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Abstract

This thesis deals with five important ideas pertaining to supply chains and supply
contracts: coordination, flexibility in allocating profit, the push-pull boundary, the
valuation of capacity, and cooperation versus competition and its efects on profit
and prices. Throughout the thesis, we focus on capacity-constrained supply channels,
motivated by the fact that most real-world supply chains have physical or monetary
constraints.

In the first part of this thesis, we show that when a supply channel is capacity-
constrained and the constraint is tight, there is a set of linear wholesale price con-
tracts that coordinates the channel while allowing the supplier to make a profit. We
prove this for the one-supplier/one-newsvendor supply channel as well as the many-
supplier/one-newsvendor channel configuration (with each supplier selling a unique
product). We analyze how this set of wholesale prices changes as we change the
channel's capacity constraint. We also explore conditions under which these channel-
efficient linear wholesale price contracts result from the equilibrium behavior of a
newsvendor procurement game. Our newsvendor procurement game generalizes the
Stackelberg game introduced in Lariviere and Porteus (2001) to allow for multiple
suppliers as well as a capacity constraint at the newsvendor. In order to convey the
worst-case channel performance when these channel-efficient contracts are not used
in equilibrium, we quantify the worst-case efficiency loss for the supply channel using
a distribution-free method. We also identify the set of Pareto-dominated contracts in
a negotiation setting. Furthermore, unlike the unconstrained setting, we show that
in the constrained setting wholesale price contracts can be flexible in allocating the
channel profit without necessarily sacrificing coordination. Finally, we find the set of
risk-sharing contracts (such as buy-back and revenue-sharing contracts) that coordi-
nate a constrained supply channel and contrast that set with the set of risk-sharing
contracts that coordinate an unconstrained channel. We show that in a capacity
constrained channel, even risk-sharing contracts gain extra flexibility because for any



given level of risk, there is now a range of possible allocations of the system optimal
profit between the supplier and retailer. (Without a capacity constraint, for any given
level of risk, there is only one allowable allocation of channel optimal profit between
the supplier and retailer.) In other words, in a capacity-constrained environment,
using risk-sharing contracts, for any given level of risk, we show there is flexibility in
allocating the channel optimal profit.

In the second part of this thesis, we consider a supply channel with a capacity
constraint in which the retailer makes an order quantity decision that depends only on
realized demand rather than a forecast, and instead the supplier is the newsvendor for
the channel making a stocking decision based on a forecast. In other words, the retailer
now 'pulls' inventory from the supplier as demand is realized which differs from the
model in the first part of this thesis wherein the supplier 'pushes' inventory onto the
retailer before the sales season begins. We find that for the new supply channel similar
results hold. Namely, when the retailer is operating in 'pull-mode', there is a set of
'pull' wholesale price contracts that coordinates the channel while allowing the retailer
to make a profit. We analyze how this set of wholesale prices changes as we change
the channel's capacity constraint. We also explore conditions under which these
channel-efficient 'pull' wholesale price contracts result from the equilibrium behavior
of a newsvendor procurement game. Our newsvendor procurement game generalizes
the Stackelberg game introduced in Cachon and Lariviere (2001) to allow for multiple
retailers as well as a capacity constraint at the newsvendor. We assess the worst-case
channel performance in equilibrium when these channel-efficient contracts are not
selected. Furthermore, we identify the set of Pareto-dominated 'pull' contracts in a
negotiation setting. Finally, we identify the wholesale price contracts that coordinate
regardless of the supply chain's mode of operation.

In the third part of this thesis, we consider a supply channel, operating in 'push'-
mode, with multiple suppliers selling differentiated products to one newsvendor with
limited capacity, using wholesale price contracts. We show that both in a negotiation
setting as well as in an equilibrium setting, with the suppliers selecting wholesale
prices followed by the newsvendor choosing order quantities, each supplier incurs an
endogenous price for their share of the newsvendor's capacity. We intrepret this price
as the value of the newsvendor's capacity and analyze the capacity's price in both
a negotiation and an equilibrium setting. Furthermore, we show that our capacity
valuation technique can be applied to different supply chain settings by analyzing the
capacity price for a different supply chain, operating in 'pull'-mode, with one supplier
with limited capacity selling differentiated products to multiple retailers. Finally, we
analyze the effects of collusion on prices and profits in both these settings.
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Title: Professor of Engineering Systems and Civil & Environmental Engineering

Thesis Supervisor: John N. Tsitsiklis
Title: Clarence J Lebel Professor of Electrical Engineering
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CHAPTER 1

Introduction and Contributions

This thesis deals with five important ideas pertaining to supply chains and supply

contracts: coordination, flexibility in allocating profit, the push-pull boundary, the

valuation of capacity, and cooperation versus competition and its effects on profit

and prices. Throughout the thesis, we focus on capacity-constrained supply channels,

motivated by the fact that most real-world supply chains have physical or monetary

constraints.

U 1.1 Coordinating a constrained channel

There is a wealth of supply contracts available that coordinate a newsvendor's deci-

sion for unconstrained supplier-retailer channels: buy-back contracts, revenue-sharing

contracts, etc. (Cachon 2003) A contract coordinates the actions of a newsvendor for

a supply channel if the contract causes the newsvendor to take actions when solving

his own decision problem that are also optimal for the channel.' Our thesis shows

that simpler contracts, namely linear wholesale price contracts (which are thought to

be unable to coordinate a newsvendor's decision for unconstrained channels) can, in

1Sometimes we also say a contract channel-coordinates a newsvendor's decision. Therefore, achieving co-
ordination for the channel equates to attaining channel optimality (and thus efficiency) when the newsvendor
is allowed to decide for himself.
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fact, coordinate a newsvendor's procurement decision for resource-constrained chan-

nels. This is relevant for supply channels in which capacity of some resource is limited.

For example, shelf space at retail stores, seats on airlines, warehouse space, procure-

ment budgets, time available for manufacturing, raw materials, etc. (Corsten 2006)

In this thesis, we also show how risk-sharing contracts such as buy-back and

revenue-sharing coordinate the procurement decision of a resource-constrained newsven-

dor thereby generalizing the treatment of these contracts. But the primary insight

we show in the first part of this thesis, is that if newsvendor capacity is a binding

constraint, then a set of linear wholesale-price contracts can coordinate the procure-

ment decision of a capacity-constrained newsvendor (when the supply chain operates

in 'pull-mode').2 Furthermore, this set includes wholesale prices that allow both the

supplier and the newsvendor to profit.

U 1.2 Additional flexibility in allocating profit with-

out sacrificing coordination

In addition to coordination capability, another important feature of any supply

contract is its flexibility in allocating profit while maintaining coordination (Cachon

2003). Buyback contracts and revenue sharing contracts in unconstrained channels

are well known to have this advantage. But wholesale price contracts in unconstrained

settings lack the flexibility in allocating channel profit while maintaining coordination.

1.2.1 Wholesale price contracts

Our thesis shows that when the channel is constrained, wholesale price contracts gain

some flexibility (in allocating channel profit) while maintaining coordination.

2In addition to capacity being a binding constraint, the relative power of the parties and their competitive
environments are also important for the wholesale-price contract to coordinate the actions of the newsvendor
in practice. For example, even if the set of wholesale prices W(k) that coordinate the retailer's actions is
enlarged beyond the supplier's marginal cost (due to the retailer's capacity constraint k), the retailer and
supplier still need to agree upon some wholesale price in that set. Their outside-alternatives and the power
in the supply channel could determine if some wholesale price in the set W(k) is acceptable for the parties
involved.
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1.2.2 Risk-sharing contracts

However, this extra gain in flexibility is not limited to wholesale price contracts. We

also show that when the channel is constrained, buyback contracts also gain some

flexibility. In particular, we show that buyback contracts gain a feature that they do

not have in the unconstrained setting: the flexibility in allocating channel optimal

profit, for any fixed level of risk.

U 1.3 Push versus Pull

In the supply chain literature, the 'push-pull boundary' in a supply chain refers to

the point in the supply chain at which the supply chain's mode of operation switches

from 'building to forecast' to 'reacting to realized demand' (Chopra and Lariviere

2005). This is also called The 'Fulcrum Point' by Martin Christopher; the BTF/BTO

boundary (build to forecast/build to order).

In this thesis, we also show that our results on the coordination capability of

wholesale price contracts are independent of where we place the 'push-pull boundary',

i.e., the supply chain's mode of operation. We go on to highlight the wholesale price

contracts that coordinate the supply chain regardless of mode of operation.

* 1.4 A valuation technique for capacity

When considering multiple suppliers selling to a capacity constrained newsvendor

(i.e., push-mode) or multiple retailers buying from a capacity constrained newsvendor

(i.e., pull-mode), we analyze the capacity constraint's shadow price in equilibrium,

motivated by the fact that the shadow price is important in 'valuing' the newsvendor's

capacity.

U 1.5 Cooperation versus Competition

The theme of cooperation versus competition runs throughout this thesis.
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1.5.1 Equilibrium setting: 1 supplier/1 retailer

In addition to understanding the wholesale prices that coordinate a channel, we also

analyze equilibrium settings (push and pull modes) to answer the question: when do

wholesale price contracts coordinate in a competitive setting? Or equivalently, when

is the equilibrium outcome equivalent to the outcome of the integrated firm. We

find that when capacity is small enough, wholesale price contracts induce a channel

profit that is as large as any cooperative or integrated outcome. In other words,

for small enough channel capacities there are no gains to be had from integration or

cooperation. We show this for a single supplier/single retailer supply chain and we

show that this feature holds regardless of the supply chain's mode of operation (push

or pull).

1.5.2 Competition versus Collusion within an echelon

We also consider a supply chain operating in push-mode with multiple suppliers selling

to a retailer. We show that when there is supplier collusion, every supplier can be

better off in terms of profit.

Furthermore, we consider a supply chain operating in pull-mode with multiple

retailers buying from a single supplier. We show that when there is retailer collusion,

every retailer can be better off in terms of profit.

U 1.6 Organization of this Thesis

In Section 1.7, we provide an overview of the supply contracts literature, empha-

sizing the point that the literature has underestimated the coordination capability of

wholesale price contracts for a constrained supply channel.

Chapter 2 focuses on single supplier/single retailer supply chain (with a capac-

ity constraint) operating in push-mode (i.e., we have a make-to-stock retailer). We

formally define coordination and analyze the set of coordinating wholesale price con-

tracts. Then we consider an equilibrium setting, proving a unique equilibrium exists,
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and providing necessary and sufficient conditions for the equilibrium wholesale price

contract to coordinate the supply chain. Furthermore, we analyze the set of Pareto-

dominated contracts (contracts that should be avoided in both a negotiation and

equilibrium setting). Finally, recognizing that the outcome can be inefficient in an

equilibrium setting, we provide a worst-case efficiency bound for the equilibrium set-

ting using a distribution-independent technique.

Chapter 3 uses the model presented in Chapter 2 in order to characterize the

fractions of revenue and profit that can be allocated to a supplier and retailer when

they use a coordinating contract. In particular, we show that wholesale price contracts

have some flexibility in allocating the channel-optimal profit between the supplier and

retailer (a flexibility that does not exist in the unconstrained setting). We conduct

some comparative statics and analyze how this flexibility changes as a function of

capacity and market demand. Then we move on and consider risk-sharing contracts

for the same supply chain model. We show that they still coordinate a capacity-

constrained channel and, furthermore, there is even more flexibility in the choice of

risk-sharing contracts (for coordinating the channel). In particular, for any given

level of risk (represented by the buyback parameter of a buyback contract), there is

now flexibility in allocating the channel profit (without sacrificing coordination), a

flexibility that is not present in the unconstrained setting.

Chapter 4 extends the push-mode supply chain model used in Chapter 2 and

Chapter 3 by having multiple suppliers (each offering one differentiated good) in-

stead of a single supplier. The chapter's focus is on coordination in this expanded

setting. We provide conditions for wholesale price contracts to coordinate the chan-

nel. Then we consider an equilibrium setting and find conditions guaranteeing that

the equilibrium wholesale price is a coordinating contract.

Chapter 5 considers the supply chain model in Chapter 2 but changes the mode of

operation to pull and places the capacity constraint at the supplier. In other words,

we have a make-to-order 'lean' retailer. In this chapter, we analyze the set of coordi-

nating 'pull' wholesale price contracts, showing that when capacity is 'small enough',

coordination becomes possible. Then we consider an equilibrium setting, proving
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that a unique equilibrium exists and providing necessary and sufficient conditions

for the equilibrium 'pull' wholesale price contract to be a coordinating contract. We

then analyze the set of Pareto-dominated 'pull' wholesale price contracts which are

to be avoided in a negotiation setting (and will be avoided in an equilibrium setting).

Recognizing that in an equilibrium setting we may not achieve the channel-optimal

outcome, we analyze the worst-case efficiency loss using a distribution-independent

technique. Finally, combining our results from Chapter 2 and Chapter 5, we describe

the wholesale price contracts that coordinate the supply chain regardless of its mode

of operation (push or pull).

Chapter 6 considers a more general supply chain model with multiple suppliers

selling multiple goods to one capacity constrained retailer, extending the model in

Chapter 2. The supply chain operates in push-mode (i.e., the retailer is a make-to-

stock retailer). We analyze the retailer's order decision and derive an endogenous price

for the retailer's capacity, i.e., the retailer's shadow price. Focusing on an equilibrium

setting, we provide conditions for the existence and uniqueness of an equilibrium

shadow price. We conduct comparative statics. Finally, we consider the effect of

supplier collusion on the retailer's (shadow) price for capacity and on supplier profit.

Chapter 7 considers an extension of the 'pull' supply chain model presented in

Chapter 5 by having multiple retailers pulling multiple goods from a single supplier.

We focus on an equilibrium setting, conduct comparative statics and provide con-

ditions for the existence and uniqueness of an equilibrium. Finally, we consider the

effect of retailer collusion on the supplier's (shadow) price for capacity and on retailer

profit.

Finally, we summarize our findings and provide insights in Chapter 8.

U 1.7 A survey of the literature

The supply contracts literature has been based on the observation, pointed out, for

example, by Lariviere and Porteus (2001), that wholesale price contracts are simple

but do not coordinate the retailer's order quantity decision for a supplier-retailer
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supply chain in a newsvendor setting. This observation has led to the study of an

assortment of alternative contracts. For example, buy back contracts (Pasternack

1985), quantity flexibility contracts (Tsay 1999), and many others. Cachon (2003)

provides an excellent survey of the many contracts and models that have been studied

in the supply contracts literature. The mindset surrounding wholesale price contract's

inability to channel-coordinate is true under appropriate assumptions- which the

supply contracts literature has been implicitly assuming: that there are no capacity

constraints (e.g., shelf space, budget, etc.).

As mentioned before, we also consider the case of multiple suppliers serving a

single retailer. This exploration is motivated, in part, by Cachon (2003) and Cachon

and Lariviere (2005), who emphasize that coordination for channel configurations

with multiple suppliers has yet to be explored. The relevant literature on multi-

product newsvendors with side constraints (which has developed independently from

the coordination literature) includes Lau and Lau (1995), Abdel-Malek and Montanari

(2005a,b).

Considering capacity constraints in a supply channel is not new to the supply

contracts literature. However, most other papers in the literature consider choosing

capacity as one stage of a game (before downstream demand is realized) that also

involves a production decision after demand is finally realized (Cachon and Lariviere

2001, Gerchak and Wang 2004, Wang and Gerchak 2003, Tomlin 2003). Our paper,

although complementary to this stream of literature, does not involve an endoge-

nous capacity choice for any party but rather analyzes how an exogenous capacity

constraint determines the set of wholesale prices that can coordinate the retailer's de-

cision for the channel. Pasternack (2001) considers an exogenous budget constraint,

but not for the purposes of studying coordination. Rather, he analyzes a retailer's

optimal procurement decision when the retailer has two available strategies: buying

on consignment and outright purchase.

Also our work is not the first to reconsider wholesale price contracts and their

benefits beyond simplicity. Cachon (2004) looks at how inventory risk is allocated

according to wholesale price contracts and the resulting impact on supply chain ef-
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ficiency. As far as we are aware, our paper is the first to consider the coordination-

capability of linear wholesale price contracts under a simple capacity-constrained

production/procurement newsvendor model.



CHAPTER 2

Coordinating a constrained channel

Wholesale price contracts are commonplace since they are straightforward and easy

to implement. While risk-sharing contracts such as revenue-sharing agreements can

coordinate a retailer's decision in a newsvendor setting, Cachon and Lariviere (2005)

note that these alternative contracts impose a heavier administrative burden. For

example, these alternative contracts may require an investment in information tech-

nology or a higher level of trust between the trading partners due to the additional

processes involved. Our stylized capacity-constrained newsvendor setting provides a

laboratory for understanding the set of wholesale price contracts that lead the retailer

to take coordinating actions under various channel configurations: one-supplier/one-

retailer (this chapter's focus) and multiple-suppliers/one-retailer (Chapter 4's focus).

In this chapter, we are concerned with the coordination capability of wholesale

price contracts for a supply channel in both a negotiation setting and an equilibrium

setting. In our negotiation setting, we are concerned with the entire set of coordinat-

ing wholesale-price contracts. The wholesale prices in this set are Pareto-optimal, a

useful property for getting 'win/win' results in negotiation settings. This is in contrast

to an equilibrium setting, where choosing the wholesale price(s) is an initial stage of

a game for the supplier(s). In the equilibrium setting we explore conditions for the

game's equilibrium wholesale-price vectors to coordinate the newsvendor's procure-

ment decision for the channel (i.e., necessary and sufficient conditions so that the
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game's equilibria are included in the set of coordinating wholesale price contracts),

and characterize the extent of the efficiency loss when these conditions are violated.

Chapter Outline

In Section 2.1, we provide a stylized 1-supplier/1-retailer model and formally

define what it means for a wholesale price contract to coordinate the retailer's ordering

decision for a supply channel. Then, in Section 2.2, we describe the set of coordinating

wholesale price contracts for this model and analyze the size of this set in Section 2.2.1.

In Section 2.3, we consider a 1-supplier/1-retailer equilibrium model and prove that

a unique equilibrium exists. Then, we provide necessary and sufficient conditions for

the equilibrium wholesale price contract to coordinate the retailer's ordering decision

(i.e., the equilibrium wholesale price contract is included in the set of coordinating

contracts). In Section 2.4, we analyze the set of wholesale price contracts that are

Pareto-dominated (i.e., a different contract exists that enables one firm to better

off without making the other firms worse off). The Pareto-dominated contracts are

important because they should be avoided in both a negotiation setting as well as

an equilibrium setting. Recognizing that in an equilibrium setting the equilibrium

wholesale price contract need not be a coordinating contract (due to the conditions

we state in Section 2.3), in Section 2.5, we characterize the worst case efficiency loss

in an equilibrium setting. In order to maintain the flow of presentation, the proofs

for all our results in this chapter are contained in Section 2.6.

U 2.1 Model

A risk-neutral retailer r faces a newsvendor problem in ordering from a risk-neutral

supplier for a single good: there is a single sales season, the retailer decides on an

order quantity q and orders well in advance of the season, the entire order arrives

before the start of the season, and finally demand is realized, resulting in sales for

the retailer (without an opportunity for replenishment). Without loss of generality,
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we assume that units remaining at the end of the season have no salvage value and

that there is no cost for stocking out.

The model's parameters are summarized in Figure 2-1 with the arrows denoting

the direction of product flow. In particular, the supplier has a fixed marginal cost

of c per unit supplied and charges the retailer a wholesale price w > c per unit

ordered. The retailer's price p per unit to the market is fixed, and we assume that

p > w. For that price, the demand D is random with probability density function

(p.d.f.) f and cumulative distribution function (c.d.f.) F. We also define F(x) de=

1 - F(x) = P(D > x). We say that a c.d.f. F has the IGFR property (increasing

generalized failure rate), if g(x) def f is weakly increasing on the set of all x for

which F(x) > 0 (Lariviere and Porteus 2001). Most distributions used in practice

(such as the Normal, the Uniform, the Gamma, and the Weibull distribution) have

the IGFR property.

We assume that the retailer's capacity is constrained by some k > 0; for example,

the retailer can only hold k units of inventory, or accept a shipment not larger than

k. For a different interpretation, k could represent a constraint on the capacity of the

channel or a budget constraint.

Figure 2-1 "single supplier & single capacity constrained retailer" model.

S r

c w[ -IJ- q -D j F
qlk

Note. Supplier s with marginal cost c (per unit) offers a product at wholesale price w (per unit) to a
capacity-constrained retailer r that faces uncertain demand D downstream, when the price for the product
is fixed at p (per unit). The retailer must decide on a quantity q to order from the supplier.

ASSUMPTION 2.1. The probability density function (p.d.f.) f for the demand D

has support [0,1], with 1 > k, on which it is positive and continuous.

As a consequence, F(0) = 1 and F is continuously differentiable, strictly decreasing,

and invertible on (0, 1). There is no additional restriction on the value of 1. This is

not a restrictive assumption and is made for technical reasons as shown in our proofs.
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2.1.1 Retailer's problem

def
Faced with uncertain sales S(q) = min{q, D} (when ordering q units) and a wholesale

price w (from the supplier), the retailer decides on a quantity to order from the

supplier in order to maximize expected profit Wr (q) E[pS(q)] - wq while satisfying

the capacity constraint k. Namely, it solves the following convex program with linear

constraints in the decision variable, q:

RETAILER(k,w)

maximize pE[S(q)] - wq (2.1)

subject to k-q 0

q> 0.

Because of our assumptions on the c.d.f. F, it can be shown that RETAILER(k,w)

has a unique solution which we denote by qr (w).

2.1.2 Channel's problem

def
Denote the channel's expected profit by 7,(q) E[pS(q) - cq]. Under capacity con-

straint k, the optimal order quantity qS for the system/channel is the solution to con-

vex program (2.2), CHANNEL(k). Note that CHANNEL(k) has identical linear con-

straints but a slightly altered objective function when compared to RETAILER(k,w):

CHANNEL(k)

maximize pE[S(q)] - cq (2.2)

subject to k -q 0

q > 0.

Again because of our assumptions on the c.d.f. F it can be shown that CHANNEL(k)

also has a unique solution which we denote by q". We denote the unique solution,

arg maXO<q<oo r(q), for the unconstrained channel problem by q*. It is well known
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that q* = F-l(c/p) (e.g., Cachon and Terwiesch (2006)). Because of convexity, it is

also easily seen that q1 = min{q*, k}.

2.1.3 Definition: Coordinating the retailer's action

A wholesale price contract w coordinates the retailer's ordering decision for the supply

channel when it causes the retailer to order the channel-optimal amount, i.e., q'r(w) =

qS. In Section 2.2 we are interested in the following questions: For a fixed capacity

k, what is the set of wholesale prices W(k) for which qr(w) = q'? What does this set

W(k) resemble geometrically?

If there is no capacity constraint (or equivalently if k is very large), 'double

marginalization' results in the retailer not ordering enough (i.e., qr(w) < q') under

any wholesale price contract, w > c. In the next section, we will show that when the

capacity constraint k is small relative to demand, there exist a set of wholesale price

contracts w > c that can coordinate the retailer's order quantity, i.e., qr(w) = qS.

U 2.2 Set of coordinating wholesale prices

Our first result describes the set of coordinating wholesale prices under a capacity

constraint.

THEOREM 2.1. In a 1-supplier/I-retailer configuration where the retailer faces a

newsvendor problem and has a capacity constraint k, any wholesale price

wE W(k) d[ [c, pPf(min{q*, k})]

will coordinate the retailer's ordering decision for the supply channel, i.e., qr(w) =

qS . Furthermore, if qr(w) = q8 and c < w < p, then w E W(k).

Proof. See Section 2.6.1.

Notice that if the capacity constraint k is larger than or equal to the unconstrained

channel's optimal order quantity, q*, then pF(min{q*, k}) = pF(q*) = c, reducing

to the 'classic' result in the supply contracts literature. However, this is true only
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when the capacity constraint is not binding for the channel (i.e., q* < k). When the

capacity constraint k is binding for the channel (i.e., q* > k), then any wholesale

price w E [c, pF(k)] will coordinate the retailer's action and only wholesale prices in

the range [c, pF(k)] can coordinate the retailer's action.

Many factors such as 'power in the channel', 'outside alternatives', 'inventory risk

exposure', and 'competitive environment' ultimately influence the actual wholesale

price (selected from the set [c, p]) charged by the supplier. In the unconstrained set-

ting, regardless of these factors, coordination is not possible with a linear wholesale

price contract (because the supplier presumably would not agree to price at cost).

However, when the capacity constraint is binding for the channel, coordination be-

comes possible (because the set of coordinating wholesale price contracts becomes

[c, pF(k)] (rather than {c}) and ultimately depends on these other factors. Theo-

rem 2.2 in Section 2.3 considers a equilibrium setting where the retailer takes on all

the inventory risk (akin to the 'Stackelberg game' in Lariviere and Porteus (2001)

and 'push mode' in Cachon (2004)), and provides additional conditions that must

be met so that the 'equilibrium' wholesale price contract is a member of the set of

coordinating wholesale price contracts, [c, pF(k)].

2.2.1 Size of W(k).

The geometry of the set of wholesale prices W(k) that coordinate the retailer's deci-

sion for the supply channel is depicted in Figure 2-2.

Figure 2-2 The set of wholesale prices that coordinates the actions of a single retailer when procuring
from a single supplier.

pF(q*) pF(k)

c p
Note. Note that pF(q*) = c and W(k) = [c, pF(k)] (the interval denoted in bold) when k < q*.

Note that the size of W(k) is increasing as k decreases. Corollary 2.1 formalizes

this notion and follows directly from Theorem 2.1 because F(k) is decreasing in k.
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COROLLARY 2.1. If 0 < ki <5 k2, then W(k 2) c W(ki) c [c,p].

Thus, the more constrained the channel is with respect to the channel optimal order

quantity, q*, the larger the set of coordinating wholesale price contracts W(k).

Consider two supply channels selling the same good with the same retail price

p and supplier cost c. Assume that the probability of excess demand in the first

channel is larger, in the sense F1(k) _ F2(k). Let Wi(k) denote the set of coordinating

wholesale price contracts for channel i when the channel is constrained by k units. The

channel with the higher probability of excess demand has a larger set of coordinating

wholesale prices. Corollary 2.2 to Theorem 2.1 makes this precise.

COROLLARY 2.2. Given two demand distributions F1 and F2, if F(k) Ž F2(k) >

0, then

W2(k) 9 Wl(k) c [c,p].

Proof. See Section 2.6.2.

U 2.3 Equilibrium setting.

The equilibrium setting we analyze is a two-stage (Stackelberg) game. In the first

stage, the supplier (the 'leader') sets a wholesale price w. In the second stage, the

retailer (the 'follower') chooses an optimal response q, given the wholesale price w.

The supplier produces and delivers q units before the sales season starts and offers

no replenishments. Both the supplier and retailer aim to maximize their own profit.

The supplier's payoff function is r, (w; q) = (w - c)q and the retailer's payoff function

is r, (q; w) = E[pS(q) - wq]. Lariviere and Porteus (2001) analyze this Stackelberg

game, for an unconstrained channel with one supplier and one retailer. They find

that when F has the IGFR property, the game results in a unique outcome (qe, We)

defined implicitly in terms of the equations

pF(qe) (1 - g(qe)) - c = 0, (2.3)

pF(qe) - we = 0, (2.4)
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where g is the generalized failure rate function g(y) d yf(y)/F(y). Furthermore, they

show that the outcome is not channel optimal. In this section, and in Section 2.5,

we explore the efficiency of the outcome when the channel has a capacity constraint

(i.e., q < k).

Theorem 2.2 provides necessary and sufficient conditions on the channel's capacity

constraint k for the Stackelberg game to result in a channel-optimal equilibrium.

THEOREM 2.2. Assume F has the IGFR property. Consider the above described

game, when the channel capacity is k units. This game has a unique equilibrium,

given by qeq(k) = min{k, qe} and weq(k) = max{pF(k), we}, where qe and we are de-

fined by equations (2.3) and (2.4), respectively. This equilibrium is channel optimal

if and only if

k < qe. (2.5)

Under this condition, we have qeq = k and weq = pF(k).

Proof. See Section 2.6.3.

The function pF(y) (1 - g(y)) - c represents the supplier's marginal profit on the

yth unit, when y < k. When F has the IGFR property, the supplier's marginal

profit is decreasing in y, while the marginal profit is nonnegative. This fact and equa-

tion (2.3) imply that inequality (2.5) is equivalent to the inequality pF(k) (1 - g(k))-

c > 0, which can be interpreted as a statement that the supplier's marginal profit

(when relaxing the capacity constraint) on the kth unit is greater than zero. There-

fore, inequality (2.5) suggests that when the capacity constraint is binding for the

supplier's problem (the 'leader' in the Stackelberg game), then the outcome of the

game is channel optimal and vice-versa.

If the channel capacity k is 'large enough', so that inequality (2.5) is not satis-

fied, how inefficient is the channel? In Section 2.5, we provide a distribution-free

'measuring stick' for the efficiency loss in channels with a capacity constraint.



SECTION 2.4. WHEN CAN BOTH PARTIES BE BETTER OFF?

U 2.4 When can both parties be better off?

The set of coordinating wholesale price contracts W(k) introduced in Theorem 2.1

has many merits in a negotiation setting. For example, such contracts are Pareto

optimal. In contrast, Theorem 2.3 examines the set of wholesale price contracts D(k)

that have little merit in that they are Pareto-dominated by some other wholesale price

contract in [c, p]. A contract is Pareto-dominated if there exists an alternative linear

wholesale price contract that makes one party better off without making any other

party worse off. Having a complete picture of the contracts that are channel-optimal

and the contracts that are Pareto-dominated is helpful in a negotiation setting.

THEOREM 2.3. Assume F has the IGFR property and that the quantity qe and

wholesale price we are defined implicitly in terms of equations (2.3) and (2.4). If

k < q*, then the set of Pareto-dominated wholesale price contracts 7D(k) is

DZ(k) d= (max{we, pF(k)},p ] = (pF(minqqe, k}), p].

Proof. See Section 2.6.4.

Note that W(k) and 7D(k) are disjoint. Corollary 2.3 to Theorem 2.3 formalizes the

idea that when k is 'small enough', W(k) and 7D(k) partition the set [c, p]. Figure 2-3

illustrates these ideas when demand has a Gamma distribution.

COROLLARY 2.3. Assume F has the IGFR property. If k < qe, then

W(k) U D(k) = [c, p], (2.6)

W(k) n D(k) = 0. (2.7)

Corollary 2.3 is especially interesting: it asserts that when capacity is small enough

there are only two types of contracts: 'good contracts', W(k), and 'bad contracts',

7D(k). Furthermore, both parties will always have a reason to avoid the 'bad contracts'

because they are Pareto-dominated by some channel-optimal contract in the set W(k).
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Figure 2-3 An example illustrating W(k) and D(k).

Two sets of wholesale prices as a function of capacity: W(k) and D(k)

0._
C.
S
a0
0,
0

0 1 2 3 4 5 6 7 8 9 10

capacity, k
Note. We use the same parameters as in Figure 3-1, resulting in q* , 10.112, qe s, 4.784, and we :t 7.516.
The set of coordinating wholesale price contracts W(k) lies under the solid curve. The set of Pareto-
dominated wholesale price contracts 7D(k) lies above both the solid and dashed curves. The set of contracts
that lie between the solid and dashed curves are neither in W(k) nor in D(k). Such contracts do not
coordinate the channel, but nevertheless, are not Pareto dominated by coordinating wholesale contracts.

U 2.5 Efficiency Loss.

When the outcome of the Stackelberg game we described in Section 2.3 results in

a wholesale price contract that is not channel optimal, how much does the channel

'lose' as a result? What is the 'price' paid for the 'gaming' between the supplier and

retailer? To quantify the answer we analyze the worst-case efficiency. Our definition

of efficiency is related to the concept of Price of Anarchy, "PoA", as used by Koutsou-

pias and Papadimitriou (1999), and Papadimitriou (2001). PoA has been used as a

'measuring stick' in an assortment of gaming contexts: facility location (Vetta 2002),

traffic networks (Schulz and Moses 2003), resource allocation (Johari and Tsitsiklis

2004). More recently Perakis and Roels (2006) analyze the PoA for an assortment

of supply channel configurations with the IGFR restriction, but not for resource con-

strained channels. Theorem 2.4 complements their results, by providing an efficiency
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result for the Stackelberg game of Section 2.3, in the presence of a capacity constraint

k.

For a channel with a capacity constraint k and probability F(k) of excess demand,

we define the parameter 0 def max{F(k),c/p} The parameter 3 depends on the prob-

ability F(k) of excess demand and takes values from the set [1,p/c]. It quantifies

how constrained the channel is with respect to the channel optimal order quantity
q*, because de max{Fk),c/p} - max{(k),(q*)} . In the Stackelberg game with a ca-

c/, p c/p F(q*)

pacity constraint k and parameter 3, the efficiency, Eff(k, /), is defined according to

equation (2.8) below.

Channel profit under 'gaming' E[pS(qeq(k)) - cqeq(k)]
Eff(k, /3) = inf = inf

Fe~(k,3) Optimal channel profit FE~(k,3) E[pS(qs(k)) - cqs(k)]
(2.8)

The set F(k, /) represents the set of probability distributions that satisfy Assump-

tion 2.1, have the IGFR property, and such that the probability F(k) of excess demand

satisfies `m{(k),c/p = 3. Note that Eff(k, /3) is a distribution-free method of quanti-

fying the worst-case efficiency. When Eff(k, /3) is low (much smaller than one), there

is significant efficiency loss due to 'gaming'.

def
THEOREM 2.4. Define m = (p - c)/p (the channel's gross profit margin). For

the Stackelberg game described in Section 2.3, we have

(1 - I + m 1 1 1/m

Eff(k, )) = (2.9)

Proof. See Section 2.6.5.

Note that Eff(k, /) is decreasing in the channel's gross profit margin m and in-

creasing in 3. When 3 = 1, the channel is not constrained and Eff(k,/3) equals
1 / 1

((1 )1/m _- ) - which, after some algebraic manipulation, matches the result

in Perakis and Roels (2006). On the other hand, when the channel is most constrained

(i.e., k - 0, F(k) _ 1, and /3 p/c), then Eff(k, P) simplifies to 1. In other words

there is no efficiency loss because the equilibrium outcome involves the retailer order-

ing exactly k. Our result is thus a more general version of the 'two-stage push-mode
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PoA' result in Perakis and Roels (2006) in that we account for a capacity constraint.

Also our proof technique differs from and complements Perakis and Roels (2006), in

that we indirectly optimize over the space of probability distributions by optimizing

over the space of generalized failure rates.

Figure 2-4 An example illustrating Eff(k, 3) when m = 0.35.

.o

w

1.0 1.1 1.2 1.3 1.4 1.5
beta

Note. We fix the margin (p - c)/p = 0.35 and see how Eff(k, ,) changes as a function of 0.

Figure 2-4 provides an example of the Eff(k, 3) when the channel's gross profit

margin is 35 percent. Figure 2-4 illustrates that for channels with smaller capacity

(i.e., higher 0), the worst-case efficiency (as measured by Eff(k, p3)) is larger.

M 2.6 Proofs

In order to not disrupt the flow of presentation, the proofs for our results in this

chapter are contained here.
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2.6.1 Proof: 1-supplier/l-retailer, Set of wholesale prices

W(k)

Proof of Theorem 2.1. We start by proving that if w E W(k), then qr(w) = qs.

Suppose first that q* < k. We then have pF(min{q*, k}) = pF(q*) = c. There-

fore, W(k) = {c}. Thus, for any w E W(k), the problems RETAILER(k,w) and

CHANNEL(k) are the same and qr(w) = q .

Suppose now that q* > k. We then have q3 = k and, furthermore, pF(min{q*, k}) =

pF(k) > pF(q*) = c. (The strict inequality is obtained because F is strictly decreas-

ing.) Therefore, W(k) = [c, p(k)]. Solving 1 (E[pS(x)] - pf(k)x) = 0 for x E [0, ]

and noting os( = F(x), we obtain qr(pF(k)) = k. Since qr(w) is nondecreasing asax

we decrease w, we see that for all w E W(k), qr(w) = k = qS.

Suppose now that qT (w) = qs and c < w < p. We have shown that

W(k) = {c}, if q* < k;

[c,pF(k)], if q* > k.

When q* < k, the first order conditions imply that pF(qr(w)) - w = 0 = pF(q8 ) - c

for any w > c, which implies w must equal c. When q* > k, we know that qS = k.

Assume w > pF(k) when qr(w) = qS. Due to invertibility around k, qr(w) < k. This

is a contradiction because qs = qr(w) < k. O

2.6.2 Proof: Impact of size of Market on size of W(k)

Proof of Corollary 2.2. Let q* = Fj'(c/p) be the order quantity (for an uncon-

strained channel) under the demand distribution Fi.

If k < q*, then c/p 5< F2(k) • F1 (k), which implies that k < q*. Thus, Wi(k) =

[c,p~i(k)] for i 1, 2. Since F2 (k) • FI(k), we can conclude that W2(k) C Wl(k) c

[c, p].

Similarly, if q* < k, then W 2(k) = {c}. Thus, W 2(k) g W1(k). O
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2.6.3 Proof: When is the equilibrium of the Stackelberg

game channel optimal?

Proof of Theorem 2.2. The retailer's profit function .r (q; w) under a wholesale
defprice contract w is defined as wr(q; w) d E[pS(q) - wq]. Since ,r(q; w) is concave,

in q, we can use the first order conditions and conclude that for a wholesale price

w E [c, p], the constrained retailer's order quantity qr(w) is given by

qr(w) = min{k, F-'(w/p)}. (2.10)

The supplier's profit function 7,(w; q) under a wholesale price contract w is defined
defas r, (w; q) = (w - c)q. Since qr(w) is the retailer's best response in the second stage

to a wholesale price w by the supplier in the first stage, equation (2.10) allows us to

express the supplier's objective function as follows:

S(w) = (w - c)k, if c < w < max{c, pF(k)}; (2.11)
(pF(qr(w)) - c) qr(w), if max{c,pF(k)} < w < p.

For w > max{c,pF(k)}, note that w) = (pF(qr(w)) (1 - g(qr(w))) - c)
Oq (w) Since the function pF(y) (1 - g(y)) - c is strictly decreasing in y when

it is nonnegative and equals zero at qe (see equation (2.3)), we can deduce that

(pF(qr(w)) (1 - g(qr(w))) - c) > 0 for w > We (because qr(w) < qe). Further-

more, w) < 0 for w > pF(k). Therefore, we can conclude that ar(w) < 0 for

w > max{we,pF(k)}.

Either the inequality pF(k) < We holds or the inequality we < pF(k) holds.

First assume the inequality pF(k) < We holds. Equation (2.11) implies that i,(w) is

increasing linearly between c and max{c, pF(k)}. Furthermore, since

(pP(qr (w)) (1 - g(qr(w))) - c) < 0
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for w < we (because qr(w) > qe), we can deduce that

rW) - (pF(qr(w)) (1 - g(qT(w))) - c) (W) > 0

for w E (max{c,pF(k)}, we). And we know

a7r,(w)
<0

Ow

for w > max{we,pf(k)} = We. Therefore, weq(k) = We and equations (2.10) and

(2.4) imply qeq(k) = qe. The inequality pF(k) < we is equivalent to the inequality

qe < k (see equation (2.4)). Therefore, when qe < k holds, the inequality weq(k) =

we > max{c, pF(k)} = pF(min{q*, k}) holds and we can deduce that weq(k) ý W(k)

(using Theorem 2.1).

Next assume we < pF(k) holds. Since a < 0 for w > max{we,pF(k)} =

max{c,pF(k)}, equation (2.11) implies weq(k) = pf(k) and equation (2.10) implies

qeq(k) = k. The inequality we < pF(k) is equivalent to the inequality k < qe (see

equation (2.4)). Therefore, when k < qe holds, the equality weq(k) = pF(k) =

max{c,pF(k)} = pF(min{q*, k}) holds and we can deduce that weq(k) e W(k)

(again using Theorem 2.1). O

2.6.4 Proof: The set of Pareto-dominated contracts D(k) as

a function of capacity

Proof of Theorem 2.3. Equation (2.10) allows us to express the retailer's objec-

tive function as follows:

7r(W) = pE[S(k)] - wk, if c < w < pF(k); (2.12)
pE[S(qr(w))] - pF(qr(w))qr(w), if pF(k) < w < p.

Note that rr,(w) is strictly decreasing in w, when w E (c, pF(k)). Furthermore,

when w E (pF(k),p), note that rr,(w) is strictly decreasing in w because r(
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pFq(qr(w))g(qr(w)). aqw) < 0. From the proof of Theorem 2.2, we know that the

supplier's profit 7r,(w) is also strictly decreasing for w > max{we,pF(k)}. Therefore,

any wholesale price contract in the set (max{we,pF(k)},p] is Pareto-dominated by

max{we, pF(k)}.

Since the supplier's profit is decreasing as the wholesale price w decreases from

max{we, pF(k)} (see the proof of Theorem 2.2) but the retailer's profit is increasing as

the wholesale price decreases, we can conclude that any wholesale price contract in the

set [c, max{we,pF(k)}] is not Pareto-dominated. Thus, the set of Pareto-dominated

wholesale price contracts in [c, p] is exactly 1D(k) = (we, p] = (max{we, pF(k)}, p]. O

2.6.5 Proof: Efficiency loss for a two-stage push channel

with capacity constraint

LEMMA 2.1. Assume F has the IGFR property and that the quantity qe is defined

implicitly in terms of equation (2.3). If qe < k < qS, then

p (ok F(x) dx) - ck

p fo F(x) dx) cqe

Proof of Lemma 2.1.

is defined as g(y)ef

have

< (( ) 1 (f) - m 1 )
- e 1-m qe -m

(2.13)

Recall the generalized failure rate function g(y) for c.d.f. F

y- /FP(y). Since F(y) = e- fof(t)/P(t)dt = e-f 9(t)/tdt, we

p (fO F(x) dx) - ck p (f0 k -fg(t)/tdt dx) -ck

p(foe F(x) dx) - cqe ( qe e- o 9()/tt dx - cqe

p ( e- fg(t)/t4dt dx) - c(k -ge)
=1+

p(fo qe- f g(T) 40 dzt -cqe
(2.14)
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For any y E [qe, k], define the profit-gain factor a(y) by

a(y) p e- f g(t)/t dx - c(y - qe)) J e- fo g(t)/tdt
dx) - cq).

(2.15)
The derivative a) is expressed via equation (2.16) below, when y E [qe, k], leading

to the following nonnegative upper bound:

S)( qe

Spe- qe g(t)/tdt-fI ,g(qe)/tdt - c)

-g(qe)

qeY )

( ) _-g(qe)

q)
( )-g(qe)p
qe

P Y )-(p-c)
(e

Y ) +

e- o g(t)/tdt

e- g• g(t)/tdt

e- f g(t)/t dt

c / (p e

- c)/ (p(qe - q g(t)/1t at

F(qe) / (pF(qe) - c) qe

/p /

- c /(p - c) qe

n - 1) /(mqe).

Oa(y)
ay S(e- f g g(t)/tdt - cqe)

g(t)/tdt dx)

- og(t)/tdt d x

(2.16)

(2.17)- cqe)

- cqe)

- cqe) (2.18)

(2.19)

(2.20)

(2.21)
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Therefore,

p (Ok FF(x) dx) - ck k(

p( f F(x)dz) - cqe +e y

<1+ ]-( + (m - 1)) (mqe) dy
-m=1+ -m 1-m

1 m
+ -m 1-m (m - 1)(

(k - m-1+ 1 (k)-mqe 1-m qe 1-m

1)(k - qe)) / (mqe)

1) /m

1 /m. []

LEMMA 2.2. Under the same assumptions as in Lemma 2.1, when F(k) = 6 we

have k - 1/m < qe.

Proof of Lemma 2.2. Assume qe < k - 61/m. This leads to a contradiction (in-

equality (2.23)):

6 = F(k) = e-fok g(t)/tdt = e- fo g(t)/tdt -ef- (t)/tdt < 1. f(1 - S ( )/l t = (k/qe) - g (qe)

• (k/qe)- m  (2.22)

< (k/(k -61/m))-m = 6. (2.23)

Inequality (2.22) holds because pF(qe)(1 - g(qe)) 5 c, implying g(qe) > m. Inequal-

ity (2.23) follows from our assumption, qe < k - 61/rm.

Proof of Theorem 2.4. The case where 3 = 1 is equivalent to the unconstrained

problem which is addressed in Perakis and Roels (2006). Therefore, fix channel

capacity k and assume 3 > 1, so that q8 = k. When 3 > 1, the probability of

excess demand, which we will denote by 6, is fixed and satisfies 3 = 6p/c.

Fix a c.d.f. F E F(k, /). The efficiency Eff(F) of F satisfies the following lower
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bound:

Eff(F) de E[pS(qeq) - cqeq]/E[pS(k) - ck]

Ž E[pS(qe) - cqe]/E[pS(k) - ck] (2.24)

= ( (j F(x)dx) - cqe) / ( (k F(x) dx)- ck)

/ k 1 k-m +1 (2.25)S1 - 1 m e I - -m

>( 1 1)l/m - +1 -m (2.26)

In particular, inequality (2.24) follows because q <_ qeq _ q8 . Inequality (2.25) follows

from Lemma 2.1. The function on the right-hand side of inequality (2.25) is decreasing

as qe decreases and from Lemma 2.2 we know that the equilibrium order quantity

qe satisfies qe > k - l1/m. Therefore, inequality (2.26) follows when we substitute in

qe = k . 61/m = k (3(1 - m)) 1/ m .

It can be verified that the lower bound in inequality (2.26) is attained when the

c.d.f. F is taken equal to H, where the c.d.f. H satisfies

1. t(x) = 1 for x E [0, k. · l//m],

2. fI(x) = (k/x)m .6 for x E [k .61/ m , o).

(To verify this claim confirm that qe = k .61/m, using eq. (2.3), implying that we can

convert the inequalities in eqs. (2.24) and (2.26) into equalities. Furthermore, since

the c.d.f. F is taken equal to H, we can convert the inequalities in eqs. (2.17), (2.18),

and (2.20) into equalities. Therefore, inequality (2.25) becomes an equality.) The

c.d.f. H does not satisfy Assumption 2.1, because the corresponding density is zero

for x < k -61/m. However, it can be approximated arbitrarily closely by c.d.f.s in the

class F(k, ,3) (in particular, that satisfy Assumption 2.1), with an arbitrarily small

change in the resulting efficiency. O





CHAPTER, 3

Flexibility in allocating profit

Wholesale price contracts in unconstrained channels lack flexibility in allocating the

channel-optimal profit; the only coordinating wholesale price contract gives the entire

channel profit to the retailer.

In this chapter, we analyze the flexiblity of wholesale price contracts in allocating

the channel-optimal profit in a constrained setting. That is, we consider whether or

not wholesale price contracts possess some flexibility without sacrificing coordination.

Then, we reconsider risk-sharing contracts which are known to possess flexibility in

allocating channel profit (without sacrificing coordination) in an unconstrained setting

and investigate how this flexibility changes in a constrained channel.

Chapter Outline

We continue analyzing the model described in Chapter 2. In Section 3.1, we

characterize the fractions of revenue allocated to a supplier and retailer when they

use a wholesale price from the set W(k) of coordinating contracts and we analyze

how the fractions change as the market changes. Then, in Section 3.2, we show that

wholesale price contracts have some flexibility in allocating the channel-optimal profit,

a feature that has motivated the study of risk-sharing contracts. We analyze how this

flexibility changes as a function of capacity and the market. In Section 3.3 we focus

on risk-sharing contracts. We show in Section 3.3.1, that risk-sharing contracts still

coordinate a capacity-constrained channel. Furthermore, in Section 3.3.2, we show
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that there is even more flexibility in the choice of risk-sharing contract that can be

used for coordination. In particular, the set of coordinating risk-sharing contracts is

larger in the presence of constraints. That is, the set of revenue-sharing and buyback

contracts that coordinates a newsvendor's decision for a constrained channel is a

superset of the set of coordinating contracts in the unconstrained setting. And for

any given level of risk, there is now flexibility in allocating the channel-optimal profit.

We make this last point precise in Section 3.3.3. In order to maintain the flow of

presentation, the proofs for all our results in this chapter are contained in Section 3.4.

U 3.1 Revenue requirement implicit in W(k).

By agreeing to focus on the set W(k) in negotiating over a wholesale price for

coordination purposes, the supplier and retailer are implicitly agreeing to a 'mini-

mum share of expected revenue' requirement for the retailer and thus a 'maximum

share of expected revenue' restriction for the supplier. This notion is formalized in

Theorem 3.1.

THEOREM 3.1. If the capacity constraint k is binding for the channel (i.e., q* >

k), then any coordinating linear wholesale price contract w E W(k) guarantees

that the retailer receive at least a fraction f'k F(x) dx-k.F(k) of the channel's expectedfok (x) dx
revenue, and that the supplier receive at most a fraction kF(k) of the channel's

r v u - - -) d o
expected revenue. Furthermore, if F has the IGFR property, then the supplier's

maximum revenue share is weakly decreasing as k increases.

Proof. See Section 3.4.1.

An important distinction regarding the supplier and retailer 'share of expected

revenue' guarantees formalized in Theorem 3.1 is that the supplier's share results in

a guaranteed income (i.e., no uncertainty) whereas the retailer's share results in an

uncertain income. For example, from Theorem 3.1 there exists some wholesale price

w E W(k), where the supplier receives a fraction k-F(k) of the expected channelfo P (x) dx
revenue, pE[S(k)]. But the supplier's income is certain, wk, whereas the retailer's

income is an uncertain amount, pS(k) - wk.
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As a numerical example, if 1.(k) = 1/2, the supplier can receive up to fifty per-
fA, F(x) dx

cent of the expected channel revenue and still keep the channel coordinated, whereas

we require that the retailer receive at least fifty percent of the revenue in order for

the wholesale price to coordinate the actions of the retailer.

Recall that the set of coordinating wholesale price contracts W(k) increases with

the probability F(k) of excess demand, when k is held fixed (Corollary 2.2). Theo-

rem 3.2 formalizes a related idea: the larger the expected excess demand, the greater

the maximum possible share of revenue at the supplier without sacrificing channel-

coordination.

THEOREM 3.2. Consider two different demands D 1 and D 2 , with each Di asso-

ciated with a c.d.f. Fi, that have the same mean and such that F1 (k) > F2 (k).

Suppose that (a) the capacity constraint k is binding for the channel under both

distributions (i.e., min{q*, q*} > k), and (b) E[(D1 - k)+] > E[(D2 - k) +] (i.e., the

expected excess demand under D 1 is higher than that under D 2). Then,

k. F(k) > k F2(k)

f'Fi (x) dx - o F2(x) dx

Proof. See Section 3.4.2.

* 3.2 Wholesale price contracts and flexibility in

allocating channel-optimal profit

The benefits of risk sharing contracts in the unconstrained setting include the

ability to channel-coordinate the retailer's decision as well as flexibility (due to the

extra contract parameters) that allows for any allocation of the optimal channel profit

between the supplier and retailer. Cachon (2003) provides excellent examples of the

'channel-profit allocation flexibility' inherent in these more complex contracts.

Theorem 3.3 demonstrates that in a resource constrained setting, wholesale price

contracts also have flexibility in allocating the channel-optimal profit. Namely, these

simpler contracts allow for a range of divisions of the optimal channel profit among
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the firms. The divisions allowed (without losing coordination) depend on the chan-

nel's capacity, k. Similar to our observations in Section 3.1 for the implicit revenue

requirements, the supplier's share results in a guaranteed income (i.e., no uncertainty)

whereas the retailer's share results in an uncertain income.

THEOREM 3.3. If the capacity constraint is binding for the channel (i.e., q* > k),

there exists a wholesale price contract w E W(k) that can allocate a fraction t, of

the channel-optimal profit to the supplier and a fraction 1 - t, to the retailer, if and

only if t8 E [0, t ma(k; F)], where

tmax (k; def k (P(k) - c/p)
fo (P(x) - c/p) dx

Furthermore, if F has the IGFR property, then tm'n=(k; F) is weakly decreasing as k

increases in the range [0, q*).

Proof. See Section 3.4.3.

Let us interpret Theorem 3.3 at two extremes values for the capacity k. As k

approaches q*, tx"(k; F) approaches zero. Thus the supplier can not get any fraction

of the channel-optimal profit with any wholesale price contract from W(k) (this was

to be expected because W(k) = {c} when k > q*). At the other extreme, as k

tends to zero, tax(k; F) tends to one. Thus any allocation of the channel-optimal

profit becomes possible with some wholesale price contract from W(k) (this is natural,

because as k tends to zero, the interval W(k) becomes [c, p]). See Figure 3-1.

Theorem 3.4 parallels Theorem 3.2 and makes precise the idea that when we serve

a larger market the 'flexibility' in allocating the channel-optimal profit 'increases'.

THEOREM 3.4. Under the same assumptions as in Theorem 3.2, we have

tm•(k; Fl) > tma(k; F2).

Proof. See Section 3.4.4.

Theorem 3.4 suggests that a supplier (and retailer) can find flexibility in profit

allocation by joining a supply channel that serves a larger market.
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Figure 3-1 Flexibility in allocating channel-optimal profit as a function of the capacity constraint.

Maximum fraction of 'allowable' channel-profit allocation to the supplier
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Note. Demand is distributed according to a Gamma distribution with mean 10 and coefficient of variation

2- 1/2 Z .707. The retail price is p = 10, and the cost is c = 4. (these are similar to parameters used
in Cachon (2004)). Thus, q* z 10.112. The shaded region denotes the fractions of profit to the supplier
consistent with a channel-optimal outcome (i.e., the set [0, tmnax(k; F)]). Or in other words, the shaded region
represents the fractional allocations of channel-optimal profit to the supplier that are achievable with some
wholesale price contract w E W(k).

* 3.3 Risk sharing contracts

We have provided necessary and sufficient conditions so that linear wholesale

price contracts coordinate a newsvendor's procurement decision and allow both the

supplier(s) and the newsvendor to profit. A natural related question is whether more

complicated contracts such as buy-back contracts and revenue-sharing contracts also

coordinate a newsvendor's procurement decision when the newsvendor is capacity-

constrained.

In this section, we prove that revenue-sharing contracts and buy-back contracts

continue to coordinate a newsvendor's ordering decision even when the newsvendor

has a constrained resource. Furthermore, we examine the advantages of these more

complex contracts over a linear wholesale price contract for a constrained newsvendor.
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3.3.1 Buyback and revenue-sharing contracts for uncon-

strained newsvendor's still coordinate

In Theorem 3.5, we show that buyback contracts, which are known to coordinate

an unconstrained newsvendor's procurement decision, continue to coordinate a con-

strained newsvendor's procurement decision.

THEOREM 3.5. Consider a 1-supplier/I-retailer configuration in the presence of

a capacity constraint k > 0. Buyback and revenue sharing contracts coordinate

the retailer's ordering decision for the channel, and allow for any profit allocation.

In particular, the buyback and revenue sharing contracts that coordinate an uncon-

strained retailer (in the corresponding unconstrained channel) continue to coordinate

the constrained retailer's order decision and allow for any profit allocation.

Proof. See Section 3.4.5.

Figure 3-2 illustrates the set of buyback contracts (w, b) that channel-coordinate

a capacity-constrained newsvendor (as well as unconstrained retailer) as described in

Theorem 3.5. The buyback contracts in Figure 3-2 are the only buyback contracts

that can coordinate an unconstrained newsvendor. However, the buyback contracts

in Figure 3-2 are not the only buyback contracts that can coordinate a constrained

newsvendor. There are more. In Subsection 3.3.2 we find necessary and sufficient con-

ditions for a buyback contract (w, b) to coordinate a capacity-constrained newsvendor.

3.3.2 Necessary and sufficient conditions for coordination

In Theorem 3.6, we show that the set of buyback contracts that coordinate an con-

strained newsvendor's procurement decision is a superset of the set of buyback con-

tracts that coordinate an unconstrained newsvendor's procurement decision.

THEOREM 3.6. Consider a 1-supplier/1-retailer configuration in the presence of

a capacity constraint k > 0, and assume that F(k) > c/p. A buyback contract

(w, b) E {(u, v) I c < u < p, v < u} coordinates a newsvendor's procurement decision



SECTION 3.3. RISK SHARING CONTRACTS

Figure 3-2 Some buyback contracts (w, b) that channel-coordinate a constrained newsvendor.

buyback w
parameter

p

F(k)p

c

0 P
buyback b
parameter

Note. The buyback contracts (w, b) that channel-coordinate an unconstrained newsvendor's ordering decision
(the ones graphed in this figure) still coordinate a capacity-constrained newsvendor. P(k)p is labelled on
the y-axis purely for comparison with Figure 3-3.

for the channel if and only if

(w, b) E B(k) ={(u,v) I = (1 - A)v + Ap, A [cp, P(k)]}.

Proof. See Section 3.4.6.

Notice that if capacity becomes large enough (so that k > q*), then the set of

coordinating buyback contracts implied by Theorem 3.6 and Figure 3-3 simplifies

to the 'classical' set of coordinating buyback contracts implied by Theorem 3.5 and

Figure 3-2.

3.3.3 Flexibility in allocating channel optimal profit, for a

given level of risk

For the constrained newsvendor, notice from Figure 3-3, that for any given buyback

parameter b, there is a set of wholesale price parameters such that the resulting

buyback contract coordinates the retailer's ordering decision for the channel. However

for the unconstrained newsvendor, from Figure 3-2, we see that for any fixed buyback

parameter b, there is only one wholesale price parameter that coordinates the channel.

In other words, in the unconstrained setting, for any given level of inventory risk that
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Figure 3-3 Necessary and sufficient conditions for a buyback contract (w, b) to channel-coordinate a
constrained newsvendor.
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Note. The shaded area represents B(k), all the buyback contracts (w, b) that channel-coordinate a capacity-
constrained newsvendor when k < qc. Compare with Figure 3-2.

the supplier takes on (represented by the buyback parameter b), there is no flexibility

in allocating the channel profit while maintaining coordination. However, in the

constrained setting, for any level of inventory risk that the supplier accepts, there

is still flexibility in allocating the channel profit. For revenue-sharing contracts, a

similar flexibility exists in the constrained setting that is absent in the unconstrained,

when the revenue share parameter is held fixed.

Theorem 3.7 formalizes the idea that in a resource constrained setting, buyback

contracts have flexibility in allocating the channel-optimal profit when the inventory

risk (of loss) is held fixed for the supplier (i.e., the buyback parameter is held fixed).

These contracts allow for a range of divisions of the optimal channel profit among the

firms. The divisions allowed (without losing coordination) depend on the channel's

capacity, k. Unlike our observations for wholesale price contracts in Section 3.1 and

Section 3.2 for the implicit revenue requirements, the supplier's share results in an

uncertain income similar to the retailer, whose share also results in an uncertain

income.

THEOREM 3.7. Consider a buyback parameter b < p. If the capacity constraint is

binding for the channel (i.e., q* > k), there exists a buyback contract (w, b) E B(k)

that can allocate a fraction t, of the channel-optimal profit to the supplier and a
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fraction 1 - t, to the retailer, if and only if t, E [tmi~(k; F, b), tmax(k; F, b)], where

tmn (k; F, b) ý=e b/p and

made (F(k) - c/p) k
tIm(k; F, b)d= (1 - b/p) k + b/p.f, (P(x) - c/p) dx

Furthermore, if F has the IGFR property, then tim"(k; F, b) is weakly decreasing as

k increases in the range [0, q*).

Proof. See Section 3.4.7.

Let us interpret Theorem 3.7 at two extremes values for the capacity k. As k

approaches q*, t"ax(k; F, b) approaches b/p = tmin(k; F, b). Thus the supplier can

only obtain one particular fraction of the channel-optimal profit with any wholesale

price contract from the set of coordinating buyback contracts that has a fixed level

of inventory risk b (this was to be expected because F(k)p = c when k = q* so

that Figure 3-2 and Figure 3-3 are identical and for any b there is only w). At the

other extreme, as k tends to zero, tmax(k; F, b) tends to one. Thus, for a buyback

parameter b, any allocation of the channel-optimal profit that allocates at least b/p

of the channel-optimal profit to the supplier becomes possible with some buyback

contract from the set of coordinating contracts (this is natural, because as k tends to

zero, the set of coordinating contracts becomes the entire region above the rectangle's

diagonal in Figure 3-2). See Figure 3-4 for an example illustrating feasible allocations

of the channel-optimal profit at intermediate capacity values.

Corollary 3.1 points out that as the supplier takes larger inventory risk (by increas-

ing the buyback parameter), the fraction of optimal channel profit that the supplier

can obtain while keeping the channel coordinated increases. This corollary follows

directly from Theorem 3.7.

COROLLARY 3.1. Both tmin(k; PF, b) and tm'(k; FP, b) are strictly increasing and

continuous in b when b [0, p).

Theorem 3.8 parallels Theorem 3.4 and formalizes the idea that when we serve a

larger market the 'flexibility' in allocating the channel-optimal profit 'increases'.
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Figure 3-4 Flexibility in allocating channel-optimal profit as a function of the capacity constraint.

Maximum fraction of 'allowable' channel-profit allocation to the supplier

0.6
iii0.6

J 0.4
0

+4.2
0

0.2-

Not channel-optimal

capacity, k

Note. We use the same parameters as in Figure 3-1, resulting in q* ; 10.112. Furthermore, the buyback pa-
rameter is b = p/2, representing the level of inventory risk the supplier accepts. The shaded region denotes the
fractions of profit to the supplier consistent with a channel-optimal outcome (i.e., the set [b/p, tmax(k; F, b)]).
Or in other words, the shaded region represents the fractional allocations of channel-optimal profit to the
supplier that are achievable with some buyback contract that has a buyback parameter p/2 and comes from
the set of coordinating contracts defined in Theorem 3.6.

THEOREM 3.8. Consider a buyback parameter b < p. Under the same assump-

tions as in Theorem 3.2, we have

ta"x(k; F, b) > t'""(k; F2, b).

Proof. See Section 3.4.8.

Theorem 3.8 suggests that a supplier (and retailer) can find flexibility in profit

allocation by joining a supply channel that serves a larger market.

* 3.4 Proofs

In order to not disrupt the flow of presentation, the proofs for our results in this

chapter are contained here.

Sln · · · · · · ·
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3.4.1 Proof: Revenue requirement implicit in W(k)

Proof of Theorem 3.1. If the capacity constraint k is binding for the channel (i.e.,

q* > k), then W(k) = [c, pF(k)]. For any wholesale price, the supplier's fraction of

expected revenue is r,(w) = wq(w)/E[pS(q(w))] where q(w) is the retailer's order

quantity for a wholesale price w. Thus for any coordinating linear wholesale price

contract w E W(k),
wk wk

r(w) = E[pS(k)] p (x) d

The maximum possible value for r,(w), when w E W(k), is

m(k (pF(k)) k k F(k)r (k; F)=S pE[S(k)] k F(x) dx

Accordingly, the expected revenue that the retailer receives with any linear wholesale

price contract w E W(k) is at least a fraction

k. F(k) f0 f (x) dx - k -F(k)
f' F(x) dx fo' F(x) dx

of the total.

Next we show that if F has the IGFR property, then ram'(k; F) is weakly decreas-

ing as k increases. We first note that

arma(k; P) F(k)r k = ) (1 - g(k) - r'm(k; F)), (3.1)
k foF(x) dx

where g(x) e- • is the generalized failure rate function. From L'H6pital's rule,

we also have limk-• ram'(k; F) = 1. Furthermore, the function rmx(k; F) is bounded

above by 1 and goes to zero as k -- oo. If this function is not weakly decreasing,

there must exist some value t such that the derivative of r"m(k; F) at t is zero, and

positive for values slightly larger than t. We then have

rrm'(t; F) = 1 - g(t) (3.2)
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since the derivative of rm"a(k; F) at t is zero. For k slightly larger than t, the func-

tion rax(k; F) increases, and g(k) is nondecreasing, by the IGFR assumption. But

then, equation (3.1) implies that the derivative of r~'x(k; F) is negative, which is a

contradiction. O

3.4.2 Proof: Revenue requirement as we 'vary' F

Proof of Theorem 3.2. Note that fo F (x) dx = (fo F2i(x) dx) - (f' F2(x) dx) =

E[Di] - E[(Di - k) - 1{Dj>k}].

Thus,

Fl(x) dx = E[D1] - E[(D1 - k) l{D1 >k}]

= E[D2] - E[(D1 - k) . 1{Dl>k}]

< E[D2] - E[(D 2 - k) 1{D 2>k}]

0/= j F 2(x) dx. (3.3)

The inequalities (3.3) and Fl(k) 2 F2(k) imply that f k (k) > P2 (k)
0 P (x) dx - fP 2 (x) dx

3.4.3 Proof: W(k)'s flexibility in allocating the channel-

optimal profit

Proof of Theorem 3.3. We first recall that given our assumption k < q*, the set

of coordinating wholesale price contracts is W(k) = [c, pF(k)].

First we prove that t, E [0, tax(k; F)], if and only if there exists a wholesale price

contract w E W(k) such that w allocates a fraction t, of the channel-optimal profit

to the supplier (and thus a fraction 1 - t. to the retailer).

For any wholesale price w, the supplier's fraction of the channel's expected profit

is t,(w) def (w-c)q(w) where q(w) is the retailer's order quantity for a wholesale
i E[pS(q(w))-cq(w)]

price w. For any coordinating linear wholesale price contract w E W(k), the retailer
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orders k units; thus we can simplify t,(w):

(w - c)k k(w/p- c/p)ts (w) = = (3.4)E[pS(k)] - ck = fk (P(x) - c/p) dx

Observe that t,(c) = 0, t,(pF(k)) = t"•(k; F), and t,(w) is strictly increasing

and continuous in w for w E [c, pF(k)]. Thus, t,(w) is a one-to-one and onto map

from the domain [c, pP(k)] to the range [0, tmax(k; F)].

Next we show that if F has the IGFR property, then tWma(k; F) d k.(P(k)-c/p)

1-c/pis weakly decreasing as k increases. Define I(x) = -c/p Since F(q*) = c/p, H(x)
restricted to the domain [0, q*) is equal to 1 - H(x), where H is a c.d.f. with support

[0, q*).

The generalized failure rate function gH(x) for H, defined in equation (3.5) below,

can be rewritten in terms of the generalized failure rate function gF(x) for F, as

follows:

gH def X8 ) (35)9H (X) -•a•• (3.5)
H(x)

xf (x)
F(x) - c/lp

F(x) xf(x)
F(x) - c/p F(x)

F(x) g F(). (3.6)F(x) - c/p

Furthermore,
F(x) f (X) -c/ p

O-x F(x) - c/p (F(x) - c/p)2 - O (3.7)

which implies that F(x)-c/p is weakly increasing (over the domain [0, q*)).

Since F(x)-c/p is positive and weakly increasing and F has the IGFR property, we

can deduce that H also has the IGFR property when restricted to the domain [0, q*)

(because of equation (3.6)).

Then, Theorem 3.1 (applied to H) implies that f0k  ) is weakly decreasing asf0 f(x) dx
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k increases (while k is restricted to the domain [0, q*)). But tmax(k; F) = k*H(k)
foft(x) dx'

which proves that tma(k; F) is weakly decreasing as k increases (and k < q*). O

3.4.4 Proof: Flexibility in allocating the channel-optimal

profit as we 'vary' F

Proof of Theorem 3.4. Given the definition of tm"(k; F) (cf. Theorem 3.3), we

need to prove that

Fi (k) - c/p > F2(k) - c/p (3.8)

f0k (i(x) - c/p) dx f (P2(x) - cip) dx

We know that Fi(k) Ž F2(k) and that the capacity constraint is binding for the

channel's problem under both distributions. Thus,

F (k) - c/p _ F2(k) - c/p > 0. (3.9)

From inequality (3.3) in the proof of Theorem 3.2, we also know that f F1 (x) dx <

fo F2(x) dx. Thus, we can deduce that

0 < (F1 (x) - c/p) dx <] (F2(x) - c/p) dx. (3.10)

Inequalities (3.9) and (3.10) imply that inequality (3.8) holds. O

3.4.5 Proof: Buyback and revenue-sharing contracts con-

tinue to coordinate

Proof of Theorem 3.5. Our proof follows the proof technique given in Cachon

(2003) for the 1-supplier, 1-retailer channel in the absence of a capacity constraint.

Our proof has two parts. The first part shows that buyback contracts coordinate a

capacity-constrained newsvendor, allocating any fraction of the channel optimal profit

among the parties. The second part shows that buyback contracts are equivalent to
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revenue sharing contracts in a constrained setting.

Under a buyback contract (w, b) the newsvendor pays w per unit to the supplier

for each unit ordered and is compensated b per unit for any unit unsold at the end

of the sales season. We show that if

w = b + c(p - b)/p, b E [O,p], (3.11)

then the buyback contract (w, b) coordinates the capacity-constrained newsvendor's

ordering decision, giving the newsvendor (p - b)/p fraction of the channel-optimal

profit and the supplier b/p fraction of the channel-optimal profit.

We show that under the above buyback contract, (w, b), the channel-optimal order

quantity, qC, equals the retailer-optimal order quantity, qr, as well as the supplier-

optimal order quantity (i.e., the retailer's order quantity that is optimal from the

supplier's point of view), qS. Indeed,

qC de arg max pS(q) - cq
O<q<k

= arg max ((p - b)/p) (pS(q) - cq) (3.12)

= argmax(p - b)S(q) - (w - b)q (Using buyback contract (3.11))
O<q<k

= argmaxpS(q) - wq + b(q - S(q))
O<q<k

def r
=-q



CHAPTER 3. FLEXIBILITY IN ALLOCATING PROFIT

and

r def
q = argmaxpS(q) - cq

O<qk

= arg max (b/p) (pS(q) - cq) (3.13)

= arg max bS(q) - (c - w + b)q (Using buyback contract (3.11))
Oq<_k

= arg max wq - cq - b(q - S(q))

def s-q

Equations (3.12) and (3.13) prove that the newsvendor and supplier receive ((p-

b)/p) and (b/p) fractions, respectively, of the channel-optimal profit.

Next, we remind the reader that buyback contracts and revenue sharing contracts

are equivalent (regardless of the channel's capacity constraint). Under a revenue

sharing contract the newsvendor purchases each unit from a supplier at a price of w,

per unit, keeps a fraction f of the revenue, and shares a fraction (1 - f) of the revenue

with the supplier. A given buyback contract, (w, b), is a revenue sharing contract

where the newsvendor purchases at w - b per unit from the supplier and in return

shares a fraction b/p of the revenue with the supplier. Similiarly, a given revenue

sharing contract, (wr, f), is a buyback contract where the newsvendor purchases at

Wr + (1 - f)p per unit and is compensated (1 - f)p per unit by the supplier for

any unsold items at the end of the sales season. Since there is a one-to-one mapping

from buyback contracts to revenue sharing contracts and because buyback contracts

coordinate a constrained newsvendor's ordering decision, we conclude that revenue

sharing contracts also coordinate a constrained newsvendor's ordering decision. O
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3.4.6 Proof: Necessary and suff. conditions for risk-sharing

contracts to coordinate

Proof of Theorem 3.6. Let

def
B {(u, v) I u = (1 - A)v + Ap, A E [c/p, F(k)]}

and
def

A { (u, v) I c < u < p, v < u}.

The proof has two parts. First we show every buyback contract (w, b) E B C A

channel-coordinates the newsvendor's decision. Then, we show that there are no

other buyback contracts in the set A that can channel-coordinate the newsvendor's

decision. Before we proceed note that the optimal order quantity for the constrained

channel is k (because F(k) > c/p). Thus, the capacity constraint is tight.

First we show that every buyback contract (w, b) E B channel-coordinates. If

(w, b) E B, then w - b = A(p - b) for some A E [c/p, F(k)]. The newsvendor

orders min{k, (-b)}. But ' E [c/p,F(k)], therefore -l( ) kI andmink ,b p-b p-b
min{k, F-'( )} = k. The newsvendor thus orders the channel-optimal order quan-

tity for this capacity-constrained channel.

Next we show that there is no buyback contract (w, b) outside of B but in set A

that channel-coordinates the newsvendor's action. Assume the contrary. Namely, as-

sume a buyback contract (w, b) E A \ B channel-coordinates the newsvendor's action.

Under buyback contract (w, b), the constrained newsvendor orders min{k, F-1 ()I.

But since (w, b) channel-coordinates the newsvendor's decision, we have min{k, F-1 ()} =

k, since the newsvendor's constraint is tight. Therefore, F-'(,-b) > k implying
p-b

SF(Ik). Furthermore, min( w-b - c implying -b > Thus, (w, b) E B,p-b - or in(w,b)EA p-b - p-bF- T
because w - b = A(p - b) for some A E [c/p, f(k)]. But this is a contradiction. L
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3.4.7 Proof: Buyback flexibility in allocating the channel-

optimal profit

Proof of Theorem 3.7. We first recall that given our assumption k < q*, the set

of coordinating buyback contracts is B(k) {(u, v) I u = (1 - A)v + Ap, A E

[c/p, F(k)] }.
First we prove that t, E [tEin(k; F, b), ti' (k; F, b)], if and only if there exists a

buyback contract (w, b) E B(k) such that (w, b) allocates a fraction t, of the channel-

optimal profit to the supplier (and thus a fraction 1 - t. to the retailer).

For any buyback contract (w, b), the supplier's fraction of the channel's expected

profit is t,(w; b) de (c)q(w,b)b(Sq(w,b))) where q(w, b) is the retailer's order quantity-- E[pS(q(w,b))-cq(w,b)]

for a buyback contract (w, b). For any coordinating buyback contract (w, b) E B(k),

the retailer orders k units; thus we can simplify t,(w; b):

(w - c)k - b(k - S(k))
E[pS(k)] - ck

1 (w - c)k - b(fo (1 - F(x)) dx)

p fo (P(x) - c/p) dx

Therefore, for any A E [c/p, F(k)], we have

ts ((1 - A)b + Ap; b)
1 ((1 - )b + p-c).k+b. f' (F(x) - 1) dx
P fo (F(x) - c/p) dx

1 (-Ab+Ap-c). k+b-f0F(x)dx

P fk (F(x) - c/p) dx

(1 - b/p)Ak - (c/p)k + (b/p) f' F(x) dx

0' (F(x) - c/p) dx

(1 - b/p) . (A - c/p) . k + (b/p). fko (F(x) - c/p) dx
fo (F(x) - c/p) dx

(1 - b/p)- (A - c/p) kf= (+ b/p. (
y0k (F(x) - c/p) d~

From equation (3.15), observe that t,((1 - c/p)b + (c/p)p; b) = b/p and ts((1 -

F(k))b + P(k)p; b) = tmx(k; F, b). Furthermore, from equation (3.14), we have that

t,(w; b) =. (3.14)

3.15)
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t,(w; b) is strictly increasing and continuous in w when w is in the set

[(1 - c/p)b + (c/p)p, (1 - F(k))b + F(k)p] .

Thus, ts(w; b) is a one-to-one and onto map from the domain {(1 - A)b + Ap I A E

[c/p, F(k)] } to the range [t~"i(k; F, b), t~a"(k; F, b)].

From Theorem 3.3, we have that if F has the IGFR property, then tm"a(k; F, b) d=e

(1-b/p). )-c)k +b/p is weakly decreasing as k increases in the range [0, q*]. O
( - p .( )_-clp) dx

3.4.8 Proof: Buyback flexibility in allocating the channel-

optimal profit as we 'vary' F

Proof of Theorem 3.8. From Theorem 3.4, we have that

S- c/p) -k (F2(k) - c/p) - k

(x) - c/p) dz - f (F2(x) - c/p) dx

Therefore, we have that

(Fi(k) - c/p) -k (F2(k) - c/p) + k
(1 - bp) + b/p > (1 -bp) (( + b/p.

f- (Fp(x) - c/p) dx fo (Fz2(x) - cp) dx

(3.16)

(3.17)

(F(k
f0 (Pi(





CHAPTER 4
An Extension: Coordinating a

constrained channel with multiple

suppliers

We consider a retailer who orders from multiple suppliers (where each supplier offers

one differentiated product), subject to a constraint on the total amount of inventory

that can be stocked. The market price for each product is fixed. The retailer faces a

random demand for each one of the products (product substitution is not allowed),

which is independent of the quantities stocked. In this context, the retailer must

make a portfolio decision: which suppliers to order from, and how much to order

from each.

For this model, we explore questions similiar to those studied for the single-product

case. Do there exist nontrivial wholesale contracts (with the wholesale price different

from the unit cost) that coordinate the retailer's portfolio decision, resulting in an

order quantity vector which is optimal from the channel's point of view? How does the

set of coordinating wholesale price vectors change as we change the retailer's capacity

constraint? Is everyone better off or no worse off by picking a wholesale price vector

in this set? We will show that our main findings for the 1-supplier/1-retailer case

(Theorems 2.1 and 2.2) extend to this more general setting with many suppliers.
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Chapter Outline

In Section 4.1, we extend the 1-supplier/l-retailer model (presented in Section 2.1)

to include more suppliers and describe the set of coordinating wholesale price con-

tracts for this extended model in Section 4.2. In Section 4.3, we consider an equilib-

rium model and find conditions that guarantee that the equilibrium wholesale price

contract is a coordinating contract. In order to maintain the flow of presentation, the

proofs for all our results in this chapter are contained in Section 4.4.

U 4.1 Many-suppliers/I-retailer model

A risk-neutral retailer r orders from m > 2 risk-neutral suppliers, for m different

goods, differentiated by supplier. There is a single sales season, the retailer decides on

an order quantity vector/portfolio (qi, q2,... , qm) and orders well in advance of the

season, the entire order arrives before the start of the season, and finally demand is

realized, resulting in sales for the retailer (without an opportunity for replenishment).

Without loss of generality, units remaining at the end of the season are assumed to

have no salvage value, and there is no cost for stocking out.

Supplier i has a fixed marginal cost of ci per unit supplied and charges the retailer

a wholesale price wi > ci per unit ordered. The retailer's price Pi per unit to the

market for good i is fixed and, at that price, the demand for good i, Di, is random

with p.d.f. fi and c.d.f. Fi. We assume that the distribution for demands Di does

not depend on the ordered quantities (ql, q2 , ... ,m)-

The retailer's total capacity is again constrained by some k > 0. We assume

that the capacity as well as the quantities of the different products are measured

with a common set of units (e.g., shelf-space), so that the capacity constraint can be

expressed in the form qi + -- + q, <• k. The models parameters are summarized in

Figure 4-1, with the arrows denoting the direction of product flow.

As before, we assume that the p.d.f. fi for the demand Di has support [0, li], with

li > k, on which it is positive and continuous. As a consequence, FP(0) = 1 and P~ is

continuously differentiable, strictly decreasing, and invertible on (0, li).
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Figure 4-1 "m suppliers & 1 capacity constrained retailer" model with independent downstream de-
mands.

C1

Cm

Note. There are m suppliers. Supplier si with marginal cost ci (per unit) offers good i at wholesale price
wi (per unit) to a capacity-constrained retailer r who faces uncertain demand Di downstream with c.d.f. Fi
(for good i) when the price for the good is fixed at pi (per unit). The retailer decides on a portfolio of goods
to order from the suppliers.

4.1.1 Retailer's problem

For product i {1,..., m}, let Si(qi) = min{qi, Di} denote the (uncertain) amount

of sales for product i given that the retailer orders qi units of product i. The retailer

decides on a quantity vector qr(w) = (qj, qr,... , q ) to order (for a given wholesale

price vector w) that maximizes the expected profit Trr(q) = E[EZ~ 1 pi min{qi, Di} -

wiqi], subject to the capacity constraint k. In particular, it solves the following convex

program with linear constraints in the decision vector, q:

RETAILER(k,w)

m

maximize C (piE[Si(qi)] - wiqi) (4.1)
i=l

m

subject to k- qi > 0
i=1

qi, 0, i = 1,...,m.

Because of our assumptions on the distribution of the demand Di for each product,

it can be shown that RETAILER(k,w) has a unique solution (vector), which we

denote by qr (w).
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4.1.2 Channel's problem

Given the channel's expected profit 7r,(q) =ef E[E' 1 pi min{qi, Di} - ciqi] and ca-

pacity constraint k, the optimal order quantity vector q8 for the system/channel is

the solution to the following convex program, CHANNEL(k), with the same linear

constraints on the decision vector, q, but a slightly altered objective function:

CHANNEL(k)

m

maximize (piE[Si(qi)] - ciqi) (4.2)
i=1

m

subject to k - qiO0
i=1

qi>O, i=l1,...,m.

Again, because of our assumptions on the demand distributions, it can be shown

that CHANNEL(k) also has a unique solution (vector) which we denote by q'. Finally,

we denote the unique solution for the unconstrained channel problem, max(qERT} ir,(q),

by q*

U 4.2 The set W(k).

In this subsection, (cf. Theorem 4.1 below), we derive conditions under which

the vector w = (wl, ..., wMi) belongs to the set W(k) of wholesale price vectors that

coordinate the retailer's order quantity vector, i.e., qr(w) = qS.

Throughout this subsection, we assume that the capacity constraint is binding for

the channel, that is, -i1 qi* > k or equivalently

Fk-1 - > k.
i= 1 Pi

Otherwise, the problem degenerates into m standard 1-supplier/1-retailer problems

in which the only way to coordinate the retailer's action for the supply channel is

with a wholesale price contract w = (cl, .., Cm).
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THEOREM 4.1. Let Z = {i I qf = 0} C M = {1,...,m} be the set of products

that are not ordered in the channel's portfolio decision problem, and define Am+1

implicitly by the equation:

E F 1(Pi - ci- Am+1 )k.
jEM\Z P

For any wholesale price vector w = (wl, w2 , ... , in), the following two conditions

are equivalent.

(a) The vector w coordinates the retailer's portfolio decision, i.e., qr(w) = q8 .

(b) There exists some a that satisfies

a E [0, Am+1], (4.3)

wj = cj + a, VjEM \ Z, (4.4)

w Žj > pi - A.m+ + a, Vj Z. (4.5)

Proof. See Section 4.4.1.

Let W(k) be the set of all w for which qr(w) = qs. If Z = 0 (so that every product

is in the channel's optimal portfolio), W(k) can be represented geometrically by a line

segment that starts at the point (Cl, c2 ,..., cm), has unit partial derivatives, and ends

at the intersection of the line with the set of vectors w that satisfy ELm FI-( p) = k.

More generally, if Z f 0, then W(k) is the set described by the conditions (4.3)

through (4.5).

* 4.3 The Stackelberg game with multiple suppli-

ers.

We now consider a generalization of the Stackelberg game analyzed in Section 2.3.

In the first stage, all the suppliers (the 'leaders') simultaneously choose their wholesale

prices wi. In the second stage, the retailer (the 'follower') chooses an order quantity
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vector q. When does an equilibrium wholesale price vector of this game belong to

the set W(k)? A full exploration of this game is beyond the scope of this chapter

and is considered in Chapter 6. We only provide here one result that connects to and

generalizes Theorem 2.2.

THEOREM 4.2. Assume the game is symmetric for the suppliers, that is, ci = c,

pi = p, and Fi = F, for every supplier i. Furthermore, assume that F has the IGFR

property and that the retailer is service constrained in the sense that f is decreasing.

Recall the definition of qe given in equation (2.3). If k < m -qe, then there exists a

symmetric equilibrium that belongs to W(k).

Proof. See Section 4.4.2.

U 4.4 Proofs

In order to not disrupt the flow of presentation, the proofs for our results in this

chapter are contained here.

4.4.1 Proof: m-suppliers/l-retailer, Set of wholesale prices

W(k)

Proof of Theorem 4.1. First, we write the Lagrangian L,(q, A) for CHANNEL(k)

and the Lagrangian L,(q, y) for RETAILER(k,w):

m m m

£s(q, A) = (pE[min(qi, Di)] - ciqi) + Aqi + Am+, (k - qi),
i=1 i=1 i=1

m m m

r(q, y) = (PiE[min(qi, D)] - wiqi) + Eyiqi +7ym+1(k - •q).
i=1 i=1 i=1

Note that 7r,(q) and 7rr(q) are strictly concave for q E [0, 11) x .. [0, lm) because

each c.d.f. Fi is strictly increasing over [0, li). Because the feasible sets are convex

and compact, CHANNEL(k) and RETAILER(k,w) have unique solutions. Further-
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more, because of the concavity of the objective function and the fact that the Slater

condition is satisfied, any critical point of the respective Lagrangian (that satisfies

the Karush-Kuhn-Tucker conditions) is the unique maximizer in the respective con-

strained decision problem. Conversely, the optimal solution in the respective con-

strained decision problem must correspond to a unique critical point of the respective

Lagrangian (Sundaram 1996, chap. 7).

The Karush-Kuhn-Tucker conditions for the channel's decision problem, CHAN-

NEL(k), are:

pjFj(qj) - cj + Aj - Am+ = O, j= 1,...,m;

q•2O, i=-1,...,m;
m

k - qi 0;
i=l

Aiq = 0, i = 1,..m;

m

Am+(k - qi) =0;
i=1

Ai 20, i= 1,...,m+1.

Let (q', A) denote the unique vector that satisfies these conditions.

The Karush-Kuhn-Tucker conditions for the retailer's decision problem, RETAILER(k,w),

are:

pjFj(qj) - wj + y - Ym+ = 0, = 1, . . ., m;

qi>O 0, i=l,...,m;

m

k- qi > 0;
i=l

7iQ =O, i= 1,...,m;

m

Ym+i(k - qi) = 0;
i= 1

TYi 0, i = 1,...,m + l.

Let (qr (w), y) denote the unique vector that satisfies these conditions.
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Let M = {1,...,m} and Z d{i E M I q = 0}. Therefore, M \ Z is the

set of items ordered by the system when solving its decision problem. Similarly, let

Zr(w) def i E M I qr(w) = 0}, so that M \ Zr(w) is the set of items ordered by the

retailer when solving its decision problem. Because of the uniqueness of the channel

optimal solution, a wholesale price vector (wl,..., win) will coordinate the retailer's

portfolio decision (i.e., qr(w) = qS) if and only if Zr(w) = Z and q[(w) = qj for every

i Z.
We claim that qr(w) = q8 if and only if conditions (4.6)-(4.8) hold:

a E [0, Am+1], (4.6)

def
wj-c) = i - ci = , Vi,j Z, (4.7)

wt Ž Pt - Am+l + a, Vt E Z. (4.8)

Suppose qjr(w) = q', for all i. Eq. (4.6) follows because

0 <y 7m+1 Am•,

which implies that there exists an a E [0, Am+1] such that

0 < Am+l - a = •mn+l.

Necessity for condition (4.7) follows because -cj + Aj - Am+i = -w + 'yj - 7m+1

and yj = Aj = 0, when j V Z, implying

cj + Am+1 = Wj + 7m+l Vj V Z.

Necessity for condition (4.8) follows because, when t E Z, pt - wt + y - -m+l = 0

and -yt _ 0 hold, implying

Am+l - a = ym+l > Pt - wt Vt E Z.
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Now we show sufficiency by showing that conditions (4.6),(4.7),(4.8) imply Zr(w) =

Z and qj (w) = q' for every i ý Zr(w). Using conditions (4.7) and (4.8) we rewrite

the KKT conditions for the retailer's decision problem, RETAILER(k,w):

pjFj(qj) - cj + -yj - ('Ym+l + a) = 0, Vj ý Z; (4.9)

PtFt(qt) - (Pt - Am+1 + a + St) + -Yt - 'ym+l = 0, Vt E Z; (4.10)

St = wt- (Pt - Am+1 +a) 0O, Vt E Z;

qŽiO0, i= 1,. ,m;
m

k - qj >_ 0;
i=1

yq = 0, i= 1,...,m;

m

^/m+1 (k - E qj) = 0;

i=1

Yi > 0, i = 1,..., m +1.

When •Ym+1 = Am+ - a, "yi = 0 for all i ý Z, and yj = 6i for all i E Z, we have that

(q8 , y) satisfies the KKT conditions for RETAILER(k,w). Note that (qS,-y) satisfies

(4.9) because (q', A) satisfies the KKT conditions for CHANNEL(k) and (4.10) is

satisfied because qt = 0. Therefore, q% (w) = q- for every i E M. lO

4.4.2 Proof: m-suppliers/1-retailer, equilibrium setting

Proof of Theorem 4.2. It can be shown that each supplier's payoff function is

continuous and quasi-concave with respect to their own wholesale price; continuity

and quasi-concavity follow from our results in Chapter 6 (Lemma 6.1 and the proof

of Theorem 6.7, respectively). Furthermore, the game is symmetric and the strategy

space (the hypercube of possible wholesale price vectors) is compact and convex.

Therefore, by Theorem 2 in Cachon and Netessine (2004), there exists at least one

symmetric pure strategy Nash equilibrium (i.e., wholesale price vector), in which all
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the suppliers charge the same wholesale price w.

Due to the symmetry in the problem, Z = 0 (i.e., all the products are included in

the channel's optimal portfolio). Furthermore, the capacity constraint is tight for the

channel, thus the channel's optimal order vector is (k/m,..., k/m). The symmetric

equilibrium (identical wholesale prices across products) results in the retailer order

vector (k/m, ... , k/m) because the retailer's capacity constraint is also tight under

the condition k < mr- qe. Thus the wholesale price vector (w,..., w) is in the set

W(k) by definition. O



CHAPTER 5
Coordinating a constrained channel:

'make-to-order' retailer

In the supply chain literature, the 'push-pull boundary' in a supply chain refers

to the point in the supply chain at which the supply chain's mode of operation

switches from 'building to forecast' to 'reacting to realized demand' (Chopra and Lar-

iviere 2005). This is also called The 'Fulcrum Point' by Martin Christopher and the

'BTF/BTO boundary' (build to forecast/build to order). In Chapter 2, we considered

a 1-supplier/1-retailer model and analyzed the set of wholesale price contracts that

coordinate that channel in both a negotiation and equilibrium setting when the re-

tailer has a capacity constraint. The 'push-pull boundary' for that channel is between

the retailer and the retailer's customers because the retailer makes the order quantity

decision based, in part, on the cumulative distribution function for demand (i.e., the

'forecast'). And, therefore, as pointed out in Cachon (2004), the retailer takes on

the inventory risk for the channel (i.e., the retailer 'makes to stock/forecast') under

a wholesale price contract.

In this chapter, we consider a 1-supplier/1-retailer model similar to the model in

Section 2.1 except that we move the 'push-pull boundary' in between the supplier

and retailer, so that the retailer makes an order quantity decision that depends only

on realized demand and not on the 'forecast', and rather the supplier becomes a

'newsvendor', making a decision based, in part, on the cumulative distribution func-

tion for demand (i.e., the 'forecast'). This means that the retailer is running a 'lean'
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supply chain with no safety stock. Furthermore, we remove the capacity constraint

at the retailer and instead place it at the supplier. Cachon (2004) considers a similar

model but without a capacity constraint in order to analyze the allocation of inventory

risk using different contracts. He notes that the supplier takes on the inventory risk

for the channel under a wholesale price contract (because the supplier now 'makes to

stock/forecast', for example as a 'drop-shipper', while the retailer 'makes to order').

Cachon and Lariviere (2001) also considers a similar model without a capacity con-

straint for inducing credible forecast sharing. Our purpose in considering this model

differs. In particular, with a capacity constraint at the newsvendor (i.e., the supplier),

we analyze the set of wholesale price contracts that coordinate that channel in both

a negotiation and equilibrium setting, in the spirit of Chapter 2, comparing these

coordinating contracts with the contracts that coordinate the channel described in

Section 2.1.

Chapter Outline

In Section 5.1, we provide a stylized 1-supplier/1-retailer model (with the push-

pull boundary in between the supplier and retailer) and formally define what it means

for a wholesale price contract to coordinate the supplier's decision for a supply chan-

nel. Then, in Section 5.2, we describe the set of coordinating 'pull' wholesale price

contracts for this model and analyze the size of this set in Section 5.2.1. In Section 5.3,

we consider a 1-supplier/l-retailer equilibrium model and prove that a unique equilib-

rium exists. Then, we provide necessary and sufficient conditions for the equilibrium

wholesale price contract to coordinate the supplier's decision (i.e., for the equilibrium

wholesale price contract to be included in the set of coordinating contracts). In Sec-

tion 5.4, we analyze the set of wholesale price contracts that are Pareto-dominated

(i.e., for which a different contract exists that enables one firm to better off without

making the other firms worse off). The Pareto-dominated contracts are important

because they should be avoided in both a negotiation setting as well as an equilib-

rium setting. Recognizing that in an equilibrium setting the equilibrium wholesale
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price contract need not be a coordinating contract (due to the conditions we state

in Section 5.3), in Section 5.5, we characterize the worst case efficiency loss in an

equilibrium setting. Then, in Section 5.6, relating our results from Sections 2.2 and

5.2, we describe the wholesale price contracts that coordinate a supply channel re-

gardless of whether it is operating in push-mode or pull-mode. In order to maintain

the flow of presentation, the proofs for all our results in this chapter are contained in

Section 5.7.

U 5.1 Model

A risk-neutral supplier v faces a newsvendor problem when deciding on how much

inventory of a single good to prepare and make readily available upon request from

a retailer: there is a single sales season, a wholesale price w that a retailer is willing

to pay for 'at-once' orders i , the supplier decides on a quantity q to prepare well in

advance of the season, the entire amount q is ready before the start of the season,

and finally demand is realized, resulting in sales for the retailer that are immediately

satisfied by the supplier (e.g., by drop-shipping) if the supplier has enough inventory

in stock. The supplier has no opportunity to prepare more goods during the sales

season. Without loss of generality, we assume that units remaining at the end of the

season have no salvage value and that there is no cost for stocking out.

The model's parameters are summarized in Figure 5-1 with the arrows denoting

the direction of product flow. Similar to our model in Section 2.1, the supplier has a

fixed marginal cost of c per unit supplied and the retailer pays the supplier a wholesale

price w > c per unit ordered. The retailer's price p per unit to the market is fixed,

and we assume that p > w. For that price, the demand D is random with probability

density function (p.d.f.) f and cumulative distribution function (c.d.f.) F.

We assume that the supplier's capacity is constrained by some k > 0; for example,

the supplier can only hold k units of inventory, or accept a shipment not larger than

'Following the convention in Cachon (2004), we sometimes refer to wholesale price contracts for 'at-once'
orders (the main contracts we consider in this chapter) as pull contracts and wholesale price contracts for
'prebook' orders (i.e., the contracts in Chapter 2) as push contracts.
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k. For a different interpretation, k could represent a constraint on the capacity of the

channel or a budget constraint.

Figure 5-1 "single capacity constrained supplier & single build-to-order retailer" model.

v r

qk

Note. A capacity-constrained supplier v offers a product, with marginal cost c (per unit), to a retailer r.
The retailer faces uncertain demand D downstream with c.d.f. F when the retail price for the product is
fixed at p (per unit). However, the retailer orders (or 'pulls') from the supplier only after demand is realized
and pays the supplier the wholesale price w per unit ordered. The supplier must decide on a quantity q to
prepare in anticipation of the retailer's order.

We assume Assumption 2.1 (from Section 2.1) holds, so that, as a consequence,

F(O) = 1 and F is continuously differentiable, strictly decreasing, and invertible on

(0,1), where 1 > k.

5.1.1 Supplier's problem

def
Faced with the retailer's uncertain sales S(q) = min{q, D} (and hence the retailer's

uncertain order), when preparing q units, and and an agreed upon wholesale price w,

the supplier decides on a quantity to prepare for the retailer's future order S(q) so

as to maximize expected profit rv(q) = wE[S(q)] - cq while satisfying the capacity

constraint k. Namely, it solves the following convex program with linear constraints

in the decision variable, q:

SUPPLIER(k,w)

maximize wE[S(q)] - cq (5.1)

subject to k-q>0

q> 0.

Because of our assumptions on the c.d.f. F, it can be shown that SUPPLIER(k,w)

has a unique solution, which we denote by qv(w).
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5.1.2 Channel's problem

def
As in Section 2.1.2, we denote the channel's expected profit by wr,(q) = E[pS(q) - cq]

and observe that under capacity constraint k, the optimal order quantity qS for the

system/channel is the (unique) solution to convex program (2.2), CHANNEL(k), de-

scribed in Section 2.1.2. Continuing with our convention from that section, we denote

the unique solution, arg maxo<-q<oo ir(q), for the unconstrained channel problem by

q*.

5.1.3 Definition: Coordinating the supplier's action

A wholesale price contract w coordinates the supplier's quantity preparation decision

for the supply channel when it causes the supplier to prepare the channel-optimal

amount, i.e., qv(w) = qS. In Section 5.2 we are interested in the following questions:

For a fixed capacity k, what is the set of 'pull' wholesale prices Wpn1 (k) for which

q'(w) = q'? What does this set W~pu,(k) resemble geometrically?

If there is no capacity constraint (or equivalently if k is very large), 'double

marginalization' results in the supplier not preparing enough (i.e., qv(w) < qS) under

any wholesale price contract, w < p. In the next section, we will show that when

the capacity constraint k is small relative to demand, there exist a set of wholesale

price contracts w < p that can coordinate the supplier's preparation quantity, i.e.,

qv(w) = q(.

M 5.2 Set of coordinating wholesale prices

Our first result describes the set of coordinating 'pull' wholesale price contracts

under a capacity constraint.

THEOREM 5.1. In the 1-supplier/i-retailer configuration described in Section 5.1

where the supplier faces a newsvendor problem and has a capacity constraint k, any

wholesale price

wE Wplsl(k) l[c/P(min{q*, k}),p]
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will coordinate the supplier's decision for the supply channel, i.e., qv(w) = qS. Fur-

thermore, if qv(w) = qS and c < w < p, then w E Wpull(k).

Proof. See Section 5.7.1.

Notice that if the capacity constraint k is larger than or equal to the unconstrained

channel's optimal order quantity, q*, then c/F(min{q*, k}) = c/F(q*) = p, reducing

to the 'classic' result in the supply contracts literature stating that wholesale price

contracts can not coordinate a channel. However, this is true only when the capacity

constraint is not binding for the channel (i.e., q* < k). When the capacity constraint

k is binding for the channel (i.e., q* > k), then any wholesale price w E [c/F(k),p]

will coordinate the retailer's action and only wholesale prices in the range [c/F(k), p]

can coordinate the retailer's action.

Again, many factors ultimately influence the actual wholesale price (selected from

the set [c, p]) that the retailer pays the supplier. In the unconstrained setting, regard-

less of these factors, coordination is not possible with a linear 'pull' wholesale price

contract (because the retailer presumably would not agree to pay the retail price to

the supplier, making zero profit). However, when the capacity constraint is binding

for the channel, coordination becomes possible (because the set of coordinating whole-

sale price contracts becomes [c/F(k),p] (rather than {p}) and ultimately depends on

these other factors. Theorem 5.2 in Section 5.3 considers a equilibrium setting where

the supplier takes on all the inventory risk (akin to the 'Stackelberg game' in Cachon

and Lariviere (2001) and 'pull mode' in Cachon (2004)), and provides additional

conditions that must be met so that the 'equilibrium' wholesale price contract is a

member of the set of coordinating 'pull' wholesale price contracts, [c/F(k),p].

5.2.1 Size of W npu(k).

The geometry of the set of wholesale prices W,un(k) that coordinate the retailer's

decision for the supply channel is depicted in Figure 5-2.

Note that the size of Wp,11 (k) is increasing as k decreases. Corollary 5.1 formalizes

this notion and follows directly from Theorem 5.1 because F(k) is decreasing in k.
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Figure 5-2 The set of wholesale prices that coordinates the actions of a single supplier when building
to stock for a single retailer that 'pulls' from that supplier.

clF(k) c/F(q)

C p

Note. Note that c/F(q*) = p and Wpunl(k) = [c/P(k), p] (the interval denoted in bold) when k < q*.

COROLLARY 5.1. If 0 < kl _ k2, then Wpuit(k 2) Wpull(kl) C [c,p].

Thus, the more constrained the channel is with respect to the channel optimal order

quantity, q*, the larger the set of coordinating 'pull' wholesale price contracts Wpu,(k).

Consider two supply channels selling the same good with the same retail price p

and supplier cost c. Assume that the probability of excess demand in the first channel

is larger, in the sense F1 (k) > F2 (k). Let Wpu11(k) denote the set of coordinating 'pull'

wholesale price contracts for channel i when the channel is constrained by k units. The

channel with the higher probability of excess demand has a larger set of coordinating

wholesale prices. Corollary 5.2 to Theorem 5.1 makes this precise.

COROLLARY 5.2. Given two demand distributions F1 and F2 , if P•(k) _ F2(k) >

0, then

Proof. See Section 5.7.2.

* 5.3 Equilibrium setting.

The equilibrium setting we analyze is a two-stage (Stackelberg) game. In the first

stage, the retailer (the 'leader') offers a wholesale price w to the supplier. In the

second stage, the supplier (the 'follower') chooses an optimal response q, given the

wholesale price w. The supplier produces q units before the sales season starts and

has no replenishment opportunity. Demand occurs and then the supplier delivers the

units to the retailer or the end customer (e.g., drop-shipping) and collects payment for
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those units from the retailer. Both the supplier and retailer aim to maximize their own

profit. The retailer's payoff function is rr,(w; q) = E[(p - w)S(q)] and the supplier's

payoff function is 7r(q; w) = E[wS(q) -cq]. Cachon and Lariviere (2001) and Cachon

(2004) analyze this Stackelberg game, for an unconstrained channel with one supplier

and one retailer. Cachon (2004) finds that when F has the IGFR property, the game

results in a unique outcome (qe, we) defined implicitly in terms of the equations

pF(qe) - c (1 + (E[S(qe)]/I(qe)). (f(qe)/p(qe))) = 0, (5.2)

weF(qe) - c = 0. (5.3)

Furthermore, they show that the outcome is not channel optimal. In this section,

and in Section 5.5, we explore the efficiency of the outcome when the channel has a

capacity constraint (i.e., q < k).

Theorem 5.2 provides necessary and sufficient conditions on the channel's capacity

constraint k for the Stackelberg game to result in a channel-optimal equilibrium.

THEOREM 5.2. Assume F has the IGFR property. Consider the above described

game, when the channel capacity is k units. This game has a unique equilibrium,

given by qeq(k) = min{k, qe} and weq (k) = min{c/F(k) , we}, where qe and we are de-

fined by equations (5.2) and (5.3), respectively. This equilibrium is channel optimal

if and only if

k < qe. (5.4)

Under this condition, we have qeq = k and weq = c/F(k).

Proof. See Section 5.7.3.

The function pF(y) - c (1 + (E[S(y)]/F(y)) . (f(y)/F.(y))) represents the re-

tailer's marginal profit on the yth unit, when y < k. When F has the IGFR property,

the retailer's marginal profit is decreasing in y, while the marginal profit is nonneg-

ative. This fact and equation (5.2) imply that inequality (5.4) is equivalent to the

inequality pF(k) - c (1 + (E[S(k)]/F(k)) - (f(k)/P(k))) > 0, which can be inter-

preted as a statement that the retailer's marginal profit (when relaxing the capacity
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constraint) on the kth unit is greater than zero. Therefore, inequality (5.4) suggests

that when the capacity constraint is binding for the retailer's problem (the 'leader'

in the Stackelberg game), then the outcome of the game is channel optimal and

vice-versa.

If the channel capacity k is 'large enough', so that inequality (5.4) is not satis-

fied, how inefficient is the channel? In Section 5.5, we provide a distribution-free

'measuring stick' for the efficiency loss in channels with a capacity constraint.

* 5.4 When can both parties be better off?

The set of coordinating 'pull' wholesale price contracts Wpll(k) introduced in

Theorem 5.1 has many merits in a negotiation setting. For example, such contracts

are Pareto optimal. In contrast, Theorem 5.3 examines the set of wholesale price

contracts Dpuln(k) that have little merit in that they are Pareto-dominated by some

other wholesale price contract in [c, p]. A contract is Pareto-dominated if there exists

an alternative linear wholesale price contract that makes one party better off with-

out making any other party worse off. Having a complete picture of the contracts

that are channel-optimal and the contracts that are Pareto-dominated is helpful in a

negotiation setting.

THEOREM 5.3. Assume F has the IGFR property and that the quantity qe and

wholesale price We are defined implicitly in terms of equations (5.2) and (5.3). If

k < q*, then the set of Pareto-dominated 'pull' wholesale price contracts DPu11(k) is

D•pu(k) dýef [c, min{we, c/F(k)}) = [c, c/F(min{qe, k})).

Proof. See Section 5.7.4.

Note that Wpun(k) and Dpunl(k) are disjoint. Corollary 5.3 to Theorem 5.3 for-

malizes the idea that when k is 'small enough', Wp,,(k) and Dpn(k) partition the

set [c, p]. Figure 5-3 illustrates these ideas when demand has a Gamma distribution.
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Figure 5-3 An example illustrating Wpull(k) and Dpull(k).

Two sets of wholesale prices as a function of capacity: W p(k) and 10 •m (k)
pul ul

10

0 2 4 6 8
capacity, k

Note. We use the same parameters as in Figure 3-1, resulting in q* ; 10.112, the difference being that the
push-pull boundary is now between the supplier and retailer so that qe ; 5.552, and w ;e 5.753. The set
of coordinating wholesale price contracts Wpun(k) lies above the solid curve. The set of Pareto-dominated
wholesale price contracts Dpun(k) lies under both the solid and dashed curves. The set of contracts that lie
between the solid and dashed curves are neither in Wpull (k) nor in Dp,,n(k). Such contracts do not coordinate
the channel, but nevertheless, are not Pareto dominated by coordinating wholesale contracts. See Figure 2-3
to compare with the set of 'push' contracts W(k) and D(k) for the same problem parameters.

COROLLARY 5.3. Assume F has the IGFR property. If k < qe, then

W,,,u(k) U Dpu(k) = [c, p],
W,ul,(k) n Dul(k) = 0.

(5.5)

(5.6)

Corollary 5.3 is especially interesting: it asserts that when capacity is small enough

there are only two types of contracts: 'good contracts', Wpull(k), and 'bad contracts',

pDnl(k). Furthermore, both parties will always have a reason to avoid the 'bad

contracts' because they are Pareto-dominated by some channel-optimal contract in

the set Vpull(k).
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* 5.5 Efficiency Loss.

When the outcome of the Stackelberg game we described in Section 5.3 results

in a 'pull' wholesale price contract that is not channel optimal, how much does the

channel 'lose' as a result? What is the 'price' paid for the 'gaming' between the

supplier and retailer? To quantify the answer we analyze the worst-case efficiency

using the same definition of efficiency introduced in Section 2.5.

In particular, for a channel with a capacity constraint k and probability F(k) of

excess demand, we define the parameter def max{F(),c/p) The parameter 3 depends

on the probability F(k) of excess demand and takes values from the set [1,p/c]. It

quantifies how constrained the channel is with respect to the channel optimal order

quantity q* because def max )c/p max{(k)F(q) . In the Stackelberg game with

a capacity constraint k and parameter 3, the efficiency, Eff(k, /), is defined according

to equation (5.7) below.

Channel profit under 'gaming' E[pS(qeq(k)) - cqeq(k)]
Eff(k, ) = inf = nf

FEF(k,o) Optimal channel profit FEF(k,j3) E[pS(qs(k)) - cqs(k)]
(5.7)

The set F(k, /) represents the set of probability distributions that satisfy Assump-

tion 2.1, have the IGFR property, and such that the probability F(k) of excess demand

satisfies ax{=(k),c/p} = 3. Note that Eff(k, 3) is a distribution-free method of quanti-c/p

fying the worst-case efficiency. When Eff(k, /) is low (much smaller than one), there

is significant efficiency loss due to 'gaming'.

defTHEOREM 5.4. Define m = (p - c)/p (the channel's gross profit margin). Also

when / E [1, 1/(1 - m)], define the function

def 1 1l+x l/ P ( 2xx(m, p) arg max / - 2x - 1. (5.8)
(-1l)<x<m/(1-m) x 0 1 - x 1 - x
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For the Stackelberg game described in Section 5.3, we have

1 1+x(m, f) 1/x(m,p) l 21 m - -)

Eff(k,3) = x , + (m, (m) " - I(m, 1,

(5.9)

Proof. See Section 5.7.5.

Note that Eff(k, 3) is decreasing in the channel's gross profit margin m and in-

creasing in 0. When 3 = 1, the channel is not constrained and Eff(k, 3) equals

(e - 1)-1 which matches the result in Perakis and Roels (2006). On the other hand,

when the channel is most constrained (i.e., k - 0, F(k) e 1, and /3 z p/c), then

Eff(k, /) simplifies to 1. In other words there is no efficiency loss because the equi-

librium outcome involves the retailer ordering exactly k. Our result is thus a more

general version of the 'two-stage pull-mode PoA' result in Perakis and Roels (2006)

in that we account for a capacity constraint. Also our proof technique differs from

and complements Perakis and Roels (2006), in that we indirectly optimize over the

space of probability distributions by optimizing over the space of generalized failure

rates.

Figure 5-4 provides an example of the Eff(k, /) when the channel's gross profit

margin is 35 percent. Figure 5-4 illustrates that for channels with smaller capacity

(i.e., higher /), the worst-case efficiency (as measured by Eff(k, /3)) is larger. Compar-

ing the (push-mode) supply chain example in Figure 2-4 with the (pull-mode) supply

chain example in Figure 5-4, we see that the supply chain's worst case efficiency in

pull-mode is better than in push-mode.

U 5.6 Coordinating wholesale prices for both push-

mode and pull-mode

Consider both the 1-supplier/1-retailer configuration described in Section 2.1 (i.e.,

push-mode) where the retailer faces a newsvendor problem and has a capacity con-

straint kr and the 1-supplier/1-retailer configuration described in Section 5.1 (i.e.,
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Figure 5-4 An example

1.0

0.8

illustrating Eff(k,3 ) when m = 0.35.

1.0 1.1 1.2 1.3 1.4 1.5

Note. We fix the margin (p - c)/p =

beta

0.35 and see how Eff(k, Pl) changes as a function of 3.

pull-mode) where the supplier faces a newsvendor problem and has a capacity con-

straint k,. From observing Figure 2-2 and Figure 5-2, we see that when the capacities

kr, k, are 'small enough' (relative to demand) there exist wholesale price contracts

that coordinate a supply chain regardless of whether it is operating in push-mode or

pull-mode.

Theorem 5.5, below, formalizes how small the capacities must be relative to de-

mand so that there exist such wholesale price contracts. Furthermore, our theorem

provides the interval of wholesale price contracts that coordinate a supply chain re-

gardless of whether it is operating in push-mode or pull-mode. In the statement of the

theorem, we use the parameters /push d max{F(kr),!(q*)} and /pull def max_ F ),(q*)}

As pointed out in Sections 2.5 and 5.5, respectively, those parameters express how

constrained the channel is with respect to the channel optimal order quantity q* when

it's operating in push-mode and pull-mode, respectively.
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THEOREM 5.5. Any wholesale price

wE Wboth(kr, kv) de {w I c/F(min{q*, k,}) < w < pF(min{q*, kr})}

will coordinate the supply chain regardless of whether the supply chain is operating in

push-mode or pull-mode. Furthermore, if a wholesale price w coordinates the supply

chain in both push-mode and pull-mode and c < w < p, then w E Wboth(kr, kv). The

set Wboth(kr, k,) is not empty if and only if Ipush f puu Ž P/c.

Proof. See Section 5.7.6.

Notice that if the capacities kr, k, are larger than or equal to the unconstrained

channel's optimal order quantity, q*, then c/P(min{q*, k,}) = c/F(q*) = p and

pF(min{q*, kr}) = pF(q*) = c, so that no wholesale price coordinates both the

channel operating in pull-mode and the channel operating in push-mode. However,

even when the capacity constraints kr, k, are binding for the channel (i.e., q* > kr, k,

or, equivalently, /push, /pull > 1 ), we do not have a guarantee that there exist

wholesale prices that coordinate both the channel operating in push-mode and the

channel operating pull-mode. Rather, the channel needs to be constrained 'enough'

(i.e., /push' /pull Ž p/c) for a wholesale price w E Wboth(kr, k,) to coordinate the

supply chain regardless of it's mode of operation and only wholesale prices in the set

Wboth(kr, k,) can coordinate the supply chain regardless of it's mode of operation.

As pointed out already, many factors ultimately influence the actual wholesale

price (selected from the set [c, p]) that the retailer pays the supplier. In the uncon-

strained setting, regardless of these factors, coordinating both a supply chain operat-

ing in pull-mode and a supply chain operating in push-mode is not possible with any

wholesale price contract. However, when the capacity constraint is small enough for

the channel, coordination becomes possible and ultimately depends on these other

factors.
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5.6.1 Size of Wboth(kr, k,).

The geometry of the set of wholesale prices Wboth(kr, k,) that coordinate the retailer's

decision for the supply channel (operating in push-mode) and the supplier's decision

for the supply channel (operating in pull-mode) is depicted in Figure 5-5.

Figure 5-5 The set of wholesale prices that coordinates a 1-supplier/l-retailer configuration regardless
of whether it is operating in push-mode or pull-mode.

c/F(k 1 pF kr)
I II I
C p

Note. Note that Wboth(k) = [c/F(kv),pf(kr)] (the interval denoted in bold) when f3 push' 'pull Ž> p/c and
kI, kr _< q*.

Note that the size of Wboth(kr, k,) is increasing as k, or k, decreases. Corol-

lary 5.4 formalizes this notion and follows directly from Theorem 5.5 because F(k) is

decreasing in k.

COROLLARY 5.4. If 0< kl < k2 , and 0 < ki < k2 then Wboth(k2, k2) Wboth(k,ki v) C

[c, P].

Thus, the more constrained the channel is with respect to the channel optimal order

quantity, q*, the larger the set of coordinating wholesale price contracts Wboth (kr, kv)

that coordinate a channel regardless of its mode of operation (i.e., push or pull).

In fact, we can state a stronger result, i.e., Corollary 5.5, below. Consider two

channels, 1 and 2, (each with one supplier and one retailer) that sell a single good.

Channel i sells its good at retail price pi per unit, facing uncertain demand with c.d.f.

Fi, with the supplier facing a cost ci per unit, so that q* = .E- (cj/pi) is the optimal

quantity for the channel to prepare before the sales season begins. When channel i

operates in push-mode, suppose the retailer faces a capacity constraint k', and when

channel i operates in pull-mode, suppose the supplier faces a capacity constraint k'.

Recall that we can measure how constrained channel i is when operating in push-mode

by considering the parameter usdef max{F(k),Fi(qf)} and how constrained channel i
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is when operating in pull-mode by considering the parameter pu def max{F(k ),i(q)}

Let Woth denote the set of coordinating wholesale price contracts for channel i,

regardless of its mode of operation (i.e., WLoth = Wboth(k~, k)).

COROLLARY 5.5. The inequalities c2 - p2ush • C1 f3 h and 2pull/P2 < 3 1pull/P 1

hold, if and only if, WMoth C Wloth [c, p].

Proof. See Section 5.7.7.

We illustrate Corollary 5.5, by applying it to answer the question: how does the set

Wboth change when 'demand increases'? More formally, consider two supply channels

selling the same good with the same retail price p and supplier cost c. Assume that the

probability of excess demand in the first channel is larger, in the sense F1 (k) > F2(k)

when k = kr, kS. Let Wioth(kr, k,) denote the set of coordinating wholesale price

contracts for channel i (regardless of the mode of operation). Applying Corollary 5.5,

we have that the channel with the higher probability of excess demand has a larger

set of coordinating wholesale prices. Corollary 5.6 makes this precise.

COROLLARY 5.6. Given two demand distributions F1 and F2, if F1(k) > F2(k) >

0 when k = kr, kI, then

Woth(kr, kv) C W,,ot(krE, k,) [c, p].

Observe that Corollary 5.6 follows from Corollary 5.5 because the inequality F1(k) >

F2(k) > 0 when k = kr, k, implies that the inequalities push < pu and 2n < •

hold.

U 5.7 Proofs

In order to not disrupt the flow of presentation, the proofs for our results in this

chapter are contained here.
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5.7.1 Proof: 1-supplier/I-retailer, Set of wholesale prices

Wpul(k)
Proof of Theorem 5.1. Observe that the objective function for the channel's prob-

lem (see Section 5.1.2) is the same as in our model in Chapter 2 (see Section 2.1.2).

Also, we can express the supplier's objective function as

wE[S(q)] - cq = E - (pE[S(q)] -- c
w w

Therefore, from Theorem 2.1 in Chapter 2, we have that q8 is a solution to the

supplier's problem when offered wholesale price w E [c,p] (i.e., qV'(w) = qs) if and

only if pc/w E W(k) de [c, pF(min{q*,k})]. But pc/w E [c, pF(min{q*, k})] is

equivalent to w E [c/F(min{q*, k}),p]. O

5.7.2 Proof: Impact of size of Market on size of Wpuli(k)

Proof of Corollary 5.2. Let q* = FJ-l(c/p) be the order quantity (for an uncon-

strained channel) under the demand distribution Fi.

If k < q*, then c/p < F2 (k) 5 FP(k), which implies that k < q*. Thus, W~,pn(k) =

[c/Fi(k),p] for i E 1,2. Since F2 (k) • F1(k), we can conclude that Wp2uu(k) C

Pun(k) 9 [c, p].
Similarly, if q* < k, then W2vu,(k) = {c}. Thus, WIV u1 (k) C Wu1 ll(k). O

5.7.3 Proof: When is the equilibrium of the Stackelberg

game channel optimal?

Proof of Theorem 5.2. The supplier's profit function 7r,(q; w) under a wholesale

price contract w is defined as 7r,(q; w) d E[wS(q) - cq]. Since rr,(q; w) is concave,

in q, we can use the first order conditions and conclude that for a wholesale price

w E [c,p], the constrained supplier's order quantity q'(w) is given by

q'(w) = min{k, F-'(c/w)}. (5.10)
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The retailer's profit function Wr (w; q) under a wholesale price contract w is defined as

1rr(w; ) def E[(p - w)S(q)]. Since qv(w) is the supplier's best response in the second

stage to a wholesale price w by the retailer in the first stage, equation (5.10) allows

us to express the retailer's objective function as follows:

rr(W) E[(p - c/F(qV(w))) S(qv(w))], if c < w < min{c/F(k),p}; (5.11)
E[(p - w) S(k)], if min{c/F(k),p} < w < p.

For w < min{c/F(k), p}, note that

,prr(w) E[S(q"(w))] f-(q'(w)) o a qv(w )  5
Ow (q(w))- c 1 + F(qv(w)) F(qv(w)) Ow

Cachon (2004) (Lemma 1) shows that when F has the IGFR property, the function

(E[S(y)]/P(y)) . (f(y)/F(y)) is increasing in y, for y > 0. Therefore, the function

pF(y) - c (1+ (E[S(y)]/F(y)) . (f(y)/F(y))) is strictly decreasing in y when it is

nonnegative and equals zero at qe (see equation (5.2)). We can deduce that

pF(qv(w)) - c (1 + (E[S(q'(w))]/F(qv(w))) - (f(qv(w))/F(qv(w)))) > 0 (5.13)

for w < we (because qv(w) < qe). Furthermore, v(w > 0 for w < c/F(k). There-

fore, we can conclude that (w) > 0 for w < min{c/F(k), we}

Either the inequality c/F(k) < we holds or the inequality we < c/F(k) holds.

First assume the inequality we < c/F(k) holds. We know r(w > 0 for w <

min{c/F(k), we} = We. Furthermore, the function

pF(y) - c (1 + (E[S(y)]/P(y)) . (f(y)/P(y)))

is negative when y > qe, so that, we have o()< 0 for We < w < min{c/P(k),p}.

Equation (5.11) implies that rx,(w) is decreasing linearly between min{c/F(k),p} and

p. Since rr(W) is continuous over [c,p], we have weq(k) = we and equations (5.10) and

(5.3) imply qeq(k) = qe. The inequality we < c/F(k) is equivalent to the inequality
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qe < k (see equation (5.3)). Therefore, when qe < k holds, the inequality weq(k) =

we < min{c/F(k),p} = c/F(min{q*, k}) holds and we can deduce that weq(k) '

Wpun(k) (using Theorem 5.1).

Next assume c/F(k) 5 we holds. We know 7r(w) > 0 for w < min{c/F(k), We} =

c/F(k). And since 7r,(w) is decreasing linearly between min{c/F(k), p} and p, equa-

tion (5.11) implies weq(k) = c/F(k) and equation (5.10) implies qeq(k) = k. The

inequality c/lF(k) < we is equivalent to the inequality k < qe (see equation (5.3)).

Therefore, when k < qe holds, the equality weq(k) = c/F(k) = min{c/F(k),p} =

c/F(min{q*, k}) holds and we can deduce that weq(k) E Wpull(k) (again using Theo-

rem 5.1). O

5.7.4 Proof: The set of Pareto-dominated contracts Dpn(k)

as a function of capacity

Proof of Theorem 5.3. Equation (5.10) allows us to express the supplier's objec-

tive function as follows:

S(clF(qv(w)))E[S(qv(w))] - cqv(w), if c < w < clF(k);

wE[S(k)] - ck, if c/F(k) • w < p.

Note that 7rr(w) is strictly increasing in w, when w E (c, c/F(k)) because

arw = c (E[S(qv(w))]/F(qv(w))) . (f(qv(w))/F(qv(w))) q(w) > 0.
aw Ow

Furthermore, when w E (c/F(k), p), note that 7r,(w) is strictly increasing in w. From

the proof of Theorem 5.2, we know that the retailer's profit (rr(w) is also strictly

increasing for w < min{we, c/F(k)}. Therefore, any wholesale price contract in the

set [c, min{we, c/F(k)}) is Pareto-dominated by min{we, c/F(k)}.

Since the retailer's profit is decreasing as the wholesale price w increases from

min{we, c/F(k)} (see the proof of Theorem 5.2) but the supplier's profit is increasing

as the wholesale price increases, we can conclude that any wholesale price contract
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in the set [min(we, c/F(k)},p] is not Pareto-dominated. Thus, the set of Pareto-

dominated wholesale price contracts in [c, p] is exactly D•),,(k) = [c, min {we, c/F(k)}).

5.7.5 Proof: Efficiency loss for a two-stage pull channel

with capacity constraint

LEMMA 5.1. Assume F has the IGFR property and that the quantity qe is defined

implicitly in terms of equation (5.2). If qe < k < qS, then

p(O (x) dx) - ck

p (foie F(x) d) - cqe
1 + g(qe)

g(qe)(1 - g(qe))
(k 1-9g(qe)

qeJ

2g(qe)
1 - g(qe)

1 k
1.

g(qe) qe

(5.15)

Proof of Lemma 5.1. Recall the generalized failure rate function g(y) for c.d.f. F

is defined as g(y) - y F( y). Since F(y) = e- fo f(t)/P(t)dt = e- fg(t)/tdt, we

have

p (fO P(x) dx) - ck
( qe F(x) dx) - cqe

p (J e-fg(t)/tdt dx) -ck

p (e e- g(t)/tdt dx) - cqe

=1+
p (f ef g(t)/tdt dx) - c(k - qe)

S(f e e- g(ft)/t dtdx) -cqe
(5.16)

For any y E [qe, k], define the profit-gain factor a(y) by

(IV e- fo g(t)/tdt dx) dx) - cqe)
(5.17)

The derivative () is expressed via equation (5.18) below, when y E [qe, k], leading

a(y) df
-- p

-c(y - qe)) / (
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to the following nonnegative upper bound:

(jeS(pe (I g(t)/tdt _ C) /

(yN

qJ
-g(qe)

K

( ( )-g(qe)

K ( y p 
-.g ( q e)

qe

- c) / (P (j e
t - ) ( ( f

- )/ (
F(qe)c) /(pP(qe) c)qe

(1 - m)(1 + g(qe)) -

(5.22)

(5.23)(1 + g(qe)) -

Oa(y)
Oy dx) - cqe ) (5.18)

(5.19)- fo g(t)/tdtdx) -

e- fo g(t)/tdt dx)e 0 g(t)/td

e- foeg(t)lt d

-cqe)

- cqe)

(qee- foqe g(t)/t dt) - cqe) (5.20)

(5.21)

) /(p( 1

,)-g(qe)

e- o g(t)/tdt

P_ (e-f qg(t)/tdt-fy
e g(qe)/tdt

t

- m)(l + g(q4e)) - c) qe

1) / ((1 + g(qe)) - 1) qe
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Therefore,

p(JO' F(x) dx) - ck

p(foqe P(x) dx) - cqe

(1 + g(qe)) - 1) /(g(qe)qe) dy

1 + g(qe)

1 - g(qe)

(k)e
1 + g(qe)

g(qe)(1 - g(qe))

1 + g(qe)
g(qe)(1 - g(qe))

S) 1-g(qe)

k \g(qe)

qe)

qe(l + g(qe))
1 - g(qe)

1 + g(qe)
1- g(qe)

1 + g(qe)
1 - g(qe)

k() 1-g(qe)

k ) 9(qe)

qe

1 k
g(qe)qe
1 k

g(qe) qe

- (k - qe

-1)) /g
k
qe

1 + g(qe)

1 - g(qe)

1 + g(qe)
g(qe)(1 -g(qe))

)) /(g(qe)qe)

(qe)

+ 1)/g(qe).

1
+ +1

g(qe)

-1 - g(qe) + 1 - g(qe) + g(qe) - g(qe)2

g(qe)(1 - g(qe))

1
+ +1

g(qe)

1 +g(qe)
g(qe)(1 - g(qe))

1 + g(qe)
g(qe)(1 - g(qe))

1 + g(qe)
g(qe)(1 - g(qe))

1 + g(qe)
g(qe)(1 - g(qe))

(k 1-g(qe)

qe
k 1-g(qe)

qe

k l-g(qe)

S g(qe)

k 1-~e)
qe

1 k
g(qe) qe

1 k
g(qe) qe

1 k
g(qe) qe

1 k
g(qe) qe

-g(qe)2 - g(qe)
g(qe)(1 - g(qe))

1 + g(qe)
1 - g(qe)

2g(qe) + 1 - g(qe)
1 - g(qe)

2g(qe)
1 - g(qe)

LEMMA 5.2. Under the same assumptions as in Lemma 2.1, when F(k) = 6 and

F(qe) = (1 - m)(1 + g(qe)) we have k - ((1 - m)(1 + g(qe))1/)-l/g(qe) < qe.

Assume qe < k - ((1 - m)(1 + g(qe))/5) -llg(qe) . This leads

= 1 + Oa(y) dy
+ e' ay

1+

=1 +

(i+

Proof of Lemma 5.2.

< 1+ _ ( ) - g(qe)

= ·+ k(l+ g(qe)))
-1 - g(qe)



SECTION 5.7. PROOFS

to a contradiction (inequality (5.24)):

6 = F(k) = e -  g (t)/ e- f qe g (t)/t dt . e - f(t g (t)/tdet  e F(qq) e- qS g(qe)/tdt

= (1 - m)(1 + g(qe)) . (k/qe) - g (qe)

< (1 - m)(1 + g(qe)) . /(/ (k. ((1 - m)(1 + g(qe)) 6)-1/(q)) (q) = . (5.24)

Inequality (5.24) follows from our assumption, qe <k.(6/ ((1 - m)(1 + g(q )))) 1/g ( e) .

Proof of Theorem 5.4. The case where fl = 1 is equivalent to the unconstrained

problem which is addressed in Perakis and Roels (2006). Therefore, fix channel

capacity k and assume 3 > 1, so that q8 = k. When 3 > 1, the probability of

excess demand, which we will denote by 6, is fixed and satisfies 3 = 6p/c. Fix a c.d.f.

F E F(k, 3). The efficiency Eff(F) of F satisfies the following lower bound:

Eff(F) =e- E[pS(qeq) - cqeq]/E[pS(k) - ck]

> E[pS(qe) - cqe]/E[pS(k) - ck]

= (p q (x) dx - cqe) / ( (k (x) dx) - ck)
1 + g(qe)  k ) 1- (q

e 2g(qe) 1 k) -

(g (qe) (1 - g(qe)) ge 1 - g(qe) g(qe) qe

( + g(qe)  +g(qe ) 1 + -l+l/g(qe) 2g(qe) 1
g(qe)( - g(q)) -1 - g(qe) g(qe)

(5.25)

(5.26)

1 + g(qe) 1/g(qe)

13
(5.27)

(1 + g(qe) l(q) + g(qe) 2g(qe)
= g(qe) 1 +9e) 1-g(qe) l+ g(qe) 1 - g(qe)

1 + g (qe) /g(qe) 1 2g(qe)
= g(qe) f 1 - g(qe) 1 - g(qe)

1 1 + x 1/ P f 2x> max 1 + 1
( (0-1)<x<m/(1-m) x 0 1 - x 1 - x

In particular, inequality (5.25) follows because qe < qeq < qS. Inequality (5.26) follows

from Lemma 5.1. The function on the right-hand side of inequality (5.26) is decreasing

171
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as qe decreases and from Lemma 5.2 we know that the equilibrium order quantity qe

satisfies qe > k - ((1 + g(qe))/l) - 1 /g( q e) . Therefore, inequality (5.27) follows when we

substitute in qe = k - ((1 + g(qe))/l)-l/s(qe).

Define the function

def 1 (1 +X 1/x 2x
x(m, 3) = arg max -- - 1 1. (5.28)

(3-1)<x<m/(1-m) X 1 - x 1 - x

It can be verified that the lower bound in inequality (5.27) is attained when the c.d.f.

F is taken equal to H, where the c.d.f. H satisfies

1. H(t) = 1 for te 0, k (1+ 1x(m,) )

2. H(t) = (k/t)x(m , ) -6 for te k ( ) 1/x(m,p) )

(To verify this claim confirm that qe = k +m,) 1/(,), using eq. (5.2), implying

that we can convert the inequalities in eqs. (5.25) and (5.27) into equalities. Fur-

thermore, since the c.d.f. F is taken equal to H, we can convert the inequalities in

eqs. (5.19),(5.20), and (5.22) into equalities. Therefore, inequality (5.26) becomes an

equality.) The c.d.f. H does not satisfy Assumption 2.1, because the corresponding

density is zero for t < k. l+(mp) However, it can be approximated arbitrar-

ily closely by c.d.f.s in the class F(k, ,) (in particular, that satisfy Assumption 2.1),

with an arbitrarily small change in the resulting efficiency. O

5.7.6 Proof: 1-supplier/1-retailer, Set of wholesale prices

Wboth(k, , kv )

Proof of Theorem 5.5. From the definition Wboth(k,, kv) df {w I c/F(min{q*, k,}) <

w < pF(min{q*, kr})}, the set Wboth(kr, k,) is non-empty if and only if the inequality

c/F(min{q*, k,}) < pP(min{q*, kr}) (5.29)
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holds. Inequality (5.29) can be rewritten as c/p < F(min{q*, kr})- F(min{q*, k,}),

or

max{F(kr), F(q*)} max{F(k,), F(q*)}
p/c < = #push " pull (5.30)

because max{F(k), f(q*)} = P(min{q*, k}) for any k. Therefore, inequality (5.29)

is equivalent to the condition /push' /pull 2 p/c. And, we have the set Wboth(kr, k,)

is non-empty if and only if 3 push ' /pull > p/C.

In Theorem 2.1 we defined the set W(k) de [c, pF(min{q*, k})] and in Theorem 5.1

we defined the set Wpu1(k) def [c/F(min{q*, k}),p]. Observe that Wboth(kr, k,) =

W(kr) n Wnp(k,). Therefore, any wholesale price w E Wboth(kr, k,) is also a member

of W(k,) so that from Theorem 2.1 we have that w will coordinate the retailer's order-

ing decision for the supply channel when operating in push-mode. Furthermore, any

wholesale price w E Wboth(kr, kv) is also a member of Wipull(k , ). From Theorem 5.1,

we have that w will coordinate the supplier's decision for the supply channel when

operating in pull-mode.

Suppose now that there is a wholesale price w that coordinates the retailer's

ordering decision for the supply channel (in push-mode) and that coordinates the

supplier's decision for the supply channel (in pull-mode) and that c < w < p holds.

From Theorem 2.1 we have that w E W(kr). From Theorem 5.1, we have that

w E Wpul(k,). Therefore, w E W(kr) n Wpull(k,) = Wboth(kr, k,). EO

5.7.7 Proof: Impact of changing Ipush, /pull

Proof of Corollary 5.5. Since Fi(min{qf, k}) = max{Fi(k), F(qF)} for any k, we

have that

ci/P (min{qj", k,}) = pi - (ci/pi) - 1/ max{Fi(kv), FP(q i)} = pi . (1//fpun)

and

pi F(min{q!, k}) = c -max {F(ký), Fi(q )}/(c /pi) = ci / ushI r r ,q )} (,/, = , push.
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Therefore, the inequalities cl/FI(min{q*, k0}) 5 c2/F 2(min{q*, k2}) and p2F2(min {q, k2}) <

plF1 (min{q, k,'}) hold, if and only if, inequalities OP2ll /P2 • Pull/p1 and c2 " 0push

Cl -Opush hold. I



CHAPTER 6
Multiple suppliers selling to a

newsvendor

Capacity is not free. Rather, distributors and retailers provide a valued service to

their immediate upstream suppliers: sales capacity (i.e., access to downstream de-

mand). So that in many supply channels, suppliers pay their distributor or retailer

(e.g., with 'slotting' fees, 'pay-to-stay' fees, or favorable contractual terms) in order to

obtain that capacity. For example, two large pharmaceutical manufacturers, Pfizer

and Roche Diagnostics, pay distributors, such as Cardinal Health, in order to dis-

tribute their medical supplies to pharmacies, hospitals, and clinics. And, as another

example, two large producers of household goods, Procter & Gamble and Unilever,

pay retailers (e.g., Wal-Mart) for the shelf-space that ultimately delivers their goods

to consumers. But how much value does (sales) capacity actually have?

This chapter studies supplier competition (with wholesale price contracts) for a

single retailer's downstream capacity and competition's influence on the price and,

therefore, value of that capacity, when the (downstream) buyer is a newsvendor. Our

analysis can be interpreted as a capacity valuation technique that applies in both a

negotiation and equilibrium setting for this particular supply chain configuration.

Furthermore, using a multiple supplier/single retailer model, we show that when

suppliers collude they decrease the value of the retailer's capacity. Our multiple

supplier/single retailer model differs from the model in Chapter 4 in that each supplier

can sell more than one good. Also the focus of this chapter is on competition and the
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value of capacity, whereas, the focus of Chapter 4 is on coordination.

Chapter Outline

In Section 6.1, we explain the supply chain setting considered. In Section 6.2, we

analyze the newsvendor's capacity allocation decision and derive the (endogenous)

price for the newsvendor's capacity. We conduct comparative statics in Section 6.3.

Then, in Section 6.4, we analyze the equilibrium setting, by providing conditions for

the existence of an equilibrium in Section 6.4.2 and for uniqueness in Section 6.4.4.

Finally, in Section 6.5, we consider supplier collusion/integration and show that the

retailer's shadow price for capacity decreases and that every supplier can achieve more

profit.

* 6.1 Model Framework

There are multiple suppliers, offering multiple goods, to a risk-neutral retailer.

There is some initial exogenous negotiation process, whereby the retailer decides on

order quantities (e.g., to guarantee certain service levels), followed by an equilibrium

process (that we model) involving the suppliers (and their goods) who received orders

(in the negotiation process) in competition for the remainder of the retailer's capacity.

The equilibrium environment for the suppliers that go on to 'sell to a newsvendor' is

described below.

We consider s risk-neutral suppliers, offering n different goods in aggregate (where

n > s and each good is offered by exactly one supplier) to a risk-neutral retailer r,

facing a newsvendor problem: there is a single sales season, the retailer decides on

an order quantity vector/portfolio (ql, q2,..., qn) and orders well in advance of the

season, the entire order arrives before the start of the season, and finally demand is

realized, resulting in sales for the retailer (without an opportunity for replenishment).

Without loss of generality, units remaining at the end of the season are assumed to

have no salvage value, and there is no (additional) cost for stocking out.
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The model's parameters are summarized in Figure 6-1 with the arrows denoting

the direction of product flow. In particular, the supplier for good i has a fixed marginal

cost of ci per unit supplied and charges the retailer a wholesale price w2i ci per unit

ordered. The retailer's price pi > wi per unit to the market for good i is fixed and,

at that price, the demand for good i, Di, is random with probability density function

(p.d.f.) f t and cumulative distribution function (c.d.f.) F2 . We assume that the

distribution for demands Di does not depend on the ordered quantities (qi, q2,..., qn)-

We also define Pi(x) def 1 - Fi(x) = Pr{Di > x}.

We assume that the retailer's total capacity is constrained by some k > 0; for

example, the retailer can only hold up to k units of inventory, or accept a shipment

not larger than k. For a different interpretation, k could represent a constraint on

the capacity of the channel or a budget constraint. We assume that the capacity as

well as the quantities of the different products are measured with a common set of

units (e.g., shelf-space), so that the capacity constraint can be expressed in the form

q, +"--+qn < k.

Figure 6-1 "n goods & 1 capacity constrained retailer" model.

1

C1 
w l

r1 Pi D - F,
n qn -D Fn

Cn Wo q l + .. + q D < k

Note. There are n goods, each offered by exactly one supplier. The suppliers are not depicted here. The
supplier for good i faces marginal cost ci (per unit) and offers wholesale price wi (per unit) to a capacity-
constrained retailer r who faces uncertain demand Di downstream with c.d.f. Fi (for good i) when the price
for the good is fixed at pi (per unit). The retailer must decide on a portfolio q of goods to order from the
suppliers.

The p.d.f. fi for the demand Di has support [0, li], with 1i > k, on which it

is positive and continuous. As a consequence, F(0O) = 1 and Fi is continuously

differentiable, strictly decreasing, and invertible on (0, 1i).

We say that the retailer is (mode) service constrained for good i E N, if fi is

nonincreasing for good i. The name follows from one scenario in which the p.d.f. fi
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could be nonincreasing in practice. In particular, recall that there is an initial negoti-

ation process (which we do not model) where the retailer orders from some suppliers

followed by an equilibrium process (which we model) to determine which suppliers

will obtain the remainder of the retailer's capacity. Suppose that initially, before the

negotiation process, the demand for good i has a unimodal distribution. And suppose

that the retailer receives a demand update for good i (before commencing the nego-

tiation process), namely, that xi units of good i have been pre-ordered and therefore

are 'guaranteed' sales. If xi is larger than the mode of the demand distribution for

good i, and the retailer orders xi units in the negotiation process, then the updated

demand distribution fi for the equilibrium process will have the property that it is

nonincreasing.

6.1.1 Equilibrium setting

The equilibrium setting we analyze is a two-stage (Stackelberg) game. In the first

stage, the suppliers (the 'leaders') simultaneously set the wholesale prices for their

goods. In the second stage, the retailer (the 'follower') chooses an optimal response

q, given the wholesale prices w. The suppliers produce and deliver E 1l qi units

before the sales season starts and offer no replenishments. The suppliers and the

retailer aim to maximize their own profit.

6.1.2 Retailer's problem in the second stage

def
Faced with uncertain sales Si(x) = min {x, Di} for product i E {1,..., n} (when

ordering x units) and a wholesale price vector w (from the suppliers), the retailer

decides on a vector of quantities to order from the suppliers in order to maximize

expected profit irr(q) d4 f E[E'ip=iSi(qi) - wiqi] while keeping in mind the capacity

constraint k. Namely, the retailer solves the following convex program with linear

constraints in the decision vector, q:
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RETAILER-PRIMAL(k,w):

n

maximize (piE[Si(qi)] - wiqi) (6.1)
i=1

subject to qi > 0, i= 1,...,n

k- Eq > 0.
i=1

Because of our assumptions on the distribution of the demand Di for each product,

it can be shown that RETAILER-PRIMAL(k,w) has a unique solution (vector),

which we denote by qr(w). We denote the unique solution, arg maxqERn rr (q), for

the unconstrained retailer's problem by q*(w). Note that the unconstrained retailer's

problem can be decomposed into n independent newsvendor problems, each of which

decides on an order quantity for a single good. Therefore, qi*(w) equals the optimal

order quantity for a newsvendor ordering good i only, which is well known to be

F~-l(wi/pi) units (e.g., Cachon and Terwiesch (2006)).

The dual problem in the decision variables y7, 72,..., y (the shadow prices for

the nonnegativity constraints) and A (the shadow price, for the capacity constraint)

is:

RETAILER-D UAL(k,w):

minimize max J (piE[S(qi)] - wiqi)+ yiqi + A(k- qi)
{qR - qO i=1 i=1 i

(6.2)

subject to /i _ 0, i 1,...,n

A> 0.

Also, RETAILER-DUAL(k,w) has a unique solution which we denote by

•-r W .. .. •, w , r( )
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6.1.3 Supplier's problem in the first stage

When the suppliers charge wholesale price vector w and the retailer, in response,
def

orders qr(w), a supplier, offering the set Y C N de {1,..., n} of goods, obtains profit
def - def

Try(W) = -iEy(wi - ci)q[ (w). If there exist other good(s) Y = N \ Y, then supplier

Y's profit depends on the wholesale prices of the other supplier(s) (due to the terms

{qM(w)}iEy).' And, therefore, supplier Y competes in a simultaneous-move game in

the first-stage against the other supplier(s).

If there exist other good(s) Y and the corresponding wholesale price vector UW- is

held fixed, a supplier, offering the good(s) Y, determines Y's wholesale price(s) by

solving the following program with linear constraints in the decision vector, wy:

Y-SUPPLIER(wy-):

maximize (wi - ci) qr(w) (6.3)
iEY

subject to pi -wi 0, ieY,

wi-ci• O, iEY.

In Section 6.4.1 (cf. Theorem 6.8, Theorem 6.7, and Equation (6.14)), we charac-

terize the solution set Wbr(w-y) for Y-SUPPLIER(wy), when the retailer is service

constrained for good(s) Y and the c.d.f. for each good y E Y has the IGFR property.2

Following the convention in game theory, we refer to the set-valued mapping W br as

supplier Y's best response to the wholesale price(s) of the other supplier(s).

Furthermore, we denote the vector of best response mappings by Wbr def (Wy..., Wr)

(where Yi represents all the goods offered by supplier i) and refer to it, by convention,

as the best response correspondence. Note that any (pure-strategy) equilibrium in

the simultaneous-move game (and, thus, in the overall Stackelberg game) corresponds

to some fixed point of the correspondence Wbr, i.e., a vector Weq of wholesale prices

1Supplier Y denotes the supplier that offers only the good(s) Y.
2 Section 6.4.1 culminates with Theorem 6.8 (equation (6.21)), showing that supplier Y's best response

Wbr(wy-) equals the intersection of the set WY(xY(wy); wy) (which is also described in Section 6.4.1) with
the hypercube of feasible wholesale price vectors.
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for all n goods, such that weq E Wbr(weq).

6.1.4 Equilibrium with an unconstrained newsvendor

Lariviere and Porteus (2001) analyze this Stackelberg game, for an unconstrained

channel with one supplier, one good, and one newsvendor. However, their equilib-

rium results are applicable in a setting with multiple suppliers supplying multiple

goods to one unconstrained newsvendor. In particular, since for any good i E N,

the newsvendor's order qr(w) equals q'(w) = F -l(wi/pi) when the newsvendor is

unconstrained, we have that good i's profit, (wi - c2) -qr(w), is not dependent on the

wholesale price of any other good. Therefore, in the first stage, any supplier offering

only one good faces a 'selling to the newsvendor' problem and any supplier Y offering

more than one good can decompose its problem into JYI independent 'selling to the

newsvendor' problems.

Thus, applying Lariviere and Porteus (2001) to our setting: when Ft has the

IGFR property for every good t E N and the newsvendor is unconstrained (i.e., k is

sufficiently large), the game results in a unique outcome (qe, We) defined implicitly in

terms of the equations

ptFt(qt) (1 - gt(qt)) - ct = 0, t = 1, ... , n; (6.4)

ptFt(q) - we = O, t = 1, ... , n (6.5)

where gt is the generalized failure rate function gt(y) def yft(y)/(y).

6.1.5 Definition: Valuation for capacity

In Section 6.2, we show that when suppliers charge wholesale price vector w in the

first round of the Stackelberg game, they induce an endogenous valuation, A (w) -k,

for the retailer's capacity.3 In this chapter, we are interested in understanding the

valuations that are feasible in our equilibrium setting. In particular, if we denote the

3So that any supplier that obtains x units of the newsvendor's capacity, in effect, pays the newsvendor
=-A'(w).
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set of equilibrium wholesale price vectors for the Stackelberg game (when the retailer
def W E Wbr (W) 1,

has a capacity of k units) by Weq(k) {wI we Wbr(w)}, we are interested in

determining properties of the set of equilibrium valuations (per unit capacity), i.e.,

the set AeQ(k) =_A I A = Ar(w), w E eq(k)}. 4

Although the analysis in Section 6.3 is specific to a newsvendor setting and a

wholesale price contract, our analysis can be generalized for other equilibrium settings

under different supply contracts.

M 6.2 The newsvendor's problem and an endoge-

nous price for capacity k

Our first result describes properties of the retailer's shadow price AW (w) for capac-

ity k and formalizes the retailer's usage of A (w), when deciding how much of each

good to order, in a 'threshold rule' (on the marginal expected profit curve of each

good).

THEOREM 6.1. Let Z(w) ! {ji I qr(w) = 0} C N be the set of products that are

not ordered in the retailer's decision problem when faced with wholesale price vector

w = (wl, w2, ..., wn). For any wholesale price vector w, there exists some Ar(w) such

that the following conditions hold:

Ar (w) = pjF3 (qj (w)) - wj, V j E N \ Z(w), (6.6)

Ar(w) > pi- w,, Vie Z(w). (6.7)

Furthermore, Ar(w)= 0 if and only if ECtZ= q'(w) < k.

Proof. See Section 6.6.1.

Notice that when the capacity constraint k is larger than or equal to the uncon-

strained retailer's total optimal order quantity, t=1 qt (w), we have Ar (w) = 0, so

that equation (6.6) reduces to the 'classic' optimal order quantity result for a newsven-

4Theorem 6.9 states conditions under which the set W eq (k) is non-empty, and, therefore, conditions under
which the set Aeq(k) is, also, non-empty.
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dor: Pj (qj(w)) = wj/pj for any ordered good j. And, furthermore, equation (6.7)

implies every good is included in the retailer's portfolio, if w < p.

However, when the capacity constraint is binding for the retailer (i.e., EtI= 1 qt (w) >

k), the retailer's shadow price Ar(w) for the capacity constraint is strictly positive.

And, therefore, equation (6.6), which can be reexpressed as wj = pjFj (qj (w)) -Ar(w),

implies that the supplier for good j, included in the retailer's portfolio, charges the

retailer pj3 P (q (w)) per unit of good j, a known result for unconstrained channels

(Lariviere and Porteus 2001), but, in addition, pays the retailer Ar(w) per unit of

capacity allocated to good j. Thus, the retailer obtains an income, k - AT(w), from

'selling' capacity k, in addition to its uncertain income, Ej=1 piSi(qr(w)).

In other words, the portfolio qr(w) of goods that the retailer orders, would have

cost the retailer extra, ie, i.e. j=1 q9r(w) . AT(w) = k . Ar (w), if the retailer was uncon-

strained.

Figure 6-2 illustrates the 'threshold rule' when the capacity constraint is binding.

Corollary 6.1 suggests a simple algorithm for calculating the shadow price Ar(w) when

given a single plot displaying the retailer's marginal expected profit curve for each

available good (e.g., Figure 6-2): start with initial threshold A = 0 and increase A

until the sum of implied order quantities equals minI {E 1 q'(w), k}.

COROLLARY 6.1. For any wholesale price vector w, the retailer's shadow price

for capacity k is

Ar(w) = min IPtF•(qt) - wt A Vt E N, qt = min q{ (w), k , q E R
t=1 t=1

(6.8)

Proof. See Section 6.6.2.

Regardless of whether or not the capacity constraint is binding, the newsvendor's

optimal order quantity for any good can be expressed, more generally, as a function

that depends on the shadow price Ar(w) as shown in Corollary 6.2. This result follows

directly from equations (6.6) and (6.7).

COROLLARY 6.2. For any wholesale price vector w, the retailer orders qj(w) =
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Figure 6-2 The shadow price A'(w) as a 'threshold rule' on a retailer's marginal expected profit (rmep)
curve.

Retailer's marginal expected profit (rmep) curves and the shadow price for k
0u -

8-

6-

2 -

0

2 4 6 8 IU I1

order quantity, q

Note. Retailer's capacity is k ; 12.7 units. The retailer considers two goods (dash & dot) when ordering.
Demand for each good is identically distributed according to a Gamma distribution with mean 10 units and
coefficient of variation 2- 1/2 ; .707. Retail price (per unit) for each good is p = 10, but the wholesale prices
are: wi = 3 (dash), w2 = 6 (dot).

F (maxptr(w)+wt,pt) units of good t E N.

As a result, under the 'threshold order/allocation rule' the ratio of the service levels

(i.e., fill rates) for any two goods (that the retailer orders) equals the corresponding

ratio of the retailer's gross profit margins of those goods, for the uncertain income5 ,

as formalized in Corollary 6.3.

COROLLARY 6.3. For good t E N and wholesale price vector w, define ut(W) ge-

(Pt - wt - Ar(w)) /Pt (the retailer's gross profit margin for the uncertain income).

For any two goods a, b E N\Z(w) that the retailer orders, we have Fa (qa(w)) l/Fb (q (w)) =

Ua(W)/Ub(W).

5 For each unit of good t E N that the retailer orders when facing wholesale price vector w, the uncertain
profit margin pt - wt - Ar(w) for good t accounts for the certain income Ar(w) received from 'selling' a unit
of capacity.

rmep for good 1:

-

rmep for good 2:

. P2 2(q) - w2
Sshadow price

""' I .

I I I I I
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U 6.3 Comparative statics, the game's geometry,

and reformulation.

We show how changes in supplier wholesale prices effect the newsvendor's charge

for capacity in Section 6.3.1. In Section 6.3.2, we derive a useful property that

simplifies our analysis when considering suppliers offering more than one good. Then,

in Section 6.3.3 we partition the set of supplier wholesale prices into equivalence

classes based on the newsvendor capacity price they induce or the newsvendor order

vector they induce. Then, in Section 6.4.1, we can recast supplier's problem Y-

SUPPLIER(wy) into a (simpler) problem of choosing an aggregate order quantity to

induce (see Decision Problem (6.18)). Finally, in Section 6.4.4, we provide conditions

for the existence and uniqueness of an equilibrium (endogenous) capacity price and

conclude with a section analyzing a special case of the Stackelberg game, i.e., when

the suppliers collude on pricing.

6.3.1 The newsvendor's shadow price for capacity when a

wholesale price drops

In Theorem 6.2, we show that the shadow price for capacity is nondecreasing when

one good's wholesale price drops (and provide conditions on when the shadow price

is strictly increasing). In addition, we provide a simple upper bound on the increase

in the shadow price.

THEOREM 6.2. Consider two different wholesale price vectors w and w'. Suppose

that w' differs from w on exactly one good d E N so that w' < wd and W'_d = W-d.

Then, A,(w) ATr (w'). And, Ar•(w) < Ar (w') if and only if good d is included in the

retailer's order under w' (i.e., d E N \ Z(w')) and the capacity constraint is binding

for the retailer under w' (i.e., ,n=, qa(w') > k). Furthermore,

A'(w') - Ar(w) • Wd - Wd. (6.9)



CHAPTER 6. MULTIPLE SUPPLIERS SELLING TO A NEWSVENDOR

And Ar (w') - Ar (w) = wd - wd, if and only if, the retailer orders k units of good d

under w and w'.

Proof. See Section 6.6.3.

Therefore, when the retailer's capacity constraint is binding (and thus the retailer

'charges' for capacity), a supplier that competes with other suppliers on price (by

lowering its wholesale price(s)) creates two effects: the price-lowering supplier in-

creases every supplier's cost Ar in obtaining a unit of the retailer's capacity, and the

price-lowering supplier increases its share of the retailer's capacity when the good is

in the retailer's portfolio at the lower price (cf. Corollary 6.4).

COROLLARY 6.4. Under the same assumptions as in Theorem 6.2, we have qj(w) <

qd(w') and q.(w') 5 q (w) for any other good o $ d. Furthermore, the following two

conditions are equivalent.

(a) The retailer orders more of good d under w', i.e., q d(w) < q~j(w'), if qj(w) < k.

And the retailer orders less of any other good o Z d under w', i.e., qr(w') <

qr(w), if o E N \ Z(w).

(b) The retailer orders good d under w', i.e., d E N \ Z(w'), and the capacity

constraint is binding, i.e., E,=l q* (w') > k.

Proof. See Section 6.6.4.

6.3.2 An invariance property on the retailer's shadow price

for capacity

As shown in Theorem 6.2 and Corollary 6.4, any supplier Y can induce a change in the

retailer's shadow price A' for capacity by dropping the wholesale price(s) for good(s)

Y, or, equivalently, taking away retailer capacity from competing goods Y. 6 In par-

ticular, from Theorem 6.3, it follows that when supplier Y takes away x < k units

of capacity from competing suppliers (when the wholesale prices WVy for competing

6Sometimes, in order to affect a retailer's shadow price for capacity, a supplier Y may be required to drop
the wholesale price(s) for good(s) Y to below cost, which would not occur in our formulation.
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goods Y are fixed), supplier Y induces the retailer to have shadow price Ar(x; wy),

as defined in equation (6.10) below, for capacity k.

THEOREM 6.3. Consider a supplier Y C N competing with good(s) Y for a re-
def

tailer's capacity k. Suppose w = (wy, 'wy) and the wholesale price vector w- is held

fixed. If supplier Y 's wholesale price vector wy induces the retailer to allocate x < k

units of capacity to supplier Y (i.e., t,,y qt(w) = x), then the retailer's shadow

price Ar (w) equals

A•r(x; wy) min A I ptFt(qt) - wt < A Vt E , qt = min qt(* (w), k - x ,q E R1 1 .

(6.10)

Furthermore, if Ar(w) = Ar(x; wy) > 0, then -tr q[ (w) = x holds.

Proof. See Section 6.6.5.

In other words, when Wy is held fixed and Ent qt(w) = k, the retailer's shadow

price for capacity Ar•(w) is invariant to changes in the wholesale price vector wy as

long as the aggregate order quantity, t• y qy (w), remains the same. Furthermore,

the retailer's shadow price Ar'(; w-y) is a nondecreasing function of the aggregate

order quantity x as formalized in Corollary 6.5.

COROLLARY 6.5. Under the same assumptions as in Theorem 6.3, Ar(x; wy) is

continuous. When x satisfies 0 < x < k - Ztyv q'(w), we have Ar (x; WVy) = 0, and,

when x satisfies max {k - ••,gq(w),O} < x < k, we have Ar(x; wy) is strictly

increasing.

Proof. See Section 6.6.6.

Therefore, when Ar(x; tWy) is strictly positive and x E [0, k), the function Ar(x; wy)

is strictly increasing. Furthermore, since the average capacity cost supplier Y incurs

for inducing the retail to order an aggregate of x units equals x- A (x; wy)/x, the

supplier average capacity cost is increasing in the induced aggregate order x (from

Corollary 6.5). And, from Corollary 6.6, below, we have that the marginal capacity

cost (i.e., x- a =+) +Ar (x; W-y)) is also increasing (in the induced aggregate order x)

when the retailer is service constrained for good(s) Y. Therefore, supplier Y does not
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benefit from any economies of scale, when obtaining more than x units of newsvendor

capacity and the capacity charge Ar (x; wuy) is positive.

COROLLARY 6.6. Under the same assumptions as in Theorem 6.3, Ar(x; w') is
°Ar(X;ýY) - _r(;X__ ) and _ (X;U_ )

differentiable (i.e., = -a 4 ) ) and 9oxr 2Y) is continuous at x > 0 when

AT(x; wyy) > 0 and Ar(x; WV) Z pi - wi for any i E Y. If x satisfies the equation

max {k - Ej'y qt*(w), 0} < x < k and the retailer is service constrained for good(s)

Y, then °or (;m) and or ;wy) are strictly increasing.

Proof. See Section 6.6.7.

6.3.3 Set of wholesale prices for a particular capacity price

A or capacity allocation q

Theorem 6.4, below, provides the set W(A) of wholesale prices for good(s) N that

induce the retailer to have shadow price A. Therefore, from Theorem 6.4, we have that

W(Ar(x; Wy)) n {w' I w = yy} is the set of all wholesale price vectors for good(s) Y

that induce the retailer to have shadow price, AT (; w-), for allocated retail capacity

x, when the wholesale price(s) for competing good(s) Y is held fixed at wy-.

THEOREM 6.4. When A > 0, any wholesale price vector in the set

WV(A) de w wt = ptFt(qt) - A + yt - l{q=o} Vt E N, q, E Ri 1, (611)

EtEN qt = min { (tEN qt*(w)) -1i=o} + k. 1 kJ>o}, k1}

induces the retailer to have shadow price A for the capacity constraint k. Further-

more, if a wholesale price vector w induces retailer shadow price A for capacity k,

then w E W(A).

Proof. See Section 6.6.8.

When A' > 0, Theorem 6.1 implies that min { tEN q7(w), k} = k, and, thus, The-

orem 6.4 suggests that the set W(AT ) can be indexed by the simplex {q I -tEN qt =

k, q E R N I} of order quantities. Furthermore, when A'(x; wýty) > 0, the set W(Ar(x; wy-))n

{w' Iw = wTy} can be indexed by the (lower dimensional) simplex {q I tEY qt =

114



SECTION 6.3. COMPARATIVE STATICS, THE GAME'S GEOMETRY, AND
REFORMULATION. 115

x, q E R +1} of order quantities. Also, when Ar(z; wy) > 0, we have that Ar(x; wy) is

invertible (from Corollary 6.5), so that for every w E W(Ar(x; wy))n{w' I w y } = w-},

we have -,,Y qr(w) = x (from Theorem 6.3).

Only wholesale prices in the set W(Ar(z; wy))n {w' I wy = wy} induce the retailer

to order x units from supplier Y's goods (in aggregate), when the wholesale price(s)

for competing good(s) Y is held fixed at w-y. This set may be large, but Section 6.4.1

shows that there is a unique division of induced (aggregate) order x among supplier

Y's goods that is optimal for supplier Y when the demand for every good t E Y has the

IGFR property, so that the subset of wholesale price vectors of interest to supplier Y

is much smaller. In particular, Theorem 6.1 and Theorem 6.3 imply that the optimal

wholesale price vectors (for supplier Y) from the set W(Ar(x; Wy))n {w' w I = w-y}

are identical in every good (component) j E Y included in the newsvendor's order.

Therefore, if for the unique division of induced order x we have xt > 0 for every

good t E Y, then there is a unique maximizing wholesale price vector in the set

W(Ar(x; wy-)) n {w w w= w-y} for supplier Y.

The set of wholesale price vectors {w'I  min {(tEN q(w), k} = k} can, also,
be partitioned according to the retailer's allocation (vector) q of capacity k (where

EteN qt = k), as shown in Theorem 6.5.

THEOREM 6.5. Suppose q E R I and EteN qt = k. Any wholesale price vector

in the set

(q) w t = ptFt(qt) - A +t - {q=O} Vt N, A R+, 7 I RI+ (6.12)

induces the retailer to order the vector q. Furthermore, if a wholesale price vector

w induces the retailer to order the vector q, then w c A(q).

Proof. See Section 6.6.9.

Figure 6-3 illustrates Theorem 6.4 and Theorem 6.5 for the example depicted in

Figure 6-2. Notice, in Figure 6-3, that if the suppliers choose wholesale prices farther

along the ray of asterisks, their allocation stays the same, but they end up being

charged more for their allocated capacity.
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Figure 6-3 Wholesale price vectors that induce a particular capacity charge or capacity allocation.

Operating Regions

0 2 4 6 8
Good l's retailer margin, pl - wl

Note. The retailer considers two goods (dash & dot), as in Figure 6-2, when ordering and faces the same
capacity, demand distributions, and retail prices. The shaded region denotes the wholesale prices that induce
the retailer to have a zero shadow price for capacity. Whereas, the thickest line denotes the set of wholesale
prices that induce the retailer to have a shadow price of two units for capacity. Also the region above the
dashed ray represents the wholesale prices that induce the retailer to oust the good 'dash' from the portfolio
(and order only 'dot'), whereas, the region below the dotted ray denotes the wholesale prices that induce
the retailer to oust 'dot' from the portfolio. The ray denoted by asterisks represents the wholesale prices
that induce the retailer to order (.75 -k, .25 -k).

U 6.4 Analysis for the two-stage game.

In this section we analyze the equilibria for the two stage game. We start by

reformulating the supplier's best response problem.

6.4.1 Recasting a supplier's problem & its shadow price for

allocated retail capacity

Consider a supplier Y C N faced with the problem Y-SUPPLIER(wy-) in the decision

vector Wy when competing with good(s) Y (whose wholesale price vector wy7 is held

fixed) for a retailer's capacity k. From the proof of Theorem 6.1, we have that every

wholesale price vector wy is associated with some shadow price, Ar (w), for a retailer's

capacity (where w = (wy, wy)) so that the set of wholesale prices can be partitioned

into equivalence classes (i.e., {W(A)}Ajo) indexed by shadow price A for a newsven-
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dor's capacity (cf. Theorem 6.4). And from Theorem 6.3 and Corollary 6.5, we have

that every positive retailer shadow price for capacity is associated with a unique ag-

gregate capacity allocation/induced order (i.e., Etyr qt) by the retailer for supplier

Y. Therefore, supplier Y has a simple algorithm for solving Y-SUPPLIER(w-y) in

order to maximize profit: 1) start with an initial aggregate number of units x = 0

to induce the retailer to order, 2) if A'(x; wy-) > 0, find the wholesale price vector

in the set W(Ar(x; wy)) n {w' w, = wy} that maximizes profit (which, thereby,

determines the optimal number of units qt of each good t E Y the retailer is induced

to order, such that E•-Y qt = x), otherwise, if Ar(x; wy) = 0, find the wholesale price

vector in the set W(0) n {w' w = w-y, tEY qr(w') = x} that maximizes profit, 3)

keep track of the maximum attainable profit, thus far, and the associated capacity

allocation x and optimal wholesale price vector, 4) increase x and go to step two, if

x < 2 where 2 is an upper bound on the aggregate quantity of goods that supplier

Y would induce the retailer to order. The upper bound t is formally defined later in

this section (i.e., Corollary 6.7).

Supplier Y's optimal wholesale price(s) when inducing (aggregate)

order x.

Suppose x E [0,2]. When the c.d.f. Ft has the IGFR property for every good

t c Y, step two of this algorithm can be described by a convex program with linear

constraints in the decision vector qy to induce the retailer to order. In particular,

from Theorem 6.3 and Theorem 6.4, we have that maximizing the objective function

EiEY(Wi - ci)qY(w) of the program Y-SUPPLIER(wy) (i.e., equation (6.3)) over the

set of wholesale prices W(Ar(x; wy)) n {w' lw = Iy, -r q-y (w') = x} can be

re-expressed as maximizing -iEy(piFi(qi) - Ar t( ,y qt; wuy) - ci)qi over the set of

induced order vectors {q I qt > 0 Vt E Y, tEy qt = x}. Therefore, the convex

program with linear constraints in the decision vector qy that solves step two of the

algorithm is:
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Y-SUPPLIER-PRICING-PRIMAL(x,w-y):

maximize (piFi(qi) - A~ (x; wy) - c2) -qi (6.13)
iEY

subjectto qi> O, iEY

x -I q = 0.
iEY

When the c.d.f. Ft has the IGFR property for each good t E Y, it can be shown

that Y-SUPPLIER-PRICING-PRIMAL(x,wy) has a unique solution (vector), which

we denote by qY(x; w-y). So that the set of wholesale prices W Y (x; Wty) that maximize

supplier Y's profit when the supplier induces the retailer to order x units in aggregate

and when the other suppliers charge wy is

def wwyt ptFt (q( ;-Y))- (x;y + y {q(x;uw;y)=0} t E Y7
W' ( L; ) +=f

(6.14)

Note that every good t E Y that is included in the retailer's portfolio has a unique

wholesale price.

The dual problem in the decision variables y71, 72. 7,YIj (the shadow prices for

the nonnegativity constraints) and A (the shadow price for the aggregate induced

order) is:

Y-SUPPLIER-PRICING-D UAL (x,wy-):

minimize max (piFi (qi) - A (x; w-t) - c1) -qi (6.15)
{qER IXz-iEy qi=o} iEY

iEY iEY

subject to 7yi 0, i E Y.

Also, Y-SUPPLIER-PRICING-DUAL(x,w-y) has a unique solution which we denote

by (-y'(x; wy),..., "(x; wy), Ar (x; wty)).

Theorem 6.6 formalizes the idea that supplier Y's shadow price Ay(x; wy) de-
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scribes a threshold for the marginal profit of an additional unit of any good in the set

Y (when inducing an aggregate order quantity x and facing a fixed retailer shadow

price Ar (X; tWo) for capacity).

THEOREM 6.6. Suppose that for every good t E Y, the c.d.f. Ft has the IGFR

property. Let ZY(x; w-y) d4- {i E Y I q4(x; w-y) = 0} be the set of products that are

not ordered in supplier Y's decision problem when faced with wholesale price vector

twy and inducing retailer aggregate order x. For any wholesale price vector twy and

induced aggregate order x E (0, min {• &E qte, k }], the following conditions hold:

AY(x; wy) = pji (qjy (;w-)) . (1 - gj (qj (x; wy))) - cj - Ar (x; w), (6.16)

V j Y \ Z (x; Wy),

AY(x; wy) pi - ci - Ar (x; wv), V i E ZY(x; wy). (6.17)

Furthermore, AY(x; wyo) + Ar(x; wy) = 0 if and only if x = E',y qt < k. And, the

function AY(x; Wyo) + A'(x; toy) is strictly decreasing as x E (0, min {E, qte, k}]

increases.

Proof. See Section 6.6.10.

From Equation (6.16), we have that supplier Y's shadow price A•(x; wty) rep-

resents an upper bound for the supplier's marginal profit on the zth unit that the

retailer orders (when supplier Y chooses the optimal number of units of each good

y E Y to induce the retailer to order, so that the retailer orders x units in aggre-

gate) and accounts for the marginal cost of the good as well as the marginal cost

for the retailer's capacity, Ar (x; wy). From Theorem 6.6, we have that the function

AY(x; wy) is strictly decreasing in x, because the function AY(x; wy-) + Ar(x; wy) is

strictly decreasing and from Corollary 6.5 we know that Ar (x; wt-) is nondecreasing.

Therefore, supplier Y only considers inducing the retailer to order up to some 2 units

(in aggregate) where f is defined in Corollary 6.7.

COROLLARY 6.7. Under the same assumptions as in Theorem 6.6, supplier Y

would never induce the retailer to order more than t units of good(s) Y in aggregate
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where 2 is defined according to the following conditions. If the conditions

0 < max{pi- - ci - • (O; wv) i E Y and AY min EqtktEY a) y 0,

hold, then 2 is the positive value that satisfies the equation AY (2; mwy) = O. But, if

the conditions

O < max{pi-ci- Ar (0; y) i E Y} andO < Y (min qe, k} ;wVtY

hold, then t equals min ( Ety qft, k} = k. Finally, if the condition

max {pi -c~ -Ar (O; wj) I iY} <0,

holds, then t equals zero. Under any of these conditions, < Et•• EY q~

Proof. See Section 6.6.11.

Recall that via equation (6.14), the supplier can map any induced aggregate order

x to the set W Y (x; wy) of wholesale prices that should be charged to achieve that

aggregate order. Next, we analyze the optimal aggregate order that the supplier

should induce (and hence the wholesale prices the supplier should charge) when faced

with wholesale price vector Wy from competing good(s) Y.

Supplier Y's optimal induced order x and best response to wy.

Consider a supplier Y C N competing with good(s) Y for a retailer's capacity k. Sup-

pose w = (wy, Wy) and the wholesale price vector w-y is held fixed. From Theorem 6.3

and Theorem 6.4, we have that the objective function i& y(wi - ci)qi(w) of the pro-

gram Y-SUPPLIER(wy) (i.e., equation (6.3)) can be re-expressed as •iY(piFi(qi) -

Ar (Ety qt; wy) - ci)qi. Therefore, as suggested in the beginning of this section, sup-

plier Y's problem of maximizing profit and deciding the optimal wholesale price vector

wb (wwy) when solving Y-SUPPLIER(wy-) can be recast as the equivalent problem of

deciding upon an aggregate quantity x to induce the retailer to order and then de-
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ciding how to split the aggregate order x among the goods Y. Formally, the program

with linear constraints in the decision quantity x and decision vector qy that solves

Y-SUPPLIER(wy) is:

Y-SUPPLIER-IND UCING-A GGREGATE- ORDER(k, wy):

maximize E p Pi (qi)- qt; - ci )•i (6.18)
iEY tEY

subject to qi >0, iEY

x> 0,

x - Eqi = 0,
iEY

k - x >0.

Theorem 6.7, below, provides sufficient conditions for Y-SUPPLIER-INDUCING-

A GGREGATE-ORDER(wy) to have a unique solution and, under those conditions,

we denote the optimal aggregate order quantity by xY(wu-y) and optimal induced

order vector by qY(wy). Therefore, from the proof of Theorem 6.6, we have that the

optimal induced order quantity vector qY(wy) must equal qY(xY; w). And, from

equation (6.14), supplier Y's best response to competing wholesale prices Wvy is the

set of wholesale prices WY (xY; vy). Furthermore, when supplier Y is faced with

competing wholesale price vector wvy and when it is optimal for supplier Y to induce

the retailer to order every good y E Y (i.e., Z Y (xY; Wvy) = 0), from equation (6.14),

we have that supplier Y's best response is unique (i.e., the set W Y (xY; -vy) has only

one wholesale price vector).

THEOREM 6.7. Y-SUPPLIER-INDUCING-A GGREGATE-ORDER(wy) has a unique

solution (xY (uvy), qY (uvy)) defined implicitly by the conditions

xY(zy) = sup x e [0,t] I A'(x;uy) - x 0, (6.19)

qY(uy) = qY (xY (wy); wy) , (6.20)
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when t $ 0, the retailer is service constrained for good(s) Y, and the cumulative

distribution function for demand of each good y E Y has the IGFR property.

Proof. See Section 6.6.12.

Now we can state the main result of this section.

THEOREM 6.8. Consider a supplier Y C N that faces the problem Y-SUPPLIER(wy)

(when the wholesale price vector wy for its competitors is held fixed) and, therefore,

decides upon an optimal set Wy r(wy) of wholesale price vectors from the hypercube

ntEY [Ct, Pt]. Suppose the retailer is service constrained for good(s) Y, and the cumu-

lative distribution function for demand of each good y E Y has the IGFR property.

Then, the solution set Wbr(wy) is non-empty, convex, and satisfies

W1vv(w() = W (xy(wv); Fy) n [ct,pt]. (6.21)
tEY

Proof. See Section 6.6.13.

6.4.2 Existence of equilibrium

In Theorem 6.9, we provide sufficient conditions so that the two-stage game described

in Section 6.1.1 has at least one equilibrium (supplier) wholesale price vector, and,

therefore, resulting retailer order vector and shadow price for capacity.

THEOREM 6.9. With more than one supplier (i.e., when s > 2), an equilibrium

wholesale price vector exists when the retailer is service constrained for goods N

and the demand for each good t E N has the IGFR property.

Proof. See Section 6.6.14.

Denote the set of equilibrium wholesale price vectors for the Stackelberg game

(when the retailer has a capacity of k units) by )eq(k) = {w I for every supplier Y, wy E

Wbr (w-y)}. Furthermore, denote the set of (resulting) equilibrium capacity prices

by Aeq(k) =de J = X r( ),w eq (k)}. From Theorem 6.9, we know that

the set Weq(k) is non-empty, so that the set Aeq(k) is, also, non-empty. There-

fore, two values that allow us to bound the valuation for the retailer's capacity are
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Arin(k) de inf Aeq(k) and Amax(k) d sup Aeq(k). But, often times, we can do better,

and give an exact valuation for the retailer's capacity. In the next section, we describe

an economic assumption that guarantees a unique equilibrium capacity price, so that

the set Aeq(k) has exactly one element.

6.4.3 An economic assumption

When suppliers have larger allocations of the newsvendor's capacity, the newsvendor's

capacity price is more sensitive to attempts to increase that allocation. Formally, con-

sider s suppliers and two different (aggregate) capacity allocations to those suppliers

(represented by the vectors a = (al,..., as) and b = (bl,..., bs)) induced by two

optimal wholesale price vectors Wa and wb (respectively) for those aggregate alloca-

tions (see Section 6.4.1) that cause the newsvendor to allocate his entire capacity

k (i.e., XZC at = k and E'•1 bt = k). From Theorem 6.3, we have that supplier

competition induces some virtual 'charge' for capacity (AT and A,, respectively), paid

to the newsvendor. From Theorem 6.6, we have that the ith supplier (i.e., supplier

Yj) has thresholds 4A and AY for its marginal profit when faced with competing

wholesale price vectors wa- and w , respectively. Denote the subset of suppliers that

have a larger share of the newsvendor's capacity under allocation a when compared

to allocation b by L(a, b) (i.e., formally, L(a, b) de {i E {1,...,s} ai > bi}). 7

ASSUMPTION 6.1. Consider the suppliers L(a,b) that have a higher allocation

under allocation a when compared to allocation b. The marginal increase in the price

of capacity, Ar(wa), for a percent increase in the induced order (by each supplier in

L(a, b)) is larger than the marginal increase in the price of capacity, Ar (wb), for a

percent increase in the induced order (by each supplier in L(a, b)), i.e.,

aAr (ai;ws; wa) aAr (bi; b)
ai- > bi- "t (6.22)

iEL(a,b) i iEL(a,b)

7From the 'pigeon-hole principle', we have that the subset, L(a, b), is not empty because the allocation
vectors are not equal.
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Inequality (6.22) can be interpreted as stating the 'average' over the capacity price

elasticities of the (aggregate) induced orders is decreasing as the induced orders in-

crease. In particular, inequality (6.22) can be reexpressed as a statement about the

two scaled harmonic means over the capacity price elasticities of the induced orders

(that are larger in allocation a):

1 L(a, b) < 1 L(a, b)

a (x9r(ai;w)'\ b ax((bi ;w )aA / Araai) ) -1 -1* i -(i; 1
iEL(a,b) aa J J tiEL(a,b) Ab b/

(6.23)
Furthermore, note that if Inequality (6.24) between the harmonic means

L(a, b) L(a, b)
-1 -

EiEL(a,b) a a-- EiEL(a,b) b .(
(6.24)

holds and we also know that A •< A , then Inequality (6.23) and, therefore, Assump-

tion 6.1 follow. 8

In the case of two suppliers with two goods, if the newsvendor is serviced con-

strained for both goods, we can show that Inequality (6.22) is a necessary condition.

6.4.4 Uniqueness of equilibrium shadow price

In Theorem 6.10, we provide sufficient conditions so that the two-stage game described

in Section 6.1.1 has a unique equilibrium shadow price for capacity.

THEOREM 6.10. With one supplier (i.e., when s = 1), any equilibrium wholesale

price vector results in the retailer having a shadow price for capacity of zero units.

Furthermore, with more than one supplier (i.e., when s > 2), if the retailer is service

constrained for goods N, the demand for each good t E N has the IGFR property,

and Assumption 6.1 holds, then for any two equilibrium wholesale price vectors WO

and w' that induce different orders (i.e., q(WZ) f qr(w')) the induced shadow prices

8So that Assumption 6.1 is weaker than Inequality (6.24) when A < A\r holds.
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for capacity (Ar (i) and Ar(w')) are the same (i.e., there is a unique equilibrium

shadow price for the retailer's capacity).

Proof. See Section 6.6.15.

When there is more than one supplier (i.e., s > 2), this theorem implies that if

there are two equilibrium wholesale price vectors inducing different allocations of the

retailer's capacity, then there is a unique equilibrium shadow price which we denote by

,eq. And so, geometrically, the equilibrium wholesale price vectors are a subset of the

set W(Aeq) as defined in Theorem 6.4 and depicted in Figure 6-3. In Theorem 6.11,

we consider the scenario when there are two equilibrium wholesale price vectors that

induce the retailer to order the same vector of goods.

THEOREM 6.11. Consider the two-stage game described in Section 6.1.1 with

more than one supplier (i.e., s > 2). Suppose the retailer is service constrained

for goods N, the demand for each good t E N has the IGFR property, and that

there are two equilibrium wholesale price vectors 17 and w' that induce the same

retailer order (i.e., qr (W) = qr(w')) but induce shadow prices for capacity satisfying

A"(w') < A(ri). Denote supplier Yj 's marginal profit for inducing the retailer to

order an extra unit (when the retailer faces wholesale price vector w') by the function

,q de(wy o9A(x; W4-)

mi'(w')Yj wX=iEY, qr(w')

Then, we have the following upper bound on the shadow price AT (i) when the retailer

orders from two or more suppliers when facing wholesale price vector w':

,A'(Q) _ ,'(w') + min {my,(w') I j E {1, ... ,s}, Yj n (N \ Z(w')) Z 0}. (6.25)

And, we have the following upper bound on the shadow price AT (i) when the retailer

orders from exactly one supplier when facing wholesale price vector w':

Ar_() • ArT(w').
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Proof. See Section 6.6.16.

Therefore, under the same assumptions as in Theorem 6.10, Theorem 6.11 (in

conjunction with Theorem 6.10) implies there are three possible scenarios in an equi-

librium setting: either there is a unique equilibrium shadow price (with multiple

equilibrium orders), or there is a unique equilibrium order (with multiple equilib-

rium shadow prices), or there is a unique equilibrium order and shadow price. These

two theorems rule out the possibility of having two different equilibrium wholesale

price vectors, WO and w', that simultaneously induce different retailer orders and dif-

ferent retailer shadow prices for capacity (i.e., such that both qr(') # qr((w') and

Awr •) r (w') hold).

* 6.5 Supplier collusion.

Theorem 6.12 formalizes the idea that if there are more than two suppliers and

they collude by making pricing decisions as if they were one firm, then they'd make

more profit in aggregate than they would from any equilibrium that induces a positive

equilibrium retailer shadow price for capacity. Consequently, there exists a division

of the collusion profit such that every supplier would receive more profit than they

would from the equilibrium wholesale price that induces a positive shadow price.

THEOREM 6.12. Consider the two-stage game described in Section 6.1.1 with

more than one supplier (i.e., s > 2). Suppose there is an equilibrium wholesale

price vector w' that induces a positive shadow price Ar(w') > 0. If the suppliers

collude on pricing by setting prices as if they were one firm, then the aggregate

supplier profit would be larger than the aggregate supplier profit from price vector

Proof. See Section 6.6.17.

Many interesting questions remain. For example, does the supply chain's profits

increase or decrease when the suppliers collude? We know that the retailer will have

a shadow price for capacity of zero units when the suppliers collude, but will the

retailer also see higher wholesale prices for every good? We leave these and other
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questions for future work.

M 6.6 Proofs

In order to not disrupt the flow of presentation, the proofs for our results in this

chapter are contained here.

6.6.1 Proof: The shadow price for capacity and the goods

ordered.

Proof of Theorem 6.1. First, we write the Lagrangian £(q, ,1,..., y,, A) for RETAILER-

PRIMAL(k,w):

£(q, i,... 7n,,) = (piE[min(qi,Di)] - wqi) + iq + A k- qi) .
i=1 i=1 i=1

Note that lrr (q) is strictly concave for q E [0, 11) x ... [0, n) because each c.d.f.

Fi is strictly increasing over [0, 1i). Because the feasible set is convex and compact,

RETAILER-PRIMAL(k,w) has a unique solution.

The Karush-Kuhn-Tucker conditions for the retailer's decision problem, RETAILER-

PRIMAL(k,w), are:

ptFt(qt) - wt + yt - A = O, t = 1,..., n; (6.27)

qt Ž O, t = 1,..., n;
n

k - Eqt _ 0;
t=1

ytqt = 0, t = 1,..., n; (6.28)

A(k- qt) =0; (6.29)

A 0; Yt > 0, t = ,..., n.
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Because of the concavity of the objective function and the fact that the Slater condi-

tion is satisfied, the Karush-Kuhn-Tucker conditions are both necessary and sufficient

conditions for any primal optimal vector q and dual optimal vector (y, A). As a re-

sult, since the primal problem has a unique solution, it can be shown that the dual

problem also has a unique solution, using these conditions. Let (qr(w), y•(w), Ar'(w))

denote the unique vector that satisfies the Karush-Kuhn-Tucker conditions.

When j E N \ Z(w), from equation (6.28) we have yj'(w) = 0. Therefore, from

equation (6.27) we have Ar(w) = pjFj (q_(w)) -wj. When i E Z(w), from equa-

tion (6.27), we have Ar (w) = p - wi + yi(w) > pi - wi. Thus, the conditions in

equations (6.6) and (6.7) hold.

Furthermore, if Et= qt (w) • k, we have qr(w) = q*(w). Therefore, when j E

N \ Z(w), from equation (6.27) we have Ar(w) = pjPj (q,*(w)) - wj = 0.

On the other hand, assume Ar(w) = 0. When j E N\Z(w), we have pjPj (qr(w)) -

wj = 0 from equation (6.27). Therefore, qj(w) = q(w). When i E Z(w), from

equation (6.27), we have pi - wi < pi - wi + '-(w) = 0. Thus, qi*(w) = 0 = qi'(w).

And so we have E" Z q (w) = E qr(w) k. O

6.6.2 Proof: The shadow price for capacity as the minimum

of some set.

nProof of Corollary 6.1. Let A e {A I ptFt(qt) - wt < A Vt E N, E= qt =
n * Wmin {( = qt (w), k}, q E RI}.

The vector qr(w) E Rn satisfies Ent= qr (w) = min {fEn q (w), k}. Furthermore,

from equation (6.27), we have Ar(w) = ptPt(qr(w)) - wt + 7-(w) > ptFt(q'(w)) - wt

when t = 1, ... , n. Therefore, we have Ar(w) E A.

Assume there exists a A' < Ar(w) such that A' e A. Then there must exist a

vector q' e R+ such that E = min {t= qt*(w), k} and ptFt(q) - wt 5 A'

when t = 1,..., n. When j E N \ Z(w), from equation (6.27) we have A'(w) =

pjFj (qr(w)) - wj. Since A' < A'(w), when j E N \ Z(w), we have pjFj(qj) - wj <

pj.P (qj(w)) - wj, implying Fj(qj) < F3 (qj(w)) and, thus, q' > qj(w). There-
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fore, EjEN\z(w) q > jEN\z(w,) qr(w) = EtEN qt(w) = min {/ll L qt(w), k}, imply-

ing E It q' > min{EZ qt(w),k}. But this is a contradiction. Thus, Ar(w)

minAxE A. O

6.6.3 Proof: Ar(w) is nondecreasing as wt decreases, and the

increase is bounded.

Proof of Theorem 6.2. Let A(w) d {A I ptFt(qt) - wt A Vt E N, IE= qt =

min { = qt*(w), k}, q E R _}. Since w' < wd and w'Ld = wad, we have qd(w) <

qj(w') and q (w) = qo(w') for any other good o j d. Therefore, min {IEn1 qt(w), k} <

min { 1 q~ (w'), k}. If min {E=1 qt(w), k} = k, then A(w') C_ A(w) so that we have

min A(w) < min A(w'). And, from Corollary 6.1, we have Ar(w) • r A(w'). Other-

wise, if rmin {-L z qt(w), k} < k, then from Theorem 6.1 we have Ar(w) = 0 so that

Ar(w) < Ar(w') because the shadow prices are nonnegative.

Next, we show that Ar(w) < A'(w') holds if and only if the conditions d E N\Z(w')

and Enz q*(w') > k hold by proving the statement: Ar(w) = Ar(w') holds if and

only if d E Z(w') or E t= qt (w') < k holds.

First, we prove the direction: if d E Z(w') or En= q (w') < k holds, then

A?(w) = A'(w') holds. If E =l qt(w') < k holds, then from Theorem 6.1 we have

Ar(w') = 0. Since Ar(w) • Ar(w') and the shadow prices are nonnegative, we have

Ar,(w) = Ar(wI). When d E Z(w') and CEn qt(w') > k hold, assume Ar(w) < Ar(w')

holds, instead. Then, for any j E N \ Z(w), we have qj(w') < qj(w) when either

j E N \ Z(w') (from equation (6.6)) or j E Z(w'). Since A'(w) < A'(w'), from

equation (6.7), we have Z(w) C Z(w') so that N \ Z(w') C N \ Z(w). There-

fore, -jeN\Z(w') q(') < -jEN\Z(w) qj(w) < k. From equation (6.29), we have

Ar(w') = 0, implying Zt.= q (w') < k (by Theorem 6.1). But this is a contradiction

since E\`" qt(w') > k holds. Thus, Ar(w) = Ar (w).

Next, we show that A'(w) = Ar(w') implies d E Z(w') or E~,• qt (w') < k holds.

Assume d E N\Z(w') and ECZ qt(w') > k hold, instead. Therefore, we have Ar(w) =

Ar(w ' ) > 0 from Theorem 6.1. And equation (6.29) implies -jEN\Z(w) qj(w) = k. If
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d E N\Z(w), then qr(w') > q r(w) from equation (6.6) since w' < Wd. If d E Z(w), we

also have qdj(w') > qj(w) = 0. Furthermore, equation (6.7) implies that for any good

i / d: i E Z(w') if and only if i E Z(w) (because wi = w' and A'(w) = Ar(w')). Thus,

the sets Z(w) and Z(w') are identical unless d E Z(w). Therefore, N \ Z(w') = (N \

Z(w))U{d}. And for any good j Z d such that j E N\ Z(w') we have qr(w') = qj(w)

(from equation (6.6)). Therefore, EjEN\Z(v') qj(w') > ZjEN\Z(w) q (w) = k. But this

is a contradiction. Thus, d E Z(w') or E' = q*(w') < k holds.

Next, we prove inequality (6.9) holds. If Ar(w) = Ar(w'), inequality (6.9) fol-

lows. If Ar(w) < Ar(w'), then d E N \ Z(w') and t=1 qt(w') > k hold, as

proven. Therefore, we have Ar(w') > 0 from Theorem 6.1 and equation (6.29) implies

EjEN\z(w') q (w') = k. Assume the inequality A(w ') - Ar(w) > Wd - w' holds, in-

stead. Therefore, rearranging terms, Ar(w') + w > Ar(w) + Wd holds. Corollary 6.2,

then, implies q d(w') < qd(w) and that for any j E N \ Z(w) such j , d, we have

qr (w') < qr (w) (because A (w') + > A(w) + wj holds). The inequalities q (w') <

q d(w) and Ar(w) < AT(w') imply Z(w) C Z(w') (from equation (6.7)). Therefore,

N \ Z(w') C N \ Z(w). And we have k = EjEN\Z(w•) qj(w') < ZjEN\Z(w) qj(w). But

this is a contradiction. Thus, inequality (6.9) follows.

If the retailer orders k units of good d under w and w', then, from equation (6.6),

we have that Ar(w') + W ( = Ar(w) + Wd holds. If A•(w') + w = (w) + Wd holds,

then, from Corollary 6.2, we have that qd(w') = qd(w). Furthermore, since w' < wd,

we have Ar(w) < Ar(w'). Therefore, as proven, we have that good d is included in

the retailer's order under w' (and thus w) and that the capacity constraint is binding

for the retailer under w'. From Theorem 6.1, we have Ar(w') > 0 and equation (6.29)

implies qjEjN\Z(w') q(w') = k. Assume the inequality qdj(w') < k holds, instead of

the equality q (w') = k. Then, there exists at least one other good o E N \ Z(w'),

where o Z d. Good d is included in the retailer's order under both w and w', and

Ar(w) < Ar(w'), therefore, we have Z(w) C Z(w') (from equation (6.7)), implying

N \ Z(w') C N \ Z(w). And for any good j 4 d E N \.Z(w), from Corollary 6.2,

we have qj (w') < qj~(w) because ATr (+ w <A(w') + w' holds. Therefore, we have

k = -jEN\z(wl') qj(w') < EjEN\Z(w) qj(w). But this is a contradiction. Thus, the
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equality qj(w') = k follows.

6.6.4 Proof: The effect of a price drop on the retailer's

order.

Proof of Corollary 6.4. From Theorem 6.2, we have Ar(w) •< A(w'). Since w' =

0, we have Ar (W) + w 5 Ar (w') + w,. The inequality qo (w') < q (w), then, follows

from Corollary 6.2. Furthermore, from inequality (6.9), we have AT(w') + w, <

,A (w) + Wd. Therefore, from Corollary 6.2, we have qd(w) • q (w').

First, we show condition (b) implies condition (a). If qd(w) < k, then, from The-

orem 6.2, we have the strict inequality Ar(w') + w r < AT(w) + Wd. Since the retailer

orders good d under w', from Corollary 6.2, we have max {Ar(w) + Wd, Pd < Pd.

Therefore, max { T(w') + W, Pd < max {r(w) + Wd,Pd} holds. And, since the

c.d.f. Fd is strictly increasing over [0,id), we have qd(w) < qd(w') (from Corol-

lary 6.2). Furthermore, condition (b) and Theorem 6.2 imply Ar(w) < r(w'). Since

w/ = wo, we have Ar(w) + wo < Ar(w') + w'. If o E N \ Z(w), then, from Corol-

lary 6.2, we have max {Ar(w) + Wo, Po} < Po. Therefore, max {Ar(w) + w, Po} <

max {Ar(w') + w', po}. And, from Corollary 6.2, we have q,(w') < qr(w) because the

c.d.f. F0 is strictly increasing over [0, lo).

Next, we show condition (a) implies condition (b). Assume d E Z(w') or = q (w') 5

k holds, instead. From Theorem 6.2, we have Ar(w) = Ar(w'). Therefore, for any good

o Z d, we have Ar (w) + w = Ar (w') + w' because wo = w'. From Corollary 6.2, then,

we have qo(w) = qo(w'). But this contradicts condition (a) when o E N \ Z(w). It

can be shown that the set N \ Z(w) includes some good o , d when Et=l1 q (w') < k

holds. When E'" qt (w') > k and d E Z(w') hold, we have q (w) = q (w') = 0

because qd(w) 5 qd(w') holds and qd(w) must be nonnegative. But this contradicts

condition (a) since qdj(w) < k holds, yet qd(w) = qd(w'). Thus, condition (b) holds.

Ol
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6.6.5 Proof: A supplier effects the price for capacity via its

induced allocation.

Proof of Theorem 6.3. Since the wholesale price vector w induces the retailer to

order x units of goods from supplier Y, we have that when the retailer solves the

convex program RETAILER-PRIMAL(k,w) in the decision vector q, the optimal

order quantity vector qr(w) is also the unique solution to the following convex program

in the decision vector q:

RETAILER- WITH- Y-GUARANTEE(k,x,w):

n

maximize (piE[Si(qi)] - wiqi) (6.30)
i=1

subject to qi>0, i=l,...,n

Z qi = x
iEY

n

k - qi > 0.
i=1

Therefore, since the objective function in (6.30) is separable into the sum of two

independent expressions,

n

S(piE [Si (qi)] - wi) (pE [Si (qi)]- wi qi) + (p E [Si (qi)- wiqi), (6.31)
i=1 iEY iEi

the order quantity vector q (w) is the solution to the following convex program in

the decision vector q:

RETAILER-RESTRICTED- TO-Y-PRIMAL (k,x,wy):

maximize (piE[Si(qi)] - wiqi) (6.32)
iEY

subject to qi > 0, iEY

(k - x) - qi> 0.
ic-Y
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The dual problem in the decision variables ty7 (the shadow price vector for the

nonnegativity constraints) and A (the shadow price for the capacity constraint) is:

RETAILER-RESTRICTED- TO-Y-D UAL(k,x ,wy):

minimize _ max (piE[Si(qi)] - wiqi) + yiqi + ((k-x) -• qi
{qERl lk-'te q > O} ieY i6Y iEY

(6.33)

subject to Yi 0, iEY

A>O0.

Note that RETAILER-RESTRICTED-TO-Y-DUAL(k,x,Vy) is identical to RETAILER-

DUAL(k-x,w-), when N = Y. Therefore, we have from Theorem 6.1 that RETAILER-

RESTRICTED-TO-Y-DUAL(k,x,wy) has a unique solution which we denote by

(1(x; WVY), Ar(x; wy-)). Furthermore, from Corollary 6.1 we have that

A"(x"; y-) = min I ptF,(qt) - wt < A Vt E Y, qt = min qt*(w), k - x , q E Ri
tEY tEY

(6.34)
Since x < k, there exists at least one good j E Y such that qjr(w) > 0. Since the

vector qý(w) is the solution to RETAILER-RESTRICTED-TO-Y-PRIMAL(k,x,w-),

from Equation (6.6) in Theorem 6.1, we have that

AT(x; Wy) = pjFj (qj(w)) - Wj. (6.35)

Since the vector qr(w) is the solution to RETAILER-PRIMAL(k,w), from Equa-

tion (6.6) in Theorem 6.1, we also have that

Ar(w) = pjF1 (q;(w)) - wj. (6.36)

Therefore, from Equations (6.35) and (6.36), we have that Ar(w) = Ar(x; wy).

Next, we prove the partial converse. Denote the solution to RETAILER-RESTRICTED-
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TO-Y-PRIMAL(k,x,wy) by the vector q,(x; w-). From Equation (6.6) in Theo-

rem 6.1, we have that for every good j E Y such that qj(x; w7y ) > 0,

Ar(x; w-) = pjF3 (qj'(x; W1)) - Wi. (6.37)

Furthermore, from Equation (6.6), we also have that for every good j E N such that

q (w) > 0,
A'(w) = jpf (qj(w)) - Wj. (6.38)

Therefore, since Ar (w) = Ar'(; wY), from Equations (6.37) and (6.38), we have that

q, (w) = qjr(x; -V) for every j E Y, implying that

qjr (w) = qjr(x; wy) (6.39)
jEY jEY

holds. Since A'(x; wY) > 0, from Theorem 6.1 it follows that Ej-f q4 (; Wy) = k - x.

So that from Equation (6.39), we can conclude that E•jIE qjr(w) = k - x. Since

XA(w) > 0, from Theorem 6.1 we also have that EjEN qj(w) = k. Therefore, since

ZjEN q5(w) = Etr qt(w) + EtEy q't(w), we have ECjy qjr(w) = x. O

6.6.6 Proof: A newsvendor's price for capacity is continu-

ous and increasing.

Proof of Corollary 6.5. Suppose 0 < k - E••t q~(w). Then, there exists an x

that satisfies 0 < x < k - 7tV q* (w). For any such x, we have ,•ty q* (w) • k -

x. Therefore, since RETAILER-RESTRICTED- TO-Y-DUAL(k,x,wV) is identical

to RETAILER-DUAL(k - x,wy), when N = Y, we have from Theorem 6.1 that

Ar (x; wv) = 0 when x satisfies 0 < x < k - Ety Etq(w).

Suppose that x1 and x2 satisfy max {k - tZ q (w), 0} 5 zXl < x 2 < k. We show

that A'(xl; wy ) < A'(x2; wy). Assthat hat Ar(x 2; wy) < AT(xl; WVy) holds, instead.

Denote the solution to RETAILER-RESTRICTED-TO-Y-PRIMAL(k,xi,wy) by

the vector qy(xi; wy) for i = 1,2. From Equation (6.6) in Theorem 6.1, we have
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that for every good j E Y such that qj(xj; wy) > 0,

Ar(xi; w-) = pjFy (q (xi; pw)) - Wi, (6.40)

for i = 1, 2. Because of our assumption on the cumulative distribution functions and

Ar(x 2; WY) < Ar(xi; wy), from equation (6.40), we have

q (x l; wy-) : q ( 2; Wy) (6.41)

jEY jEY

Since k - x 2 < •ty qt (w), from Theorem 6.1, we have 0 < Ar (x 2; wy), imply-

ing that 0 < Ar(xl; wy) holds too. Therefore both Ejyqj(x2; wy) = k - x2 and

E y qr(x1; wy) = k -k-x 1 hold. But then equation (6.41) implies that k - x, < k - x 2

so that x2 < x 1 holds. But this is a contradiction. Thus, the inequality A (xl; Wy) <

Ar (x2; Wy) follows.

Next, we prove Ar (x; Wy) is continuous when x E [0, k). Since A'(x; w-y) = 0

when x satisfies 0 < x < k - Ett qt (w), we need to show that Ar (x; wy) is

continuous when x satisfies max {k - Et qt(w), O} x < k. Suppose that x

satisfies max {k - E>j•y q(w), 0} < x < k. Denote the inverse of A'(x; wy) by

A-1 : [0, maxtcy wt - ct) -- [max {k - E•F qt (w), 0} , k). (Note this exists since

Ar is strictly increasing and onto the set [O, maxt~Ewt - ct)). Pick any number
def

E > 0. Consider the neighborhoods around x defined by the radiuses 61 d -

A-l(max {AT(x; wy) - E, 0}) > 0 and 62  A1-(min {Al(x; Wy) + E, maxtE wt - ct})-

x > 0. It can be shown that both 61 and 62 can not be zero. If either 61 or 62 is zero,
def def

consider the radius 6 max {61, 62 } > 0, otherwise we set 6 min {61,62 } > 0.

Denote the 6 neighborhood around a number z by N6 (z). It can be shown that if

z' E N&(x) n [max { k - tEV qt (w), 0} , k), then Ar(x'; W-y) E N,(A (x; wy)). O

6.6.7 Proof: The marginal price for capacity is increasing.

Proof of Corollary 6.6. From Corollary 6.5, when x satisfies 0 < x < k-EtE qt(w)

we have = 0 and when x satisfies 0 < x K k - ,y, qf(w) we have&X+ t~t(w ehv
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aAr(x;Y) = 0.
ax-

Denote the solution to RETAILER-RESTRICTED-TO-Y-PRIMAL(k,x,wy) by

the vector qy(x;W u). Let Z(k,x, Wy) d=f {i I qr(x;Wy) = 0} C Y be the set of

products that are not ordered in the retailer's decision problem. Suppose x satisfies

max {k - E,,y q,(w), O} < x < k. Observe that the equation Etcyq[(x; w-) =

k - x holds. Therefore, we can express x via the equation x = k - -&tV qt (x; wy).

Denote the inverse of Ar(x; w-y) by xr(A; wv). Since AX(x; Wy) is strictly increasing and

continuous, when ;) exists it must be the case that =Ar(X;wY) = (Xr(;w.))-

where the equations A'(x; wy-) = A and xr(A; W-y ) = x hold. Furthermore,

wXr(A; Vy) _ ( )
o9+ aA+ tEY

Ok oq (x; wVy)

tEY

:- - 1 (6.42)
-- E Pt " ft (q7(x; wy) )

teY\Z(k,x,w V )- z 1
E . (6.43)

\(k ) t -ft (q(x; w)) (6.43)

(Equation 6.42 follows from Theorem 6.1 because from Equation (6.6) we have that

for every good j E Y such that qj(xi; wV) > 0, the equation

Ar(x; wy) = pj F (q (x; WVy)) - wj,

ax· ) _1-1

holds.) Therefore, we have that ax\Z(k y) )) when x

satisfies max {k - ••ty q(w),0} < x < k.

Suppose x satisfies max {k - M-tyq (w),O} < x < k. Consider the retailer's

problem RETAILER-RESTRICTED-TO-Y-PRIMAL(k,x,wy-). Let A(k,x, wv) =de

{i E Z(k, x, w-) I Ar(x; WVy) = pi - wi} C y be the set of products that were almost
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ordered by retailer. Then, we have

(;w) X- (k aqr (x; wv))

Ok- z Oq-

tEY
1 "

Pt -ft (qt (x; uy-))
tEA(k,x,wzv)U(Y\Z(k,x,wv))

11
S >Pt pft (q k (x; W P-))

tEA(k,z ,wvy)u (V\Z(k,x,wy)) )

1 1

pt ft (q (x; wy)) +  pt -ft(0)
tE\Z(k,x,wy-) tEA(k,z,wy-)

(6.44)

(6.45)

(Equation 6.44 follows from Theorem 6.1 because from Equation (6.6) we have that

for every good j E A(k, x, WV) U (Y \ Z(k, x, w-)), the equation

Ar(x; Wy) = PjF. (q(x; w7 )) - w, (6.46)

holds.) Therefore, we have that

tw
\tEA(k,x,wy)U(Y\Z(k,x,wy))

(6.47)

when x satisfies max {k - Etc7 q*(w), 0} < x < k.

Suppose Ar (x; w-y) > 0 and Ar (x; Wy) - pi- w- for any i E Y. From Corollary 6.5,

we have that x satisfies max {k - ty q 1(w), O} < x < k. And from the definition

of A(k, x, -y) we have that A(k, x, WVy) = 0. Therefore, from Equations (6.43) and

(6.45), we have that a°();) ax•-r( ) which implies that a(;w) - •9•)

From Corollary 6.5, we have A'(x; wY) is continuous at x, implying that xr(A; wv)

is continuous at A (where the equations Ar(x; WV) = A and xT(A; WV) = x hold).

Therefore, from equation (6.46), we have that qt (zr(A; wV); wy) is continuous at

A. Since ar(A) Et\Z(k,,w ) - )) and the p.d.f. ft is continuous for
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every good t E Y, we have that adr(;A ) is continuous at A since the set of goods

Y\Z(k, x, Wy) do not change for small changes in A. Therefore, a,\r( Y) is continuous

at x.

Suppose x satisfies the equation max {k - EZt(y q (w), O} < x < k and the re-

tailer is service constrained for good(s) Y. From equation (6.46), we have that for ev-

ery good t E YV\ Z(k, x, wy), the order quantity qt (xr(A; wy-); wy-) is strictly decreas-

ing in A. Since the retailer is service constrained for good t, we have ft (qt (Xrr A; w-y); wY))

is strictly increasing in A. Therefore, ar(Q;wm) and °a(X'Y-) are strictly decreasing in

A. So that we have aor(x ;) and a\r(xW) are strictly increasing in x. E

6.6.8 Proof: Partitioning the set of wholesale prices by 'ca-

pacity charge'.

Proof of Theorem 6.4. Suppose A > 0. Consider a wholesale price vector w from

the set

def W wt = ptFt(qt) - A + -t - l{qt=o} Vt E N I (6.48)W(A) . (6.48)
EtEN qt = min { (tEN q;(w)) " l{ =o} + k. {A>o}, k}

For this vector w there exist vectors q and -y that satisfy the conditions in (6.48)

which guarantee w's membership in the set W(A). From the proof of Theorem 6.1,

we have that The Karush-Kuhn-Tucker conditions for the retailer's decision problem,

RETAILER-PRIMAL(k,w), are:

ptFt() - wt + - = O, t = 1,..., n; (6.49)

t 2> 0, t=l, 1.., n;

n

k - Z-> 0;
t=1

Ytqt = 0, t = 1, ..., n; (6.50)
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k - qt = 0; (6.51)
t=1

>0; t> 0, t-1,...,n.

Because of the concavity of the objective function and the fact that the Slater condi-

tion is satisfied, the Karush-Kuhn-Tucker conditions are both necessary and sufficient

conditions for any primal optimal vector q" and dual optimal vector (', A). Consider

a particular value for q, y, and A. In particular, suppose we set:

q= q,

= (71Y- { q=0 o},... ,' n-l{q=0),

A=A.

It can be shown that these values for q, -, and A satisfy the Karush-Kuhn-Tucker

conditions so that A~(w) = A = A. (There are two main steps in seeing this. First,

consider the cases A = 0 and A > 0 separately. Then, for each of those cases, confirm

that the equations (6.49), (6.50), and (6.51) are satisfied for these values q, ', A when

the wholesale price for good t is wt = ptFt(qt) - A + yt - {q,=o}.) Therefore, the

wholesale price vector w induces the retailer to have shadow price A for the capacity

constraint k, i.e., Ar(w) = A.

Next, we prove the converse. Suppose a wholesale price vector w induces retailer

shadow price A for capacity k, i.e., A'(w) = A. Therefore, there exist vectors q and

y that along with A and wholesale price vector w satisfy the Karush-Kuhn-Tucker

conditions. Suppose we set: q = q7 ' = -, and A = A. It can be shown that these

values for q, 7, and A enable w's membership in W(A) using the conditions in (6.48).

Therefore, w E W(A) = W(A). El
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6.6.9 Proof: Partitioning the 'binding' wholesale prices by

'induced allocation'.

Proof of Theorem 6.5. Suppose we have an order quantity vector q E R NI such

that the condition EtEN qt = k holds. Consider a wholesale price vector w from the

set

A(q) w w = ptPt(qt) - A + 7t l{q,=o} Vt E N, A E R,, 7 E R NI  (6.52)

For this vector w there exists a scalar A and a vector 7 that satisfy the conditions

in (6.52), guaranteeing w's membership in the set A(q). The Karush-Kuhn-Tucker

conditions for the retailer's decision problem, RETAILER-PRIMAL(k,w), written in

the proof of Theorem 6.4, are both necessary and sufficient conditions for any primal

optimal vector ' and dual optimal vector (7, A). Consider a particular value for q, ,

and A. In particular, suppose we set:

q = qj

= (71- 1{qi=0}, ... , in 1{q=o}),

It can be shown that these values for q, ', and A satisfy the Karush-Kuhn-Tucker

conditions so that q'(w) = q = q. (To see this: verify that the equations (6.49),

(6.50), and (6.51) are satisfied for these values q, ~, A when the wholesale price for

good t is wt = ptFt(qt) - A + yt - l{q,=o}.) Therefore, the wholesale price vector w

induces the retailer to order according to the vector q, i.e., qr(w) - q.

Next, we prove the converse. Suppose a wholesale price vector w induces retailer

to order according to the vector q", i.e., qr(w) = '. Therefore, there exists a vector 9

and a scalar A that along with " and the wholesale price vector w satisfy the Karush-

Kuhn-Tucker conditions. Suppose we set: q = q, 7 = -, and A = A. It can be shown

that these values for q, -y, and A enable w's membership in A(q) using the conditions

in (6.52). Therefore, w E A(q) = A(q). LO
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6.6.10 Proof: The shadow price for supplier Y's aggregate

induced order.

Proof of Theorem 6.6. Recall the definition gi(x) = x. f(x)/F~(x) of the gener-

alized failure rate function. For each good i E Y, we have that

((PiFi(qi) - A' (x; wy ) - c) -qi) = pF(qi) -(1 - g,(q,)) - Ar (X; w) - Ci.

Each c.d.f. Fi is strictly increasing over [0, 1i], continuously differentiable, and has the

IGFR property, so that piF (q) (1-gi(qi)) is continuous, nonnegative, and strictly de-

creasing in qi while gj(qi) • 1 (and negative when g (qj) > 1). For good i E Y, we de-

fine the order quantity q in terms of qi , the equilibrium induced order for good i in the
def

unconstrained setting (see equation (6.4)), as follows: q = min {qi, k}. From equa-

tion (6.4), observe that gi(qie) < 1. Then, we have that (Pi (q,) - Ar (x; wj) - ci) .qi

is strictly concave for qi E [0, q]. Therefore, the objective function for Y-SUPPLIER-

PRICING-PRIMAL(x,w-) is strictly concave for qy E {q E R |llI 0 < qi 5 )}

which is a superset of the feasible set for Y-SUPPLIER-PRICING-PRIMAL(x,wy)

(since x E (0, min {(,tE qe,, k }]). Because the feasible set is convex and compact,

Y-SUPPLIER-PRICING-PRIMAL(x,uw) has a unique solution.

Consider the Lagrangian L(qy, Y1 , ... . , , A) for Y-SUPPLIER-PRICING-PRIMAL(x,wy-):

C(qy,' i ,... 7 ,YIYI,) = (piFi(qi) - A• (x; wY) - ci) .qi + yiqi-• 2 + X - -Jqi "

iEY iEY iEY

The Karush-Kuhn-Tucker conditions for supplier Y's decision problem, Y-SUPPLIER-

PRICING-PRIMAL(x,wVy-), are:

PtFt(qt)(1 - gt(qt)) - A~ (x; wy) - ct + -t - A = 0, t E Y; (6.53)

qt>O, tEY;

x - -qt = O;
tEY
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ytqt = 0, tE Y; (6.54)

Yt> 0, tcY.

Since x # 0, it can be shown that a constraint qualification condition on a particular

matrix (each row of which is the gradient of an effective constraint at the optimal

order vector) is satisfied. Briefly, the constraint qualification condition requires that

the matrix have rank equal to the number of effective constraints. See Sundaram

(1996, Chap. 6, Thm 6.10, p.165) for a detailed description of the constraint quali-

fication condition. Therefore, the Karush-Kuhn-Tucker conditions are necessary for

any primal optimal vector qy. Furthermore, because of the concavity of the objec-

tive function and the functions that define the constraints, the Karush-Kuhn-Tucker

conditions are sufficient conditions for any primal optimal vector qy.

As a result, since the primal problem has a unique solution, it can be shown that

the dual problem has a unique solution using these conditions. Let

denote the unique vector that satisfies the Karush-Kuhn-Tucker conditions.

When j G Y \ZY (x; w7 ), from equation (6.54) we have 'y (x; wy) = 0. Therefore,

from equation (6.53) we have

\Y(x; W7) = PjF (qf(x; w-)) (1-gj (qj'(x; wujy)))-f - - AT (x;w)•

When i E ZY(x; Wy-), from equation (6.53), we have

AY(x; uWy) = pi , ci -~AT (x; ) + 7Y(x; wy) > pi -c, - A' (x; W-),

Thus, the conditions in equations (6.16) and (6.17) hold.

Furthermore, if x = t,,YE q: 5 k, we have qY (x; w-) = qf for every good i E Y.
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Therefore, when j E Y \ Z Y (x; W-y), from equation (6.53) we have

AY(x; wj) + A(x; U) = pjFj(qj) - (1 - gj(qj)) - cj = 0.

On the other hand, assume AY (x; w) + Ar•(x; wy) = 0 with an induced aggregate

order x E (0, min {•tEY qte, k }]. When j E Y \ ZY(x; wV), we have

pjP (qj (x; w)) -(1 - g (q (x; wy))) - c= 0

from equation (6.53). Therefore, qjy(x; ) = qe from equation (6.4). Assume

ZY (x; WV) is not empty. When i E Z(w), from equation (6.53), we have

Pi - ci < Pi - ci + 7Y (x; w-) = 0.

This is a contradiction because ci < pi. Therefore, the set ZY (x; w-) is empty

when the condition AY(x; WVy) + Ar(x; WV) = 0 holds. And so we have EtE qte =

tEy qty (x; ZwV) = x < k.

Suppose that xl and z 2 satisfy 0 < x1 < X2 < mIn ItEY qt, k}. We show

that A'Y( 2; w-y) + AT(x2 ; WVy) < AY(x1; WVy) + Ar (x1; WV). Assume that AY(x1; WV-y) +

Ar(x,; wY) 5 AY(x 2; WV) + Ar(x 2; WV) holds, instead. From Equation (6.16) in The-

orem 6.6, we have that for every good j E Y such that qY (xj; w-) > 0,

AY(xi; WV) + (xi; ) (q(x V)) (1gj (q (xi; Wy))) - cj, (6.55)

for i = 1, 2. Because of our assumption on the cumulative distribution functions and

AY(xi; Wy-) + Ar(x1i;wy) X~Y(x 2 ;Wyy) + A r(X 2 ; Wy), from equation (6.55), we have

qj'(x2; WVy) < qY(xi;wv) for every good j Y. So that

X2= jyq(x2;Uy) _< -qjY(xi; wY) X 1. (6.56)
jEY jEY

But this is a contradiction because xl < x 2 holds. Thus, the inequality AY(x 2 ;; Wy) +
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Ar(x 2; -) < A'Y(xi;W)) + r(x; W) follows. And so we have that the function

AY(x; Wy) + Ar(x; Wy) is strictly decreasing as x E (0, min ,,y qe , k }] increases.

6.6.11 Proof: Any induced aggregate order above t is not

optimal.

Proof of Corollary 6.7. Suppose that for every good t E Y, the c.d.f. Ft has the

IGFR property. Assume that the conditions

AY(min qt , k ; V ) 0, (6.57)

0 < max {pi - ci - Ar (0; y) i E Y} , (6.58)

hold. From Corollary 6.5, we know AT(x; Wy-) is continuous at x = 0. Further-

more, the cumulative distribution functions are continuously differentiable. There-

fore, from equation (6.58), we have that there exists some small positive value 6 <

min { tEY qt, k } such that the condition

0 < max {piF(6). (1 - gi(6)) - ci - A (6; w) I i r Y}

holds. And so, from Theorem 6.6, it follows that there exists a small positive value

J < 5 such that AY(2; wy) > 0. Using a technique similar to our proof that A'(x; wyV)

is continuous (i.e., Corollary 6.5), it can be shown that AY(x;wy-) is continuous

for x E (0, min {Ety qte, k}]. And from Theorem 6.6, it follows that AY (x; Wy)

is strictly decreasing because we know that A (x; uy) is nondecreasing from Corol-

lary 6.5. Therefore, from equation (6.57), we have that there exists a value 2, where

& < t < min M t qt, k}, that satisfies the equation AY(; wVy) = 0. For any

unit above 2 that supplier Y induces the retailer to order (in aggregate), the sup-

plier incurs a loss because the marginal profit on the xth unit is upper bounded by

A"'(x; wy), which is a negative number for any x > t. Therefore, supplier Y would
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never induce the retailer to order more than t units of good(s) Y in aggregate. Fur-

thermore, from Theorem 6.6, we have that A'(x; wmy) = -Ar(x; WV-) < 0 if and only

if x = -tEY q' < k and that Ar(x; wy) is strictly decreasing. Therefore, we have

Now assume that the conditions

0 < A (min { qZ , k} ; wv (6.59)

0 < max {p - c - AT (0; W-y) i E Y}, (6.60)

hold instead. From Theorem 6.6, we have that AY(x; w-) = -Ar(x; Wy) < 0 if and

only if x = tEy, qt < k and that AY(x; Wy) is strictly decreasing. Therefore, from

equation (6.59) we have min {(•Et qte, k} < EtEr qte, implying min {-tEr qt, k k} =

k. Suppose we define t to equal min {•Etr q, k} = k. It follows trivially that

supplier Y would never induce the retailer to order more than t units of good(s) Y

in aggregate because the retailer has a capacity constraint of k units.

Finally, assume the condition

max {p - ci - Ar (0; w-) i E Y} < 0,

def
holds instead, and that we define t = 0. Therefore, for any unit above t that supplier

Y induces the retailer to order (in aggregate), the supplier incurs a loss because the

marginal profit on the zth unit is upper bounded by AY(x; wy), which is a negative

number for any x > 2. And so, supplier Y would never induce the retailer to order

more than t units of good(s) Y in aggregate. O

6.6.12 Proof: Optimal aggregate order for a fixed wy.

Proof of Theorem 6.7. The (Weierstrass) Extreme Value Theorem says that for

any continuous and real function f on a compact metric space X, there exists a point

x* E X such f(x*) = sup.,x f(x). (Rudin 1976, Theorem 4.16) From Corollary 6.5,

we have that Ar (EtEY qt; Wy) is continuous on the set of feasible order quantity vec-
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tors, Q de {q E Rn I Wn=1 qt < k}. Therefore, we have that supplier Y's objective

function, • 1,EY (piFP(qi) - Ar (-t•Y qt; w7 ) - Ci) . qi, when solving Y-SUPPLIER-

IND UCING-A GGREGATE- ORDER(w7 ), is continuous on Q (because it consists

of a finite sum of products of continuous functions). The set Q is closed and bounded

(and hence compact) and is a metric space (under the Euclidean metric). Therefore,

applying the (Weierstrass) Extreme Value Theorem, we have that an optimal aggre-

gate order quantity xY (u wy) and optimal induced order vector qY(wy) exist for the

problem Y-SUPPLIER-IND UCING-A GGREGA TE- ORDER (w-y).

From Theorem 6.6 we have that for any fixed value x, the optimal vector of goods

that supplier Y induces the retailer to order is qY(x; uw), the solution to the decision

problem Y-SUPPLIER-PRICING-PRIMAL(x,wy). Therefore, we can re-express

the objective function

iEY tEY

for the problem Y-SUPPLIER-INDUCING-A GGREGATE-ORDER(w-) as

Z (piFi (qY(x; wy)) - Ar (x; Wy) - ci) qY (X; Wy)

iEY

so that the only decision variable we need to solve for is x.

Recall from Corollary 6.6 that Ar (x; vy) is not differentiable everywhere. However,

from the proof of Corollary 6.6, we know that both the derivative from the right and

left do exist for Ar(x; Wy) (and are equal almost everywhere except at IYI - 1 points
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at most). Therefore, we can write

(z (PiF2 (qr(x;w-w)) - A (x; wv) - c Y) • q(x; wv)

=o- (Ez (;P) (qC(x;w_)) - Ar (x;6))- ci) ( )
ai- (iEY\ZY (x;wy-) (; _) - C) (x

d0 ) dq
So- ((pif (qr(x; 6w)) - ci) .qa(v ; w)) ( - (x ((; o n (t ; W o))

iey\zy (;W))FiGY\ZY (X;U-Y)

o C(OX 6 - qy (x; wy-)

- e (piFi (qY (x;w u-)) (1- gi (q) (x;wu-))) - cw - At (x;w j)) Oq
iEY\Z(k,x,w-y)

-XY (X (x;w) -'9___ _

iEY\Z(k,x,uiLa)

i(iEY\Z(,) x)W (iEY\Z(k,x, ')

OAT(X; wy)A (X; Y)-x x- (6.61)

Since = - 0 and the cumulative distribution function for demand of each good y E Y

has the IGFR property, from Corollary 6.7 we have that AY (x; Wy) is nonnegative for

every x E [0,.]. Furthermore, from Theorem 6.6 we have that AY (x; W-y) is strictly

decreasing as x increases. Since the retailer is service constrained for good(s) Y,

from Corollary 6.5 and Corollary 6.6 we have that x o(;l - is nonnegative and

nondecreasing. Therefore, from equation (6.61), we have that supplier Y's objective

function is concave in the induced aggregate order x. And so, equation (6.19) holds.

From the proof of Theorem 6.6, we have that equation (6.20) holds.
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6.6.13 Proof: Characterizing Wyr(wy).

First, we introduce some preliminary definitions. For the motivation for these defini-

tions see See Sundaram (1996) (Chapter 9). Consider metric spaces Q and W and a

correspondence D: W -- 2Q.

DEFINITION 6.1. The correspondence D is upper-hemicontinuous at a point w E

W, if for all open sets V such that D(w) C V, there exists an open set U containing

w, such that w' E U n W implies )(w') C V. The correspondence D is upper-

hemicontinuous on W, if D is upper-hemicontinuous at each point w E W.

DEFINITION 6.2. The correspondence D is lower-hemicontinuous at a point w E

W, if for all open sets V such that D(w) n V - 0, there exists an open set U

containing w, such that w' E U n W implies D(w') n V - 0. The correspondence D

is lower-hemicontinuous on W, if D is lower-hemicontinuous at each point w E W.

Finally, the correspondence D is continuous at a point w E W, if D is both

upper-hemicontinous and lower-hemicontinuous at w. And the correspondence D is

continuous on W, if D is continuous at each point w E W.

We apply Berge's Maximum Theorem (Proposition 6.1) in the proof of Lemma 6.1,

below. Therefore, we state the Maximum Theorem for completeness.9

PROPOSITION 6.1 (Berge's Maximum Theorem). Consider metric spaces Q

and W, a continuous function f : Q x W -+ R, and a compact-valued and continuous

correspondence D : W --+ 2Q . Suppose we define the function f* and correspondence

D* by the equations

f*(w) ef max{f(q, w) I q E D(w)}, (6.62)

D*(w) df{q E D(w) I f(q,w) = f*(w)}. (6.63)

Then, the function f* is continuous on W, and the correspondence D* is compact-

valued and upper-hemicontinous on W.

9See Sundaram (1996) (Chapter 9) and Border (1989) (Chapter 12) for the proof of the Maximum
Theorem.
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Now we state and prove Lemma 6.1 (for use in the proof of Theorem 6.8 and

Theorem 6.9).

LEMMA 6.1. Supplier Y 's objective function 7ry(wy, w-y) del Eicy(Wi-Ci)qr(wy, WYy),

when solving Y-SUPPLIER(wv), is continuous in the vector (wy, Wy).

Proof of Lemma 6.1. First, we show that for any good t E N, the retailer's in-

duced order quantity qt(wy, Wy) is continuous in the vector (wy, wy). Denote the

set of feasible order quantity vectors by Q {q E R I 1t= qt < k} and the

set of feasible wholesale price vectors by W d E e [ct,Pt]. Consider the function
def

f : Q x W --+ R defined by the equation f(q, w) = Ei=1 piE[Si(qi)] - wiqi and

the correspondence V : W -- 2 Q defined by the equation D(w) = Q. For any

good t E N, the expected sales E[St(qt)], when the retailer orders qt units, equals

qt. Ft(qt) + f t x -ft(x) dx = f' Ft(x) dx (by using integration by parts). Since
Ft(x) is continuous on Q, we have that E[St(qt)] = f6't Ft(x) dx is continuous on Q

(Rudin 1976, Theorem 6.20), so that the function f is continuous on Q x W (since

f involves finite sums and products of continuous functions). Furthermore, the cor-

respondence D is compact-valued and continuous, because for any wholesale price

vector w E W the equation D(w) = Q holds. Therefore, from Proposition 6.1, we

have that the correspondence D* (as defined in Equation (6.63)) is compact-valued

and upper-hemicontinous on W. However, every order quantity vector in the set

D*(w) is a solution to RETAILER-PRIMAL(k,w) and in the proof of Theorem 6.1,

we showed that RETAILER-PRIMAL(k,w) has a unique solution, q%(w). Therefore,

D*(w) is single-valued (for any w e W) and equals qt(w). Since D)* is single-valued

and upper-hemicontinous on W, it must, therefore, be continuous on W, implying

that the function qt is continuous on W. Furthermore, since supplier Y's profit ry(w)

is a finite sum of products of continuous functions on W, the function ry (w) is also

continuous on W. O

Proof of Theorem 6.8. The (Weierstrass) Extreme Value Theorem says that for

any continuous and real function f on a compact metric space X, there exists a

point x* E X such f(x*) = supzEX f(x). (Rudin 1976, Theorem 4.16) Since, the
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hypercube [,,y[CI, Pt] is closed and bounded (and hence compact) as well as a metric

space (under the Euclidean metric), and since the supplier's objective function is

(real) continuous in its decision vector Wy (from Lemma 6.1), we, therefore, have (by

applying the Extreme Value Theorem) that supplier Y can attain the supremum of

its objective function (over its constraint set) from a vector in its constraint set, i.e.,

the hypercube rty,[ct1,pt], implying that the solution set Wb(w-y) is non-empty.

From the proof of Theorem 6.7, we have that when supplier Y solves Y-SUPPLIER-

INDUCING-AGGREGATE-ORDER(wv), there exists an optimal (and unique) ag-

gregate order quantity xY(wV) and an optimal (and unique) induced order vector

qY(wy). Therefore, from equation (6.14), we have that the set W'(xY(wvy); wy) is

non-empty. Furthermore, for every good j E Y \ ZY(xY (wy); w-), we must have

pPj (q (XY(wY); wu)) - Ar (xY(ww); Wy) > c3, (6.64)

otherwise, the quantity xY (Wy) and the vector qY(wy-) would not be a solution for

Y-SUPPLIER-IND UCING-A GGREGATE-ORDER(wy-) (because supplier Y could

increase the value of the objective function by choosing the induced order for good j

to be zero, if equation (6.64) did not hold for good j). Therefore, for every wholesale

price vector w' E WY(xY(w-Vy); Wy) and for any good j E Y \ ZY(xV(wV); yw), we

have cj < wj < pj from equation (6.14). Also, from equation (6.14), we have that

there always exists a wholesale price vector w' e W'(xY(wy-); wy) such that for

every good i E ZY(xV(wy); wy), we have w' = pi. Therefore, we have that the set

WY(x Y (Wy); Wy) n f1tEy[Ct,Pt] is non-empty.

Next, we show that Wybr(wV) g WY(x'Y(wv); WV) A] tEY [Ct,pt]. Consider any

wholesale price vector wy E WIr(w-V) for goods Y. From the constraints of Y-

SUPPLIER(wV), we know that Wy E Hy [ct, pt]. Assume that Wy W Y (xY (w); W y-).

From Theorem 6.1, we have that the objective function for Y-SUPPLIER(w-V) sat-

isfies

S (wi - ci) . q (w) = (piP (q'(w)) - Ar(w) - cq) -q'(w). (6.65)
iEY iEY
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And from Theorem 6.5 and equation (6.14), we have that for any induced order quan-

tity vector q, that maximizes the objective function of Y-SUPPLIER-INDUCING-

A GGREGATE-ORDER(wy) subject to its constraints, there exists a wholesale price

vector w', E WY qiy qC; WV-) L ••y[Ict,Pt] that satisfies

SPii (q) - Ar  ; i - = (w- c) y) (6.66)

iEY tEY iEY

From our assumption that wy V WIY(xy(wy); wy), we have iE(y (wi - ci) . q[(w) <

KsEY (wM - Ci) -q[(w, Wy) so that wy V Wybr(wgy). But this is a contradiction. Thus,

we have Wy E WY(xY(wv); v) n ,Hy[c', pt].

Next, we show that WY(xY(wY); wY) N HIty[Ck,Pt] C Wbr(wy). Consider any

wholesale price vector w, E WY(xzY(wy); w-) fn HtEy[Ct, Pt] for goods Y. Then,

there exists a vector q', of order quantities such that for any good i E Y, q =

q[(w,, wy) and equation (6.66) holds. Assume that w', ý Wyr(wy). Then, there ex-

ists a Wy E Hy[ct, PtI such that Z vy (wi - ci) .q(w) > ZYev (w: - ci).q[(w', Wy).

But, since Ar(w) = A r (Et qi(w); uw) (due to Theorem 6.3), from equation (6.65)

we have

(Wi - ci).qr (w) = (q()) - Ar q(r(w); wy) - c) q(w). (6.67)
iEY iEY tEY

Therefore, from equation (6.66), we have

SP(q(w))- A qi(w); WV - c qi- (w) > p PiA(q) - ( qt; WV - ci q.
iEY tEY iEY tEY

(6.68)
But, this is a contradiction because wu eWY(x(wV); wy) N It~y[Ct,pt] and

the vector qy,(w) is in the feasible set of Y-SUPPLIER-INDUCING-AGGREGATE-

ORDER(wy). Thus, we have w, e Wyr(wy).

Finally, we show that the set WY (xY (wy); wV) n 1ty [Ct, pt] (as defined in equa-

tion (6.14)) is convex. Consider any two wholesale price vectors a, b E WY(xZY (Wy); wy)

and any real number rl E [0, 1]. For every good j E Y \ ZY (xY'(w); w-y), we have
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aj = bj (from equation (6.14)). Furthermore, for every good i E Z'(xy(wy); wy), we

have r-.ai+(1-rq).bi > min {ai, bi}. Therefore, qr(,-ay+(1-r).-by, wy) = qr(ay, wy),

implying that the wholesale price vector q -a2 + (1 - rl) b E WY (x (wy); Wy). There-

fore, the set W1 (x y (wy); wy) is convex, and W (xY (w); wy) n Ry[Ct, pt] is also

convex since it is the intersection of two convex sets. LO

6.6.14 Proof: Existence of an equilibrium when s suppliers

compete.

We apply Kakutani's Fixed Point Theorem (Proposition 6.2). Therefore, we state it

here for completeness. 10

PROPOSITION 6.2 (Kakutani's Fixed Point Theorem). Consider a subset W c

R' that is non-empty, convex, and compact and a correspondence B : W - 2W that

is upper hemicontinuous with the additional property that B(w) is non-empty and

convex for every w E W. Then, there exists a fixed point w E W for B, i.e., there

exists a point w E W such that w E B(w).

Proof of Theorem 6.9. Suppose there are s > 2 suppliers identified by the sub-

sets of goods they offer: Y1,...,Y,. Denote the set of feasible supplier wholesale

price vectors by W def teN[Ct, t]. Consider the supplier best response correspon-

dence Wbr : W -+ 2W defined as the s-ary Cartesian product over the s supplier

best response mappings. Namely, for any wholesale price vector w E W, Wb (W) ef
(WYlbr(,,, ), Wyoru2-.)) (wyl, wy,) I bry, G ybrbwy-), wy W

In order to show that an equilibrium exists, we will apply Kakutani's fixed point the-

orem to the supplier best response correspondence Wbr : W --+ 2 ". First, observe

that the set W C R" is non-empty, compact, and convex. Furthermore, from Theo-

rem 6.8, we have that for any supplier Y C N that faces competing wholesale prices

wV, the best response mapping Wyr(wy) is non-empty and convex"1 , implying that

10See Border (1989) (Chapter 15) for the proof of Kakutani's Fixed Point Theorem and Cachon and
Netessine (2004) for an overview of existence theorems applied in the supply chain literature.

11Convexity follows from our assumption that the retailer is service constrained for good(s) 7, and the
cumulative distribution function for demand of each good y E Y has the IGFR property.
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WVbr(w) is non-empty and convex.

Finally, we show that the correspondence Wbr is upper hemicontinuous. Assume

Wbr is not upper hemicontinuous. Since W is compact, we have that the correspon-

dence Wbr is not closed. 12 Therefore, there exists wholesale price vectors Cv, z E W

such that the sequence {w'} of wholesale price vectors converges to D and the se-

quence {zt } of wholesale price vectors satisfies z' E Wbr(Wl) and converges to z,

yet z ( W vbr(). Therefore, if we denote supplier Y's profit by y7r(wy, wy-) f

-iEK(Wi - ci)qi (wy, w7 ), there exists some supplier Ya (a E {1,..., s}) and some

wholesale price vector "by, E HtEyaI[ct,Pt] such that irya(fvya, "7yo) < "Ya()ya, W7 o).
Therefore, there exists an e > 0 such that

Ya (Zya, 7Wya) + 6 < Wryaya(Y,W V) - E. (6.69)

Supplier Ya's objective function 7rya (w) i:

there exists an integer m such that for 1

c. So that the inequality 7ry (z1, w 7 )

Equation (6.69), we have

s continuous on W (see Lemma 6.1), therefore

> m, we have irya (Zy,, a)--iya (Z, W) <

< +yo (Eya, 7V) + holds. Therefore, from

vy(z, w ,) < TYa (wY , I ) - E.

Because of the continuity

integer o such that for 1 >

we have wya(Ya,W vo) - 6

1 > max {m, o}, we have

supplier Ya's objective function, there also exists an

we have 'rya (WYWa) - Ya (liY,' WY)I < E. So that

7TYa (Jya' W1a). Therefore, from Equation (6.70), for

7Ya (Za, W a) < 7"ya (fya I W ). (6.71)

But, this is a contradiction because zl E W/Vbr(WI). Therefore, the correspondence

Wbr is upper hemicontinuous. And, therefore, by applying Kakutani's fixed point

12See Border (1989) for the following result: Consider sets D C RI, R C R m and the correspondence
C : D -- 2

R . If R is compact and C is closed, then C is upper hemicontinuous.

(6.70)
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theorem to the supplier best response correspondence Wbr, we have that there exists

a vector weq E W of wholesale prices for all n goods, such that weq E Wbr (Weq). e

6.6.15 Proof: Unique equilibrium shadow price for capacity

when s suppliers compete.

Proof of Theorem 6.10. Suppose there is one supplier (i.e., s = 1) denoted by

the set N of goods offered. The (Weierstrass) Extreme Value Theorem says that

for any continuous and real function f on a compact metric space X, there exists

a point x* E X such f(x*) = supXEx f(x). (Rudin 1976, Theorem 4.16) Since,

the hypercube ILteN[ct,pt] is closed and bounded (and hence compact) as well as a

metric space (under the Euclidean metric), and since supplier N's objective function

WNg(W) iEN(Wi - ci)qi(w) is (real) continuous in its decision vector w (from

Lemma 6.1), we, therefore, have (by applying the Extreme Value Theorem) that

supplier N can attain the supremum of its objective function (over its constraint set)

from a vector in its constraint set, i.e., the hypercube rltEN[ct, Pt], implying that a

solution exists.

Next, we show that when there is one supplier (i.e., s = 1) every solution w

to the supplier's decision problem in the first stage induces the retailer to have a

shadow price Ar(w) = 0. Assume that some solution vector w' induces a positive

retailer shadow price Ar(w ') > 0 instead. From Theorem 6.5, we have that there

exists another wholesale price vector WO such that the retailer orders the same amount

as under w' (i.e., qr (w) = qr(w')), but the shadow price Ar'() = 0. Therefore, from

Theorem 6.1 we have that w' < wii for every good i that the retailer orders so that

7rNy(w') < 7rN(W1). But this is a contradiction because w' is a solution vector for the

supplier's decision problem in the first stage. Thus, it follows that every solution w to

the supplier's decision problem in the first stage induces the retailer to have a shadow

price Ar(w) = 0.

Suppose there is more than one supplier (i.e., s > 2). We denote supplier i

by the subset Yi of goods offered. Furthermore, suppose that the retailer is service
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constrained for goods N, the demand for each good t E N has the IGFR property,

and Assumption 6.1 holds. We show that every equilibrium wholesale price vector

w induces the retailer to have the same shadow price which we denote by Aq (i.e.,

A~r(w) = AN). Assume that instead we have two distinct equilibrium wholesale price

vectors, w' and w', but that they induce different shadow prices for the retailer's

capacity (i.e., WA(w') A~ (i)). Without loss of generality, suppose

0 < A~(w') < Ar()). (6.72)

Recall from Section 6.4.3 that the set

L(q(),q(w)) def { e {1,...,s} I q[() > q[(w')
iEYI iEYI

denotes the suppliers that have a larger share of the retailer's capacity under whole-

sale price vector Wi when compared to the allocation under wholesale price vector

w'. If the two distinct wholesale price vectors induce the retailer to make the same

allocation, i.e., qr(j) = qr(w'), then the set L(qr( (), qr(w')) is empty, otherwise the

set L(qr(O), qr (w')) must be nonempty because the equation

q[r(w') 5 1 qr(W-) = k (6.73)
iEN iEN

holds (which follows from equation (6.72) and Theorem 6.1).

Consider the case when the set L(q'r(i), qr(wz)) is nonempty. For the purposes of

this proof only, we define I d4 min (CtE qt, k }. For every supplier 1 E L(qr(ii), qr(w')),

from Theorem 6.7, we have that

S qr () = sup xE [0, t] IA(x;-(x; )-x. > Ž0 ) . (6.74)
iEYI ix- -

From Theorem 6.6 (which implies that the function AY (x; w') is strictly decreasing

as x e (0, min {• •y qte, k}] increases) and Theorem 6.7, we have that for every
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supplier 1 E L(qr (i'), q"(w')) the equation

Zqr(w') = inf x E [0,] I AyI(x; W) - x. WIT, < 0

holds. From Assumption 6.1 we have

IEL(q(),qr(w'))
1EL(qr(fio),qr(wI))

(6.76)
Oar~x 

wX; 

I

qr (W) . Ox Y-) >, (lEL~r(•),q Xw iEYI 4ir(

IEL(qr(·i-),qr(2o')) iEYI OX+x·(c; w~

Therefore, there exists a supplier 1 E L(qr(?), qr (w')) such that the equation

x 19 x- Z rQ(jo)(iElj / - iEYji

> qr (w') O(x + =4)

(5 X=EiEYj q.(W')
(6.77)

holds. And so we have

0 < A• qK(); - ( q(w') • x=~Xi, .

mY =E xr(w')
iEYj EiXE~fq

< 0.

(6.78)

(6.79)

(6.80)

(Equation (6.78) follows from equation (6.74). Applying Theorem 6.6 and noting the

equations (6.72) and (6.73), we have A•Y q~((i); ) < t" (•-•. q)(w');w)
holds. Therefore, from equation (6.77) we have equation (6.79). And, equation (6.80)

follows from equation (6.75).) Notice that equation (6.80) leads to a contradiction,

0 < 0. Thus, it follows that every equilibrium wholesale price vector w induces the

retailer to have the same shadow price which we denote by Aeq (i.e., Ar(w) = Xeq).

0

(6.75)
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6.6.16 Proof: Unique capacity allocation when s suppliers

compete.

Proof of Theorem 6.11. Consider the case when the retailer orders from at least

two suppliers when facing wholesale price vector w'. Assume that the equation

A•(') > •r(w') + min {my,(w') I j E {1, ... ,s}, Yj n (N \ Z(w')) $ 0} (6.81)

holds, instead, for two equilibrium wholesale price vectors WO and w' that induce

the same retailer order (i.e., qr(Qi) = qr(w')) but induce shadow prices for capacity

satisfying AT(w') A< A"(). Consider any supplier Yd such that

dE arg min my, (w'). (6.82)
jE{1,...,s}, Yjn(N\Z(w')) O

We show that supplier Yd will deviate from the wholesale price vector wyd when

the wholesale price vector for the other goods Yd is held fixed at wiy-. Since the

two equilibrium wholesale price vectors i7 and w' induce the same retailer order (i.e.,

qr(Gj) = q'(w')), from the proof of Corollary 6.6 (see equation (6.47)) and Theorem 6.6

we have that the equation

qjr( ) -) >_ q(w)
i dx- yd qr (I) ax- yd qr(,)

(6.83)

holds. Furthermore, since q" (i) = qr (w') holds, from Theorem 6.3 and Theorem 6.6

we have that the equation

AYd ( id qj(r); + A W = AYd ( r q(w'); - + A"() (6.84)
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holds. Therefore, we have

my( de Xy) qr(--; _ qd•w-r ) ()(Xjj

0 X(tEEYdd d )w

= qr((w) + myd(w') - (ii)(w
)=+ -A

< 0. (6.85)

Equation (6.85) follows from equation (6.81). But this is a contradiction because,

according to Theorem 6.7, supplier Yd would deviate from the wholesale price vector

wyd when the wholesale price vector for the other goods Yd is held fixed at i-Y. Thus,

equation (6.25) follows.

Consider the case when the retailer orders from only one supplier (i.e., supplier

Y) when facing wholesale price vector w'. Assume that the equation

A (-) > A•(w') (6.86)

holds, instead. Supplier Y's objective function is lry(w) de= Z y(wi -c)qi•(w). Since

Z,•y qiT( ) = "iEy qi(w') = k, from Theorem 6.7 we have qr(ii) = q[(w') for every

good i E Y. Therefore, from Theorem 6.1 we have that wii < w' for every good i

that the retailer orders so that 7ry(ii) < 7ry(w'). Observe that "ry(w') = 7'y(w'Y, iiy)

since AX(w') = A'(w , cy-) (for an equilibrium w') implying AT(w') = Ar(wy, ( i~I-)

(using Theorem 6.4). And, so we have 7ry(ii) < iry(W', Cy). Therefore, supplier

Y prefers wholesale price vector wy over Wy when the other good(s) Y have fixed

their wholesale price vector to be -y. But this is a contradiction because Wi is an

equilibrium wholesale price vector. Thus, it follows that A (W) < Ar(w').

O
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6.6.17 Proof: Supplier collusion.

Proof of Theorem 6.12. Denote supplier Y's objective function by the function

wy(w) e ifN(Wi - ci)qir(w). From Theorem 6.5, we have that there exists another

wholesale price vector ii such that the retailer orders the same amount as under w'

(i.e., qr(j) _= qr(w')), but the shadow price A (W) = 0. Therefore, from Theorem 6.1

we have that w' < W'i for every good i that the retailer orders so that for any supplier

Y we have rxy(w') < iry(ii). Furthermore, from Theorem 6.10 we have that for the

two-stage game with one supplier any equilibrium wholesale price vector induces a

shadow price of zero units. Therefore, if w* is a solution to (Y1 U... UY ,)-SUPPLIER

(see Section 6.1.3), then we have

8 8

t=1 t=1

So we can conclude that
8 8

t=1 t=1

SECTION 6.6. PROOFS 159





CHAPTER, 7
Multiple retailers buying from a

newsvendor

The supply chain described in Chapter 6 operates in push-mode because the supplier

'pushes' the inventory to the retailer so that the retailer takes on the inventory risk for

the supply channel.1 On the other hand, when the supplier takes on the inventory risk

for the channel, and the retailer replenishes (or 'pulls' inventory) from the supplier

as demand materializes (e.g., by drop-shipping), the supply chain operates in pull-

mode.(Cachon and Lariviere 2001, Cachon 2004)

In this chapter, we consider a 'pull'-version of the game in Chapter 6 where mul-

tiple retailers pull inventory from a capacity-constrained supplier during the sales

season. We conduct comparative statics and analyze the equilibria of this game. Fur-

thermore, we analyze the impact of retailer collusion on the equilibria of the game.

Chapter Outline

In Section 7.1 we explain the supply chain setting. In Section 7.2, we analyze

the supplier's capacity allocation decision and derive the (endogenous) price for the

supplier's capacity. We conduct comparative statics in Section 7.3. Then, in Sec-

tion 7.4, we analyze the equilibrium setting, by providing conditions for the existence

of an equilibrium in Section 7.4.2 and for uniqueness in Section 7.4.4. Finally, in

1See Cachon (2004) for a detailed discussion on 'push' and 'pull' modes of supply chain operation.
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Section 7.5, we consider retailer collusion/integration and show that the supplier's

shadow price for capacity decreases and that every retailer can achieve more profit.

M 7.1 Model.

As in our 'push' version of this model which we explained in Chapter 6, there are

n different goods. Good i has a fixed marginal cost of cq per unit supplied and a

fixed retail price pi. The demand for good i, Di, is random with probability density

function (p.d.f.) fi and cumulative distribution function (c.d.f.) Fi. We assume that

the distribution for demands Di does not depend on the inventory (qi, q2,... ,qn) in

the supply channel.

In contrast to our previous model, however, there is a single supplier offering all

n goods with a total capacity that is constrained by some k > 0, so that the capacity

constraint can be expressed in the form ql + - -- + qn < k. And there are s retailers,

each 'pulling' from a subset of the n goods, such that no two retailers 'pull' the same

good.

The models parameters are summarized in Figure 7-1, with the arrows denoting

the direction of product flow.

Figure 7-1 "n goods & 1 capacity constrained supplier" model.

1

Note. A capacity-constrained supplier v offers n goods, each 'pulled' by exactly one retailer. The retailers
are not depicted here. The supplier faces marginal cost ci (per unit) for good i. The retailer for good i faces
uncertain demand Di downstream with c.d.f. Fi when the price for good i is fixed at pi (per unit). Each
retailer, for each good i the retailer sells, offers a wholesale price wi to the capacity-constrained supplier for
each unit of capacity dedicated to good i. The supplier must decide on a capacity allocation q for the goods
{1,...,n}.
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7.1.1 Equilibrium setting

The game, again, consists of two stages. In the first stage, the retailers move simulta-

neously, and each retailer offers the supplier a wholesale price vector for the good(s)

that the retailer would pull. In the second stage, the supplier guarantees the retailer

for good i E N d {1,..., n} an inventory level of qj units (for good i) from its total

capacity of k units.

7.1.2 Supplier's problem in the second stage

The supplier is faced with an offered wholesale price vector w (by the retailers) and
def

uncertain sales Si(x) = min{x, Di} for product i E {1,..., n} (when dedicating x

units of capacity to good i). The supplier decides on a vector of capacity guarantees

for the goods (and their respective retailers) in order to maximize expected profit

7rv(q) d E[•• 1 wiSi(qi) - ciqi] while keeping in mind the capacity constraint k.

Namely, the supplier solves the following convex program with linear constraints in

the decision vector, q:

SUPPLIER-PRIMAL (k,w):

n

maximize Z (wiE[Si(qi)] - ciqi) (7.1)
i=1

subject to qi 2 0, i= 1,...,n
n

k - Z'qi > 0.
i=1

Because of our assumptions on the distribution of the demand Di for each product,

it can be shown that SUPPLIER-PRIMAL(k,w) has a unique solution (vector),

which we denote by q'(w). We denote the unique solution, arg maxqERn 7rv(q), for the

unconstrained supplier's problem by qu(w). Note that the unconstrained supplier's

problem can be decomposed into n independent newsvendor problems, each of which

decides on an order quantity for a single good. Therefore, q%(w) equals the optimal

order quantity for a newsvendor ordering good i only, which is well known to be
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F[-l(ci/wi) units (e.g., Cachon and Terwiesch (2006)).

The dual problem in the decision variables 71, 72, ... , Y (the shadow prices for

the nonnegativity constraints) and A (the shadow price for the capacity constraint)

is:

SUPPLIER-D UAL (k,w):

minimize max (wiE[Si(qi)] - ciqi) + 7iq + ( k - qi
{qERlk-•'t_1 qt2O} i=1 i=1 i=l

(7.2)

subject to -yi 0, i= 1,...,n

A>0.

Also, SUPPLIER-DUAL(k,w) has a unique solution which we denote by

(710(W),..., .. (w), \v(w)).

7.1.3 Retailer's problem in the first stage

When the retailers offer wholesale price vector w and the supplier, in response, dedi-

cates capacity qv(w), a retailer, 'pulling' from the set Y C N de {1,..., n} of goods,

obtains profit 7ry(w) def - wi)E [Si (q (w))]. If there exist other good(s)

Y = N \ Y, then retailer Y's profit depends on the wholesale prices offered by the

other retailer(s) (due to the terms {qv(w)}iEy). 2 And, therefore, retailer Y competes

in a simultaneous-move game in the first-stage against the other retailer(s).

If there exist other good(s) Y and the corresponding wholesale price vector w-V is

held fixed, a retailer, pulling the good(s) Y, determines the vector of wholesale price(s)

to offer for good(s) Y by solving the following program with linear constraints in the

decision vector, wy:

2Retailer Y denotes the retailer that 'pulls' only from the set Y of goods.
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Y-RETA ILER (wy):

maximize C (pi - wi) . E [Si (q%(w))] (7.3)
iEY

subject to pi-wi 2 0, ieY,

wi-ci>O, iEY.

Similar to our 'push-mode' equilibrium setting, in this 'pull' setting we can charac-

terize the solution set Vybr(wy) for Y-RETAILER(wy), when the supplier is ser-

vice constrained for good(s) Y and the c.d.f. for each good y E Y has the IGFR

property. And, therefore, again, we denote the best response correspondence by

Wbr dqe (Wyb,..., Wy), so that any (pure-strategy) equilibrium in the simultaneous-

move game (and, thus, in the overall Stackelberg game) corresponds to some fixed

point of the correspondence Wbr, i.e., a vector weq of wholesale prices for all n goods,

such that weq E Wbr(weq).

7.1.4 Equilibrium with an unconstrained supplier

Cachon and Lariviere (2001) and Cachon (2004) analyze this Stackelberg game, for

an unconstrained channel with one supplier and one retailer. But, their equilibrium

results are applicable in a setting with multiple retailers pulling multiple goods from

one unconstrained supplier. In particular, since for any good i E N, the quantity

that the supplier prepares q,?(w) equals qy'(w) = FP•(ci/wi) when the supplier is

unconstrained, we have that good i's profit, (pi - wi) -Si(qy(w)), is not dependent on

the wholesale price of any other good. Therefore, in the first stage, any retailer offering

a wholesale price for only one good faces a 'buying from a newsvendor' problem and

any retailer Y offering wholesale prices for more than one good can decompose its

problem into IYI independent 'buying from the newsvendor' problems.

Applying Cachon and Lariviere (2001) and Cachon (2004) to our setting: when

Ft has the IGFR property for every good t E N and the supplier is unconstrained

(i.e., k is sufficiently large), the game results in a unique outcome (qe, We) defined
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implicitly in terms of the equations

ptFt(q') - ct (1 + (E[St(qft)]/Pt(qe)) - (ft(qte)/Ft(q))) = 0, t = 1,... ,n; (7.4)

wtFt(qt') - ct = O, t = 1,..., n. (7.5)

7.1.5 Definition: Valuation for capacity

In Section 7.2, we show that when the retailers offer wholesale price vector w in the

first round of the Stackelberg game, they induce an endogenous valuation, Ei= E[Si(q (w))].

Av(w)/F (q (w)), for the supplier's capacity.3 Furthermore, the shadow price AV(w) in

our optimization problem can also be interpreted, more traditionally, as the marginal

value of the supplier's capacity. In this chapter, we are interested in understanding

the valuations that are feasible in our equilibrium setting. In particular, if we denote

the set of equilibrium wholesale price vectors for the Stackelberg game (when the

retailer has a capacity of k units) by Weq(k) d {w I w E Wbr(w)}, we are interested

in determining properties of the set of equilibrium shadow prices for capacity, i.e.,
def

the set Aeq(k) =f {A A = A'(w), wE (k)}.

Again, although the analysis in Section 7.3 is specific to a newsvendor setting

and a wholesale price contract, our analysis can be generalized for other equilibrium

settings under different supply contracts.

N 7.2 An endogenous valuation for the supplier's

capacity k

Theorem 7.1, below, parallels Theorem 6.1 in that it implicitly defines the sup-

plier's shadow price A'(w) for capacity k and the supplier's allocation of capacity for

the set N of goods in the second stage when the supplier is offered wholesale price

vector w.

3So that any retailer that obtains qy (w) units of the supplier's capacity for good i, in effect, pays the sup-
plier an extra amount E[Si(q (w))] -AV(w)/Fi (qý'(w)) when compared to the amount that an unconstrained
supplier would require for that same amount.
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SECTION 7.2. AN ENDOGENOUS VALUATION FOR THE SUPPLIER'S CAPACITY 1167

THEOREM 7.1. Let Z(w) ýL {i I qv(w) = 0} C N be the set of products that are

not stocked in the supplier's decision problem when offered wholesale price vector

W = (wi, w2, ... , Wn). For any wholesale price vector w, there exists some A'(w) such

that the following conditions hold:

AV(w) = wj (q'(w)) - cj, V j E N \ Z(w), (7.6)

A'(w) > wi - ci, Vie Z(w). (7.7)

Furthermore, A'(w) = 0 if and only if E= qt(w) < k.

Proof. See Section 7.6.1.

Equations (7.6) and (7.7) describe the shadow price's role as a 'threshold' of

marginal profit that the supplier requires from each good. When the capacity con-

straint k is larger than or equal to the unconstrained supplier's total optimal order

quantity, Etn=l qi (w), we have A'(w) = 0, so that equation (7.6) reduces to the

'classic' optimal order quantity result for a newsvendor: Fj (q (w)) = cj/wj for any

ordered good j. Furthermore, equation (7.7) implies that the supplier dedicates ca-

pacity to every good, if c < w.

However, when the capacity constraint is binding for the supplier (i.e., Et•= q(w) >

k), the supplier's shadow price A'(w) for the capacity constraint is strictly positive.

And, therefore, equation (7.6), which can be reexpressed as wj = cj/Fj (qv(w)) +

AX(w)/Fj (q (w)), implies that for every good j, for which the supplier dedicates

capacity, the retailer pays the supplier cj/•j (qj(w)) per unit of good j, a known

result for unconstrained channels (Cachon and Lariviere 2001), but, in addition, the

supplier charges the retailer A'(w)/Fj (qj(w)) per unit of capacity dedicated to good

j, when the retailer 'pulls' the good from the supplier. Thus, the supplier obtains

an uncertain income, •E- Si(q-v(w)) " Av(w)/F• (qfj(w)), from 'selling' capacity k, in

addition to its usual uncertain income, j=1 Si(q= (w)) -ci/F, (q(w)).

In other words, the portfolio qv(w) of goods that the supplier prepares for the re-

tailers, would have cost the supplier the extra amount -iUl E[Si(q= (w))]-.A (w)/Fi (q1 (w)),

if the supplier was unconstrained (or k was large enough).
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Figure 7-2 illustrates the supplier's 'threshold' capacity allocation rule when the

capacity constraint is binding. Equation (7.8), below, uniquely determines the thresh-

old ,V(w), and suggests a simple algorithm for calculating the shadow price A"V(w)

when given a single plot displaying the supplier's marginal expected profit curve for

each available good (e.g., Figure 7-2): start with initial threshold A = 0 and increase

A until the sum of implied order quantities equals min {f•=1 qu(w), k}.

Figure 7-2 The shadow price A'(w) as a 'threshold rule' on the supplier's marginal expected profit
(smep) curves.

Supplier's marginal expected profit (smep) curves and the shadow price for k
10

8

BaIM
4-

0-
0 24 6 8 10 12

order quantity, q

Note. Supplier's capacity is k , 12.7 units. The supplier considers two goods (dash & dot), as in Figure 6-2,
when allocating capacity and faces the same demand distributions, retail prices, and wholesale prices. The
cost (per unit) for each good is c = 1, resulting in a supplier capacity valuation A'(w) w 1.6. Compare this
with the retailer's capacity valuation Ar(w) _ 2, in Figure 6-2, under the same wholesale prices.

COROLLARY 7.1. For any wholesale price vector w, the supplier's shadow price

A' (w) satisfies

A'(w) = min {A I wtFt(qt) - ct < A Vt E N, qt = min { qt(w)k} , q R
t=1 t=n

(7.8)
Proof. See Section 7.6.2.

Regardless of whether or not the capacity constraint is binding, the supplier's

optimal inventory level for any good can be expressed, more generally, as a function

that depends on the shadow price A'(w) as shown in Corollary 7.2. This result follows

smep for good 2:

w2 F2 (q) -c 2

smep for good 1: shadow price "

w1F(q) - c,

I I I I - i



SECTION 7.3. COMPARATIVE STATICS, AND THE GAME'S GEOMETRY.

directly from equations (7.6) and (7.7).

COROLLARY 7.2. For any wholesale price vector w, the supplier prepares q (w) =

F- 1 (max{Av (w)+c twt) units of good t E N.

As a result, under the 'threshold allocation rule' the ratio of the service levels (i.e., fill

rates) for any two goods (that the supplier prepares) equals the corresponding ratio

of the supplier's gross profit margins of those goods, not including income derived

from the capacity constraint4 , as formalized in Corollary 7.3.

COROLLARY 7.3. For good t E N and wholesale price vector w, define ut(W) =d

(wt - ct - Av(w)) /wt (the supplier's gross profit margin for the income derived only

from the good, not the capacity). For any two goods a, b E N\ Z(w) that the supplier

prepares, we have Fa (q (w)) /Fb (qb(w)) = Ua(W)/Ub(W).

I 7.3 Comparative statics, and the game's geome-

try.

We show how changes in the offered wholesale prices effect the supplier's shadow

price for capacity in Section 7.3.1. In Section 7.3.2, we derive a useful property that

simplifies our analysis when considering retailers ordering more than one good. Then,

in Section 7.3.3 we partition the set of wholesale prices into equivalence classes based

on the supplier shadow price they induce or the supplier inventory vector they induce.

So that, in Section 7.4.1, we can recast the retailer's problem Y-RETAILER(wy-)

into a (simpler) problem of choosing an aggregate quantity to induce the supplier to

prepare (see Decision Problem (7.18)). Finally, in Section 7.4.4, we provide conditions

for the existence and uniqueness of an equilibrium (endogenous) capacity price and

conclude with a section analyzing a special case of the Stackelberg game, i.e., when

the retailers collude on pricing.

4For each unit of good t E N that the supplier prepares when offered wholesale price vector w, the profit
margin wt - ct - A'(w) for good t does not include the uncertain income A'(w) received from 'selling' a unit
of capacity.
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7.3.1 The supplier's shadow price for capacity when a whole-

sale price increases

In Theorem 7.2, we show that the shadow price for capacity is nondecreasing when

one good's wholesale price increases (and provide conditions on when the shadow

price is strictly increasing). In addition, we provide a simple upper bound on the

increase in the shadow price.

THEOREM 7.2. Consider two different wholesale price vectors w and w'. Suppose

that w' differs from w on exactly one good i E N so that w' > wi and w'i = w-i.

Then, AV(w) < AV(w'). And, Av(w) < Av(w') if and only if good i is included in the

supplier's inventory under w' (i.e., i E N \ Z(w')) and the capacity constraint is

binding for the supplier under w' (i.e., EC=, qt (w') > k). Furthermore,

(Av(w') + ci) / (Av(w) + ci) < w'/wi. (7.9)

And (AV(w') + ci) / (Av(w) + ci) = w'/wi, if and only if, the supplier prepares k units

of good i under w and w'.

Proof. See Section 7.6.3.

Therefore, when the supplier's capacity constraint is binding (so that the sup-

plier 'charges' for capacity), a retailer that competes with other retailers on price

(by increasing its wholesale price(s) offer(s)) creates two effects: the price-increasing

retailer increases every retailer's cost A' in obtaining a unit of the supplier's capacity,

and the price-increasing retailer increases its share of the supplier's capacity when

the supplier prepares the good at the higher price (cf. Corollary 7.4).

COROLLARY 7.4. Under the same assumptions as in Theorem 7.2, we have qv(w) <

qV(w') and qv(w') < qV(w) for any other good o Z i. Furthermore, the following two

conditions are equivalent.

(a) The supplier prepares more of good i under w', i.e., qi (w) < q (w'), if qv (w) <

k. And the supplier prepares less of any other good o / i under w', i.e.,

qv(w') < qv(w), if o E N \ Z(w).
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(b) The supplier prepares good i under w', i.e., i E N \ Z(w'), and the capacity

constraint is binding, i.e., E" 1 qt(w') > k.

Proof. See Section 7.6.4.

7.3.2 An invariance property on the supplier's shadow price

for capacity

As shown in Theorem 7.2 and Corollary 7.4, any retailer Y can induce a change in the

supplier's shadow price A' for capacity by increasing the offered wholesale price(s) for

good(s) Y, or, equivalently, taking away supplier capacity from competing goods Y. 5

In particular, from Theorem 7.3, it follows that when retailer Y takes away x < k

units of capacity from competing retailers (when the offered wholesale prices w~ for

competing goods Y are fixed), retailer Y induces the supplier to have shadow price

AV(x; wy), as defined in equation (7.10) below, for capacity k.

THEOREM 7.3. Consider a retailer Y C N competing with good(s) Y for a sup-
def

plier's capacity k. Suppose w = (wy, wy) and the wholesale price vector wy is held

fixed. If retailer Y 's wholesale price vector wy induces the supplier to allocate x < k

units of capacity to retailer Y (i.e., Ety qt (w) = x), then the supplier's shadow

price Av (w) equals

Av(x; my) ý min A I wtFA(qt) - ct < A Vt E V, qt = min qt(w),kx, ER .
tEY tE37

(7.10)

Furthermore, if AV (w) = A'(x; wy) > 0, then EtE> qt (w) = x holds.

Proof. See Section 7.6.5.

In other words, when Wy is held fixed and '-=1 qt(w) = k, the supplier's shadow

price for capacity A'(w) is invariant to changes in the offered wholesale price vector

Wy as long as the aggregate capacity allocation, EtEY qt (w), remains the same. Fur-

5Sometimes, in order to affect a supplier's shadow price for capacity, a retailer Y may be required to
increase the wholesale price(s) for good(s) Y beyond the retail price(s), but of course that would not occur
in our formulation.
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thermore, the supplier's shadow price AV(x; wy) is a nondecreasing function of the

aggregate stocking quantity x as formalized in Corollary 7.5.

COROLLARY 7.5. Under the same assumptions as in Theorem 7.3, A)V(x; wy-) is

continuous. When x satisfies 0 < x < k - ••tu~ (w), we have A'(x; wy) = 0, and,

when x satisfies max {k - E q, (w) , } x < k, we have A'(x; wy) is strictly

increasing.

Proof. See Section 7.6.6.

Therefore, when A'(x; wuy) is strictly positive and x E [0, k), the function A'(x; w-y)

is strictly increasing. Furthermore, the average capacity cost that a single-good re-

tailer (good i) incurs when inducing the supplier to allocate x units for good i equals

AV(x; Wy) - Si(x)/(xF (x)). From Corollary 7.5 and Theorem 3.1, we have that this

average capacity cost is increasing in the induced aggregate order x when the c.d.f. Fi

has the IGFR property. And, from Corollary 7.6, below, we have that the marginal

capacity shadow price (i.e., A(X) )) is also increasing (in the induced aggregate

order x) when the retailer is service constrained for good(s) Y.

COROLLARY 7.6. Under the same assumptions as in Theorem 7.3, Av (x; wy) is

differentiable (i.e., a-(xby) = a(x;w)) and A(;) is continuous at x > 0 when

A'(x; wy-) > 0 and A' (x; wy) / wi - ci for any i E Y. If x satisfies the equation

max {k - ••,y qt (w), 0 } < x < k and the retailer is service constrained for good(s)

, then aV -) and x are strictly increasing.

Proof. See Section 7.6.7.

7.3.3 Set of wholesale prices for a particular capacity price

A or capacity allocation q

What are the set of wholesale prices that retailer Y can offer the supplier in order

to make the supplier shadow price A'(x; wy) realizable? (Afterall, retailer Y chooses

wholesale prices in the first stage, not order quantities.) Theorem 7.4, below, provides

the set W(A) of wholesale prices for good(s) N that induce the supplier to have shadow
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price A. Therefore, from Theorem 7.4, we have that WV(Av(x; wy)) n {w' I w- = wy}

is the set of all wholesale price vectors for good(s) Y that induce the supplier to

have shadow price, Av(x; wýy), for allocated supplier capacity x, when the wholesale

price(s) offer(s) for competing good(s) Y is held fixed at wy-.

THEOREM 7.4. When A > 0, any wholesale price vector in the set

W(A) def { wt = (t + A - 7Yt - 1{qt=})/Ft(qt) Vt E N, q, E RI+11)
tetN qt = min { (••teN q(w)) - 1X=o) + k - 1>o} k (7.11)

induces the supplier to have shadow price A for the capacity constraint k. Further-

more, if a wholesale price vector w induces supplier shadow price A for capacity k,

then w E W(A).

Proof. See Section 7.6.8.

When A' > 0, Theorem 7.1 implies that min { EtEN q(w), k } = k, and, thus, The-

orem 7.4 suggests that the set W(A') can be indexed by the simplex {q I tN qt =

k, q E R }N I of stocking quantities. Furthermore, when A'(x; W-y) > 0, the set

W(A'(x; wm)) n {w' I wu4 = wy} can be indexed by the (lower dimensional) sim-

plex {q te qt = x, q E R Y } of stocking quantities. Also, when Av(x; W-y) > 0,

we have that A'(x;w y7 ) is invertible (from Corollary 7.5), so that for every w E

W(Av(x; wýy)) n {w' I w. = wy-}, we have >tj, q (w) = x (from Theorem 7.3).

Only wholesale prices in the set W(AV(x;- wy)) n {w' wy = wy} induce the

supplier to allocate x units of capacity for retailer Y's goods (in aggregate), when

the offered wholesale price(s) for competing good(s) Y is held fixed at W-y. This

set may be large, but Section 7.4.1 shows that there is a unique division of induced

(aggregate) order x among retailer Y's goods that is optimal for retailer Y when the

demand for every good t E Y has the IGFR property, so that the subset of wholesale

price vectors of interest to retailer Y is much smaller. In particular, Theorem 7.1

and Theorem 7.3 imply that the optimal wholesale price vectors (for retailer Y) from

the set W(Av(x; w-)) n {w'I Wy = wy-} are identical in every good (component)

j e Y included in the newsvendor's inventory. Therefore, if for the unique division
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of induced stocking quantity x we have xt > 0 for every good t E Y, then there is a

unique maximizing wholesale price vector in the set W(AV(x; Wyy)) n {w' I = wý}

for retailer Y.

The set of wholesale price vectors {w' I min {• teN q(w), k} = k} can, also,

be partitioned according to the supplier's allocation (vector) q of capacity k (where

-tEN qt = k), as shown in Theorem 7.5.

THEOREM 7.5. Suppose q E RIN and 'tEN qt = k. Any wholesale price vector

in the set

A(q) w •w = (ct + A - t -lt=o})/F~(qt) Vt E N, A E R,, -y RNI

(7.12)
induces the supplier to allocate/stock the vector q. Furthermore, if a wholesale price

vector w induces the supplier to stock the vector q, then w E A(q).

Proof. See Section 7.6.9.

Figure 7-3 illustrates Theorem 7.4 and Theorem 7.5 for the example depicted in

Figure 7-2. Notice, in Figure 7-3, that if the retailers offer wholesale prices farther

along the ray of asterisks, their allocation (at the supplier) stays the same, but they

end up being charged more for their allocated capacity.

U 7.4 Analysis for the two-stage game.

In this section we analyze the equilibria for the two stage game. We start by

reformulating the retailer's best response problem.

7.4.1 Recasting a retailer's problem & its shadow price for

allocated supplier capacity

Consider a retailer Y C N faced with the problem Y-RETAILER(wy) in the decision

vector wy when competing with good(s) Y (whose wholesale price vector w7 is held

fixed) for a supplier's capacity k. From the proof of Theorem 7.1, we have that every
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Figure 7-3 Wholesale price vectors that induce a particular capacity charge or capacity allocation.

Operating Regions

oJU0eq
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Good l's supplier margin, w1 - cl

Note. The supplier considers stocking two goods (dash & dot), as in Figure 7-2, and faces the same capacity,
demand distributions, costs, and retail prices. The shaded region, near the origin, denotes the wholesale
prices that induce the supplier to have a shadow price for capacity of zero. Whereas, the thickest line denotes
the set of wholesale prices that induce the supplier to have a shadow price of 1.6 units for capacity. Also
the region above the dashed ray represents the wholesale prices that induce the supplier to oust the good
'dash' from its inventory allocation (and stock only 'dot'), whereas, the region below the dotted ray denotes
the wholesale prices that induce the supplier to oust 'dot' from its allocation. The ray denoted by asterisks
represents the wholesale prices that induce the supplier to order (.75 k, .25 -k).

wholesale price vector wy is associated with some shadow price, A'(w), for a supplier's

capacity (where w = (wy, wy)) so that the set of wholesale prices can be partitioned

into equivalence classes (i.e., {W(A)}A>o) indexed by shadow price A for a newsven-

dor's capacity (cf. Theorem 7.4). And from Theorem 7.3 and Corollary 7.5, we have

that every positive supplier shadow price for capacity is associated with a unique

aggregate capacity allocation/induced inventory (i.e., ZtEY qt) by the supplier for re-

tailer Y. Therefore, retailer Y has a simple algorithm for solving Y-RETAILER(wyy)

in order to maximize profit: 1) start with an initial aggregate number of units x = 0

to induce the supplier to stock, 2) if A'(x; wy) > 0, find the wholesale price vector

in the set W(AV(x; w-)) n {w' w• = wu } that maximizes profit (which, thereby,

determines the optimal number of units qt of each good t E Y the supplier is induced

to stock/prepare, such that EtEY qt = x), otherwise, if A'(x; wy) = 0, find the whole-

sale price vector in the set W(0) n {w' I w = uw-y, C-ey qv(w') = x} that maximizes

SECTION 7.4. ANALYSIS FOR THE TWO-STAGE GAME. 175



CHAPTER 7. MULTIPLE RETAILERS BUYING FROM A NEWSVENDOR

profit, 3) keep track of the maximum attainable profit, thus far, and the associated

capacity allocation x and optimal wholesale price vector, 4) increase x and go to step

two, if x < t where t is an upper bound on the aggregate quantity of goods that

retailer Y would induce the supplier to stock. The upper bound a is formally defined

later in this section (i.e., Corollary 7.7).

Retailer Y's optimal wholesale price(s) when inducing (aggregate)

inventory x.

Suppose x E [0, ~]. When the c.d.f. Ft has the IGFR property for every good

t E Y, step two of this algorithm can be described by a convex program with linear

constraints in the decision vector qy to induce the supplier to stock. In particular,

from Theorem 7.3 and Theorem 7.4, we have that maximizing the objective function

KiEY(Pi - wi)E[Si(qfi(w))] of the program Y-RETAILER(wy) (i.e., equation (7.3))

over the set of wholesale prices W(AV(x; wV)) n {w' I y = wY, tE" qt (w') = x}

can be re-expressed as maximizing -KEY(Pi - (Av((tEY qt; Wy) + Ci)/Fi (qi))E[Si(qi)]

over the set of induced order vectors {q I qt 2 0 Vt E Y, E•cy qt = x}. Therefore,

the convex program with linear constraints in the decision vector qy that solves step

two of the algorithm is:

Y-RETAILER-PRICING-PRIMAL(x,w--):

maximize E P A ((ty qt; wy) + i ) E[S(qi)] (7.13)
iEY /

subject to qi > O, i E Y

x - -qi = 0.
iEY

When the c.d.f. Ft has the IGFR property for each good t E Y, it can be

shown that Y-RETAILER-PRICING-PRIMAL(x,wy) has a unique solution (vec-

tor), which we denote by qV(x; wy). So that the set of wholesale prices WY(x; wy)

that maximize retailer Y's profit when the retailer induces the supplier to stock x
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units in aggregate and when the other retailers charge woy is

/ ct+AV(x;wuY)-,)yt l{q I (zx;-)=0}

WY (x; tyo) w Ft(q~(x;uw)) . (7.14)

Note that every good t E Y that is included in the supplier's stocking decision has a

unique wholesale price.

The dual problem in the decision variables 71, 72,... 71*YI (the shadow prices for

the nonnegativity constraints) and A (the shadow price for the aggregate induced

order) is:

Y-RETAILER-PRICING-D UAL(x, wy):

minimize max (i - (•EY E[S(qi)] (7.15)
{qER!''x-Ey q-i=} i.Y Fi (qi)

+1fyiqi+A (x-Z i

subject to 'Y> 0, i E Y.

Also, Y-RETAILER-PRICING-DUAL(x,wy) has a unique solution which we denote

by (•' (x; w-y),, ... 1,7 I (x; wy), A•' (x; wy)).

Theorem 7.6 formalizes the idea that retailer Y's shadow price AY (x; wy-) describes

a threshold for the marginal profit of an additional unit of any good in the set Y (when

inducing an aggregate stocking level x at the supplier and facing a fixed supplier

shadow price A' (x; wy-) for capacity).

THEOREM 7.6. Suppose that for every good t E Y, the c.d.f. Ft has the IGFR

property. Let Z (x; wy) {i E Y I qiY(x; wy ) = 0} be the set of products that are

not stocked in retailer Y's decision problem when faced with wholesale price vector

wV and inducing an aggregate stocking level x at the supplier. For any wholesale

price vector oy and induced aggregate stocking level x E (0, min {jE 1, qte, k}], the
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following conditions hold:

EF[ Sj (q (x; W)) ] fj (qjy (x; WVy-))
AY(x;w-V) =pPj (q (x;wV-)) - (cj + A' (x;wv)) •  + [(qY(x;w1 ))] (q'(x;wy))

Vj E Y \ Z Y (x ; uW-), (7.16)

AY(x; wv) > pi - ci - A' (x; W) , V i E ZY(x; W-). (7.17)

Furthermore, AY(x; Wy) + A•(x; Wy) < 0 when x = ZtC q <- k. And, the function

AY (x; W;-y) + AV'(x; WVy) is strictly decreasing as x E (0, min {I Et qft, k }] increases.

Proof. See Section 7.6.10.

From Equation (7.16), we have that retailer Y's shadow price AV(x; WV) represents

an upper bound for the retailer's marginal profit on the xth unit that the supplier

stocks (when retailer Y chooses the optimal number of units of each good y E Y

to induce the supplier to stock, so that the supplier stocks x units in aggregate)

and accounts for the marginal cost of the good as well as the marginal cost for

the supplier's capacity, A' (x; WVy). From Theorem 7.6, we have that the function

AY (x; Wy-) is strictly decreasing in x, because the function AY (x; WVy) + AV(x; WV) is

strictly decreasing and from Corollary 7.5 we know that A'(x; WV) is nondecreasing.

Therefore, retailer Y only considers inducing the supplier to stock up to some t units

(in aggregate) where ± is defined in Corollary 7.7.

COROLLARY 7.7. Under the same assumptions as in Theorem 7.6, retailer Y

would never induce the supplier to stock more than t units of good(s) Y in aggregate

where 2 is defined according to the following conditions. If the conditions

0 < max {pi - c, - Av (0; WV) I i Y} and AY min tq•, k ; )  0,

hold, then 2 is the positive value that satisfies the equation AY(T; WV) = 0. But, if

the conditions

0 < max pi - cj - A' (0; y) iEY and 0 < Ay min q, k w
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hold, then 2 equals min { {tyte q, k} = k. Finally, if the condition

max{pi - ci - A' (0; wy) i E Y} 0,

holds, then 2 equals zero. Under any of these conditions, t • Z-te q<.

Proof. See Section 7.6.11.

Recall that via equation (7.14), the retailer can map any induced aggregate stock-

ing level x to the set W Y (x; wy) of wholesale prices that should be offered to achieve

that aggregate stocking level. Next, we analyze the optimal aggregate capacity al-

location that the retailer should induce (and hence the wholesale prices the retailer

should offer) when faced with wholesale price vector wy from competing good(s) Y.

Retailer Y's optimal induced stocking level x and best response to w-y.

Consider a retailer Y C N competing with good(s) Y for a supplier's capacity k. Sup-

pose w = (wy, wy) and the wholesale price vector w-y is held fixed. From Theorem 7.3

and Theorem 7.4, we have that the objective function •E~,(pi - w)E[Si(qf(w))]

of the program Y-RETAILER(w-y) (i.e., equation (7.3)) can be re-expressed as

EiEy(pi - (Av'(tEY qt; w-y) + ci)/Fi(qi))E[S2 (qi)]. Therefore, as suggested in the

beginning of this section, retailer Y's problem of maximizing profit and deciding the

optimal wholesale price vector w Y(wy) when solving Y-RETAILER(wy-) can be re-

cast as the equivalent problem of deciding upon an aggregate quantity x to induce

the supplier to stock and then deciding how to split the aggregate stocking quantity

x among the goods Y. Formally, the program with linear constraints in the decision

quantity x and decision vector qy that solves Y-RETAILER(wy) is:
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Y -RETAILER-IND UCING-A GGREGATE-ORDER (k, wy):

maximize - tq;) + ci) . E[Si(qi)] (7.18)

subject to qi >O, iCY

x >0,

x - Eqi = 0,
iEY

k - x > 0.

Theorem 7.7, below, provides sufficient conditions for Y-RETAILER-INDUCING-

A GGREGATE-ORDER(uV) to have a unique solution and, under those conditions,

we denote the optimal aggregate order quantity by xY(wyV) and optimal induced

order vector by qY(wy). Therefore, from the proof of Theorem 7.6, we have that the

optimal induced order quantity vector qY(wy) must equal qY(x'; wy). And, from

equation (7.14), retailer Y's best response to competing wholesale prices wy is the

set of wholesale prices WY(xY; wy). Furthermore, when retailer Y is faced with

competing wholesale price vector wy and when it is optimal for retailer Y to induce

the supplier to stock every good y E Y (i.e., Z Y (x Y ; wy) = 0), from equation (7.14),

we have that retailer Y's best response is unique (i.e., the set W Y (xY; wy) has only

one wholesale price vector).

THEOREM 7.7. Y-RETAILER-INDUCING-AGGREGATE-ORDER(wy) has a

unique solution (xY (wy), qY(wy)) defined implicitly by the conditions

(7.19)

q' (w) = qY (xY(wy); wy) , (7.20)

when t # 0, the retailer is service constrained for good(s) Y, and the cumulative

distribution function for demand of each good y E Y has the IGFR property.
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Proof. See Section 7.6.12.

Now we can state the main result of this section.

THEOREM 7.8. Consider a retailer Y C N that faces the problem Y-RETAILER(wy)

(when the vector w- of wholesale price offers from its competitors is held fixed) and,

therefore, decides upon an optimal set WyT(wy) of wholesale price vectors from the

hypercube 1-,,y[ct, Pt]. Suppose the retailers are service constrained for good(s) Y,

and the cumulative distribution function for demand of each good y E Y has the

IGFR property. Then, the solution set WIr(wy) is non-empty, convex, and satisfies

WY(wY) = W[(x,(wY);wy) n [ct,pt]. (7.21)
tEY

Proof. See Section 7.6.13.

7.4.2 Existence of equilibrium

In Theorem 7.9, we provide sufficient conditions so that the two-stage game described

in Section 7.1.1 has at least one equilibrium wholesale price vector, and, therefore,

resulting supplier capacity allocation vector and shadow price for capacity.

THEOREM 7.9. With more than one retailer (i.e., when s > 2), an equilibrium

wholesale price vector exists when the retailers are service constrained for goods N

and the demand for each good t E N has the IGFR property.

Proof. See Section 7.6.14.

Denote the set of equilibrium wholesale price vectors for the Stackelberg game

(when the supplier has a capacity of k units) by Weq(k) d {w I for every retailer Y, Wy E

Wbr(wV)}. Furthermore, denote the set of (resulting) equilibrium capacity prices

by Aeq(k) def{ I  = eAv(w),w E Weq(k)}. From Theorem 7.9, we know that

the set Weq(k) is non-empty, so that the set Aeq(k) is, also, non-empty. There-

fore, two values that allow us to bound the valuation for the supplier's capacity are

Amin(k) de inf Aeq(k) and Amax(k) = sup Aeq(k). But, often times, we can do better,

and give an exact valuation for the supplier's capacity. In the next section, we de-
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scribe an economic assumption that guarantees a unique equilibrium capacity price,

so that the set Aeq(k) has exactly one element.

7.4.3 An economic assumption

When retailers have larger allocations of the newsvendor's capacity, the newsvendor's

capacity price is more sensitive to attempts to increase that allocation. Formally, con-

sider s retailers and two different (aggregate) capacity allocations to those retailers

(represented by the vectors a = (al,... ,a7) and b = (bl,... , b,)) induced by two op-

timal wholesale price vectors Wa and wb (respectively) for those aggregate allocations

(see Section 7.4.1) that cause the newsvendor to allocate his entire capacity k (i.e.,

-l at = k and CEs=l bt = k). From Theorem 7.3, we have that retailer competition

induces some virtual 'charge' for capacity (involving A' and A', respectively), paid

to the newsvendor. From Theorem 7.6, we have that the ith retailer (i.e., retailer

Yi) has thresholds A4Y and Ay' for its marginal profit when faced with competing

wholesale price vectors wa and w -, respectively. Denote the subset of retailers that

have a larger share of the newsvendor's capacity under allocation a when compared

to allocation b by L(a, b) (i.e., formally, L(a, b) def i {1,...,s} I ai > bi}). 6

ASSUMPTION 7.1. Consider the retailers L(a, b) that have a higher allocation un-

der allocation a when compared to allocation b. The marginal increase in the price

of capacity, AV(wa), for a percent increase in the induced average sales for each

good (by each retailer in L(a, b)) is larger than the marginal increase in the price of

capacity, A'(wb), for a percent increase in the induced average sales for each good

(by each retailer in L(a, b)), i.e.,

E[S(qy_(a; w )) Av(a; w4-) E[S(qy'(b_ ; w_))] _A(b; w)

E E -E yE[ i > / i I
iEL(ab) jEYi iEL(a,b) jEYi

(7.22)

6From the 'pigeon-hole principle', we have that the subset, L(a, b), is not empty because the allocation
vectors are not equal.
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In the case of two retailers each with one good, if the newsvendor is serviced con-

strained for both goods, we can show that inequality (7.22) is a necessary condition.

7.4.4 Uniqueness of equilibrium shadow price

In Theorem 7.10, we provide sufficient conditions so that the two-stage game described

in Section 7.1.1 has a unique equilibrium shadow price for capacity.

THEOREM 7.10. With one retailer (i.e., when s = 1), any equilibrium wholesale

price vector results in the supplier having a shadow price for capacity of zero units.

Furthermore, with more than one retailer (i.e., when s > 2), if the retailers are

service constrained for goods N, the demand for each good t E N has the IGFR

property, and Assumption 7.1 holds, then for any two equilibrium wholesale price

vectors W and w' that induce different allocations (i.e., qV(jj) f qv(w')) the induced

shadow prices for capacity (Av(9) and AV(w')) are the same (i.e., there is a unique

equilibrium shadow price for the supplier's capacity).

Proof. See Section 7.6.15.

When there is more than one retailer (i.e., s > 2), this theorem implies that

if there are two equilibrium wholesale price vectors inducing different allocations of

the supplier's capacity, then there is a unique equilibrium shadow price which we

denote by Aeq. And so, geometrically, the equilibrium wholesale price vectors are a

subset of the set W(Aeq ) as defined in Theorem 7.4 and depicted in Figure 7-3. In

Theorem 7.11, we consider the scenario when there are two equilibrium wholesale

price vectors that induce the supplier to stock the same vector of goods.

THEOREM 7.11. Consider the two-stage game described in Section 7.1.1 with

more than one retailer (i.e., s > 2). Suppose the retailers are service constrained

for goods N, the demand for each good t E N has the IGFR property, and that there

are two equilibrium wholesale price vectors WO and w' that induce the same supplier

capacity allocation (i.e., q'V(w) = qv(w')) but induce shadow prices for capacity

satisfying Av(w') < AV(w'). Denote retailer Yj 's marginal profit for inducing the

supplier to dedicate an extra unit of capacity (when the supplier faces wholesale
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price vector w') by the function

m, (w') ýe j i V (W ); W_____Pi _____4 _A q(w) - () ox
(iEYJ (y3 YJ X=ZiEYj q(W')

Then, we have the following upper bound on the shadow price AV (1) when the sup-

plier allocates capacity from two or more retailers when offered wholesale price vector

A'V(W) < A'(w ') + min {my,(w') j E {1,..., s}, Yj n (N\ Z(w')) 0}. (7.23)

And, we have the following upper bound on the shadow price A'V () when the supplier

allocates capacity for exactly one retailer when offered wholesale price vector w':

A'V(W) AV(w'). (7.24)

Proof. See Section 7.6.16.

Therefore, under the same assumptions as in Theorem 7.10, Theorem 7.11 (in

conjunction with Theorem 7.10) implies there are three possible scenarios in an equi-

librium setting: either there is a unique equilibrium shadow price (with multiple

equilibrium allocations), or there is a unique equilibrium allocation (with multiple

equilibrium shadow prices), or there is a unique equilibrium allocation and shadow

price. These two theorems rule out the possibility of having two different equilib-

rium wholesale price vectors, iO and w', that simultaneously induce different supplier

allocations and different supplier shadow prices for capacity (i.e., such that both

q'(W') #: qv(w') and A'(V') # AV(w') hold).

M 7.5 Retailer collusion.

Theorem 7.12 formalizes the idea that if there are more than two retailers and

they collude by offering pricing as if they were one firm, then they'd make more

profit in aggregate than they would from any equilibrium that induces a positive
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equilibrium supplier shadow price for capacity. Consequently, there exists a division

of the collusion profit such that every retailer would receive more profit than they

would from the equilibrium wholesale price that induces a positive shadow price.

THEOREM 7.12. Consider the two-stage game described in Section 7.1.1 with

more than one retailer (i.e., s > 2). Suppose there is an equilibrium wholesale

price vector w' that induces a positive shadow price ,A'(w') > 0. If the retailers

collude on pricing by setting prices as if they were one firm, then the aggregate

retailer profit would be larger than the aggregate retailer profit from price vector w'.

Proof. See Section 7.6.17.

However, does the supply chain's profits increase or decrease when the retailers

collude? And will the supplier receive lower wholesale prices for every good when the

retailers collude? We leave these and other questions for future work.

* 7.6 Proofs

In order to not disrupt the flow of presentation, the proofs for our results in this

chapter are contained here.

7.6.1 Proof: The shadow price for capacity and the goods

ordered.

Proof of Theorem 7.1. First, we write the Lagrangian £(q, -l,... ., y, A) for SUPPLIER-

PRIMAL(k,w):

.(q, 71, ... , 7"n, A) = (wiE[min(qi, Di)] - ciqi) + 'yiqi + A k - q
i=1 i=1 i=1

Note that rv(q) is strictly concave for q E [0, 11) x ... [0, ln) because each c.d.f.

F, is strictly increasing over [0, li). Because the feasible set is convex and compact,

SUPPLIER-PRIMAL(k,w) has a unique solution.

The Karush-Kuhn-Tucker conditions for the retailer's decision problem, SUPPLIER-
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PRIMAL(k,w), are:

wtFt(qt) - ct + 7t - A = O, t = 1,..., n; (7.25)

qt > O, t = 1,... , n;
n

k-_Eqt 0;
t=1

7ytqt = 0, t = 1,...,n; (7.26)

A k- qt )=0; (7.27)

A >0; Yt > 20, t = l,...,n.

Because of the concavity of the objective function and the fact that the Slater condi-

tion is satisfied, the Karush-Kuhn-Tucker conditions are both necessary and sufficient

conditions for any primal optimal vector q and dual optimal vector ('y, A). As a re-

sult, since the primal problem has a unique solution, it can be shown that the dual

problem also has a unique solution, using these conditions. Let (qv(w), y"v(w), Av(w))

denote the unique vector that satisfies the Karush-Kuhn-Tucker conditions.

When j E N \ Z(w), from equation (7.26) we have y,•(w) = 0. Therefore, from

equation (7.25) we have A'(w) = wjPj (qjv(w)) - cj. When i e Z(w), from equa-

tion (7.25), we have A•(w) = wi - c, + y,•(w) > wi - ci. Thus, the conditions in

equations (7.6) and (7.7) hold.

Furthermore, if E•'1 qt(w) 5 k, we have qv(w) = q"(w). Therefore, when j E

N \ Z(w), from equation (7.25) we have AV(w) = wjFj (qju(w)) - cj = 0.

On the other hand, assume Av(w) = 0. When j E N\Z(w), we have wjPj (qj'(w)) -

cj = 0 from equation (7.25). Therefore, qv(w) = q%(w). When i E Z(w), from equa-

tion (7.25), we have wi - ci 5 wi - c2 + y-r(w) = 0. Thus, qiu(w) = 0 = qfi(w). And

so we have E" , qt(w) = E'_1 q9t(w) < k. O
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7.6.2 Proof: The shadow price for capacity as the minimum

of some set.

def En
Proof of Corollary 7.1. Let A { wtFt(qt) - Ct A Vt E N, Z-t=1q =

min I{ q(w), k}, q E Rn
The vector q'(w) E Rn satisfies En t qt'(w) = min {n t=1 qt (w), k}. Furthermore,

from equation (7.25), we have A'(w) = wtFt(q~(w)) - ct + -yt(w) Ž wtFt(q'(w)) - Ct

when t = 1,..., n. Therefore, we have A'(w) E A.

Assume there exists a A' < A'(w) such that A' E A. Then there must exist a

vector q' e Rn such that = q = min{m ~=1 qt/(w),k} and wtFt(q)- ct • A'

when t = 1,... , n. When j E N \ Z(w), from equation (7.25) we have A'(w) =

wFP (qv'(w)) - cj. Since A' < A'(w), when j E N \ Z(w), we have wjF (q) - cj <

w.iF (qjv(w)) - cj, implying Fj(q ) < Fj (qj(w)) and, thus, q, > qv(w). There-
fore, EjEN\Z(w) q > EjjN\Z(w) qj(w) = -teN q'(w) = min { 1n , q"(w), k}, imply-

ing Z t=l q' > min {lt=1 q(w), k}. But this is a contradiction. Thus, A'(w) =

minmAE A. O

7.6.3 Proof: Av(w) is nondecreasing as wt increases, and the

increase is bounded.

Proof of Theorem 7.2. Let A(w) {A wtFt(qt) - ct • A Vt E N, t=1 qt =

min {L 1 Qt= (w),k}, q e "c }. Since wi < wi and w'_ = w-i, we have q4j(w) <

q-(w') and qu(w) = qu(w') for any other good o $ i. Therefore, min {-.t= qt (w), k} <

min {En1 qt (w'), k}. Ifmin {IEn qt(w), k} = k, then A(w') C A(w) so that we have

minA(w) < minA(w'). And, from Corollary 7.1, we have A'(w) < Av(w'). Other-

wise, if min n=1t (w), k} < , k} <k, then from Theorem 7.1 we have A'(w) = 0 so that

At(w) < Av(w') because the shadow prices are nonnegative.

Next, we show that A'(w) < Av(w') holds if and only if the conditions i E N\Z(w')

and •• 1 qtu(w') > k hold by proving the statement: Av(w) = A'(w') holds if and

only if i E Z(w') or E• t qt\(w') < k holds.

First, we prove the direction: if i E Z(w') or t=1•(w') < k holds, then
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AX"(w) = Av(w') holds. If E qt(w') < k holds, then from Theorem 7.1 we have

AX'(w') = 0. Since AX(w) < A•(w') and the shadow prices are nonnegative, we have

A'(w) = Av(w'). When i Z(w') and Et•t 1 qtu(w') > k hold, assume AV(w) < AV•(w)

holds, instead. Then, for any j E N \ Z(w), we have qv(w') < q4'(w) when either

j E N \ Z(w') (from equation (7.6)) or j E Z(w'). Since AV(w) < Av(w'), from

equation (7.7), we have Z(w) C Z(w') so that N \ Z(w') C N \ Z(w). There-

fore, -jN\Z(w') qf(w') < •ejN\z(w)q<(w) < k. From equation (7.27), we have

AX'(w') = 0, implying ,t=l qt (w') k (by Theorem 7.1). But this is a contradiction

since "_=1 qt(w') > k holds. Thus, Av(w) = Av(w').

Next, we show that A'(w) = AV(w') implies i E Z(w') or E =1 qt(w') < k holds.

Assume i G N\Z(w') and EC, qt"(w') > k hold, instead. Therefore, we have AV(w) =

A'(w') > 0 from Theorem 7.1. And equation (7.27) implies EjEN\Z(w) q3(w) = k. If

i = N\Z(w), then qv (w') > qcf(w) from equation (7.6) since wi < w'. If i E Z(w), we

also have qY (w') > q/(w) = 0. Furthermore, equation (7.7) implies that for any good

t :/ i: t E Z(w') if and only if t E Z(w) (because wt = w' and Av(w) = AV(w')). Thus,

the sets Z(w) and Z(w') are identical unless i E Z(w). Therefore, N \ Z(w') = (N \

Z(w)) U{i}. And for any good j - i such that j E N\ Z(w') we have qj(w') = qjv(w)

(from equation (7.6)). Therefore, EZJN\Z(w') qv(w') > •ejN\Z(w) qj(w) = k. But

this is a contradiction. Thus, i G Z(w') or E--•L qt(w') < k holds.

Next, we prove inequality (7.9) holds. If AV(w) = Av(w'), inequality (7.9) follows.

If Av(w) < Av(w'), then i E N\Z(w') and n=l qt (w') > k hold, as proven. Therefore,

we have AV(w') > 0 from Theorem 7.1 and equation (7.27) implies -jGN\Z(w') qj(w') =

k. Assume the inequality (Av(w')+ci)/(Av(w)+ci) > w'/wi holds, instead. Therefore,

rearranging terms, (A'(w') + ci)/w' > (Av(w) + ci)/wi holds. Corollary 7.2, then,

implies q'(w') < qv(w) and that for any j E N \ Z(w) such j - i, we have qjv(w') <

qj(w) (because (Av(w') + cj)/w' > (Av(w) + cj)/wj holds). The inequalities qi (w') <

q,(w) and Av(w) < AV(w') imply Z(w) C Z(w') (from equation (7.7)). Therefore,

N \ Z(w') C N\ Z(w). And we have k = j~N\z((w') (q(w) < ••EN\Z(w) q3(w). But

this is a contradiction. Thus, inequality (7.9) follows.

If the supplier prepares k units of good i under w and w', then, from equation (7.6),
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we have that (Av(w') + ci) wl = (Av(w) + ci) wi holds. If (Av(w') + ci)/w' = (Av(w) +
ci)/wi holds, then, from Corollary 7.2, we have that qiv(w') = qiv(w). Furthermore,

since wi < w', we have AV(w) < A'(w'). Therefore, as proven, we have that good i

is included in the supplier's inventory under w' (and thus w) and that the capacity

constraint is binding for the supplier under w'. From Theorem 7.1, we have A'(w') > 0

and equation (7.27) implies VjeN\Z(w') q'(w') = k. Assume the inequality q (w') < k

holds, instead of the equality qj (w') = k. Then, there exists at least one other good

o E N \ Z(w'), where o : i. Good i is included in the retailer's order under both w

and w', and A'(w) < Av(w'), therefore, we have Z(w) 9 Z(w') (from equation (7.7)),

implying N \ Z(w') C N \ Z(w). And for any good j :L i E N \ Z(w), from

Corollary 7.2, we have qj(w') < qj(w) because (Av(w) + cj)/wj < (Av(w ' ) + cj)/wj

holds. Therefore, we have k = VjeN\z(w') q(w') < -jEN\Z(w) qj(w). But this is a

contradiction. Thus, the equality qi'(w') = k follows. O

7.6.4 Proof: The effect of a wholesale price increase on the

supplier's inventory.

Proof of Corollary 7.4. From Theorem 7.2, we have A'(w) < Av(w'). Since w'~ =

wo, we have (Av(w)+co)/wo 5 (Av(w')+co)/wo. The inequality qv(w') < qv(w), then,

follows from Corollary 7.2. Furthermore, from inequality (7.9), we have (Av(w') +

c')/w <• (A'(w) + c1)/wi. Therefore, from Corollary 7.2, we have q'(w) _ qv(w').

First, we show condition (b) implies condition (a). If qiv(w) < k, then, from Theo-

rem 7.2, we have the strict inequality (Av(w')+ci)/w < (A'(w)+ci)/wi. Since the re-

tailer orders good i under w', from Corollary 7.2, we have max {A'(w') + ci, w,} < w'.

Therefore, max {Av(w') + ci, w'} /wý < max {AV(w) + ci, wi} /wi holds. And, since

the c.d.f. Fi is strictly increasing over [0, i4), we have q (w) < qv (w') (from Corol-

lary 7.2). Furthermore, condition (b) and Theorem 7.2 imply Av(w) < Av(w'). Since

Wf = wo, we have (A'(w) + co)/wo < (A'(w') + co)/w'~. If o E N \ Z(w), then, from

Corollary 6.2, we have max {Av(w) + co, wo} < w0 . Therefore, max {Av(w) + co, wo) <

max { A'(w') + co, w'}. And, from Corollary 7.2, we have qv(w') < qg(w) because the
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c.d.f. Fo is strictly increasing over [0, lo).

Next, we show condition (a) implies condition (b). Assume i E Z(w') or Z-~l qt(w') <

k holds, instead. From Theorem 7.2, we have A'(w) = A'(w'). Therefore, for any

good o € i, we have (AV(w) + co)/w, = (Av(w') + co)/w' because wo = wo. From

Corollary 7.2, then, we have qv(w) = qo(w'). But this contradicts condition (a) when

o E N \ Z(w). It can be shown that the set N \ Z(w) includes some good o $ i

when _,t= qt (w') < k holds. When E'l qt (w') > k and i E Z(w') hold, we have

qu (w) = qy(w') = 0 because qi (w) < qv (w') holds and q (w) must be nonnegative.

But this contradicts condition (a) since qv(w) < k holds, yet qiv(w) = q (w'). Thus,

condition (b) holds. O

7.6.5 Proof: A retailer effects the price for capacity via its

induced allocation.

Proof of Theorem 7.3. Since the wholesale price vector w induces the supplier

to prepare x units of goods for retailer Y, we have that when the supplier solves

the convex program SUPPLIER-PRIMAL(k,w) in the decision vector q, the optimal

stocking quantity vector q'(w) is also the unique solution to the following convex

program in the decision vector q:

SUPPLIER- WITH- Y-GUARANTEE(k,x,w):

n

maximize (wiE[Si(qi)] - ciqi) (7.28)
i=1

subject to qi O, i= 1,...,n

Sqi = x
iEY

n

k - -qi > 0.
i=1
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Therefore, since the objective function in (7.28) is separable into the sum of two

independent expressions,

S(wiE[Si(qi)] - cqi) = (wiE[Si(qi)] - ciqi)
i=-1 iEY

+ S (wiE[Si(qi)]
iEY

- ciqi), (7.29)

the order quantity vector q,(w) is the solution to the following convex program in

the decision vector q:

SUPPLIER-RESTRICTED- TO-Y-PRIMAL(k,x,wy-):

(7.30)maximize E (wiE[Si(qi)] - ciqi)
iEY

subject to q> 0, iEY

(k - x) - qj > 0.
iEY

The dual problem in the decision variables 77 (the shadow price vector for the

nonnegativity constraints) and A (the shadow price for the capacity constraint) is:

SUPPLIER-RESTRICTED- TO-Y-D UAL (k,x,wy):

max E (wiE[Si(qi)]
{qeR+ k-EV qtŽ> } iEY

- ciqi) + + 7iqi

iEY

(k - x) - qi
iEY

(7.31)

iEY

A>0.

Note that SUPPLIER-RESTRICTED- TO-Y-D UAL (k,x,wy) is identical to SUPPLIER-

DUAL(k-x,wy), when N = Y. Therefore, we have from Theorem 7.1 that SUPPLIER-

RESTRICTED- TO-Y-DUAL(k,x,wv) has a unique solution which we denote by

minimize

subject to
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(7•y (x; wy), AV(x; wy-)). Furthermore, from Corollary 7.1 we have that

A'(x; wy) = min A wtFtF(qt)c - c5 A Vt E , qt = min qt(w) k - x , qER .
tEY tEY

(7.32)

Since x < k, there exists at least one good j E Y such that qj(w) > 0. Since the

vector qý(w) is the solution to SUPPLIER-RESTRICTED-TO-Y-PRIMAL(k,x,wy),

from Equation (7.6) in Theorem 7.1, we have that

A'(x; wy-) = wjFj (qj3(w)) - cj. (7.33)

Since the vector qv(w) is the solution to SUPPLIER-PRIMAL(k,w), from Equa-

tion (7.6) in Theorem 7.1, we also have that

A'(w) = wjPj (qjf(w)) - cj. (7.34)

Therefore, from Equations (7.33) and (7.34), we have that A'(w) = AV(x; wy-).

Next, we prove the partial converse. Denote the solution to SUPPLIER-RESTRICTED-

TO-Y-PRIMAL(k,x,wy) by the vector q,(x; wy). From Equation (7.6) in Theo-

rem 7.1, we have that for every good j E Y such that qj'(x; wy) > 0,

Av(x; wiy) = wjPj (qj;(x; wy)) - cj. (7.35)

Furthermore, from Equation (7.6), we also have that for every good j E N such that

qj(w) > 0,
A'(w) = wj-j (qv(w)) - cj. (7.36)

Therefore, since Av(w) = AV(x; wy), from Equations (7.35) and (7.36), we have that

qj (w) = qj (x; wy) for every j E Y, implying that

q, (w) = q (x; wy) (7.37)
jEY jEY
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holds. Since AV(x; wy) > 0, from Theorem 7.1 it follows that jy q (x; wy-) = k - x.

So that from Equation (7.37), we can conclude that jV qj(w) = k - x. Since

A"(w) > 0, from Theorem 7.1 we also have that EjEN qj(w) = k. Therefore, since

•JeNq(w) = teYq(w) + E•tE, q'(w), we have Ej, qv(w) = x. EL

7.6.6 Proof: The supplier's price for capacity is continuous

and increasing.

Proof of Corollary 7.5. Suppose 0 < k - Etev qt•(w). Then, there exists an x

that satisfies 0 < x < k - EtEy qt(w). For any such x, we have EtEq; qt(w) < k -

x. Therefore, since SUPPLIER-RESTRICTED- TO-Y-D UAL (k,x,wy) is identical

to SUPPLIER-DUAL(k - x,w-y), when N = Y, we have from Theorem 7.1 that

AV(x; wy) = 0 when x satisfies 0 < x < k - ttV qu(w).

Suppose that xl and x2 satisfy max {k - EtE-7 qt(w), 0} 5 x1 < x 2 < k. We show

that Av(xi; wy) < Av(x 2 ; Wy). Assume that Av(x 2; w-) < Av (xl; y) holds, instead.

Denote the solution to SUPPLIER-RESTRICTED-TO-Y-PRIMAL(k,xi,wy) by the

vector qý(xj; wy) for i = 1, 2. From Equation (7.6) in Theorem 7.1, we have that for

every good j E Y such that q}(xj; wy) > 0,

A((xi; wy) = wjF, (q, (xi; wy)) - cj, (7.38)

for i = 1, 2. Because of our assumption on the cumulative distribution functions and

AV(x 2; wy) < Av(x1; wy), from equation (7.38), we have

E q (Xl; Wy) < E q (X2; -lY). (7.39)
jEY jEY

Since k - x 2 < tEqt\u(w), from Theorem 7.1, we have 0 < AX(x 2 ; wy), imply-

ing that 0 < Av(xl; wy) holds too. Therefore both EjEy qv (2; wy) = k - x 2 and

-jcyq(x1; wy) = k - x1 hold. But then equation (7.39) implies that k - x <_ k- x 2

so that x 2 < x 1 holds. But this is a contradiction. Thus, the inequality Av(xl; wy) <

AV(x2; wy) follows.
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Next, we prove AV(x; w-y) is continuous when x c [0, k). Since AV(x; w7-) = 0

when x satisfies 0 < x < k - EtCVqZ (w), we need to show that Av(x; wy) is

continuous when x satisfies max {k - Et qq(w), O} < x < k. Suppose that x

satisfies max {k - Etjjqt(w),O} < x < k. Denote the inverse of Av(x;wy) by

A-1 : [0, maxt~ Vw t - ct) -+ [max {k - EtEg qut(w), O} , k). (Note this exists since

Av is strictly increasing and onto the set [O, maxtEy wt - ct)). Pick any number

E > 0. Consider the neighborhoods around x defined by the radiuses 61 -

A-1 (max {Av(x; wy-) - , 0}) > 0 and 62 df l(min {•(x; wy) + , maxt, wt - ct})-

x > 0. It can be shown that both 61 and 52 can not be zero. If either 61 or 62 is zero,
def def

consider the radius 6 = max {61, 621 > 0, otherwise we set 6 min {61, 62} > 0.

Denote the 6 neighborhood around a number z by N6 (z). It can be shown that if

x' E N6(x) n [max {k - E, ut(w), } k), then Av(x'; wy) E N,(A (x; wy)).

7.6.7 Proof: The marginal price for capacity is increasing.

Proof of Corollary 7.6. From Corollary 7.5, when x satisfies 0 < x < k-Ety qu(w)

we have =(x;wv) - 0 and when x satisfies 0 < x < k - Zt_ qtu(w) we have
xt'(x;wy-) = 0.

ax-

Denote the solution to SUPPLIER-RESTRICTED- TO-Y-PRIMAL (k,x,wy) by

the vector qý(x;wy). Let Z(k, x,w-y) de f= {i q(; wy) = O C Y be the set of

products that are not ordered in the supplier's decision problem. Suppose x satisfies

max {k - ••ty•qr\(w), 0} < x < k. Observe that the equation tV q(x; w-y) = k -

x holds. Therefore, we can express x via the equation x = k- EtE q• (x; Wy). Denote

the inverse of AV(x; wy) by xV(A; Wy). Since AV(x; wy) is strictly increasing and

continuous, when asX~+T) exists it must be the case that Av(x;w-7 ) - (ax1-) 1
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where the equations A'V(; w-y) = A and xZ(A; wy) = x hold. Furthermore,

OxV(A;w-y)
0A+

_A+

OA+

k - Wt V(x; w))
tEYOaqv(x; w-y)

_ A+
tEY

- -
wt - ft (qtv(x; wy))tEY\Z(k,x,w7)

wt - ft (qv'(x; wy-))
tEY\Z(k,x,wy )

(7.40)

(7.41)

(Equation 7.40 follows from Theorem 7.1 because from Equation (7.6) we have that

for every good j E Y such that q (xi; w-y) > 0, the equation

Av(x; wy) = wjPj (qj (x; wy)) - cj,

holds.) Therefore, we have that Av (x;w-)) ((
we=

wtft(q(x;w))-1

satisfies max k - Zt0yq2<(w),0 < k.

Suppose x satisfies max {k - ••t~ •(w), 0} < x < k. Consider the supplier's
defproblem SUPPLIER-RESTRICTED-TO-Y-PRIMAL(k,x,w-y). Let A(k, x, wy)

{i E Z(k, x, wy) I AV(x; wy) = wi - cf} C Y be the set of products that were almost

when x
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ordered by supplier. Then, we have

zxv (A; u) 0 k ' ( X; W ) _)

,A- _ tA-

tEY

wk a ft (q( (x; w))
tEA(k,x,wY)U(F\Z(k,x,wY))

1
Sf wt (qft ((; (x) ; wf())

tEA(k,x,wy-)U(\Z(k,x,wA-))

S1 1
tE Z(kxw t t (Qt ; ) tEA (kx, Wt w

(7.42)

(7.43)

(Equation 7.42 follows from Theorem 7.1 because from Equation (7.6) we have that

for every good j E A(k, x, Wy) U (Y \ Z(k, x, wy)), the equation

A' (x; wy) = wFPj (qj (x; wy)) - cj, (7.44)

holds.) Therefore, we have that

9OA(; (x z
tEA(k,x,wy)U (Y"\ Z(k,x,w-y))

(7.45)

when x satisfies max {k - Z~te q4t(w), O} < x < k.

Suppose AV(x; wu) > 0 and AV(x; wu) $ wi - ci for any i E Y. From Corollary 7.5,

we have that x satisfies max {k - CtEV qM(w), 0} < x < k. And from the definition

of A(k, x, wy) we have that A(k, x, wV) = 0. Therefore, from Equations (7.41) and

(7.43), we have that ax(A;'Yv) - ax(A;w-Y) which implies that aAx(X;w,) - aV(x;w-)

From Corollary 7.5, we have A'(x; wV) is continuous at x, implying that xz(A; wy)

is continuous at A (where the equations Av(x; wV) = A and xv(A; wV) = x hold).

Therefore, from equation (7.44), we have that q' (xv(A; wV); wV) is continuous at

A. Since axv(A;•) =1 and the p.d.f. ft is continuous for
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every good t E Y, we have that axv (;u ) is continuous at A since the set of goods0A

Y\Z(k, x, wy) do not change for small changes in A. Therefore, (x;) is continuous

at x.

Suppose x satisfies the equation max {k - EtC qt(w), O} < x < k and the re-

tailer is service constrained for good(s) Y. From equation (6.46), we have that for ev-

ery good t E Y\ Z(k, x, wy-), the order quantity qt (xv(A; Wy-); wy) is strictly decreas-

ing in A. Since the retailer is service constrained for good t, we have ft (q (xv (A; wV); wy))

is strictly increasing in A. Therefore, av(A;w-) and axv(A 7 ) are strictly decreasing in

A. So that we have 0dAVx) and are strictly increasing in x. Ol

7.6.8 Proof: Partitioning the set of wholesale prices by 'ca-

pacity charge'.

Proof of Theorem 7.4. Suppose A > 0. Consider a wholesale price vector w from

the set

def Wt =(ct + A --' 1{qt=})/Ft(qt) VtE N, / , lN . (7.46),

=teN qt = min { ((tEN qu(w)) -l{ 1=o} + k l{- x>o}, k}

For this vector w there exist vectors q and y that satisfy the conditions in (7.46)

which guarantee w's membership in the set W(A). From the proof of Theorem 7.1,

we have that The Karush-Kuhn-Tucker conditions for the supplier's decision problem,

SUPPLIER-PRIMAL (k,w), are:

wtFt(qt) -ct + - = 0, t = 1,..., n; (7.47)

qt> 0, t = 1, ... , n;
n

k- - 0 > 0;
t=1

ztqt = 0, t = 1,...,n; (7.48)
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k - qt 0; (7.49)

A>0; 2> 07, t=l,...,n.

Because of the concavity of the objective function and the fact that the Slater condi-

tion is satisfied, the Karush-Kuhn-Tucker conditions are both necessary and sufficient

conditions for any primal optimal vector q' and dual optimal vector (y, A). Consider

a particular value for q' ,, and A. In particular, suppose we set:

q -q,

= (Y1 l*qi=o},..., ,Y-Il*.n=0o),

It can be shown that these values for q, -, and A satisfy the Karush-Kuhn-Tucker

conditions so that AV(w) = A = A. (There are two main steps in seeing this. First,

consider the cases A = 0 and A > 0 separately. Then, for each of those cases, confirm

that the equations (7.47), (7.48), and (7.49) are satisfied for these values q' , 7, A when

the wholesale price for good t is wt = (ct + A - yt - l{q,=O)/Ft(qt).) Therefore, the

wholesale price vector w induces the retailer to have shadow price A for the capacity

constraint k, i.e., A'(w) = A.

Next, we prove the converse. Suppose a wholesale price vector w induces retailer

shadow price A for capacity k, i.e., A'(w) = A. Therefore, there exist vectors q and

y that along with A and wholesale price vector w satisfy the Karush-Kuhn-Tucker

conditions. Suppose we set: q = q, 7 = 7, and A = A. It can be shown that these

values for q, y, and A enable w's membership in W(A) using the conditions in (7.46).

Therefore, w E W(A) = W(A). OE
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7.6.9 Proof: Partitioning the 'binding' wholesale prices by

'induced allocation'.

Proof of Theorem 7.5. Suppose we have an order/stocking quantity vector q E

JR4* such that the condition -tEN qt = k holds. Consider a wholesale price vector w

from the set

dA(q) dA(q) = w {W IWt = (Ct + A - t -1{q,=o})/Ft(qt) Vt E N, A R+, y E R }.
(7.50)

For this vector w there exists a scalar A and a vector 7 that satisfy the conditions

in (7.50), guaranteeing w's membership in the set A(q). The Karush-Kuhn-Tucker

conditions for the supplier's decision problem, SUPPLIER-PRIMAL(k,w), written

in the proof of Theorem 7.4, are both necessary and sufficient conditions for any

primal optimal vector q' and dual optimal vector (-, A). Consider a particular value

for q', , and A. In particular, suppose we set:

q = q,

•= ('Y1 l {qi=o},... ,7•n l{qn=o}),

A =A.

It can be shown that these values for q', , and A satisfy the Karush-Kuhn-Tucker

conditions so that qv(w) = - = q. (To see this: verify that the equations (7.47),

(7.48), and (7.49) are satisfied for these values q', •, A when the wholesale price for

good t is wt = (ct + A - t - l{q,=o})/Ft(qt).) Therefore, the wholesale price vector w

induces the retailer to order according to the vector q, i.e., qV(w) = q.

Next, we prove the converse. Suppose a wholesale price vector w induces retailer

to order according to the vector q-, i.e., qv(w) = q. Therefore, there exists a vector §
and a scalar A that along with q' and the wholesale price vector w satisfy the Karush-

Kuhn-Tucker conditions. Suppose we set: q = q, 7 = y, and A = A. It can be shown

that these values for q, y, and A enable w's membership in A(q) using the conditions
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in (7.50). Therefore, w E A(q) = A( ). O

7.6.10 Proof: The shadow price for retailer Y's aggregate

induced order.

Proof of Theorem 7.6. Recall the definition gi(x) W =x f(x)/F (x) of the gener-

alized failure rate function. For each good i E Y, we have that

q AV (x; wy-) + ci E[i() = pi (q)-(ci+Av (x; )) + E[Si(qi)] fi(qi)"

Each c.d.f. Fi is strictly increasing over [0, li], continuously differentiable, and has

the IGFR property, so that E[Si(qi)] -fi(qi)/(Fi(qi))2 is continuous, nonnegative, and

increasing in qj (see Lemma 1 in Cachon (2004) for the proof). For good i E Y, we

define the order quantity q in terms of qf, the equilibrium induced order for good i in
~ def

the unconstrained setting (see equation (7.4)), as follows: q, = min {qi, k}. Observe

that the function
( A (x; wy) + ci )

is strictly concave for qi E [0, '] (and that any value that maximizes the function and

respects the capacity constraint must be in the set [0, $]). Therefore, the objective

function for Y-RETAILER-PRICING-PRIMAL(x,wy) is strictly concave for qy E

{q E RI'II 0 < qi '} which is a superset of the feasible set for Y-RETAILER-

PRICING-PRIMAL(x,wy ) (since x E (0, min { t•E qe , k }]). Because the feasible

set is convex and compact, Y-RETAILER-PRICING-PRIMAL(x,wy-) has a unique

solution.

Consider the Lagrangian £(qy, y7,..., Ynyr, A) for Y-RETAILER-PRICING-PRIMAL(x,wy):

L2(qY, Y1, ... 7y, II A) = Pi AV ( y) + c -E[S•(qi)]+ (yqi+A x - qi
iEY iFi (qi) iY iEY

The Karush-Kuhn-Tucker conditions for retailer Y's decision problem, Y-RETAILER-
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PRICING-PRIMAL (x,wV), are:

( E[St(qt)] ft(qt)
ptFt (qt) - (ct + A' (x; wy)) - 1+ t(t) Ft(t) +t- A = 0, te Y; (7.51)

qt>0, tCY;

x - Yqt= 0;

teY

7tqt = , t Y; (7.52)

y7t 0, t Y.

Since x =- 0, it can be shown that a constraint qualification condition on a particular

matrix (each row of which is the gradient of an effective constraint at the optimal

order vector) is satisfied. Briefly, the constraint qualification condition requires that

the matrix have rank equal to the number of effective constraints. See Sundaram

(1996, Chap. 6, Thm 6.10, p.165) for a detailed description of the constraint quali-

fication condition. Therefore, the Karush-Kuhn-Tucker conditions are necessary for

any primal optimal vector qy. Furthermore, because of the concavity of the objec-

tive function and the functions that define the constraints, the Karush-Kuhn-Tucker

conditions are sufficient conditions for any primal optimal vector qy.

As a result, since the primal problem has a unique solution, it can be shown that

the dual problem has a unique solution using these conditions. Let

denote the unique vector that satisfies the Karush-Kuhn-Tucker conditions.

When j E Y\ ZY(x; wy), from equation (7.52) we have y~7(x; wy-) = 0. Therefore,

from equation (7.51) we have

'(x; Wy) = pF (q(; W))( E[Sj(q% (x; wV))] fj(q(x; w-y))(X; wY) = pyfj (Yf ( ))-y - + (xwy)) 1+ ,j(qjy (x; wy) ) F- (q- (X; w))
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When i E ZY(x; Wy), from equation (7.51), we have

AY(x; wy) =p - Ci - A' (x;wVIý)+ +Y(x; wy) Pi - Ci - A' (x;wV ).

Thus, the conditions in equations (7.16) and (7.17) hold.

Furthermore, suppose x = C,•y q' < k. Assume that the inequality

Ay(x; w) + A'(x; w) > 0

holds, instead. Therefore, for good t E Y, if we substitute qct(x; wy) into equa-

tion (7.4) we have

ptt(q'(x;wy)) - c1 + (qt(x;wy)) .(q(x; > t= 1,))... ,n.

(7.53)

But this is a contradiction, because equation (7.53) implies that the unconstrained

supplier should stock more than E•tN q' units of good in aggregate. And, so we have

that the inequality

AY(x; -) + A'(x; w) < 0

holds when x = EtEY qt < k.

Suppose that xl and x2 satisfy 0 < xl < x 2 < min f(tEY q, k}. We show

that AY(x 2; Wy) + Av(x2; WY) < AY(xi; w) + AV(x; w7 ). Assume that A(x1; Wy-) +

A'(xl; Wy) < AY(x2 2;y) + A( 2; Wy) holds, instead. From Equation (7.16) in The-

orem 7.6, we have that for every good j E Y such that qjy(xi; Wy) > 0,

Ay (x; Wy) +AV(xi; Wy) = pjj (q (xi; wy)) (cj+Av (xi; _.y-) )E[Sj(qjy (x j; wy))] fj (qY (xj; w-y)) C,
Pj(q (xi; y)) Pj(qjY(xj; u-))

(7.54)
for i = 1, 2. Because of our assumption on the cumulative distribution functions and

AY(xl;Wy) + A'(xl;W ) < AY(x 2;wy) + AV(x2; W), from equation (7.54), we must
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have q (x2; w) •_ qY(xi; Wu) for every good j E Y. So that

X2 E q(2; W Y) l:qjX 1; ) = x 1. (7.55)
jEY jEY

But this is a contradiction because xl < x2 holds. Thus, the inequality AY(x 2 ; W-) +

A'(X2 ; W) < AY(xi;;Wy) + AV(xi; w) follows. And so we have that the function

AY(x; w) + Av(x; wy) is strictly decreasing as x e (0, min {ECEY qf, k}] increases.

O

7.6.11 Proof: Any induced aggregate order above :- is not

optimal.

Proof of Corollary 7.7. Suppose that for every good t E Y, the c.d.f. Ft has the

IGFR property. Assume that the conditions

AY(min { qt, k }; ) 0, (7.56)

0 < max {pi - ci -,A (0; wv) Ii i Y}, (7.57)

hold. From Corollary 7.5, we know A'(x; wV) is continuous at x = 0. Further-

more, the cumulative distribution functions are continuously differentiable. There-

fore, from equation (7.57), we have that there exists some small positive value 6 <

min {EtEy qe, k} such that the condition

0 < max piF (6) - (ci + A' (6; Wý)) 1 + E(S() f-6) i Y

holds. And so, from Theorem 7.6, it follows that there exists a small positive value

& < 6 such that AY (.; WV) > 0. Using a technique similar to our proof that A'(x; wV)

is continuous (i.e., Corollary 7.5), it can be shown that AY(x; wV-) is continuous for

x E (0, min { tq , k}]. And from Theorem 7.6, it follows that XY (x; Wý) is

strictly decreasing because we know that A'(x; WV-) is nondecreasing from Corol-
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lary 7.5. Therefore, from equation (7.56), we have that there exists a value t, where

< < min (C{ qf, k}, that satisfies the equation AY(ýt; wy) = 0. For any unit

above a that retailer Y induces the supplier to stock (in aggregate), the retailer incurs

a loss because the marginal profit on the Xth unit is upper bounded by A(x; w-y),

which is a negative number for any x > t. Therefore, retailer Y would never induce

the supplier to stock more than xi units of good(s) Y in aggregate. Furthermore, from

Theorem 7.6, we have that A (x; wy) < 0 when x = yteY q' < k and that A (x; wy)

is strictly decreasing. Therefore, we have 2 < EtEY q.e

Now assume that the conditions

O < ~Y min te , k ; w-)  (7.58)
tEY

0 < max {pi - ci - A (0; wy) i Y}, (7.59)

hold instead. From Theorem 7.6, we have that AY(x; wy) < 0 when x = EtEY q' < k

and that AY(x; wy) is strictly decreasing. Therefore, from equation (7.58) we have

min { tEy qt, k } < -tE q , implying min { tEY qt, k} = k. Suppose we define t

to equal min { ••Cv q, k } = k. It follows trivially that retailer Y would never induce

the supplier to stock more than 2 units of good(s) Y in aggregate because the supplier

has a capacity constraint of k units.

Finally, assume the condition

max{pi - ci-AV(0;Wy) iEcY}_<0,

defholds instead, and that we define 2 = 0. Therefore, for any unit above t that retailer

Y induces the supplier to stock (in aggregate), the retailer incurs a loss because the

marginal profit on the Zth unit is upper bounded by AY(x; Wy), which is a negative

number for any x > 2. And so, retailer Y would never induce the supplier to stock

more than t units of good(s) Y in aggregate. []
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7.6.12 Proof: Optimal aggregate order for a fixed wy.

Proof of Theorem 7.7. The (Weierstrass) Extreme Value Theorem says that for

any continuous and real function f on a compact metric space X, there exists a point

x* E X such f(x*) = supxx f(x). (Rudin 1976, Theorem 4.16) From Corollary 7.5,

we have that A' (E• Y qt; wy) is continuous on the set of feasible capacity allocation
def n nvectors, Q f {q E R I >t= qt < k}. Therefore, we have that retailer Y's ob-

jective function, EY (Pi - (Av(tEy qYt; wy) + ci) /Fi(qi)) - E[Si(qi)], when solving

Y-RETAILER-INDUCING-AGGREGATE-ORDER(wy), is continuous on Q (be-

cause it consists of a finite sum of products of continuous functions). The set Q is

closed and bounded (and hence compact) and is a metric space (under the Euclidean

metric). Therefore, applying the (Weierstrass) Extreme Value Theorem, we have that

an optimal aggregate order quantity xY (wy) and optimal induced order vector qY (wy)

exist for the problem Y-RETAILER-INDUCING-AGGREGATE-ORDER(wzy).

From Theorem 7.6 we have that for any fixed value x, the optimal vector of goods

that retailer Y induces the supplier to stock is qY (x; wy), the solution to the decision

problem Y-RETAILER-PRICING-PRIMAL(x,wy). Therefore, we can re-express

the objective function

( (EtEy qt; wy) + i

for the problem Y-RETAILER-INDUCING-AGGREGATE-ORDER(wy) as

iS T Fi (q)y (x; wyt)))

so that the only decision variable we need to solve for is x.

Recall from Corollary 7.6 that AV(x; wt) is not differentiable everywhere. However,

from the proof of Corollary 7.6, we know that both the derivative from the right and

left do exist for Av(x; owy) (and are equal almost everywhere except at IYI- 1 points
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at most). Therefore, we can write

SA- (XiEY x; ) + ci • ci) E ( [Sx(q(x;wV))]

S -- ( ,(i- E[S(qT(x;wW))] )ax 1 i( F (qy((; WV)))

- AV (X; w y)) + Ci E[S)(q)](x;wv))

a- q\z(x;wy) F(q (x; )) )

Aq (ESx;wv)) E[S (qy 8(x;w ( )))]

- iZ~ F (q[(x;a)) - ( qi + (x;WV)). S(q( "__

a (x; WV) (qr(x; w-V))]
SA(x;wV) Oq OAv (x; W) + i [S(qr(x;w))] a

S Fiz -(- F;(q(;y)) ))a=(Y k x,)i () E[S-jX(Q( xW E"))W

a= P;) ( (;) (x ; w V)
=9q!' i9A(()- ( E[SE(Q(Yx].(.))0

Since x y 0 and the cumulative distribution function for demand of each good y Y

has the IGFR property, from Corollary 7.7 we have that A•(x; WV) is nonnegative

for every x E [0, ý]. Furthermore, from Theorem 7.6 we have that A Y(x; w) is

strictly decreasing as x increases. Since the retailer is service constrained for good(s)

Y, from Corollary 7.5 and Corollary 7.6 we have that (X;-) is nonnegative and

nondecreasing. Furthermore, from Theorem 7.6 we have that for any good i E Y,

the function q (x; wV-) is nondecreasing as x increases, when the c.d.f. Fj has the

IGFR property, so that the function E[Si(qr'(x; uw-))]/Fi(qY (x; WV)) is nondecreasing
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as x increases. Therefore, from equation (7.60), we have that retailer Y's objective

function is concave in the induced aggregate order x. And so, equation (7.19) holds.

From the proof of Theorem 7.6, we have that equation (7.20) holds. EO

7.6.13 Proof: Characterizing W/r(Wy).

We apply Berge's Maximum Theorem (Proposition 6.1) in the proof of Lemma 6.1,

below. See Section 6.6.13 for a statement of that Theorem. Now we state and prove

Lemma 7.1 (for use in the proof of Theorem 7.8 and Theorem 7.9).

LEMMA 7.1. Retailer Y's objective function,

7ry(Wy, wY) 4 -(p wi) - E[Si(q(wy, w-y))],
iEY

when solving Y-RETAILER(w-), is continuous in the vector (wy, w-y).

Proof of Lemma 7.1. First, we show that for any good t E N, the supplier's

induced stocking quantity qtv (wy, wy) is continuous in the vector (wy, wy). Denote

the set of feasible order quantity vectors by Q df {q E R+ Zt= qt < k} and the

set of feasible wholesale price vectors by W def n [ct, Pt]. Consider the function
def n

f : Q x W -- R defined by the equation f(q, w) - i=1 wiE[Si(qi)] - ciqi and

the correspondence D : W -+ 2 Q defined by the equation D(w) = Q. For any

good t E N, the expected sales E[St(qt)], when the supplier stocks qt units, equals

qt - F(qt) + f' x. ft(x) dx = fot Ft(x) dx (by using integration by parts). Since

Ft(x) is continuous on Q, we have that E[St(qt)] = f(t F(x) dx is continuous on

Q (Rudin 1976, Theorem 6.20), so that the function f is continuous on Q x W

(since f involves finite sums and products of continuous functions). Furthermore, the

correspondence D is compact-valued and continuous, because for any wholesale price

vector w E W the equation D(w) = Q holds. Therefore, from Proposition 6.1, we

have that the correspondence D* (as defined in Equation (6.63)) is compact-valued

and upper-hemicontinous on W. However, every order quantity vector in the set

D*(w) is a solution to SUPPLIER-PRIMAL(k,w) and in the proof of Theorem 7.1,
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we showed that SUPPLIER-PRIMAL(k,w) has a unique solution, qt(w). Therefore,
D*(w) is single-valued (for any w E W) and equals qt(w). Since 7D* is single-valued

and upper-hemicontinous on W, it must, therefore, be continuous on W, implying

that the function qf' is continuous on W. Therefore, the function E[St(qf(wy, Wy))]

is continuous on W. Furthermore, since retailer Y's profit lry(w) is a finite sum of

products of continuous functions on W, the function ry (w) is also continuous on

W. O

Proof of Theorem 7.8. The (Weierstrass) Extreme Value Theorem says that for

any continuous and real function f on a compact metric space X, there exists a

point x* E X such f(x*) = supxex f(x). (Rudin 1976, Theorem 4.16) Since, the

hypercube IH,,y[ct, Pt] is closed and bounded (and hence compact) as well as a metric

space (under the Euclidean metric), and since the retailer's objective function is

(real) continuous in its decision vector Wy (from Lemma 7.1), we, therefore, have (by

applying the Extreme Value Theorem) that retailer Y can attain the supremum of

its objective function (over its constraint set) from a vector in its constraint set, i.e.,

the hypercube ItE•y[ct, Pt], implying that the solution set W/r(wy) is non-empty.

From the proof of Theorem 7.7, we have that when retailer Y solves Y-RETAILER-

IND UCING-A GGREGA TE- ORDER(wy), there exists an optimal (and unique) ag-

gregate stocking quantity xY(w 7 ) and an optimal (and unique) induced capacity

allocation vector qY(wy). Therefore, from equation (7.14), we have that the set

W YV(x (wy); wy) is non-empty. Furthermore, for every good j E Y\ZY(x (wy); wy),

we must have

(cj + A'(xy (wy) wy))/Fj (q" (x(wy); wy)) < pj, (7.61)

otherwise, the quantity xY (wy) and the vector qY(wy) would not be a solution for

Y-RETAILER-IND UCING-A GGREGATE-ORDER(wy) (because retailer Y could

increase the value of the objective function by choosing the induced stocking quan-

tity for good j to be zero, if equation (7.61) did not hold for good j). There-

fore, for every wholesale price vector w' e WY (x (wy); wy) and for any good j C
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Y \ ZY(x r (w-y); w-), we have cj < w' < py from equation (7.14). Also, from

equation (7.14), we have that there always exists a wholesale price vector w' E

WY(xY(wy); wy) such that for every good i E ZY(xY(wy); wy), we have w' = ci.

Therefore, we have that the set WY(x Y (wy); uwv) n Htevy[ct,pt] is non-empty.

Next, we show that Wvyr(wy) C WY(xY(w-); Wy) n I-t,,y[ct,pt]. Consider any

wholesale price vector wy E Wy(wy) for goods Y. From the constraints of Y-

RETAILER (wy), we know that Wy E I pE[ct, Pt]. Assume that Wy WVVY (xY (wy); wy).

From Theorem 7.1, we have that the objective function for Y-RETAILER(w-y) sat-

isfies

(pi - wi) . E[Si(q (w))] = 5 (pi - (A'(w) + ci)/lF(q'~(w))) -E[Si(q.(w))].
iEY iEY

(7.62)
And from Theorem 7.5 and equation (7.14), we have that for any induced order quan-

tity vector q' that maximizes the objective function of Y-RETAILER-INDUCING-

A GGREGATE-ORDER(wy) subject to its constraints, there exists a wholesale price

vector w' E WY (-,Ey qg; W-y) n ftEy[ct, Pt] that satisfies

Pi - Av zq; W) + c /Pi(q) E[S(q)] (p-w).E([Sq(q) = (w,(pi -w y))].
i6Y tEY /iEY

(7.63)
From our assumption that Wy W Y (xY (wy); w-y), we have

(pi - wi) . E[S (q (w))] < E(pi - w ) -E[S (qv (w', wy))]
iEY iEY

so that Wy V WIr(Wy). But this is a contradiction. Thus, we have

wy E WY (xY(w-•y);wy) n J7[ct, pt]
tEY

Next, we show that Wv (x(Y(wy); wV) n ntE[Ct,Pt] C W-Fb(wy). Consider any

wholesale price vector w' 1 Wvy(x(wy); wy) n -try[ct,pt] for goods Y. Then,

there exists a vector q' of order quantities such that for any good i E Y, q' =
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qiv(wY, wy) and equation (7.63) holds. Assume that w' ( Wbr(wy). Then, there

exists a wy E 1t7J [ct, Pt] such that

S (pi - wi) -E[S(q (w))] > E (pi - w') - E[Si(qi (w, wy))].
iEY iEY

But, since AV(w) = Av (•• q(w); w) (due to Theorem 7.3), from equation (7.62)

we have

S:(p - wi)E[Si(qj(w))] = (p- (Av ( 5qv'(w);u·y +c) /F~ (q(w))) E[Sj(qj(w))].
icY iEY \tEY

(7.64)
Therefore, from equation (7.63), we have

S(Pi - (Av ( q'(w);WY + ci /i (qjv(w)))
iEY YtE

is strictly larger than

pA Av q'; wy + c /FP(qD) E[Si(q )].
i6EY EY

But, this is a contradiction because w'y E W y (xY (wy); wy) fn Ity[ct,pt] and the

vector qy(w) is in the feasible set of Y-RETAILER-INDUCING-AGGREGATE-

ORDER(wy-). Thus, we have w' C Wbr(wy).

Finally, we show that the set W Y (x y (wy); w-y) n tv[Ct, pt] (as defined in equa-

tion (7.14)) is convex. Consider any two wholesale price vectors a, b E WY (x (w-y); wy)

and any real number r E [0, 1]. For every good j e Y \ ZY(xY(wy-); wy), we have

aj = bj (from equation (7.14)). Furthermore, for every good i E Z(zYx(wy); Wy), we

have r- ai+(1-+r)-bi > min {ai, bi}. Therefore, qv,( ay+(1-q).-by, wy) = qv (ay, wy),

implying that the wholesale price vector r. -a + (1- r) -bi E WY (x (wy); wy). There-

fore, the set W Y (xY (w-); wy) is convex, and WY (x(wy-); wy) f I-tvy [ct, pt] is also

convex since it is the intersection of two convex sets. O
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7.6.14 Proof: Existence of an equilibrium when s retailers

compete.

In this proof we apply Kakutani's Fixed Point Theorem (Proposition 6.2). See Sec-

tion 6.6.14 for a statement of that theorem.

Proof of Theorem 7.9. Suppose there are s > 2 retailers identified by the sub-

sets of goods they offer: Y1,...,Y,. Denote the set of feasible retailer wholesale

price vectors by W d e f  tN[ct,Pt]. Consider the retailer best response correspon-

dence Wbr : W -* 2W defined as the s-ary Cartesian product over the s retailer

best response mappings. Namely, for any wholesale price vector w E W, Wbr(W) def

br br b, Yr, ., S

In order to show that an equilibrium exists, we will apply Kakutani's fixed point theo-

rem to the retailer best response correspondence Wbr: W -- 2
w . First, observe that

the set W C RI" is non-empty, compact, and convex. Furthermore, from Theorem 7.8,

we have that for any retailer Y C N that faces competing wholesale prices wy-, the

best response mapping Wbr(wv-) is non-empty and convex7 , implying that Wbr(W) is

non-empty and convex.

Finally, we show that the correspondence Vb r is upper hemicontinuous. Assume

Wbr is not upper hemicontinuous. Since W is compact, we have that the correspon-

dence Wbr is not closed.8 Therefore, there exists wholesale price vectors w, z E W

such that the sequence {w1} of wholesale price vectors converges to l and the se-

quence {z'} of wholesale price vectors satisfies z' E Wbr(WI ) and converges to f, yet

f Wbr(,). Therefore, if we denote retailer Y's profit by -ry(wy, w-y) def Y(Pi

wi)E[Si(qY (wy, w-))], there exists some retailer Ya (a {1, ... , s}) and some whole-

sale price vector wiiy• E tEYa [ct, Pt] such that 7rya (yv, vyao) < 7ry. (ty~, v.a). There-

fore, there exists an E > 0 such that

7ay (Zya, &Yf) + E < 7ry.(Ovy, 7Y) - E. (7.65)

7Convexity follows from our assumption that the retailers are service constrained for good(s) Y, and the
cumulative distribution function for demand of each good y E Y has the IGFR property.

8See Border (1989) for the following result: Consider sets D C Rt , R C Rm and the correspondence
C : D -- 2R . If R is compact and C is closed, then C is upper hemicontinuous.
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Retailer Y,'s objective function 1rya (w) is continuous on W (see Lemma 7.1), therefore

there exists an integer m such that for 1 > m, we have 17rya (2y., Z y )-ry (z , w) <

E. So that the inequality ry (zo, w-) < R (•ya •-Y) + E holds. Therefore, from

Equation (7.65), we have

ry,,(Z'o,w~ o) < 7rya(wCY, &y-.) - . (7.66)

Because of the continuity of retailer Ya's objective function, there also exists an integer

o such that for 1 > o, we have I1rrya(wy,1D,) - 7ry^('wiy,,, )I < E. So that we

have 7ry,(wy, cy) - E < 7ry.(y, w ). Therefore, from Equation (7.66), for 1 >

max {m, o}, we have

7rya (Z, -I4) < 7ry(a(ya,, w7). (7.67)

But, this is a contradiction because z l E Wbr(Wl). Therefore, the correspondence

Wbr is upper hemicontinuous. And, therefore, by applying Kakutani's fixed point

theorem to the retailer best response correspondence Wbr, we have that there exists

a vector weq E W of wholesale prices for all n goods, such that w u E Wbr(Weq). b

7.6.15 Proof: Unique equilibrium shadow price for capacity

when s retailers compete.

Proof of Theorem 7.10. Suppose there is one retailer (i.e., s = 1) denoted by

the set N of goods offered. The (Weierstrass) Extreme Value Theorem says that

for any continuous and real function f on a compact metric space X, there exists

a point x* E X such f(x*) = supXEx f(x). (Rudin 1976, Theorem 4.16) Since,

the hypercube EN•[ct,pt] is closed and bounded (and hence compact) as well as a

metric space (under the Euclidean metric), and since retailer N's objective function

rN(W) def ieN(Pi - wi)E[Si(q'(w))] is (real) continuous in its decision vector w

(from Lemma 7.1), we, therefore, have (by applying the Extreme Value Theorem)

that retailer N can attain the supremum of its objective function (over its constraint

set) from a vector in its constraint set, i.e., the hypercube HtEN[Ct, pt], implying that
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a solution exists.

Next, we show that when there is one retailer (i.e., s = 1) every solution w to the

retailer's decision problem in the first stage induces the supplier to have a shadow

price AV(w) = 0. Assume that some solution vector w' induces a positive retailer

shadow price AV(w ' ) > 0 instead. From Theorem 7.5, we have that there exists

another wholesale price vector iO such that the supplier allocates the same amount

as under w' (i.e., qV(wQ) = qv(w')), but the shadow price Av(i') = 0. Therefore, from

Theorem 7.1 we have that wii < w' for every good i that the supplier stocks so that

7rN(w') < 7rN(W). But this is a contradiction because w' is a solution vector for the

retailer's decision problem in the first stage. Thus, it follows that every solution w to

the retailer's decision problem in the first stage induces the supplier to have a shadow

price Av(w) = 0.

Suppose there is more than one retailer (i.e., s > 2). We denote retailer i by

the subset Yi of goods offered. Furthermore, suppose that the retailers are service

constrained for goods N, the demand for each good t E N has the IGFR property,

and Assumption 7.1 holds. We show that every equilibrium wholesale price vector

w induces the supplier to have the same shadow price which we denote by Aeq (i.e.,

AV(w) = Aeq). Assume that instead we have two distinct equilibrium wholesale price

vectors, w' and w', but that they induce different shadow prices for the supplier's

capacity (i.e., AV(w ' ) f Av(i')). Without loss of generality, suppose

0 < Av (w' < Av( (). (7.68)

Recall from Section 7.4.3 that the set

L(qV(WO), qv(w,)) de{l E {1,...,S} I> qE(i)> qi (w')
is Y iEYI

denotes the retailers that have a larger share of the supplier's capacity under wholesale

price vector WO when compared to the allocation under wholesale price vector w'.

If the two distinct wholesale price vectors induce the supplier to make the same
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allocation, i.e., qv(') = qv(w'), then the set L(q'(Q), qv(w')) is empty, otherwise the

set L(qv(WO), qv(w')) must be nonempty because the equation

qE(w')
iEN

(7.69)<5 q (wi ) = k
iEN

holds (which follows from equation (7.68) and Theorem 7.1).

Consider the case when the set L(qv(i), qv(w')) is nonempty. For the purposes of

this proof only, we define t def min { •C Y qt, k }. For every retailer 1 E L(qv(i), qv(w')),

from Theorem 7.7, we have that

5 qv (w-) = sup
iEYj

{x E [01,] I 2'1(x; - )-

From Theorem 7.6 (which implies that the function A" (x; w') is strictly decreasing

as x E (0, min {,, qq, k}] increases) and Theorem 7.7, we have that for every

retailer 1 E L(qr(i), qr(w')) the equation

= inf { E [0, 2] E[Si(q" (x; w))] a8v(x; W')
dx +

< 0

(7.71)

holds. From Assumption 7.1 we have

E
lEL(qv (j@),qv (w')) (~ S

iEY

d At(x; &Yq)
Ox- y=i , qv(( )

(7.72)

E
1EL(qv(@),qv(w'))

( E[Si(qfj(w'))]
iEYj( iFj qv (w'))

DAv(x; W-)
dx+ = )·=Cit q• (·w')

Therefore, there exists a retailer 1 E L(qr(WO), qr(w')) such that the equation

DA v(x; &Y,)

Ox- X=Eyi E. •
E[Si(qv(w'))]

F-(qv(w'))
dAv(x; w)
ax+

(7.73)

SAv(x; 1k0)
aX- >0}

(7.70)

Iq (w')
iev Y

iEY(
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E[S.(q'(x-'(zY(;~L)))

E[Si (qv (9))]
Fj (qv (W))

E[Si (qv(-))]
Fj(qv(W))

x=Ejiqvey(w1)
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holds. And so we have

6 < XI: qin(^ ;-
iEYi

< Y• • w
I:< WT

E[S,(qjv(w'))]

Fi(qi (w'))
iE i~y~o'j

oav(x;') Ix- =YEi i qV(•)

iE=EiE
(7.74)

OAv (x; w-)
ax +

x y, qv(w0)X=EiE i

(7.75)

(7.76)< 0.

(Equation (7.74) follows from equation (7.70). Applying Theorem 7.6 and noting the

equations (7.68) and (7.69), we have AK ( qiE •(); ') < zi (ViqP(w');WY
holds. Therefore, from equation (7.73) we have equation (7.75). And, equation (7.76)

follows from equation (7.71).) Notice that equation (7.76) leads to a contradiction,

0 < 0. Thus, it follows that every equilibrium wholesale price vector w induces the

supplier to have the same shadow price which we denote by Aeq (i.e., XV(w) = -eq).

7.6.16 Proof: Unique capacity allocation when s suppliers

compete.

Proof of Theorem 7.11. Consider the case when the supplier allocates capacity

for at least two retailers when offered wholesale price vector w'. Assume that the

equation

(7.77)

holds, instead, for two equilibrium wholesale price vectors @ and w' that induce the

same supplier capacity allocation (i.e., qV(j') = qv(w')) but induce shadow prices for

capacity satisfying Av(w') < A'v(-). Consider any retailer Yd such that

dE arg mmin my (w'). (7.78)
jEf 1,...,s), Yjn(N\z(w )),0
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We show that retailer Yd will deviate from the wholesale price vector iy, when the

wholesale price vector for the other goods Yd is held fixed at '--. Since the two

equilibrium wholesale price vectors WO and w' induce the same capacity allocation

(i.e., qV(Q') = qv(w')), from the proof of Corollary 7.6 (see equation (7.45)) and

Theorem 7.6 we have that the equation

Fi (qiv (W")) 9x- '(10) -'(+) Fi (qV(w')) ax- X=Eiyd qiv(w)
iEYd X=ziE(' X>CteYd qiv(wI)

(7.79)

holds. Furthermore, since qv"( ) = qv(w') holds, from Theorem 7.3 and Theorem 7.6

we have that the equation

A iiYd E(zqwi);- + Av(wi)•AYd' ( (w'); + Av(w). (7.80)
\iEYd / \iEYd /

holds. Therefore, we have

my( ) d (Yd q(); + ) F i(q V(")) x- yd q()

- Av= w)) + myd(w))- AVViY)( E [Si (qv (&))] Av(x; wd)

< 0. (7.81)

Equation (7.81) follows from equation (7.77). But this is a contradiction because,

according to Theorem 7.7, retailer Yd would deviate from the wholesale price vector

W'y, when the wholesale price vector for the other goods Ydis held fixed at 'y-. Thus,

equation (7.23) follows.

Consider the case when the supplier allocates capacity to only one retailer (i.e.,
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retailer Y) when facing wholesale price vector w'. Assume that the equation

Av(ii) > AV(w') (7.82)

holds, instead. Retailer Y's objective function is lry(w) ,de y(p-wi)E[Si(q=(w))].

Since E-•y q' (i) = E"y q'(w') = k, from Theorem 7.7 we have qY (') = qi (w') for

every good i E Y. Therefore, from Theorem 7.1 we have that wi > w' for every good i

that the supplier stocks so that ry ('i) < r y(w'). Observe that ry (w') = ry (w,,, ii-7)

since A'(w ') = Av(w', cy) (for an equilibrium w') implying A'(w ') = Av(w,, ii-)

(using Theorem 7.4). And, so we have iry(ii) < ry(w,, i-). Therefore, retailer

Y prefers wholesale price vector w'y over wiy when the other good(s) Y have fixed

their wholesale price vector to be y7. But this is a contradiction because W' is an

equilibrium wholesale price vector. Thus, it follows that Av(ii) _ A'(w'). O

7.6.17 Proof: Retailer collusion.

Proof of Theorem 7.12. Denote retailer Y's objective function by the function

ry (W) de EN(Pi - wi)E[Si(q\ (w))]. From Theorem 7.5, we have that there exists

another wholesale price vector i' such that the supplier stocks the same amount as

under w' (i.e., qv'(') = qv(w')), but the shadow price A'(ii) = 0. Therefore, from

Theorem 7.1 we have that wi < w for every good i that the supplier stocks so that for

any retailer Y we have iry(w') < 7ry(w'). Furthermore, from Theorem 7.10 we have

that for the two-stage game with one retailer any equilibrium wholesale price vector

induces a shadow price of zero units. Therefore, if w* is a solution to (Y1 U... U Y,)-

RETAILER (see Section 7.1.2), then we have

S 8

Zi7Y) •n Zry t (w *).
t=1 t=1

So we can conclude that

8 S

Z ryt= W) < El ryt(w*)
t=l t=1
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CHAPTER 8
Conclusions and future work

The "accepted wisdom" in the supply contracts literature is that in single sup-

plier/single retailer situations, the supplier has no incentive to set a wholesale price

that will maximize the channel's profits. Thus, simple contracts based on wholesale

price are considered inefficient. This observation has motivated the study of (the

harder to implement) risk-sharing contracts which allow for flexible allocation of the

(optimal) profit. The first half of our thesis focuses on coordination and demonstrates

that when the supply channel is resource constrained, wholesale price contracts can

be as efficient as risk-sharing contracts and even somewhat flexible in allocating chan-

nel profit. We show that this efficiency result holds regardless of the supply channel's

mode of operation (push or pull). Intuitively, the efficiency and profit-allocation flex-

ibility of risk-sharing contracts are derived, in part, from additional contract param-

eters. However, when a supply channel is resource constrained, the inherent resource

parameter (e.g., capacity or budget), is sufficient for enriching a wholesale price con-

tract to have the benefits of a risk-sharing contract. More generally, we find that

resource parameters can enhance the efficiency properties of risk-sharing contracts

too.

The second half of our thesis focuses on competition rather than coordination. We

consider two supply channels (one operating in push-mode and the other operating in

pull-mode) each with one newsvendor with limited capacity and firms that compete

for that capacity in an equilibrium setting. After conducting some comparative statics

and analyzing each game's 'geometry', we show that the equilibrium setting oftentimes
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creates an endogenous valuation for the newsvendor's capacity. And we show that

when the firms collude against the newsvendor, they will decrease the value of the

newsvendor's capacity to zero.

Before we describe some paths for future work, we highlight some of the ideas

from this thesis.

U 8.1 Resource parameters versus contract param-

eters

One of the reasons that revenue-sharing, buyback, and an assortment of other

contracts are able to coordinate the retailer in an unconstrained setting is because

those contracts have two or more parameters. Intuitively, the 'flexibility' of those

parameters creates contracts where the retailer has an incentive to order the system-

optimal amount and that allows the supplier to earn a profit. Interestingly, our model

also introduces another 'parameter', capacity. But capacity is not part of the contract.

Rather it is part of the system. So instead of introducing complexity into the contract

(with another contract parameter) one should check if an inherent resource parameter

(such as capacity) can lead to the use of simpler contracts.

In particular, if demand is large enough relative to capacity for the channel's

problem, then wholesale price contracts that coordinate the channel and allow both

the supplier and retailer to profit exist. Consequently the potential to reach a channel

optimal outcome in a negotiation setting exists. Also, demand and capacity are both

levers in practice. Therefore, if demand is not large enough relative to capacity

for a wholesale price contract to be efficient, demand can increased (e.g., through

marketing) so that a simple wholesale price contract is efficient.

Resource constraints are a part of many supply channels. The first part of this the-

sis shows that taking them into consideration in the analysis is important in assessing

the actual efficiency of contracts for constrained channels.
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U 8.2 Extra flexibility in allocating profit

One of the problems with wholesale price contracts in an unconstrained setting

is that they do not provide any flexibility in allocating the channel-optimal profit.

In Section 3.2, we show that in a constrained setting wholesale price contracts offer

some flexibility in allocating the channel profit without sacrificing coordination. An-

other lesson for constrained channels is that buyback and revenue sharing contracts

still coordinate the channel (see Section 3.3.1). And those contracts coordinate the

constrained channel for a larger set of parameters than for the unconstrained case,

gaining some extra flexibility in allocating the channel-optimal profit for a given level

of risk.

U 8.3 Efficiency loss

Furthermore, in the Stackelberg game (Section 2.3) where the supplier acts as

the 'leader', if the capacity constraint is tight, the equilibrium outcome is channel

optimal. Otherwise, when the equilibrium is not efficient (because the capacity k is

not small enough), we provide a distribution-free worst-case characterization of the

efficiency loss, as measured by Eff(k, 3) (see Section 2.5).

* 8.4 Coordination when there are multiple goods

Chapter 4 shows that when a supply channel (operating in push-mode) has more

than one good (which most do) coordination is possible with wholesale price con-

tracts (depending on the capacity of the channel) but much care needs to be taken so

that the wholesale prices satisfy a very particular relationship with one another (as

specified in Theorem 4.1). If a manager negotiates prices blindly without considering

this relationship, the channel is forgoing profit (even though his firm may be better

off financially with those terms). Furthermore, the difficulty in maintaining the re-

lationship between these wholesale prices is further exacerbated by the fact that a

firm may have multiple divisions/silos each responsible for procuring and negotiating
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different goods (while maintaining an overall firm budget or capacity level). In other

words, coordination with multiple goods is difficult/tricky (due to the relationship

between the wholesale prices that needs to be preserved), but very much possible.

U 8.5 Capacity valuation and collusion

Chapter 6 introduced a model where suppliers compete for a retailer's capacity.

We showed that competition creates an endogenous valuation for the retailer's ca-

pacity and that supplier collusion can eliminate the value of that capacity entirely.

Interestingly, in practice some retailers can overcome this effect of collusion by own-

ing or contracting with a 'private label' supplier that has extremely low prices and

enough demand for its goods. By doing this, the retailer is adding an exogenous

supplier with fixed low wholesale prices to the game, thereby artificially creating a

lower bound for the retailer's shadow price for capacity.

U 8.6 Future work

Cachon (2003) mentions that coordination in multiple supplier settings has not

been explored. Chapter 6 constitutes initial steps in that direction. A particularly

interesting question that we are pursuing as future work is the impact of supplier

collusion on the supply channel profit. In particular, when suppliers collude is the

channel profit larger in equilibrium when compared to a setting where suppliers com-

pete against one another? In other words, will the market operate more efficiently if

suppliers collude or, rather, if some subsets of suppliers collude?

Also as we showed in Chapter 4, coordination when there are multiple goods re-

quires a particular relationship to be satisfied between the wholesale price contracts.

As we've remarked, in practice this is difficult because a firm may carry out its pro-

curement function in a decentralized fashion. It seems that by merely choosing a

different contract (e.g., a buyback or revenue sharing contract) from the literature,

we will not make the coordination problem for multiple goods any easier in prac-
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tice. Therefore, are there non-traditional contracts that can incentivize different silos

within a firm to allocate the firm's entire capacity more optimally?

In Section 2.5 and Section 5.5, we calculate the worst-case efficiency loss for a one-

supplier/one-retailer supply channel with a capacity constraint, operating in push-

mode and pull-mode, respectively. But how does this efficiency loss change as we add

more firms and goods as in Chapters 6 and 7? How is the efficiency loss affected by

collusion?

In Section 2.3 and Section 5.3, we considered equilibrium settings for a one-

supplier/one-retailer supply channel with a capacity constraint. The constraint was

exogenous. What happens if we allow the constraint to be endogenous? Consider the

game with the newsvendor moving first to choose capacity, the other firm(s) moving

second offering wholesale prices for that capacity, and finally the newsvendor mak-

ing a capacity allocation/ordering decision. In such a game, will every equilibrium

outcome have the property that the endogenous capacity constraint is binding? How

efficient will the channel operate in equilibrium?
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