H denote a random variable with the uniform

distribution on RI, and let X denote a random variable taking values in X, with H, X

independent. Then (H, H(X)) is 6-uniform on R-I x y, where:

6 VlYl,(X)/2.

Proof. Let Y denote a random variable uniformly distributed on Y, with H, X, Y

mutually independent. Let 6 := A[H, H(X); H, Y], and H' be iid as H and X' be iid

as X.



= P (H = H' n H(X) = H'(X'))

= P(H = H')P (H(X) = H'(X')|H = H')

= P(H = H')P (H(X) = H(X'))

1(P(H(X)= H(X')X = X')P(X = X')

+(P(H(X) = H(X') X = X')P(X = X')

+P(H(X)= H(X')|IX Z X')P(X 7 X'))
1

< (P(X = X') + P(H(X) = H(X')|X = X'))

1 1

< ((X) + )

= - (IYI(X) + 1).
IHIIYIy

Therefore, applying theorem 2.1.7, we get that 1+42 < y (X)

theorem follows after simplifying.

+ 1), and the

O

Theorem 2.2.4 (Leftover Hash Lemma for E-almost Universal Hash Functions). Let

N be an e-almost universal family of hash functions from X to y. Let H denote

a random variable with the uniform distribution on N, and let X denote a random

variable taking values in X, with H, X independent. Then (H, H(X)) is 6-uniform

on N x y, where:

6< VIY(X) + Y -1/2.

Proof. The proof is analogous to that of theorem 2.2.3.

Combining definitions 2.1.8, 2.1.9 and theorem 2.1.6 with either theorem 2.2.3 or

theorem 2.2.4, we get the more standard notion that if the min-entropy of X is a, i.e.

-(X) < 2- ` =- K(X) _< y(X) < 2- a, then (H, H(X)) is 6-uniform on N x y, where:

S< V/ Y 2-/2 (using theorem 2.2.3),

and:

6 V IY|2- 0 + |ly e - 1/2 (using theorem 2.2.4),

K(H, H(X))



respectively.

For R a matrix of dimension n x m, it is well known that the family of hash

functions HR(x) := R x is universal [17]. Actually, R E {0, 1}nxm need not be

completely random in order for the matrix-vector multiplication to be a universal

hash. We can use Toeplitz hashing, which involves selecting R as a random Toeplitz

matrix, one where each left-to-right diagonal is fixed, i.e., if a - i = b - j for any

indices 1 < i, a < n, 1 < j, b < m, then Ai, = Aa,b. A Toeplitz matrix of dimension

n x m is thus specified by n + m - 1 entries. This not only allows us to save on the

expansion (storage) overhead of our scheme, but also the computational efficiency.

The universality of Toeplitz hashing is proven in [66].

Theorem 2.2.5 (Toeplitz Hashing is Universal [66]). Select R E {0, 1}nx m as a

random Toeplitz matrix. Then the family of hash functions HR(x) := R-x is universal.

Definition 2.2.6 (E-biased Distributions [71]). Let X be a distribution on {0, 1} q.

Let (x, y) denote the inner product mod 2 of x E {0, 1 }q and y E {0, 1 }q. Then,

1. X is said to pass the linear test y with bias E if IP._x((x, y)) = 1) - 1I I E.

2. X is said to be an e-biased distribution if it passes all linear tests a = 0 with

bias e.

The following theorem, implied by theorem 14 of [59], proves that if the Toeplitz

matrix is generated not from n + m-1 random bits but just r random bits which give

a c-biased distribution, where e = 9+ then the resulting hash function family is

1 + E-almost universal.

Theorem 2.2.7 (E-biased Generation of Toeplitz Matrices of Dimension n x m gives

12 + E-almost Universal Hash Functions [59]). Consider any construction that would

generate e = 2•+m -l biased distributions on sequences of length n + m - 1, using r

initial random bits [1]. The Toeplitz matrix that corresponds to these n + m - 1 bits

gives rise to an - + E-almost universal hash function family from {0, 1}m to {0, 1}n .



2.2.2 Extractors

Extractors were introduced by Nisan and Zuckerman [72], and have played a unifying

role in the theory of pseudo-randomness.

Definition 2.2.8 (Extractors). A function Ext : {0, 1}1 x {O, 1}d - {0, 1}m is a

(k, e)-extractor if for any k-source X over {0, 1}", the distribution Ext(X, Ud) (the

extractor's output on an element sampled from X and a uniformly chosen d-bit string)

is c-close to Urn.

Definition 2.2.9 (Strong Extractors). A (k, E)-extractor is strong if for any k-source

X over {0, 1}i , the distribution (Ext(X, Ud) o Ud) (obtained by concatenating the seed

to the output of the extractor) is e-close to Um+d.

The following theorems from [64] give extractors that are simultaneously optimal

(up to constant factors) in both seed length and output length.

Theorem 2.2.10 (Optimal Extractors for Constant E [64]). For any constants a, E >

0, every n and every k < n, there is an explicit (k, ) -extractor Ext : {0, 1}1x {0, 1 }d

{0, 1}m , with d = O(logn) and m = (1 - a)k.

Theorem 2.2.11 (Optimal Extractors for E > exp(-k/20(log* k)) [64]). For any con-

stant a E (0, 1), c E N, for every k, and every E E (0, 1) where E > exp(-k/20(lo g * k)),

there are explicit (k, 6)-extractors Ext: {0, 1}n x {0, 1}d 1 {0, 1}m , with each one of

the following parameters:

* d = O(logn), m = (1 - a)k, and 6 = (l/n) l
o

g' •9

* d = O((log* n)2 log n + log(1/6)), m = (1 - a)k, and 6 = E.

* d = O(log(n/6)), m = f2(k/ log(c) n), and 6 = E.

The following theorem from [77] shows that every non-strong extractor can be

transformed into one that is strong with essentially the same parameters.



Theorem 2.2.12 (Transforming Extractors into Strong Ones [77]). Any explicit

(k, e)-extractor Ext : {0, 1} x {0, }d _ {0, 1}m can be transformed into an ex-

plicit strong (k, O(\VE))-extractor Ext' : {0, 1}" x {0, 1}o(d) - {0f, 1}m - d - a - 1, where

A = 2 log(1/E) + 0(1).

Combining theorem 2.2.12 with theorems 2.2.10 and 2.2.11, we get the following.

Theorem 2.2.13 (Near Optimal Strong Extractors for Constant e). For any con-

stants a,E > 0, every n and every k < n, there is an explicit strong (k, O(xV))-

extractor Ext : {0, 1}" x {0, 1}d F {0, 1}m, with d = O(logn) and m = (1 - a)k -

d - O(1).

Theorem 2.2.14 (Near Optimal Strong Extractors for E > exp(-k/20(lg* k))).

For any constant a E (0, 1), c E N, for every k, and every e E (0, 1) where e >

exp(-k/20(og* k)), there are explicit strong (k, 6)-extractors Ext: {0, 1}" x {0, 1}d

{0, 1}m, with each one of the following parameters:

* d = O(logn),m = (1- a)k - d 2- k) - 0(1), and 6 = (1/n)1/l og(

* d= O((log* n)2 log n + log(1/6)), m= (1 - a)k - d - 0(1), and6= e.

* d = O(log(n/6)), m = Q(k/ log(c) n)- d -  - (1), and 6 = .
20(log* k)

2.2.3 The Mobile Adversary Model

The following mobile adversary model is adapted from [74, 51]. We start with their

basic model, which assumes honest-but-curious adversaries and does not provide ro-

bustness against malicious adversaries. We formally define the model below.

We assume a system of p parties P1,..., P, that will proactively share a secret

value s through a threshold secret sharing scheme, tolerating corruptions. We assume

that the system is securely and properly initialized. The goal of the scheme is to

prevent the adversary from learning the secret s.

Parties and Communication Model. We assume that each party has a local,

completely hidden source of randomness, and that either each pair of parties share



a completely private channel between them, or may achieve such a channel by using

public key cryptography.

Time Periods and Refresh Phases. Time is divided into time periods which are

determined by a common global clock. At the beginning of each time period the

parties engage in an interactive refresh protocol. At the end of a refresh phase the

parties hold new shares of the (same) secret s.

The Mobile Adversary Model. We assume that the adversary corrupts less than c

out of p parties in each time period. The adversary can corrupt parties at any moment

during a time period. If a party is corrupted during a refresh phase, we consider the

party as corrupted during both time periods adjacent to the refresh phase.

As explained in [51], the reason behind this way of counting corrupted parties is

that it is very hard to analyze what happens if we differentiated between an adversary

who moves from one party to another during the refresh phase and the adversary who

just stays in both parties throughout. It is also not a realistic concern in our setting,

where the refresh phase is very short when compared to the length of a time period.

2.2.4 Secret Sharing

Definition 2.2.15 (Secret Sharing). We define p party secret sharing by a tuple

II = (S, (S1, ..., S,), R, D), where: (1) S is a finite secret domain, (2) each Si is a

finite share domain of party Pi from which its share shi is picked, (3) R is a probability

distribution from which the dealer's random input is picked, and (4) D is a share

distribution function mapping a secret s E S and a random input r E R to a p-tuple

of shares D(s, r) = (shi x ... x shp) E (Si x ... x Sp), and then privately communicating

each share shi to party Pi. We say that II realizes an access structure I C 21P] if it

satisfies the following:

* Correctness. For any qualified set Q = {il,..., ik) I E , there exists a recon-

struction function recQ Si, x ... x Sik -+ S such that for every secret s E S,

P[recQ(D(s, R)Q) = s] = 1, where D(s, R)Q denotes a restriction of D(s, R) to

its Q-entries.



* Privacy. For any unqualified set U rI and secrets s, s' E S, the random

variables D(s, R)u and D(s', R)u are indistinguishable.

Depending on the notion of indistinguishability used in the above definition, the

privacy could be computational, statistical, or information theoretical.

In this work we refer to the following specific secret sharing schemes.

Definition 2.2.16 ((c, p)-Threshold Secret Sharing). A (c, p)-threshold secret sharing

scheme is a secret sharing scheme II that realizes the (c, p) -threshold access structure

F = US, over all S E 2[p] s.t. ISI > c.

One problem with threshold secret sharing is that the adversary has the entire

lifetime of the secret to break into c parties. Proactive secret sharing adds a time

dimension, and can withstand attacks by a mobile adversary.

Definition 2.2.17 (Proactive (c,p)-Threshold Secret Sharing). A proactive (c,p)-

threshold secret sharing scheme is a threshold secret sharing scheme that realizes the

(c,p)-threshold access structure against a mobile adversary.

As a mobile adversary may have broken into many parties over numerous time

periods (in fact it may have broken into all parties multiple times over numerous

time periods - it is just limited to any c - 1 parties in any single time period), a

proactive secret sharing scheme has to somehow "isolate" the information that the

adversary gains in one time period from the information that it gains in the other

time periods. This "isolation" is done at the end of each time period, in the refresh

phase of proactive secret sharing schemes. Two things are done in the refreshing

phase: first, each of the secret shares stored by each party are refreshed into new

shares, independently of the previous ones. Then, all of the old shares and refreshing

information are erased. Note that without this second step of erasing information,

there is no point in splitting time into time periods and refreshing the secret shares.

Thus, every existing proactive threshold secret sharing scheme requires prefect

erasures of past information (see theorem 3.3.3).



Privacy and Robustness in the Partial Erasures Model

In this section we give the definition of privacy and robustness for a proactive (c, p)-

threshold secret sharing scheme with partial erasures.

Definition 2.2.18 (View of the Adversary). Let VIEWT denote the view of the

adversary E up to time period T, i.e. the concatenation of VIEWT- 1 and all the

public information that E sees as well as the information seen when breaking into at

most c - 1 parties in time T. VIEWo is defined to be the empty set.

Definition 2.2.19 (Privacy of a Proactive (c, p)-Threshold Secret Sharing Scheme

with Partial Erasures). We say that a proactive (c, p)-threshold secret sharing scheme

with partial erasures II = (S, (S 1,... ,S,), R, D) is (T, a, q)-secure, if for all time

periods T < r, for all adversaries E that breaks into at most c - 1 parties per time

period, for all partial-erasing functions h with leakage fraction 0, and for all secret E

S, we have that d(secretlVIEWT ) is at most 2- .

Definition 2.2.20 (Robustness of a Proactive (c, p)-Threshold Secret Sharing Scheme

with Partial Erasures). Like the perfect erasure scheme, we say a proactive (c, p) -

threshold secret sharing scheme with partial erasures H = (S, (S 1,... , S,), R, D) is

robust, if privacy and correctness are maintained in the presence of less than c mali-

cious parties.

2.2.5 Universally Composable (UC) Emulation

In order for us to argue that our compiler preserves the security properties of the

input protocols, we need the notion of Universally Composable (UC) Emulation [11].

At a very high level, we say that one protocol IInew emulates another protocol IIor,

if any adversary A attacking a protocol HII,,, learns no more information than could

have been obtained via the use of a simulator S attacking protocol I,,org. Furthermore,

we would like this guarantee to be maintained even if HIorg were to be used a subroutine

of (i.e. composed with) arbitrary other protocols that may be running concurrently in

the networked environment, and we plan to substitute HT,,, for Hog in all instances.



Thus, we may set forth a challenge experiment to distinguish between actual attacks

on protocol Unew, and simulated attacks on protocol Horg (referring to these protocols

as the "challenge protocols").

As part of this challenge scenario, we will allow adversarial attacks to be orches-

trated and monitored by a distinguishing environment Z that is also empowered to

control the inputs supplied to the parties running the challenge protocol, as well as to

observe the parties' outputs at all stages of the protocol execution. One may imag-

ine that this environment represents all other activity in the system, including the

actions of other protocol sessions that may influence inputs to the challenge protocol

(and which may, in turn, be influenced by the behavior of the challenge protocol).

Ultimately, at the conclusion of the challenge, the environment Z will be tasked to

distinguish between adversarial attacks perpetrated by A on the challenge protocol

UHne, and attack simulations conducted by S with protocol Ho•, as the challenge

protocol instead. If no environment can successfully distinguish between these two

possible scenarios, then protocol Inew is said to "UC-emulate" the protocol Horg*

Specifying the precise capabilities of the distinguishing environment Z is crucial to

the meaning of this security notion. The environment must be able to choose the chal-

lenge protocol inputs and observe its outputs, in order to enable the environment to

capture the behavior of other activity in the network that interacts with the challenge

protocol (which may even be used as a subroutine of another network protocol).

Of course, we must also grant Z the ability to interact with the attacker (which

will be either the adversary, or a simulation), which models the capability of the

attacker to coordinate attacks based on information from other network activity in

the environment. As demonstrated in [11], granting precisely these capabilities to Z

(even if we allow it to invoke only a single session of the challenge protocol) is sufficient

to achieve the strong guarantees of the composition theorem, which states that any

arbitrary instances of the Hog that may be running in the network can be safely

substituted with a protocol Une that UC-emulates Hog. Thus, even if we constrain

the distinguisher Z to such interactions with the adversary and a single session of the

challenge protocol (without providing the ability to invoke other protocols at all), we



can already achieve the strong security guarantees we intuitively desired. Notably,

although the challenge protocol may invoke subroutines of its own, it is not necessary

to grant Z any capability to interact with such subroutines.

Definition 2.2.21 (UC Emulation [11]). Protocol II,,, UC-emulates protocol Iorg if

for any adversary A, there exists an adversary S (of complexity polynomial in that of

A) such that, for any environment Z and on any input, the probability that Z outputs

1 after the following interactions differ by at most a negligible amount:

(1) interacting with A and parties running Hlnew, and

(2) interacting with S and parties running IIog,.

If A and Z are both limited to probabilistic polynomial time, then the emulation

captures computational security. If they are unbounded then the emulation captures

statistical security. If in addition, the distinguishing probability of Z is 0, then the

emulation captures perfect security.

Note that a protocol IIHe UC-emulating another protocol Hor9, means that IInew

preserves the security properties of the original protocol IIorg, and does not require

that IIog be UC-secure. This notion of emulation is the strongest notion of its kind.

In particular, our result applies to static/adaptive adversaries, byzantine/honest-but-

curious adversaries, 2 party or multi-party protocols, etc. In particular, this does not

require that the original protocol IIorg be "UC-secure".

In our case, in the models of protocol execution, instead of having perfect erasures

(so on corruption, the adversary expects to see only the current information), we have

partial erasures, where the adversary chooses a length-shrinking h and on corruption,

expects to see the current information plus the partially erased past (using h).

In modeling the corruptions, in order to capture repeated adaptive corruptions

as in for instance proactive security, the adversary can write a "recover" message on

the incoming communication tape of any previously corrupted party, after which it

relinquishes control of the party. The adversary is allowed to corrupt parties over and

over again, with a sequence of "corrupt, recover, corrupt..." commands.
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Chapter 3

Survey of Protocols that use

Perfect Erasures

Erasures is an important tool in cryptographic protocol design. It protects against

future break-ins as it leaves no trace of old, sensitive data left for the adversary to

recover. In this chapter we provide a survey of protocols that use perfect erasures.

We describe several problems/tasks and explain where and when perfect erasures are

used.

3.1 Adaptive Security

As one example of the utility of erasures, consider adaptive security, which guards

against adversaries that can choose which parties to corrupt as the protocol proceeds,

based on information already gathered. This is in contrast to static security, which

only guards against adversaries that chooses the parties it wants to corrupt before

the protocol runs. Adaptive security is a more realistic (and strictly stronger) notion.

Here erasures come to the rescue: with erasures, all the adversary sees upon corruption

of a party is its current state, effectively breaking the correlation between "old"

information that the adversary gained (e.g. from an earlier time period) and the new

one it sees. On the other hand, without erasures, the adversary gets to see all the

information a party has ever stored, and is thus more powerful.



Definition 3.1.1 (Adaptive Security (informal)). A protocol is adaptively secure if

it retains its security properties even under an adaptive adversary.

For concreteness, let us consider adaptively secure encryption, for which [9] gave

a construction using perfect erasures. Two parties A and B wishes to communicate

securely, in the presence of an adaptive adversary.

In this setting the ideal encryption functionality is one where the environment Z

hands the message m to A, and then A sends m to the trusted party. The trusted

party then gives the length of the message to the adversary. When the adversary

is "happy" it instructs the trusted party to go ahead and transfer m to B, and the

protocol terminates.

Definition 3.1.2 (Adaptively Secure Encryption). An adaptively secure encryption

scheme is one that UC-emulates the ideal encryption functionality.

One use of adaptively secure encryption is to implement secure channels. In par-

ticular, it allows us to start from any multiparty protocol secure against adaptive

adversaries under the assumption of physically secure channels [10, 18], and replace

the secure channels with adaptively secure encryption over insecure channels. The

end result is an adaptively secure protocol Hcomp in the computational setting. Fol-

lowing [14] and [57], let us illustrate why adaptive encryption is difficult to achieve

just by using standard encryption, and see how erasures alleviate this difficulty.

Suppose we have some multiparty protocol HII, that was proven secure against

an adaptive adversary assuming physically secure channels, so this protocol has an

efficient simulator S,,,. Let us try to implement the secure channels using standard

encryption; to prove that such an implementation is secure, we need to show that for

any adversary A against the new protocol IIcomp, there exists a simulator S that can

generate transcripts indistinguishable to all environments Z.

Such an S is difficult to construct without erasures. Suppose that the protocol calls

for a transmission of some secret value between some pair of parties, and consider an

A that does not corrupt either of these parties during this transmission, but corrupts

either of them afterwards (A is allowed to do this because it is adaptive). Therefore,



at the time of the transmission, S does not know the secret, but has to come up

with a ciphertext for A. Subsequently, when the adversary A corrupts either of the

parties, S learns the value. Now, S is charged with opening up the ciphertext as

this arbitrary value together with the randomness used to encrypt the secret to the

ciphertext. This is impossible if a standard encryption is used, since a ciphertext

effectively serves as a commitment to the plaintext.

However, if parties are instructed to erase all the information involved with en-

crypting and decrypting of messages, then the problem of convincing the adversary

of the authenticity of past ciphertexts no longer exists, and simulation goes through.

It turns out that for some protocols it is possible to do without any form of

erasures at all. Unfortunately they seem to require new cryptographic tools and use

considerably more complex constructs [57, 14, 8, 76].

3.2 Security Against Key Exposure

The key exposure problem is the problem of the security of previous sessions being

compromised as a result of the (even partial) exposure of the long-term secret infor-

mation. There are different types of key exposure and they all require erasures. We

discuss some below.

3.2.1 Forward Security

This first approach to tackle the key exposure problem is forward security.

Definition 3.2.1 (Forward Security (informal)). A forward-secure primitive is one

for which previous sessions remain secure even if the party with the secret information

is broken into at some time.

As an example of the key exposure problem, consider digital signatures. In an

ordinary digital signature scheme, all the signatures of a signer become suspect when

his signing key is discovered compromised (which might be long after the real time of

compromise). An honest party has no way of verifying whether a signature is issued



by the signer or the adversary. Even worse, a dishonest signer can fake a compromise

by posting his key anonymously, effectively giving him the power to repudiate.

The notion of forward security was first proposed in the context of key-exchange

protocols by Giinther [45] and Diffie, Van-Oorschot, and Weiner [25]. Subsequently,

Anderson [2] suggested forward security for the more challenging setting of non-

interactive encryption.

For concreteness, let us consider forward-secure encryption schemes. In any

scheme that is forward secure, the lifetime of the system is divided into time pe-

riods. The receiver initially stores the secret key SKo and this secret key evolves

with time: at the beginning of time period t, the receiver applies some function to

the previous key SKt_1 to derive the current one SKt; then SKt- 1 is erased and

SKt is used for all secret cryptographic operations during period t. To make such a

scheme viable, the public (encryption) key remains fixed throughout the lifetime of

the scheme.

Definition 3.2.2 (Forward Secure Encryption). A forward-secure encryption scheme

is one for which if an adversary breaks into the receiver at any time t, all the messages

transmitted before t remain secret.

Note that erasures are essential to even define forward security, since without any

form of erasures, any form of key evolution is meaningless:

Theorem 3.2.3 (Forward Security Impossible Without Erasures). Any primitive that

is forward secure requires some form of erasures.

Proof. The proof is straightforward: consider any encryption scheme, endowed with

the notion of time and key evolution as in forward-secure constructions, and one for

which no form of erasures is allowed. An adversary that breaks into the receiver at

time t learns all the keys before t as well, so the previous messages are not longer

secret, i.e. such an encryption scheme cannot be forward secure. O



3.2.2 Key Insulation and Intrusion Resilience

Stronger notions of security against key exposure include key insulation and intrusion

resilience. In key insulation, introduced by Dodis et al. in [27, 28], it is assumed that

there is a secure, incorruptible server separate from the user that aids in the key

evolution process, but not the normal operations. A key insulated scheme guarantees

that even if an adversary breaks into the receiver at time t and thus gets SKt, messages

encrypted during all time periods prior to t and all time periods after t remain secret,

i.e. security-wise, each period is isolated from all the other periods.

In intrusion resilience, introduced by Itkis and Reyzin in [56], it is no longer

assumed that the server is secure. As long as the user and the server are not both

exposed at the same time, it is guaranteed that the adversary cannot break the scheme

other than those for which keys at the user were exposed. If at time t both the user

and the server were exposed, the scheme becomes a forward secure one.

We stress again that all three notions of security are provably impossible to achieve

without some form of erasures. Since key insulation and intrusion resilience are

stronger notions of security, and the differences in the settings do not change how

erasures is used, this impossibility follows directly from theorem 3.2.3.

Corollary 3.2.4 (Forward Security, Key Insulation and Intrusion Resilience are Im-

possible to Achieve Without Erasures). Any protocol that attains forward security,

key insulation, or intrusion resilience requires some form of erasures.

3.3 Proactive Security

Proactive security is a notion suggested by Ostrovsky and Yung [74]. Here time is

split into fixed size intervals, or time periods, and a mobile adversary is considered.

A mobile adversary can corrupt different parties in different time periods, subject to

an upper bound on the total number of corrupted parties per time period. Namely,

the identity of the corrupted parties may change from one time period to the next.

Ostrovsky and Yung [74] studied the question of achieving general secure computation



and presented an information theoretic solution robust against mobile adversaries.

Definition 3.3.1 (Proactive Security (informal)). A protocol is proactively secure if

it retains its security properties against a mobile adversary.

At the heart of their solution (as in all subsequent papers on proactive security,

for instance [41, 37, 50, 15, 65]) is a secret sharing method in which at the end of

every time period, the old shares held by parties are first replaced by new shares and

then erased.

We recall the definition of proactive secret sharing from definition 2.2.17.

Definition 3.3.2 (Proactive (c,p)-Threshold Secret Sharing). A proactive (c,p)-

threshold secret sharing scheme is a threshold secret sharing scheme that realizes

the (c, p)-threshold access structure against a mobile adversary.

It is easy to see that proactive security would be impossible to achieve without

some form of erasures:

Theorem 3.3.3 (Proactive Security Impossible Without Erasures). Any protocol that

is proactively secure requires some form of erasures.

Proof. Consider proactive (c, p)-threshold secret sharing. Without erasures, whenever

the adversary breaks into a party, it can get the old share of the party for some single

time period (say the first). By the correctness property of the secret sharing, the

adversary just needs c shares from any time period to reconstruct the secret, so after

two time periods of breaking into c - 1 (disjoint, if possible) parties, the adversary

gets 2(c- 1) > c 1 shares and can reconstruct the secret easily. Essentially, the notion

of proactive security is meaningless without some form of erasures, since the setting

becomes the same one as considered in threshold security. O

'This is because c > 2 for interesting threshold schemes.



Chapter 4

Difficulty of Implementing Perfect

Erasures

In practice, perfect erasures are hard to achieve and thus it is problematic to assume

that they are available, as pointed out by Jarecki and Lysyanskaya [57] in their study

of adaptive adversaries versus static adversaries in the context of threshold secret

sharing.

At the hardware level, it is difficult to permanently erase information from storage

devices and with enough effort it is often possible to at least partially reconstruct data

which was presumably lost.

At the system maintenance level, the need to erase data complicates system book-

keeping and backup procedures and is often not done properly.

At the operating systems level, data has to be erased at all parts of the virtual

memory system, from the caches, etc.

Some of the difficulties in implementing perfect erasures is illustrated in the works

of Hughes and Coughlin, Garfinkel, Vaarala, and Halderman et al [52, 53, 38, 81, 47].

Note that the fundamental cause of the difficulty lies in the fact that each and

every component in a computer system is actually designed to preserve data, rather

than to erase them. For instance, modern hard drives are designed with elaborate

error detection and correction techniques for reliability; modern operating systems

include a "recycle bin" in which files that were "deleted" are actually collected, for



easy recovery just in case the user made a mistake.

In view of the problematic nature of the assumption, regardless of whether perfect

erasures can be ultimately achieved in practice at a reasonable cost or not (or whether

it can be reasonably assumed or not), it is important to understand how essential for

the security of cryptographic protocols is the ability to erase data perfectly.

In Sections 4.1, 4.2, 4.3, we elaborate on the difficulties of perfect erasures at each

of the levels (hardware, system maintenance, and operating systems). Material in

these sections are from [52], [53], [81], and [47]. Given these difficulties, one might

wonder how commercial counter-forensic tools are doing. In Section 4.4 we briefly

mention a few points regarding the current state of these tools and their inadequacies

or flaws. Material in this section is from [39]. For a more technical exposition, the

reader is referred to [46].

4.1 Difficulty at the Hardware Level

4.1.1 Perfect Erasures for Hard Drives

To implement perfect erasures on hard drives, several methods and their disadvan-

tages come to mind:

1. Method

Overwriting with various bit patterns (e.g. the DoD 5220.22-M method [73]

suggests a seven pass wipe using random data).

Security

This method is not fully effective because modern hard drives use block replace-

ment, and usually employ some form of error correction.

Cost

This takes the order of days to complete for erasing a 100GB hard drive.

2. Method



"Secure Erase" - The Secure Erase (SE) command was added to the open ANSI

standards that control disk drives, at the request of the Center of Magnetic

Recording Research (CMRR) at University of California at San Diego. Secure

Erase is built into the hard disk drive itself and thus is far less susceptible to

malicious software attack than external software utilities. The SE command

is implemented in all ATA interface drives manufactured after 2001 (roughly

speaking, drives with capacities greater than 15GB), according to testing by

CMRR.

Security

Secure Erase has been approved by the U.S. National Institute for Standards

and Technology (NIST) at a higher security level than external software block

overwrite utilities like Norton Government Wipe, and it meets the legal require-

ments of the Health Insurance Portability and Accountability Act (HIPAA), the

Personal Information Protection and Electronic Documents Act (PIPEDA), the

Gramm-Leach-Bliley Act (GLBA), and the Sarbanes-Oxley Act.

Cost

This takes the order of hours for erasing a 100GB hard drive.

3. Method

Degaussing - placing it under strong magnetic fields.

Security

Drive designers continually increase the linear density of magnetic recording

in order to create higher data storage capacities per disk, which increases the

magnetic field required to write bits on the magnetic media, in turn increasing

the field required to erase data. Thus older degaussers might not properly

erase data on newer hard disks. In particular, new perpendicular recording

drives may not be erasable by old degaussers. Other newer technology like

heat or thermally assisted magnetic recording might make room temperature

degaussing all together impractical. Yet another technology of adding flash



memory to hard drives, for the hybrid drives, complicates the problem still

because flash memory cannot be erased by magnetic degaussing.

Cost

This method is not really practical because the required strength might ac-

tually damage the drive. Most of today's hard disk drives rely on magneti-

cally recorded servo-patterns to allow control and movement of the read/write

head assembly and the rotation speed of the platters. Any degaussing powerful

enough to remove the data would most certainly destroy the servo, effectively

rendering the drive non-functional. The degaussers are also quite costly, the

cheapest starting at around USD $3,000 in 2007.

4. Method

Destroying it physically (e.g. DoD 5220.22-M [73] suggests physical destruction

for data classified higher than "Secret").

Security

Even such physical destruction is not absolute if any remaining disk pieces are

larger than a single 512-byte record block in size, about 1/125" in 2007's drives.

Cost

This method is too costly for wide spread use, and thermal or chemical means

of destroying leads to hazardous fumes.

4.1.2 Perfect Erasures for Memory

For erasing main memory, the root cause of problems is the memory remanence effect

- previous states of memory can be determined even after power off. This happens

with both SRAM and DRAM, due to what is called "ion migration". This is an

electrochemical reaction that causes metal to ionize and the resulting metallic ion to

migrate under the electrical stress, which for instance can cause a bit to be "stuck"

even after power off. Conditions accelerating ion migration include: high tempera-

ture, high humidity, high voltage, strong acidity, and the presence of ionic impurities



(e.g. Chlorine and Bromine). As we mentioned in Section 1.3.4, a recent example of

exploiting the remanence effect on DRAM to break popular disk encryption schemes

is given in [47].

To further complicate matters, this remanence effect is cumulative, i.e. the longer

a bit pattern sits in RAM, the more "burnt-in" it becomes and the longer it takes to

erase. Even repeated overwriting with random data is not very effective in shortening

this time dependence. Higher temperatures do help in mitigating this dependence

but this is difficult to control.

Also, even different RAM batches exhibit different physical characteristics, much

less different memory technology, thus making erasures difficult to do properly.

4.2 Difficulty at the System Maintenance Level

At the system maintenance level, the need to erase data complicates system book-

keeping and backup procedures, and is often not done properly.

Also, hard disk defect management complicates erasures. Usually, when excessive

errors occur, disk drive data blocks will be removed from use, by adding it to the

G-list (the Growth-list, a table of hard disk sectors that have gone bad after the drive

was placed in use). However, the original data (or at least parts of it) might still be

recoverable in the G-listed sectors.

4.3 Difficulty at the Operating Systems Level

At the operating systems level, data has to be erased at all parts of the virtual memory

system, complicating OS functions.

Even if the main memory is trusted (or can be reliably erased) but the hard disk

is not, erasures still places a huge burden on the OS. Memory locking can be used

to prevent the OS from virtual memory paging (writing the contents of the memory

to the disk). However, it is often difficult to lock only certain portions of memory -

in fact it is often easiest to lock the entire process. This then adds a complication



to interprocess communication, which now has to be guaranteed by the OS kernel to

not page onto the hard disk. Even if two processes are memory locked, the OS has to

guarantee that data never goes to paged memory in between. Also, the locking must

be applied to the entire code base dealing with the secret (to be later erased), which

is extremely difficult in high level programming environments (e.g. in Java). The OS

also has to somehow handle system hibernation - when the user wishes to shut down

her/his computer but wants to be able to quickly resume work, the OS usually dumps

the contents in main memory onto the hard drive for quick loading. Now the OS has

to make sure that sensitive data is not dumped, and when the computer comes out of

hibernation, the OS has to somehow allow the programs that operate on the sensitive

data to reload them into memory.

Another difficulty is that the NetWare OS, as well as ScanDisk and other Windows

utilities, can detect and remap bad sectors on the fly that have not yet been invalidated

by the drive hardware (so these sectors have not yet been added to the G-list). Such

remapping is stored in the drive's file system, thus providing an additional level of

hard disk defect management. Again, as in the G-list, the original data can remain

in the bad sectors and thus be recoverable to a certain extent, even if these sectors

are no longer considered part of the storage.

4.4 The Current State of Counter Forensic Tools

In [39], six commercial counter-forensic tools were evaluated: Window Washer-1, Win-

dow Washer-2, Privacy Expert, Secure Clean, Internet Cleaner, Evidence Eliminator,

and Cyber Scrub. Each of these had one or more of the following problems:

1. Incomplete wiping of unallocated space.

2. Failure to erase targeted user or system files.

3. Missed OS registry usage records.

4. Data recoverable from special filesystem structures.



5. Overlooked archived registry hives.

6. Outdated coverage of applications.

Also, the use of any of the tools above disclosed the configuration and activity

records, such as what types of information they are set to erase, the timing of their

activities, and user registration information. All of the tools left distinctive signatures

of their activity that could be used to postulate the tool's use even if no evidence of

the software's installation was recovered. This could have probative value in some

court cases, like the one in Kucala Enterprises, Ltd. v. Auto Wax Co., Inc. These

are two auto care companies that make and sell a similar auto clay wax product,

and they went to court. In the process it was discovered that Kucala had used the

program Evidence Eliminator to destroy electronic evidence, and the court dismissed

Kucala's suit and ordered them to pay the attorney fees and costs of Auto Wax.

A more recent and more extensive comparison of counter-forensic tools is given

in [40].
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Chapter 5

Our Model

As described in Section 1.1, partial erasures are modeled by an arbitrary length-

shrinking function h : {0, 1}m - {0, 1}1 m]J, where 0 < d • 1 is called the leakage

fraction. By partially erasing some information x, we mean the operation of applying

such an h to x, leaving h(X). If JIX > m, then we consider a predefined partition

of x into blocks of size m, and h is then applied separately to each block. We stress

that the protocol has no access whatsoever to (partially) erased data, and the partial

leakage is only made available to the adversary.

More precisely, we need a suitable model of computation for Turing Machines that

partially erase.

Definition 5.0.1 (Partial Erasing Function, Leakage Fraction, Block Length). A

partial-erasing function h is a length-shrinking function h : {0, 1}m 
.+_ {0, 1} LamJ,

with a positive integer m as its block length and a real number 0 s.t. 0 < d < 1 as

its leakage fraction.

Definition 5.0.2 (Partially Erasable (PE) Tape). Let h be a partial-erasing function

with m as its block length and ¢ as its leakage fraction. A tape of a Turing Machine

is said to be partially erasable (PE) if:

* It has two sides:

a primary side pre-partitioned into m-bit blocks, and

a secondary, "shadow" side, pre-partitioned into m-bit blocks.



@ The primary side:

may be read multiple times, i.e. the corresponding read head is free to move

both forward and backward,

may be written once, i.e. the corresponding write head always moves for-

ward, and

has an "erase" write head that is free to move both forward and backward,

but can only write I, the empty or blank symbol, to replace a block by i m 1

* The secondary, "shadow" side:

cannot be read, and

has a write head with a separate control logic (state transition function)

which computes the function h. This write head is used to implement the partial

erasure operation.

* It supports the partial erasure operation: on input a block number i, let

z ({0, 1}m be the contents of the i-th m-bit block on the primary side, and the

Turing Machine:

computes h(x) and writes it on the i-th block on the shadow side 2, and

overwrites the i-th block of the primary tape, currently containing x, with

Im (so the Turing Machine no longer gets any access to the data).

Remark 1 (Computation of h is Unbounded). In the above definition we specifically

introduced a separate control logic for computing h to address the fact that whereas

the complexity of the Turing Machine may be restricted, e.g. to polynomial time, the

complexity of h is not. Alternatively, one may view the computation as an oracle call.

'The reason we have two different write heads is that overwriting old data is a form of erasures,
and we want to make it clear whenever erasures occur. Forcing the ordinary write head to always
move forward means it cannot overwrite or erase, which is left to the special head.

2More precisely it passes control to the control logic computing h, which writes h(x) of size
Om < m to the corresponding block on the hidden side in some canonical way, for instance by
always starting from the beginning of the block.



Definition 5.0.3 (Externally Writable (EW) Tape). A tape of a Turing Machine is

said to be externally writable (EW) if it may be written to by other partially erasable

interactive Turing Machines. We assume that all EW tapes are write once, so the

write head only moves forward.

The only differences between our model of computation and the interactive Turing

Machine of [11] are that:

1. The work tape, input tape, and subroutine output tape are PE instead of EW.

2. The random tape is read once, i.e. the read head always moves forward. It is

also hidden from the adversary upon corruption.

The first point addresses the fact that overwriting is not allowed (it is a form of

perfect erasures), only partial erasures is.

The second point addresses the fact that if the Turing Machine wants to use the

random bits, it has to copy them to the computation tape (or rather, encode them in

some way and keep the encoded version on the computation tape), and thus they can

only be partially erased. Upon corruption of a party, we assume that the adversary

does not gain access to the random tape, but sees all the rest of the tapes. See

remark 2.

In order to have a concrete model, here is the full description of our model of com-

putation, by incorporating the change described above into the model of interactive

Turing Machines (ITMs) given by [11]:

Definition 5.0.4 (Partially Erasable Interactive Turing Machine (PEITM)). Let h

be a partial-erasing function with m as its block length and 0 as its leakage fraction.

A partially erasable interactive Turing Machine (PEITM) is a Turing Machine with

the following tapes:

* An EW identity tape (here the identity of the party is written).

* An EW security parameter tape.



* A PE input tape.

* A PE work tape.

* An EW incoming communication tape.

* A read once random tape.

* An output tape.

* A PE subroutine output tape (this and the next tape are used in the UC frame-

work).

* A read and write one-bit activation tape.

Definition 5.0.5 (Adversary View). When the adversary corrupts a party, it gains

access to all the tapes of the party's TM, including the shadow sides of all the PE

tapes (and thus gains access to the partially erased data), with the exception of the

random tape.

Remark 2 (Randomness). We think of the randomness as coin tosses rather than as a

tape of random bits prepared in advance. Essentially, this just boils down to assuming

that we have a random (one) bit generator in the CPU that is perfectly erasable. The

reason for thinking about randomness this way is the following. The encoding of the

secret has to be randomized, and anyone with access to all of the randomness can

always decode and get the secret back. Therefore if upon corruption the adversary

gets to see all the randomness, then effectively this is the same as having no erasures.

On the other hand, to prevent the Turing Machine from using the random tape to

trivially implement erasures, we require that the random tape be un-writable and read

once. In particular, if the Turing Machine wants to use the random bits, it has to

encode them somehow and keep the encoded version on the computation work tape,

which (upon corruption) the adversary will be allowed to see anyways.

Remark 3 (When does the adversary choose h). We note that our schemes remain

secure without any modification even if the adversary is allowed to choose a new hi



whenever an erasure is to be done; in particular, no independence is assumed on the

different erasures done on different memory locations. However, this choice must be

done independently of the current data to be erased, i.e. the choice of hi is fixed before

the data to be erased by hi is written in memory. This certainly suffices for modeling

the imperfect erasures due to physical limitations.

Remark 4 (How to model ITMs). We refer the reader to [11] for the definitions

of a system of ITMs and probabilistic polynomial time ITMs, which can be extended

straightforwardly to deal with PEITMs instead. We stress again that to the advantage

of the adversary, in bounding the resources of the ITMs, the time taken to partially

erase (i.e. compute h) should be ignored.

Alternatively, instead of the ITM model of the UC framework [11], one could

apply the modifications (of changing some tapes to PE instead of EW, and making

the random tape read once and hidden from the adversary) to the ITM model of [44].

We choose to use the ITM model of the UC framework [11] since our results are later

stated in the UC framework.

Remark 5 (Boolean circuits versus Turing machines). We will actually be using

boolean circuits as our model of computation instead of Turing Machines. The reason

is that boolean circuits already operate at the bit level, allowing us to explicitly talk

about leveraging the constant number of constant size registers so that the computa-

tions would not leak too much information. For instance, for a computation on a

secret, the input bits to the gates at the first level of the corresponding circuit are

actually bits of the secret, and the output bits of gates represent various stages of

the output; these input and output bits need to be kept secret, which is where the

perfectly erasable registers come in. Therefore, instead of using Turing Machines,

we will be using circuits and the register model. This is without loss of generality

since for any TM running in time T(n), there exists a family of circuits {Cn} of size

ICI = T(n) x polylog(T(n)) computing the same function [75]. The same holds for

any PEITM.



5.1 The Memory Model

We envision that processors participating in protocols can store data (secret and

otherwise) in the CPU registers, as well as in the cache, main memory (RAM), and

hard drives. We assume all types of storage are only partially erasable with the

exception of a constant number of constant size CPU registers, which are assumed

to be perfectly erasable. We call this the register model. We remark that it seems a

very reasonable assumption that a constant number of constant size CPU registers

can be effectively erased, whereas main memory, hard drives, etc. cannot.

We emphasize that having a constant number of constant size registers being per-

fectly erasable just means that we have perfect erasures only for some constant space.

This limitation ensures that we cannot use the registers to (effectively) perfectly erase

all other types of storage and thus circumvent the lack of perfect erasures for them,

since at no time can the registers hold any non-negligible part of the secret.

We shall use these registers to perform intermediate local computations during

our protocols. This will allow us to ignore the traces of these computations, which

would otherwise be very messy to analyze.

Actually, these perfectly erasable registers can in principle be encoded in the finite

control state of the Turing Machine, and need not be written on any tape at all. In

particular, the model need not explicitly allow for perfectly erasable storage at all.

Remark 6 (The Registers). As we mentioned in the beginning of Section 1.3, we

only deal with storage that would need to be erased, so not everything that is normally

done in the CPU registers is going to be included in the registers of our model - the

addressing of main memory being an example (otherwise, in order to be able to access

polynomial sized storage, the registers need to be of logarithmic size).

5.2 Discussion on the Partial Erasures Model

The partial erasures model represents several sources of information leakage on data

that is intended to be erased - let us discuss a few. One difficulty with implementing



perfect erasures is that it is highly dependent on the physical characteristics of the

devices in use. For instance, as described in Chapter 4, for main memory, due to ion

migration there is a cumulative remanence effect - the longer a bit pattern sits in the

RAM, the more "burnt-in" it becomes and the longer it takes to erase. Furthermore,

even different RAM batches exhibit different physical characteristics, much less dif-

ferent memory technology. Security proofs that assume perfect erasures fail as long as

even one bit of information remains; to ensure security, one would have to somehow

find out the "maximum" time it takes for the RAM to be erased. In contrast, partial

erasures also provides security even when the adversary breaks into the parties when

they are only "half-way" done in erasing their secrets., no matter how the adversary

chooses the timing of the corruptions (as long as some information has been erased).

5.3 Alternative Models of Partial Erasures

The function h we consider is a deterministic length-shrinking function, that can be

different each time erasures is to be done, but this choice has to be done independent of

the data to be erased. It is assumed to be a function only of the storage contents to be

erased. In Section 1.1 and above we argued that this suffices for capturing imperfect

erasures due to physical limitations. We discuss alternative models in Chapter 10.



THIS PAGE INTENTIONALLY LEFT BLANK



Chapter 6

Towards a Solution

6.1 The High Level Idea

To change a protocol that relies on perfect erasures for security to one that remains

secure even if only partial erasures are available, the high level idea is that instead of

having a piece of secret s E {0, 1}) directly in the system, we let the parties store it

in "expanded form". At the cost of more storage and a small computation overhead,

this gives the ability to effectively erase a secret (in expanded form) even when only

partial erasures are available. In the end, the number of bits that have to be partially

erased might be more than the number of bits that have to be perfectly erased. This

is still reasonable because it is often much easier to partially erase a large number of

bits than to perfectly erase a small number of them. Furthermore, in Section 6.2 we

will show that such expansion is inherent in the model.

Here we start with a summary of the notation and then give our definition of a

partially erasable form.

Summary of Notation and Parameters

1. Security parameter. a; desired level of security is 2- .

2. Length (number of bits) of the secret we wish to perfectly erase: n.

3. Adversarial chosen partial erasures function: h, only constraint is that it has to

be length shrinking. This is not to be confused with a hash function, which will



always be written as HR, and the entropy measures used (H2, Ho). The partial

erasures function has block length m, i.e. it is applied to blocks of m bits, and

its leakage fraction is 0 := , Vx s.t. jlx > 0.

4. Storage overhead of a partial-erasing scheme: 9, i.e. if the old protocol uses n

bits of (secret) storage, then the new protocol uses 'n bits.

5. Number of partially erased tuple s (Ri, h(ki)) the adversary gets: e.

Definition 6.1.1 (Partially Erasable (or Expanded) Form of a Secret). Let Exp(o, o)

be the "expansion" function taking the secret to be expanded as the first input and

randomness as the second, and Con be the "contraction" function taking the output

of Exp as the input. We say that (Exp, Con) is an (t, a, q)-partially erasable form if

Vs E {0, 1}n, for any h with leakage fraction ¢,

1. (Correctness) Con (Exp(s, r)) = s for all r E {0, 1}poy(n)

2. (Secrecy) Vs' e {0, 1}n,

A(h(Exp(s, $1)),..., h(Exp(s, $e)); h(Exp(s', $1)),..., h(Exp(s', $f))) < 2-`

where $j are independent randomness.

3. (Computable with Constant Memory) Both Exp, Con are computable with con-

stant memory (entirely in the registers).

Secrecy means that s is as good as being encrypted under a one-time pad, up to

a 2- " probability difference; if s itself were random, this implies that:

d(slh(Exp(s, $1)),..., h(Exp(s, $g))) < 2- .

In correctness, we require that the expansion function be non-trivial and not lose

information about the secret. It does not mean that whenever we need bits of the

secret s, we would actually compute the whole s from the expanded form in one shot,



since once the "bare" secret appears outside of the registers, there is nothing much

that can be done: bits of the secret would be leaked even after partially erasing (see

the elaboration in the paragraph following the next).

In secrecy, we require the indistinguishability for many (f above) erasures to ac-

count for the fact that many computations may be done during the execution of the

protocol (directly or indirectly) on the secret, from which the adversary might gain

more information. Generally, an adversary may have many partially erased forms of

the same secret (i.e. the adversary can see h(Exp(s, $i)) s.t for each i, it knows a 1-1

and onto correspondence qi(o) from Exp(s, $i) to s).

We also require partially erasable forms to be computable with constant memory

(i.e. in the register model), bit-by-bit, so that no bit of the secret will be leaked in

expanding and contracting to and from the secret (or more precisely, the functions

work on some constant number of bits of the secret at a time). This will be discussed

in more detail in the next chapter. For (Exp, Con) a partially erasable form, we

introduce further notation. let Expi(s, $) denote the algorithm for expanding the i-th

bit of the secret, and Coni(Expi(s, $)) denote the algorithm for contracting the i-th bit

of the secret. We overload the notation so that for instance, Coni(o) takes as input

both Exp(s, $), the expanded form of the whole secret, and Exp,(s, $), the expanded

form of just the i-th bit of the secret.

Note that Exp,(s, $) is not necessarily independent from Expj(s, $) (i.e. the coins

used are not necessarily independent), and in fact for space efficiency purposes we

would like them to be dependent - but of course there is a tradeoff between efficiency

and security. For completeness, on page 89, in corollary 6.3.3, we briefly describe this

dependency (for partially erasable forms based on Toeplitz hashing). As we will see

in the next chapter, the storage costs can be amortized so that it no longer grows with

m. Regarding computational efficiency, since our general compiler works at the gate

level, there is a computational overhead incurred to do the contraction and expansion

before and after each gate computation, respectively. In Chapters 8 and 9 we give

special compilers that decrease this blow up in computational cost.

Whenever it is clear from the context we write "the partially erasable (or ex-



panded) form of s" to mean Exp(s, $) instead of (Exp, Con), especially since the Con

functions we consider are all straightforward given Exp.

6.2 Lower Bound on 'I, the Expansion Factor

Say that an expansion function Exp is I-expanding if for any r we have I Exp(s, $)I <

Tjs|. Before we look at various partially erasable forms and their space efficiency, let

us see what is the best that we can hope to achieve.

Theorem 6.2.1 (Lower Bound on the Storage Expansion I). For any T-expanding,

(e, a, q) -partially erasable expansion function Exp that is applied to inputs of length

n, we have:

S> - 1 (6.1)
1- nf2+-1 •

Proof. In our model, to compile a scheme using perfect erasures to one with partial

erasures, we replace each secret of n bits by the expanded form of it, of Tn bits. This

is partially erased to give COn bits, i.e. (1 - q)In bits of information are erased.

If no information is to be gained by the adversary, the number of bits of informa-

tion erased has to be at least n, so T 2 1

On the other hand if we allow the adversary to gain some information, then the

analysis is a bit more complex. We need the following from [19]: for a random variable

X taking values in {0, 1}n , and d(X) < 1/4 we have:

2d(X)n - H(X) < -2d(X) log 2d(X) (6.2)

Since the function -y log y is concave and positive for 0 < y _ 1, and attains its

maximum at y = 2- n2, we know that before this maximum, -y log y is monotonically

increasing. Therefore, as long as 2d(X) < 2-"+1 < 2-1n2 (or equivalently that a >



1+ L), a necessary condition for d(X) < 2- " is that:

n - H(X) 5 -2d(X) log 2d(X) + 2d(X)n

< -2-a+1(-a + 1) + 2-*+n

= (n + a - 1)2-' + 1,

or,

H(X) Ž n(1 - 2- +1) - (a- 1)2 -a+1

In other words, to achieve 2 -' security when the adversary is given e partially

erased tuples, we need:

f(1 - q)'n > n(f - 2-+1- (a - 1)2 - * + '

1 ( n+a-1

1- _ n2a-I 1

For typical settings of the parameters, where both a and t are polynomial in n,

we get that I > 1  (1 - neg(a)).

6.3 How to Make Secrets Partially Erasable

In this section we show how to make secrets partially erasable (basing partially

erasable forms on Toeplitz hashing, e-almost universal hashing, and strong extrac-

tors). Then in the next chapter, Chapter 7, we discuss how to apply this technique

at the gate level (so that computations on the secrets are partially erasable too), and

building on this technique, present our general compiler.

To make secrets partially erasable, one simple expanded form in the case where

s is random, is R E {0, 1}nxm, k E {0, 1}m where R, and k are random subject to

the constraint that R -k = s; only the k part needs to be erased. By the leftover



hash lemma (see theorem 2.2.3), since kjh(k) still has some entropy, s can be made

negligibly close to uniform given R and h(k). Unfortunately, as we show later (see

the efficiency discussion on page 90), such a construction incurs heavy (non-constant)

storage overhead.

Therefore, at a high level, we will be using a slightly more complicated construction

for all the partially erasable forms to follow. The idea is, in order store an n-bit

secret s in a partially erasable manner, we choose random strings R, k, and store

(R, k, f(R, k) E s) instead, where f is some suitable function (e.g. a universal hash

function, HR(k), or a strong extractor, Ext(R, k)). Note that the XORing makes it

easy to expand any s, even those that are constant; this XORing is not required in

the simple scheme described above for random s. Again, only the k part needs to

be erased. In the generic form, a partially erased tuple (R, h(k)) will be written as

h(Exp(s, $)); there is a slight inaccuracy here since h is a ¢ shrinking function, so

in particular h((R, k)) is not the same as (R, h(k)) (this issue will be discussed in

Chapter 10).

The Exp ("expansion") and Con ("contraction") functions corresponding to the ex-

panded forms we consider will be straightforward, and so we will usually not explicitly

specify them below when discussing various specific expanded forms. The exception

is that we give Exp for partially erasable forms based on Toeplitz hashing, in order to

show the dependency between Expi (s, $) and Expj (s, $) (for space efficiency).

6.3.1 Using Universal Hashing

First, let us consider using universal hashing to make secrets partially erasable. In

this case, in expanding a secret s into the expanded form (R, k), R would be used

to pick a hash function out of a universal family {HR}; k would be the only part

that needs to be partially erased. R can be for instance a completely random bit

matrix (whose universality is proven in [17]), or a Toeplitz matrix (whose universality

is proven in [66]). In both cases the hash function is just HR(k) := R. k.

What can be gained from this is the ability to "partially erase the secret s", in

the following sense. By using the leftover hash lemma [54] (see theorem 2.2.3), for



any constant q such that 0 < 0 < 1, for any arbitrary partial erasure function h with

leakage fraction 0, HR(k) can be made negligibly close to uniform given R and h(k),

and therefore can be used as a one-time pad to encrypt s. In other words, instead of

storing s, the parties store (R, k, HR(k) E s), so that later s can be "partially erased"

by partially erasing k, and what is left is (R, h(k), HR(k) G s).

The big picture is that, if for all s, s' E {0, 1}" the statistical distance of (HR(k) G

s, R, h(k)) and (HR(k) E s', R, h(k)) is negligible, then this means that HR(k) is as

good as a one-time pad, even in the presence of R, h(k) (because no adversary can

distinguish one case from the other, for any s, s' E {0, 1}n). This statistical distance

can be upper bounded using the triangle inequality for statistical distance: for all

s, s5 E {0, 1}n,

A (HR(k) E s, R, h(k); HR(k) E s', R, h(k))
< a(HR(k(k) D s, R, h(k); ,, h(k))

+A (u@es,R, h(k); U @ s/',R, h(k))
+A ( a@s', R, h(k); HR(k) Es', R, h(k))

= A(HR(k), R, h(k); U~, R, h(k))
+0

+A (U, R, h(k); HR(k), R, h(k))
= 2A(HR(k), R, h(k); Un, R, h(k))

= 2d(HR(k)IR, h(k)). (6.3)

Therefore, our focus will be to upper bound the quantity d(HR(k)IR, h(k)) by

2-(a+1); the same argument applies to all the other partially erasable forms, so in

general we will be focusing on d(f(R, k)IR, h(k)) for suitable functions f.

Theorem 6.3.1 (Secrecy for a Single Erasure using Universal Hash). Let {HR} be a

universal family of hash functions. Let (R, h(k)) be a tuple such that R E {0, 1}nxm,

k E {0, 1}m, and h(k) E {0, 1}-m, where R picks out a random function out of {HR},



and k is random. Then 1,

3
d(HR(k)IR, h(k)) T2/3•-2-3 3 (6.4)

Proof. The big picture is that, since h(o) is a length-shrinking function, with good

probability k should still have high min-entropy given h(k). This implies that if we

apply a strong extractor (in particular, here we use universal hashing) on k, the result

should still be close to random when given the hash function and h(k).

First, let us show that with high probability, k still has high min-entropy given

h(k). Intuitively, rare events give more information to the adversary. Accordingly,

let A be a real number such that 0 < A < 1 - q, and define B, the "bad" set, to be

the set of realizations y of h(k) such that Pk(h(k) = y) • 2
- (1-A)m

So, for yo ý B,

P(k = kolh(k) = yo) =
P(k = ko n h(k) = yo)

P(h(k) = yo)

P(k = ko)

P(h(k) = yo)

2-m .2(1-\)m

= 2-Am

Therefore, for h(k) 0 B, we have that H, (klh(k)) > Am. By theorem 2.2.3

and lemma 2.1, this implies that, for h(k) 0 B, we have that d(HR(k)JR, h(k)) <

/2 n . 2- \m , and from this we can bound the statistical distance of HR(k) from uni-

form:

1Yevgeniy Dodis pointed out to us that by using their generalized leftover hash lemma in [29],
we can save a root, to get d(HR(k)IR, h(k)) < 3 .2-½(1-)m+-



= ZP(R=

= EP(R=

r n h(k) = y)d(HR(k)|R = r, h(k) = y)

r)( P(h(k) = y)d(HR(k)|R r, h(k) = y)
yEB

+ P(h(k) = y)d(HR(k) R =
yý13

< EP(R=r)(EP(h(k)=y).1
r yEB

+ E P(h(k) = y)d(HR(k)R = r, h(k) = y))
yýB

" IP(R=
r

" EP(R=

r)( h(k)| -2- (1 - )m + P(h(k) = y) 2n - 2
- Am)

y2B

r) (2m .2
- ( 1 - A ) m + 2

"
2

- Am)

- ((1- 0)- A)m  
- Am /2+ n/2

Minimizing the right hand side over 0 < A < 1 - ¢ by differentiating wrt A and

setting to zero, we get:

2-(1-)m(ln 2)m2A*m + 2n/2(ln 2)(-m/2)2- A*/2 = 0

2-(1-O)m + A*m = 2n/2-1-A*m/2

-(1 - O)m + A*m = n/2 - 1 - A*m/2

3
3 A*m = (1 -4)m + n/2 - 1
2

2 n 2
A* = 2(

1 - ) +
3 3m 3m

It is easy to check that the second derivative is positive and so at A* the upper bound

on the statistical distance is minimized. Therefore,

n 2)m 2- n 2 )+< 1 -3m 3m 2-( 1 3m 3m( 2

= 2-g(1-)m+- + 2-1(1_)m++ 12-3 2 3+2-3(1)m+ 3

3 1

22/3 2

r, h(k) =y))

d(HR(k) R, h(k))

d(R -kR, h(k))



6.3.2 Dealing with Relations Between Secrets

What happens when the secrets are used to compute some new secrets? How would

the adversary's information add up as he sees more partially erased information?

Consider the following scenario. In the original protocol (before making the secrets

partially erasable), for some secrets sj and some functions gj, say that si = gi(si- 1)

and later si is used to do some cryptography. Now, if we made the secrets partially

erasable (not worrying about how we would compute the gis for the moment), how

random is si, given partially erased sj, j < i? In the following, we consider a general-

ization of the above scenario where for secret si, the adversary knows a 1-1 and onto

function q4(o) which relates it to sl. Or rather, for each tuple (Ri, h(ki), Hi(ki) e si),

the adversary knows 1-1 and onto functions which relate HR, (ki) and HR, (ki).

There are two things that this 1-1 and onto function is trying to capture (see

Figure 6-1). First, consider the case in which the secret s remains the same, and

multiple, say two, partial erasures were done on the expanded form. In this case,

let us look at how the view of the adversary allows him to add up his information.

The first partial erasure gives him (R1, h(kl), HR, (ki) E s), and the second gives

him (R 2 , h(k2), HR2(k2) @ s). This means he gets HR1, (k) G HR2(k2), and therefore

any information he gains on HR1 (k1 ) is as good as information on HR2(k2) (and vice

versa). So the 1-1 and onto function relating HR, (ks) and HR, (k1) is just the XOR

operator.

Second, consider the case in which the secret s evolves over time: at time 1

it is sl and at time 2, it evolves to s2 = 92(s1). The first partial erasure gives

him (Ri, h(kl), HR,(ki) E si), and the second gives him (R 2, h(k2 ), HR2 (k2 ) 8s2)

This means he gets HR1(ki) @ HR2(k 2) @ S1 E S2. If in addition, he knows any of

HR 1(kl), HR2(k 2), S1, or S2, then (through 92(0) which we can, to the advantage of

the adversary, assume is public, 1-1 and onto), he knows all of them. For instance,

say that he gets HR1 (ki). Then he can recover sl through HR, (kl) e si, compute

s2 = 92(sl), and then recover HR2(k 2) through HR2(k 2) D s2. So in this case the 1-1

and onto function relating the one-time pads HR1(k1) and HR2 (k2), also takes the



related through q2(o), which is 1-1 and onto; any info gained on HR2(k2 ) 4 info on HR1 (kl)

Evolution R 2, k2,, HR2 (k 2) S2 8

· · LK

R1, h(ki), HR, (ki) @ S1

related through g2(o)

(e.g. refreshing phase for

proactive secret sharing)
R2, h(k 2), HR2 (k2 ) @ 82

?2 Theorem 6.3.1 22 Theorem 6.3.1

R2, h(k2), Un ( s2

the information adds up as given by theorem 6.3.2

Figure 6-1: Secrecy for Multiple Erasures

evolution of the secrets into account.

The following theorem proves that for secrets that possibly evolve over time, the

adversary cannot gain too much information even after seeing multiple erasures.

Theorem 6.3.2 (Secrecy for Multiple Erasures using Universal Hash). Let {HR} be

a family of universal hash functions. Let (Ri, h(ki)),..., (Re, h(kl)) be e tuples such

that Ri E (0, 1}nxm, ki E {0, 1}m, and h(ki) E {0, 1}1m, where R, picks out a random

function out of {HR}, ki is random, and qi(o) are public 1-1 and onto functions such

that HRI(kl) = qi(HRi(ki)). Then, for any f > 0, m poly in n, and sufficiently large

n,

(6.5)

R1, ki, ', HR, (ki) e si

R1, h(k 1 ) , Ue ( 1si

d(Hx (ki)R1, h(kS), ... , R1, h(ke)) < V(Iln 2)f2-½(1-¢)m+ +3 .



Proof. Since the family of universal hash functions that we consider, {HR}, is always

of the form HR(k) = R -k, we will just write R - k below to prevent confusion from

H(o), the entropy function.

= H(R ki) - H(RP - k lRi, h(ki))

< n - H(R -kJiRi, h(ki))
(2.10) 2"

< 2d(Ri -.k• Ri, h(k2)) log
2d(Rz - kRilP , h(ki))

(6.4) 1 n 1 1S 3.) -2-•(1-€)m+g+) log (2 •  2 -(1€)m--)

= 3 3 2-(1-)m+"+3 (log (2(-)m+V-A)+ log

< 3 2- -(1- )m+I+3 (1 - q)m + -

2-½(1-¢)m+n+! ((1 - ¢)m + 2n - 1)

< 2- ( 1- )m + + . (6.6)

The second inequality also requires the fact that for 6 and E such that 0 < 6 < e <

2-i-2 (which the right hand side of equation (6.4) satisfies for sufficiently large m),

we have that -6 log 6 < -E log E 2. The last inequality follows because, given q and

n, for any 0 < p and m poly in n, for sufficiently large n,

((1 - ¢)m + 2n - 1) 5 2 " . (6.7)

By chain rule for mutual information (theorem 2.1.16 on page 40),

I(Ri - ki; (R1, h((kl)), ... , (Re, h(ke)))

(6.8)= I(ý .- k; (Ri, h(k,))1(R , h(kl)), ... , (Ri-l, h(ki-1)))
i=1

2This is because the function f(x) := -x log x is concave and positive, and has its maximum at
-x 1 - log x = 0 x = 2- n2 , and so before this maximum, for 0 < 6 < e < 2- In2 , the function
-x log x is monotonically increasing.

I(Rz - ki; (Ri, h(ki)))



Also, because the difference in unconditional and conditional mutual information

is symmetric in the random variables, (theorem 2.1.15 on page 39), we have:

I(Y; X) - I(Y; XIZ) = I(X; Z) - I(X; ZIY).

Setting Y = R. - ki, X = (Ri, h(k )) and Z = (Ri, h(ki)),..., (Ri- 1, h(ki-1)), we have:

I(Ri - ki; (Ri, h(ki))) - I(R -k; (Ri, h(ki)) (Ri, h(ki)), ..., (Ri-_, h(ki-1)))

= I((Ri, h(ki)); (Ri, h(ki)),..., (R_-1,h(ki_-1)))

-I((Ri, h(ki)); (Ri , h(ki)), ... , (Ri-1, h(ki-1)) 1 Rj - ki)

= I((Ri, h(ki));(Rl, h(kl)),..., (Ri-1, h(ki-_1))) 0,

where the last equality uses the fact that qi(o)s are public, 1-1 and onto functions of

the Ri -kis to one another. Therefore,

Substit( ki; (Rint h(k))(R h(ki))on 6 .., (Rwe h(k-get:))) I(Rz -ki; (Rjh(k))).

Substituting into equation 6.8, we get:

..., (Re, h(ke))) S I(R( -ki; (R , h(k,)))
i=1

(6.6) 02-(1-)m+•)lnle2-3 3 3l"' (6.9)

Also,

n - H(Ri -ki)
(2.10)

_5 2(d2R4 - k) log
2d (Ri - ksi)

H(Rz -k)) > n - 2d(Ri -ki) log
2d(Ri -ki)

€ H(Ri - ki) n-

= H(RP - k) n-

(6.4)
. H(Ri - k) > n

3
- 2-3 2(1-)m+

22/3

1
2d(Ri - ki)n - 2d(Ri ki) log

2d(R, -k k)

2d(R• - ki P, h(ki)) n + log 2d( 1,h(k)2d(R,- -ki IRg, h (ki))

n +log
22/3-

I(Ri -k,; (Ri, h(kl)),



4= H(Ri. k) 2 n - 2- 0(n + 8)

<- n < H(Ri - ki) + 2-°(n + 0), (6.10)

where 0 := .(1 - )m - log2 (3).

Putting it all together,

d(Ri - ki ,(R, h(kil)),..., (R&, h(kt)))

(2.11) In 2(2.1) 2 (n - H(R- kj j(R, h(k1 )), ..., (Re, h(ke)))

(6.10) FIn 2(6) 2 (H(Ri k,) + 2-(n + ) - H(Ri -ki(R, h(ki)), ..., (R, h(ke))))

S_ (I(Ri k+; (RI, h(ki)), ..., (R, h(ke))) + 2-0(n + 9)

(6.9) /ln2I ()n 1
< _e2-( 3 +3 + 2-e( +)

(67) (In 2 ) 2- (1-4og23)m+ +_,

where the last inequality holds for large n and m.

Therefore, to get 2- ('+1) security when the adversary gets £ partially erased tuples,

a sufficient condition is:

Sn2 (6.11)In 2
3 log ((ln 2)e) + 1 + 6(a + 1) + (1 + Q)n

+= m> (6.12)
(1 - )

Let us make a few observations. Inequality 6.11 shows that if h has leakage fraction

q, how many times can you partially erase a secret (or computations on the secret)

without leaking too much information. Rearranging, and fixing the other parameters,

we can also see that the fraction that needs to be erased, (1 - 4), has to be at least



logarithmic in E. Inequality 6.12 on the other hand lower bounds m, which as we will

see shortly, translates into a statement about the space efficiency of using universal

hashing to get partially erasable forms.

Note that in the case where the secret s we are dealing with is a random one,

we can save n-bits in the expansion and just use Exp(s, $) := (R, k) where R and

k are random s.t. R k = s 3. This can be done easily for a random R or even a

random Toeplitz R. The theorem applies even to this case, i.e. regardless of how the

secrets are chosen to be dependent on one another, any secret itself is still close to

random. Note that we give the adversary 1-1 and onto functions that link one secret

to another, and thus all the pairs (Ri, ki) are dependent (which in turn implies that

the pairs (Ri, h(ki)) are dependent too), and in particular we cannot just do a union

bound.

Corollary 6.3.3 (Toeplitz Hashing gives a Partially Erasable Form). Let s E {0, 1}",

R E {0, 1}ln x m , and k E {0, 1}m . Consider a random Toeplitz matrix R, naturally

corresponding to a Toeplitz hash HR : {0, 1}m H {0, 1}n, where HR(k) := R - k. Con-

sider Exp(s, $) := (R, k, HR(k) G s) and Con(R, k, x) := HR(k) e x. Then (Exp, Con)

is a partially erasable form. More precisely, given 0 < 0 < 1, any a > 0, any / > 0,

any e > 0, and any m that satisfies inequality 6.12, (Exp, Con) is an (f, a, 0) -partially

erasable form.

Proof. Correctness follows by construction, secrecy follows from theorem 6.3.2 and

inequality 6.3. Here we prove that this partially erasable form can be computed with

constant memory. Some notation first:

1. Reg is the variable corresponding to the constant number of constant size regis-

ters. EraseReg is the command for perfectly erasing Reg. All other variables

are in the main memory (and in particular might be paged onto the hard drive).

2. Var[a] is the ath bit of Var. For instance, Reg[O] is the first cell of the register.

3. Ri is row i of the matrix R.

3In fact this type of expansion is what we are going to use later in Chapter 9 when we give a
special compiler for all known proactive secret sharing schemes.



For simplicity of presentation we are going to present the expansion as if the whole

n x m matrix R is output, but of course since R is Toeplitz, only n + m - 1 bits are

required.

Exp(s, r)

1 > Expand secret s = s[i], ..., s[n] using randomness r, in the registers.

2 k$ {0,1}m

3 R , $o,1}m
4 for i +- 2,...,n

5 do

6 Ri + {0, 1}

7 Ri +- Ri o Ri_l[1...m - 1] > Toeplitz

8 for i +- 1,..., n

9 do

10 Reg[O] +- s[i] > This register keeps the running sum.

11 for j +- 1, ..., m

12 do

13 Reg[O] <- Ri[j] -k[j] e Reg[O]

14 x [i] +- Reg[O]

15 EraseReg

16 return (R, k,x)

From the code it should be clear that all that is leaked outside of the registers is

(R, k, x), which is fine because it can be partially erased later, when s is not required.

Contracting the secret back bit-by-bit is essentially just reversing Exp so we will

not present Con.

Space Efficiency of Using Universal Hashing

If a completely random R were used to pick a function out of the universal family

{HR}, then the expansion factor I of the storage would be (size of R + size of k). 1



which is (n + 1)m. = (1+ 1)m. Plugging this into inequality 6.12, we see that this

bound is a (growing) factor of n away from the optimal given in theorem 6.2.1.

Since we use a Toeplitz matrix R instead of a completely random one, R requires

only n + m - 1 bits to specify (since it is Toeplitz), and k requires m bits and R k e s
requires n bits respectively. So in this case, n bits get expanded into 2m + 2n - 1 bits,

and I is 2m + 2 - -. Plugging this into inequality 6.12, we see that for a = O(n)

and e = 2o(n), then this bound is a constant factor away from the optimal given in

theorem 6.2.1. If t is subexponential in n and a is sublinear in n, then the bound

we get is about T 2 0 + 2, so it is essentially a factor of 2 away from the optimal

bound.

6.3.3 Using 1 + c-almost Universal Hash

As we saw above, the randomness efficiency of the hash translates into the space

efficiency of our expanded form. The Toeplitz universal hash uses n + m - 1 bits

of randomness, whereas almost universal hash can use just r < n + m - 1 bits. In

this section we examine under which settings of the parameters will expanded forms

based on almost universal hashing be more space efficient than the expanded forms

based on universal hashing.

Theorem 6.3.4 (Secrecy for Single Erasures using - + e-almost Universal Hash).

Let (R, h(k)) be a partially erased tuple such that R E {0, 1}nxm, k E {0, 1}m, and

h(k) e {O, 1}m, where R is an E = +-1-biased generated Toeplitz matrix (using r

initial random bits). Then,

d(R - klR, h(k)) < 22 (-9 + n + m- 1 2(nr/2). (6.13)

Proof. The proof idea is similar to the one using universal hash; differences will be

pointed out below.

First, let us show that with high probability, k still has high min-entropy given

h(k). Intuitively, rare events give more information to the adversary. Accordingly,

let A be a real number such that 0 < A < 1 - 0, and define B, the "bad" set, to be



the set of realizations y of h(k) such that Pk(h(k) = y) < 2
- (1-A)m

So, for yo 0 B,

P(k = kolh(k) = yo)
P(k = ko n h(k) = yo)

P(h(k) = yo)

< P(k = k0 )

-P(h(k) = yo)

< 2- m .2(1-)m

= 2- Am .

Therefore, for h(k) 0 B, we have that Ho (klh(k)) > Am. By theorem 2.2.4

(instead of theorem 2.2.3) and lemma 2.1, this means that for h(k) V B, we have

that:

d(R -klR, h(k)) •_
1

2n . 2-\m + 2" . ( 2n
n+m-1

2r/2

and from this we can bound the statistical distance of R -k from uniform:

d(R -kIR, h(k)) = mP(R=

= P(R=
r

rn h(k) = y)d(R -kjR = r, h(k) = y)

r)( P(h(k) = y)d(R kR = r, h(k) = y)
yEB

+ 1 P(h(k) = y)d(R
yVB

r) (Z P(h(k) = y) -1
yEB

SkR = r, h(k) =

+ P(h(k) = y)d(R kR = r, h(k) = y))
yýB

< P(R = r)(|h(k) -2- (1- A)m

+ E P(h(k)= y)/2. 2-Am + 2n. 2 /2
yVB

n+m-1)
2r/2r) (2m 2-(-)m + 2 2-m + 2 .

• ZP(R =

I

5 P(R =



-((1-A)--)m + 2n - 2-Am + 22 n · 1
2r/2

Minimizing the right hand side over 0 < A < 1 - q by differentiating wrt A and

setting to zero, involves solving a quartic polynomial, resulting in a formula that

can barely fit in two pages. So for simplicity we are going to cut some slack before

optimizing:

d(R.- kR, h(k))< 2- 2\-(1-A)m + • . 2-m + 2 n m 1r/ 2

2r/2

< 2-((-\)-O)m  + V2- . 2-m + 2n. 2! /2

= 2- (( 1- )- )m + 2 (n-m) + /n + m - 1 2(nr/2)

The second inequality holds since v/ b < V/a+ ÷/ bfor a, b > 0.

Minimizing the right hand side over 0 < A < 1 - ¢ by differentiating wrt A and

setting to zero we get the same A* as in theorem 6.3.1, because the extra term does

not involve A*. So we get:

2 n2A*= (1-0)+n .3 3m 3m

Therefore, d(R - klR, h(k)) 3 . 2-(1-•)m+ \ + n + m - 1 2½(n- /2).

The second term, n ±+ m - 1 2 ½(n-~/2), can be seen as an overhead to using an

E = I + n" -almost universal hash instead of a universal one. This extra term

will make it difficult to upper-bound the multi-period statistical distance, so let us

simplify it first.

This second term can be upper-bounded by:

2½((1+,)n-r/2)

for any / > 0 and n sufficiently large.

Intuitively, the value of r that would minimize the righthand side of equation 6.13

is one where the two terms are roughly equal. If we equate 3 * 2 -1(1-€)m+R and



22 ((1+ )n - r/ 2) , we get that:

r = 2( + 3)n + 3(1 - ¢)m - 4 log( ) .  (6.14)

Since r is the number of bits used to generate a Toeplitz of dimension n x m, we

know that r < n + m - 1.

Therefore,

1 4 3
2( + )n + -(1 )m 4 log( ) <n+m-1

= 2(--+ )n+-(1-40)m-4 log(2- --3)- ! <0,
3 3 22/3 4

which, for n and m growing (and 3 small), can only hold if q > 1 . In this case, we

get the simplified bound of:

d(R - kjR, h(k)) < 3 2- ½(1- 0)m+n+3 .  (6.15)

When compared to the case when universal hash functions are used, this represents

a factor of 2 loss in security; or to put it differently, m has to be larger to achieve the

same level of security.

Theorem 6.3.5 (Secrecy for Multiple Erasures using - + e-almost Universal Hash).

Let (RI, h(kl)), ..., (Re, h(ke)) be f partially erased tuples such that Ri E {0, 1}nxm, ki E

{0, 1}m, and h(ki) E {0, 1}4m, where each Ri is an E = -- /--biased generated

Toeplitz matrix (using r initial random bits). Let qi(o) be public 1-1 and onto func-

tions such that RI -ki = qj (Ri -ki). Then, for any 0 > 0, m poly in n, and sufficiently

large n,

d(Po -ke p R, h(kl),o..., R7, h(ke)) < (n22- m (6.16)

Proof. The proof is analogous to that of theorem 6.3.2.



Therefore, to get 2-("+1) security when the adversary gets t partially erased tuples,

it is sufficient that:

/(ln 2)f2-3 (1- )m + 2 +
± 

- < 2- (a + l )

2- -2(e+ )- (1+0)n+ m(1-€)
= < 2- (6.17)

In 2
Sm>3 log ((ln 2)) - 2 + 6(a + 1) + (1 + )n (618)

(1 - )

Calling the bounds on t and m in the case of using universal hash functions £' and

m' respectively, we see that:

e < 2£' (6.19)

Sm > m' + 3 (6.20)

Corollary 6.3.6 (G + c-almost Universal Hashing gives a Partially Erasable Form).

Let s E {0, 1}'1, R E {0, 1}nxm, and k E {0, 1}m. Consider a 1 + c-almost uni-

versal family of hash functions {HR}, where HR(k) := R - k. Consider Exp(s, $)

(R, k, HR(k) E s) and Con(R, k, x) := HR(k) E x. Then (Exp, Con) is a partially

erasable form. More precisely, given 0 < q < 1, any a > 0, any f > 0, any e > 0,

and any m that satisfies inequality 6.18, (Exp, Con) is an (e, a, ,) -partially erasable

form.

Proof. The proof is analogous to the proof of corollary 6.3.3. O

Space Efficiency of Using 1 + E-almost Universal Hashing

What we gain here over using universal hash functions is storage efficiency. The total

number of bits required to store an n-bit secret in a partially erasable manner is

r + m + n, which is:



(6.14) 1 4 3
r + m + n 2(3 + • )n + 3(1 - )m- 4 log( 22 3)+m+n

5 7 4 3
= ( + 20)n + (3 4)m - 4log 22/3

Therefore, if £ is subexponential in n and a sublinear in n, then the bound we get

on the expansion factor is:

5 7 4 m 4 3
= (- +2) + ( - ) log)n3 3 3 n n 22/37 4 m

3 3 n
(6.18) 7 4 1

3 3 1-0

However, if 1 > 0 > 1/4, we have that 1 < ( - 4) < 2. Therefore the bound

we obtain here is about IF 1-, where c < 2, compared to I 12 for universal

hashing. If ¢ is very close to 1, then c is close to 1 to and the storage expansion is

thus very close to optimal.

For the other case, k • , to achieve the same level of security while minimizing

d(R - kIR, h(k)), the best we can do is to set r = n + m - 1. In this case we do not

gain anything in terms of the storage efficiency. Therefore, if 5 • , the only reason

to use the E-biased construction instead of the universal one is to have the flexibility

to tradeoff security with the space efficiency.

6.3.4 Using Strong Extractors

At this point, one might think that any strong extractor would suffice, and therefore

we might be able to use optimal strong extractors and correspondingly, get the most

space-efficient construction of partially erasable forms. Unfortunately, as we will

see in this section, even though any expanded form based on any strong extractor

would satisfy the secrecy requirement, the constant memory requirement is not easy

to satisfy.



Theorem 6.3.7 (Secrecy for a Single Erasure Using Strong Extractors). Let (R, h(k))

be a partially erased tuple such that R E {0, 1}1", k E {0, 1} , and h(k) E {0, 1}1',

where R is the seed of a (IC, 6) strong extractor Ext : {0, 1}1 x {0, 1}1 )  {0, 1}1 ,

0 < K: < (1 - ¢)A. Then,

d(R -klR, h(k)) 5 2 -((1-O )A-K) + 6. (6.21)

Proof. The proof is analogous to that of theorem 6.3.1 on page 81. O

Theorem 6.3.8 (Secrecy for Multiple Erasures Using Strong Extractors).

Let (Ri, h(ki)), ..., (Re, h(ke)) be £ tuples such that RP E {0, l}", k e {0, 1}1r, and

h(ki) E {0, 1}'N , where Ri is the seed of a (Ki, ) strong extractor Ext : {0, 1}N  x

{0, 1}v" {0, 1}, 0 < K: < (1 - ¢)Kf. Let qj(o) be public 1-1 and onto functions

such that Ext(Ri, ki) = qi(Ext(Ri,ki)). Then, for any 0 > 0, m poly in n, and

sufficiently large n,

d(Ext(RE, k)(R1R, h(kl)), ..., (Rj, h(ke)) ((ln2)f2Pn+1-log32-((1-¢)• -K ) + 9. (6.22)

Proof. The proof is analogous to that of theorem 6.3.2 on page 85. O

Locally computable extractors is a class of strong extractors used to construct

private-key cryptosystems in the bounded storage model [63, 82]. These extractors

can be computed by reading only "a few" bits from the random source. We show in

the following theorem that being locally computable is not sufficient for our purposes

- in particular "a few" bits, while small, would need to be non-constant.

Theorem 6.3.9 (Locally Computable Extractors do not give Partially Erasable

Forms). Consider a (IC, 6)-strong extractor Ext : {0, 1} )" x {0, 1}m H {0, 1}n that is

t-local. Consider Exp(s, $) := (R, k, Ext(R, k) E s) and Con(R, k, x) := Ext(R, k) D x,

as a candidate partially erasable form of any secret s E {0, 1}i , using the t local

strong extractor Ext. This is not a partially erasable form because both Exp and Con

are not computable with constant memory; in particular, for our setting, t has to be

non-constant.



Proof. Consider Ext, a t-local strong (IC, 6)-extractor, and say the adversary chooses

h to be equally distributed - for example, it chooses to keep only the first Om bits

of k. Clearly, in that case H, (k I h (k)) = (1 - 0) -m. Thus, we need Ext to be a

strong ((1 - m) -m, 6)-extractor. According to corollary 9.2 of [82], if Ext is a t-local

strong (em, 6)-extractor, then t > (1 - 6 - 2 -"n) (1/E) -n. In our case, E = 1 - 0, so it

is required that t > (1 - 6 - 2-") . (1/ (1 - 0)) -n. Even if 0 were a constant, t would

still be greater than some constant c times n, so the extractor cannot be computed

with constant memory. O



Chapter 7

Partial Erasures Compiler

In this chapter we present a general compiler that on input a protocol that relies on

perfect erasures for its security (proofs), outputs a protocol with the same function-

ality that remains secure even if the erasures are only partial. The input protocol

could be one that is adaptively secure, forward secure, intrusion resilient, proactively

secure, etc.

We assume that all protocol computations are given to us as boolean circuits

consisting of gates with fan-in 2 and fan-out 1. We remark that any TM running in

time T(n) can be converted to a circuit of size T(n) x polylog(T(n)) computing the

same function [75].

We apply the technique described in the previous chapter at the gate level in

Section 7.1 (to make computations on the secrets partially erasable too), and based

on this, present our general compiler in Section 7.2. As an example, in Section 7.3 we

will apply our general compiler to Beaver and Haber's adaptively secure encryption

protocol [9].

In the chapters following this we give special-tailored compilers that are more

efficient than the general one.



7.1 Making Secrets Partially Erasable at the Gate

Level

In the previous chapter we introduced the idea of writing secrets in an expanded form

so that even partial erasures are enough for effectively erasing the secret. Since the

secrets are represented differently now, one has to make sure that computations on

the secrets can still be done, and in addition that the computations be in the register

model. This is not covered by the previous chapter, since there we did not consider

computations on the secrets (beyond giving the adversary 1-1 and onto functions that

relate the secrets); in particular, while doing the computations, if we are not careful

about how we use the storage, then these traces will not be partially erasable and

will thus give the adversary a lot of information.

Any efficient (poly-time) computation on the secrets can be computed by some

poly-sized circuit with gates of fan-in of 2 and fan-out of 1. To avoid leaking informa-

tion, the computations should be done gate-by-gate (so that the direct I/O of each

gate can be kept entirely in the perfectly erasable registers). To evaluate each gate,

reconstruct the required input bits from their expanded, partially erasable form, in

the registers. The gate is evaluated, resulting in an output bit in the registers. Now

this bit of intermediate computation should be output into the main memory, again

in the expanded form. In this way we extend the results in the previous chapter in a

considerably more general way, applying the technique at the gate level.

Note that even if in practice, storage locations holding expanded forms of the

intermediate computations may be overwritten, for analyzing security we can think

of all the expanded forms as being written in a new memory location. Put another

way, overwriting is just one of the imperfect erasures we are capturing, so we can

analyze it as if the expanded forms are being written into new memory locations and

partially erased, instead of being overwritten.

However, the argument above (contracting, computing gate-by-gate and then ex-

panding) cannot be applied to the partially erasable forms themselves because we

would be chasing our own tails. This is why in definition 6.1.1 we defined partially
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erasable forms to be computable with constant memory, so Exp and Con can be com-

puted just using the registers, which are perfectly erasable.

7.1.1 Computing on Partially Erasable Secrets at the Gate

Level

Let s E {0, 1}n be the secret involved, and let (Exp, Con) be a partially erasable form.

Consider any efficient computation g on s, which can be modeled as a poly(n)-sized

circuit. Without loss of generality and to establish notation, we consider:

* g to be length preserving (outputs n bits),

* each output bit gi separately as being computed by polynomial-sized circuits

Cgi

* each circuit Cg to be of depth E = O(n) for some polynomial E, with the

highest level being the single gate that outputs gi,

* each level 0 of each circuit Cg to consist of gates X9 with fan-in of two and

fan-out of one, and

* each gate X9 (the j-th gate at the 0-th level of the circuit computing the i-th

bit of g) to have s•- 1 and s,2J as its inputs and sq. as its output, so the output

bits from the previous level are always read in order - in particular, the first

level of each of the circuits C, uses bits of the original secret sA := sj in order.

Now let us describe how we can do the computation g on s (or rather, on Exp(s, $)),

without leaking too much information.

To evaluate a gate X9., the two corresponding input bits s,,5 1_, and s,o- are

reconstructed from their expanded forms in the registers (using Con 2j-1 and Con 2j).

The gate is evaluated, resulting in an output bit sq in the registers. This output bit is

expanded into the partially erasable form and output to main memory, by using Expj.

The comparison of the original versus the new gate level computation is summarized

in Figure 7-1, which is a more detailed version of Figure 1-1 in the introduction.
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Note that if we just store the values of the wires naively, i.e. by individually

expanding the 1-bit value of each wire to a Tn size secret, then the overhead of our

scheme will not even be constant. So we must amortize the cost: "group" the output

wires of each level of each circuit into groups of size up to n (i.e., there are up to n

wires in each group), and expand these outputs bits into a single 'n-bit string. More

precisely, by "group" we mean that the output bits should be individually expanded

by Exp, dependently. (We described this dependency in corollary 6.3.3 on page 89.)

This will make sure that the overhead of the general compiler will be as claimed. For

simplicity of presentation, this amortization will not be shown explicitly.

Original Computation New Computation

Exp (s, $) -U
S Expj ,

i 2 Z,- i,2j )

in the registers

0-1 0-1
si,2j-1 Si,2j

0-1 80-1
Si,2j-1 i,2j

SCon 2j-1, Con:

Exp(so-, $)

Figure 7-1: Original Versus New Computation of a Gate
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The above is an informal description of COMPUTE-IN-REGISTER, which on input

(g, (Exp, Con), Exp(s, $)), computes g(s) by going gate-by-gate, expanding and con-

tracting as needed. In other words the computation of g(s) is done without leaking

the secret or the intermediate computations. See Figures 7-2 and 7-3.

ut, gl

uit C,

it, gn

:uit Cgn

Figure 7-2: Original Circuit for Computing a Function g(s)

g, expanded

uit (

:in the registers

Exp(so ' $)

Figure 7-3: New Circuit for Computing a Function g(s) (amortization not shown)
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Let EraseReg be the operation that perfectly erases all the registers, and Reg[i]

denote the i-th bit of the registers.

COMPUTE-IN-REGISTER(g, (Exp, Con), Exp(s, $))

1 l> For some efficiently computable function g, computes g(s) by

2 r> proceeding gate-by-gate; amortization not shown.

3 for i +- 1, ..., n > For each bit of the output (or each circuit Cgi)

4 do

5 for j - 1, ..., n

6 do

7 s+-- sj > Initialize the "zero-th" level outputs to

8 e •- Expj(s , $) > the secret in expanded form.

for 0 ~ 1,..., + O > For each level of the circuit,

do

for X °
-+ each gate in level 0 of Cg,

do

Reg[1] - Con 2j- 1 (e,2 1  > get the required inputs,

Reg[2] +- Con 2j (e - 1

Reg[3] - XB (Reg g1], Reg [2]) > and compute.

Output to main memory eo +- Expj(Reg[3], $)

EraseReg

return

Note that this algorithm COMPUTE-IN-REGISTER(g, (Exp, Con), Exp(s, $)) can be

easily modified into one that handles multiple inputs and/or outputs. To handle mul-

tiple inputs, just compute the bits needed from either of the inputs; to handle multiple

outputs, if g(s) outputs {Yi}i, COMPUTE-IN-REGISTER outputs {Exp(yi, $)}i). It can

also be easily modified if (some parts of) the input or output is not required (and thus

not modified) to be partially erasable (for such an input, just compute on it as usual;

for such an output, just skip the expansion and directly output to main memory).
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7.2 The Overall Compiler

Before giving the compiler, we need to describe how a secret is generated in the first

place. GEN-PARTIAL-ERASABLE-SECRET generates a uniform secret in a partially

erasable way. For secrets to be generated non-uniformly (by computing some function

gen(o) on input uniform coins), we can just do the generation in a partially erasable

way, by using COMPUTE-IN-REGISTER on the output of GEN-PARTIAL-ERASABLE-

SECRET.

We are going to follow the same notation we used in Chapter 6, repeated here for

convenience:

1. Reg is the variable corresponding to the constant number of constant size regis-

ters. EraseReg is the command for perfectly erasing Reg. All other variables

are in the main memory (and in particular might be paged on to the hard drive).

2. Var[a] is the ath bit of the variable Var. For instance, Reg[O] is the first cell

of the register.

3. R~ is row i of the matrix R.

GEN-PARTIAL-ERASABLE-SECRET((Exp, Con), n)

1 > Generates a random secret of length n bit-by-bit in a partial erasable way,

2 t> using the partially erasable form (Exp, Con).

3 k + {0,1}m

4 for i +- 1,...n

5 do

6 Reg[1] ý- {0, 1}

7 (Ri, x [i]) +- Exp, (Reg[1], $)

8 EraseReg

9 return (R, k, x) > Output to main memory and return.

In the compiler below, let S be the set of secrets in the original protocol that has

to be perfectly erased, and PartialErase be the command for partially erasing the

cache, memory, and hard drives.

105



COMPILER((Exp, Con), IIHg)

1 > Compile Iog9 requiring perfect erasures for security into IInew

2 r> that tolerates partial erasures, using (Exp, Con) as the expanded form.

3 for all s E S of length n to be generated using some algorithm gen(o) on input $,

4 do

5 replace by the following code:

6 "e <--GEN-PARTIAL-ERASABLE-SECRET((Exp, Con), n)"

7 "s +-COMPUTE-IN-REGISTER(gen, (Exp, Con), e)"

8 for all computations g(o) involving s E S (or rather, Exp(s, $) s.t. s E S)

9 do

10 replace by the following code:

11 "COMPUTE-IN-REGISTER(g, (Exp, Con), Exp(s, $))"

12 for all instructions "Perfectly Erase"

13 do

14 replace by the following code:

15 "PartialErase"

16 return modified protocol IInew

We will need the notion of UC-emulation:

Definition 7.2.1 (UC Emulation [11]). Protocol lne, UC-emulates protocol IIor if

for any adversary A, there exists an adversary S (of complexity polynomial in that of

A) such that, for any environment Z and on any input, the probability that Z outputs

1 after the following interactions differ by at most a negligible amount:

(1) interacting with A and parties running I-Ine, and

(2) interacting with S and parties running IIorg-

If A and Z are both limited to probabilistic polynomial time, then the emulation

captures computational security. If they are unbounded then the emulation captures

statistical security. If in addition, the distinguishing probability of Z is 0, then the

emulation captures perfect security.

Note that a protocol IIne UC-emulating another protocol IIo, means that Hew
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preserves the security properties of the original protocol IIor, and does not require

that IIorg be UC-secure. This notion of emulation is the strongest notion of its kind.

In particular, our result applies to static/adaptive adversaries, byzantine/honest-but-

curious adversaries, 2 party or multi-party protocols, etc. In particular, this does not

require that the original protocol IIorg be "UC-secure".

In our case, in the models of protocol execution, instead of having perfect erasures

(so on corruption, the adversary expects to see only the current information), we have

partial erasures, where the adversary chooses a length-shrinking h and on corruption,

expects to see the current information plus the partially erased past (using h).

In modeling the corruptions, in order to capture repeated adaptive corruptions

as in for instance proactive security, the adversary can write a "recover" message on

the incoming communication tape of any previously corrupted party, after which it

relinquishes control of the party. The adversary is allowed to corrupt parties over and

over again, with a sequence of "corrupt, recover, corrupt..." commands.

Now we are ready to present our main theorem.

Theorem 7.2.2. Let (Exp, Con) be an (f, a, q)-partially erasable form. For any pro-

tocol IIo, that requires perfect erasures (for security), the compiled protocol 1In, :=

COMPILER((Exp, Con), 1Iorg) UC-emulates IIo0 and tolerates (maintains security even

with) imperfect/partial erasures in the register model.

Proof. We wish to prove that for any adversary Aniew there exists an adversary Anorg

(with running time poly related to Anlne) such that no environment Z can tell with

non-negligible advantage whether it is interacting with Ane,, and IIne, or with A1norg

and fIorg.

We construct the adversary Anor9 as follows. Whenever it is supposed to show

some partially erased secret h (Exp(s, $)) to cAnrne, n,,iorg sets s' = 0 and then partially

erases s' to get h(Exp(s', $)). The adversary Aor,, does the same thing for the

intermediate computations.

It follows from definition 6.1.1 that, if Exp is an (f, a, €)-partially erasable form,
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then as long as the total number of erasures is less than f, then:

A(h(Exp(s, $1)),..., h(Exp(s, $j)); h(Exp(s', $'I)), ..., h(Exp(s', $'))) < 2- .

Therefore, as long as at most f erasures are made, the environment views of the two

interactions are statistically close to each other. Ol

Note that the notion of UC-emulation does not require the original protocol IIorg

to be UC-secure. This notion of the real world emulating the ideal world is just the

strongest notion of its kind. In particular, our theorem applies to static/adaptive ad-

versaries, byzantine/honest-but-curious adversaries, 2 party or multi-party protocols,

etc.

This means that when designing protocols, perfect erasures can be assumed and

used freely to simplify protocol design and proof, and then later weakened into partial

erasures by simply invoking our compiler. In particular, if the original protocol is

adaptively secure, forward secure, intrusion resilient, or proactively secure, then the

resulting protocol is as well. The price that we pay for this is a blow up in space

by ', and a blow up in computation proportional to the time required for two (bit)

contractions and one (bit) expansion (done before and after each gate computation).

If the original protocol assumes secure channels (which the adversary cannot eaves-

drop on), then it is possible that some secrets are exchanged through these channels.

Only in cases like this will the compiled protocol actually change the communication

complexity.

A Practical Note

Throughout, we describe the construction as a general compiler, but it could be

implemented as a transparent layer between the existing code and the CPU hard-

ware. This transparent layer could for instance be implemented in hardware, to get

a commodity processor that automatically makes all the secrets partially erasable.
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7.3 Example: Adaptively Secure Encryption

As a concrete example we now show how one can get adaptively secure encryption

using partial erasures. Here the ultimate goal is to use encryption to transform

protocols that assume ideally secure channels into protocols that withstand adver-

saries that hear all the communication. Against static adversaries, standard chosen

ciphertext attack secure encryption [30, 20, 78] (or even plain semantically secure

encryption [43], if used appropriately) is sufficient. Against adaptive adversaries, we

need to use adaptively secure encryption.

Unfortunately, to obtain adaptively secure encryption, it seems that one needs to

either assume perfect erasures [9], or use considerably more complex constructs [14,

8, 76].

We first review the basic protocol of [9], which uses perfect erasures, and then

move on to replace the perfect erasures by partial erasures (in the register model).

The basic protocol of [9] is as follows. Two parties A and B wishes to communicate

securely, in the presence of an adaptive adversary, without secure channels. Without

loss of generality we assume that only A sends messages to B and that the messages

are of length polynomial in n, the security parameter. We note that a similar prob-

lem is also considered in [26], where it was called the "gradual key exposure problem".

7.3.1 Adaptively Secure Encryption Using Perfect Erasures

1. (Initialization) A and B share a key ko of length n, out-of-band, and agrees on

a length-doubling pseudo-random generator g : {0, 1}1 -+ {0, 1}n x {0, 1}1 to

be used.

2. (Sending the i-th message)

2.1 A computes (k2i- 1, k2i) +- g(k 2(i-)), where k2i- 1 are both n-bit strings. B

does the same.

2.2 A and B perfectly erases k2(i-1).
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2.3 A enters a loop, to wait for a "proceed" message from B before proceeding.

B sends a "proceed" message to A.

2.4 A selects a message to send, msgi E {0, 1}0 .

2.5 A uses k2i-1 as a one-time pad to compute the ciphertext ci +- msgi k2i- 1,

and sends it to B. B receives ci and decrypts msg' <-- c' E k2i-1.

This protocol is proven to be adaptively secure in [9].

7.3.2 Adaptively Secure Encryption Using Partial Erasures

1. (Initialization) A and B share eo := Exp(ko, $) out-of-band, agrees on a length

doubling pseudo-random generator g : {0, 1}" -_ {0, 1}" x {0, 1}) to be used.

2. (Sending the i-th message)

2.1 A computes (e2i- 1, e2i) -- COMPUTE-IN-REGISTER(g, Exp(k 2(i-1), l$)), and

B does the same.

2.2 A and B partially erases k2(i-1), so what is left is h(Exp(k 2(i-1), $)).

2.3 A enters a loop, to wait for a "proceed" message from B before proceeding.

B sends a "proceed" message to A.

2.4 A selects a message to send, msgi E {0, 1}n .

2.5 A uses k2i-1 (implicitly) as a one-time pad to compute and sends to B the

ciphertext ci +- COMPUTE-IN-REGISTER( 9 (msgi, o), e2i-1). B receives
ci, and decrypts msg' +- COMPUTE-IN-REGISTER( (ct, o), e2i-1.

Note that the message msgi need not be erased, and therefore the generation and

receipt of msgi do not need to be done in the partially erasable way. As in the proof

of the general compiler, we get that the modified protocol UC-emulates the original

one.

Corollary 7.3.1. The modified protocol above UC-emulates the original one in [9].
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Chapter 8

More Efficient Compiler for NCO

Our general compiler in Chapter 7 had to work at the gate level so that we can com-

pute any efficient function on the secrets just using the constant number of constant

size registers; this results in a blow up in computation proportional to the time re-

quired for two (bit) contractions and one (bit) expansion (done before and after each

gate computation). However, if all the computations on the secret can be done with

constant output locality (where each bit of the output depends only on a constant

number of input bits), then we do not need to go to the gate level.

A summary of the results as to which cryptographic primitives can be computed in

a constant output locality fashion (assuming corresponding assumptions 1) is provided

in Section 8.1. We give the more efficient compiler in Section 8.2.

Restricting the computations on the secret to be of constant output locality is

stronger than required. In fact, in the next chapter, Chapter 9, we give a proactive

secret sharing protocol using partial erasures that is more efficient than the general

compiler, which does not require the computations to be of constant output locality.

We do this by modifying the original protocol to directly deal with partially erasable

forms.

1We stress that, for our results, the assumptions do not relate to security but rather only to the
efficiency of the compiled protocol, since we can always forget about the assumptions and just use
the general compiler.
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8.1 Summary of Some Results in Parallel Time

Complexity

The parallel time complexity of cryptographic primitives has been studied in various

works, including [48, 42, 23, 58, 70, 3, 6]. They try to minimize the parallel time

complexity of basic cryptographic primitives (or prove impossibility results). Recall

that NCO is the class of functions that can be computed by O((log n)') depth circuits

with bounded fan-in. In particular, an NCo function is one where each bit of the

output depends on a constant number of input bits (i.e. constant output locality);

this class is also called constant parallel time, for if we had a polynomial number of

processors, an NCo function would take constant time to evaluate (in the straightfor-

ward manner). We write NC° for the class of functions where each bit of the output

depends on at most c input bits.

The existence of one-way functions (OWF) and pseudo-random generators (PRG)

in NC1 is a relatively mild assumption, implied by most number-theoretic or algebraic

intractability assumptions commonly used in cryptography, such as the intractability

of factoring, discrete logarithms and lattice problems. On the other hand, until the

work of Applebaum, Ishai and Kushilevitz [3], there has been no convincing theo-

retical answer to the question of whether there are instances of basic cryptographic

primitives that can be computed in constant parallel time (NCo). The main result

in [3] is that, every "moderately easy" OWF (resp., PRG), say computable in NC1

(or even @L/poly), can be compiled into a corresponding OWF (resp., PRG) in which

each output bit depends on at most 4 input bits, i.e. in NC41. They give a similar

compiler for other cryptographic primitives like one-way permutations, encryption,

signatures, commitment, and collision resistent hashing. Improvements to these (and

some additional results) were made in [4, 6].

Tables 8.1 and 8.2 present a quick summary of the results relevant to us (ACo is

a similar class as NCo except that the fan-in of each gate can be unbounded).

For our purposes, the implication of the negative results is that: for protocols

that use the corresponding primitives on the secrets, it might be difficult to replace
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Negative Results
Result Reference

PRF ý ACo [62]
PRG 0 NC°  [23]

PRG with superlinear stretch V NC3 [23]
PRG with superlinear stretch 0 NC4 [70]

Table 8.1: Some Negative Results in Parallel Time Complexity

Positive Results
Assumption Result Ref

Subset-sum related 3 PRG with sublinear stretch E ACo [55]
Intractability in Decoding Random Linear Code 3 OWF E NC3 [3]

Intractability in Decoding "Sparsely Generated" Code 3 linear stretch PRG E NCO [5]
3 TDP whose function evaluator E DL/poly 3 TDP whose function evaluator E NC4  [3]
3 1 bit stretching PRG E uniform-eL/poly 3 PRG with sublinear stretch E NC4 [4]
3 1 bit stretching PRG E uniform-eL/poly (Priv./Pub.) Encryption Algorithm E NC40 [4]
3 1 bit stretching PRG E uniform-EL/poly 3 Signatures E NC4 [4]
3 1 bit stretching PRG E uniform-®L/poly 3 MACs E NC°  [4]
3 1 bit stretching PRG E uniform-eL/poly (Non-interactive) Commitment E NC4 [4]
3 1 bit stretching PRG E uniform-GL/poly (Non-interactive) ZK Prover E NC °  [4]
3 1 bit stretching PRG E uniform-eL/poly Constant round ZK Prover for NP E NC4 [4]
3 1 bit stretching PRG E uniform-@L/poly (Comp. Secure) MPC of any P-time f E NC °4 [4]

Table 8.2: Some Positive Results in Parallel Time Complexity

perfect erasures by partial erasures in the register model more efficiently than via the

general compiler.

Remark 7 (Assumptions). Most of the assumptions above (except for the subset-

sum related and the intractability of decoding codes) are implied by standard number-

theoretic or algebraic intractability assumptions.

Remark 8 (Note on Encryption Schemes). For encryption schemes, the positive

result only applies to the encryption algorithm and not the decryption algorithms.

In [3] it is argued that in many settings, decryption in NCo is impossible. However,

if the scheme is restricted to a single message of bounded length, or maintains state,

then decryption can also be done in NCo. Since [3] adapts the construction used for

encryption schemes to commitments and zero-knowledge schemes, they point out that
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in general, for the interactive cases of these primitives there is an analogous problem:

the transformation results in an NCo sender but does not promise anything regarding

the parallel complexity of the receiver. For more details the reader is referred to [3, 4].

Remark 9 (Further Improvements). Based on the intractability of some problems

from the domain of error correcting codes, [6] obtained further improvements for some

of the results, e.g. a PRG that has output and input locality (how many bits of output

each bit of input influences) of 3.

8.2 More Efficient Compiler for NCo

It is straightforward to get a more efficient compiler COMPILERNCo: instead of go-

ing gate-by-gate as in COMPUTE-IN-REGISTER, for each output bit, reconstruct the

constant number of bits that this bit depends on in the registers (which is possi-

ble assuming the appropriate assumptions), compute the function in "one-shot," and

output in partially erasable form.

Theorem 8.2.1 (Compiler for NCo). For any protocol Horg that relies on perfect

erasures for security, and in which all the computations on the secrets can be done in

NCo (assuming the appropriate assumptions), we have that IInew := COMPILERNCo

UC-emulates IIorg, and tolerates (maintains security even with) imperfect/partial era-

sures in the register model.
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Chapter 9

More Efficient Compiler for

Proactive Secret Sharing

In the previous chapter we saw that if in the original protocol using perfect erasures,

all the computations on the secrets are of constant output locality, then we can get

computationally more efficient schemes than via the general compiler, and get a new

protocol that uses only partial erasures.

In this chapter we apply the idea in Chapter 6 to proactive secret sharing. For

this, we do not need to operate at the gate level (as in Chapter 6) or require that all

the computations on secrets be of constant output locality (as in Chapter 8). Instead,

we modify the original protocol to directly deal with partially erasable forms. For

simplicity, in this chapter we will only focus on the following simple expanded form

of s E {0, 1}1: (R, k) where R E {0, 1}nxm, k E {0, 1}m such that both R and k are

randomly selected subject to the constraint R k = s.

In proactive (c, p)-threshold secret sharing, the goal is to securely share the secret,

against an adversary that is mobile and can corrupt up to c - 1 parties in each time

period. To maintain correctness and privacy, in between time periods the parties

enter a refreshing phase. At the end they get new shares. If the adversary breaks into

a party for the first time at time t, then we want to say that whatever information

the adversary can see will not allow it to infer the old shares, those that the party

holds between time 1 to t - 1. Perfect erasures of the old shares and the refreshing
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data is one way to guarantee that. As we will show, partial erasures are also good

enough.

In Section 9.1 we present a method to modify any existing proactive secret sharing

scheme (satisfying some general conditions) that uses perfect erasures, into a new

scheme that preserves the functionality and uses only partial erasures.

The conditions are:

1. The scheme consists of 3 phases:

(a) Dealing - when the parties receive their shares.

(b) Refreshing - when the parties negotiate to create new shares, at the end

of every time period.

(c) Reconstruction - when some group of parties reconstruct the secret.

2. The shares and refresh data are uniformly distributed over GF (2").

3. The refresh data can be computed sequentially, for one party at a time.

4. All the computations can be done directly under our register model, defined in

Section 5.1.

The proactive secret sharing schemes of [16, 51] satisfy these conditions (under

some minor and straightforward modifications to the schemes).

For concreteness, in Section 9.2 we present a particular proactive (p, p)-threshold

secret sharing scheme, against honest-but-curious mobile adversaries.

In Section 9.3 we present a proactive (c,p)-threshold secret sharing scheme, for

c < 1p, robust against malicious mobile adversaries.

9.1 More Efficient Compiler for Proactive Secret

Sharing

The high level idea of the more efficient compiler is the following. We start with H, a

proactive (c, p)-threshold secret sharing scheme which requires perfect erasures, that
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meets all the conditions stated above (in particular, the shares are uniformly chosen

from GF (2 n), where n is the security parameter). Let:

1. II call REFRESH (i, j, Sý,Il/<j to generate the refresh data (REFRESH ac-

cepts as arguments the source party i, the target party j, and the refresh data

sequentially generated to the other parties so far).

2. H call UPDATE8 {8 1 ••St ) to update the shares using the refresh data

received (UPDATE accepts as arguments the old share, and all the refresh data

party i received).

The compiled proactive secret sharing scheme PESS (H) will use altered versions of

these two algorithms, REFRESH' and UPDATE'. The differences are:

1. REFRESH' and UPDATE' take as input partially erasable forms of the shares

instead of the shares themselves, but essentially do the same computation.

2. Our altered algorithms will do their computation bit-by-bit (that is, by using

only the constant number of constant size registers to store valuable data). In

other words, for any bit number a E {1... m}, REFRESH', will compute the

oth bit of the refresh data to be sent by party i to party j, according to II, and

likewise for UPDATE'a. By conditions 3 and 4, this is possible.

We use auxiliary algorithms named GEN(), GEN 2 () and GEN3() in order to gener-

ate the share parts. These algorithms are called in the dealing and refreshing phases.

Detailed code for GENTI(), GEN2() and GEN3(), and some supporting algorithms fol-

low, which basically use the same notation as that in Chapters 6 and 7:

1. Reg is the variable corresponding to the constant number of constant size reg-

isters. All other variables are in the main memory (and in particular might be

pages onto the hard drive).

2. Var[a] is the ath bit of the variable Var. For instance, Reg[O] is the first cell of

the register. For a matrix R such two parameters are used, for instance R[a, p].
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3. [Val], is the ath coordinate (bit) of Val. A different notation is used, since we

are not computing the whole value but only the specified bit.

RANDOM-SPLIT(FUNCQ, arg)

1 t> For each a +- 1,..., n,

2 r> split FUNCa(arg) into random R[a,:] E {0, 1}m (row vector) and

3 > k e {0, 1}m (col vector) s.t. R[a,:] - k = FUNCc(arg)

4 > (here, R[a,:] denotes the ath row of the matrix R).

5 > As the main text explains, we use FUNCa because the output is sensitive info

6 > and we want to compute it bit-by-bit in the perfectly erasable registers.

7 > The error probability is (1 - )_; 1

8 > it errs when for some a E [1,n], FUNCa(arg) ý 0 and k = Om .

7 k {$0,1} m

8 for a - 1,...,n r> for each row of R...

9 do

10 Reg[O] +- 0

11 for <-- 1,..., m > for each column of R...

12 do

13 if k[Ip] = 1 and Vl E {1 + 1,... ,m}, k [l] = 0

14 then r> 3 is the last column that matters.

15 Reg[O] +- Reg[O] e FUNCa(arg)

16 R[a, 3] Reg[O]

17 else

18 R[a, 0] + {0,1}

19 if k[3] = 1 and R[a, 3] = 1

20 then > R[a, /] matters to the product.

21 Reg[0] - Reg[0] E R[a, /]
22 return (R, k)

ID (s)

1 > Identity function used to wrap constant vectors so that we can use

2 > RANDOM-SPLIT to split them.

3 return s[a]
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GENI (4)
1 > Dealer's randomly splitting of the initial share for party Pi at time 1.

2 Ri, ki-- RANDOM-SPLIT (ID, 81)

3 return (Rl , kli)

GEN2

1 > Party Pi's refreshing data computation at time t.

2 > Generate p refreshing pseudo-shares, one for Pj,

3 > that correspond to REFRESH i, { 1s<j}

4 for j -1,...,p

5 do

P6 (, ,) <-- RANDOM-SPLIT REFRESHi, i , 1tf})

7 return {pi, W}

1 > Party Pi's share updating computation.

2 Ril, ki +-- RANDOM-SPLIT UPDATEma, {pi~ j )i l<j<_p)
3 return (R+l , kf+l)

Note 1. All the parameters (e.g. n, m, c, p) are assumed global.

Note 2. In the context of calling these algorithms, i should be defined to indicate Pi,

which is the main party involved. The current time t should also be defined.

Note 3. These algorithms do not handle communication between parties.

We are finally ready to describe the more efficient compiler.

9.1.1 The Compiler PESS (H)

For simplicity, we will only state and prove the compiler for protocols secure against

honest-but-curious adversaries, but it can be extended to one against malicious ad-

versaries. In particular, we will show the transformation for malicious adversaries for

the specific scheme of [51] in Section 9.3.
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Dealing In the original scheme H, the dealer privately sends each party i its share

si. In the modified scheme PESS (H), for every share sý E {O, 1}n, the dealer

will generate random ki E {0, 1}m and Rl E {0, 1}nxm, such that s! = R! - k!

using GEN' (s8).

She will then privately send (R), kf) to the party instead. To prevent confusion

we will call (RI, k!) a pseudo-share.

Refreshing In H, at the end of every time period t, in order to refresh their shares,

party i sends party j refresh data, st.

In PESS (H), the sending party i will instead generate a random matrix pj

and a random vector d t, such that st = pt d , using GEN2(). This algorithm

calls the scheme-specific REFRESH',.

Say party i accepts the refresh data from all the other parties. Then party i

generates random (Rk, kI) such that Rk+1 - kc+1 = g(pji, ri, Rk, kg), for some 1-1

and onto function g, using GEN 3 ((Ri, k) , { (p, I4) }k ). This algorithm

calls the scheme-specific UPDATE',.

Finally, party i partially erase all the ki and ni, resulting in h (kg) and h (4)

respectively.

Reconstruction Any group of parties which could reconstruct the secret in the

original scheme, may in the modified scheme compute RM - ki, and use it to

compute the secret.

Remark 10 (Computation of New Shares). The computation of the new shares is

done, as mentioned above, bit-by-bit using the perfectly erasable registers, without

storing any full length intermediate values. Even though it might not be the most effi-

cient way to compute new shares, the adversary learns no data from the computation

itself.

Remark 11 (Robustness). If robustness against a malicious dealer or malicious par-

ties is required, a VSS scheme may be applied to the pseudo-shares sent by the dealer,

and to the refresh data sent by each of the parties at the beginning of each time period.
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Indeed, a VSS scheme was used to achieve robustness in [51] in this precise way. In

our context, one must ensure that computations done in the VSS be implementable in

the register model. It is unclear whether the VSS scheme used by [51] can be directly

implemented in the register model (we can of course always do so indirectly by using

COMPUTE-IN-REGISTERS as in the general compiler, going gate-by-gate). Instead, we

show how to do this direct implementation for the scheme defined by [10], or rather

its simplified version, defined by [36]. We will elaborate on this in Section 9.3.

Remark 12 (h is Adversarially Chosen). We assume that the function h (to be used

by party i) is adversary chosen in the worst case manner, and may change from time

period to time period. More precisely, an adversary may choose h in an arbitrary

manner, differently for every participating party, and anew before each time period

(i.e. prior to refreshing).

Theorem 9.1.1. Let 0 be the leakage fraction of the partial erasure function h.

Let (Exp, Con) be an (e, a, 0) -partially erasable form, where Exp(s, $) := (R, k) and

Con(R, k) := R - k. Then PESS(H) described above is a , a, ) -secure proactive

(c,p)-threshold secret sharing scheme with partial erasures as per definition 2.2.19,

where p := 2(c - 1)p + p - c + 1.

Proof. Again, for simplicity, we will only prove the case of robustness against mali-

cious adversaries for a specific protocol in Section 9.3, where the robustness is added

explicitly by the use of a VSS scheme. Here we prove the compiler for protocols secure

against honest-but-curious adversaries.

Correctness is easy to see, since by construction, the product of any pair (Ri, k') is

the share under H, and similarly the product of any pair (pf, a,) is the refresh share.

The mobile adversary may corrupt at most c - 1 parties at any time period.

Without loss of generality, consider the case where the adversary corrupts exactly

c - 1 parties in each time period, since by corrupting less she can only gain less

information.

There are two types of information, perfectly erased in the perfect erasure model,

and only partially erased here: old pseudo-shares and refresh data.
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Old pseudo-shares:

At any time period t, the adversary misses p - c + 1 pseudo-shares, which are then

partially erased. The pseudo-shares generated by GEN'j() and GEN*3() are random up

to the product of the pseudo-share parts, which in itself is also random. Moreover,

since the adversary knows c - 1 of the pseudo-shares of time period t, she knows 1-1

and onto functions between each of the other pseudo-shares and s. Thus, in each

time period t she learns p - c + 1 partially erased tuples related to s.

Refresh data:

Between any pair of adjacent time periods t and t + 1, the adversary may switch

between parties. We will define the following subgroups of the p parties:

* SR is the group of parties that she remains in.

* SL is the group of parties that she leaves (i.e. relinquishes control at the end of

time period t, and does not corrupt again in time period t + 1).

* SA is the group of parties that she arrives at (i.e. newly corrupts at the beginning

of time period t + 1). Clearly, ISAl = ISLI.

* SI is the group of parties that she ignores (i.e. these parties are not corrupted

in either of the two time periods).

For instance, if the adversary remains in the same c - 1 parties, then |SRI = c - 1

and SL = SA = 0. If the adversary corrupts disjoint parties across the time periods,

then SR = 0 and |SAl = ISLI = C- 1.

Let us look at the refresh data in each subgroup:

* SR: The adversary knows the refresh data generated between the two time

periods, so the partial erasure of them does not add any new information.

* SI: For each party Pi E SI, the adversary knows some 1-1 and onto functions f

and g such that s = f (R k') and s = g (Rk+ 1 -kL+f). Therefore, R t+1 -kt+ l -

g-1 (f (R -ki)), so the valuable information in the refresh data is all known,

and the partial erasure of them does not add any new information.
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SL, SA: For any party Pi in one of these two sets, the adversary can potentially

gain information from the refresh data which was received from any party Pj

that is not in SR (since the refresh data sent by them is already known). Each

of the useful refresh tuples is generated by GEN'() as random up to the product

of the tuple parts, which in itself is also random.

For simplicity, let us assume the adversary can learn information about the

secret s from each tuple independently. That is, the adversary knows a 1-1 and

onto function between each tuple and s. Clearly such a function exists, though

the adversary's knowledge of it is over estimated, since she actually knows only

the relation between all the tuples used to refresh Pi's pseudo-share and s, and

the relation between all the tuples sent by each party.

Therefore, between each two adjacent time periods t and t + 1 she learns at

most 2(c - 1)p partially erased tuples related to s.

Therefore, over T time periods, all the adversary may learn is at most r(2(c - l)p +

p - c + 1) partially erased tuples related to s. Since the partially erasable form we

are using is (e, a, 0)-partially erasable, as long as:

·e e
r(2(c- 1)p + p - c + 1) 7 < (2(c-1)p + p -c+1) p

then we have that d(sIVIEW)) 5 2- c, and so PESS(H) is a (, a,)-secure proac-

tive (c, p)-threshold secret sharing scheme with partial erasures as per definition 2.2.19.

9.2 Proactive (p, p)-Threshold Secret Sharing with

Partial Erasures

Now, let us apply the compiler discussed in the previous section to the trivial (p, p)-

threshold secret sharing scheme secure against honest-but-curious adversaries.

The following algorithms will be used.
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ADD (6, R, k)

1 > Add [R -k]6 to Reg[l].

2 j> Result is returned in Reg[l].

3 for p3 - 1,...,m

4 do

5 if R[6, 3] = 1 and k[] = 1

6 then Reg[1] = Reg[l] e 1

7 return

REFRESHa i, jp,, kj<j<

1 > Compute the ath bit of the refreshing pseudo-share from Pi to Pj

2 r> for refreshing time t to t + 1.

3 Reg[1] +-- 0

4 if j 4 p

5 then Reg[1] - {0, 1}

6 else

7 for j'- 1, ...,p - 1

8 do

9 ADD (, pjt, ) > Add [pI," r ai] to Reg[1].

10 return Reg[1]

UPDATE'a (RVi I ki), I(p' ii) til
1 > Compute the ath bit of the new, time t + 1 pseudo-share of Pi.

2 Reg[1] +- 0
3 ADD(a, Rt, Ki) > Calculate [RM- k14] a into Reg[1].
4 for j +- 1,...,p

5 do

6 ADD (a,pi, ji) t> Add [pi - ni] to Reg[1].

7 return Reg[1]

Dealing On input (s, r) where s is the secret of length n and r random string of

length poly(n, p):

124



1. Generate from r random (kl, ..., k1) e {0, 1}m and (Ri, ..., R1) {0, 1}nxm,

such that $ l R k! = s, using GEN'.

2. Send (R), kl) to Pi privately.

Note: in the original scheme, the shares si are uniform, and therefore so are the

pseudo-shares (Ri, k0).

Refreshing In between each adjacent time periods t and t+ 1, each party P2 does the

following, to refresh its old pseudo-share (RI, kf) into a new one (Ri+1, k~+f).

1. Generate random (l{, ..., 4K) E {0, 1}m and (p , ..., p•) E {0, 1}n xm , such

that e i, p" 4 = 0, using GEN .

2. Privately send (p, -) to party Pi, for all j E [1, p]

3. Privately receive (pt, -i) from party Pj, for all j E [1,p].

4. Generate random k'+1 and Ri , such that R* 1 kt+1 = Ri-kIfe =1 Pgti.4l
- i "i = P 3i 3%1

using GEN .

5. Partially erase all the kM and 4 t , resulting in h (ki) and h (r ), respectively.

Remark 13 (GEN2 and GEN 3 are Protocol Specific). Note that in GEN2 and

GENi we call REFRESH' , and UPDATE' , , respectively, which are protocol specific.

Reconstruction All Parties pull together their current pseudo-share (Ri, kM), and

compute the secret s = (Di1 Ri -ki.

Theorem 9.2.1. Let 4 be the leakage fraction of the partial erasure function h.

Let (Exp, Con) be an (f, a, 0) -partially erasable form, where Exp(s, $) := (R, k) and
Con(R, k) := R.k. Then the proactive (p,p)-threshold secret sharing scheme described

above is a a,) -secure proactive (c, p) -threshold secret sharing scheme with partial

erasures as per definition 2.2.19, where p := 2(c - 1)p + p - c + 1.

Proof. This is a direct application of the compiler PESS, so this theorem derives

directly from theorem 9.1.1. O
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9.3 Proactive (c, p)-Threshold Secret Sharing with

Partial Erasures

Next, we will modify the efficient (c, p)-threshold proactive secret sharing protocol,

secure against malicious adversaries as defined in [51], to one which uses only partial

erasures. According to their protocol, which enhances Shamir's secret sharing [79],

each party holds the value of a random c degree polynomial in Zq at the party's id,

and the polynomial's value at 0 is the secret s. The shares are refreshed, by each

party sending its neighbors their value of a random polynomial whose value at 0 is 0.

Each party adds the received values to its current secret and perfectly erases the old

one, as well as the update values.

Their scheme [51] is robust against malicious adversaries (that control up to c-1 <

p/2 parties), under the discrete log assumption. Each party broadcasts gais, where

the ais are his polynomial coefficients. These can then be used by each party to verify

their value is correct, yet not gain any information about the refresh shares of the

others.

Instead of this verification scheme, we will use the VSS scheme defined by [36],

which does not rely on cryptographic assumptions such as the irreversibility of discrete

log, and contrary to [35] used in [51], is easy to fit directly into the register model.

As commonly done in VSS, we assume that broadcast channels are available. The

following algorithms will be used (ADD and UPDATE are the same as that of the (p, p)

case).

ADD (6, R, k) is the same as that of the (p, p) case.

UPDATE' ((Rti kt , ), , i)}, i 1<j<pj) is the same as that of the (p, p) case.
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REFRESH j, s', ký,}

1 > Compute the ath bit of the refreshing pseudo-share from Pi to Pj

2 > for refreshing time t to t + 1.

3 Reg[2] +- 0

4 if j < c

5 then

6 Reg[2] {0+ , 1}
c-1

else ,> By Lagrange interpolation sj = s ij' L(j), for Lj(j) =

j/=1 v j'

8 L, (j) +- 2 vj j ,-V > These are constants with no relation to the

> secrets, so they can be computed and

> stored in main memory, without revealing info.

9 for j' ÷- 1, ... , c - 1

10 do > Add sj, -Ly,(j) to Reg[1] by going bit-by-bit of si,

11 for -y +- 1,..., m

12 do

13 Reg[1] +- 0

14 ADD (,' P,, n,) > Compute s , into Reg[1].

15 if Reg[1] = 1

16 then

17 Reg[2] = Reg [2] D L, (j) [a]

18 return Reg[2]
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1 t> Party Pi's verification at time t that for a given j his share is valid.

2 > Note that the use of this algorithm in the dealing and the refreshing phases

3 t> are in a sense reversed.

4 > In particular, dealing uses VERi for Pi to verify the shares dealt to it by the dealer,

5 t> and refreshing uses VERj for Pj to verify Pi's actions.

6 for a +- 1,..., n > Verify for every bit a.

7 do

8 Reg[1] <- 0
9 ADD(a, R(J), kk(j )) > Compute [R(). k into Reg[1].

10 if Qj = 1

11 then

12 ADD (a, R , kI) > Add [RF k~j] to Reg[1].

13 if [gt'(j)(i)]a C Reg[1]

14 then

15 return invalid

16 return valid

Dealing On input (s, r) where s is the secret of length n and r random string of

length poly(n, p):

1. Generate a random c degree polynomial f(.) in GF (2") (as nothing in the

original protocol limits us to Zq in particular), whose value at 0 is s (that

is, the free coefficient is s). Generate from r random (k, . . ., k) E {0, 1}m

and (R ,..., R 1) E {0,}nxm, such that f(i) = R 1 k1 , using GEN1 .

2. Send (R1 , kI) to Pi privately.

3. Verifying: For robustness, the following will be used:

(a) Generate V = poly(n) more c degree polynomials gl(1)(.),..., gl(V)(.).

For every j {1...V}, generate random (j),..., l(j)) {0, 1}m
MU,..., j)) E f=, , nlj

and (R(),.. . (j)) {0,1}nxm, such that gl(i)(i) = R() k ,

using GEN'.
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(b) For each polynomial gl(j), send each pseudo-share (R~(i), k(j)) to P

privately.

(c) Each party i picks Q[v-)+I,'"1 .Q[- +$ {0,1} and broadcasts

them.

(d) For every j, if Qj = 0, broadcast g'l(0) = g10(). Otherwise, broadcast

g9l(j) = gl(j) + f.

(e) Each party i will run VER to verify for every j that his values are valid

(and declare if so).

Note: in the original scheme, the shares f(i) are uniform, and therefore so are

the pseudo-shares (kl, R)). Likewise for gl(J)(i).

Refreshing In between each adjacent time periods t and t + 1, each party Pi does

the following, to refresh its old pseudo-share (Ri, ký) into a new one (R~+1 , k t+l ).

1. Generate random (1,d ... , rp) E {0, 1}m and (p I, ..., p•) E {0, 1}nxm, such

that the pij - djs will define a c degree polynomial fi whose value at 0 is

0 (that is, the free coefficient is 0), using GENi.

2. Privately send (pt, r j) to party Pj, for all j E [1, p].

3. Privately receive (psi, ji) from party Pj, for all j E [1,p].

4. Verifying: For robustness, follow practically the same method used above

by the dealer, in order to allow validation of the refresh data:

(a) For every v E {1 ... V}, generate random ( v ... , {0, 1}m

and p) ,...,p E {0,1}nxm, such that the -tiv) tv) s will define

ac degree polynomial gi with free coefficient 0, using GENI.

(b) For every v E {1... V}, privately send (p-v), R )) to party Pj, for all

jE[1,p].

(c) Each party j picks Q FvU-1)+, 11 ... QF - {0, 1} and broadcasts

them.

(d) For every v, if Q, = 0, calculate and broadcast gt(v) = g(). Other-

wise, calculate and broadcas t(v) () + fwise, calculate and broadcast gi•) i + fil.
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(e) Each party j will run VER to verify for every v that g t(v)(0) = 0 (in

main memory), and that his values are valid (and declare if so).

5. Generate random kt+ l and Rt+1, such that R t+1*kit = Rt kt+ p tt,

using GEN3 .

6. Partially erase all the k) and rd , resulting in h(ký) and h(4),) respectively.

Remark 14 (GEN2  and GEN3 are Protocol Specific). Note that in GEN2 and

GEN3 we call REFRESH', and UPDATE',, respectively, which are protocol specific.

Reconstruction Any c of the parties pull together their current pseudo-share (Ri, ki),

and compute the polynomial and set it to zero to obtain the secret.

Theorem 9.3.1. Let 0 be the leakage fraction of the partial erasure function h.

Let (Exp, Con) be an (ef, a, ) -partially erasable form, where Exp(s, $) := (R, k) and

Con(R, k) := R -k. Then the proactive (c, p)-threshold secret sharing scheme described

above is a robust and (+• , a, -secure proactive (c,p)-threshold secret sharing

scheme with partial erasures as per definition 2.2.19, where p:= 2(c- l)p+p-c + 1.

Proof. Correctness in the presence of honest-but-curious adversaries is easy to see,

since by construction, the product of any pair (Ri, ki) is the trivial share, and the

product of any pair (pt, , ) is the trivial refresh share.

For the same reason, correctness in the presence of malicious adversaries is trivial,

as it has been proven in [36], and since the verification polynomials of the refresh data

have free coefficient being 0, the receiving parties can also easily verify the value of

the polynomial at 0 is 0 with probability 1 - 2- V

As for privacy in the presence of malicious adversaries, the difference with the

honest-but-curious case is the addition of the VSS. This may give the adversary more

information, in the form of partially erased verification tuples (pi , Tj ), sent in

step 4e (of the refresh phase, or step 3e in the dealing phase). Clearly, any of these

can only be used when g t(V) = g( + fi was broadcasted in step 4d (giving the

adversary full knowledge of it). In the worst case, all of these verification tuples are
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related to s. Since the amount of verification tuples sent after each time period is

Vp, the total sent over r time periods is less than 7Vp.

Therefore, over 7 time periods, all the adversary may learn is at most 7(Vp + p)

partially erased tuples related to s. Since the partially erasable form is (f, a, ¢)-secure,

given the view of the adversary the distance of the secret from uniform will be upper

bounded by 2- ', as long as r(Vp+p) < f. In other words, PESS(II) described above

is ( i' a, a,)-secure as per definition 2.2.19.
i(v.•, a
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Chapter 10

Conclusion

The ability to erase is an important capability of honest parties in cryptographic

protocols. Our general compiler assures us that anywhere erasures can be leveraged

to prove or simplify security, it should be used liberally; at the cost of using more

storage and a small computation overhead, the erasures can be imperfect for all parts

of the system, except for a constant number of constant size CPU registers.

10.1 Practical Applications

Our solution can be applied beyond cryptographic protocols to any security solu-

tion that does not assume a trusted computation path or protected execution (which

provides an environment for protected cryptographic functions to execute without

modification or exposing key information), even if the solution itself does not ex-

plicitly erase. This is because any security solution involves some secrets and some

computations on those secrets, and unless the execution is protected, information

about the secrets might leak through the computations.

Consider hard drive encryption. Typically, the key either resides on a special part

of the drive itself and is not accessible without a PIN, or on another hardware, e.g.

a USB key. Regardless of where the key resides, on any general computing platform

it has to be loaded into the main memory for decryption, and this opens up the

possibility of attacks, as shown for instance in [47].
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Also, in Digital Rights Management (DRM), the owner of the computer is the

adversary. Without trusted hardware, if the file is decrypted and is present in the

RAM at some point in time, then (utilizing the attack given in [47]) the user can

freeze the RAM and move it to another system to obtain the plaintext (e.g. an MP3

music file) or even the key for the DRM system. Note that in this setting where the

user is the adversary, this attack is much easier to carry out.

10.2 Alternative Models of Partial Erasures

The function h is assumed to be a function only of the storage contents to be erased.

Furthermore, we assume that h is fixed in advance. This choice seems to adequately

capture erasures that are only partially successful due to the physical properties of the

storage media. However, this modeling may not adequately capture situations where

the failure to erase comes from interactions with an operating system, for instance

memory swapping, and caching. In order to capture this sort of erasure failures, one

might want to let h depend on information other than the contents to be erased, or

alternatively to be determined adaptively as the computation evolves.

Also, notice that under our current model, we cannot make sense of partially

erasing one bit. One possible way of modifying the model might be to consider a

length preserving h that is randomized. Obviously, without any extra conditions

on h, no security can be attained, since h : (0, 1}m _-+ {0, 1}m can just ignore the

randomness and output the entire input, which means that nothing is being erased. To

this end, consider the condition that H, (h(k)) > (1 - ¢)m, meaning that h(k) must

still contain at least (1 - ¢)m bits of randomness. If k is random then the condition

does not help, so consider any fixed k. (This models for instance the situation in

which the hardware might have suffered from burnt-in or other effects that make k

non-random.) However, regardless of what condition we pick, it is difficult to prove

any meaningful security guarantees. At a high level, this is because for a fixed k, the

adversary can always do a straightforward encoding and decoding so that the output

of h would allow him to decode 20m different ks, so he breaks the scheme for all of
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those ks.

One can also ask why we have to split the input to several parts Exp(s, $)

(Ext(R, k) E s, R, k), where only one part k needs to be erased, independently of the

other parts. In a sense the result is stronger because only one small part needs to be

partially erased. On the other hand, this implicitly relies on memory segmentation:

when the honest parties erase using h adversarially designed, we need to trust the OS

for memory protection. This is a pretty reasonable assumption, but should not stop

us from asking whether it can be removed.

Certainly, h cannot be applied to the whole expansion without any other restric-

tions, since h(Ext(R, k) D s, R, k) can be just the function that computes and outputs

s. In the case that the secret s itself is random, we do not need the one-time pad

mechanism, and we claimed in Section 6.3 that we can just use Exp(s, $) := (R, k)

s.t. R -k = s. Focusing on this case, now the question becomes: can h be applied on

(R, k)?

Since we are considering any length-shrinking h, we are dealing with the case

in which the source has good min-entropy even given the adversary's view (of the

partially erased secret). In other words we are dealing with the most general form

of randomness sources; the R part that does not need to be erased corresponds to

the random seed necessary for randomness extraction in this general case. In other

words, without additional restrictions on h, it is impossible to extract randomness

from the conditional distribution (R, k)lh(R, k), since general extractors require an

independent seed. Following this view point, the difference between h(R, k) and h(k)

is that in the former, the "seed" is contaminated and no longer independent of the

source k, whereas in the latter, R is still independent of the source and can be used

as a seed for a general randomness extractor.

This leads us to restricting h. If we limit h to s.t. (R, k)Ih(R, k) is some form of

weak source of randomness for which deterministic extraction is possible (without an

independent seed), then (if the extraction can be easily inverted) we can construct

corresponding partially erasable forms for which h can be applied on everything to

be erased, and the need to rely on memory segmentation is removed.
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10.3 Near Optimal Strong Extractors Computable

with Constant Memory

If we could find an optimal strong extractor that is computable with constant memory,

then using the partially erasable form based on such an extractor, our compiler would

essentially match the lower bound on the expansion required, i.e. it is about as storage

efficient as possible. Unfortunately we do not know of any such extractors.
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