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Abstract

This thesis deals with five important ideas pertaining to supply chains and supply
contracts: coordination, flexibility in allocating profit, the push-pull boundary, the
valuation of capacity, and cooperation versus competition and its effects on profit
and prices. Throughout the thesis, we focus on capacity-constrained supply channels,
motivated by the fact that most real-world supply chains have physical or monetary
constraints.

In the first part of this thesis, we show that when a supply channel is capacity-
constrained and the constraint is tight, there is a set of linear wholesale price con-
tracts that coordinates the channel while allowing the supplier to make a profit. We
prove this for the one-supplier/one-newsvendor supply channel as well as the many-
supplier/one-newsvendor channel configuration (with each supplier selling a unique
product). We analyze how this set of wholesale prices changes as we change the
channel’s capacity constraint. We also explore conditions under which these channel-
efficient linear wholesale price contracts result from the equilibrium behavior of a
newsvendor procurement game. Our newsvendor procurement game generalizes the
Stackelberg game introduced in Lariviere and Porteus (2001) to allow for multiple
suppliers as well as a capacity constraint at the newsvendor. In order to convey the
worst-case channel performance when these channel-efficient contracts are not used
in equilibrium, we quantify the worst-case efficiency loss for the supply channel using
a distribution-free method. We also identify the set of Pareto-dominated contracts in
a negotiation setting. Furthermore, unlike the unconstrained setting, we show that
in the constrained setting wholesale price contracts can be flexible in allocating the
channel profit without necessarily sacrificing coordination. Finally, we find the set of
risk-sharing contracts (such as buy-back and revenue-sharing contracts) that coordi-
nate a constrained supply channel and contrast that set with the set of risk-sharing
contracts that coordinate an unconstrained channel. We show that in a capacity
constrained channel, even risk-sharing contracts gain extra flexibility because for any
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given level of risk, there is now a range of possible allocations of the system optimal
profit between the supplier and retailer. (Without a capacity constraint, for any given
level of risk, there is only one allowable allocation of channel optimal profit between
the supplier and retailer.) In other words, in a capacity-constrained environment,
using risk-sharing contracts, for any given level of risk, we show there is flexibility in
allocating the channel optimal profit.

In the second part of this thesis, we consider a supply channel with a capacity
constraint in which the retailer makes an order quantity decision that depends only on
realized demand rather than a forecast, and instead the supplier is the newsvendor for
the channel making a stocking decision based on a forecast. In other words, the retailer
now ‘pulls’ inventory from the supplier as demand is realized which differs from the
model in the first part of this thesis wherein the supplier ‘pushes’ inventory onto the
retailer before the sales season begins. We find that for the new supply channel similar
results hold. Namely, when the retailer is operating in ‘pull-mode’, there is a set of
‘pull’ wholesale price contracts that coordinates the channel while allowing the retailer
to make a profit. We analyze how this set of wholesale prices changes as we change
the channel’s capacity constraint. We also explore conditions under which these
channel-efficient ‘pull’ wholesale price contracts result from the equilibrium behavior
of a newsvendor procurement game. OQur newsvendor procurement game generalizes
the Stackelberg game introduced in Cachon and Lariviere (2001) to allow for multiple
retailers as well as a capacity constraint at the newsvendor. We assess the worst-case
channel performance in equilibrium when these channel-efficient contracts are not
selected. Furthermore, we identify the set of Pareto-dominated ‘pull’ contracts in a
negotiation setting. Finally, we identify the wholesale price contracts that coordinate
regardless of the supply chain’s mode of operation.

In the third part of this thesis, we consider a supply channel, operating in ‘push’-
mode, with multiple suppliers selling differentiated products to one newsvendor with
limited capacity, using wholesale price contracts. We show that both in a negotiation
setting as well as in an equilibrium setting, with the suppliers selecting wholesale
prices followed by the newsvendor choosing order quantities, each supplier incurs an
endogenous price for their share of the newsvendor’s capacity. We intrepret this price
as the value of the newsvendor’s capacity and analyze the capacity’s price in both
a negotiation and an equilibrium setting. Furthermore, we show that our capacity
valuation technique can be applied to different supply chain settings by analyzing the
capacity price for a different supply chain, operating in ‘pull’-mode, with one supplier
with limited capacity selling differentiated products to multiple retailers. Finally, we
analyze the effects of collusion on prices and profits in both these settings.

Thesis Supervisor: Yossi Sheffi
Title: Professor of Engineering Systems and Civil & Environmental Engineering

Thesis Supervisor: John N. Tsitsiklis
Title: Clarence J Lebel Professor of Electrical Engineering
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CHAPTER 1

Introduction and Contributions

This thesis deals with five important ideas pertaining to supply chains and supply
contracts: coordination, flexibility in allocating profit, the push-pull boundary, the
valuation of capacity, and cooperation versus competition and its effects on profit
and prices. Throughout the thesis, we focus on capacity-constrained supply channels,
motivated by the fact that most real-world supply chains have physical or monetary

constraints.

B 1.1 Coordinating a constrained channel

There is a wealth of supply contracts available that coordinate a newsvendor’s deci-
sion for unconstrained supplier-retailer channels: buy-back contracts, revenue-sharing
contracts, etc. (Cachon 2003) A contract coordinates the actions of a newsvendor for
a supply channel if the contract causes the newsvendor to take actions when solving
his own decision problem that are also optimal for the channel! Our thesis shows
that simpler contracts, namely linear wholesale price contracts (which are thought to

be unable to coordinate a newsvendor’s decision for unconstrained channels) can, in

!Sometimes we also say a contract channel-coordinates a newsvendor’s decision. Therefore, achieving co-
ordination for the channel equates to attaining channel optimality (and thus efficiency) when the newsvendor
is allowed to decide for himself.

17



18 CHAPTER 1. INTRODUCTION AND CONTRIBUTIONS

fact, coordinate a newsvendor’s procurement decision for resource-constrained chan-
nels. This is relevant for supply channels in which-capacity of some resource is limited.
For example, shelf space at retail stores, seats on airlines, warehouse space, procure-
ment budgets, time available for manufacturing, raw materials, etc. (Corsten 2006)
In this thesis, we also show how risk-sharing contracts such as buy-back and
revenue-sharing coordinate the procurement decision of a resource-constrained newsven-
dor thereby generalizing the treatment of these contracts. But the primary insight
we show in the first part of this thesis, is that if newsvendor capacity is a binding
constraint, then a set of linear wholesale-price contracts can coordinate the procure-
ment decision of a capacity-constrained newsvendor (when the supply chain operates
in ‘pull-mode’).? Furthermore, this set includes wholesale prices that allow both the

supplier and the newsvendor to profit.

B 1.2 Additional flexibility in allocating profit with-
out sacrificing coordination

In addition to coordination capability, another important feature of any supply
contract is its flexibility in allocating profit while maintaining coordination (Cachon
2003). Buyback contracts and revenue sharing contracts in unconstrained channels
are well known to have this advantage. But wholesale price contracts in unconstrained

settings lack the flexibility in allocating channel profit while maintaining coordination.

1.2.1 Wholesale price contracts

Our thesis shows that when the channel is constrained, wholesale price contracts gain

some flexibility (in allocating channel profit) while maintaining coordination.

2In addition to capacity being a binding constraint, the relative power of the parties and their competitive
environments are also important for the wholesale-price contract to coordinate the actions of the newsvendor
in practice. For example, even if the set of wholesale prices W(k) that coordinate the retailer’s actions is
enlarged beyond the supplier’s marginal cost (due to the retailer’s capacity constraint k), the retailer and
supplier still need to agree upon some wholesale price in that set. Their outside-alternatives and the power
in the supply channel could determine if some wholesale price in the set W(k) is acceptable for the parties
involved.
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1.2.2 Risk-sharing contracts

However, this extra gain in flexibility is not limited to wholesale price contracts. We
also show that when the channel is constrained, buyback contracts also gain some
flexibility. In particular, we show that buyback contracts gain a feature that they do
not have in the unconstrained setting: the flexibility in allocating channel optimal

profit, for any fixed level of risk.

B 1.3 Push versus Pull

In the supply chain literature, the ‘push-pull boundary’ in a supply chain refers to
the point in the supply chain at which the supply chain’s mode of operation switches
from ‘building to forecast’ to ‘reacting to realized demand’ (Chopra and Lariviere
2005). This is also called The ‘Fulcrum Point’ by Martin Christopher; the BTF/BTO
boundary (build to forecast/build to order).

In this thesis, we also show that our results on the coordination capability of
wholesale price contracts are independent of where we place the ‘push-pull boundary’,
i.e., the supply chain’s mode of operation. We go on to highlight the wholesale price

contracts that coordinate the supply chain regardless of mode of operation.

M 1.4 A valuation technique for capacity

When considering multiple suppliers selling to a capacity constrained newsvendor
(i.e., push-mode) or multiple retailers buying from a capacity constrained newsvendor
(i.e., pull-mode), we analyze the capacity constraint’s shadow price in equilibrium,
motivated by the fact that the shadow price is important in ‘valuing’ the newsvendor’s

capacity.

B 1.5 Cooperation versus Competition

The theme of cooperation versus competition runs throughout this thesis.
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1.5.1 Equilibrium setting: 1 supplier/1 retailer

In addition to understanding the wholesale prices that coordinate a channel, we also
analyze equilibrium settings (push and pull modes) to answer the question: when do
wholesale price contracts coordinate in a competitive setting? Or equivalently, when
is the equilibrium outcome equivalent to the outcome of the integrated firm. We
find that when capacity is small enough, wholesale price contracts induce a channel
profit that is as large as any cooperative or integrated outcome. In other words,
for small enough channel capacities there are no gains to be had from integration or
cooperation. We show this for a single supplier/single retailer supply chain and we
show that this feature holds regardless of the supply chain’s mode of operation (push

or pull).

1.5.2 Competition versus Collusion within an echelon

We also consider a supply chain operating in push-mode with multiple suppliers selling
to a retailer. We show that when there is supplier collusion, every supplier can be
better off in terms of profit.

Furthermore, we consider a supply chain operating in pull-mode with multiple
retailers buying from a single supplier. We show that when there is retailer collusion,

every retailer can be better off in terms of profit.

B 1.6 Organization of this Thesis

In Section 1.7, we provide an overview of the supply contracts literature, empha-
sizing the point that the literature has underestimated the coordination capability of
wholesale price contracts for a constrained supply channel.

Chapter 2 focuses on single supplier/single retailer supply chain (with a capac-
ity constraint) operating in push-mode (i.e., we have a make-to-stock retailer). We
formally define coordination and analyze the set of coordinating wholesale price con-

tracts. Then we consider an equilibrium setting, proving a unique equilibrium exists,
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and providing necessary and sufficient conditions for the equilibrium wholesale price
contract to coordinate the supply chain. Furthermore, we analyze the set of Pareto-
dominated contracts (contracts that should be avoided in both a negotiation and
equilibrium setting). Finally, recognizing that the outcome can be inefficient in an
equilibrium setting, we provide a worst-case efficiency bound for the equilibrium set-

ting using a distribution-independent technique.

Chapter 3 uses the model presented in Chapter 2 in order to characterize the
fractions of revenue and profit that can be allocated to a supplier and retailer when
they use a coordinating contract. In particular, we show that wholesale price contracts
have some flexibility in allocating the channel-optimal profit between the supplier and
retailer (a flexibility that does not exist in the unconstrained setting). We conduct
some comparative statics and analyze how this flexibility changes as a function of
capacity and market demand. Then we move on and consider risk-sharing contracts
for the same supply chain model. We show that they still coordinate a capacity-
constrained channel and, furthermore, there is even more flexibility in the choice of
risk-sharing contracts (for coordinating the channel). In particular, for any given
level of risk (represented by the buyback parameter of a buyback contract), there is
now flexibility in allocating the channel profit (without sacrificing coordination), a

flexibility that is not present in the unconstrained setting.

Chapter 4 extends the push-mode supply chain model used in Chapter 2 and
Chapter 3 by having multiple suppliers (each offering one differentiated good) in-
stead of a single supplier. The chapter’s focus is on coordination in this expanded
setting. We provide conditions for wholesale price contracts to coordinate the chan-
nel. Then we consider an equilibrium setting and find conditions guaranteeing that

the equilibrium wholesale price is a coordinating contract.

Chapter 5 considers the supply chain model in Chapter 2 but changes the mode of
operation to pull and places the capacity constraint at the supplier. In other words,
we have a make-to-order ‘lean’ retailer. In this chapter, we analyze the set of coordi-
nating ‘pull’ wholesale price contracts, showing that when capacity is ‘small enough’,

coordination becomes possible. Then we consider an equilibrium setting, proving
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that a unique equilibrium exists and providing necessary and sufficient conditions
for the equilibrium ‘pull” wholesale price contract to be a coordinating contract. We
then analyze the set of Pareto-dominated ‘pull’ wholesale price contracts which are
to be avoided in a negotiation setting (and will be avoided in an equilibrium setting).
- Recognizing that in an equilibrium setting we may not achieve the channel-optimal
outcome, we analyze the worst-case efficiency loss using a distribution-independent
technique. Finally, combining our results from Chapter 2 and Chapter 5, we describe
the wholesale price contracts that coordinate the supply chain regardless of its mode

of operation (push or pull).

Chapter 6 considers a more general supply chain model with multiple suppliers
selling multiple goods to one capacity constrained retailer, extending the model in
Chapter 2. The supply chain operates in push-mode (i.e., the retailer is a make-to-
stock retailer). We analyze the retailer’s order decision and derive an endogenous price
for the retailer’s capacity, i.e., the retailer’s shadow price. Focusing on an equilibrium
setting, we provide conditions for the existence and uniqueness of an equilibrium
shadow price. We conduct comparative statics. Finally, we consider the effect of

supplier collusion on the retailer’s (shadow) price for capacity and on supplier profit.

Chapter 7 considers an extension of the ‘pull’ supply chain model presented in
Chapter 5 by having multiple retailers pulling multiple goods from a single supplier.
We focus on an equilibrium setting, conduct comparative statics and provide con-
ditions for the existence and uniqueness of an equilibrium. Finally, we consider the
effect of retailer collusion on the supplier’s (shadow) price for capacity and on retailer

profit.

Finally, we summarize our findings and provide insights in Chapter 8.

B 1.7 A survey of the literature

The supply contracts literature has been based on the observation, pointed out, for
example, by Lariviere and Porteus (2001), that wholesale price contracts are simple

but do not coordinate the retailer’s order quantity decision for a supplier-retailer
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supply chain in a newsvendor setting. This observation has led to the study of an
assortment of alternative contracts. For example, buy back contracts (Pasternack
1985), quantity flexibility contracts (Tsay 1999), and many others. Cachon (2003)
provides an excellent survey of the many contracts and models that have been studied
in the supply contracts literature. The mindset surrounding wholesale price contract’s
inability to channel-coordinate is true under appropriate assumptions— which the
supply contracts literature has been implicitly assuming: that there are no capacity

constraints (e.g., shelf space, budget, etc.).

As mentioned before, we also consider the case of multiple suppliers serving a
single retailer. This exploration is motivated, in part, by Cachon (2003) and Cachon
and Lariviere (2005), who emphasize that coordination for channel configurations
with multiple suppliers has yet to be explored. The relevant literature on multi-
product newsvendors with side constraints (which has developed independently from
the coordination literature) includes Lau and Lau (1995), Abdel-Malek and Montanari
(2005a,b).

Considering capacity constraints in a supply channel is not new to the supply
contracts literature. However, most other papers in the literature consider choosing
capacity as one stage of a game (before downstream demand is realized) that also
involves a production decision after demand is finally realized (Cachon and Lariviere
2001, Gerchak and Wang 2004, Wang and Gerchak 2003, Tomlin 2003). Our paper,
although complementary to this stream of literature, does not involve an endoge-
nous capacity choice for any party but rather analyzes how an exogenous capacity
constraint determines the set of wholesale prices that can coordinate the retailer’s de-
cision for the channel. Pasternack (2001) considers an exogenous budget constraint,
but not for the purposes of studying coordination. Rather, he analyzes a retailer’s
optimal procurement decision when the retailer has two available strategies: buying

on consignment and outright purchase.

Also our work is not the first to reconsider wholesale price contracts and their
benefits beyond simplicity. Cachon (2004) looks at how inventory risk is allocated

according to wholesale price contracts and the resulting impact on supply chain ef-



24 CHAPTER 1. INTRODUCTION AND CONTRIBUTIONS

ficiency. As far as we are aware, our paper is the first to consider the coordination-
capability of linear wholesale price contracts under a simple capacity-constrained

production/procurement newsvendor model.



CHAPTER 2

Coordinating a constrained channel

Wholesale price contracts are commonplace since they are straightforward and easy
to implement. While risk-sharing contracts such as revenue-sharing agreements can
coordinate a retailer’s decision in a newsvendor setting, Cachon and Lariviere (2005)
note that these alternative contracts impose a heavier administrative burden. For
example, these alternative contracts may require an investment in information tech-
nology or a higher level of trust between the trading partners due to the additional
processes involved. Our stylized capacity-constrained newsvendor setting provides a
laboratory for understanding the set of wholesale price contracts that lead the retailer
to take coordinating actions under various channel configurations: one-supplier/one-
retailer (this chapter’s focus) and multiple-suppliers/one-retailer (Chapter 4’s focus).

In this chapter, we are concerned with the coordination capability of wholesale
price contracts for a suppiy channel in both a negotiation setting and an equilibrium
setting. In our negotiation setting, we are concerned with the entire set of coordinat-
ing wholesale-price contracts. The wholesale prices in this set are Pareto-optimal, a
useful property for getting ‘win/win’ results in negotiation settings. This is in contrast
to an equilibrium setting, where choosing the wholesale price(s) is an initial stage of
a game for the supplier(s). In the equilibrium setting we explore conditions for the
game’s equilibrium wholesale-price vectors to coordinate the newsvendor’s procure-

ment decision for the channel (i.e., necessary and sufficient conditions so that the

25
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game’s equilibria are included in the set of coordinating wholesale price contracts),

and characterize the extent of the efficiency loss when these conditions are violated.

Chapter Outline

In Section 2.1, we provide a stylized 1-supplier/l-retailer model and formally
define what it means for a wholesale price contract to coordinate the retailer’s ordering
decision for a supply channel. Then, in Section 2.2, we describe the set of coordinating
wholesale price contracts for this model and analyze the size of this set in Section 2.2.1.
In Section 2.3, we consider a 1-supplier/1-retailer equilibrium model and prove that
a unique equilibrium exists. Then, we provide necessary and sufficient conditions for
the equilibrium wholesale price contract to coordinate the retailer’s ordering decision
(i.e., the equilibrium wholesale price contract is included in the set of coordinating
contracts). In Section 2.4, we analyze the set of wholesale price contracts that are
Pareto-dominated (i.e., a different contract exists that enables one firm to better
off without making the other firms worse off). The Pareto-dominated contracts are
important because they should be avoided in both a negotiation setting as well as
an equilibrium setting. Recognizing that in an equilibrium setting the equilibrium
wholesale price contract need not be a coordinating contract (due to the conditions
we state in Section 2.3), in Section 2.5, we characterize the worst case efficiency loss
in an equilibrium setting. In order to maintain the flow of presentation, the proofs

for all our results in this chapter are contained in Section 2.6.

B 2.1 Model

A risk-neutral retailer r faces a newsvendor problem in ordering from a risk-neutral
supplier for a single good: there is a single sales season, the retailer decides on an
order quantity ¢ and orders well in advance of the season, the entire order arrives
before the start of the season, and finally demand is realized, resulting in sales for

the retailer (without an opportunity for replenishment). Without loss of generality,
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we assume that units remaining at the end of the season have no salvage value and
that there is no cost for stocking out.

The model’s parameters are summarized in Figure 2-1 with the arrows denoting
the direction of product flow. In particular, the supplier has a fixed marginal cost
of ¢ per unit supplied and charges the retailer a wholesale price w > ¢ per unit
ordered. The retailer’s price p per unit to the market is fixed, and we assume that
p > w. For that price, the demand D is random with probability density function
(p.d.f) f and cumulative distribution function (c.d.f) F. We also define F(x) &
1 - F(z) = P(D > z). We say that a c.d.f. F has the IGFR property (increasing
generalized failure rate), if g(z) % 27,%5)2 is weakly increasing on the set of all z for
which F(z) > 0 (Lariviere and Porteus 2001). Most distributions used in practice
(such as the Normal, the Uniform, the Gamma, and the Weibull distribution) have
the IGFR property.

We assume that the retailer’s capacity is constrained by some k& > 0; for example,
the retailer can only hold k units of inventory, or accept a shipment not larger than
k. For a different interpretation, k could represent a constraint on the capacity of the

channel or a budget constraint.

Figure 2-1 “single supplier & single capacity constrained retailer” model.
S r
cl w > q D ~ F
p
g<k

Note. Supplier s with marginal cost ¢ (per unit) offers a product at wholesale price w (per unit) to a
capacity-constrained retailer r that faces uncertain demand D downstream, when the price for the product
is fixed at p (per unit). The retailer must decide on a quantity g to order from the supplier.

AsSUMPTION 2.1. The probability density function (p.d.f.) f for the demand D

has support [0,1], with | > k, on which it is positive and continuous.

As a consequence, F(0) = 1 and F is continuously differentiable, strictly decreasing,
and invertible on (0,7). There is no additional restriction on the value of I. This is

not a restrictive assumption and is made for technical reasons as shown in our proofs.
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2.1.1 Retailer’s problem

Faced with uncertain sales S(q) o min{q, D} (when ordering ¢ units) and a wholesale

price w (from the supplier), the retailer decides on a quantity to order from the
supplier in order to maximize expected profit m,(q) E [pS(q)] — wq while satisfying
the capacity constraint k. Namely, it solves the following convex program with linear
constraints in the decision variable, ¢:

RETAILER (kw)

maximize pE[S(q)] — wq (2.1)
subject to k—q >0

g > 0.

Because of our assumptions on the c.d.f. F, it can be shown that RETAILER (k,w)

has a unique solution which we denote by ¢"(w).

2.1.2 Channel’s problem

Denote the channel’s expected profit by m4(q) ©E [pS(q) — cq]- Under capacity con-
straint k, the optimal order quantity ¢° for the system/channel is the solution to con-
vex program (2.2), CHANNEL (k). Note that CHANNEL (k) has identical linear con-
straints but a slightly altered objective function when compared to RETAILER (k,w):
CHANNEL(k)

maximize pE[S(q)] — cq (2.2)
subject to k—q>0

q=>0.

Again because of our assumptions on the c.d.f. F'it can be shown that CHANNEL (k)
also has a unique solution which we denote by ¢°. We denote the unique solution,

arg MaXg<, <., Ms(¢), for the unconstrained channel problem by ¢*. It is well known
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that ¢* = F~Y(c/p) (e.g., Cachon and Terwiesch (2006)). Because of convexity, it is
also easily seen that ¢* = min{q*, k}.

2.1.3 Definition: Coordinating the retailer’s action

A wholesale price contract w coordinates the retailer’s ordering decision for the supply
channel when it causes the retailer to order the channel-optimal amount, i.e., ¢"(w) =
¢®. In Section 2.2 we are interested in the following questions: For a fixed capacity
k, what is the set of wholesale prices W(k) for which ¢"(w) = ¢°7 What does this set
W(k) resemble geometrically?

If there is no capacity constraint (or equivalently if k is very large), ‘double
marginalization’ results in the retailer not ordering enough (i.e., ¢"(w) < ¢°) under
any wholesale price contract, w > c. In the next section, we will show that when the
capacity constraint k is small relative to demand, there exist a set of wholesale price

contracts w > ¢ that can coordinate the retailer’s order quantity, i.e., ¢"(w) = ¢°.

B 2.2 Set of coordinating wholesale prices

Our first result describes the set of coordinating wholesale prices under a capacity

constraint.

THEOREM 2.1. In a 1-supplier/1-retailer configuration where the retailer faces a

newsvendor problem and has a capacity constraint k, any wholesale price

w e W(k) € [¢,pF(min{g", k})]
will coordinate the retailer’s ordering decision for the supply channel, i.e., ¢"(w) =

q°. Furthermore, if ¢"(w) = ¢° and ¢ < w < p, then w € W(k).

Proof. See Section 2.6.1.
Notice that if the capacity constraint & is larger than or equal to the unconstrained
channel’s optimal order quantity, ¢*, then pF(min{q*,k}) = pF(q*) = ¢, reducing

to the ‘classic’ result in the supply contracts literature. However, this is true only



30 CHAPTER 2. COORDINATING A CONSTRAINED CHANNEL

when the capacity constraint is not binding for the channel (i.e., ¢* < k). When the
capacity constraint k is binding for the channel (ie., ¢* > k), then any wholesale
price w € [¢, pF'(k)] will coordinate the retailer’s action and only wholesale prices in
the range [c,pF(k)] can coordinate the retailer’s action.

Many factors such as ‘power in the channel’, ‘outside alternatives’, ‘inventory risk
exposure’, and ‘competitive environment’ ultimately influence the actual wholesale
price (selected from the set [c,p]) charged by the supplier. In the unconstrained set-
ting, regardless of these factors, coordination is not possible with a linear wholesale
price contract (because the supplier presumably would not agree to price at cost).
However, when the capacity constraint is binding for the channel, coordination be-
comes possible (because the set of coordinating wholesale price contracts becomes
[c,pF (k)] (rather than {c}) and ultimately depends on these other factors. Theo-
rem 2.2 in Section 2.3 considers a equilibrium setting where the retailer takes on all
the inventory risk (akin to the ‘Stackelberg game’ in Lariviere and Porteus (2001)
and ‘push mode’ in Cachon (2004)), and provides additional conditions that must
be met so that the ‘equilibrium’ wholesale price contract is a member of the set of

coordinating wholesale price contracts, [c, pF'(k)].

2.2.1 Size of W(k).

The geometry of the set of wholesale prices W(k) that coordinate the retailer’s deci-

sion for the supply channel is depicted in Figure 2-2.

Figure 2-2  The set of wholesale prices that coordinates the actions of a single retailer when procuring
from a single supplier.

pF(q*) pF(k)
| | I
| | |
c p

Note. Note that pF(¢*) = c and W(k) = [c, pF(k)] (the interval denoted in bold) when k < ¢*.

Note that the size of W(k) is increasing as k decreases. Corollary 2.1 formalizes

this notion and follows directly from Theorem 2.1 because F'(k) is decreasing in k.
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COROLLARY 2.1. If0 < k; < ks, then W(ks) C W(k1) C [c, p]-

Thus, the more constrained the channel is with respect to the channel optimal order
quantity, g*, the larger the set of coordinating wholesale price contracts W(k).
Consider two supply channels selling the same good with the same retail price
p and supplier cost c. Assume that the probability of excess demand in the first
channel is larger, in the sense Fy (k) > Fy(k). Let Wi(k) denote the set of coordinating
wholesale price contracts for channel ¢ when the channel is constrained by k units. The
channel with the higher probability of excess demand has a larger set of coordinating

wholesale prices. Corollary 2.2 to Theorem 2.1 makes this precise.

COROLLARY 2.2. Given two demand distributions Fy and Fs, if Fy(k) > Fy(k) >
0, then
Wiu(k) € Wi(k) C [c,p].

Proof. See Section 2.6.2.

B 2.3 Equilibrium setting.

The equilibrium setting we analyze is a two-stage (Stackelberg) game. In the first
stage, the supplier (the ‘eader’) sets a wholesale price w. In the second stage, the
retailer (the ‘follower’) chooses an optimal response g, given the wholesale price w.
The supplier produces and delivers ¢ units before the sales season starts and offers
no replenishments. Both the supplier and retailer aim to maximize their own profit.
The supplier’s payoff function is ms(w; ¢) = (w — ¢)q and the retailer’s payoff function
is m.(g;w) = E[pS(q) — wq]. Lariviere and Porteus (2001) analyze this Stackelberg
game, for an unconstrained channel with one supplier and one retailer. They find
that when F' has the IGFR property, the game results in a unique outcome (g%, w®)

defined implicitly in terms of the equations

PF(¢°) (1 - g(¢®)) —c =0, (2.3)
pF(¢°) —w® =0, (2.4)
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where g is the generalized failure rate function g(y) def yf(y)/F(y). Furthermore, they
show that the outcome is not channel optimal. In this section, and in Section 2.5,
we explore the efficiency of the outcome when the channel has a capacity constraint
(i.e., g <k).

Theorem 2.2 provides necessary and sufficient conditions on the channel’s capacity

constraint & for the Stackelberg game to result in a channel-optimal equilibrium.

THEOREM 2.2. Assume F' has the IGFR property. Consider the above described
game, when the channel capacity is k units. This game has a unique equilibrium,
given by ¢®(k) = min{k, ¢°} and w®(k) = max{pF(k),w®}, where ¢¢ and w® are de-
fined by equations (2.3) and (2.4), respectively. This equilibrium is channel optimal
if and only if

k<g. (2.5)

Under this condition, we have ¢® = k and w® = pF'(k).

Proof. See Section 2.6.3.

The function pF(y) (1 — g(y)) — c represents the supplier’s marginal profit on the
yth unit, when y < k. When F has the IGFR property, the supplier’s marginal
profit is decreasing in y, while the marginal profit is nonnegative. This fact and equa-
tion (2.3) imply that inequality (2.5) is equivalent to the inequality pF'(k) (1 — g(k))—
¢ > 0, which can be interpreted as a statement that the supplier’s marginal profit
(when relaxing the capacity constraint) on the kth unit is greater than zero. There-
fore, inequality (2.5) suggests that when the capacity constraint is binding for the
supplier’s problem (the ‘leader’ in the Stackelberg game), then the outcome of the
game is channel optimal and vice-versa.

If the channel capacity & is ‘large enough’, so that inequality (2.5) is not satis-
fied, how inefficient is the channel? In Section 2.5, we provide a distribution-free

‘measuring stick’ for the efficiency loss in channels with a capacity constraint.
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H 2.4 When can both parties be better off?

The set of coordinating wholesale price contracts W(k) introduced in Theorem 2.1
has many merits in a negotiation setting. For example, such contracts are Pareto
optimal. In contrast, Theorem 2.3 examines the set of wholesale price contracts D(k)
that have little merit in that they are Pareto-dominated by some other wholesale price
contract in [c,p]. A contract is Pareto-dominated if there exists an alternative linear
wholesale price contract that makes one party better off without making any other
party worse off. Having a complete picture of the contracts that are channel-optimal

and the contracts that are Pareto-dominated is helpful in a negotiation setting.

THEOREM 2.3. Assume F has the IGFR property and that the quantity ¢° and
wholesale price w® are defined implicitly in terms of equations (2.3) and (2.4). If

k < g*, then the set of Pareto-dominated wholesale price contracts D(k) is
de, e T = .
D(k) ¥ (max{u’, pF(k)},p] = (pF(min{g", k}), P}

Proof. See Section 2.6.4.
Note that W(k) and D(k) are disjoint. Corollary 2.3 to Theorem 2.3 formalizes the
idea that when £ is ‘small enough’, W(k) and D(k) partition the set [c, p]. Figure 2-3

illustrates these ideas when demand has a Gamma distribution.
COROLLARY 2.3. Assume F has the IGFR property. If k < ¢°, then

W(k) UD(k) = [¢,p], (2.6)
W(k) N D(k) = 0. (2.7)

Corollary 2.3 is especially interesting: it asserts that when capacity is small enough
there are only two types of contracts: ‘good contracts’, W(k), and ‘bad contracts’,
D(k). Furthermore, both parties will always have a reason to avoid the ‘bad contracts’

because they are Pareto-dominated by some channel-optimal contract in the set W(k).
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Figure 2-3  An example illustrating W(k) and D(k).

Two sets of wholesale prices as a function of capacity: W(k) and D(k)
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Note. We use the same parameters as in Figure 3-1, resulting in ¢* =~ 10.112, ¢° ~ 4.784, and w® = 7.516.
The set of coordinating wholesale price contracts W(k) lies under the solid curve. The set of Pareto-
dominated wholesale price contracts D(k) lies above both the solid and dashed curves. The set of contracts
that lie between the solid and dashed curves are neither in W(k) nor in D(k). Such contracts do not
coordinate the channel, but nevertheless, are not Pareto dominated by coordinating wholesale contracts.

B 2.5 Efficiency Loss.

When the outcome of the Stackelberg game we described in Section 2.3 results in
a wholesale price contract that is not channel optimal, how much does the channel
‘lose’ as a result? What is the ‘price’ paid for the ‘gaming’ between the supplier and
retailer? To quantify the answer we analyze the worst-case efficiency. Our definition
of efficiency is related to the concept of Price of Anarchy, “PoA”, as used by Koutsou-
pias and Papadimitriou (1999), and Papadimitriou (2001). PoA has been used as a
‘measuring stick’ in an assortment of gaming contexts: facility location (Vetta 2002),
traffic networks (Schulz and Moses 2003), resource allocation (Johari and Tsitsiklis
2004). More recently Perakis and Roels (2006) analyze the PoA for an assortment
of supply channel configurations with the IGFR restriction, but not for resource con-

strained channels. Theorem 2.4 complements their results, by providing an efficiency
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result for the Stackelberg game of Section 2.3, in the presence of a capacity constraint
k.

For a channel with a capacity constraint k and probability F'(k) of excess demand,
we define the parameter 3 af M%/—ﬂ. The parameter 3 depends on the prob-

ability F'(k) of excess demand and takes values from the set [1,p/c]. It quantifies

how constrained the channel is with respect to the channel optimal order quantity

def max{F(k).c/p} _ ma"{};((k;;f @)} In the Stackelberg game with a ca-

q*, because 8 = o/
pacity constraint k and parameter 3, the efficiency, Eff(k, 5), is defined according to
equation (2.8) below.

, Channel profit under ‘gaming’ , E[pS(g(k)) — cq®(k)]

Eff = = inf
(%, 5) Felfn(ﬁ,ﬁ) Optimal channel profit Fegfn(k,ﬁ) E[pS(g*(k)) — cg*(k)]
(2.8)

The set F(k,3) represents the set of probability distributions that satisfy Assump-
tion 2.1, have the IGFR property, and such that the probability F'(k) of excess demand
satisfies M%@ = [3. Note that Eff(k, ) is a distribution-free method of quanti-
fying the worst-case efficiency. When Eff(k, ) is low (much smaller than one), there

is significant efficiency loss due to ‘gaming’.

THEOREM 2.4. Define m & (p — ¢)/p (the channel’s gross profit margin). For

the Stackelberg game described in Section 2.3, we have

ko = ()G ) - () e

Proof. See Section 2.6.5.

Note that Eff(k, §) is decreasing in the channel’s gross profit margin m and in-
creasing in 3. When B = 1, the channel is not constrained and Eff(k,3) equals
((ﬁ)l/m — T-%Tz)ﬂl which, after some algebraic manipulation, matches the result
in Perakis and Roels (2006). On the other hand, when the channel is most constrained
(i.e., k = 0, F(k) =~ 1, and B = p/c), then Eff(k,3) simplifies to 1. In other words

there is no efficiency loss because the equilibrium outcome involves the retailer order-

ing exactly k. Our result is thus a more general version of the ‘two-stage push-mode
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PoA’ result in Perakis and Roels (2006) in that we account for a capacity constraint.
Also our proof technique differs from and complements Perakis and Roels (2006), in
that we indirectly optimize over the space of probability distributions by optimizing

over the space of generalized failure rates.

Figure 2-4  An example illustrating Eff(k, 3) when m = 0.35.
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Note. We fix the margin (p — ¢)/p = 0.35 and see how Eff(k, 3) changes as a function of 8.

Figure 2-4 provides an example of the Eff(k, 3) when the channel’s gross profit
margin is 35 percent. Figure 2-4 illustrates that for channels with smaller capacity

(i.e., higher 3), the worst-case efficiency (as measured by Eff(k, 3)) is larger.

B 2.6 Proofs

In order to not disrupt the flow of presentation, the proofs for our results in this

chapter are contained here.
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2.6.1 Proof: 1-supplier/l-retailer, Set of wholesale prices
W(k)

Proof of Theorem 2.1. We start by proving that if w € W(k), then ¢"(w) = ¢°.
Suppose first that ¢* < k. We then have pF(min{q*,k}) = pF(¢*) = c. There-
fore, W(k) = {c}. Thus, for any w € W(k), the problems RETAILER (k,w) and
CHANNEL (k) are the same and ¢"(w) = ¢*.

Suppose now that ¢* > k. We then have ¢° = k and, furthermore, pF'(min{q*, k})

pF (k) > pF(q*) = c. (The strict inequality is obtained because F is strictly decreas-
ing.) Therefore, W(k) = [c,pF'(k)]. Solving 2 (E[pS(z)] — pF(k)z) = Ofor z € [0, ]
and noting % = F(z), we obtain ¢"(pF(k)) = k. Since ¢"(w) is nondecreasing as
we decrease w, we see that for all w € W(k), ¢"(w) = k = ¢°.

Suppose now that ¢"(w) = ¢* and ¢ < w < p. We have shown that

Wik) = {c}, if ¢* <k;

le,pF(k)], if ¢* > k.

When ¢* < k, the first order conditions imply that pF(¢"(w)) —w = 0 = pF(¢°) — ¢
for any w > ¢, which implies w must equal c. When ¢* > k, we know that ¢° = k.
Assume w > pF'(k) when ¢"(w) = ¢°. Due to invertibility around k, ¢"(w) < k. This

is a contradiction because ¢* = ¢"(w) < k. O

2.6.2 Proof: Impact of size of Market on size of W(k)

Proof of Corollary 2.2. Let ¢ = F;'(c/p) be the order quantity (for an uncon-
strained channel) under the demand distribution F;.
If k < g3, then ¢/p < Fy(k) < Fy(k), which implies that k < ¢}. Thus, W;(k) =
[c, pF;(k)] for i € 1,2. Since Fy(k) < Fi(k), we can conclude that Wy(k) C Wi (k) C
[c, pl-
Similarly, if ¢5 < k, then Wh(k) = {c}. Thus, Wh(k) C Wy (k). O
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2.6.3 Proof: When is the equilibrium of the Stackelberg

game channel optimal?

Proof of Theorem 2.2. The retailer’s profit function m,(qg;w) under a wholesale
price contract w is defined as 7,(q; w) o E[pS(q) — wq]. Since ,(q;w) is concave,
in ¢, we can use the first order conditions and conclude that for a wholesale price

w € [c,p], the constrained retailer’s order quantity ¢"(w) is given by
¢’ (w) = min{k, F'(w/p)}. (2.10)

The supplier’s profit function n4(w; ¢) under a wholesale price contract w is defined
as Ty(w; q) & (w — ¢)q. Since ¢"(w) is the retailer’s best response in the second stage
to a wholesale price w by the supplier in the first stage, equation (2.10) allows us to

express the supplier’s objective function as follows:

w—c)k, if ¢ < w < max{c, pF(k)};
) = (w—c) {c,pF'(k)} 2.11)

(pF(q"(w)) = ¢) ¢"(w), if max{e,pF(k)} < w < p.

For w > max{c,pF(k)}, note that %”l = (pF(q"(w)) (1 - g(q"(w))) — ¢) -

aq;fﬁ. Since the function pF(y) (1 - g(y)) — c is strictly decreasing in y when

it is nonnegative and equals zero at ¢° (see equation (2.3)), we can deduce that

(pF(q"(w)) (1 — g(q" (w))) —¢) > 0 for w > w® (because ¢"(w) < ¢°). Further-

more, Bq(;g”) < 0 for w > pF(k). Therefore, we can conclude that 59% < 0 for

w > max{w®, pF(k)}.
Either the inequality pF(k) < w® holds or the inequality w® < pE (k) holds.
First assume the inequality pF'(k) < w® holds. Equation (2.11) implies that mTs(w) is

increasing linearly between ¢ and max{c, pF'(k)}. Furthermore, since

(PF(¢" (w)) (1 = g(q"(w))) =) <0
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for w < we (because ¢"(w) > ¢°), we can deduce that

3’?;5;‘” = (pF(q" (w)) (1 — g(q" (w))) =€) - "’qé: fvw) 50

for w € (max{c, pF(k)},w®). And we know

Oms(w)

“ow <0

for w > max{w®,pF(k)} = we®. Therefore, w®¥(k) = w® and equations (2.10) and
(2.4) imply ¢*9(k) = ¢°. The inequality pF'(k) < w® is equivalent to the inequality
¢° < k (see equation (2.4)). Therefore, when ¢ < k holds, the inequality w®(k) =
w® > max{c,pF(k)} = pF(min{q*, k}) holds and we can deduce that w*!(k) ¢ W(k)
(using Theorem 2.1).

Next assume w® < pF(k) holds. Since a—"gjwﬂl < 0 for w > max{w®, pF(k)} =
max{c, pF'(k)}, equation (2.11) implies w*¥(k) = pF'(k) and equation (2.10) implies
¢°4(k) = k. The inequality w® < pF'(k) is equivalent to the inequality k¥ < ¢® (see
equation (2.4)). Therefore, when k < ¢° holds, the equality w®(k) = pF(k) =
max{c,pF(k)} = pF(min{g* k}) holds and we can deduce that w®(k) € W(k)
(again using Theorem 2.1). O

2.6.4 Proof: The set of Pareto-dominated contracts D(k) as

a function of capacity

Proof of Theorem 2.3. Equation (2.10) allows us to express the retailer’s objec-

tive function as follows:

(1) = pE[S(k)] — wk, if c<w < pF(k); (212)

PE[S(¢"(w))] — pF(q"(w))q" (w), if pF(k) <w <p.

Note that 7,(w) is strictly decreasing in w, when w € (c,pF(k)). Furthermore,

Omr(w)

when w € (pF(k),p), note that =, (w) is strictly decreasing in w because <5
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pF(q" (w))g(q" (w)) - %ﬂ) < 0. From the proof of Theorem 2.2, we know that the
supplier’s profit m,;(w) is also strictly decreasing for w > max{w®, pF'(k)}. Therefore,
any wholesale price contract in the set (max{w®, pF'(k)},p] is Pareto-dominated by
max{w®, pF(k)}.

Since the supplier’s profit is decreasing as the wholesale price w decreases from
max{w®, pF(k)} (see the proof of Theorem 2.2) but the retailer’s profit is increasing as
the wholesale price decreases, we can conclude that any wholesale price contract in the
set [c, max{w®, pF'(k)}] is not Pareto-dominated. Thus, the set of Pareto-dominated

wholesale price contracts in [c, p] is exactly D(k) = (w®, p] = (max{w®, pF(k)},p]. O

2.6.5 Proof: Efficiency loss for a two-stage push channel

with capacity constraint

LEMMA 2.1. Assume F' has the IGFR property and that the quantity q° is defined
implicitly in terms of equation (2.3). If ¢¢ < k < ¢*, then

Ao () e () )-2)m

(2.13)

Proof of Lemma 2.1. Recall the generalized failure rate function g(y) for c.d.f. F
is defined as g(y) & — y%/ﬁ(y). Since F(y) = e~ o FO/F@)dt — o= [g's(®)/tdt e

have

p ( J¥ F(z) d:r) ~ck p ( Sk e 5 ateat dw) —ck

p (foqe F(z) dw) —c p (fé’ Tefrowitdr dw) —cg®

p([f e oo dx) —c(k—¢°)
p ( [ e I ot/ da:) e

(2.14)
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For any y € [¢°, k], define the profit-gain factor a(y) by

Y - 7 z
a(y) def (p </ e~ Jo 9®)/tdt dx) — ey — qe)) / (p (/0 e~ Jo 9(t)/tat d:c) _ qu) .
qe

(2.15)

The derivative 9—%—(5’2 is expressed via equation (2.16) below, when y € [¢%, k], leading

to the following nonnegative upper bound:

€

da(y) _ (pe—foyg(t)/tdt _ C) / (p (/q o JE gttt daj) . qu> (2.16)
Jy 0

< (pe ¥ st e )/ (p ( / Y o I3 o0/t dx) _ qu) (2.17)

0
-9(¢°) e ¢ .

— (i) I s _ ) (p < / o I3 a0/ dw) _ qu)
q° 0
y —9(¢°) . .
(;1__) o= I sw/tdt _ /(p (qee— Jg g(t)/tdt) _ cqe) (2.18)

= (p (£> " b - c) / (PF(g) ~ ) ¢ (2.19)
(

~(p-0)/p
E) - C) /(p—c)q¢ (2.20)

(B - 1) ) @21
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Therefore,

<1+ [ ((&y;)_mﬂm—l)) / (ma?) dy

-1+ (1—_’“— (5) - (L) 4 1)(k—qe)) / (e
1+ (l—_l-;n- (f;)l—m—ﬁﬂm—n(g—n) fm
(@) )-ae)n

LEMMA 2.2. Under the same assumptions as in Lemma 2.1, when F(k) = & we

have k - §/™ < g°.

Proof of Lemma 2.2. Assume ¢° < k- §/™. This leads to a contradiction (in-

equality (2.23)):

§ = Fk) = el 90/tdt _ o= [ a0fat | o= [ea®/tdt < 1 o= [ ala)/tdt _ (k/q?)~9@
< (k/g)™ (2.22)
< (k/(k-8Y™))™™ = 6. (2.23)

Inequality (2.22) holds because pF(g®)(1 — g(g%)) < ¢, implying g(q°) > m. Inequal-
ity (2.23) follows from our assumption, ¢¢ < k-6Y/™. O
Proof of Theorem 2.4. The case where 8 = 1 is equivalent to the unconstrained
problem which is addressed in Perakis and Roels (2006). Therefore, fix channel
capacity k and assume 8 > 1, so that ¢* = k. When 8 > 1, the probability of
excess demand, which we will denote by 4, is fixed and satisfies 8 = dp/c.
Fix a c.df F € F(k,B). The efficiency Eff(F') of F satisfies the following lower
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bound:

Eff(F) & E[pS(¢®?) — c¢™]/E[pS(k) — ck]
> ElpS(q°) — cq®]/ElpS(k) — ck] (2.24)

- ([ ree)-ce) /(o[ Fi) )
oo/ ((8) (et () ) a) e
(G (5)-(H) - e

In particular, inequality (2.24) follows because ¢° < ¢°? < ¢°. Inequality (2.25) follows
from Lemma 2.1. The function on the right-hand side of inequality (2.25) is decreasing
as ¢° decreases and from Lemma 2.2 we know that the equilibrium order quantity
q° satisfies ¢° > k - 6'/™. Therefore, inequality (2.26) follows when we substitute in
g =k 8=k (51~ m)™

It can be verified that the lower bound in inequality (2.26) is attained when the
c.d.f. F is taken equal to H, where the c.d.f. H satisfies

1. H(z) =1 for z € [0,k - 6*/™),
2. H(z) = (k/x)™ - for x € [k - 8™, c0).

(To verify this claim confirm that ¢® = k - 6/™, using eq. (2.3), implying that we can
convert the inequalities in egs. (2.24) and (2.26) into equalities. Furthermore, since
the c.d.f. F' is taken equal to H, we can convert the inequalities in egs. (2.17), (2.18),
and (2.20) into equalities. Therefore, inequality (2.25) becomes an equality.) The
c.d.f. H does not satisfy Assumption 2.1, because the corresponding density is zero
for z < k- 6Y/™. However, it can be approximated arbitrarily closely by c.d.f.s in the
class F(k, ) (in particular, that satisfy Assumption 2.1), with an arbitrarily small

change in the resulting efficiency. [






CHAPTER. 3
Flexibility in allocating profit

Wholesale price contracts in unconstrained channels lack flexibility in allocating the
channel-optimal profit; the only coordinating wholesale price contract gives the entire
channel profit to the retailer.

In this chapter, we analyze the flexiblity of wholesale price contracts in allocating
the channel-optimal profit in a constrained setting. That is, we consider whether or
not wholesale price contracts possess some flexibility without sacrificing coordination.
Then, we reconsider risk-sharing contracts which are known to possess flexibility in
allocating channel profit (without sacrificing coordination) in an unconstrained setting

and investigate how this flexibility changes in a constrained channel.

Chapter Outline

We continue analyzing the model described in Chapter 2. In Section 3.1, we
characterize the fractions of revenue allocated to a supplier and retailer when they
use a wholesale price from the set W(k) of coordinating contracts and we analyze
how the fractions change as the market changes. Then, in Section 3.2, we show that
wholesale price contracts have some flexibility in allocating the channel-optimal profit,
a feature that has motivated the study of risk-sharing contracts. We analyze how this
flexibility changes as a function of capacity and the market. In Section 3.3 we focus
on risk-sharing contracts. We show in Section 3.3.1, that risk-sharing contracts still

coordinate a capacity-constrained channel. Furthermore, in Section 3.3.2, we show

45
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that there is even more flexibility in the choice of risk-sharing contract that can be
used for coordination. In particular, the set of coordinating risk-sharing contracts is
larger in the presence of constraints. That is, the set of revenue-sharing and buyback
contracts that coordinates a newsvendor’s decision for a constrained channel is a
superset of the set of coordinating contracts in the unconstrained setting. And for
any given level of risk, there is now flexibility in allocating the channel-optimal profit.
We make this last point precise in Section 3.3.3. In order to maintain the flow of

presentation, the proofs for all our results in this chapter are contained in Section 3.4.

B 3.1 Revenue requirement implicit in W(k).

By agreeing to focus on the set W(k) in negotiating over a wholesale price for
coordination purposes, the supplier and retailer are implicitly agreeing to a ‘mini-
mum share of expected revenue’ requirement for the retailer and thus a ‘mazimum
share of expected revenue’ restriction for the supplier. This notion is formalized in

Theorem 3.1.

THEOREM 3.1. If the capacity constraint k is binding for the channel (i.e., ¢* >

k), then any coordinating linear wholesale price contract w € W(k) guarantees

. _
that the retailer receive at least a fraction & Ff(f);;:j(k) of the channel’s expected
0

revenue, and that the supplier receive at most a fraction TE% of the channel’s
1]
expected revenue. Furthermore, if F' has the IGFR property, then the supplier’s

mazimum revenue share is weakly decreasing as k increases.

Proof. See Section 3.4.1.

An important distinction regarding the supplier and retailer ‘share of expected
revenue’ guarantees formalized in Theorem 3.1 is that the supplier’s share results in
a guaranteed income (i.e., no uncertainty) whereas the retailer’s share results in an
uncertain income. For example, from Theorem 3.1 there exists some wholesale price
w € W(k), where the supplier receives a fraction % of the expected channel
revenue, pE[S(k)]. But the supplier’s income is certain, wk, whereas the retailer’s

income is an uncertain amount, pS(k) — wk.
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As a numerical example, if ﬁ% = 1/2, the supplier can receive up to fifty per-
cent of the expected channel revenue and still keep the channel coordinated, whereas
we require that the retailer receive at least fifty percent of the revenue in order for
the wholesale price to coordinate the actions of the retailer.

Recall that the set of coordinating wholesale price contracts W(k) increases with
the probability F'(k) of excess demand, when k is held fixed (Corollary 2.2). Theo-
rem 3.2 formalizes a related idea: the larger the expected excess demand, the greater

the maximum possible share of revenue at the supplier without sacrificing channel-

coordination.

THEOREM 3.2. Consider two different demands D, and D,, with each D; asso-
ciated with a c.d.f. F;, that have the same mean and such that Fy(k) > Fy(k).
Suppose that (a) the capacity constraint k is binding for the channel under both
distributions (i.e., min{q{,q3} > k), and (b) E[(D1 — k)*] > E[(D, — k)*] (i.e., the

expected excess demand under D, is higher than that under Dy). Then,

k- Fi(k) > k - Fy(k)
JEF(z)dz ~ [f Fy(z)dz’

Proof. See Section 3.4.2.

B 3.2 Wholesale price contracts and flexibility in
allocating channel-optimal profit

The benefits of risk sharing contracts in the unconstrained setting include the
ability to channel-coordinate the retailer’s decision as well as flexibility (due to the
extra contract parameters) that allows for any allocation of the optimal channel profit
between the supplier and retailer. Cachon (2003) provides excellent examples of the
‘channel-profit allocation flexibility’ inherent in these more complex contracts.

Theorem 3.3 demonstrates that in a resource constrained setting, wholesale price
contracts also have flexibility in allocating the channel-optimal profit. Namely, these

simpler contracts allow for a range of divisions of the optimal channel profit among



48 CHAPTER 3. FLEXIBILITY IN ALLOCATING PROFIT

the firms. The divisions allowed (without losing coordination) depend on the chan-
nel’s capacity, k. Similar to our observations in Section 3.1 for the implicit revenue
requirements, the supplier’s share results in a guaranteed income (i.e., no uncertainty)

whereas the retailer’s share results in an uncertain income.

THEOREM 3.3. If the capacity constraint is binding for the channel (i.e., ¢* > k),
there ezists a wholesale price contract w € W(k) that can allocate a fraction t, of
the channel-optimal profit to the supplier and a fraction 1 —t, to the retailer, if and

only if t, € [0,t™%(k; F')], where

t;naz k,p ‘Z__e_f kSF(k) —C/p) )
() fok (F(z) —¢/p) dz

Furthermore, if F' has the IGFR property, then t™*(k; F) is weakly decreasing as k

increases in the range [0,q*).

Proof. See Section 3.4.3.

Let us interpret Theorem 3.3 at two extremes values for the capacity k. As k
approaches ¢*, t7**(k; F) approaches zero. Thus the supplier can not get any fraction
of the channel-optimal profit with any wholesale price contract from W(k) (this was
to be expected because W(k) = {c} when k > ¢*). At the other extreme, as k
tends to zero, t™®*(k; F') tends to one. Thus any allocation of the channel-optimal
profit becomes possible with some wholesale price contract from W(k) (this is natural,
because as k tends to zero, the interval W(k) becomes [c, p]). See Figure 3-1.

Theorem 3.4 parallels Theorem 3.2 and makes precise the idea that when we serve

a larger market the ‘flexibility’ in allocating the channel-optimal profit ‘increases’.

THEOREM 3.4. Under the same assumptions as in Theorem 3.2, we have
teo*(k; F1) > t7%%(k; Fy).

Proof. See Section 3.4.4.
Theorem 3.4 suggests that a supplier (and retailer) can find flexibility in profit

allocation by joining a supply channel that serves a larger market.
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Figure 3-1  Flexibility in allocating channel-optimal profit as a function of the capacity constraint.

Maximum fraction of 'allowable’ channel-profit allocation to the supplier
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Note. Demand is distributed according to a Gamma distribution with mean 10 and coefficient of variation
9-1/2 ~ 707. The retail price is p = 10, and the cost is ¢ = 4. (these are similar to parameters used
in Cachon (2004)). Thus, ¢* ~ 10.112. The shaded region denotes the fractions of profit to the supplier
consistent with a channel-optimal outcome (i.e., the set [0,t7**(k; F')]). Or in other words, the shaded region
represents the fractional allocations of channel-optimal profit to the supplier that are achievable with some
wholesale price contract w € W(k).

B 3.3 Risk sharing contracts

We have provided necessary and sufficient conditions so that linear wholesale
price contracts coordinate a newsvendor’s procurement decision and allow both the
supplier(s) and the newsvendor to profit. A natural related question is whether more
complicated contracts such as buy-back contracts and revenue-sharing contracts also
coordinate a newsvendor’s procurement decision when the newsvendor is capacity-
constrained.

In this section, we prove that revenue-sharing contracts and buy-back contracts
continue to coordinate a newsvendor’s ordering decision even when the newsvendor
has a constrained resource. Furthermore, we examine the advantages of these more

complex contracts over a linear wholesale price contract for a constrained newsvendor.
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3.3.1 Buyback and revenue-sharing contracts for uncon-

strained newsvendor’s still coordinate

In Theorem 3.5, we show that buyback contracts, which are known to coordinate
an unconstrained newsvendor’s procurement decision, continue to coordinate a con-

strained newsvendor’s procurement decision.

THEOREM 3.5. Consider a 1-supplier/1-retailer configuration in the presence of
a capacity constraint k > 0. Buyback and revenue sharing contracts coordinate
the retailer’s ordering decision for the channel, and allow for any profit allocation.
In particular, the buyback and revenue sharing contracts that coordinate an uncon-
strained retailer (in the corresponding unconstrained channel) continue to coordinate

the constrained retailer’s order decision and allow for any profit allocation.

Proof. See Section 3.4.5.
Figure 3-2 illustrates the set of buyback contracts (w,b) that channel-coordinate
a capacity-constrained newsvendor (as well as unconstrained retailer) as described in
Theorem 3.5. The buyback contracts in Figure 3-2 are the only buyback contracts
that can coordinate an unconstrained newsvendor. However, the buyback contracts
in Figure 3-2 are not the only buyback contracts that can coordinate a constrained
newsvendor. There are more. In Subsection 3.3.2 we find necessary and sufficient con-

ditions for a buyback contract (w, b) to coordinate a capacity-constrained newsvendor.

3.3.2 Necessary and sufficient conditions for coordination

In Theorem 3.6, we show that the set of buyback contracts that coordinate an con-
strained newsvendor’s procurement decision is a superset of the set of buyback con-

tracts that coordinate an unconstrained newsvendor’s procurement decision.

THEOREM 3.6. Consider a 1-supplier/1-retailer configuration in the presence of
a capacity constraint k > 0, and assume that F(k) > c/p. A buyback contract

(w,b) € {(u,v) | c < u < p, v < u} coordinates a newsvendor’s procurement decision
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Figure 3-2  Some buyback contracts (w,b) that channel-coordinate a constrained newsvendor.

buyback w
parameter

p-—

F(k)p +

0 p
buyback b
parameter

Note. The buyback contracts (w, b) that channel-coordinate an unconstrained newsvendor’s ordering decision
(the ones graphed in this figure) still coordinate a capacity-constrained newsvendor. F(k)p is labelled on
the y-axis purely for comparison with Figure 3-3.

for the channel if and only if
(w,b) € B(k) £ {(w,v) | w= (1 - N +2p, A€ [¢/p, F(K)]}.

Proof. See Section 3.4.6.
Notice that if capacity becomes large enough (so that k& > ¢*), then the set of
coordinating buyback contracts implied by Theorem 3.6 and Figure 3-3 simplifies
to the ‘classical’ set of coordinating buyback contracts implied by Theorem 3.5 and

Figure 3-2.

3.3.3 Flexibility in allocating channel optimal profit, for a

given level of risk

For the constrained newsvendor, notice from Figure 3-3, that for any given buyback
parameter b, there is a set of wholesale price parameters such that the resulting
buyback contract coordinates the retailer’s ordering decision for the channel. However
for the unconstrained newsvendor, from Figure 3-2, we see that for any fixed buyback
parameter b, there is only one wholesale price parameter that coordinates the channel.

In other words, in the unconstrained setting, for any given level of inventory risk that
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Figure 3-3  Necessary and sufficient conditions for a buyback contract (w,b) to channel-coordinate a
constrained newsvendor.

buyback w
parameter

buyback b
parameter

Note. The shaded area represents B(k), all the buyback contracts (w, b) that channel-coordinate a capacity-
constrained newsvendor when k < ¢°. Compare with Figure 3-2.

the supplier takes on (represented by the buyback parameter b), there is no flexibility
in allocating the channel profit while maintaining coordination. However, in the
constrained setting, for any level of inventory risk that the supplier accepts, there
is still flexibility in allocating the channel profit. For revenue-sharing contracts, a
similar flexibility exists in the constrained setting that is absent in the unconstrained,
when the revenue share parameter is held fixed.

Theorem 3.7 formalizes the idea that in a resource constrained setting, buyback
contracts have flexibility in allocating the channel-optimal profit when the inventory
risk (of loss) is held fixed for the supplier (i.e., the buyback parameter is held fixed).
These contracts allow for a range of divisions of the optimal channel profit among the
firms. The divisions allowed (without losing coordination) depend on the channel’s
capacity, k. Unlike our observations for wholesale price contracts in Section 3.1 and
Section 3.2 for the implicit revenue requirements, the supplier’s share results in an
uncertain income similar to the retailer, whose share also results in an uncertain

income.

THEOREM 3.7. Consider a buyback parameter b < p. If the capacity constraint is
binding for the channel (i.e., ¢* > k), there exists a buyback contract (w,b) € B(k)

that can allocate a fraction t, of the channel-optimal profit to the supplier and a
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fraction 1 — t, to the retailer, if and only if t, € [t™"(k; F,b),t™=(k; F,b)], where
tmin(k; F, b) &f b/p and

)—c/p) -k

def F(k
(F(z) — ¢/p) dz

£mes(k, 7, 5) (1~ b/p) - —

J

Furthermore, if F' has the IGFR property, then t™(k; F,b) is weakly decreasing as

+b/p.

k increases in the range [0, q").

Proof. See Section 3.4.7.

Let us interpret Theorem 3.7 at two extremes values for the capacity k. As &
approaches ¢*, t™*(k; F',b) approaches b/p = tmin(k: F,b). Thus the supplier can
only obtain one particular fraction of the channel-optimal profit with any wholesale
price contract from the set of coordinating buyback contracts that has a fixed level
of inventory risk b (this was to be expected because F(k)p = ¢ when k = ¢* so
that Figure 3-2 and Figure 3-3 are identical and for any b there is only w). At the
other extreme, as k tends to zero, t**(k; F',b) tends to one. Thus, for a buyback
parameter b, any allocation of the channel-optimal profit that allocates at least b/p
of the channel-optimal profit to the supplier becomes possible with some buyback
contract from the set of coordinating contracts (this is natural, because as k tends to
zero, the set of coordinating contracts becomes the entire region above the rectangle’s
diagonal in Figure 3-2). See Figure 3-4 for an example illustrating feasible allocations
of the channel-optimal profit at intermediate capacity values.

Corollary 3.1 points out that as the supplier takes larger inventory risk (by increas-
ing the buyback parameter), the fraction of optimal channel profit that the supplier
can obtain while keeping the channel coordinated increases. This corollary follows

directly from Theorem 3.7.

COROLLARY 3.1. Both t™"(k; F1,b) and t™2(k; F\,b) are strictly increasing and

continuous in b when b € [0, p).

Theorem 3.8 parallels Theorem 3.4 and formalizes the idea that when we serve a

larger market the ‘flexibility’ in allocating the channel-optimal profit ‘increases’.
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Figure 3-4  Flexibility in allocating channel-optimal profit as a function of the capacity constraint.
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Note. We use the same parameters as in Figure 3-1, resulting in ¢* = 10.112. Furthermore, the buyback pa-
rameter is b = p/2, representing the level of inventory risk the supplier accepts. The shaded region denotes the
fractions of profit to the supplier consistent with a channel-optimal outcome (i.e., the set [b/p, tT**(k; F,b)]).
Or in other words, the shaded region represents the fractional allocations of channel-optimal profit to the
supplier that are achievable with some buyback contract that has a buyback parameter p/2 and comes from
the set of coordinating contracts defined in Theorem 3.6.

THEOREM 3.8. Consider a buyback parameter b < p. Under the same assump-

tions as in Theorem 3.2, we have
t5(k; F1,b) > t3°%(k; Fa, b).

Proof. See Section 3.4.8.
Theorem 3.8 suggests that a supplier (and retailer) can find flexibility in profit

allocation by joining a supply channel that serves a larger market.

B 3.4 Proofs

In order to not disrupt the flow of presentation, the proofs for our results in this

chapter are contained here.
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3.4.1 Proof: Revenue requirement implicit in W(k)

Proof of Theorem 8.1. If the capacity constraint k is binding for the channel (i.e.,
q* > k), then W(k) = [c, pF‘(k)]. For any wholesale price, the supplier’s fraction of
expected revenue is r4(w) f wqg(w)/E[pS(g(w))] where g(w) is the retailer’s order
quantity for a wholesale price w. Thus for any coordinating linear wholesale price

contract w € W(k),
wk wk

rolw) = EpS(k)]  p[fF(z)de

The maximum possible value for r4(w), when w € W(k), is

Jmax . 7y — PPN E k- F(k)
SE) = LEISW T ) de

Accordingly, the expected revenue that the retailer receives with any linear wholesale

price contract w € W(k) is at least a fraction

k-F(k) _ [y Flz)dz —k-F(k)
fok F(z)dz fok F(z)dz

of the total.
Next we show that if F' has the IGFR property, then r™*(k; F') is weakly decreas-
ing as k increases. We first note that

orr=(k;F)  F(k)
Ok [*F(z)ds

(1 - g(k) = ri™(k; F)), (3.1)

where g(z) def “}{((:)) is the generalized failure rate function. From L’Hoépital’s rule,

we also have limy_,o 7™ (k; F') = 1. Furthermore, the function r™*(k; F) is bounded

above by 1 and goes to zero as k — oo. If this function is not weakly decreasing,
there must exist some value t such that the derivative of r™#*(k; F') at t is zero, and

positive for values slightly larger than ¢. We then have

re (G F) =1~ g(t) (3.2)
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since the derivative of r™®(k; F') at ¢ is zero. For k slightly larger than ¢, the func-
tion r™**(k; F') increases, and g(k) is nondecreasing, by the IGFR assumption. But
then, equation (3.1) implies that the derivative of r™(k; F') is negative, which is a

contradiction. O

3.4.2 Proof: Revenue requirement as we ‘vary’ F'

Proof of Theorem 3.2. Note that f: Fi(z)dz = (J;° Fi(z)dz) — ([° Fy(z) dz) =
E[Di] - E[(D; — k) - 1ipi>k}]-
Thus,

k
/0 Fy(¢)dz = E[Dy] - E[(D1 ~ k) - 1{pysi)]

= E[Do] — E[(D1— k) - 1{p,>k}]
< E[Dy) — E|(D; — k) - 1{p,>k}]

- / " Fye) do. (3.3)

. " . __ Fulk) Fy(k)
The inequalities (3.3) and Fj(k) > F(k) imply that foFP_"i v > 15 Fz oY

3.4.3 Proof: W(k)’s flexibility in allocating the channel-

optimal profit

Proof of Theorem 3.3. We first recall that given our assumption k¥ < g*, the set
of coordinating wholesale price contracts is W(k) = [c, pF(k)].

First we prove that t, € [0, (k; F)], if and only if there exists a wholesale price
contract w € W(k) such that w allocates a fraction ¢, of the channel-optimal profit
to the supplier (and thus a fraction 1 — ¢, to the retailer).

For any wholesale price w, the supplier’s fraction of the channel’s expected profit

is to(w) & o é}‘;(‘lj;;’(_"z;(w)] where g(w) is the retailer’s order quantity for a wholesale

price w. For any coordinating linear wholesale price contract w € W(k), the retailer
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orders k units; thus we can simplify ¢,(w):

(w—ok _ k(w/p—c/p) (3.4)

falw) = E[pS(k)] —ck fok (F(z) - ¢/p) dz

Observe that t,(c) = 0, t;(pF(k)) = t™*(k; F), and t,(w) is strictly increasing
and continuous in w for w € [c,pF(k)]. Thus, ts;(w) is a one-to-one and onto map
from the domain [c, pF(k)] to the range [0, t*(k; F')).

. def k-(F(k)—c/p

Next we show that if F' has the IGFR property, then ¢5**(k; )= (@ —eln) &
is weakly decreasing as k increases. Define H(z) = M Since F(¢*) = ¢/p, H(z)
restricted to the domain [0, ¢*) is equal to 1 — H(z), where H is a c.d.f. with support
[0,¢*).

The generalized failure rate function gy (z) for H, defined in equation (3.5) below,

can be rewritten in terms of the generalized failure rate function gp(z) for F, as

follows:
def xa’g(’”
zf(z)
(z) —c¢/p
Flz)  af()
(z) —¢/p F(z)
F(z)
= —_———T . 3-6
o)~ ofp 7 &9
Furthermore,
0 ( F(z) ) fz)-c/p
= = = — >0, 3.7
0 \F@ - o/p) ~ () — c/oV &0
which implies that -ﬁ(f)(—zl— is weakly increasing (over the domain [0, ¢*)).
Since F(F)( z) 7p 18 positive and weakly increasing and F' has the IGFR property, we

can deduce that H also has the IGFR property when restricted to the domain [0, ¢*)

(because of equation (3.6)).

Then, Theorem 3.1 (applied to H) implies that —#{—(—)— is weakly decreasing as

Jo H(z)dz
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k increases (while k is restricted to the domain [0,q*)). But t™**(k; F) = Té%%ld—x,
0 T

which proves that t™®*(k; F') is weakly decreasing as k increases (and k < ¢*). O

3.4.4 Proof: Flexibility in allocating the channel-optimal

profit as we ‘vary’ F'

Proof of Theorem 3.4. Given the definition of #™®*(k; F) (cf. Theorem 3.3), we

need to prove that

Bk -cp __ BE-cp
fok (F‘1(a:) - C/P) dz fok (Fa(z) — ¢/p) da

(3.8)

We know that Fy(k) > Fy(k) and that the capacity constraint is binding for the

channel’s problem under both distributions. Thus,
F\(k) — c¢/p > Fy(k) — c¢/p > 0. (3.9)

From inequality (3.3) in the proof of Theorem 3.2, we also know that fok Fi(z)dz <
J¥ Fy(z) dz. Thus, we can deduce that

k k
0< /0 (Fi() - c/p) da < /0 (Fy(e) — ¢/p) d. (3.10)

Inequalities (3.9) and (3.10) imply that inequality (3.8) holds. O

3.4.5 Proof: Buyback and revenue-sharing contracts con-

tinue to coordinate

Proof of Theorem 8.5. Our proof follows the proof technique given in Cachon
(2003) for the 1-supplier, 1-retailer channel in the absence of a capacity constraint.

Our proof has two parts. The first part shows that buyback contracts coordinate a

capacity-constrained newsvendor, allocating any fraction of the channel optimal profit

among the parties. The second part shows that buyback contracts are equivalent to
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revenue sharing contracts in a constrained setting.
Under a buyback contract (w,b) the newsvendor pays w per unit to the supplier
for each unit ordered and is compensated b per unit for any unit unsold at the end

of the sales season. We show that if

w=>b+c(p—b)/p, bel0,p], (3.11)

then the buyback contract (w,b) coordinates the capacity-constrained newsvendor’s
ordering decision, giving the newsvendor (p — b)/p fraction of the channel-optimal
profit and the supplier b/p fraction of the channel-optimal profit.

We show that under the above buyback contract, (w, b), the channel-optimal order
quantity, ¢¢, equals the retailer-optimal order quantity, ¢", as well as the supplier-
optimal order quantity (i.e., the retailer’s order quantity that is optimal from the

supplier’s point of view), ¢°. Indeed,

c def

¢° = argmaxpS(q) — cq
0<g<k
= argmax ((p — b)/p) (pS(q) — cq) (3.12)
0<g<k
= arg max(p — b)S(q) — (w — b)g (Using buyback contract (3.11))
0<q<k

= arg max pS(q) — wq + b(q — S(q))
0<g<k
def T
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and

q° < arg max pS(g) — cq
0<g<k
= arg max (b/p) (pS(q) — cg) (3.13)
0<q<k
= argmax bS(q) — (c — w+ b)q (Using buyback contract (3.11))
0<¢<k

= argmaxwq — cq — b(qg — S(q))

0<q<k
def S

Equations (3.12) and (3.13) prove that the newsvendor and supplier receive ((p —
b)/p) and (b/p) fractions, respectively, of the channel-optimal profit.

Next, we remind the reader that buyback contracts and revenue sharing contracts
are equivalent (regardless of the channel’s capacity constraint). Under a revenue
sharing contract the newsvendor purchases each unit from a supplier at a price of w,
per unit, keeps a fraction f of the revenue, and shares a fraction (1— f) of the revenue
with the supplier. A given buyback contract, (w,b), is a revenue sharing contract
where the newsvendor purchases at w — b per unit from the supplier and in return
shares a fraction b/p of the revenue with the supplier. Similiarly, a given revenue
sharing contract, (wr, f), is a buyback contract where the newsvendor purchases at
w, + (1 — f)p per unit and is compensated (1 — f)p per unit by the supplier for
any unsold items at the end of the sales season. Since there is a one-to-one mapping
from buyback contracts to revenue sharing contracts and because buyback contracts
coordinate a constrained newsvendor’s ordering decision, we conclude that revenue

sharing contracts also coordinate a constrained newsvendor’s ordering decision. [l
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3.4.6 Proof: Necessary and suff. conditions for risk-sharing

contracts to coordinate

Proof of Theorem 3.6. Let

B {(u,0) | u= (1~ Nv+Xp, A€ [e/p, F(R)]}
and

A‘Lﬁf{(u,v) | e <u<p,v<u}

The proof has two parts. First we show every buyback contract (w,b) € B C A
channel-coordinates the newsvendor’s decision. Then, we show that there are no
other buyback contracts in the set A that can channel-coordinate the newsvendor’s
decision. Before we proceed note that the optimal order quantity for the constrained
channel is k (because F'(k) > c¢/p). Thus, the capacity constraint is tight.

First we show that every buyback contract (w,b) € B channel-coordinates. If
(w,b) € B, then w — b = A(p — b) for some A € [c¢/p, F(k)]. The newsvendor
orders min{k, F~1(¥2)}. But %3 € [c/p, F(k)], therefore FF~'(“) > k and
min{k, F’”l(;‘,’—:-g)} = k. The newsvendor thus orders the channel-optimal order quan-
tity for this capacity-constrained channel.

Next we show that there is no buyback contract (w, b) outside of B but in set A
that channel-coordinates the newsvendor’s action. Assume the contrary. Namely, as-
sume a buyback contract (w, b) € A\ B channel-coordinates the newsvendor’s action.
Under buyback contract (w, b), the constrained newsvendor orders min{k, F~!(2=2)}.

p—b

But since (w, b) channel-coordinates the newsvendor’s decision, we have min{k, F'~* %_‘—;’)}} =

k, since the newsvendor’s constraint is tight. Therefore, F‘l(%’:‘%’) > k, implying

1;’;:—3 < F(k). Furthermore, MiN(yp)ca ‘;’—:;b = ’%, implying ;—’_:g > f—,. Thus, (w,b) € B,

because w — b = A(p — b) for some A € [¢/p, F(k)]. But this is a contradiction. O
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3.4.7 Proof: Buyback flexibility in allocating the channel-
optimal profit

Proof of Theorem 3.7. We first recall that given our assumption k < ¢*, the set
of coordinating buyback contracts is B(k) =4 {(,v) |u=(1-XNv+ X, A €
¢/, F(K)]}.

First we prove that t, € [t™®(k; F,b),t™*(k; F,b)], if and only if there exists a
buyback contract (w, b) € B(k) such that (w, b) allocates a fraction ¢, of the channel-
optimal profit to the supplier (and thus a fraction 1 — ¢, to the retailer).

For any buyback contract (w, b), the supplier’s fraction of the channel’s expected

profit is ts(w; b) = oef gt;)hfg&a bb)()q"c“z((zj(:’)]b))) where g(w, b) is the retailer’s order quantity

for a buyback contract (w, b). For any coordinating buyback contract (w,b) € B(k),

the retailer orders & units; thus we can simplify ¢,(w;b):

(w—Qk—bk—S(k) 1(w=ck=>bf; (1-F(z)) dz)

ta(w;b) = E[pS(k)] — ck T p [F (F(z) - ¢/p) dx (314)
Therefore, for any A € [c/ P, F’(k)], we have
1 (A-XNb+AIp—c)-k+b- [F(F(z)=1) da
ts (1= A)b+ Ap;b) = ’ fo (Fo) - c/p) e
1 (= )\b+)\p—c)-k+b-f0 (z) dz
P fok (F(z) — c¢/p) dx
_ (1=b/p)Me— (¢/p)k+ (b/p) - [y Flx)dz
fok (F(z) —c/p) da
_(1-b/p)-(A—¢/p) - k+(b/p)- J; (F(a) —c/p) da
[ (F(z) — c/p) dz
_0-bp - Aoe/p) -k, (3.15)

fok (F(z) — ¢/p) dz

From equation (3.15), observe that t;((1 — ¢/p)b + (¢/p)p;b) = b/p and t,((1 —
F(k))b + F(k)p;b) = t™(k; F',b). Furthermore, from equation (3.14), we have that
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ts(w; b) is strictly increasing and continuous in w when w is in the set

(1= ¢/P)b+ (c/p)p, (1 — F(k))b+ F(k)p] -

Thus, ts(w;b) is a one-to-one and onto map from the domain {(1 —A)b+Ap | A €
[¢/p, F(k)]} to the range [t2®(k; F,b), t™**(k; F',b)].
From Theorem 3.3, we have that if F' has the IGFR property, then t™#%(k; F',b) =

(1-b/p)- (FFZ“)) cﬁ ;’;)k — +b/p is weakly decreasing as k increases in the range [0,¢*]. O

def

3.4.8 Proof: Buyback flexibility in allocating the channel-

optimal profit as we ‘vary’ F

Proof of Theorem 3.8. From Theorem 3.4, we have that

(Fl(k) —c/p)-k > (Fz(k) —c/p)-k

- > — . 3.16
fok (Fi(z) — c/p) dz f(f (Fa(z) — c/p) dz (3.16)
Therefore, we have that
(Fi(k) —c/p) -k (Fa(k) —c/p) - &
1-b/p)- —— b/p> (1-b/p)- ——= b/p. (3.17
(1-b/p) T (7o) /) =t /p = (1-b/p) T (Bo@)— /o) =t /p. (3.17)

O






CHAPTER 4
An Extension: Coordinating a

constrained channel with multiple

suppliers

We consider a retailer who orders from multiple suppliers (where each supplier offers
one differentiated product), subject to a constraint on the total amount of inventory
that can be stocked. The market price for each product is fixed. The retailer faces a
random demand for each one of the products (product substitution is not allowed),
which is independent of the quantities stocked. In this context, the retailer must
make a portfolio decision: which suppliers to order from, and how much to order
from each.

For this model, we explore questions similiar to those studied for the single-product
case. Do there exist nontrivial wholesale contracts (with the wholesale price different
from the unit cost) that coordinate the retailer’s portfolio decision, resulting in an
order quantity vector which is optimal from the channel’s point of view? How does the
set of coordinating wholesale price vectors change as we change the retailer’s capacity
constraint? Is everyone better off or no worse off by picking a wholesale price vector
in this set? We will show that our main findings for the 1-supplier/1-retailer case

(Theorems 2.1 and 2.2) extend to this more general setting with many suppliers.

65
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Chapter Outline

In Section 4.1, we extend the 1-supplier/1-retailer model (presented in Section 2.1)
to include more suppliers and describe the set of coordinating wholesale price con-
tracts for this extended model in Section 4.2. In Section 4.3, we consider an equilib-
rium model and find conditions that guarantee that the equilibrium wholesale price
contract is a coordinating contract. In order to maintain the flow of presentation, the

proofs for all our results in this chapter are contained in Section 4.4.

B 4.1 Many-suppliers/1-retailer model

A risk-neutral retailer r orders from m > 2 risk-neutral suppliers, for m different
goods, differentiated by supplier. There is a single sales season, the retailer decides on
an order quantity vector/portfolio (¢1,¢2,.--,qm) and orders well in advance of the
season, the entire order arrives before the start of the season, and finally demand is
realized, resulting in sales for the retailer (without an opportunity for replenishment).
Without loss of generality, units remaining at the end of the season are assumed to
have no salvage value, and there is no cost for stocking out.

Supplier ¢ has a fixed marginal cost of ¢; per unit supplied and charges the retailer
a wholesale price w; > ¢; per unit ordered. The retailer’s price p; per unit to the
market for good 7 is fixed and, at that price, the demand for good ¢, D;, is random
with p.d.f. f; and c.d.f. F;. We assume that the distribution for demands D; does
not depend on the ordered quantities (g1, ¢z, - - -, qm)-

The retailer’s total capacity is again constrained by some & > 0. We assume
that the capacity as well as the quantities of the different products are measured
with a common set of units (e.g., shelf-space), so that the capacity constraint can be
expressed in the form ¢; + - - - + g» < k. The models parameters are summarized in
Figure 4-1, with the arrows denoting the direction of product flow.

As before, we assume that the p.d.f. f; for the demand D; has support [0, [;], with
l; > k, on which it is positive and continuous. As a consequence, F;(0) = 1 and F; is

continuously differentiable, strictly decreasing, and invertible on (0, ;).
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Figure 4-1 “m suppliers & 1 capacity constrained retailer” model with independent downstream de-
mands.
51
1] w
r

q Pr I'D,~F

Sm / dm pmA m ~

G| Ym I @t tgm <k

Note. There are m suppliers. Supplier s; with marginal cost ¢; (per unit) offers good i at wholesale price
w; (per unit) to a capacity-constrained retailer r who faces uncertain demand D; downstream with c¢.d.f. F;
(for good ) when the price for the good is fixed at p; (per unit). The retailer decides on a portfolio of goods
to order from the suppliers.

4.1.1 Retailer’s problem

For product i € {1,...,m}, let S;(g;) & min{g;, D;} denote the (uncertain) amount
of sales for product 7 given that the retailer orders g; units of product i. The retailer
decides on a quantity vector ¢"(w) = (7,43, ---,q},) to order (for a given wholesale
price vector w) that maximizes the expected profit ,(q) = E >, pimin{g;, D;} —
w;g;], subject to the capacity constraint k. In particular, it solves the following convex
program with linear constraints in the decision vector, g:

RETAILER (k,w)

m

maximize Y (piE[Si(¢)] — wig) (1)

i=1
m

subject to k — Z%‘ >0
i=1

q,-ZO, i=1,...,m.

Because of our assumptions on the distribution of the demand D; for each product,
it can be shown that RETAILER(k,w) has a unique solution (vector), which we
denote by ¢"(w).
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4.1.2 Channel’s problem

Given the channel’s expected profit ms(q) oef E[Y-", pimin{g;, D;} — ¢;¢;] and ca-
pacity constraint k, the optimal order quantity vector ¢° for the system/channel is
the solution to the following convex program, CHANNEL(k), with the same linear
constraints on the decision vector, q, but a slightly altered objective function:

CHANNEL (k)

m

maximize Y (p:E[Si(¢:)] — cis) (4.2)

i=1

m
subject to k& — Zqi >0

i=1

>0, i=1,...,m.

Again, because of our assumptions on the demand distributions, it can be shown
that CHANNEL (k) also has a unique solution (vector) which we denote by ¢°. Finally,

we denote the unique solution for the unconstrained channel problem, maxgerrm) 7s(q),

by ¢*.

B 4.2 The set W(k).

In this subsection, (cf. Theorem 4.1 below), we derive conditions under which
the vector w = (wy, ..., wy,) belongs to the set W(k) of wholesale price vectors that
coordinate the retailer’s order quantity vector, i.e., ¢"(w) = ¢°.

Throughout this subsection, we assume that the capacity constraint is binding for

the channel, that is, Y .-, g/ > k or equivalently

;F;I(g) > k.

Otherwise, the problem degenerates into m standard 1-supplier/1-retailer problems
in which the only way to coordinate the retailer’s action for the supply channel is

with a wholesale price contract w = (cy, .., ¢).
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THEOREM 4.1. Let Z = {i | ¢ =0} C M = {1,...,m} be the set of products
that are not ordered in the channel’s portfolio decision problem, and define Ap11

implicitly by the equation:

F-l pj —¢ — Am+1 - L
jg;;:z J ( Dj )

For any wholesale price vector w = (w,ws, ..., wy,), the following two conditions

are equivalent.

(a) The vector w coordinates the retailer’s portfolio decision, i.e., ¢"(w) = ¢°.

(b) There exists some o that satisfies

ac [Oa )‘m+1]a (43)
w; = ¢ +a, VieM\Z (4.4)
wj > Dj — Am+l + a, A4 _7 € Z. (45)

Proof. See Section 4.4.1.

Let W(k) be the set of all w for which ¢"(w) = ¢°. If Z = 0 (so that every product
is in the channel’s optimal portfolio), W(k) can be represented geometrically by a line
segment that starts at the point (ci, ¢a,. . ., ), has unit partial derivatives, and ends
at the intersection of the line with the set of vectors w that satisfy 3 .-, F’i‘l(%-ii) =k.
More generally, if Z # @, then W(k) is the set described by the conditions (4.3)
through (4.5).

B 4.3 The Stackelberg game with multiple suppli-
ers.

We now consider a generalization of the Stackelberg game analyzed in Section 2.3.
In the first stage, all the suppliers (the ‘leaders’) simultaneously choose their wholesale

prices w;. In the second stage, the retailer (the ‘follower’) chooses an order quantity
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vector g. When does an equilibrium wholesale price vector of this game belong to
the set W(k)? A full exploration of this game is beyond the scope of this chapter
and is considered in Chapter 6. We only provide here one result that connects to and

generalizes Theorem 2.2.

THEOREM 4.2. Assume the game is symmetric for the suppliers, that is, ¢; = c,
p; = p, and F; = F, for every supplier i. Furthermore, assume that F' has the IGFR
property and that the retailer is service constrained in the sense that f is decreasing.
Recall the definition of ¢¢ given in equation (2.3). If k < m - ¢, then there ezists a

symmetric equilibrium that belongs to W(k).

Proof. See Section 4.4.2.

N 4.4 Proofs

In order to not disrupt the flow of presentation, the proofs for our results in this

chapter are contained here.

4.4.1 Proof: m-suppliers/1-retailer, Set of wholesale prices
W(k)

Proof of Theorem 4.1. First, we write the Lagrangian £4(g,\) for CHANNEL (k)
and the Lagrangian £,(q,7) for RETAILER (k,w):

m

[rs(q’ A) = Z (piE[min(qia Dt)] - c’iqi) + Z Aigi + /\m.+1 (k - Z Qi)a

i=1 i=1

L-(g,7) = E (piE[min(Qia D;)] - wiQi) + Z Yiqi + Ym+1 (k - Z Qi)-
i=1 i=1 i=1
Note that m4(g) and 7, (q) are strictly concave for ¢ € [0,1;) x ---[0,1,,) because
each c.d.f. Fj is strictly increasing over [0,l;). Because the feasible sets are convex

and compact, CHANNEL(k) and RETAILER (k,w) have unique solutions. Further-
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more, because of the concavity of the objective function and the fact that the Slater
condition is satisfied, any critical point of the respective Lagrangian (that satisfies
the Karush-Kuhn-Tucker conditions) is the unique maximizer in the respective con-
strained decision problem. Conversely, the optimal solution in the respective con-
strained decision problem must correspond to a unique critical point of the respective
Lagrangian (Sundaram 1996, chap. 7).

The Karush-Kuhn-Tucker conditions for the channel’s decision problem, CHAN-
NEL(k), are:

PiFi(g) — ¢+ A = A1 =0, j=1,...,m;

Amir (k= i) = 0;

=1

)\120, i=1,...,m+1.

Let (g®, A) denote the unique vector that satisfies these conditions.
The Karush-Kuhn-Tucker conditions for the retailer’s decision problem, RETAILER (k,w),

are:

ij‘j(qj) —Wj+Y —Ym1=0, j=1,...,m;

74 =0, i=1,...,m;
m
’Ym+1(k'—sz') = 0;
i=1
%>0, i=1,...,m+1.

Let (¢"(w),~) denote the unique vector that satisfies these conditions.
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Let M = {1,....,m} and Z ¥ {i € M | ¢¢ = 0}. Therefore, M \ Z is the
set of items ordered by the system when solving its decision problem. Similarly, let
Z.(w) & {i € M | ¢(w) =0}, so that M \ Z,(w) is the set of items ordered by the
retailer when solving its decision problem. Because of the uniqueness of the channel
optimal solution, a wholesale price vector (wy, ..., wn,) Will coordinate the retailer’s
portfolio decision (i.e., ¢"(w) = ¢°) if and only if Z,(w) = Z and ¢} (w) = ¢} for every
i¢Z.

We claim that ¢"(w) = ¢° if and only if conditions (4.6)—(4.8) hold:

& € [0, A, (4.6)
Wi — Cj =wi—¢;¥a, Vi,j ¢ Z, 4.7)
Wy Z Dt — Am+1 + a, Vt € Z. (48)

Suppose ¢f (w) = ¢, for all i. Eq. (4.6) follows because

0 < Ym+t1 < A

which implies that there exists an a € [0, Aj11] such that

0< /\m+1 — &= Ym41-

Necessity for condition (4.7) follows because —c; + Aj — Apy1 = —Wj +¥j — Ym+1

and y; = A; =0, when j ¢ Z, implying

¢+ Amy1 = Wi + Ymp1 Vi€ Z.

Necessity for condition (4.8) follows because, when t € Z, p; — wt + 7 — Ym+1 =0
and 7y; > 0 hold, implying

Amtl — O = Ymy1 > Py — Wy Vi E Z.
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Now we show sufficiency by showing that conditions (4.6),(4.7),(4.8) imply Z,(w) =
Z and ¢f(w) = ¢} for every i ¢ Z,(w). Using conditions (4.7) and (4.8) we rewrite
the KKT conditions for the retailer’s decision problem, RETAILER (k,w):

PiFi(g) —¢i+ % — (Imn +0) =0, Vi ¢ Z; (4.9)

piF(q) — (Pt — dmpr+a+8) + % — Ymp1 =0, Vi€ Z; (4.10)
O =w— (Pt — A1 +a) 20, Vte Z;

QiZOa Z=1’7ma

m
k—Z%‘ > 0;
i=1

Yig =0, i=1,...,m;

m
Yont1 (K — Z(h) =0;
i=1
>0, i=1,...,m+1.

When Ypmp1 = App1 —a, v; =0foralli ¢ Z, and «; = §; for all i € Z, we have that
(¢°,7) satisfies the KKT conditions for RETAILER(k,w). Note that (g°,~y) satisfies
(4.9) because (g*, \) satisfies the KKT conditions for CHANNEL(k) and (4.10) is
satisfied because g; = 0. Therefore, ¢} (w) = ¢} forevery i € M. O

4.4.2 Proof: m-suppliers/1-retailer, equilibrium setting

Proof of Theorem 4.2. It can be shown that each supplier’s payoff function is
continuous and quasi-concave with respect to their own wholesale price; continuity
and quasi-concavity follow from our results in Chapter 6 (Lemma 6.1 and the proof
of Theorem 6.7, respectively). Furthermore, the game is symmetric and the strategy
space (the hypercube of possible wholesale price vectors) is compact and convex.
Therefore, by Theorem 2 in Cachon and Netessine (2004), there exists at least one

symmetric pure strategy Nash equilibrium (i.e., wholesale price vector), in which all
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the suppliers charge the same wholesale price w.

Due to the symmetry in the problem, Z = () (i.e., all the products are included in
the channel’s optimal portfolio). Furthermore, the capacity constraint is tight for the
channel, thus the channel’s optimal order vector is (k/m,...,k/m). The symmetric
equilibrium (identical wholesale prices across products) results in the retailer order
vector (k/m, ..., k/m) because the retailer’s capacity constraint is also tight under
the condition k¥ < m - ¢°. Thus the wholesale price vector (w,...,w) is in the set

W(k) by definition. [J



CHAPTER. 5
Coordinating a constrained channel:

‘make-to-order’ retailer

In the supply chain literature, the ‘push-pull boundary’ in a supply chain refers
to the point in the supply chain at which the supply chain’s mode of operation
switches from ‘building to forecast’ to ‘reacting to realized demand’ (Chopra and Lar-
iviere 2005). This is also called The ‘Fulcrum Point’ by Martin Christopher and the
‘BTF/BTO boundary’ (build to forecast/build to order). In Chapter 2, we considered
a l-supplier/1-retailer model and analyzed the set of wholesale price contracts that
coordinate that channel in both a negotiation and equilibrium setting when the re-
tailer has a capacity constraint. The ‘push-pull boundary’ for that channel is between
the retailer and the retailer’s customers because the retailer makes the order quantity
decision based, in part, on the cumulative distribution function for demand (i.e., the
‘forecast’). And, therefore, as pointed out in Cachon (2004), the retailer takes on
the inventory risk for the channel (i.e., the retailer ‘makes to stock/forecast’) under
a wholesale price contract.

In this chapter, we consider a 1-supplier/1-retailer model similar to the model in
Section 2.1 except that we move the ‘push-pull boundary’ in between the supplier
and retailer, so that the retailer makes an order quantity decision that depends only
on realized demand and not on the ‘forecast’, and rather the supplier becomes a
‘newsvendor’, making a decision based, in part, on the cumulative distribution func-

tion for demand (i.e., the ‘forecast’). This means that the retailer is running a ‘lean’
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supply chain with no safety stock. Furthermore, we remove the capacity constraint
at the retailer and instead place it at the supplier. Cachon (2004) considers a similar
model but without a capacity constraint in order to analyze the allocation of inventory
risk using different contracts. He notes that the supplier takes on the inventory risk
for the channel under a wholesale price contract (because the supplier now ‘makes to
stock/forecast’, for example as a ‘drop-shipper’, while the retailer ‘makes to order’).
Cachon and Lariviere (2001) also considers a similar model without a capacity con-
straint for inducing credible forecast sharing. Our purpose in considering this model
differs. In particular, with a capacity constraint at the newsvendor (i.e., the supplier),
we analyze the set of wholesale price contracts that coordinate that channel in both
a negotiation and equilibrium setting, in the spirit of Chapter 2, comparing these
coordinating contracts with the contracts that coordinate the channel described in

Section 2.1.

Chapter Outline

In Section 5.1, we provide a stylized 1-supplier/1-retailer model (with the push-
pull boundary in between the supplier and retailer) and formally define what it means
for a wholesale price contract to coordinate the supplier’s decision for a supply chan-
nel. Then, in Section 5.2, we describe the set of coordinating ‘pull’ wholesale price
contracts for this model and analyze the size of this set in Section 5.2.1. In Section 5.3,
we consider a 1-supplier/1-retailer equilibrium model and prove that a unique equilib-
rium exists. Then, we provide necessary and sufficient conditions for the equilibrium
wholesale price contract to coordinate the supplier’s decision (i.e., for the equilibrium
wholesale price contract to be included in the set of coordinating contracts). In Sec-
tion 5.4, we analyze the set of wholesale price contracts that are Pareto-dominated
(i.e., for which a different contract exists that enables one firm to better off without
making the other firms worse off). The Pareto-dominated contracts are important
because they should be avoided in both a negotiation setting as well as an equilib-

rium setting. Recognizing that in an equilibrium setting the equilibrium wholesale



SECTION 5.1. MODEL 77

price contract need not be a coordinating contract (due to the conditions we state
in Section 5.3), in Section 5.5, we characterize the worst case efficiency loss in an
equilibrium setting. Then, in Section 5.6, relating our results from Sections 2.2 and
5.2, we describe the wholesale price contracts that coordinate a supply channel re-
gardless of whether it is operating in push-mode or pull-mode. In order to maintain
the flow of presentation, the proofs for all our results in this chapter are contained in

Section 5.7.

B 5.1 Model

A risk-neutral supplier v faces a newsvendor problem when deciding on how much
inventory of a single good to prepare and make readily available upon request from
a retailer: there is a single sales season, a wholesale price w that a retailer is willing
to pay for ‘at-once’ orders!, the supplier decides on a quantity g to prepare well in
advance of the season, the entire amount g is ready before the start of the season,
and finally demand is realized, resulting in sales for the retailer that are immediately
satisfied by the supplier (e.g., by drop-shipping) if the supplier has enough inventory
in stock. The supplier has no opportunity to prepare more goods during the sales
season. Without loss of generality, we assume that units remaining at the end of the
season have no salvage value and that there is no cost for stocking out.

The model’s parameters are summarized in Figure 5-1 with the arrows denoting
the direction of product flow. Similar to our model in Section 2.1, the supplier has a
fixed marginal cost of ¢ per unit supplied and the retailer pays the supplier a wholesale
price w > c per unit ordered. The retailer’s price p per unit to the market is fixed,
and we assume that p > w. For that price, the demand D is random with probability
density function (p.d.f.) f and cumulative distribution function (c.d.f.) F.

We assume that the supplier’s capacity is constrained by some & > 0; for example,

the supplier can only hold k units of inventory, or accept a shipment not larger than

‘Following the convention in Cachon (2004), we sometimes refer to wholesale price contracts for ‘at-once’
orders (the main contracts we consider in this chapter) as pull contracts and wholesale price contracts for
‘prebook’ orders (i.e., the contracts in Chapter 2) as push contracts.



CHAPTER 5. COORDINATING A CONSTRAINED CHANNEL: ‘MAKE-TO-ORDER'
78 RETAILER

k. For a different interpretation, k& could represent a constraint on the capacity of the

channel or a budget constraint.

Figure 5-1  “single capacity constrained supplier & single build-to-order retailer” model.
v r
cl9 P w —p-N D~F
q<k

Note. A capacity-constrained supplier v offers a product, with marginal cost ¢ (per unit), to a retailer r.
The retailer faces uncertain demand D downstream with c.d.f. F when the retail price for the product is
fixed at p (per unit). However, the retailer orders (or ‘pulls’) from the supplier only after demand is realized
and pays the supplier the wholesale price w per unit ordered. The supplier must decide on a quantity ¢ to
prepare in anticipation of the retailer’s order.

We assume Assumption 2.1 (from Section 2.1) holds, so that, as a consequence,
F(0) = 1 and F is continuously differentiable, strictly decreasing, and invertible on

(0,1), where I > k.

5.1.1 Supplier’s problem

Faced with the retailer’s uncertain sales S(q) & min{g, D} (and hence the retailer’s

uncertain order), when preparing ¢ units, and and an agreed upon wholesale price w,
the supplier decides on a quantity to prepare for the retailer’s future order S(q) so
as to maximize expected profit m,(q) & WwE [S(q)] — cq while satisfying the capacity
constraint k. Namely, it solves the following convex program with linear constraints
in the decision variable, ¢:

SUPPLIER (k,w)

maximize wE[S(q)] —cg (5.1)
subject to k—¢ >0

q=>0.

Because of our assumptions on the c.d.f. F, it can be shown that SUPPLIER (k,w)

has a unique solution, which we denote by ¢”(w).
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5.1.2 Channel’s problem

As in Section 2.1.2, we denote the channel’s expected profit by ms(q) E [pS(q) — cq]

and observe that under capacity constraint k, the optimal order quantity ¢° for the
system/channel is the (unique) solution to convex program (2.2), CHANNEL(k), de-
scribed in Section 2.1.2. Continuing with our convention from that section, we denote

the unique solution, arg maxy., .., 7s(¢), for the unconstrained channel problem by

*

q .

5.1.3 Definition: Coordinating the supplier’s action

A wholesale price contract w coordinates the supplier’s quantity preparation decision
for the supply channel when it causes the supplier to prepare the channel-optimal
amount, i.e., ¢"(w) = ¢°. In Section 5.2 we are interested in the following questions:
For a fixed capacity k, what is the set of ‘pull’ wholesale prices Wy (k) for which
¢"(w) = ¢°? What does this set W,m(k) resemble geometrically?

If there is no capacity constraint (or equivalently if k is very large), ‘double
marginalization’ results in the supplier not preparing enough (i.e., ¢*(w) < ¢°) under
any wholesale price contract, w < p. In the next section, we will show that when
the capacity constraint k is small relative to demand, there exist a set of wholesale

price contracts w < p that can coordinate the supplier’s preparation quantity, i.e.,

qv(w) — qs.

B 5.2 Set of coordinating wholesale prices

Our first result describes the set of coordinating ‘pull’ wholesale price contracts

under a capacity constraint.

THEOREM 5.1. In the 1-supplier/1-retailer configuration described in Section 5.1
where the supplier faces a newsvendor problem and has a capacity constraint k, any

wholesale price

w € Wyuu(k) ¥ [¢/F(min{q", k}), 7]
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will coordinate the supplier’s decision for the supply channel, i.e., ¢°(w) = ¢*. Fur-

thermore, if ¢°(w) = ¢° and ¢ < w < p, then w € Whyy(k).

Proof. See Section 5.7.1.

Notice that if the capacity constraint & is larger than or equal to the unconstrained
channel’s optimal order quantity, ¢*, then ¢/ F(min{q*, k}) = ¢/F(q*) = p, reducing
to the ‘classic’ result in the supply contracts literature stating that wholesale price
contracts can not coordinate a channel. However, this is true only when the capacity
constraint is not binding for the channel (i.e., ¢* < k). When the capacity constraint
k is binding for the channel (i.e., ¢* > k), then any wholesale price w € [c¢/F(k), p]
will coordinate the retailer’s action and only wholesale prices in the range [c/F(k), p]
can coordinate the retailer’s action.

Again, many factors ultimately influence the actual wholesale price (selected from
the set [c, p]) that the retailer pays the supplier. In the unconstrained setting, regard-
less of these factors, coordination is not possible with a linear ‘pull’ wholesale price
contract (because the retailer presumably would not agree to pay the retail price to
the supplier, making zero profit). However, when the capacity constraint is binding
for the channel, coordination becomes possible (because the set of coordinating whole-
sale price contracts becomes [c/F'(k), p] (rather than {p}) and ultimately depends on
these other factors. Theorem 5.2 in Section 5.3 considers a equilibrium setting where
the supplier takes on all the inventory risk (akin to the ‘Stackelberg game’ in Cachon
and Lariviere (2001) and ‘pull mode’ in Cachon (2004)), and provides additional
conditions that must be met so that the ‘equilibrium’ wholesale price contract is a

member of the set of coordinating ‘pull’ wholesale price contracts, [c/F(k), p].

5.2.1 Size of Wyun(k).

The geometry of the set of wholesale prices Wpu(k) that coordinate the retailer’s
decision for the supply channel is depicted in Figure 5-2.
Note that the size of Wyu(k) is increasing as k decreases. Corollary 5.1 formalizes

this notion and follows directly from Theorem 5.1 because F'(k) is decreasing in k.
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Figure 5-2  The set of wholesale prices that coordinates the actions of a single supplier when building
to stock for a single retailer that ‘pulls’ from that supplier.

c/I:'(k) c/;'(q*)

¢ p

Note. Note that ¢/F(g*) = p and Wyun(k) = [c/F(k), p] (the interval denoted in bold) when k < g*.

COROLLARY 5.1. If 0 < ky < kg, then Wyyuu(k2) € Wpu(k1) C [c, p].

Thus, the more constrained the channel is with respect to the channel optimal order
quantity, g*, the larger the set of coordinating ‘pull’ wholesale price contracts Wpyn(k).

Consider two supply channels selling the same good with the same retail price p
and supplier cost c¢. Assume that the probability of excess demand in the first channel
is larger, in the sense Fi(k) > Fj(k). Let WE (k) denote the set of coordinating ‘pull’
wholesale price contracts for channel ¢ when the channel is constrained by & units. The
channel with the higher probability of excess demand has a larger set of coordinating

wholesale prices. Corollary 5.2 to Theorem 5.1 makes this precise.

COROLLARY 5.2. Giwen two demand distributions Fy and Fy, if Fy(k) > Fy(k) >
0, then
Wgull(k) c W;;ull(k) - [C, P]-

Proof. See Section 5.7.2.

B 5.3 Equilibrium setting.

The equilibrium setting we analyze is a two-stage (Stackelberg) game. In the first
stage, the retailer (the ‘{eader’) offers a wholesale price w to the supplier. In the
second stage, the supplier (the ‘follower’) chooses an optimal response g, given the
wholesale price w. The supplier produces ¢ units before the sales season starts and
has no replenishment opportunity. Demand occurs and then the supplier delivers the

units to the retailer or the end customer (e.g., drop-shipping) and collects payment for
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those units from the retailer. Both the supplier and retailer aim to maximize their own
profit. The retailer’s payoff function is m.(w;q) = E[(p — w)S(g)] and the supplier’s
payoff function is m,(g; w) = E[wS(g)—cg]. Cachon and Lariviere (2001) and Cachon
(2004) analyze this Stackelberg game, for an unconstrained channel with one supplier
and one retailer. Cachon (2004) finds that when F' has the IGFR. property, the game

results in a unique outcome (g%, w®) defined implicitly in terms of the equations

PF(¢°) — ¢ (1 + (E[S(¢°)/F (7)) - (£(a°)/F(g%))) = O, (5.2)
w*F(¢®) —c=0. (5.3)

Furthermore, they show that the outcome is not channel optimal. In this section,
and in Section 5.5, we explore the efficiency of the outcome when the channel has a
capacity constraint (i.e., ¢ < k).

Theorem 5.2 provides necessary and sufficient conditions on the channel’s capacity

constraint k& for the Stackelberg game to result in a channel-optimal equilibrium.

THEOREM 5.2. Assume F has the IGFR property. Consider the above described
game, when the channel capacity is k units. This game has a unique equilibrium,
given by ¢®1(k) = min{k, ¢°} and w®¥(k) = min{c/F(k),w*}, where ¢° and w® are de-
fined by equations (5.2) and (5.3), respectively. This equilibrium is channel optimal
if and only if

k< ¢t (5.4)

Under this condition, we have ¢°1 = k and w® = c/F (k).

Proof. See Section 5.7.3.

The function pF(y) — ¢ (1 + (B[SW)|/F(v)) - (f(y)/F(y))) represents the re-
tailer’s marginal profit on the yth unit, when y < k. When F' has the IGFR property,
the retailer’s marginal profit is decreasing in y, while the marginal profit is nonneg-
ative. This fact and equation (5.2) imply that inequality (5.4) is equivalent to the
inequality pF'(k) — c(1+ (E[S(k)]/F(k)) - (f(k)/F(k))) > 0, which can be inter-

preted as a statement that the retailer’s marginal profit (when relaxing the capacity
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constraint) on the kth unit is greater than zero. Therefore, inequality (5.4) suggests
that when the capacity constraint is binding for the retailer’s problem (the ‘leader’
in the Stackelberg game), then the outcome of the game is channel optimal and
vice-versa.

If the channel capacity k is ‘large enough’, so that inequality (5.4) is not satis-
fied, how inefficient is the channel? In Section 5.5, we provide a distribution-free

‘measuring stick’ for the efficiency loss in channels with a capacity constraint.

B 5.4 When can both parties be better off?

The set of coordinating ‘pull’ wholesale price contracts Wyu(k) introduced in
Theorem 5.1 has many merits in a negotiation setting. For example, such contracts
are Pareto optimal. In contrast, Theorem 5.3 examines the set of wholesale price
contracts Dpyn(k) that have little merit in that they are Pareto-dominated by some
other wholesale price contract in [¢, p]. A contract is Pareto-dominated if there exists
an alternative linear wholesale price contract that makes one party better off with-
out making any other party worse off. Having a complete picture of the contracts
that are channel-optimal and the contracts that are Pareto-dominated is helpful in a

negotiation setting.

THEOREM 5.3. Assume F' has the IGFR property and that the quantity ¢°¢ and
wholesale price w® are defined implicitly in terms of equations (5.2) and (5.3). If

k < q*, then the set of Pareto-dominated ‘pull’ wholesale price contracts Dpyy(k) is
Dyu(k) & e, min{w?,c/F(k)}) = [c,c/F(min{¢, k})).

Proof. See Section 5.7.4.
Note that Wpui(k) and Dy (k) are disjoint. Corollary 5.3 to Theorem 5.3 for-
malizes the idea that when k is ‘small enough’, Wpui(k) and Dyyu(k) partition the

set [c,p]. Figure 5-3 illustrates these ideas when demand has a Gamma distribution.
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Figure 5-3  An example illustrating Wpui(k) and Dpun(k).

Two sets of wholesale prices as a function of capacity: ¥ p“”(k) and EDW”(I:)
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Note. We use the same parameters as in Figure 3-1, resulting in ¢* = 10.112, the difference being that the
push-pull boundary is now between the supplier and retailer so that ¢° ~ 5.552, and w® = 5.753. The set
of coordinating wholesale price contracts Wypun(k) lies above the solid curve. The set of Pareto-dominated
wholesale price contracts Dpun(k) lies under both the solid and dashed curves. The set of contracts that lie
between the solid and dashed curves are neither in Wy (k) nor in Dpun(k). Such contracts do not coordinate
the channel, but nevertheless, are not Pareto dominated by coordinating wholesale contracts. See Figure 2-3
to compare with the set of ‘push’ contracts W(k) and D(k) for the same problem parameters.

COROLLARY 5.3. Assume F has the IGFR property. If k < ¢°, then

Wpull(k) U Dpull(k) = [C,p], (55)
Wpuu(k,’) N 'Dpuu(k) = 0 (56)

Corollary 5.3 is especially interesting: it asserts that when capacity is small enough
there are only two types of contracts: ‘good contracts’, Wyun(k), and ‘bad contracts’,
Dpun(k). Furthermore, both parties will always have a reason to avoid the ‘bad
contracts’ because they are Pareto-dominated by some channel-optimal contract in

the set Woun (k).
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B 5.5 Efficiency Loss.

When the outcome of the Stackelberg game we described in Section 5.3 results
in a ‘pull’ wholesale price contract that is not channel optimal, how much does the
channel ‘lose’ as a result? What is the ‘price’ paid for the ‘gaming’ between the
supplier and retailer? To quantify the answer we analyze the worst-case efficiency
using the same definition of efficiency introduced in Section 2.5.

In particular, for a channel with a capacity constraint k¥ and probability F'(k) of
excess demand, we define the parameter 3 o maﬁé%)fﬁ’l. The parameter 3 depends
on the probability F(k) of excess demand and takes values from the set [1,p/c]. It
quantifies how constrained the channel is with respect to the channel optimal order
quantity ¢*, because 3 & ma“{lz}f,)'c/ } — maxu;((?;f (¢")}

a capacity constraint k¥ and parameter 3, the efficiency, Eff(k, §), is defined according

. In the Stackelberg game with

to equation (5.7) below.

Efi(k, f) = _inf Channel profit under ‘gaming’ : E[pS(¢®(k)) — cq®(k)]
'’/ peF(kg)  Optimal channel profit  Fer(k8) E[pS(g°(k)) — cq*(k)]
(5.7)

The set F(k, 3) represents the set of probability distributions that satisfy Assump-
tion 2.1, have the IGFR property, and such that the probability F'(k) of excess demand
satisfies ﬂaﬁé%)ﬂi = . Note that Eff(k, B) is a distribution-free method of quanti-
fying the worst-case efficiency. When Eff(k, ) is low (much smaller than one), there

is significant efficiency loss due to ‘gaming’.

THEOREM 5.4. Define m & (p —c)/p (the channel’s gross profit margin). Also
when B € [1,1/(1 — m)], define the function

1/z
z(m, B) o arg max 1 <1+z> . ( b__ 1) _ 1. (5.8)

(B-1)<z<m/(1-m) T 08 1—z
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For the Stackelberg game described in Section 5.3, we have

Eﬁ(k,ﬁ)=( L .(1+x(m,6))”’”""*"’.(__5__)*1) M—_l>-1

z(m, B) B 1—x(m, B ~ 1-g(m,p)
(5.9)

Proof. See Section 5.7.5.

Note that Eff(k, ) is decreasing in the channel’s gross profit margin m and in-
creasing in 3. When § = 1, the channel is not constrained and Eff(k, 3) equals
(e — 1)~! which matches the result in Perakis and Roels (2006). On the other hand,
when the channel is most constrained (i.e., k =~ 0, F(k) =~ 1, and B8 ~ p/c), then
Eff(k, 8) simplifies to 1. In other words there is no efficiency loss because the equi-
librium outcome involves the retailer ordering exactly k. Our result is thus a more
general version of the ‘two-stage pull-mode PoA’ result in Perakis and Roels (2006)
in that we account for a capacity constraint. Also our proof technique differs from
and complements Perakis and Roels (2006), in that we indirectly optimize over the
space of probability distributions by optimizing over the space of generalized failure
rates.

Figure 5-4 provides an example of the Eff(k,3) when the channel’s gross profit
margin is 35 percent. Figure 5-4 illustrates that for channels with smaller capacity
(i-e., higher ), the worst-case efficiency (as measured by Eff(k, 3)) is larger. Compar-
ing the (push-mode) supply chain example in Figure 2-4 with the (pull-mode) supply
chain example in Figure 5-4, we see that the supply chain’s worst case efficiency in

pull-mode is better than in push-mode.

B 5.6 Coordinating wholesale prices for both push-
mode and pull-mode

Consider both the 1-supplier/1-retailer configuration described in Section 2.1 (i.e.,
push-mode) where the retailer faces a newsvendor problem and has a capacity con-

straint k. and the 1-supplier/1-retailer configuration described in Section 5.1 (i.e.,
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Figure 5-4  An example illustrating Eff(k, 5) when m = 0.35.
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Note. We fix the margin (p — ¢)/p = 0.35 and see how Eff(k, 8) changes as a function of 3.

pull-mode) where the supplier faces a newsvendor problem and has a capacity con-
straint k,. From observing Figure 2-2 and Figure 5-2, we see that when the capacities
k., k, are ‘small enough’ (relative to demand) there exist wholesale price contracts
that coordinate a supply chain regardless of whether it is operating in push-mode or
pull-mode.

Theorem 5.5, below, formalizes how small the capacities must be relative to de-
mand so that there exist such wholesale price contracts. Furthermore, our theorem
provides the interval of wholesale price contracts that coordinate a supply chain re-

gardless of whether it is operating in push-mode or pull-mode. In the statement of the
theorem, we use the parameters Bpush def M%%Z_’)M and Bpun def Ml%gﬁm.
As pointed out in Sections 2.5 and 5.5, respectively, those parameters express how
constrained the channel is with respect to the channel optimal order quantity ¢* when

it’s operating in push-mode and pull-mode, respectively.



CHAPTER 5. COORDINATING A CONSTRAINED CHANNEL: ‘MAKE-TO-ORDER’
88 RETAILER

THEOREM 5.5. Any wholesale price
w € Whom(kr, k) & {w | ¢/ F(min{q", k,}) < w < pF(min{g*, k,})}

will coordinate the supply chain regardless of whether the supply chain is operating in
push-mode or pull-mode. Furthermore, if a wholesale price w coordinates the supply
chain in both push-mode and pull-mode and ¢ < w < p, then w € Wyon(kr, ky). The
set Wion(kr, ky) is not empty if and only if Bpush - Bpun = p/c.

Proof. See Section 5.7.6.

Notice that if the capacities k,, k, are larger than or equal to the unconstrained
channel’s optimal order quantity, ¢*, then ¢/F(min{q*,k,}) = ¢/F(q*) = p and
pF(min{q*, k,}) = pF(¢*) = c, so that no wholesale price coordinates both the
channel operating in pull-mode and the channel operating in push-mode. However,
even when the capacity constraints k., k, are binding for the channel (i.e., ¢* > k;, k,
or, equivalently, Boush, Bpun > 1 ), we do not have a guarantee that there exist
wholesale prices that coordinate both the channel operating in push-mode and the
channel operating pull-mode. Rather, the channel needs to be constrained ‘enough’
(i-e., Bpush + Bpun = p/c) for a wholesale price w € Whotn(kr, kv) to coordinate the
supply chain regardless of it’s mode of operation and only wholesale prices in the set
Whotn (kr, k) can coordinate the supply chain regardless of it’s mode of operation.

As pointed out already, many factors ultimately influence the actual wholesale
price (selected from the set [c,p]) that the retailer pays the supplier. In the uncon-
strained setting, regardless of these factors, coordinating both a supply chain operat-
ing in pull-mode and a supply chain operating in push-mode is not possible with any
wholesale price contract. However, when the capacity constraint is small enough for
the channel, coordination becomes possible and ultimately depends on these other

factors.
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5.6.1 Size of Whotn(kr, ky)-

The geometry of the set of wholesale prices Whotn (kr, ky) that coordinate the retailer’s
decision for the supply channel (operating in push-mode) and the supplier’s decision

for the supply channel (operating in pull-mode) is depicted in Figure 5-5.

Figure 5-5 The set of wholesale prices that coordinates a 1-supplier/1-retailer configuration regardless
of whether it is operating in push-mode or pull-mode.

oIF(k) PF(k)

Note. Note that Whoth(k) = [¢/F(kv), pF(k-)] (the interval denoted in bold) when Bpusk - Bpun > p/c and
ko, kr < g%

Note that the size of Whotn(kr, ky) is increasing as k, or k, decreases. Corol-
lary 5.4 formalizes this notion and follows directly from Theorem 5.5 because F(k) is

decreasing in k.

COROLLARY 5.4. If0 < k! < k2, and 0 < k! < k2 then Wiom(k2, k2) C Whom(kL, k1) C

7YY Ty Y

[c, ]

Thus, the more constrained the channel is with respect to the channel optimal order
quantity, g*, the larger the set of coordinating wholesale price contracts Whotn (kr, kv)
that coordinate a channel regardless of its mode of operation (i.e., push or pull).

In fact, we can state a stronger result, i.e., Corollary 5.5, below. Consider two
channels, 1 and 2, (each with one supplier and one retailer) that sell a single good.
Channel i sells its good at retail price p; per unit, facing uncertain demand with c.d.f.
F;, with the supplier facing a cost ¢; per unit, so that ¢} = F;*(c;/p;) is the optimal
quantity for the channel to prepare before the sales season begins. When channel
operates in push-mode, suppose the retailer faces a capacity constraint k%, and when
channel 4 operates in pull-mode, suppose the supplier faces a capacity constraint k.
Recall that we can measure how constrained channel i is when operating in push-mode

def max{F;(ki),F;(g})}

by considering the parameter 3} g, = ACA) and how constrained channel ¢
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is when operating in pull-mode by considering the parameter 8}, def max{mgﬁi?,’f‘(q;) 3

Let W, denote the set of coordinating wholesale price contracts for channel 4,

regardless of its mode of operation (i.e., Wi, = Whotn(k:, k2)).

hold, if and only if, W2, C WL, C [e,p].

Proof. See Section 5.7.7.

We illustrate Corollary 5.5, by applying it to answer the question: how does the set
Whoth change when ‘demand increases’? More formally, consider two supply channels
selling the same good with the same retail price p and supplier cost c. Assume that the
probability of excess demand in the first channel is larger, in the sense Fy(k) > Fp(k)
when k = k,,k,. Let Wi, (kr, k,) denote the set of coordinating wholesale price
contracts for channel i (regardless of the mode of operation). Applying Corollary 5.5,
we have that the channel with the higher probability of excess demand has a larger

set of coordinating wholesale prices. Corollary 5.6 makes this precise.

COROLLARY 5.6. Given two demand distributions Fi and Fy, if Fy(k) > Fy(k) >
0 when k = k,, k,, then

Wl?oth(kﬂ kv) g Wl}oth(kﬁ kv) g [C,p].

Observe that Corollary 5.6 follows from Corollary 5.5 because the inequality Fy(k) >
Fy(k) > 0 when k = k,, k, implies that the inequalities 82,y < 82,4, and B2, < 8L,y
hold.

B 5.7 Proofs

In order to not disrupt the flow of presentation, the proofs for our results in this

chapter are contained here.
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5.7.1 Proof: 1-supplier/1-retailer, Set of wholesale prices

Wpun (k)

Proof of Theorem 5.1. QObserve that the objective function for the channel’s prob-
lem (see Section 5.1.2) is the same as in our model in Chapter 2 (see Section 2.1.2).

Also, we can express the supplier’s objective function as

wE[S(q)] - e = £ - (pE[S()] - E4) .

Therefore, from Theorem 2.1 in Chapter 2, we have that ¢° is a solution to the
supplier’s problem when offered wholesale price w € [c,p] (i-e., ¢*(w) = ¢°) if and
only if pc/w € W(k) & [c,pF'(min{g*, k})]. But pc/w € [c,pF(min{q* k})] is

equivalent to w € [¢/F(min{q*, k}),p]. O

5.7.2 Proof: Impact of size of Market on size of Wyun(k)

Proof of Corollary 5.2. Let qf = F;'(c/p) be the order quantity (for an uncon-
strained channel) under the demand distribution F;.

If k < g3, then ¢/p < Fy(k) < Fy(k), which implies that &k < g}. Thus, Wi, (k) =
[c/Fi(k),p] for i € 1,2. Since Fy(k) < Fi(k), we can conclude that W2, (k) C
Wou(k) € [e, pl.

Similarly, if g5 < k, then W2,,(k) = {c}. Thus, W2 (k) C Wyu(k). O

5.7.3 Proof: When is the equilibrium of the Stackelberg

game channel optimal?
Proof of Theorem 5.2. The supplier’s profit function m,(g;w) under a wholesale
price contract w is defined as m,(q; w) def ElwS(q) — cq]. Since m,(g; w) is concave,

in g, we can use the first order conditions and conclude that for a wholesale price

w € [c, p], the constrained supplier’s order quantity ¢”(w) is given by

¢"(w) = min{k, F~!(c/w)}. (5.10)
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The retailer’s profit function 7, (w; q) under a wholesale price contract w is defined as
m(w;q) € E[(p — w)S(q)]. Since ¢"(w) is the supplier’s best response in the second
stage to a wholesale price w by the retailer in the first stage, equation (5.10) allows

us to express the retailer’s objective function as follows:

E[(p—c/F(¢*(w))) S(¢°(w))], if ¢ < w < min{c/F(k),p};
N £ R E) CLLON T,

E[(p — w) 5(k)], if min{c/F(k),p} <w <p.

For w < min{c/F(k),p}, note that

ory(w) (o ES@@)] f@w)Y)) o)
5= (P e (e R FEay)) Th e

Cachon (2004) (Lemma 1) shows that when F' has the IGFR property, the function
(E[SW)]/F(y)) - (f(y)/F(y)) is increasing in y, for y > 0. Therefore, the function
pF(y) — c(1+ (E[SW))/F(y)) - (f(y)/F(y))) is strictly decreasing in y when it is

nonnegative and equals zero at ¢° (see equation (5.2)). We can deduce that

PF(¢"(w)) — e (1+ (E[S(¢"(w))]/F(g" () - (£(¢°(w))/F(g"(w)))) >0 (5.13)

for w < w® (because ¢*(w) < ¢°). Furthermore, a—q;;(uﬂ > 0 for w < ¢/F(k). There-
fore, we can conclude that Q’-'a'%"l > 0 for w < min{c/F'(k), w*}.

Either the inequality ¢/F'(k) < w® holds or the inequality w® < c¢/F(k) holds.
First assume the inequality w® < ¢/F(k) holds. We know 5515—5}"’—) > 0 for w <
min{c/F(k),w®} = w®. Furthermore, the function

pF(y) —c(1+ (EISW)/F(y)) - (f(v)/F(v)))

is negative when y > ¢°, so that, we have '-9%"1) < 0 for w® < w < min{c/F(k), p}.
Equation (5.11) implies that 7, (w) is decreasing linearly between min{c/F(k), p} and
p. Since 7, (w) is continuous over [c, p], we have w®(k) = w® and equations (5.10) and

(5.3) imply ¢®(k) = ¢®. The inequality w® < ¢/F(k) is equivalent to the inequality
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¢ < k (see equation (5.3)). Therefore, when ¢ < k holds, the inequality w®i(k) =
w® < min{c/F(k),p} = c¢/F(min{q*, k}) holds and we can deduce that w®(k) ¢
Woun(k) (using Theorem 5.1).

Next assume c¢/F(k) < w® holds. We know 2222 > 0 for w < min{c/F(k), w*} =
¢/F(k). And since m,(w) is decreasing linearly between min{c/F'(k),p} and p, equa-
tion (5.11) implies w®(k) = c/F (k) and equation (5.10) implies ¢®4(k) = k. The
inequality c/F (k) < w® is equivalent to the inequality £ < ¢® (see equation (5.3)).
Therefore, when k < ¢° holds, the equality w®(k) = ¢/F(k) = min{c/F(k),p} =
¢/F(min{qg*, k}) holds and we can deduce that w*(k) € W,u(k) (again using Theo-
rem 5.1). O

5.7.4 Proof: The set of Pafeto—dominated contracts Dpuu(k)

as a function of capacity

Proof of Theorem 5.3. Equation (5.10) allows us to express the supplier’s objec-

tive function as follows:

() = (c/F(g"(w))E[S(¢"(w))] — cg”(w), if ¢ <w <c/F(k); (5.14)

wE[S(k)] — ck, if c/F(k) <w < p.

Note that m,(w) is strictly increasing in w, when w € (c, c/F(k)) because

87ra,,ijw) — ¢ (E[S(¢°(w))]/F(q"(w))) - (f(g"(w))/F(g"(w))) - @(;(U_w) -

Furthermore, when w € (c/F(k),p), note that m,(w) is strictly increasing in w. From
the proof of Theorem 5.2, we know that the retailer’s profit m,.(w) is also strictly
increasing for w < min{w®, ¢c/F(k)}. Therefore, any wholesale price contract in the
set [c, min{w®, c/F(k)}) is Pareto-dominated by min{w?®, c/F(k)}.

Since the retailer’s profit is decreasing as the wholesale price w increases from
min{w®, ¢/F(k)} (see the proof of Theorem 5.2) but the supplier’s profit is increasing

as the wholesale price increases, we can conclude that any wholesale price contract
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in the set [min{we,c/F(k)},p] is not Pareto-dominated. Thus, the set of Pareto-

dominated wholesale price contracts in [c, p| is exactly Dpun(k) = [c, min{w?®, ¢/F(k)}).

5.7.5 Proof: Efficiency loss for a two-stage pull channel

with capacity constraint

LEMMA 5.1. Assume F has the IGFR property and that the quantity g° is defined
implicitly in terms of equation (5.2). If ¢° < k < ¢°, then

p(kF@ds) —ck 14 g (B)" - 2 1

p(J Fl@)dz) — e~ 9(0)1 = 9(e) o 1-g(¢?) g(e)

(5.15)

Proof of Lemma 5.1. Recall the generalized failure rate function g(y) for c.d.f. F
is defined as g(y) & — yg%ly—)/ﬁ_’(y). Since F(y) = e~ Jo fO/F®Wdt — o= [ s@)/tdt e

have

p ( Jy F(z)dz) -k p ( Jy e~ 5 o0/t 4 — i

p (S F(z)dz) - cqe b (i e frateea dw) — cg°

P (fq'i e~ Joat)/eat dm) ~c(k ~¢°)
P ( ST eI s/t dz) i

(5.16)

For any y € [¢%, k], define the profit-gain factor a(y) by

Y = q° ]
o) ® (o ([ e rmsae) oty )/ (o [ B2 as) ).
q° 0

(5.17)
The derivative Q%%—) is expressed via equation (5.18) below, when y € [¢%, k], leading
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to the following nonnegative upper bound:

da(y) _ —[Yg)/tdr _ /qe — JEg(t)/tdt e
3y (pe c)/ P i e dzx | —cq (5.18)

< (e ¥ s at- [ty _ )/ (p ( / " o I s dx) _ cqe) (5.19)
0

—g(g%) . q° .
(E) e~ Jo 9Ww/td _ / (p (/ o= I3 9t)/tdt d:v) _ qu>
q° 0

[
3
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Therefore,

p(j;)kﬁ’(x)dx)—-ck ~  da(y)
p(f:e F(x)dx) — cqe - 1+/q W

. Oy
k -9(q°)
< 1+/qe ((g) (1+9(qe))—1) / (9(g°)¢®) dy

o (EA+e@) (BN ¢(+e(e) o e
—1+( 1-g(¢°) (qe) 1-g(¢%) (k Q))/(g(q )7)

B 1+9(¢°) (K7 144 k e
—h (1 - 9(¢°) (qe) T—g(¢) ' 1)) fo@)

_ kN[ ., 1+4g(¢) (k (@) _ 1+9(¢) .
- ((qe) ( T () (qe) ) =gl " 1) o)
1+ 9(¢°) ( k )l-gm 1k 1+ g(g) 1

T 9@ -9@) \¢ TV 9@ T -9(@)  9(@)
1+ g(¢°) ( k)l—g(rf) 1 k

~ 9@ -g() \¢° Pty
it nl () +1—-9(¢°) +9(¢°) —g(¢*)? | 1
9(g°)(1 — g(¢®)) 9(q°)

_ l+g(e) ( 5)““"“_; k|, —g(¢*) - 9(g")
9(¢°)(1 — g(¢®)) \ ¢° 9(¢°) ¢ 9(q*)(1 - g(¢%))

__ Ltale) (E)I-g(qﬂ_ 1k 1+9(d)
9(g°)(1 — g(¢®))

g 9@ 1-g(g)
_ 1+ 9(q°) <£) 1-g(g®) 1 _k_ B 29(¢%) + 1 — g(¢°)
9(¢°)(1 —g(¢®)) \¢° 9(¢°) ¢° 1 - g(g°)
1+9(¢) ( k )1‘9“"” (1 E_ 2@ | g
g

T I-d@N \¢) @) T-ge)

LEMMA 5.2. Under the same assumptions as in Lemma 2.1, when F(k) = 6 and

F(g°) = (1 - m)(1 + g(q°)) we have k - (1 —m)(1 + g(¢°))/8) ") < ¢.

Proof of Lemma 5.2. Assume ¢° < k - (1 — m)(1+ g(¢°))/6) /9% This leads
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to a contradiction (inequality (5.24)):

6= F(k) = e S gy tar _ e 18 g(t)/tat e~ % g(t)/tdt < F(¢)- e JE 9(qe) /et
= (1-m)(1+9(¢)) - (k/g*) 9"

<(@=m)(1+9(@)) - (k (k- (1~ m)(1+9(g) /8y 00) " =5 (520

Inequality (5.24) follows from our assumption, ¢¢ < k-(8/ ((1 — m)(1 + g(¢®))))*". O
Proof of Theorem 5.4. The case where 8 = 1 is equivalent to the unconstrained

problem which is addressed in Perakis and Roels (2006). Therefore, fix channel

capacity k and assume # > 1, so that ¢°® = k. When 8 > 1, the probability of

excess demand, which we will denote by 9, is fixed and satisfies 3 = dp/c. Fix a c.d.f.

F € F(k,B). The efficiency Eff(F') of F satisfies the following lower bound:

Efi(F) &€ E[pS(¢*?) — g/ ElpS(k) — ck]

> E[pS(¢®) — cg°]/ E[pS(k) — ck] (5.25)
_ (p ( /0 " ) dx) - cqe) / (p ( /0 ' Fla) dx) - ck)
s g(qj)ag—(f()qe)) (%)1"’@ - 125(9(1(2'3) - g(;e)?z’% - 1) (5.26)

1+ g(qe) 1+ g(qe) —1+1/g(q®) ~ 2g(qe) 1 1+ g(qe) 1/9(¢%) | -1
> (g(qe)(l - g(qe)) ( V] ) 1— g(qe) - g(qe) ( 3 ) =1

(5.27)

g(;e)(l +Z(qe))1/g<q=>.(ii’g83,1+§(qe) _1> _%%-l>_1
e\\ 1/9(q°) ) »

2 () ()40

(oot () (50220

In particular, inequality (5.25) follows because g¢ < ¢® < ¢°. Inequality (5.26) follows

from Lemma 5.1. The function on the right-hand side of inequality (5.26) is decreasing
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as ¢° decreases and from Lemma 5.2 we know that the equilibrium order quantity g®
satisfies ¢° > k- ((1+ g(¢°))/B)"/9"). Therefore, inequality (5.27) follows when we
substitute in ¢° = k - ((1 + g(¢®))/8) /917,

Define the function

1/x
z(m, B) & argmax L (1+$) . ( h__ 1) = 1. (5.28)

(B-1)<z<m/(1-m) T B -z 1—z

It can be verified that the lower bound in inequality (5.27) is attained when the c.d.f.
F is taken equal to H, where the c.d.f. H satisfies

— l/a:(m,ﬁ)
1. H(t)=1forte[0,k-(ﬁm(imm) ]

_ 1/z(m,B)
2. H(t) = (k/t)*mP) . § for t € [k . (ﬁ'm'%n‘ﬂ“)) ,oo).

D) , using eq. (5.2), implying

that we can convert the inequalities in egs. (5.25) and (5.27) into equalities. Fur-

1/z(m.B)
(To verify this claim confirm that ¢¢ = & - ( )

thermore, since the c.d.f. F is taken equal to H, we can convert the inequalities in
egs. (5.19),(5.20), and (5.22) into equalities. Therefore, inequality (5.26) becomes an
equality.) The c.d.f. H does not satisfy Assumption 2.1, because the corresponding

)I/w(m,ﬂ)

density is zero for t < k- ( . However, it can be approximated arbitrar-

1+a(m,B)
ily closely by c.d.f.s in the class F(k,3) (in particular, that satisfy Assumption 2.1),

with an arbitrarily small change in the resulting efficiency. O

5.7.6 Proof: 1-supplier/l-retailer, Set of wholesale prices
Wboth(kh kv)
Proof of Theorem 5.5. From the definition Whon (k- kv) o {w]¢/F(min{q*, k,})

w < pF(min{g*, kr})}, the set Whyotn(kr, ky) is non-empty if and only if the inequality

c¢/F(min{q*, k,}) < pF(min{q*, k,}) (5.29)

<
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holds. Inequality (5.29) can be rewritten as ¢/p < F(min{q* &, }) - F(min{q*, k,}),

or

max{F(k,), F(¢")} max{F(k,), F(¢")}
c/p c/p

because max{F(k), F(¢*)} = F(min{qg* k}) for any k. Therefore, inequality (5.29)

is equivalent to the condition fBpysh - Bpun = p/c. And, we have the set Whon(kr, kv)

p/c < = ,Bpush : ,Bpull (530)

is non-empty if and only if Byush - Boun > p/c.

In Theorem 2.1 we defined the set W(k) & [c, pF(min{q*, k})] and in Theorem 5.1
we defined the set Wy (k) & [c/F(min{q*, k}),p]. Observe that Whoen(ky, k) =
W(k;) " Wpun(ky). Therefore, any wholesale price w € Whotn(kr, kv) is also a member
of W(k.) so that from Theorem 2.1 we have that w will coordinate the retailer’s order-
ing decision for the supply channel when operating in push-mode. Furthermore, any
wholesale price w € Whotn(kr, ky) is also a member of Wyy(k,). From Theorem 5.1,
we have that w will coordinate the supplier’s decision for the supply channel when
operating in pull-mode.

Suppose now that there is a wholesale price w that coordinates the retailer’s
ordering decision for the supply channel (in push-mode) and that coordinates the
supplier’s decision for the supply channel (in pull-mode) and that ¢ < w < p holds.
From Theorem 2.1 we have that w € W(k,). From Theorem 5.1, we have that

w € Whui(ky). Therefore, w € W(k,) N Wpun(ky) = Whotn (kr, kv). O

5.7.7 Proof: Impact of changing Byush, Bpun

Proof of Corollary 5.5. Since Fy(min{q}, k}) = max{F;(k), Fi(q})} for any k, we
have that

ci/ Fi(min{g;, k}}) = pi - (ci/pi) - 1/ max{Fy(k}), Fi(a})} = pi - (1/Boun)

and

piFy(min{g;, k1}) = c: - max{Fi(k;), Fi(¢))}/(ci/p:) = ci - Bpusn-
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Therefore, the inequalities ¢; /Fy (min{g;, k1}) < co/Fo(min{g3, k2}) and p, F5(min{gZ, k2}) <
p1Fi(min{qf, k7}) hold, if and only if, inequalities 82,,/pa < B5,/p1 and ¢3 - B2, <
o1+ Bl hold. O



CHAPTER. 6
Multiple suppliers selling to a

newsvendor

Capacity is not free. Rather, distributors and retailers provide a valued service to
their immediate upstream suppliers: sales capacity (i.e., access to downstream de-
mand). So that in many supply channels, suppliers pay their distributor or retailer
(e.g., with ‘slotting’ fees, ‘pay-to-stay’ fees, or favorable contractual terms) in order to
obtain that capacity. For example, two large pharmaceutical manufacturers, Pfizer
and Roche Diagnostics, pay distributors, such as Cardinal Health, in order to dis-
tribute their medical supplies to pharmacies, hospitals, and clinics. And, as another
example, two large producers of household goods, Procter & Gamble and Unilever,
pay retailers (e.g., Wal-Mart) for the shelf-space that ultimately delivers their goods
to consumers. But how much value does (sales) capacity actually have?

This chapter studies supplier competition (with wholesale price contracts) for a
single retailer’s downstream capacity and competition’s influence on the price and,
therefore, value of that capacity, when the (downstream) buyer is a newsvendor. Our
analysis can be interpreted as a capacity valuation technique that applies in both a
negotiation and equilibrium setting for this particular supply chain configuration.

Furthermore, using a multiple supplier/single retailer model, we show that when
suppliers collude they decrease the value of the retailer’s capacity. Our multiple
supplier/single retailer model differs from the model in Chapter 4 in that each supplier

can sell more than one good. Also the focus of this chapter is on competition and the

101
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value of capacity, whereas, the focus of Chapter 4 is on coordination.

Chapter Outline

In Section 6.1, we explain the supply chain setting considered. In Section 6.2, we
analyze the newsvendor’s capacity allocation decision and derive the (endogenous)
price for the newsvendor’s capacity. We conduct comparative statics in Section 6.3.
Then, in Section 6.4, we analyze the equilibrium setting, by providing conditions for
the existence of an equilibrium in Section 6.4.2 and for uniqueness in Section 6.4.4.
Finally, in Section 6.5, we consider supplier collusion/integration and show that the
retailer’s shadow price for capacity decreases and that every supplier can achieve more

profit.

B 6.1 Model Framework

There are multiple suppliers, offering multiple goods, to a risk-neutral retailer.
There is some initial exogenous negotiation process, whereby the retailer decides on
order quantities (e.g., to guarantee certain service levels), followed by an equilibrium
process (that we model) involving the suppliers (and their goods) who received orders
(in the negotiation process) in competition for the remainder of the retailer’s capacity.
The equilibrium environment for the suppliers that go on to ‘sell to a newsvendor’ is
described below.

We consider s risk-neutral suppliers, offering n different goods in aggregate (where
n > s and each good is offered by exactly one supplier) to a risk-neutral retailer r,
facing a newsvendor problem: there is a single sales season, the retailer decides on
an order quantity vector/portfolio (¢, o, -.,¢,) and orders well in advance of the
season, the entire order arrives before the start of the season, and finally demand is
realized, resulting in sales for the retailer (without an opportunity for replenishment).
Without loss of generality, units remaining at the end of the season are assumed to

have no salvage value, and there is no (additional) cost for stocking out.
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The model’s parameters are summarized in Figure 6-1 with the arrows denoting
the direction of product flow. In particular, the supplier for good 7 has a fixed marginal

cost of ¢; per unit supplied and charges the retailer a wholesale price w; > ¢; per unit

ordered. The retailer’s price p; > w; per unit to the market for good ¢ is fixed and,
at that price, the demand for good ¢, D;, is random with probability density function
(p.df.) fi and cumulative distribution function (c.d.f.) F;. We assume that the
distribution for demands D; does not depend on the ordered quantities (g1, g2, - - - , gn)-
We also define Fi(z) €' 1 — Fy(z) = Pr{D; > z}.

We assume that the retailer’s total capacity is constrained by some k > 0; for
example, the retailer can only hold up to & units of inventory, or accept a shipment
not larger than k. For a different interpretation, k£ could represent a constraint on
the capacity of the channel or a budget constraint. We assume that the capacity as
well as the quantities of the different products are measured with a common set of
units (e.g., shelf-space), so that the capacity constraint can be expressed in the form

Gt <k

Figure 6-1 “n goods & 1 capacity constrained retailer” model.
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Note. There are n goods, each offered by exactly one supplier. The suppliers are not depicted here. The
supplier for good i faces marginal cost ¢; (per unit) and offers wholesale price w; (per unit) to a capacity-
constrained retailer  who faces uncertain demand D; downstream with c.d.f. F; (for good 7) when the price
for the good is fixed at p; (per unit). The retailer must decide on a portfolio ¢ of goods to order from the
suppliers.

The p.d.f. f; for the demand D; has support [0,1;], with I; > k, on which it
is positive and continuous. As a consequence, F;(0) = 1 and F; is continuously
differentiable, strictly decreasing, and invertible on (0, ;).

We say that the retailer is (mode) service constrained for good i € N, if f; is

nonincreasing for good . The name follows from one scenario in which the p.d.f. f;
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could be nonincreasing in practice. In particular, recall that there is an initial negoti-
ation process (which we do not model) where the retailer orders from some suppliers
followed by an equilibrium process (which we model) to determine which suppliers
will obtain the remainder of the retailer’s capacity. Suppose that initially, before the
negotiation process, the demand for good i has a unimodal distribution. And suppose
that the retailer receives a demand update for good i (before commencing the nego-
tiation process), namely, that z; units of good i have been pre-ordered and therefore
are ‘guaranteed’ sales. If x; is larger than the mode of the demand distribution for
good i, and the retailer orders z; units in the negotiation process, then the updated
demand distribution f; for the equilibrium process will have the property that it is

nonincreasing.

6.1.1 Equilibrium setting

The equilibrium setting we analyze is a two-stage (Stackelberg) game. In the first
stage, the suppliers (the ‘{eaders’) simultaneously set the wholesale prices for their
goods. In the second stage, the retailer (the ‘follower’) chooses an optimal response
g, given the wholesale prices w. The suppliers produce and deliver )7 ¢; units
before the sales season starts and offer no replenishments. The suppliers and the

retailer aim to maximize their own profit.

6.1.2 Retailer’s problem in the second stage

Faced with uncertain sales S;(z) & min {z, D;} for product ¢ € {1,...,n} (when
ordering z units) and a wholesale price vector w (from the suppliers), the retailer
decides on a vector of quantities to order from the suppliers in order to maximize
expected profit ,(q) o E[Y ", piSi(¢:;) — wig;] while keeping in mind the capacity
constraint k. Namely, the retailer solves the following convex program with linear

constraints in the decision vector, q:
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RETAILER-PRIMAL(k,w):

maximize Zn: (p:E[Si(a:)] — wigi) (6.1)

i=1

subject to ¢; >0, i=1,...,n
k—Z%ZO-
i=1

Because of our assumptions on the distribution of the demand D; for each product,
it can be shown that RETAILER-PRIMAL(k,w) has a unique solution (vector),
which we denote by ¢"(w). We denote the unique solution, arg MaX ey 7r(q), for
the unconstrained retailer’s problem by g*(w). Note that the unconstrained retailer’s
problem can be decomposed into n independent newsvendor problems, each of which
decides on an order quantity for a single good. Therefore, ¢}(w) equals the optimal
order quantity for a newsvendor ordering good ¢ only, which is well known to be
F7Y(w;/p;) units (e.g., Cachon and Terwiesch (2006)).

The dual problem in the decision variables 71,72, ...,7, (the shadow prices for
the nonnegativity constraints) and A (the shadow price for the capacity constraint)
is:

RETAILER-DUAL(k,w):

minimize WE1S;(q; w;q;) + G+ ALk — i
e zt_1q>0}>:(p [Si(a:)] — wigs) qu ( Zq)

(6.2)
subject to >0, i=1,...,n

A>0.

Also, RETAILER-DUAL(k,w) has a unique solution which we denote by
(i (w), -« ., Y (w), X" (w)).
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6.1.3 Supplier’s problem in the first stage

When the suppliers charge wholesale price vector w and the retailer, in response,
orders ¢"(w), a supplier, offering the set Y C N df {1,...,n} of goods, obtains profit
my (w) def > iey (Wi — ¢i)gl (w). If there exist other good(s) Y N \ 'Y, then supplier
Y’s profit depends on the wholesale prices of the other supplier(s) (due to the terms
{¢€f(w)}iey).' And, therefore, supplier Y competes in a simultaneous-move game in
the first-stage against the other supplier(s).

If there exist other good(s) Y and the corresponding wholesale price vector wy is
held fixed, a supplier, offering the good(s) Y, determines Y’s wholesale price(s) by

solving the following program with linear constraints in the decision vector, wy:

Y -SUPPLIER (wy):

maximize Z (w; — ¢i) - ¢} (w) (6.3)

subject to p; —w; >0, 1 €Y,

w;—¢ >0, 1€Y.

In Section 6.4.1 (cf. Theorem 6.8, Theorem 6.7, and Equation (6.14)), we charac-
terize the solution set W¥ (wy) for Y-SUPPLIER (wy), when the retailer is service
constrained for good(s) Y and the c.d.f. for each good y € Y has the IGFR property.?
Following the convention in game theory, we refer to the set-valued mapping WEF as
supplier Y’s best response to the wholesale price(s) of the other supplier(s).
Furthermore, we denote the vector of best response mappings by W def (W{}f, ceey Wb:)

(where Y; represents all the goods offered by supplier ¢) and refer to it, by convention,
as the best response correspondence. Note that any (pure-strategy) equilibrium in
the simultaneous-move game (and, thus, in the overall Stackelberg game) corresponds

to some fixed point of the correspondence W™ i.e., a vector w® of wholesale prices

'Supplier Y denotes the supplier that offers only the good(s) Y.

%Section 6.4.1 culminates with Theorem 6.8 (equation (6.21)), showing that supplier Y’s best response
WY (wy) equals the intersection of the set WY (z¥ (wy); wy) (which is also described in Section 6.4.1) with
the hypercube of feasible wholesale price vectors.
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for all n goods, such that w® € WP (w®9),

6.1.4 Equilibrium with an unconstrained newsvendor

Lariviere and Porteus (2001) analyze this Stackelberg game, for an unconstrained
channel with one supplier, one good, and one newsvendor. However, their equilib-
rium results are applicable in a setting with multiple suppliers supplying multiple
goods to one unconstrained newsvendor. In particular, since for any good i € N,
the newsvendor’s order qf (w) equals gf(w) = F;'(w;/p;) when the newsvendor is
unconstrained, we have that good 4’s profit, (w; — ¢;) - ¢f (w), is not dependent on the
wholesale price of any other good. Therefore, in the first stage, any supplier offering
only one good faces a ‘selling to the newsvendor’ problem and any supplier Y offering
more than one good can decompose its problem into |Y| independent ‘selling to the
newsvendor’ problems.

Thus, applying Lariviere and Porteus (2001) to our setting: when F; has the
IGFR property for every good t € N and the newsvendor is unconstrained (i.e., k is
sufficiently large), the game results in a unique outcome (g%, w®) defined implicitly in

terms of the equations

piFy(af) (1~ g:(gf)) —c: =0, t=1,...,m; (6.4)
PFy () —wi =0, t=1,...,n (6.5)

where g, is the generalized failure rate function g;(y) Ly f:(y)/Fi(y).

6.1.5 Definition: Valuation for capacity

In Section 6.2, we show that when suppliers charge wholesale price vector w in the
first round of the Stackelberg ‘game, they induce an endogenous valuation, A"(w) - k,
for the retailer’s capacity.® In this chapter, we are interested in understanding the

valuations that are feasible in our equilibrium setting. In particular, if we denote the

3S0 that any supplier that obtains £ units of the newsvendor’s capacity, in effect, pays the newsvendor
x - A" (w).
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set of equilibrium wholesale price vectors for the Stackelberg game (when the retailer

def

has a capacity of k units) by W®i(k) = {w | w € W™ (w)}, we are interested in

determining properties of the set of equilibrium valuations (per unit capacity), i.e.,
the set A®(k) = {A | A = A"(w), w € WeI(k)}.4

Although the analysis in Section 6.3 is specific to a newsvendor setting and a
wholesale price contract, our analysis can be generalized for other equilibrium settings

under different supply contracts.

B 6.2 The newsvendor’s problem and an endoge-
nous price for capacity k

Our first result describes properties of the retailer’s shadow price A" (w) for capac-
ity k and formalizes the retailer’s usage of A\"(w), when deciding how much of each
good to order, in a ‘threshold rule’ (on the marginal expected profit curve of each

good).

THEOREM 6.1. Let Z(w) o {i ]| ¢f{(w) =0} C N be the set of products that are
not ordered in the retailer’s decision problem when faced with wholesale price vector
w = (w1, Wy, ..., Ws). For any wholesale price vector w, there exists some A" (w) such

that the following conditions hold:

X (w) = p; F (¢} (w)) — wj, VjeN\Z(w), (6.6)
AT(w) > p; — w;, Vi€ Z(w). (6.7)

Furthermore, A" (w) = 0 if and only if 37 _, ¢;(w) < k.

Proof. See Section 6.6.1.
Notice that when the capacity constraint % is larger than or equal to the uncon-
strained retailer’s total optimal order quantity, > 7 ; ¢f(w), we have A\"(w) = 0, so

that equation (6.6) reduces to the ‘classic’ optimal order quantity result for a newsven-

“Theorem 6.9 states conditions under which the set W®4(k) is non-empty, and, therefore, conditions under
which the set A°3(k) is, also, non-empty.
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‘dor: Fj (gj(w)) = w;/p; for any ordered good j. And, furthermore, equation (6.7)
implies every good is included in the retailer’s portfolio, if w < p.

However, when the capacity constraint is binding for the retailer (i.e., Y ;. ¢} (w) >
k), the retailer’s shadow price A"(w) for the capacity constraint is strictly positive.
And, therefore, equation (6.6), which can be reexpressed as w; = p;F; (g} (w)) —A"(w),
implies that the supplier for good j, included in the retailer’s portfolio, charges the
retailer pjﬁ’j (q;(w)) per unit of good j, a known result for unconstrained channels
(Lariviere and Porteus 2001), but, in addition, pays the retailer A"(w) per unit of
capacity allocated to good j. Thus, the retailer obtains an income, k - A"(w), from
‘selling’ capacity k, in addition to its uncertain income, Y 7, piS;(¢] (w)).

In other words, the portfolio ¢"(w) of goods that the retailer orders, would have
cost the retailer extra, i.e., Y ., i (w) - \"(w) = k - A\"(w), if the retailer was uncon-
strained.

Figure 6-2 illustrates the ‘threshold rule’ when the capacity constraint is binding.
Corollary 6.1 suggests a simple algorithm for calculating the shadow price A"(w) when
given a single plot displaying the retailer’s marginal expected profit curve for each
available good (e.g., Figure 6-2): start with initial threshold A = 0 and increase A

until the sum of implied order quantities equals min {3 7., g} (w), k}.

COROLLARY 6.1. For any wholesale price vector w, the retailer’s shadow price

for capacity k is

n n
A"(w) = min {)\ | pFi(q) —wy <X VEEN, th = min {Z q:(w),k} , Q€ Ri} .
t=1 t=1
(6.8)

Proof. See Section 6.6.2.
Regardless of whether or not the capacity constraint is binding, the newsvendor’s
optimal order quantity for any good can be expressed, more generally, as a function
that depends on the shadow price A"(w) as shown in Corollary 6.2. This result follows

directly from equations (6.6) and (6.7).

COROLLARY 6.2. For any wholesale price vector w, the retailer orders ¢f(w) =
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The shadow price A\"(w) as a ‘threshold rule’ on a retailer's marginal expected profit (rmep)
curve.

Figure 6-2

Retailer's marginal expected profit (rmep) curves and the shadow price for &
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Note. Retailer’s capacity is k = 12.7 units. The retailer considers two goods (dash & dot) when ordering.
Demand for each good is identically distributed according to a Gamma distribution with mean 10 units and
coefficient of variation 27/2 & .707. Retail price (per unit) for each good is p = 10, but the wholesale prices
are: w1 = 3 (dash), w2 = 6 (dot).

F1 (max{’\r(:)+w“” 3: ) units of goodt € N.
As a result, under the ‘threshold order/allocation rule’ the ratio of the service levels
(i-e., fill rates) for any two goods (that the retailer orders) equals the corresponding
ratio of the retailer’s gross profit margins of those goods, for the uncertain income?®,

as formalized in Corollary 6.3.

COROLLARY 6.3. For goodt € N and wholesale price vector w, define us(w) o

(pe — wy — X"(w)) /pe (the retailer’s gross profit margin for the uncertain income).

For any two goods a,b € N\Z(w) that the retailer orders, we have F, (q7(w)) /Fy (g5 (w))

Ug(w) /up(w)-

SFor each unit of good t € N that the retailer orders when facing wholesale price vector w, the uncertain
profit margin p; — w; — A"(w) for good ¢ accounts for the certain income A"(w) received from ‘selling’ a unit
of capacity.
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B 6.3 Comparative statics, the game’s geometry,
and reformulation.

We show how changes in supplier wholesale prices effect the newsvendor’s charge
for capacity in Section 6.3.1. In Section 6.3.2, we derive a useful property that
simplifies our analysis when considering suppliers offering more than one good. Then,
in Section 6.3.3 we partition the set of supplier wholesale prices into equivalence
classes based on the newsvendor capacity price they induce or the newsvendor order
vector they induce. Then, in Section 6.4.1, we can recast supplier’s problem Y -
SUPPLIER (wy) into a (simpler) problem of choosing an aggregate order quantity to
induce (see Decision Problem (6.18)). Finally, in Section 6.4.4, we provide conditions
for the existence and uniqueness of an equilibrium (endogenous) capacity price and
conclude with a section analyzing a special case of the Stackelberg game, i.e., when

the suppliers collude on pricing.

6.3.1 The newsvendor’s shadow price for capacity when a

wholesale price drops

In Theorem 6.2, we show that the shadow price for capacity is nondecreasing when
one good’s wholesale price drops (and provide conditions on when the shadow price
is strictly increasing). In addition, we provide a simple upper bound on the increase

in the shadow price.

THEOREM 6.2. Consider two different wholesale price vectors w and w'. Suppose
that w' differs from w on ezactly one good d € N so that w) < wg and W' ; = w_g.
Then, X" (w) < A" (w'). And, A"(w) < X" (w') if and only if good d is included in the
retailer’s order under w’ (i.e., d € N\ Z(w')) and the capacity constraint is binding

for the retailer under w' (i.e., Y p_, ¢;(w’) > k). Furthermore,

AM(w') = AN(w) < wg — w). (6.9)
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And A\"(w'") — A" (w) = wg — w), if and only if, the retailer orders k units of good d

under w and w'.

Proof. See Section 6.6.3.

Therefore, when the retailer’s capacity constraint is binding (and thus the retailer
‘charges’ for capacity), a supplier that competes with other suppliers on price (by
lowering its wholesale price(s)) creates two effects: the price-lowering supplier in-
creases every supplier’s cost A" in obtaining a unit of the retailer’s capacity, and the
price-lowering supplier increases its share of the retailer’s capacity when the good is

in the retailer’s portfolio at the lower price (cf. Corollary 6.4).
COROLLARY 6.4. Under the same assumptions as in Theorem 6.2, we have gj(w) <

¢h(w') and gi(w') < g5 (w) for any other good o # d. Furthermore, the following two

conditions are equivalent.

(a) The retailer orders more of good d under v/, i.e., gij(w) < gi(w'), if ¢j(w) < k.

And the retailer orders less of any other good o # d under w', i.e., ¢f(w') <
¢(w), ifoe N\ Z(w).
(b) The retailer orders good d under w', i.e., d € N\ Z(w'), and the capacity

constraint is binding, i.e., > ., q;(w') > k.

Proof. See Section 6.6.4.

6.3.2 An invariance property on the retailer’s shadow price

for capacity

As shown in Theorem 6.2 and Corollary 6.4, any supplier Y can induce a change in the
retailer’s shadow price A" for capacity by dropping the wholesale price(s) for good(s)
Y, or, equivalently, taking away retailer capacity from competing goods Y. In par-
ticular, from Theorem 6.3, it follows that when supplier Y takes away = < k units

of capacity from competing suppliers (when the wholesale prices wy for competing

8Sometimes, in order to affect a retailer’s shadow price for capacity, a supplier Y may be required to drop
the wholesale price(s) for good(s) Y to below cost, which would not occur in our formulation.
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goods Y are fixed), supplier Y induces the retailer to have shadow price A\"(z; wy),

as defined in equation (6.10) below, for capacity k.

THEOREM 6.3. Consider a supplier Y C N competing with good(s) Y for a re-
tailer’s capacity k. Suppose w & (wy,wy) and the wholesale price vector wy is held
fized. If supplier Y ’s wholesale price vector wy induces the retailer to allocate x < k
units of capacity to supplier Y (i.e., )",y qi(w) = z), then the retailer’s shadow

price X" (w) equals

N (z; wy) % min{ A | peFi(g) —w, <X VEEY, th = min Zq}"(w),k -z 5y,
tey tey

(6.10)
Furthermore, if A" (w) = X" (z; wy) > 0, then ),y q] (w) = = holds.

Proof. See Section 6.6.5.

In other words, when wy is held fixed and Y ; ¢f(w) = k, the retailer’s shadow
price for capacity A"(w) is invariant to changes in the wholesale price vector wy as
long as the aggregate order quantity, ), ¢} (w), remains the same. Furthermore,
the retailer’s shadow price A"(z;wy) is a nondecreasing function of the aggregate

order quantity x as formalized in Corollary 6.5.

COROLLARY 6.5. Under the same assumptions as in Theorem 6.3, A"(z;wy) is
continuous. When x satisfies 0 <z < k-3, .y q;(w), we have X" (z; wy) =0, and,
when z satisfies max {k — 3, .y ¢/ (w),0} < z < k, we have N'(z;wy) is strictly

mncreasing.

Proof. See Section 6.6.6.

Therefore, when A" (z; wy) is strictly positive and z € [0, k), the function X" (z; wy)
is strictly increasing. Furthermore, since the average capacity cost supplier Y incurs
for inducing the retail to order an aggregate of x units equals z - \"(z; wy)/z, the
supplier average capacity cost is increasing in the induced aggregate order z (from
Corollary 6.5). And, from Corollary 6.6, below, we have that the marginal capacity
cost (i.e., z- 2%—"’-‘7—) +A"(z; wy)) is also increasing (in the induced aggregate order x)

when the retailer is service constrained for good(s) Y. Therefore, supplier Y does not

geR

¥}
+
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benefit from any economies of scale, when obtaining more than z units of newsvendor

capacity and the capacity charge A" (z; wy) is positive.

COROLLARY 6.6. Under the same assumptions as in Theorem 6.3, X' (z;wy) is

AT (z; w——) D\ (:x: w—) )

differentiable (i.e., —F —’—wy—) is continuous at x > 0 when

N (z;wy) > 0 and N (z;wy) # pi — w; for any i € Y. If x satisfies the equation

max {k — Y ,.¢7 & (w),0} < = < k and the retailer is service constrained for good(s)

Y, then 2 az:"_ 2 and a'\r;:f”? ) are strictly increasing.

Proof. See Section 6.6.7.

6.3.3 Set of wholesale prices for a particular capacity price

A or capacity allocation ¢

Theorem 6.4, below, provides the set W(A) of wholesale prices for good(s) N that
induce the retailer to have shadow price A. Therefore, from Theorem 6.4, we have that
WX (z;wy)) N{w’ | wy; = wy} is the set of all wholesale price vectors for good(s) Y
that induce the retailer to have shadow price, A"(z; wy), for allocated retail capacity

, when the wholesale price(s) for competing good(s) Y is held fixed at wy-.

THEOREM 6.4. When A > 0, any wholesale price vector in the set

w | wy =pFy(q) — A+ l{g=0y VtEN, q,7€ R'iv',

(A) def . :
ZtGN G = min {(EteN aq; (w)) =0y + k- Liaso k}

(6.11)
induces the retailer to have shadow price X for the capacity constraint k. Further-

more, if a wholesale price vector w induces retailer shadow price A for capacity k,

then w € W(X).

Proof. See Section 6.6.8.
When A™ > 0, Theorem 6.1 implies that min {}",_ ¢7(w), k} = k, and, thus, The-
orem 6.4 suggests that the set W(A") can be indexed by the simplex {q | >",cy @ =
k,q€ le l} of order quantities. Furthermore, when A"(z; wy) > 0, the set.W()\’"(x; wy))N

{w’ | wy = wy} can be indexed by the (lower dimensional) simplex {g | 3,cy ¢: =
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x, q€ ]RI}_/I} of order quantities. Also, when A\"(z;wy) > 0, we have that \"(z; wy) is
invertible (from Corollary 6.5), so that for every w € W(A"(z; wy)) N {w’ | W = wy},
we have ),y i (w) = z (from Theorem 6.3).

Only wholesale prices in the set W(A"(z; wy))N{w' | wi = wy} induce the retailer
to order x units from supplier Y’s goods (in aggregate), when the wholesale price(s)
for competing good(s) Y is held fixed at ws-. This set may be large, but Section 6.4.1
shows that there is a unique division of induced (aggregate) order  among supplier
Y’s goods that is optimal for supplier Y when the demand for every good t € Y has the
IGFR property, so that the subset of wholesale price vectors of interest to supplier Y’
is much smaller. In particular, Theorem 6.1 and Theorem 6.3 imply that the optimal
wholesale price vectors (for supplier Y') from the set W(A" (z; wy)) N {w’ | w, = wy}
are identical in every good (component) j € Y included in the newsvendor’s order.
Therefore, if for the unique division of induced order z we have x, > 0 for every
good t € Y, then there is a unique maximizing wholesale price vector in the set
WX (z;wy)) N {w' | wh = wy} for supplier Y.

The set of wholesale price vectors {w’ | min {3,y ¢;(w),k} = k} can, also,
be partitioned according to the retailer’s allocation (vector) g of capacity k (where

> ten @ = k), as shown in Theorem 6.5.

THEOREM 6.5. Suppose q € R‘_,I_V' and ) ,.n @ = k. Any wholesale price vector

i the set
Alq) = {w | we =pFy(q) = A+7 - lgoy YEEN, AeR,, y€ R'ﬁ‘} (6.12)

induces the retailer to order the vector q. Furthermore, if a wholesale price vector

w induces the retailer to order the vector q, then w € A(q).

Proof. See Section 6.6.9.
Figure 6-3 illustrates Theorem 6.4 and Theorem 6.5 for the example depicted in
Figure 6-2. Notice, in Figure 6-3, that if the suppliers choose wholesale prices farther
along the ray of asterisks, their allocation stays the same, but they end up being

charged more for their allocated capacity.
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Figure 6-3  Wholesale price vectors that induce a particular capacity charge or capacity allocation.

Operating Regions
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Good 1 out

(=]
1

Good 2's retailer margin, p, — w,

Good 1's retailer margin, p, — w,

Note. The retailer considers two goods (dash & dot), as in Figure 6-2, when ordering and faces the same
capacity, demand distributions, and retail prices. The shaded region denotes the wholesale prices that induce
the retailer to have a zero shadow price for capacity. Whereas, the thickest line denotes the set of wholesale
prices that induce the retailer to have a shadow price of two units for capacity. Also the region above the
dashed ray represents the wholesale prices that induce the retailer to oust the good ‘dash’ from the portfolio
(and order only ‘dot’), whereas, the region below the dotted ray denotes the wholesale prices that induce
the retailer to oust ‘dot’ from the portfolio. The ray denoted by asterisks represents the wholesale prices
that induce the retailer to order (.75 - k, .25 - k).

B 6.4 Analysis for the two-stage game.

In this section we analyze the equilibria for the two stage game. We start by

reformulating the supplier’s best response problem.

6.4.1 Recasting a supplier’s problem & its shadow price for

allocated retail capacity

Consider a supplier Y C N faced with the problem Y -SUPPLIER (wy) in the decision
vector wy when competing with good(s) Y (whose wholesale price vector ws is held
fixed) for a retailer’s capacity k. From the proof of Theorem 6.1, we have that every
wholesale price vector wy is associated with some shadow price, A"(w), for a retailer’s

capacity (where w = (wy,wy)) so that the set of wholesale prices can be partitioned

into equivalence classes (i.e., {W(A)}x>0) indexed by shadow price A for a newsven-
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dor’s capacity (cf. Theorem 6.4). And from Theorem 6.3 and Corollary 6.5, we have
that every positive retailer shadow price for capacity is associated with a unique ag-
gregate capacity allocation/induced order (i.e., ),y ¢:) by the retailer for supplier
Y. Therefore, supplier Y has a simple algorithm for solving Y'-SUPPLIER (wy) in
order to maximize profit: 1) start with an initial aggregate number of units z = 0
to induce the retailer to order, 2) if X"(z;wy) > 0, find the wholesale price vector
in the set W(X"(z;wy)) N {w' | wi = wy} that maximizes profit (which, thereby,
determines the optimal number of units ¢q; of each good t € Y the retailer is induced
to order, such that ), , ¢: = x), otherwise, if \"(z; wy) = 0, find the wholesale price
vector in the set W(0) N{w' | wg; = wy, D ey ¢ (w') = x} that maximizes profit, 3)
keep track of the maximum attainable profit, thus far, and the associated capacity
allocation z and optimal wholesale price vector, 4) increase z and go to step two, if
x < T where Z is an upper bound on the aggregate quantity of goods that supplier
Y would induce the retailer to order. The upper bound Z is formally defined later in

this section (i.e., Corollary 6.7).

Supplier Y’s optimal wholesale price(s) when inducing (aggregate)

order z.

Suppose z € [0,z]. When the c.df. F, has the IGFR property for every good
t € Y, step two of this algorithm can be described by a convex program with linear
constraints in the decision vector gy to induce the retailer to order. In particular,
from Theorem 6.3 and Theorem 6.4, we have that maximizing the objective function
> iey (wi —¢i)qf (w) of the program Y -SUPPLIER (wy) (i.e., equation (6.3)) over the
set of wholesale prices W(AX"(z;wy)) N {w' | w = wy, 3 ,oy ¢f(w') = z} can be
re-expressed as maximizing Y., (piFi(q) — N(X,cy @ wy) — ¢i)@ over the set of
induced order vectors {q | ¢ > 0Vt € Y, 3,.,, ¢ = z}. Therefore, the convex
program with linear constraints in the decision vector gy that solves step two of the

algorithm is:
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Y -SUPPLIER-PRICING-PRIMAL(z,wy):

maximize Z (piFi(a) — X (z;wyp) — i) - 4 (6.13)
i€y

subject to ¢; >0, i€Y

:I:—Zq,-=0.

i€y

When the c.d.f. F; has the IGFR property for each good ¢t € Y, it can be shown
that Y-SUPPLIER-PRICING-PRIMAL (z,wy) has a unique solution (vector), which
we denote by ¢ (z; wy). So that the set of wholesale prices WY (z; wy) that maximize
supplier Y'’s profit when the supplier induces the retailer to order z units in aggregate

and when the other suppliers charge wy is

’

dwof ) W W= peFi(a (zw7)) — N (@50%) + % gy upy=0y VEEY,
we =Wy, Y€ le !
_ (6.14)

Note that every good t € Y that is included in the retailer’s portfolio has a unique
wholesale price.

The dual problem in the decision variables 1,72, - .., y| (the shadow prices for
the nonnegativity constraints) and A (the shadow price for the aggregate induced
order) is:

Y-SUPPLIER-PRICING-DUAL (z,wy):

minimize max (piFi(a) — X (zwy) — @) - @ (6.15)
(geRY T,y =0} Z;

+ > ma+ A (:c - Zq,-)
icY €Y

subject to v% >0, i€Y.

Also, Y-SUPPLIER-PRICING-DUAL (z,wy ) has a unique solution which we denote
by (7 (z;wp), - - -, Yy (@ wp), XY (z; wy)).

Theorem 6.6 formalizes the idea that supplier Y’s shadow price AY (z;wy) de-
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scribes a threshold for the marginal profit of an additional unit of any good in the set
Y (when inducing an aggregate order quantity = and facing a fixed retailer shadow

price A" (z; wy) for capacity).

THEOREM 6.6. Suppose that for every good t € Y, the c.d.f. F; has the IGFR
property. Let Z¥ (z; wy) o {i € Y | ¢ (z;wy) = 0} be the set of products that are
not ordered in supplier Y ’s decision problem when faced with wholesale price vector
wy and inducing retailer aggregate order x. For any wholesale price vector wy and

induced aggregate order z € (0,min {}",.y ¢f, k}], the following conditions hold:

N (z;wy) = piFj (@) (zwy)) - (1— 95 (¢ (@5w9))) —¢; — N (z5wy),  (6.16)
VjeY\Z¥(z;wy),

N (zwp) > pi— ¢ — X (z;09) Vi€ Z¥ (z;wy). (6.17)

Furthermore, X (z;wy) + X' (z;wy) =0 if and only if c = >, ¢f < k. And, the
function XY (z;wy) + N'(z; wy) is strictly decreasing as z € (0,min {},y ¢, k}]

increases.

Proof. See Section 6.6.10.

From Equation (6.16), we have that supplier Y’s shadow price \¥ (z;wy) rep-
resents an upper bound for the supplier’s marginal profit on the z** unit that the
retailer orders (when supplier Y chooses the optimal number of units of each good
y € Y to induce the retailer to order, so that the retailer orders  units in aggre-
gate) and accounts for the marginal cost of the good as well as the marginal cost
for the retailer’s capacity, A" (z; wy). From Theorem 6.6, we have that the function
MY (z; wy) is strictly decreasing in z, because the function A\Y (z; wy) + A" (z; wy) is
strictly decreasing and from Corollary 6.5 we know that A"(z;wy) is nondecreasing,.
Therefore, supplier Y only considers inducing the retailer to order up to some Z units

(in aggregate) where Z is defined in Corollary 6.7.

COROLLARY 6.7. Under the same assumptions as in Theorem 6.6, supplier Y

would never induce the retailer to order more than T units of good(s) Y in aggregate
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where T is defined according to the following conditions. If the conditions

0 <max{p;—ci— X\ (0;wy) | i€Y} and Y (min{qu,k} ;wy) <0,
tey
hold, then Z is the positive value that satisfies the equation \Y (Z;wy) = 0. But, if

the conditions

0<max{pi—ci— A (Q;wy) | i€Y} and0< AY (min{qu,k};wy),

teY

hold, then T equals min {Etey a, k} = k. Finally, if the condition
max{p; —¢; — A" (O;wy) | i€Y} <0,

holds, then T equals zero. Under any of these conditions, T <Y,y G5.

Proof. See Section 6.6.11.
Recall that via equation (6.14), the supplier can map any induced aggregate order
z to the set WY (z; wy) of wholesale prices that should be charged to achieve that
aggregate order. Next, we analyze the optimal aggregate order that the supplier
should induce (and hence the wholesale prices the supplier should charge) when faced

with wholesale price vector wy from competing good(s) Y.

Supplier Y’s optimal induced order z and best response to wy.

Consider a supplier Y C N competing with good(s) Y for a retailer’s capacity k. Sup-
pose w = (wy, wy) and the wholesale price vector wy is held fixed. From Theorem 6.3
and Theorem 6.4, we have that the objective function ), , (w; — ¢;)gf (w) of the pro-
gram Y -SUPPLIER (wy) (i.e., equation (6.3)) can be re-expressed as Y,y (piFi(q:) —
A" (X sey @ wy) —ci)gi- Therefore, as suggested in the beginning of this section, sup-
plier Y’s problem of maximizing profit and deciding the optimal wholesale price vector
w¥ (wy) when solving Y -SUPPLIER (wy) can be recast as the equivalent problem of

deciding upon an aggregate quantity x to induce the retailer to order and then de-
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ciding how to split the aggregate order x among the goods Y. Formally, the program
with linear constraints in the decision quantity z and decision vector gy that solves
Y -SUPPLIER(wy) is:

Y -SUPPLIER-INDUCING-AGGREGATE-ORDER(k, wy):

maximize Z (piE(qi) - (z Qt;w?) - Ca‘) Qi (6.18)

i€y tey

subject to ¢ >0, i€Y

z >0,

x—zqi=01
3%

k—z>0.

Theorem 6.7, below, provides sufficient conditions for Y-SUPPLIER-INDUCING-
AGGREGATE-ORDER(wy) to have a unique solution and, under those conditions,
we denote the optimal aggregate order quantity by z¥(wy) and optimal induced
order vector by g¥ (wy). Therefore, from the proof of Theorem 6.6, we have that the
optimal induced order quantity vector ¢¥ (wy) must equal ¢* (z¥;wy). And, from
equation (6.14), supplier Y’s best response to competing wholesale prices wy is the
set of wholesale prices WY (z¥;wy). Furthermore, when supplier Y is faced with
competing wholesale price vector wy and when it is optimal for supplier Y to induce
the retailer to order every good y € Y (i.e., Z¥ (z¥;wy) = 0), from equation (6.14),
we have that supplier Y’s best response is unique (i.e., the set WY (z¥; wy) has only

one wholesale price vector).

‘THEOREM 6.7. Y-SUPPLIER-INDUCING-AGGREGATE-ORDER (wy) has a unique

solution (z¥ (wy), ¢¥ (wy)) defined implicitly by the conditions

o o) =sup o € 0.0]| ¥ (@) —a- ZED >0k, (o)

wy) = ¢ (¢¥ (wp);wy) | (6.20)
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when T # 0, the retailer is service constrained for good(s) Y, and the cumulative

distribution function for demand of each good y € Y has the IGFR property.

Proof. See Section 6.6.12.

Now we can state the main result of this section.

THEOREM 6.8. Consider a supplierY C N that faces the problem' Y -SUPPLIER (wy)
(when the wholesale price vector wy for its competitors is held fized) and, therefore,
decides upon an optimal set WY (wy) of wholesale price vectors from the hypercube
Iicylct, pi]. Suppose the retailer is service constrained for good(s) Y, and the cumu-
lative distribution function for demand of each good y € Y has the IGFR property.

Then, the solution set W' (wy) is non-empty, convex, and satisfies

Wy (wy) = WY (@¥ (wp);wy) () []lespl- (6:21)

teY

Proof. See Section 6.6.13.

6.4.2 Existence of equilibrium

In Theorem 6.9, we provide sufficient conditions so that the two-stage game described
in Section 6.1.1 has at least one equilibrium (supplier) wholesale price vector, and,

therefore, resulting retailer order vector and shadow price for capacity.

THEOREM 6.9. With more than one supplier (i.e., when s > 2), an equilibrium
wholesale price vector exists when the retailer is service constrained for goods N

and the demand for each good t € N has the IGFR property.

Proof. See Section 6.6.14.

Denote the set of equilibrium wholesale price vectors for the Stackelberg game
(w hen the retailer has a capacity of k units) by Weq(k) = {w | for every supplier Y, wy €
W (wy)}. Furthermore, denote the set of (resulting) equilibrium capacity prices
by A®(k) = &f {A] A= N(w),w € W(k)}. From Theorem 6.9, we know that
the set W®3(k) is non-empty, so that the set A®I(k) is, also, non-empty. There-

fore, two values that allow us to bound the valuation for the retailer’s capacity are
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Amin () def

inf A®9(k) and A\™**(k) & sup A®9(k). But, often times, we can do better,
and give an exact valuation for the retailer’s capacity. In the next section, we describe
an economic assumption that guarantees a unique equilibrium capacity price, so that

the set A®3(k) has exactly one element.

6.4.3 An economic assumption

When suppliers have larger allocations of the newsvendor’s capacity, the newsvendor’s
capacity price is more sensitive to attempts to increase that allocation. Formally, con-
sider s suppliers and two different (aggregate) capacity allocations to those suppliers
(represented by the vectors a = (ay,...,as) and b = (by,...,b,)) induced by two
optimal wholesale price vectors w® and w® (respectively) for those aggregate alloca-
tions (see Section 6.4.1) that cause the newsvendor to allocate his entire capacity
k (e, Y, ,a = kand >;_ b = k). From Theorem 6.3, we have that supplier
competition induces some virtual ‘charge’ for capacity (A} and A}, respectively), paid
to the newsvendor. From Theorem 6.6, we have that the *! supplier (i.e., supplier
Y;) has thresholds A} and )\Z/" for its marginal profit when faced with competing
wholesale price vectors w%,i- and wf’Y:, respectively. Denote the subset of suppliers that
have a larger share of the newsvendor’s capacity under allocation @ when compared

to allocation b by L(a,b) (i.e., formally, L(a,b) & {i € {1,...,s} | a; > b;}).7

ASSUMPTION 6.1. Consider the suppliers L(a,b) that have a higher allocation
under allocation a when compared to allocation b. The marginal increase in the price
of capacity, A"(w®), for a percent increase in the induced order (by each supplier in
L(a,b)) is larger than the marginal increase in the price of capacity, X" (w®), for a
percent increase in the induced order (by each supplier in L(a,b)), i.e.,

5‘/\’” (ai; w—) O™ (by; wl)

i€L(a,b) @ zEL(a,b)

"From the ‘pigeon-hole principle’, we have that the subset, L(a,b), is not empty because the allocation
vectors are not equal.
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Inequality (6.22) can be interpreted as stating the ‘average’ over the capacity price
elasticities of the (aggregate) induced orders is decreasing as the induced orders in-
crease. In particular, inequality (6.22) can be reexpressed as a statement about the
two scaled harmonic means over the capacity price elasticities of the induced orders

(that are larger in allocation a):

1 L(a,b) < L(a,b)

_ - i N
" St (< e (Zort) ) " S ((A”/b) (=) )

(6.23)
Furthermore, note that if Inequality (6.24) between the harmonic means

L(a,b) < L(a,b)

Sicten ((Aa/az) (Za2) ) s (("b/”) (*52)
(6.24)

holds and we also know that A} < A%, then Inequality (6.23) and, therefore, Assump-
tion 6.1 follow.?

In the case of two suppliers with two goods, if the newsvendor is serviced con-

strained for both goods, we can show that Inequality (6.22) is a necessary condition.

6.4.4 Uniqueness of equilibrium shadow price

In Theorem 6.10, we provide sufficient conditions so that the two-stage game described

in Section 6.1.1 has a unique equilibrium shadow price for capacity.

THEOREM 6.10. With one supplier (i.e., when s = 1), any equilibrium wholesale
price vector results in the retailer having a shadow price for capacity of zero units.
Furthermore, with more than one supplier (i.e., when s > 2), if the retailer is service
constrained for goods N, the demand for each goodt € N has the IGFR property,
and Assumption 6.1 holds, then for any two equilibrium wholesale price vectors w

and w' that induce different orders (i.e., ¢" (W) # q"(w')) the induced shadow prices

8S0 that Assumption 6.1 is weaker than Inequality (6.24) when A} < A holds.
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for capacity (\"(@W) and A"(w')) are the same (i.e., there is a unique equilibrium

shadow price for the retailer’s capacity).

Proof. See Section 6.6.15.

When there is more than one supplier (i.e., s > 2), this theorem implies that if
there are two equilibrium wholesale price vectors inducing different allocations of the
retailer’s capacity, then there is a unique equilibrium shadow price which we denote by
A%4. And so, geometrically, the equilibrium wholesale price vectors are a subset of the
set W(A®?) as defined in Theorem 6.4 and depicted in Figure 6-3. In Theorem 6.11,
we consider the scenario when there are two equilibrium wholesale price vectors that

induce the retailer to order the same vector of goods.

THEOREM 6.11. Consider the two-stage game described in Section 6.1.1 with
more than one supplier (i.e., s > 2). Suppose the retailer is service constrained
for goods N, the demand for each good t € N has the IGFR property, and that
there are two equilibrium wholesale price vectors W and w' that induce the same
retailer order (i.e., ¢"(W) = ¢"(w')) but induce shadow prices for capacity satisfying
A (w') < N(w). Denote supplier Y;’s marginal profit for inducing the retailer to
order an extra unit (when the retailer faces wholesale price vector w') by the function

T mpean
my,(w) E X9 | Y g w)ug | - | Y q@)] - % .
i€Y; : i€Y; =Y iey; 4 (W)
Then, we have the following upper bound on the shadow price A" (W) when the retailer

orders from two or more suppliers when facing wholesale price vector w':
M (@) < N (w') +min {my,(w) | j€{1,...,s}, ;NN\ Z(w)) #0}. (6.25)

And, we have the following upper bound on the shadow price \"(W) when the retailer

orders from ezactly one supplier when facing wholesale price vector w':

X' (D) < A" (w). (6.26)
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Proof. See Section 6.6.16.

Therefore, under the same assumptions as in Theorem 6.10, Theorem 6.11 (in
conjunction with Theorem 6.10) implies there are three possible scenarios in an equi-
librium setting: either there is a unique equilibrium shadow price (with multiple
equilibrium orders), or there is a unique equilibrium order (with multiple equilib-
rium shadow prices), or there is a unique equilibrium order and shadow price. These
two theorems rule out the possibility of having two different equilibrium wholesale
price vectors, w and w’, that simultaneously induce different retailer orders and dif-
ferent retailer shadow prices for capacity (i.e., such that both ¢"(@) # ¢"(w') and
(@) # A(w') hold). |

B 6.5 Supplier collusion.

Theorem 6.12 formalizes the idea that if there are more than two suppliers and
they collude by making pricing decisions as if they were one firm, then they’d make
more profit in aggregate than they would from any equilibrium that induces a positive
equilibrium retailer shadow price for capacity. Consequently, there exists a division
of the collusion profit such that every supplier would receive more profit than they

would from the equilibrium wholesale price that induces a positive shadow price.

THEOREM 6.12. Consider the two-stage game described in Section 6.1.1 with
more than one supplier (i.e., s > 2). Suppose there is an equilibrium wholesale
price vector w' that induces a positive shadow price \"(w') > 0. If the suppliers
collude on pricing by setting prices as if they were one firm, then the aggregate
supplier profit would be larger than the aggregate supplier profit from price vector

w'.

Proof. See Section 6.6.17.
Many interesting questions remain. For example, does the supply chain’s profits
increase or decrease when the suppliers collude? We know that the retailer will have
a shadow price for capacity of zero units when the suppliers collude, but will the

retailer also see higher wholesale prices for every good? We leave these and other
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questions for future work.

B 6.6 Proofs

In order to not disrupt the flow of presentation, the proofs for our results in this

chapter are contained here.

6.6.1 Proof: The shadow price for capacity and the goods

ordered.

Proof of Theorem 6.1. First, we write the Lagrangian £(g, 71, .. .,¥n,A) for RETAILER-
PRIMAL(kw):
n n n
LMy A) = ) (piE[min(gi, Di)] — wigs) + Y 7% + A (k -3 Qi) -
=1

i=1 i=1

Note that m.(g) is strictly concave for ¢ € [0,{;) x ---[0,1,) because each c.d.f.
F; is strictly increasing over [0,[;). Because the feasible set is convex and compact,
RETAILER-PRIMAL(k,w) has a unique solution.

The Karush-Kuhn-Tucker conditions for the retailer’s decision problem, RETAILER-
PRIMAL(k,w), are:

pF(@) —we+n—A=0, t=1,...,n (6.27)

QtZO, t=1,>n;

k‘"i‘]t >0
t=1

Yt =0, t= 1,...,n; (628)

A20, >0, t=1,...,n.
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Because of the concavity of the objective function and the fact that the Slater condi-
tion is satisfied, the Karush-Kuhn-Tucker conditions are both necessary and sufficient
conditions for any primal optimal vector ¢ and dual optimal vector (v, A). As a re-
sult, since the primal problem has a unique solution, it can be shown that the dual
problem also has a unique solution, using these conditions. Let (¢"(w),~y"(w), A"(w))
denote the unique vector that satisfies the Karush-Kuhn-Tucker conditions.

When j € N\ Z(w), from equation (6.28) we have 7}(w) = 0. Therefore, from
equation (6.27) we have \"(w) = p;F} (q;(w)) — wj. When ¢ € Z(w), from equa-
tion (6.27), we have \"(w) = p; — w; + 7] (w) > p; — w;. Thus, the conditions in
equations (6.6) and (6.7) hold.

Furthermore, if 7, ¢f(w) < k, we have ¢"(w) = ¢*(w). Therefore, when j €
N\ Z(w), from equation (6.27) we have \"(w) = p; F (¢}(w)) — w; =0.

On the other hand, assume A" (w) = 0. When j € N\Z(w), we have p; F; (¢} (w)) -
w; = 0 from equation (6.27). Therefore, ¢f(w) = ¢j(w). When i € Z(w), from
equation (6.27), we have p; — w; < p; — w; + ] (w) = 0. Thus, ¢/ (w) = 0 = ¢f(w).
And so we have Y, gf(w) = ¢ gf(w) < k. O

6.6.2 Proof: The shadow price for capacity as the minimum

of some set.

Proof of Corollary 6.1. Let A def {\ | piFi(g) —w, < A Vt € N, S =
min {}_;_; ¢;(w),k}, ¢ € R"}.

The vector ¢"(w) € R7 satisfies ) . ; ¢f (w) =min {3, , ¢} (w), k}. Furthermore,
from equation (6.27), we have A" (w) = pFy(q} (w)) — w; + 77 (w) > pFy(q} (w)) — wy
when t = 1,...,n. Therefore, we have A" (w) € A.

Assume there exists a ' < A"(w) such that X' € A. Then there must exist a
vector ¢ € R7 such that ), ¢, = min{) ¢ ¢ (w),k} and pFi(q)) — w, < X
when t = 1,...,n. When j € N\ Z(w), from equation (6.27) we have \"(w) =
p;F; (gj(w)) — w;. Since X' < \"(w), when j € N \ Z(w), we have p;F;(q}) — w; <
p;iF; (¢f(w)) — w;, implying Fj(q}) < Fj (qf(w)) and, thus, ¢j > gj(w). There-
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fore, 3 ienmzw) 6 > Ljemzw) G (W) = Dien 6 (w) = min {377, ¢ (w), k}, imply-
ing >b ¢ > min{d ;- ¢;(w),k}. But this is a contradiction. Thus, A" (w) =

minl\eA )\. D

6.6.3 Proof: \"(w) is nondecreasing as w; decreases, and the

increase is bounded.

Proof of Theorem 6.2. Let A(w) def N pFi(g)—w <X VEEN, Yo ¢ =
min {1, ¢;(w),k}, ¢ € R}}. Since w) < wy and w’ ; = w_q4, we have gj(w) <
q;(w') and ¢ (w) = ¢}(w') for any other good 0 # d. Therefore, min {3}, gf (w), k} <
min {3y ; g7 (w'), k}. Hmin {37, ¢f(w), k} = k, then A(w’) C A(w) so that we have
min A(w) < min A(w'). And, from Corollary 6.1, we have A"(w) < A"(w’). Other-
wise, if min {3 ;. ; ¢;(w), k} < k, then from Theorem 6.1 we have A"(w) = 0 so that
A"(w) < A"(w') because the shadow prices are nonnegative.

Next, we show that A"(w) < A"(w’) holds if and only if the conditions d € N\ Z(w')
and > ;_; ¢;(w') > k hold by proving the statement: A"(w) = A"(w’) holds if and
only if d € Z(w') or y_;_, ¢;(w’) < k holds.

First, we prove the direction: if d € Z(w') or Y i, ¢;(w) < k holds, then
N'(w) = A"(w') holds. If 7 g} (w') < k holds, then from Theorem 6.1 we have
A"(w') = 0. Since A"(w) < A"(w’) and the shadow prices are nonnegative, we have
X' (w) = A"(w'). When d € Z(w') and Y7, ¢f(w’) > k hold, assume X" (w) < A"(w’)
holds, instead. Then, for any j € N\ Z(w), we have ¢}(w') < ¢}(w) when either
j € N\ Z(w') (from equation (6.6)) or j € Z(w'). Since A"(w) < A" (w'), from
equation (6.7), we have Z(w) C Z(w') so that N \ Z(w') C N \ Z(w). There-
fore, > iemze) G (W) < Yjemza @ (w) < k. From equation (6.29), we have
A"(w') = 0, implying Y ;. ; ¢f(w') < k (by Theorem 6.1). But this is a contradiction
since Yy, ¢f (w') > k holds. Thus, A\"(w) = A"(v').

Next, we show that \"(w) = X"(w’) implies d € Z(w') or > _;_; ¢;(w') < k holds.
Assumed € N\Z(w')and )", ; g;(w’) > k hold, instead. Therefore, we have A" (w) =
A"(w') > 0 from Theorem 6.1. And equation (6.29) implies Y.y 7z @5 (w) = k. If
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d € N\Z(w), then gj(w’) > ¢j(w) from equation (6.6) since w}; < wy. If d € Z(w), we
also have ¢j(w') > ¢j(w) = 0. Furthermore, equation (6.7) implies that for any good
i#d: 1€ Z(w)if and only if i € Z(w) (because w; = w] and A"(w) = A"(w')). Thus,
the sets Z(w) and Z(w') are identical unless d € Z(w). Therefore, N\ Z(w') = (N '\
Z(w))U{d}. And for any good j # d such that j € N\ Z(w') we have ¢j(w') = ¢} (w)
(from equation (6.6)). Therefore, 3. an 2wy 4G(W') > D jem zaw) 6 (w) = k. But this
is a contradiction. Thus, d € Z(w') or Y .-, ¢; (w’) < k holds.

Next, we prove inequality (6.9) holds. If A"(w) = A"(w'), inequality (6.9) fol-
lows. If M(w) < M (w'), then d € N\ Z(w') and Y, ¢f(w’) > k hold, as
proven. Therefore, we have A"(w') > 0 from Theorem 6.1 and equation (6.29) implies
> iemzw) 3 (w') = k. Assume the inequality A"(w’) — A"(w) > wq — wg holds, in-
stead. Therefore, rearranging terms, A" (w’) + wj; > A" (w) + wq holds. Corollary 6.2,
then, implies ¢j(w') < ¢j(w) and that for any j € N \ Z(w) such j # d, we have
gj(w') < gj(w) (because A"(w') +w} > A"(w) + w; holds). The inequalities gj(w') <
¢j(w) and A"(w) < A"(w') imply Z(w) C Z(w') (from equation (6.7)). Therefore,
N\Z(w') C N\ Z(w). And we have k = 3.\ 700 G (W) < Xjem zw) €5 (w)- But
this is a contradiction. Thus, inequality (6.9) follows.

If the retailer orders k units of good d under w and w/, then, from equation (6.6),
we have that A"(w') + w) = A"(w) + wqg holds. If A"(w') + w; = A"(w) + wy holds,
then, from Corollary 6.2, we have that ¢j(w’) = ¢j(w). Furthermore, since w} < wy,
we have A"(w) < A"(w'). Therefore, as proven, we have that good d is included in
the retailer’s order under w’ (and thus w) and that the capacity constraint is binding
for the retailer under w'. From Theorem 6.1, we have A" (w’) > 0 and equation (6.29)
implies } ;e n z(wr) 95 (w') = k. Assume the inequality gj(w’) < k holds, instead of
the equality ¢fj(w’) = k. Then, there exists at least one other good 0 € N \ Z(w'),
where 0 # d. Good d is included in the retailer’s order under both w and w’, and
A"(w) < A"(w'), therefore, we have Z(w) C Z(w') (from equation (6.7)), implying
N\ Z(w') € N\ Z(w). And for any good j # d € N \-Z(w), from Corollary 6.2,
we have ¢} (w') < ¢} (w) because A"(w) +w; < A"(w') +wj holds. Therefore, we have

k=2 iemzo) GW) < 2jemzw) G(w). But this is a contradiction. Thus, the
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equality ¢j(w’) = k follows.
g

6.6.4 Proof: The effect of a price drop on the retailer’s

order.

Proof of Corollary 6.4. From Theorem 6.2, we have A"(w) < A"(w'). Since w, =
w,, we have X" (w) + w, < X" (w') + w),. The inequality ¢} (w') < ¢f(w), then, follows
from Corollary 6.2. Furthermore, from inequality (6.9), we have A"(w') + w} <
A" (w) + wy. Therefore, from Corollary 6.2, we have ¢j(w) < gj(w').

First, we show condition (b) implies condition (a). If ¢(w) < k, then, from The-
orem 6.2, we have the strict inequality A"(w’) + wj < A"(w) + wq. Since the retailer
orders good d under w’, from Corollary 6.2, we have max {\"(w') + w}, pa} < pa.
Therefore, max {\"(w') + wj, ps} < max{A\"(w)+ wy,pa} holds. And, since the
c.df. Fy is strictly increasing over [0,l;), we have ¢j(w) < ¢j(w’) (from Corol-
lary 6.2). Furthermore, condition (b) and Theorem 6.2 imply A"(w) < A"(w'). Since
w,, = w,, we have X (w) + w, < X' (w') +w,. If o € N\ Z(w), then, from Corol-
lary 6.2, we have max {\"(w) + wo, Do} < P,. Therefore, max {A\"(w) + wo, Po} <
max {\"(w') + w), po}. And, from Corollary 6.2, we have ¢/ (w’) < ¢(w) because the
c.d.f. F, is strictly increasing over [0, 1,).

Next, we show condition (a) implies condition (b). Assumed € Z(w')or ) ,_, g;(w') <
k holds, instead. From Theorem 6.2, we have A" (w) = A"(w’). Therefore, for any good
0 # d, we have A"(w) +w, = A"(w') +w/, because w, = w),. From Corollary 6.2, then,
we have ¢} (w) = ¢}(w'). But this contradicts condition (a) when o € N \ Z(w). It
can be shown that the set NV \ Z(w) includes some good o # d when Y ., ¢} (w') < k
holds. When Y ¢, gf(w’) > k and d € Z(w') hold, we have ¢(w) = ¢5(w') = 0
because ¢j(w) < ¢j(w’) holds and ¢j(w) must be nonnegative. But this contradicts
condition (a) since gj(w) < k holds, yet ¢jj(w) = ¢j(w'). Thus, condition (b) holds.

O
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6.6.5 Proof: A supplier effects the price for capacity via its

induced allocation.

Proof of Theorem 6.3. Since the wholesale price vector w induces the retailer to
order z units of goods from supplier Y, we have that when the retailer solves the
convex program RETAILER-PRIMAL(k,w) in the decision vector ¢, the optimal
order quantity vector ¢"(w) is also the unique solution to the following convex program

in the decision vector g:

RETAILER-WITH-Y-GUARANTEE (k,z,w):

n

maximize }: (0 E[Si(@:)] — wigi) (6.30)

i=1
subjectto ¢ >0, ¢=1,...,n

Zqz‘zﬂf

i€y

k—i%’ > 0.
i=1

Therefore, since the objective function in (6.30) is separable into the sum of two

independent expressions,

n

Z( E[Si(q:)] — wig) = Z (PiE[Si(@:)] — wigs) + Z (p:iE[Si(@:)] — wigi), (6.31)

i=1 ey €Y

the order quantity vector q%(w) is the solution to the following convex program in

the decision vector g:

RETAILER-RESTRICTED-TO-Y -PRIMAL (k,x,wy):

maximize Z(sz[Sz(qz)] — w;q;) ‘ (6.32)

icY
subject to ¢ >0, i €Y

(k—f)_ZQiZO»

i€y
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The dual problem in the decision variables vy (the shadow price vector for the
nonnegativity constraints) and A (the shadow price for the capacity constraint) is:

RETAILER-RESTRICTED-TO-Y-DUAL(k,z,wy):

minimize max Z (2 E[Si(@:)] — wigs) + Z Yigi + A ((k —z)— Z Qi)

{oeR Y k-Tyey @020} i 7 i€y i€¥
(6.33)
subject to % >0, i€Y
A>0.

Note that RETAILER-RESTRICTED-TO-Y -DUAL (k,z,wy) is identical to RETAILER-
DUAL(k—z,wy), when N =Y. Therefore, we have from Theorem 6.1 that RETAILER-
RESTRICTED-TO-Y -DUAL(k,z,wy) has a unique solution which we denote by

(",/I’ZY| (z; wy), A"(z; wy)). Furthermore, from Corollary 6.1 we have that

A’ (z; wy) = min {)\ | peFy(q) —w, < XA VEEY, th = min {qu(w),k -z, q€ ]le‘
teY teY

(6.34)
Since = < k, there exists at least one good j € Y such that q;-(w) > (. Since the
vector gi-(w) is the solution to RETAILER-RESTRICTED- TO-Y -PRIMAL (k,x,wy),
from Equation (6.6) in Theorem 6.1, we have that

X (z; wy) = p;iFj (g5 (w)) — wj. (6.35)

Since the vector ¢"(w) is the solution to RETAILER-PRIMAL(k,w), from Equa-
tion (6.6) in Theorem 6.1, we also have that

X (w) = ;5 (g5 (w)) — wy. (6.36)

Therefore, from Equations (6.35) and (6.36), we have that X" (w) = X (z; wy).
Next, we prove the partial converse. Denote the solution to RETAILER-RESTRICTED-
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T0-Y -PRIMAL(k,z,wy) by the vector ¢(z;wy). From Equation (6.6) in Theo-

rem 6.1, we have that for every good j € Y such that q; (z;wy) >0,
N (z; wy) = p;F; (45 (z;wp)) — w;. (6.37)

Furthermore, from Equation (6.6), we also have that for every good j € N such that
g;(w) >0,
X (w) = p;F; (¢f(w)) — w;. (6.38)

Therefore, since X" (w) = A"(z; wy), from Equations (6.37) and (6.38), we have that

q;(w) = g;(z; wy) for every j € Y, implying that

> Gw) =) _di(zuy) (6:39)
j€Y jey
holds. Since A"(z; wy) > 0, from Theorem 6.1 it follows that .y ¢} (z; wy) = k—=z.
So that from Equation (6.39), we can conclude that .y ¢j(w) = k — z. Since
A"(w) > 0, from Theorem 6.1 we also have that ),y ¢j(w) = k. Therefore, since

ZjeN q]r'(w) =247 & (W) + Xsey gF (w), We have Zjey q; (w)=z. O

6.6.6 Proof: A newsvendor’s price for capacity is continu-

ous and increasing.

Proof of Corollary 6.5. Suppose 0 < k — >, . q;(w). Then, there exists an z
that satisfies 0 <z < k — ),y ¢;(w). For any such z, we have ), v ¢} (w) < k —
z. Therefore, since RETAILER-RESTRICTED-TO-Y -DUAL (k,x,wy) is identical
to RETAILER-DUAL(k — z,wy), when N = Y, we have from Theorem 6.1 that
X' (z;wy) = 0 when z satisfles 0 < z < k — ), v g7 (w).

Suppose that z; and z, satisfy max {k — > 7 & (W), 0} < 21 < 33 < k. We show
that A"(z1; wy) < N (zg; wy). Assume that A"(ze; wy) < X (z); wy) holds, instead.
Denote the solution to RETAILER-RESTRICTED-TO-Y -PRIMAL (k,z;,wy) by

the vector ¢f-(z;;wy) for i = 1,2. From Equation (6.6) in Theorem 6.1, we have
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that for every good j € Y such that q; (zs; wy) > 0,
N (zi; wy) = piF; (q;(xz,wy)) — wj, (6.40)

for i = 1,2. Because of our assumption on the cumulative distribution functions and

X (zg; wy) < X' (z1; wy), from equation (6.40), we have

> gz wp) < Y g (za; wy). (6.41)
j€¥Y €Y
Since k — 23 < ),y ¢;(w), from Theorem 6.1, we have 0 < A"(z3;wy), imply-
ing that 0 < A"(z1;wy) holds too. Therefore both 3.5 g} (22; wy) = k — 22 and
v 45 (T1;wy) = k—=1 hold. But then equation (6.41) implies that k—z; < k—z2
so that x5 < z; holds. But this is a contradiction. Thus, the inequality A" (z1; wy) <
A" (z2; wy) follows.

Next, we prove A"(z;wy) is continuous when z € [0,k). Since A"(z;wy) = 0
when z satisfies 0 < z < k — ), .y qf(w), we need to show that N (z; wy) is
continuous when z satisfies max{k — iy q{‘(w),O} < z < k. Suppose that z
satisfies max {k — )_,.y ¢} (w),0} < z < k. Denote the inverse of A"(z;wy) by
A7 [0, max,cpwy — ) — [max {k— Y,y q;(w),0},k). (Note this exists since
A" is strictly increasing and onto the set [O,.maxtey wy — ¢;)). Pick any number
€ > 0. Consider the neighborhoods around x defined by the radiuses 6, oy
A7 (max {A"(z; wy) — €,0}) > 0and 6; = A~} (min {\"(z; wy) + ¢, maX,.y Wy — Ct})—
x > 0. It can be shown that both é; and d; can not be zero. If either §; or d, is zero,
consider the radius § & max {61,802} > 0, otherwise we set § & min {61,082} > 0.

Denote the 6 neighborhood around a number z by Nj(z). It can be shown that if
#’ € Ns(z) N [max {k — Y5 g7 (w),0} , k), then X" (z';wy) € NN (z;wy)). O

6.6.7 Proof: The marginal price for capacity is increasing.

Proof of Corollary 6.6. From Corollary 6.5, when z satisfies 0 < z < k=) _,.¢ ¢} (w)

we have E;%w—?—) = 0 and when z satisfies 0 < z < k — ), .y ¢/ (w) we have
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O (:t wyr)
8z = 0.

Denote the solution to RETAILER-RESTRICTED-TO-Y -PRIMAL (k,x,wy) by
the vector ¢i(z;wy). Let Z(k,z,wy) =4 {i | ¢f(z;wy) = 0} C Y be the set of
products that are not ordered in the retailer’s decision problem. Suppose z satisfies
max {k — Y,y ¢/ (w),0} < z < k. Observe that the equation Y, v ¢! (z; wy) =
k — z holds. Therefore, we can express z via the equation x = k — ), .y ¢} (z; wy).

Denote the inverse of A" (z; wy) by z"(A; wy). Since A" (z; wy) is strictly increasing and

continuous, when <'§>‘+ ?) exists it must be the case that a—'\;%wﬂ (air(%\rw-‘_’—)-)

where the equations A" (z; wy) = A and z"(A; wy) = £ hold. Furthermore,

oz (\; wy) 0 .
B = o | Fm L d@iuy)

teY

_ Ok 0q} (z; wy)
ANt Z ot

teY

1
== X yraEe) (6.42)

teY\Z (k,z,wy)

1
= 2 pe - fi (gf (z; wy)) (643)

teY\Z(k,z,wy)

(Equation 6.42 follows from Theorem 6.1 because from Equation (6.6) we have that
for every good j € Y such that q;(zs; wy) > 0, the equation

N (z;wy) = (qJ (z; w—)) — wj,

-1
holds.) Therefore, we have that M—Y_) (ZteY\ Hkowy) m) when z
satisfies max {k — 3, .y g7 (w),0} <z < k.

Suppose = satisfies max {k Yoy @ (w O} < z < k. Consider the retailer’s
problem RETAILER-RESTRICTED-TO-Y -PRIMAL(k,z,wy). Let A(k,z,wy) &
{i € Z(k,z,wy) | \(z;wy) = p; — w;} C Y be the set of products that were almost
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ordered by retailer. Then, we have

oz (A, wy 0 ,
éA_ ) _ e (k—th(x;'w?))

=~ > - 1 (6.44)

: P
AR\ 2z uy) fi (g (z; wy))

1
N 2 pe - 12 (@ (z; wy))

teAkzwy)U(Y\Z(k.zwy))

- ¥ ! Y — (6w

. T . R
teY\Z(k,z,wy) Pi- fi (@i (;wy) teA(bmwy) Pt £(0)

(Equation 6.44 follows from Theorem 6.1 because from Equation (6.6) we have that
for every good j € A(k,z,wy) U (Y \ Z(k, z, wy)), the equation

X (z;wy) = piFy (4] (25 wy)) — wj, (6.46)

holds.) Therefore, we have that

-1

ON (z; wy) — Z 1 (6.47)

9z~ . T(z; wy
T tGA(k’x’wV)U(V\Z(k,x,w?)) Dt ft (qt ( y))

when z satisfies max {k — 3,y ¢} (w),0} <z < k.

Suppose A" (z; wy) > 0 and X (z; wy) # p;—w; for any i € Y. From Corollary 6.5,
we have that z satisfies max {k — Y,y ¢} (w),0} < z < k. And from the definition
of A(k,z,wy) we have that A(k,a:,w-f) = {). Therefore, from Equatlons (6.43) and

From Corollary 6.5, we have A\"(z;wy) is continuous at z, 1mply1ng that z"(A; wy)
is continuous at A (where the equations A"(z;wy) = X and z"(A\;wy) = z hold).

Therefore, from equation (6.46), we have that ¢ (z"(\;wy);wy) is continuous at

. " (Awy) 1 . .
A. Since TL > €P\Zk 2p) ool ) and the p.d.f. f; is continuous for
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L3

every good t € Y, we have that E%i—‘i)— is continuous at A since the set of goods

Y\ Z(k, z, wy) do not change for small changes in A. Therefore, B—Ar—(%wﬁ is continuous
at x.

Suppose z satisfies the equation max {k — Y,y ¢} (w),0} < z < k and the re-
tailer is service constrained for good(s) Y. From equation (6.46), we have that for ev-
ery good t € Y \ Z(k, z, wy), the order quantity ¢f (2" ()\; wy); wy) is strictly decreas-

ing in A. Since the retailer is service constrained for good ¢, we have f; (¢} (2" (X; wy); wy))

oz (hwy) oz" (Awy)
o and —5=

X. So that we have 6”;:;"'2) and ax;:T ) are strictly increasing in z. [J

is strictly increasing in A. Therefore, are strictly decreasing in

6.6.8 Proof: Partitioning the set of wholesale prices by ‘ca-

pacity charge’.

Proof of Theorem 6.4. Suppose A > 0. Consider a wholesale price vector w from

the set

def ) W wt=ptFt(Qt)'—)\+’)’t'1{q,_—.o} Vte N, q,'yele_vl,

W(r)
EteN g = min {(ZteN q;“(w)) - 1oa=o0} + k- Liasoy k}

. (6.48)

For this vector w there exist vectors ¢ and -y that satisfy the conditions in (6.48)
which guarantee w’s membership in the set W(A). From the proof of Theorem 6.1,
we have that The Karush-Kuhn-Tucker conditions for the retailer’s decision problem,

RETAILER-PRIMAL(k,w), are:

ptFt((’]})—wt+'37t—X=0, t=1,...,n; (6.49)

FG=0, t=1,...,m; (6.50)
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p) (k - i@) =0, (6.51)

Because of the concavity of the objective function and the fact that the Slater condi-
tion is satisfied, the Karush-Kuhn-Tucker conditions are both necessary and sufficient

conditions for any primal optimal vector q and dual optimal vector (¥, A). Consider

a particular value for g, 7, and X In particular, suppose we set:

’q\z q,
:Y\ = (71 * 1{411=0}, ceeyTn 1{qn=0}),
X=A

It can be shown that these values for g, 7, and p) satisfy the Karush-Kuhn-Tucker
conditions so that A"(w) = X=A\ (There are two main steps in seeing this. First,
consider the cases A = 0 and A > 0 separately. Then, for each of those cases, confirm
that the equations (6.49), (6.50), and (6.51) are satisfied for these values g, 7, X when
the wholesale price for good t is w; = pFi(g:) — X + V¢ - 1{g=0}-) Therefore, the
wholesale price vector w induces the retailer to have shadow price A for the capacity
constraint k, i.e., A"(w) = A.

Next, we prove the converse. Suppose a wholesale price vector w induces retailer
shadow price X for capacity k, i.e., X'(w) = X. Therefore, there exist vectors q and
~ that along with X and wholesale price vector w satisfy the Karush-Kuhn-Tucker
conditions. Suppose we set: ¢ = ¢, v =7, and A = ). It can be shown that these
values for g, v, and X enable w’s membership in W(A) using the conditions in (6.48).

Therefore, w € W(A) = W(}). O
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6.6.9 Proof: Partitioning the ‘binding’ wholesale prices by

‘induced allocation’.

Proof of Theorem 6.5. Suppose we have an order quantity vector q € RLI_V ! such
that the condition ),y ¢: = k holds. Consider a wholesale price vector w from the

set
A@) ¥ {w|w =pFi@) - A+ % 1g-g HEN, AeRy, yeRY}. (652)

For this vector w there exists a scalar A and a vector « that satisfy the conditions
in (6.52), guaranteeing w’s membership in the set A(g). The Karush-Kuhn-Tucker
conditions for the retailer’s decision problem, RETAILER-PRIMAL(k,w), written in
the proof of Theorem 6.4, are both necessary and sufficient conditions for any primal
optimal vector g and dual optimal vector (7, X) Consider a particular value for q, 7,

and X. In particular, suppose we set:

7=gq,
;7\ = (71 ' 1{'11=0}, ceeyInt 1{qn=0})';
2=\

It can be shown that these values for g, 7, and ) satisfy the Karush-Kuhn-Tucker
conditions so that ¢"(w) = § = ¢. (To see this: verify that the equations (6.49),
(6.50), and (6.51) are satisfied for these values g, 7, X when the wholesale price for
good t is w; = pFi(q) — X+ - 1{g=0}-) Therefore, the wholesale price vector w
induces the retailer to order according to the vector g, i.e., ¢"(w) = q.

Next, we prove the converse. Suppose a wholesale price vector w induces retailer
to order according to the vector g, i.e., ¢"(w) = §. Therefore, there exists a vector
and a scalar \ that along with g and the wholesale price vector w satisfy the Karush-
Kuhn-Tucker conditions. Suppose we set: ¢ =7, vy =7, and A = X. It can be shown

that these values for g, v, and A enable w’s membership in .A(g) using the conditions

in (6.52). Therefore, w € A(q) = A(g). O
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6.6.10 Proof: The shadow price for supplier Y’s aggregate

induced order.

Proof of Theorem 6.6. Recall the definition g;(z) e f (z)/Fi(z) of the gener-
alized failure rate function. For each good i € Y, we have that

EP ((piFi(@) — X" (z;wy) — &) - @) = piFi(@) - (1 = gil@)) — A" (z;wp) — ci.

Each c.d.f. F; is strictly increasing over [0, [;], continuously differentiable, and has the
IGFR property, so that p; Fi(g;)-(1—gi(g:)) is continuous, nonnegative, and strictly de-
creasing in g; while g;(¢;) < 1 (and negative when g¢;(g;) > 1). For good i € Y, we de-
fine the order quantity g; in terms of gf, the equilibrium induced order for good i in the
unconstrained setting (see equation (6.4)), as follows: g; & min {¢, k}. From equa-
tion (6.4), observe that g;(¢f) < 1. Then, we have that (p;Fi(g;) — A" (z;wy) — i) - ;
is strictly concave for ¢; € [0, @;]. Therefore, the objective function for Y -SUPPLIER-
PRICING-PRIMAL (xz,wy) is strictly concave for ¢y € {q € R'f ! | 0 < g <@}
which is a superset of the feasible set for Y -SUPPLIER-PRICING-PRIMAL (z,wy)
(since z € (0,min {} .y 45, k}]). Because the feasible set is convex and compact,

Y-SUPPLIER-PRICING-PRIMAL (z,wy) has a unique solution.
Consider the Lagrangian £(gy, 71, - - -, Yy}, A) for Y-SUPPLIER-PRICING-PRIMAL (z,wy):

L{qy, Y15 Nyp A) = Z (pipi(Qi) = X (z;wy) — Ci) 'Qi+2’)’i(b+)\ (w - Z%) .

1194 i€y ieYy

The Karush-Kuhn-Tucker conditions for supplier Y’s decision problem, Y -SUPPLIER-
PRICING-PRIMAL (z,wy), are:

peFi(a)(1— gi(@)) = N (mwy) ~a+1—A=0, t€Y; (6.53)

x—ZQt=O§

tey
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1q =0, t€Y; (6.54)
Ve 2 Oa tey.

Since z # 0, it can be shown that a constraint qualification condition on a particular
matrix (each row of which is the gradient of an effective constraint at the optimal
order vector) is satisfied. Briefly, the constraint qualification condition requires that
the matrix have rank equal to the number of effective constraints. See Sundaram
(1996, Chap. 6, Thm 6.10, p.165) for a detailed description of the constraint quali-
fication condition. Therefore, the Karush-Kuhn-Tucker conditions are necessary for
any primal optimal vector gy. Furthermore, because of the concavity of the objec-
tive function and the functions that define the constraints, the Karush-Kuhn-Tucker
conditions are sufficient conditions for any primal optimal vector gy.

As a result, since the primal problem has a unique solution, it can be shown that

the dual problem has a unique solution using these conditions. Let

((q,-y (#;09)),0y » (W (@5 05)) 10y ,)\Y(x;wv))

denote the unique vector that satisfies the Karush-Kuhn-Tucker conditions.
When j € Y\ Z¥ (z; wy), from equation (6.54) we have v} (z; wy) = 0. Therefore,

from equation (6.53) we have
N (z;wp) = piFs (¢ (zwy) - (1~ 95 (¢ (z309)) — ¢ = X (z30y).
When i € Z¥ (z; wy), from equation (6.53), we have
N (zwy) =pi— & = X (zwy) + % (@ wy) 2 pi— 6 = X (z3wy).-

Thus, the conditions in equations (6.16) and (6.17) hold.

Furthermore, if = Y,y ¢f < k, we have ¢ (z; wy) = ¢f for every good i € Y.
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Therefore, when j € Y \ ZY(z; wy), from equation (6.53) we have
N (z;wy) + N (@ wy) = p;Fy(g5) - (1 - 95(g5)) —¢; =0

On the other hand, assume \Y (z; wy) + A" (z; wy) = 0 with an induced aggregate

order z € (0,min {}",.y ¢f, k}]. When j € Y \ Z¥ (z; wy), we have

piF; (¢ (z;wy)) - (1 — g5 (¢f (mwy))) —¢; =0

from equation (6.53). Therefore, ¢} (z;wy) = ¢ from equation (6.4). Assume

Z¥ (z; wy) is not empty. When 7 € Z(w), from equation (6.53), we have
pi — ¢ <pi — ¢+ (z;wy) =0.

This is a contradiction because ¢; < p;. Therefore, the set ZY (z;wy) is empty
when the condition AY (z; wy) + A"(z;wy) = 0 holds. And so we have >, ¢f =
Yy @ (Twy) =z < k.

Suppose that z; and z, satisfy 0 < x; < 2o < min{ztey qf,k}. We show
that AY (zo; wy) + A" (z2; wy) < AY (z1;wy) + A" (21; wy). Assume that A (z1; wy) +
N (z1;wy) < MY (29; wy) + A" (z2; wy) holds, instead. From Equation (6.16) in The-

orem 6.6, we have that for every good j € Y such that q}/ (zi; wy) >0,
N (2 wy) + N (2 wy) = piFj (4f (ziswp)) - (1 - g5 (¢ (50p))) —¢j, (6:55)

for ¢ = 1, 2. Because of our assumption on the cumulative distribution functions and
N (z1;wy) + X (z1;wy) < AY (29;wy) + X (z0; wy), from equation (6.55), we have

g} (z2;wy) < qf (z1;wy) for every good j € Y. So that

z2=)_qf (@xwy) < Y qf (z1;wy) = 1. (6.56)
JjEY jeYy

But this is a contradiction because z; < z3 holds. Thus, the inequality AY (z2; wy) +
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A (zo;wy) < AY(z1;wy) + A"(z1; wy) follows. And so we have that the function
XY (z;wy) + N(z;wy) is strictly decreasing as z € (0,min {}_,.y ¢, k}] increases.

O

6.6.11 Proof: Any induced aggregate order above Z is not

optimal.

Proof of Corollary 6.7. Suppose that for every good t € Y, the c.d.f. F; has the
IGFR property. Assume that the conditions

A (min {Z a;, k} ;wy) <0, (6.57)

tey
0<max{p;—ci— A" (O;wy) | i €Y}, (6.58)

hold. From Corollary 6.5, we know \"(z;wy) is continuous at z = 0. Further-
more, the cumulative distribution functions are continuously differentiable. There-
fore, from equation (6.58), we have that there exists some small positive value § <

min {}",.y ¢, k} such that the condition
0 < max {p;F;(8) - (1 — gi(8)) —c; = A" (&;wy) | i €Y}

holds. And so, from Theorem 6.6, it follows that there exists a small positive value
& < 6 such that XY (Z; wy) > 0. Using a technique similar to our proof that \"(z; wy)
is continuous (i.e., Corollary 6.5), it can be shown that AY (z;wy) is continuous
for z € (0,min{Y ., a,k}].- And from Theorem 6.6, it follows that AY (z;wy)
is strictly decreasing because we know that A"(z;wy) is nondecreasing from Corol-
lary 6.5. Therefore, from equation (6.57), we have that there exists a value Z, where
& < z < min{} ., ¢ k}, that satisfies the equation AY(Z;wy) = 0. For any
unit above Z that supplier Y induces the retailer to order (in aggregate), the sup-
plier incurs a loss because the marginal profit on the z** unit is upper bounded by

MY (z; wy), which is a negative number for any z > Z. Therefore, supplier Y would
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never induce the retailer to order more than Z units of good(s) Y in aggregate. Fur-
thermore, from Theorem 6.6, we have that A\Y (z; wy) = —A"(z; wy) < 0 if and only
if z =3, ¢¢ <k and that \Y(z; wy) is strictly decreasing. Therefore, we have
<) ey O

Now assume that the conditions

0< )Y (min {Z g5, k} ;w,—,) , (6.59)

tey
0<max{pi—ci— AN (O;wy) | i€Y}, (6.60)

hold instead. From Theorem 6.6, we have that \Y (z;wy) = —A"(z;wy) < 0 if and
only if £ = >, ¢f < k and that AY (z; wy) is strictly decreasing. Therefore, from
equation (6.59) we have min {},c, ¢f,k} < Y ,cy ¢f, implying min {3, ¢, k} =
k. Suppose we define Z to equal min {EteY q, k} = k. It follows trivially that
supplier Y would never induce the retailer to order more than Z units of good(s) Y
in aggregate because the retailer has a capacity constraint of k& units.

Finally, assume the condition
max{p; —¢; — N (Q;wy) | 1€Y} <0,

holds instead, and that we define 0. Therefore, for any unit above Z that supplier
Y induces the retailer to order (in aggregate), the supplier incurs a loss because the
marginal profit on the z*® unit is upper bounded by AY (z;wy), which is a negative
number for any z > Z. And so, supplier Y would never induce the retailer to order

more than Z units of good(s) Y in aggregate. [

6.6.12 Proof: Optimal aggregate order for a fixed wy.

Proof of Theorem 6.7. The (Weierstrass) Extreme Value Theorem says that for
any continuous and real function f on a compact metric space X, there exists a point
z* € X such f(z*) = sup,cx f(z). (Rudin 1976, Theorem 4.16) From Corollary 6.5,

we have that A" (3°,.y @; wy) is continuous on the set of feasible order quantity vec-
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tors, @ & {geR? | >0, < k}. Therefore, we have that supplier Y’s objective
function, > oy (PiFi(@i) — A" (X ey @& wy) — &) + @, When solving Y -SUPPLIER-
INDUCING-AGGREGATE-ORDER (wy), is continuous on @ (because it consists
of a finite sum of products of continuous functions). The set @ is closed and bounded
(and hence compact) and is a metric space (under the Euclidean metric). Therefore,
applying the (Weierstrass) Extreme Value Theorem, we have that an optimal aggre-
gate order quantity z¥(wy) and optimal induced order vector ¢¥ (wy) ezist for the
problem Y -SUPPLIER-INDUCING-AGGREGATE-ORDER (wy).

From Theorem 6.6 we have that for any fixed value z, the optimal vector of goods
that supplier Y induces the retailer to order is q¥ (z; wy), the solution to the decision
problem Y-SUPPLIER-PRICING-PRIMAL(z,wy). Therefore, we can re-express

the objective function

Z (piE(Qi) — X (Z Qt;w?) - Cz) i

i€y tey

for the problem Y-SUPPLIER-INDUCING-AGGREGATE-ORDER (wy) as

Y (0:F: (¢ (w5 wy)) — N (z5wy) — ¢i) - @) (a5 wy)
i€y
so that the only decision variable we need to solve for is .
Recall from Corollary 6.6 that A™(z; wy) is not differentiable everywhere. However,
from the proof of Corollary 6.6, we know that both the derivative from the right and

left do exist for A\"(z;wy) (and are equal almost everywhere except at [Y'| — 1 points
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at most). Therefore, we can write

a—i: (Z (B:F; (¢ (mywp)) = X (gwy) — i) ¢ (“’5“’?)>

icY
9 n Y r Y
= 5= ( (0:F (4 (@ wp)) = X (z309) — &) - @ (5 wy)
€Y\ ZY (z;wy)
o , - o
= Y = (0:Fi(af (mwy) - ) - & (z307)) — 5= (X (z507) - ¢ (25 wy)
IEY\ZY (z;wy)
4 i (Y Y r 3‘1{
= o7 (B:F (] (z3wp) - @) - & (wwp)) = N (ziwy) | - 5=
i€Y\ZY (z;wy) %
O (z; wy
- é(,x_ 7). g (z; wy)
n T aqu
= Y R @) -0 (@ @) —a- X (@) 54
€Y\ Z(k,z,wy)
O (z; wy
- __aﬁ_x__yl ¢} (z;wp)
dqf 0N (z;wy
= Y Ay(x;w?)'az,_ - ;x_ v) - q; (z; wy)
i€V \Z (kz,wy)
oqf ON (z; wy
[ 2 Y Neuw-| Y @) I
€Y\ Z(k,z,wy) i€Y\Z(k,z,wy)
=X (z;wy) —z - N (@i wy) gi’_w?) (6.61)

Since T # 0 and the cumulative distribution function for demand of each good y € Y
has the IGFR property, from Corollary 6.7 we have that Y (z; wy) is nonnegative for
every x € [0,%]. Furthermore, from Theorem 6.6 we have that AY (z;wy) is strictly
decreasing as z increases. Since the retailer is service constrained for good(s) Y,
from Corollary 6.5 and Corollary 6.6 we have that z - %%%wf’—) is nonnegative and
nondecreasing. Therefore, from equation (6.61), we have that supplier Y’s objective
function is concave in the induced aggregate order z. And so, equation (6.19) holds.

From the proof of Theorem 6.6, we have that equation (6.20) holds.
O
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6.6.13 Proof: Characterizing W (wy).

First, we introduce some preliminary definitions. For the motivation for these defini-
tions see See Sundaram (1996) (Chapter 9). Consider metric spaces Q and W and a
correspondence D : W — 29.

DEFINITION 6.1. The correspondence D is upper-hemicontinuous at a point w €
W, if for all open sets V' such that D(w) C V, there exists an open set U containing
w, such that w' € U N W implies D(w') C V. The correspondence D is upper-
hemicontinuous on W, if D is upper-hemicontinuous at each point w € W.

DEFINITION 6.2. The correspondence D is lower-hemicontinuous at a point w €
W, if for all open sets V such that D(w) NV # 0, there exists an open set U
containing w, such that w’ € U N W implies D(w') NV # 0. The correspondence D
is lower-hemicontinuous on W, if D is lower-hemicontinuous at each point w € W.

Finally, the correspondence D is continuous at a point w € W, if D is both
upper-hemicontinous and lower-hemicontinuous at w. And the correspondence D is
continuous on W, if D is continuous at each point w € W.

We apply Berge’s Maximum Theorem (Proposition 6.1) in the proof of Lemma 6.1,

below. Therefore, we state the Maximum Theorem for completeness.®

PROPOSITION 6.1 (Berge’s Maximum Theorem). Consider metric spaces Q
and W, a continuous function f : @QxW — R, and a compact-valued and continuous
correspondence D : W — 29. Suppose we define the function f* and correspondence

D* by the equations

F*(w) € max{f(q,w) | ¢ € Dw)}, (6.62)
D*(w) € {g e D(w) | flg,w)= f*(w)}. (6.63)

Then, the function f* is continuous on W, and the correspondence D* is compact-

valued and upper-hemicontinous on W.

%See Sundaram (1996) (Chapter 9) and Border (1989) (Chapter 12) for the proof of the Maximum
Theorem.
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Now we state and prove Lemma 6.1 (for use in the proof of Theorem 6.8 and

Theorem 6.9).

LEMMA 6.1. SupplierY’s objective function my (wy, wy) <} Y ey (Wi—ci)gl (wy, wy),

when solving Y -SUPPLIER (wy), is continuous in the vector (wy,wsy).

Proof of Lemma 6.1. First, we show that for any good ¢ € N, the retailer’s in-
duced order quantity ¢} (wy,wy) is continuous in the vector (wy,wsy). Denote the
set of feasible order quantity vectors by @ & {g € R? | ", q < k} and the
set of feasible wholesale price vectors by W & [Lenlct,pe]. Consider the function
f:@x W — R defined by the equation f(g,w) def S piE[Si(¢:)] — wigi and
the correspondence D : W — 29 defined by the equation D(w) = Q. For any
good t € N, the expected sales E[S;(g;)], when the retailer orders ¢; units, equals
@ Filg) + [Jz- fi(z)dz = [ Fi(z)dz (by using integration by parts). Since
Fi(x) is continuous on @, we have that E[Sy(q,)] = [ Fi(z) dz is continuous on Q
(Rudin 1976, Theorem 6.20), so that the function f is continuous on @ x W (since
f involves finite sums and products of continuous functions). Furthermore, the cor-
respondence D is compact-valued and continuous, because for any wholesale price
vector w € W the equation D(w) = @ holds. Therefore, from Proposition 6.1, we
have that the correspondence D* (as defined in Equation (6.63)) is compact-valued
and upper-hemicontinous on W. However, every order quantity vector in the set
D*(w) is a solution to RETAILER-PRIMAL(k,w) and in the proof of Theorem 6.1,
we showed that RETAILER-PRIMAL (k,w) has a unique solution, ¢} (w). Therefore,
D*(w) is single-valued (for any w € W) and equals ¢} (w). Since D* is single-valued
and upper-hemicontinous on W, it must, therefore, be continuous on W, implying
that the function ¢f is continuous on W. Furthermore, since supplier Y’s profit my (w)
is a finite sum of products of continuous functions on W, the function 7y (w) is also
continuous on W. 0O

Proof of Theorem 6.8. The (Weierstrass) Extreme Value Theorem says that for
any continuous and real function f on a compact metric space X, there exists a

point z* € X such f(z*) = sup,cx f(z). (Rudin 1976, Theorem 4.16) Since, the
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hypercube [],., [ct, p¢] is closed and bounded (and hence compact) as well as a metric
space (under the Euclidean metric), and since the supplier’s objective function is
(real) continuous in its decision vector wy (from Lemma 6.1), we, therefore, have (by
applying the Extreme Value Theorem) that supplier Y can attain the supremum of
its objective function (over its constraint set) from a vector in its constraint set, i.e.,
the hypercube [],y [z, p¢], implying that the solution set W (wy) is non-empty.
From the proof of Theorem 6.7, we have that when supplier Y solves Y -SUPPLIER-
INDUCING-AGGREGATE-ORDER (wy), there exists an optimal (and unique) ag-
gregate order quantity z¥(wy) and an optimal (and unique) induced order vector
¢* (wy). Therefore, from equation (6.14), we have that the set WY (z¥ (wy); wy) is

non-empty. Furthermore, for every good j € Y \ ZY (z¥ (wy); wy), we must have
piFj(a} (=¥ (wy);wy)) — N (2" (wy); wy) > ¢, (6.64)

otherwise, the quantity z¥ (wy) and the vector ¢¥ (wy) would not be a solution for
Y-SUPPLIER-INDUCING-AGGREGATE-ORDER (wy) (because supplier Y could
increase the value of the objective function by choosing the induced order for good j
to be zero, if equation (6.64) did not hold for good j). Therefore, for every wholesale
price vector w € WY (z¥ (wy); wy) and for any good j € Y \ Z¥ (z¥ (wy); wy), we
have ¢; < w; < p; from equation (6.14). Also, from equation (6.14), we have that
there always exists a wholesale price vector w' € WY (z¥ (wy); wy) such that for
every good i € ZY (z¥ (wy); wy), we have w! = p;. Therefore, we have that the set
WY (z¥ (wy); wy) N [l,eylct pe] is non-empty.

Next, we show that WP (wy) € WY (z¥ (wy); wy) () [l;eylct pi). Consider any
wholesale price vector wy € WX (wy) for goods Y. From the constraints of Y-
SUPPLIER (wy ), we know that wy € [[,.y[c:, ps]. Assume that wy ¢ WY (z¥ (wy); wy).
From Theorem 6.1, we have that the objective function for Y'-SUPPLIER (wy) sat-

isfies

D (wi—a)-gw) =Y (B:Fi (g (w)) — N (w) - ) - g} (w)- (6.65)

€Y i€Y



SECTION 6.6. PROOFS 151

And from Theorem 6.5 and equation (6.14), we have that for any induced order quan-
tity vector ¢4 that maximizes the objective function of Y-SUPPLIER-INDUCING-
AGGREGATE-ORDER (wy) subject to its constraints, there exists a wholesale price
vector wy € WY (X ,cy €i;wy) N [lieylce, pi) that satisfies

Z(zoz (g;) — A" (Zq; ) )q, Y (W) —ci) - g (wh,wy).  (6.66)

€Y teYy ieY

From our assumption that wy ¢ WY (¢¥ (wy); wy), we have Y.\, (w; — ¢;) - ¢ (w) <
Yicy (Wi — )¢ (wh, wy) so that wy ¢ WiF(wy). But this is a contradiction. Thus,
we have wy € WY (z¥ (wy); wy) N [l,eylcs pe)-

Next, we show that WY (z¥ (wy); wy) N [Leylet pi] € W (wy). Consider any
wholesale price vector wfy € WY (z¥ (wy);wy) () [l,eylct pe] for goods Y. Then,
there exists a vector ¢} of order quantities such that for any good i € Y, ¢} =
qf (wy, wy) and equation (6.66) holds. Assume that w}, ¢ WP (wy). Then, there ex-
ists a wy € [,y (ce, pe] such that Y,y (w; — ¢;)-qf (w) > Yoy (W — ¢i)-qf (wy, wy).
But, since A"(w) = A" (3,cy @ (w); wy) (due to Theorem 6.3), from equation (6.65)

we have
Y (wi—a)-gw) =) (pz-Fl- (g (w)) — A" (Z g (w); wv) - cz) g} (w). (6.67)
i€y i€Y tey

Therefore, from equation (6.66), we have

Z (p’LF (qz (w (Z q’z ('LU ) ) qz (’U) > Z (plF (qz (Z qta
€Y tey icY teY

(6.68)
But, this is a contradiction because wi, € WY (z¥(wy);wy) N [lieyle:p:] and
the vector ¢} (w) is in the feasible set of Y-SUPPLIER-INDUCING-AGGREGATE-
ORDER (wy). Thus, we have w}, € W (wy).

Finally, we show that the set WY (z¥ (wy); wy) N [l,cylct ] (as defined in equa-

tion (6.14)) is convex. Consider any two wholesale price vectors a, b € WY (z¥ (wy); wy)

and any real number 1 € {0,1]. For every good j € Y \ Z¥ (z¥ (wy); wy), we have

o)
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a; = b; (from equation (6.14)). Furthermore, for every good i € ZY (zY¥ (wy); wy), we
have n-a;+(1-n)-b; > min {a;, b;}. Therefore, ¢}, (n-ay+(1—n)-by, wy) = ¢y (ay, wy),
implying that the wholesale price vector n-a;+(1—7)-b; € WY (z¥ (wy); wy). There-
fore, the set WY (z¥ (wy); wy) is convex, and W¥ (2 (wy); wy) () [L;eylcs i) is also

convex since it is the intersection of two convex sets. [0

6.6.14 Proof: Existence of an equilibrium when s suppliers

compete.

We apply Kakutani’s Fixed Point Theorem (Proposition 6.2). Therefore, we state it

here for completeness.!°

PROPOSITION 6.2 (Kakutani’s Fixed Point Theorem). Consider a subset W C
R" that is non-empty, convez, and compact and a correspondence B: W — 2W that
is upper hemicontinuous with the additional property that B(w) is non-empty and
convez for every w € W. Then, there ezists a fized point w € W for B, i.e., there
ezxists a point w € W such that w € B(w).

Proof of Theorem 6.9. Suppose there are s > 2 suppliers identified by the sub-
sets of goods they offer: Yj,...,Y;. Denote the set of feasible supplier wholesale
price vectors by W def [L.enlct, pe]. Consider the supplier best response correspon-
dence WP : W — 2W defined as the s-ary Cartesian product over the s supplier
best response mappings. Namely, for any wholesale price vector w € W, WP (w) =
W (wy,), - W (wy,)) = {(wy, . .., wy,) | wy, € Wi (wy,), ..., wy, € W (wy,)}.
In order to show that an equilibrium exists, we will apply Kakutani’s fixed point the-
orem to the supplier best response correspondence W™ : W — 2W. First, observe
that the set W C R”" is non-empty, compact, and convex. Furthermore, from Theo-

rem 6.8, we have that for any supplier Y C N that faces competing wholesale prices

wy, the best response mapping WE(wy) is non-empty and convex!!, implying that

19See Border (1989) (Chapter 15) for the proof of Kakutani’s Fixed Point Theorem and Cachon and
Netessine (2004) for an overview of existence theorems applied in the supply chain literature.

!'Convexity follows from our assumption that the retailer is service constrained for good(s) Y, and the
cumulative distribution function for demand of each good y € Y has the IGFR property.
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WP (w) is non-empty and convex.

Finally, we show that the correspondence WP is upper hemicontinuous. Assume
WP"T is not upper hemicontinuous. Since W is compact, we have that the correspon-
dence W"" is not closed.!? Therefore, there exists wholesale price vectors w,z € W
such that the sequence {w'} of wholesale price vectors converges to @ and the se-
quence {z'} of wholesale price vectors satisfies 2/ € WP (w') and converges to z,
yet z ¢ WP (w). Therefore, if we denote supplier Y’s profit by my(wy,wy) o
Y ey (wi — )} (wy, wy), there exists some supplier Y, (a € {1,...,s}) and some

wholesale price vector Wy, € [[,cy.[ct, P such that 7y, (Zy,, @y,) < 7y, (dy,, 0%, )

Therefore, there exists an € > 0 such that
Wya(zya,'lf)?a) +e< Wya(wya, ’l,l_)?a) — €. (669)

Supplier Y, ’s objective function 7y, (w) is continuous on W (see Lemma 6.1), therefore
there exists an integer m such that for [ > m, we have |y, (2y,, Oy, ) —7y, (2}, w& )| <
Lo

e. So that the inequality my,(zy,,ws ) < my,(Zy,,Wy,) + € holds. Therefore, from

Equation (6.69), we have

Ty, (24, , wl?a) < 7y, (Wy,, Wy,) — €. (6.70)

Because of the continuity of supplier Y,’s objective function, there also exists an
integer o such that for I > o, we have |y, (y,, Wy,) — 7y, (Dy,, wé )| < e So that
we have 7y, (y,, Wy,) — € < 7y, (Wy,, ws ). Therefore, from Equation (6.70), for

I > max {m, o}, we have
7TYa (Zg/a, wl?a) < 7‘(‘.Ya ('lI)Ya,wlva). (671)

But, this is a contradiction because 2! € W™ (w'). Therefore, the correspondence

WP"" is upper hemicontinuous. And, therefore, by applying Kakutani’s fixed point

12See Border (1989) for the following result: Consider sets D C RY, R ¢ R™ and the correspondence
C:D — 2%, If R is compact and C is closed, then C is upper hemicontinuous.
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theorem to the supplier best response correspondence WP, we have that there exists

a vector w* € W of wholesale prices for all n goods, such that w® € W (w®). O

6.6.15 Proof: Unique equilibrium shadow price for capacity

when s suppliers compete.

Proof of Theorem 6.10. Suppose there is one supplier (i.e., s = 1) denoted by
the set N of goods offered. The (Weierstrass) Extreme Value Theorem says that
for any continuous and real function f on a compact metric space X, there exists
a point z* € X such f(z*) = sup,cx f(z). (Rudin 1976, Theorem 4.16) Since,
the hypercube ] [,.x[ct, p¢] is closed and bounded (and hence compact) as well as a
metric space (under the Euclidean metric), and since supplier N’s objective function
7w (w) &f Y ien(wi — ¢;)gi (w) is (real) continuous in its decision vector w (from
Lemma 6.1), we, therefore, have (by applying the Extreme Value Theorem) that
supplier N can attain the supremum of its objective function (over its constraint set)
from a vector in its constraint set, i.e., the hypercube [T, y[c:, p¢], implying that a
solution exists.

Next, we show that when there is one supplier (i.e., s = 1) every solution w
to the supplier’s decision problem in the first stage induces the retailer to have a
shadow price A"(w) = 0. Assume that some solution vector w’ induces a positive
retailer shadow price A"(w') > 0 instead. From Theorem 6.5, we have that there
exists another wholesale price vector w such that the retailer orders the same amount
as under w’ (i.e., ¢"(W) = ¢"(w’)), but the shadow price \"(@) = 0. Therefore, from
Theorem 6.1 we have that w] < w; for every good 7 that the retailer orders so that
wn(w') < wn(@). But this is a contradiction because w' is a solution vector for the
supplier’s decision problem in the first stage. Thus, it follows that every solution w to
the supplier’s decision problem in the first stage induces the retailer to have a shadow
price A"(w) = 0.

Suppose there is more than one supplier (i.e., s > 2). We denote supplier %

by the subset Y; of goods offered. Furthermore, suppose that the retailer is service
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constrained for goods N, the demand for each good t € N has the IGFR property,
and Assumption 6.1 holds. We show that every equilibrium wholesale price vector
w induces the retailer to have the same shadow price which we denote by A*? (i.e.,
A"(w) = A%9). Assume that instead we have two distinct equilibrium wholesale price
vectors, w’ and w, but that they induce different shadow prices for the retailer’s

capacity (i.e., \"(w') # A"(@)). Without loss of generality, suppose
0 < XN(w') < A"(w). (6.72)
Recall from Section 6.4.3 that the set

Lg (@),q @) € {L e {L,...,s} | D ai(@) > D _af(w)}
1137 icY;
denotes the suppliers that have a larger share of the retailer’s capacity uﬁder whole-
sale price vector @ when compared to the allocation under wholesale price vector
w’. If the two distinct wholesale price vectors induce the retailer to make the same
allocation, i.e., ¢"(W) = ¢"(w'), then the set L(¢" (@), ¢"(w’)) is empty, otherwise the

set L(q" (W), ¢"(w’)) must be nonempty because the equation

Y ogw) <) g(@) =k (6.73)
ieN iEN
holds (which follows from equation (6.72) and Theorem 6.1).
Consider the case when the set L(¢"(w), ¢"(w')) is nonempty. For the purposes of
this proof only, we define T & 1nin { Y ey G55 k} For every supplier [ € L(q"(®), ¢"(w")),

from Theorem 6.7, we have that

(6.74)

5 4f(@) = sup { € [0,8]| W(ai ) — 3+ 2

ieY;

ON' (z; Wy;) S 0}

From Theorem 6.6 (which implies that the function A\¥(x; w;,—l) is strictly decreasing

as T € (O,min {Zte}’ qf,k}] increases) and Theorem 6.7, we have that for every
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supplier | € L(q" (W), ¢"(w')) the equation

Y 0N (z; wo- )
X:q2 f<ze|0,z]| A (z; w—f)—x ———85:+—-—<0 (6.75)
i€Y]

holds. From Assumption 6.1 we have

5 (Eq A)) AN (x w—Y;)

leL(g™(i),q" (w")) \i€Ys

> (6.76)

2= sey, (@)

5 (}:q, <w'>) il

leL(qm(®),q"(w")) \i€Y;

""—Zieyl qir(w')

Therefore, there exists a supplier | € L(q" (i), ¢"(w')) such that the equation

X (z; Wy) oX (z; w—-)
Z q; (W ——"'T"_ Z gW) | —a—
i€Y; mzzieyi q{(w) i€Y; w=E,-ey‘. qf (w')
(6.77)
holds. And so we have
8)\"( Wy)
o< S g@ [ ¢@) ox (= oy (6.78)
i€Y; i€Y; I—ZiEYi q7 (D)
v o , o\ (z w—)
<N gy | - | Y d@) |- o (679)
‘iGY{ ZEY $~E,~eyi q; (w’)
<0. (6.80)

(Equation (6.78) follows from equation (6.74). Applying Theorem 6.6 and noting the
equations (6.72) and (6.73), we have \Yi (ZzeY g} (W); w ) < A\% (}:ieyi g (w'); w;—,l-)
holds. Therefore, from equation (6.77) we have equation (6.79). And, equation (6.80)
follows from equation (6.75).) Notice that equation (6.80) leads to a contradiction,
0 < 0. Thus, it follows that every equilibrium wholesale price vector w induces the

retailer to have the same shadow price which we denote by A*? (i.e., A"(w) = A°9).

O
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6.6.16 Proof: Unique capacity allocation when s suppliers

compete.

Proof of Theorem 6.11. Consider the case when the retailer orders from at least

two suppliers when facing wholesale price vector w’. Assume that the equation
(@) > A" (w') + min {my,(w') | j € {1,...,s}, ;N (N\ Z(w')) #0} (6.81)

holds, instead, for two equilibrium wholesale price vectors @ and w' that induce
the same retailer order (i.e., ¢"(W) = ¢"(w')) but induce shadow prices for capacity

satisfying A"(w') < A"(@). Consider any supplier Y; such that

d i (). 29
© argje{l,---,s}, {/?%?N\Z(w’));é(b my; () (6.82)

We show that supplier Y; will deviate from the wholesale price vector Wy, when
the wholesale price vector for the other goods Y; is held fixed at ﬁ)‘ﬁ Since the
two equilibrium wholesale price vectors @ and w’ induce the same retailer order (i.e.,
¢" (@) = ¢’ (w')), from the proof of Corollary 6.6 (see equation (6.47)) and Theorem 6.6

we have that the equation

(Zq w)) a/\r( rd

i€Yy

—EiEYd ‘1,7"('“")

, axr(
> g W)
=) iey, % (@ ) i€Yy
(6.83)

holds. Furthermore, since ¢"(@) = ¢"(w') holds, from Theorem 6.3 and Theorem 6.6

we have that the equation

g (Z q:(m);wﬁ) (@) = M (Z qf(w');w;—d) FN@).  (684)

i€Yy €Yy
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holds. Therefore, we have

my, (F) & A4 (2 ¢ (B); By | —

€Yy

< A (Z g (w'); wyd) X (w') = X' ()

ON"(; wo-
-{> g (w’)) ( 2

i€Yy
= X' (w) + my, (w) = X'(D)
<0. (6.85)

S A)) 8)\(x @y7)

€Yy

=S icy, € (@)

m—ZieYd q:(w')

Equation (6.85) follows from equation (6.81). But this is a contradiction because,
according to Theorem 6.7, supplier Y; would deviate from the wholesale price vector
Wy, when the wholesale price vector for the other goods Y is held fixed at wy;. Thus,
equation (6.25) follows.

Consider the case when the retailer orders from only one supplier (i.e., supplier

Y) when facing wholesale price vector w’. Assume that the equation
N (@) > A" (w') (6.86)

holds, instead. Supplier Y’s objective function is 7y (w) oo Y iey(wi—ci)gf (w). Since
Yoicy @ (W) = X,y & (W) = k, from Theorem 6.7 we have ¢} (0) = ¢} (w') for every
good i € Y. Therefore, from Theorem 6.1 we have that @; < w] for every good i
that the retailer orders so that 7y (W) < 7y (w'). Observe that 7y (w') = my (wy, Wy)
since A"(w') = A"(wy,cy) (for an equilibrium w') implying A"(w') = A"(wy, Wy)
(using Theorem 6.4). And, so we have 7y (@) < my(w}y,Wy). Therefore, supplier
Y prefers wholesale price vector w}, over @y when the other good(s) Y have fixed
their wholesale price vector to be wy. But this is a contradiction because @ is an
equilibrium wholesale price vector. Thus, it follows that A"™(@) < A"(w').
O
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6.6.17 Proof: Supplier collusion.

Proof of Theorem 6.12. Denote supplier Y’s objective function by the function

ry(w) &

Y ien(wi — ¢;)gf (w). From Theorem 6.5, we have that there exists another
wholesale price vector @ such that the retailer orders the same amount as under w’
(i-e., ¢"(W) = ¢"(w')), but the shadow price A"(w) = 0. Therefore, from Theorem 6.1
we have that w] < @; for every good 7 that the retailer orders so that for any supplier
Y we have 7y (w') < my(w). Furthermore, from Theorem 6.10 we have that for the
two-stage game with one supplier any equilibrium wholesale price vector induces a

shadow price of zero units. Therefore, if w* is a solution to (Y1 U...UY;)-SUPPLIER

(see Section 6.1.3), then we have

Y @) < 3 v (w).

So we can conclude that

Z 7y, (w') < Z Ty, (w*).






CHAPTER 7
Multiple retailers buying from a

newsvendor

The supply chain described in Chapter 6 operates in push-mode because the supplier
‘pushes’ the inventory to the retailer so that the retailer takes on the inventory risk for
the supply channel.! On the other hand, when the supplier takes on the inventory risk
for the channel, and the retailer replenishes (or ‘pulls’ inventory) from the supplier
as demand materializes (e.g., by drop-shipping), the supply chain operates in pull-
mode.(Cachon and Lariviere 2001, Cachon 2004)

In this chapter, we consider a ‘pull’-version of the game in Chapter 6 where mul-
tiple retailers pull inventory from a capacity-constrained supplier during the sales
season. We conduct comparative statics and analyze the equilibria of this game. Fur-

thermore, we analyze the impact of retailer collusion on the equilibria of the game.

Chapter Outline

In Section 7.1 we explain the supply chain setting. In Section 7.2, we analyze
the supplier’s capacity allocation decision and derive the (endogenous) price for the
supplier’s capacity. We conduct comparative statics in Section 7.3. Then, in Sec-
tion 7.4, we analyze the equilibrium setting, by providing conditions for the existence

of an equilibrium in Section 7.4.2 and for uniqueness in Section 7.4.4. Finally, in

1See Cachon (2004) for a detailed discussion on ‘push’ and ‘pull’ modes of supply chain operation.

161
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Section 7.5, we consider retailer collusion/integration and show that the supplier’s

shadow price for capacity decreases and that every retailer can achieve more profit.

B 7.1 Model.

As in our ‘push’ version of this model which we explained in Chapter 6, there are
n different goods. Good i has a fixed marginal cost of ¢; per unit supplied and a
fixed retail price p;. The demand for good ¢, D;, is random with probability density
function (p.d.f.) f; and cumulative distribution function (c.d.f.) F;. We assume that
the distribution for demands D; does not depend on the inventory (gi, gs,...,¢n) in
the supply channel.

In contrast to our previous model, however, there is a single supplier offering all
n goods with a total capacity that is constrained by some k > 0, so that the capacity
constraint can be expressed in the form g; +--- + ¢, < k. And there are s retailers,
each ‘pulling’ from a subset of the n goods, such that no two retailers ‘pull’ the same
good.

The models parameters are summarized in Figure 7-1, with the arrows denoting

the direction of product flow.

Figure 7-1 “n goods & 1 capacity constrained supplier” model.

1

Py
g /'[Z i
‘ ‘11
cn qn n p
n
q1+“'+qnsk wn‘—-__—’DnNFn

Note. A capacity-constrained supplier v offers n goods, each ‘pulled’ by exactly one retailer. The retailers
are not depicted here. The supplier faces marginal cost ¢; (per unit) for good i. The retailer for good i faces
uncertain demand D; downstream with c.d.f. F; when the price for good i is fixed at p; (per unit). Each

retailer, for each good ¢ the retailer sells, offers a wholesale price w; to the capacity-constrained supplier for
each unit of capacity dedicated to good i. The supplier must decide on a capacity allocation q for the goods

{1,...,n}.
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7.1.1 Equilibrium setting

The game, again, consists of two stages. In the first stage, the retailers move simulta-
neously, and each retailer offers the supplier a wholesale price vector for the good(s)
that the retailer would pull. In the second stage, the supplier guarantees the retailer
for good i € N & {1,...,n} an inventory level of g; units (for good i) from its total

capacity of k units.

7.1.2 Supplier’s problem in the second stage

The supplier is faced with an offered wholesale price vector w (by the retailers) and
uncertain sales S;(z) & min {z, D;} for product i € {1,...,n} (when dedicating =
units of capacity to good ¢). The supplier decides on a vector of capacity guarantees
for the goods (and their respective retailers) in order to maximize expected profit
mo(g) & E[Y ", wiSi(g:) — cig;] while keeping in mind the capacity constraint k.
Namely, the supplier solves the following convex program with linear constraints in

the decision vector, g:
SUPPLIER-PRIMAL (k,w):

n

maximize Z (W E[Si(¢:)] — ¢iqi) (7.1)

i=1

subjectto ¢; >0, i=1,...,n
n
k—th > 0.
i=1

Because of our assumptions on the distribution of the demand D; for each product,
it can be shown that SUPPLIER-PRIMAL(k,w) has a unique solution (vector),
which we denote by ¢(w). We denote the unique solution, arg maX,cgn my(q), for the
unconstrained supplier’s problem by ¢“(w). Note that the unconstrained supplier’s
problem can be decomposed into n independent newsvendor problems, each of which
decides on an order quantity for a single good. Therefore, ¢¥(w) equals the optimal

order quantity for a newsvendor ordering good 7 only, which is well known to be
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F7(c;/w;) units (e.g., Cachon and Terwiesch (2006)).

The dual problem in the decision variables 71,72, ...,7¥, (the shadow prices for
the nonnegativity constraints) and A (the shadow price for the capacity constraint)
is:

SUPPLIER-DUAL (k,w):

n

n n
minimize max w; E[Si(g:)] — ciqi) + g+ A k- '
1 {geRY [k—3 27, 9:20} Z ( 15:(4)] %) Z v ( Z qﬁ)

i=1 i=1 i=1
(7.2)
subject to %20, i=1,...,n
A>0.

Also, SUPPLIER-DUAL (k,w) has a unique solution which we denote by
(R (), - .-, 7o (w), A"(w)).

7.1.3 Retailer’s problem in the first stage

When the retailers offer wholesale price vector w and the supplier, in response, dedi-
cates capacity ¢”(w), a retailer, ‘pulling’ from the set Y C N gef {1,...,n} of goods,

obtains profit 7y (w &of Y icy(Pi — wi)E[S; (¢f (w))]. If there exist other good(s)

Y& N \ Y, then retailer Y’s profit depends on the wholesale prices offered by the
other retailer(s) (due to the terms {g”(w)}icy)-2 And, therefore, retailer Y competes
in a simultaneous-move game in the first-stage against the other retailer(s).

If there exist other good(s) Y and the corresponding wholesale price vector wy is
held fixed, a retailer, pulling the good(s) Y, determines the vector of wholesale price(s)

to offer for good(s) Y by solving the following program with linear constraints in the

decision vector, wy:

ZRetailer Y denotes the retailer that ‘pulls’ only from the set Y of goods.
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Y-RETAILER (wy):

maximize Y (p; — wi) - B [S; (g} (w))] (7.3)

ieYy
subject to p; —w; >0, i €Y,

w;—¢ >0, t€Y.

Similar to our ‘push-mode’ equilibrium setting, in this ‘pull’ setting we can charac-
terize the solution set Wi (wy) for Y-RETAILER (wy), when the supplier is ser-
vice constrained for good(s) Y and the c.d.f. for each good y € Y has the IGFR
property. And, therefore, again, we denote the best response correspondence by
wbr &&f (WE, ..., W), so that any (pure-strategy) equilibrium in the simultaneous-
move game (and, thus, in the overall Stackelberg game) corresponds to some fixed
point of the correspondence W, i.e., a vector w®® of wholesale prices for all n goods,

such that w® € WP (w®).

7.1.4 Equilibrium with an unconstrained supplier

Cachon and Lariviere (2001) and Cachon (2004) analyze this Stackelberg game, for
an unconstrained channel with one supplier and one retailer. But, their equilibrium
results are applicable in a setting with multiple retailers pulling multiple goods from
one unconstrained supplier. In particular, since for any good ¢ € N, the quantity
that the supplier prepares ¢'(w) equals ¢*(w) = F;}(c;/w;) when the supplier is
unconstrained, we have that good i’s profit, (p; — w;) - S;(q¥ (w)), is not dependent on
the wholesale price of any other good. Therefore, in the first stage, any retailer offering
a wholesale price for only one good faces a ‘buying from a newsvendor’ problem and
any retailer Y offering wholesale prices for more than one good can decompose its
problem into |Y| independent ‘buying from the newsvendor’ problems.

Applying Cachon and Lariviere (2001) and Cachon (2004) to our setting: when
F; has the IGFR property for every good ¢t € N and the supplier is unconstrained

(i.e., k is sufficiently large), the game results in a unique outcome (q°,w®) defined
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implicitly in terms of the equations

PtFt(Qte) —C (1 + (E[St(Qf)]/Ft(Qf)) : (ft(qf)/ﬁt(cﬁ))) =0, t=1,...,n; (7-4)
wiF(¢f) —c; =0, t=1,...,n. (7.5)

7.1.5 Definition: Valuation for capacity

In Section 7.2, we show that when the retailers offer wholesale price vector w in the
first round of the Stackelberg game, they induce an endogenous valuation, Y .., E[Si(¢g}(w))]-
XY (w)/F; (¥ (w)), for the supplier’s capacity.® Furthermore, the shadow price A\(w) in
our optimization problem can also be interpreted, more traditionally, as the marginal
value of the supplier’s capacity. In this chapter, we are interested in understanding
the valuations that are feasible in our equilibrium setting. In particular, if we denote
the set of equilibrium wholesale price vectors for the Stackelberg game (when the
retailer has a capacity of k units) by W®(k) & {w | w € WP (w)}, we are interested
in determining properties of the set of equilibrium shadow prices for capacity, i.e.,
the set A®(k) & {A A= 2(w), w e We(k)}.

Again, although the analysis in Section 7.3 is specific to a newsvendor setting

and a wholesale price contract, our analysis can be generalized for other equilibrium

settings under different supply contracts.

B 7.2 An endogenous valuation for the supplier’s
capacity k

Theorem 7.1, below, parallels Theorem 6.1 in that it implicitly defines the sup-
plier’s shadow price A¥(w) for capacity k and the supplier’s allocation of capacity for
the set N of goods in the second stage when the supplier is offered wholesale price

vector w.

380 that any retailer that obtains g (w) units of the supplier’s capacity for good i, in effect, pays the sup-
plier an extra amount E[S;(gf (w))]- A*(w)/F; (¢} (w)) when compared to the amount that an unconstrained
supplier would require for that same amount.
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THEOREM 7.1. Let Z(w) <4 {i | ¢'(w) = 0} C N be the set of products that are
not stocked in the supplier’s decision problem when offered wholesale price vector
w = (w1, Wy, ..., Wn). For any wholesale price vector w, there exists some A¥(w) such

that the following conditions hold:

N (w) = w;F; (q}’(w)) - ¢j, Vj€eN\Z(w), (7.6)
AV(w) > w; — ¢, Vi€ Z(w). (7.7)

Furthermore, \*(w) = 0 if and only if >, ¢*(w) < k.

Proof. See Section 7.6.1.

Equations (7.6) and (7.7) describe the shadow price’s role as a ‘threshold’ of
marginal profit that the supplier requires from each good. When the capacity con-
straint & is larger than or equal to the unconstrained supplier’s total optimal order
quantity, Y ¢ ¢¥(w), we have A\*(w) = 0, so that equation (7.6) reduces to the
‘classic’ optimal order quantity result for a newsvendor: Fj (¢(w)) = ¢;/w; for any
ordered good j. Furthermore, equation (7.7) implies that the supplier dedicates ca-
pacity to every good, if ¢ < w.

However, when the capacity constraint is binding for the supplier (i.e., Yy, g(w) >
k), the supplier’s shadow price A(w) for the capacity constraint is strictly positive.
And, therefore, equation (7.6), which can be reexpressed as w; = ¢;/Fj (¢¥(w)) +
X*(w)/F; (g} (w)), implies that for every good j, for which the supplier dedicates
capacity, the retailer pays the supplier ¢;/F; (¢¥(w)) per unit of good j, a known
result for unconstrained channels (Cachon and Lariviere 2001), but, in addition, the
supplier charges the retailer A”(w)/F; (¥ (w)) per unit of capacity dedicated to good
j, when the retailer ‘pulls’ the good from the supplier. Thus, the supplier obtains
an uncertain income, Y, Si(¢¥(w)) - \?(w)/F; (¢¥(w)), from ‘selling’ capacity k, in
addition to its usual uncertain income, >, Si(¢¢(w)) - ci/F; (¢¥ (w)).

In other words, the portfolio ¢*(w) of goods that the supplier prepares for the re-
tailers, would have cost the supplier the extra amount Y ;- ; E[Si(g¥ (w))]-A*(w)/F; (¢¥ (w)),

if the supplier was unconstrained (or & was large enough).
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Figure 7-2 illustrates the supplier’s ‘threshold’ capacity allocation rule when the
capacity constraint is binding. Equation (7.8), below, uniquely determines the thresh-
old X’(w), and suggests a simple algorithm for calculating the shadow price A?(w)
when given a single plot displaying the supplier’s marginal expected profit curve for
each available good (e.g., Figure 7-2): start with initial threshold A = 0 and increase
A until the sum of implied order quantities equals min {) 7, ¢¥(w), k}.

Figure 7-2  The shadow price A\”(w) as a ‘threshold rule’ on the supplier's marginal expected profit
(smep) curves.
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10
~ 8
g L
.
g 6 megforgoodZ:
E w,Fa(q) ~¢,
é 4-
" for 1: ...
3 smep for good R shadow price A"
[ w Fi(g) — ¢
Tl Y
\\\ e el
T~ — Tl
1 S
—
o T T T T T T r T M T \' T
0 2 4 6 8 10 12
order quantity, ¢

Note. Supplier’s capacity is k & 12.7 units. The supplier considers two goods (dash & dot), as in Figure 6-2,
when allocating capacity and faces the same demand distributions, retail prices, and wholesale prices. The
cost (per unit) for each good is ¢ = 1, resulting in a supplier capacity valuation A*(w) & 1.6. Compare this
with the retailer’s capacity valuation A"(w) = 2, in Figure 6-2, under the same wholesale prices.

COROLLARY 7.1. For any wholesale price vector w, the supplier’s shadow price
A’(w) satisfies

A\?(w) = min {)\ | wiFy(gs) —c; <A VEE N, Zn:qt = min {Zn:q;‘(w),k} , ¢ €RY
t=1 t=1 (78]

Proof. See Section 7.6.2.
Regardless of whether or not the capacity constraint is binding, the supplier’s

optimal inventory level for any good can be expressed, more generally, as a function

that depends on the shadow price AY(w) as shown in Corollary 7.2. This result follows
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directly from equations (7.6) and (7.7).

COROLLARY 7.2. For any wholesale price vector w, the supplier prepares ¢f (w) =
F1 (m“{)‘v("’)“t’wt}) units of good t € N.

we

As a result, under the ‘threshold allocation rule’ the ratio of the service levels (i.e., fill
rates) for any two goods (that the supplier prepares) equals the corresponding ratio
of the supplier’s gross profit margins of those goods, not including income derived

from the capacity constraint?, as formalized in Corollary 7.3.

COROLLARY 7.3. For good t € N and wholesale price vector w, define u;(w) =

(we — ¢; — A¥(w)) /w; (the supplier’s gross profit margin for the income derived only
from the good, not the capacity). For any two goods a,b € N\ Z(w) that the supplier
prepares, we have F, (q2(w)) /Fp (¢} (w)) = ua(w)/us(w).

B 7.3 Comparative statics, and the game’s geome-
try.

We show how changes in the offered wholesale prices effect the supplier’s shadow
price for capacity in Section 7.3.1. In Section 7.3.2, we derive a useful property that
simplifies our analysis when considering retailers ordering more than one good. Then,
in Section 7.3.3 we partition the set of wholesale prices into equivalence classes based
on the supplier shadow price they induce or the supplier inventory vector they induce.
So that, in Section 7.4.1, we can recast the retailer’s problem Y-RETAILER (wy)
into a (simpler) problem of choosing an aggregate quantity to induce the supplier to
prepare (see Decision Problem (7.18)). Finally, in Section 7.4.4, we provide conditions
for the existence and uniqueness of an equilibrium (endogenous) capacity price and
conclude with a section analyzing a special case of the Stackelberg game, i.e., when

the retailers collude on pricing.

“For each unit of good t € N that the supplier prepares when offered wholesale price vector w, the profit
margin w; — c; — A’ (w) for good t does not include the uncertain income \”(w) received from ‘selling’ a unit
of capacity.
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7.3.1 The supplier’s shadow price for capacity when a whole-

sale price increases

In Theorem 7.2, we show that the shadow price for capacity is nondecreasing when
one good’s wholesale price increases (and provide conditions on when the shadow
price is strictly increasing). In addition, we provide a simple upper bound on the

increase in the shadow price.

THEOREM 7.2. Consider two different wholesale price vectors w and w'. Suppose
that w' differs from w on exactly one good i € N so that w] > w; and w'_;, = w_;.
Then, A" (w) < A(w'). And, \*(w) < A¥(w') if and only if good i is included in the
supplier’s inventory under w' (i.e., i € N\ Z(w')) and the capacity constraint is

binding for the supplier under w' (i.e., 3, | q¢i(w') > k). Furthermore,
(N(w') + ) / (X(w) + &) < wi/w;. (7.9)

And (XN (w') + ¢;) / (A (w) + ¢;) = wl/w;, if and only if, the supplier prepares k units

of good i under w and w'.

Proof. See Section 7.6.3.

Therefore, when the supplier’s capacity constraint is binding (so that the sup-
plier ‘charges’ for capacity), a retailer that competes with other retailers on price
(by increasing its wholesale price(s) offer(s)) creates two effects: the price-increasing
retailer increases every retailer’s cost A” in obtaining a unit of the supplier’s capacity,
and the price-increasing retailer increases its share of the supplier’s capacity when

the supplier prepares the good at the higher price (cf. Corollary 7.4).

COROLLARY 7.4. Under the same assumptions as in Theorem 7.2, we have ¢¥ (w) <
gi (w') and g3(w') < g¥(w) for any other good o # i. Furthermore, the following two

conditions are equivalent.

(a) The supplier prepares more of good i under w', i.e., ¢*(w) < ¢*(w'), if ¢ (w) <
k. And the supplier prepares less of any other good o # i under w', i.e.,

g (w') < gj(w), if o € N\ Z(w).
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(b) The supplier prepares good i under w', i.e., i € N\ Z(w'), and the capacity

constraint is binding, i.e., Y, , gi(w') > k.

Proof. See Section 7.6.4.

7.3.2 An invariance property on the supplier’s shadow price

for capacity

As shown in Theorem 7.2 and Corollary 7.4, any retailer Y can induce a change in the
supplier’s shadow price A" for capacity by increasing the offered wholesale price(s) for
good(s) Y, or, equivalently, taking away supplier capacity from competing goods Y.5
In particular, from Theorem 7.3, it follows that when retailer Y takes away z < k
units of capacity from competing retailers (when the offered wholesale prices wy for
competing goods Y are fixed), retailer Y induces the supplier to have shadow price

A?(z; wy), as defined in equation (7.10) below, for capacity k.

THEOREM 7.3. Consider a retailer Y C N competing with good(s) Y for a sup-
plier’s capacity k. Suppose w i (wy,wy) and the wholesale price vector wy is held
fized. If retailer Y ’s wholesale price vector wy induces the supplier to allocate x < k
units of capacity to retailer Y (i.e., Doy 67 (w) = x), then the supplier’s shadow

price A'(w) equals

A (z; wy) % min { A | wiFy(q) —cs <A VtEY, th = min zqf(w),k -z},
teY teY
(7.10)
Furthermore, if \°(w) = X*(z; wy) > 0, then Y, ¢} (w) = = holds.
Proof. See Section 7.6.5.
In other words, when wy is held fixed and ) ";_, g/(w) = k, the supplier’s shadow

price for capacity AY(w) is invariant to changes in the offered wholesale price vector

wy as long as the aggregate capacity allocation, )., g7 (w), remains the same. Fur-

5Sometimes, in order to affect a supplier’s shadow price for capacity, a retailer Y may be required to
increase the wholesale price(s) for good(s) ¥ beyond the retail price(s), but of course that would not occur
in our formulation.

geR

Y]
+
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thermore, the supplier’s shadow price AY(z; wy) is a nondecreasing function of the

aggregate stocking quantity z as formalized in Corollary 7.5.

COROLLARY 7.5. Under the same assumptions as in Theorem 7.3, \*(z;wy) is
continuous. When x satisfies 0 <z < k-3, ¢ q'(w), we have A*(z; wy) = 0, and,
when z satisfies max {k — >,y ¢(w),0} < & < k, we have \’(z;wy) is strictly

increasing.

Proof. See Section 7.6.6.

Therefore, when \*(z; wy) is strictly positive and = € [0, k), the function A*(z; wy)
is strictly increasing. Furthermore, the average capacity cost that a single-good re-
tailer (good 1) incurs when inducing the supplier to allocate z units for good i equals
X (z; wy) - Si(z)/(zF; (z)). From Corollary 7.5 and Theorem 3.1, we have that this
average capacity cost is increasing in the induced aggregate order  when the c.d.f. F;
has the IGFR property. And, from Corollary 7.6, below, we have that the marginal
capacity shadow price (i.e., ?.i"{g;_;:"“y_)) is also increasing (in the induced aggregate

order z) when the retailer is service constrained for good(s) Y.

COROLLARY 7.6. Under the same assumptions as in Theorem 7.3, \*(z; wy) is

differentiable (i.e., 8’\1’;:1:"7) = 3’\v(,§zf”7 1) and a—'\ﬁ(g%_"—) is continuous at x > 0 when

X (z;wy) > 0 and N\°(z;wy) # w; — ¢; for any i € Y. If x satisfies the equation

max {k — ¥,y ¢ (w),0} < z < k and the retailer is service constrained for good(s)

o d Y (z;wsr) ONY (z;ws7) . . .
Y, then =5 and —5 =% are strictly increasing.

Proof. See Section 7.6.7.

7.3.3 Set of wholesale prices for a particular capacity price

A or capacity allocation q

What are the set of wholesale prices that retailer Y can offer the supplier in order
to make the supplier shadow price A\Y(z; wy) realizable? (Afterall, retailer Y chooses
wholesale prices in the first stage, not order quantities.) Theorem 7.4, below, provides

the set W()) of wholesale prices for good(s) N that induce the supplier to have shadow
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price X. Therefore, from Theorem 7.4, we have that W(X*(z; wy)) N{w' | wy = wy}
is the set of all wholesale price vectors for good(s) Y that induce the supplier to
have shadow price, \(z; wy), for allocated supplier capacity =, when the wholesale

price(s) offer(s) for competing good(s) Y is held fixed at wy-.

THEOREM 7.4. When X > 0, any wholesale price vector in the set

= A= Lgeor)/Fi(q) VEEN, g,v€RM,
W(/\) def wiuw (Ct+ "t {qt_o})/ t(qt) q,7 + (7'11)

Pien @ =min {(Cen ¢ (W) - Loy +k - 10}, K}
induces the supplier to have shadow price A for the capacity constraint k. Further-

more, if a wholesale price vector w induces supplier shadow price A for capacity k,

then w € W(X).

Proof. See Section 7.6.8.

When A? > 0, Theorem 7.1 implies that min {Zte N @ (w), k} = k, and, thus, The-
orem 7.4 suggests that the set W(A”) can be indexed by the simplex {q | >,cny & =
k, q € Rl_f_v |} of stocking quantities. Furthermore, when A’(z;wy) > 0, the set
WA (z;wy)) N {w' | wy = wy} can be indexed by the (lower dimensional) sim-
plex {¢ | Y eyt =2, g € le l} of stocking quantities. Also, when \Y(z; wy) > 0,
we have that A’(z;wy) is invertible (from Corollary 7.5), so that for every w €
W (z; wy)) N{w' | wy; = wy}, we have Y-,y ¢f (w) = 2 (from Theorem 7.3).

Only wholesale prices in the set W(X(z;wy)) N {w' | wy = wy} induce the
supplier to allocate = units of capacity for retailer Y’s goods (in aggregate), when
the offered wholesale price(s) for competing good(s) Y is held fixed at wy. This
set may be large, but Section 7.4.1 shows that there is a unique division of induced
(aggregate) order x among retailer Y’s goods that is optimal for retailer Y when the
demand for every good £ € Y has the IGFR property, so that the subset of wholesale
price vectors of interest to retailer Y is much smaller. In particular, Theorem 7.1
and Theorem 7.3 imply that the optimal wholesale price vectors (for retailer Y) from
the set W(A"(z;wy)) N {w' | wi = wy} are identical in every good (component)

Y
J € Y included in the newsvendor’s inventory. Therefore, if for the unique division
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of induced stocking quantity « we have x; > 0 for every good t € Y, then there is a
unique maximizing wholesale price vector in the set W(A*(z; wy)) N {w' | wi = wy}
for retailer Y.

The set of wholesale price vectors {w’ | min {Ete v @ (w),k} = k} can, also,
be partitioned according to the supplier’s allocation (vector) g of capacity k (where

Y ey @ = k), as shown in Theorem 7.5.

THEOREM 7.5. Suppose q € le_v | and Y ien @& = k. Any wholesale price vector

in the set

Alq) =4 {w | we = (¢t + A =% Lig=0})/Fi(q) VEEN, AER,, Y€ le-v'}
(7.12)
induces the supplier to allocate/stock the vector q. Furthermore, if a wholesale price

vector w induces the supplier to stock the vector g, then w € A(q).

Proof. See Section 7.6.9.
Figure 7-3 illustrates Theorem 7.4 and Theorem 7.5 for the example depicted in
Figure 7-2. Notice, in Figure 7-3, that if the retailers offer wholesale prices farther
along the ray of asterisks, their allocation (at the supplier) stays the same, but they

end up being charged more for their allocated capacity.

B 7.4 Analysis for the two-stage game.

In this section we analyze the equilibria for the two stage game. We start by

reformulating the retailer’s best response problem.
b

7.4.1 Recasting a retailer’s problem & its shadow price for
allocated supplier capacity
Consider a retailer Y’ C N faced with the problem Y -RETAILER (wy) in the decision

vector wy when competing with good(s) Y (whose wholesale price vector wy is held

fixed) for a supplier’s capacity k. From the proof of Theorem 7.1, we have that every
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Figure 7-3  Wholesale price vectors that induce a particular capacity charge or capacity allocation.

Operating Regions

2
1

g"=(0.75 k, 0.25 k)

Good 2's supplier margin, w, —c,

Good 2 out

'I. - T T T T 1
3 4 5 6 7 8 9
Good 1's supplier margin, w, — c,

Note. The supplier considers stocking two goods (dash & dot), as in Figure 7-2, and faces the same capacity,
demand distributions, costs, and retail prices. The shaded region, near the origin, denotes the wholesale
prices that induce the supplier to have a shadow price for capacity of zero. Whereas, the thickest line denotes
the set of wholesale prices that induce the supplier to have a shadow price of 1.6 units for capacity. Also
the region above the dashed ray represents the wholesale prices that induce the supplier to oust the good
‘dash’ from its inventory allocation (and stock only ‘dot’), whereas, the region below the dotted ray denotes
the wholesale prices that induce the supplier to oust ‘dot’ from its allocation. The ray denoted by asterisks
represents the wholesale prices that induce the supplier to order (.75 - k, .25 - k).

wholesale price vector wy is associated with some shadow price, A\ (w), for a supplier’s
capacity (where w = (wy,wy)) so that the set of wholesale prices can be partitioned
into equivalence classes (i.e., {W(\)},>0) indexed by shadow price ) for a newsven-
dor’s capacity (cf. Theorem 7.4). And from Theorem 7.3 and Corollary 7.5, we have
that every positive supplier shadow price for capacity is associated with a unique
aggregate capacity allocation/induced inventory (i.e., 3",y ¢:) by the supplier for re-
tailer Y. Therefore, retailer Y has a simple algorithm for solving Y -RETAILER (wy)
in order to maximize profit: 1) start with an initial aggregate number of units z = 0
to induce the supplier to stock, 2) if AY(z;wy) > 0, find the wholesale price vector
in the set W(A"(z;wy)) N {w' | wi = wy} that maximizes profit (which, thereby,
determines the optimal number of units ¢, of each good ¢t € Y the supplier is induced
to stock/prepare, such that 3, ¢ = ), otherwise, if A\(x; wy) = 0, find the whole-

sale price vector in the set W(0) N{w’ | wy = wy, 3,y g7 (w') = x} that maximizes
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profit, 3) keep track of the maximum attainable profit, thus far, and the associated
capacity allocation z and optimal wholesale price vector, 4) increase x and go to step
two, if £ < Z where T is an upper bound on the aggregate quantity of goods that
retailer Y would induce the supplier to stock. The upper bound z is formally defined

later in this section (i.e., Corollary 7.7).

Retailer Y’s optimal wholesale price(s) when inducing (aggregate)

inventory z.

Suppose z € [0,Z]. When the c.d.f. F, has the IGFR property for every good
t €Y, step two of this algorithm can be described by a convex program with linear
constraints in the decision vector gy to induce the supplier to stock. In particular,
from Theorem 7.3 and Theorem 7.4, we have that maximizing the objective function
> ey (i — wi) E[Si(g} (w))] of the program Y-RETAILER(wy) (i.e., equation (7.3))
over the set of wholesale prices W(X’(z; wy)) N {w' | wi = wy, 3,0y ¢ (w') = z}
can be re-expressed as maximizing >, (pi — (A (3 ,cy @ wy) + &)/ Fi(a:)) E[Si(:)]
over the set of induced order vectors {g | ¢ > 0Vt €Y, >, ¢ = z}. Therefore,
the convex program with linear constraints in the decision vector gy that solves step

two of the algorithm is:

Y-RETAILER-PRICING-PRIMAL (z,wy):

maximize Z (pi _ X (Ete;_;‘g:;”?) r ci) - E[Si(g;)] (7.13)

subject to ¢; >0, i€Y
T - Z g =0.
i€y
When the c.df. F; has the IGFR property for each good t € Y, it can be
shown that Y-RETAILER-PRICING-PRIMAL(z,wy) has a unique solution (vec-
tor), which we denote by ¢* (z;wy). So that the set of wholesale prices WY (z; wy)

that maximize retailer Y’s profit when the retailer induces the supplier to stock z
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units in aggregate and when the other retailers charge wy is

et +A (Twy) =V 1Y (py=0y

! R t Y

WY (z;wp) & YT Filgl (ziwy)) ver . (7.14)
W =Wy, 7€ Rl_?_/ |

Note that every good t € Y that is included in the supplier’s stocking decision has a
unique wholesale price.

The dual problem in the decision variables y1,7s,...,7jy| (the shadow prices for
the nonnegativity constraints) and A (the shadow price for the aggregate induced
order) is:

Y-RETAILER-PRICING-DUAL(z,wy):

(p,- X ey @ wy) + q) ES(a)] (7.15)

minimize max —
{geRY |o-F ey =0} iy Fi(a:)
+ Z’Yi(b‘ +A (13 - Z%‘)
i€y iey

subject to 7 >0, i€Y.

Also, Y-RETAILER-PRICING-DUAL(z,wy) has a unique solution which we denote
by (v (z;wp), - -, Yy (@5 w7), XY (2 wy)).

Theorem 7.6 formalizes the idea that retailer Y’’s shadow price AY (z; wy-) describes
a threshold for the marginal profit of an additional unit of any good in the set Y (when
inducing an aggregate stocking level z at the supplier and facing a fixed supplier

shadow price A (z; wy) for capacity).

THEOREM 7.6. Suppose that for every good t € Y, the c.d.f. F, has the IGFR
property. Let Z¥ (z;wy) D i e Y | ¢ (z; wy) = 0} be the set of products that are
not stocked in retailer Y’s decision problem when faced with wholesale price vector
wy and inducing an aggregate stocking level x at the supplier. For any wholesale

price vector wy and induced aggregate stocking level x € (0, min {3,y ¢f, k}], the
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following conditions hold:

E[S;(¢; (= wp))] £(g] (z;wy))
Fi(g} (z;wy)) Fy(g) (mwy)) )
VieY\Z¥(z;wy), (7.16)

N (z;wy) > pi — ¢ — N (z;wy), Vi€ Z¥(z; wy). (7.17)

Furthermore, Y (z;wy) + A\(z;wy) <0 when z =,y ¢f < k. And, the function

XY (z;wy) + XY (z; wy) is strictly decreasing as © € (O, min {ZteY qa, k}] increases.

Proof. See Section 7.6.10.

From Equation (7.16), we have that retailer Y’s shadow price A\¥ (z; wy) represents
an upper bound for the retailer’s marginal profit on the z'" unit that the supplier
stocks (when retailer Y chooses the optimal number of units of each good y € Y
to induce the supplier to stock, so that the supplier stocks z units in aggregate)
and accounts for the marginal cost of the good as well as the marginal cost for
the supplier’s capacity, A” (z;wy). From Theorem 7.6, we have that the function
AY (z;wy) is strictly decreasing in z, because the function XY (z;wy) + X(z; wy) is
strictly decreasing and from Corollary 7.5 we know that A”(z;wy) is nondecreasing.
Therefore, retailer Y only considers inducing the supplier to stock up to some Z units

(in aggregate) where Z is defined in Corollary 7.7.

COROLLARY 7.7. Under the same assumptions as in Theorem 7.6, retailer Y
would never induce the supplier to stock more than T units of good(s) Y in aggregate

where T is defined according to the following conditions. If the conditions
0<max{p;—c;— A (O;wy) | i€Y} and \Y (min {qu,k} ;wy) <0,
teY

hold, then Z is the positive value that satisfies the equation \Y (T;wy) = 0. But, if

the conditions

0<max{p;—c;i— A (Qwy) | i€Y} and 0 < AY (min{qu,k};w?),

teY
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hold, then T equals min {ZteY qs, k} = k. Finally, if the condition
max {p; —¢; — A\’ (O;wy) | 1€Y} <0,

holds, then T equals zero. Under any of these conditions, T <3,y ¢5-

Proof. See Section 7.6.11.

Recall that via equation (7.14), the retailer can map any induced aggregate stock-
ing level x to the set WY (z; wy) of wholesale prices that should be offered to achieve
that aggregate stocking level. Next, we analyze the optimal aggregate capacity al-
location that the retailer should induce (and hence the wholesale prices the retailer

should offer) when faced with wholesale price vector wy from competing good(s) Y.

Retailer Y’s optimal induced stocking level z and best response to wy.

Consider a retailer Y C N competing with good(s) Y for a supplier’s capacity k. Sup-
pose w = (wy, wy) and the wholesale price vector wy is held fixed. From Theorem 7.3
and Theorem 7.4, we have that the objective function ), ., (pi — w;)E[S;(¢?(w))]
of the program Y-RETAILER(wy) (i.e., equation (7.3)) can be re-expressed as
Sier 0 — (W(Diey @0y) + €)/Fi(@))ElSi(g0)). Therefore, as suggested in the
beginning of this section, retailer Y’s problem of maximizing profit and deciding the
optimal wholesale price vector w¥ (wy) when solving Y-RETAILER (wy) can be re-
cast as the equivalent problem of deciding upon an aggregate quantity x to induce
the supplier to stock and then deciding how to split the aggregate stocking quantity
z among the goods Y. Formally, the program with linear constraints in the decision

quantity z and decision vector gy that solves Y-RETAILER (wy) is:
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Y-RETAILER-INDUCING-AGGREGATE-ORDER (k, wy):

maximize Z (pi X (Ete};‘z;‘*f) + Ci) - E[Si(¢:)) (7.18)

subject to ¢; >0, 1 €Y

x>0,

W“Z%ZO,
i€y

k—x2>0.

Theorem 7.7, below, provides sufficient conditions for Y-RETAILER-INDUCING-
AGGREGATE-ORDER(wy) to have a unique solution and, under those conditions,
we denote the optimal aggregate order quantity by z¥(wy) and optimal induced
order vector by ¢¥ (wy). Therefore, from the proof of Theorem 7.6, we have that the
optimal induced order quantity vector ¢* (wy) must equal ¢¥ (z¥;wy). And, from
equation (7.14), retailer Y’s best response to competing wholesale prices wy is the
set of wholesale prices WY (z¥;wy). Furthermore, when retailer Y is faced with
competing wholesale price vector wy and when it is optimal for retailer Y to induce
the supplier to stock every good y € Y (i.e., Z¥ (z¥;wy) = 0), from equation (7.14),
we have that retailer Y’s best response is unique (i.e., the set WY (z¥;wy) has only

one wholesale price vector).

THEOREM 7.7. Y-RETAILER-INDUCING-AGGREGATE-ORDER(wy) has a

unique solution (z¥ (wy), ¢* (wy)) defined implicitly by the conditions

¥ (wy) = sup { & 03] | A¥ (33 wy) - (Z ot (9““’7)”> Paiuy) , o} ,

< F(a (z;wp)) Oz~

(7.19)

7" (wy) = ¢¥ (2¥ (wy); wy) , (7.20)

when T # 0, the retailer is service constrained for good(s) Y, and the cumulative

distribution function for demand of each good y € Y has the IGFR property.
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Proof. See Section 7.6.12.

Now we can state the main result of this section.

THEOREM 7.8. Consider a retailerY C N that faces the problem Y -RETAILER (wy)
(when the vector wy of wholesale price offers from its competitors is held fired) and,
therefore, decides upon an optimal set W¥ (wy) of wholesale price vectors from the
hypercube [],cy[ct,pe]. Suppose the retailers are service constrained for good(s) Y,
and the cumulative distribution function for demand of each good y € Y has the

IGFR property. Then, the solution set Wi (wy) is non-empty, convez, and satisfies

WY (wy) = WY (&¥ (wp)swy) [ ]]lepd- (7.21)

tey

Proof. See Section 7.6.13.

7.4.2 Existence of equilibrium

In Theorem 7.9, we provide sufficient conditions so that the two-stage game described
in Section 7.1.1 has at least one equilibrium wholesale price vector, and, therefore,

resulting supplier capacity allocation vector and shadow price for capacity.

THEOREM 7.9. With more than one retailer (i.e., when s > 2), an equilibrium
wholesale price vector exists when the retailers are service constrained for goods N

and the demand for each good t € N has the IGFR property.

Proof. See Section 7.6.14.

Denote the set of equilibrium wholesale price vectors for the Stackelberg game

def

(when the supplier has a capacity of k units) by W®i(k) = {w | for every retailer Y, wy €

WY (wy)}. Furthermore, denote the set of (resulting) equilibrium capacity prices
by A®(k) &f A A= X(w),w € W¥(k)}. From Theorem 7.9, we know that
the set We4(k) is non-empty, so that the set A®I(k) is, also, non-empty. There-
fore, two values that allow us to bound the valuation for the supplier’s capacity are
AR (k) L inf A®i(k) and A™**(k) L sup A®i(k). But, often times, we can do better,

and give an exact valuation for the supplier’s capacity. In the next section, we de-
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scribe an economic assumption that guarantees a unique equilibrium capacity price,

so that the set A®d(k) has exactly one element.

7.4.3 An economic assumption

When retailers have larger allocations of the newsvendor’s capacity, the newsvendor’s
capacity price is more sensitive to attempts to increase that allocation. Formally, con-
sider s retailers and two different (aggregate) capacity allocations to those retailers
(represented by the vectors @ = (ay,...,as) and b = (by,...,bs)) induced by two op-
timal wholesale price vectors w® and w® (respectively) for those aggregate allocations
(see Section 7.4.1) that cause the newsvendor to allocate his entire capacity & (i.e.,
Yoeia=kand ), ;b =k). From Theorem 7.3, we have that retailer competition
induces some virtual ‘charge’ for capacity (involving AY and A}, respectively), paid
to the newsvendor. From Theorem 7.6, we have that the i retailer (i.e., retailer
Y;) has thresholds A and )\?f for its marginal profit when faced with competing
wholesale price vectors w;‘,—i and w%, respectively. Denote the subset of retailers that
have a larger share of the newsvendor’s capacity under allocation a when compared

to allocation b by L(a, b) (i.e., formally, L(a,b) & {i € {1,...,s} | a; > b;}).5

ASSUMPTION 7.1. Consider the retailers L{a,b) that have a higher allocation un-
der allocation a when compared to allocation b. The marginal increase in the price
of capacity, A\*(w®), for a percent increase in the induced average sales for each
good (by each retailer in L(a, b)) is larger than the marginal increase in the price of
capacity, A*(w®), for a percent increase in the induced average sales for each good

(by each retailer in L(a,b)), i.e.,

E[S(g}*(as; w“—))]) 3>\”(a1, w——)

2 (Z P (o)

i€L(a,b) \j€Y; Y

E[s 2 (b uh, ))1) O (b uhy)

Z Z bt, wl)) ob;

tEL(a b) \JjeY;
(7.22)

®From the ‘pigeon-hole principle’, we have that the subset, L(a,b), is not empty because the allocation
vectors are not equal.
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In the case of two retailers each with one good, if the newsvendor is serviced con-

strained for both goods, we can show that inequality (7.22) is a necessary condition.

7.4.4 Uniqueness of equilibrium shadow price

In Theorem 7.10, we provide sufficient conditions so that the two-stage game described

in Section 7.1.1 has a unique equilibrium shadow price for capacity.

THEOREM 7.10. With one retailer (i.e., when s = 1), any equilibrium wholesale
price vector results in the supplier having a shadow price for capacity of zero units.
Furthermore, with more than one retailer (i.e., when s > 2), if the retailers are
service constrained for goods N, the demand for each good t € N has the IGFR
property, and Assumption 7.1 holds, then for any two equilibrium wholesale price
vectors W and w' that induce different allocations (i.e., ¢*(W) # ¢*(w')) the induced
shadow prices for capacity (A\'(w) and A¥(w')) are the same (i.e., there is a unique

equilibrium shadow price for the supplier’s capacity).

Proof. See Section 7.6.15.

When there is more than one retailer (i.e., s > 2), this theorem implies that
if there are two equilibrium wholesale price vectors inducing different allocations of
the supplier’s capacity, then there is a unique equilibrium shadow price which we
denote by A*%. And so, geometrically, the equilibrium wholesale price vectors are a
subset of the set W(A?) as defined in Theorem 7.4 and depicted in Figure 7-3. In
Theorem 7.11, we consider the scenario when there are two equilibrium wholesale

price vectors that induce the supplier to stock the same vector of goods.

THEOREM 7.11. Consider the two-stage game described in Section 7.1.1 with
more than one retailer (i.e., s > 2). Suppose the retailers are service constrained
for goods N, the demand for each goodt € N has the IGFR property, and that there
are two equilibrium wholesale price vectors W and w' that induce the same supplier
capacity allocation (i.e., ¢*(W) = ¢"(w')) but induce shadow prices for capacity
satisfying A*(w') < XY(w). Denote retailer Y;’s marginal profit for inducing the

supplier to dedicate an extra unit of capacity (when the supplier faces wholesale
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price vector w') by the function

1\ Ge. ; v E
() 235 (Y atw)y iy | - (T2

S(gw)]| N (@uy)
iev, iev, i(gf (w')) Oz~ 2= sey; 4 (v)

Then, we have the following upper bound on the shadow price \"(W) when the sup-
plier allocates capacity from two or more retailers when offered wholesale price vector

w':

A’ (@) < X(w') + min {my,(w) | j €{1,...,s}, ;N (N\ Z(w') #0}. (7.23)

And, we have the following upper bound on the shadow price A\*(W) when the supplier

allocates capacity for exactly one retailer when offered wholesale price vector w':
A(@) < AU (w'). (7.24)

Proof. See Section 7.6.16.

Therefore, under the same assumptions as in Theorem 7.10, Theorem 7.11 (in
conjunction with Theorem 7.10) implies there are three possible scenarios in an equi-
librium setting: either there is a unique equilibrium shadow price (with multiple
equilibrium allocations), or there is a unique equilibrium allocation (with multiple
equilibrium shadow prices), or there is a unique equilibrium allocation and shadow
price. These two theorems rule out the possibility of having two different equilib-
rium wholesale price vectors, @ and w/, that simultaneously induce different supplier

allocations and different supplier shadow prices for capacity (i.e., such that both

¢"(®) # ¢"(w') and A"(@) # A"(w') hold).

B 7.5 Retailer collusion.

Theorem 7.12 formalizes the idea that if there are more than two retailers and
they collude by offering pricing as if they were one firm, then they’d make more

profit in aggregate than they would from any equilibrium that induces a positive
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equilibrium supplier shadow price for capacity. Consequently, there exists a division
of the collusion profit such that every retailer would receive more profit than they

would from the equilibrium wholesale price that induces a positive shadow price.

THEOREM 7.12. Consider the two-stage game described in Section 7.1.1 with
more than one retailer (i.e., s > 2). Suppose there is an equilibrium wholesale
price vector w' that induces a positive shadow price \’(w') > 0. If the retailers
collude on pricing by setting prices as if they were one firm, then the aggregate

retailer profit would be larger than the aggregate retailer profit from price vector w'.

Proof. See Section 7.6.17.
However, does the supply chain’s profits increase or decrease when the retailers
collude? And will the supplier receive lower wholesale prices for every good when the

retailers collude? We leave these and other questions for future work.

B 7.6 Proofs

In order to not disrupt the flow of presentation, the proofs for our results in this

chapter are contained here.

7.6.1 Proof: The shadow price for capacity and the goods

ordered.

Proof of Theorem 7.1. First, we write the Lagrangian £(q,v1, - ..,Yn, A) for SUPPLIER-
PRIMAL(k,w):

n

n n
L@, 7159 A) = Y (wiBlmin(gs, D)) — ciai) + Y ¥igs + A (k -3 %’) :
=1 i=1 i=1

Note that m,(q) is strictly concave for ¢ € [0,;) x ---[0,1,) because each c.d.f.
F; is strictly increasing over [0,[;). Because the feasible set is convex and compact,
SUPPLIER-PRIMAL (k,w) has a unique solution.

The Karush-Kuhn-Tucker conditions for the retailer’s decision problem, SUPPLIER-
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PRIMAL(k,w), are:
th}(qt)——ct-i-’yt—)\:O, t=1,...,n; (725)

th(), t=1,...,n;

k“zn:(h >0
t=1

Ytqr = 0, t= 1,...,n; (726)

n
A (k— th) = 0; (7.27)
)\ZOa 'Yt?.Oa t=1a"'1n'

Because of the concavity of the objective function and the fact that the Slater condi-
tion is satisfied, the Karush-Kuhn-Tucker conditions are both necessary and sufficient
conditions for any primal optimal vector ¢ and dual optimal vector (7, ). As a re-
sult, since the primal problem has a unique solution, it can be shown that the dual
problem also has a unique solution, using these conditions. Let (¢*(w),y"(w), A¥(w))
denote the unique vector that satisfies the Karush-Kuhn-Tucker conditions.

When j € N\ Z(w), from equation (7.26) we have 7}(w) = 0. Therefore, from
equation (7.25) we have A\*(w) = w;F; (¢¥(w)) — ¢;. When ¢ € Z(w), from equa-
tion (7.25), we have A\Y(w) = w; — ¢; + ¥/ (w) > w; — ¢;. Thus, the conditions in
equations (7.6) and (7.7) hold.

Furthermore, if )7, ¢/'(w) < k, we have ¢*(w) = ¢*“(w). Therefore, when j €
N\ Z(w), from equation (7.25) we have \”(w) = w; Fj (¢%(w)) — ¢; = 0.

On the other hand, assume A*(w) = 0. When j € N\Z(w), we have w; F; (g¥(w))—
c; = 0 from equation (7.25). Therefore, qj(w) = ¢§(w). When i € Z(w), from equa-
tion (7.25), we have w; — ¢; < w; — ¢; + ¥Y(w) = 0. Thus, ¢*(w) = 0 = ¢*(w). And
so we have 30", qi'(w) = >, ¢/ (w) < k. O
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7.6.2 Proof: The shadow price for capacity as the minimum

of some set.

Proof of Corollary 7.1. Let A e A wFg)—a <X VteN, Y ¢ =

min {7, g(w),k}, ¢ €RT},

The vector ¢”(w) € R satisfies Y ;. , ¢ (w) = min{} ;| ¢¥(w), k}. Furthermore,
from equation (7.25), we have \"(w) = w; Fy(g¥ (w)) — ¢ + 1Y (w) = weFy(gf (w)) — ¢
when ¢t = 1,...,n. Therefore, we have A?(w) € A.

Assume there exists a A’ < AY(w) such that A’ € A. Then there must exist a
vector ¢ € R? such that Y ¢, = min{d>; , ¢¥(w),k} and w.Fi(q}) —c; < N
when t = 1,...,n. When j € N\ Z(w), from equation (7.25) we have \’(w) =
w;Fy (g9 (w)) — ¢;. Since X' < A’(w), when j € N \ Z(w), we have w; Fj(¢}) — ¢; <
w;Fy (¢ (w)) — ¢;, implying Fj(¢;) < Fj(gj(w)) and, thus, ¢; > ¢¥(w). There-
fore, yem i) > Tjemz €) = Sien 6 (w) = min {X2, g(w), K}, inmply-
ing >0, ¢ > min{d ,, ¢*(w),k}. But this is a contradiction. Thus, A\’(w) =

minAeA Ao O

7.6.3 Proof: \’(w) is nondecreasing as w; increases, and the

increase is bounded.

Proof of Theorem 7.2. Let A(w) ¥ {A | w;Fy(q) —c, <A Yt €N, Y1 q =

min {}; , ¢(w),k}, ¢ € R:}. Since w; < w} and w’; = w_;, we have ¢*(w) <
¢i'(w') and g3 (w) = g2(w') for any other good o # i. Therefore, min {> ", ¢*(w), k} <
min {> ., ¢*(w'), k}. ¥min {3} 7 g¥(w), k} = k, then A(w') C A(w) so that we have
min A(w) < minA(w’). And, from Corollary 7.1, we have A\?(w) < A’(w’). Other-
wise, if min {3 ; ¢¥(w), k} < k, then from Theorem 7.1 we have A?(w) = 0 so that
AY(w) < A¥(w’) because the shadow prices are nonnegative.

Next, we show that A”(w) < A(w’) holds if and only if the conditions ¢ € N\ Z(w')
and Y_; ; ¢i(w’) > k hold by proving the statement: A’(w) = A*(w') holds if and
only if i € Z(w') or 3 7, ¢¥(w’) < k holds.

First, we prove the direction: if i € Z(w’) or Y ;. ¢*(w’) < k holds, then
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N(w) = AU(w') holds. If 3"}, ¢i(w’) < k holds, then from Theorem 7.1 we have
A(w') = 0. Since A’(w) < AY(w’) and the shadow prices are nonnegative, we have
A (w) = A%(w'). When 7 € Z(w') and Y, ¢i(w’) > k hold, assume A’(w) < A’(w’)
holds, instead. Then, for any j € N\ Z(w), we have ¢j(w’) < ¢}(w) when either
j € N\ Z(w') (from equation (7.6)) or j € Z(w'). Since \*(w) < A\’(w'), from
equation (7.7), we have Z(w) C Z(w') so that N \ Z(w') C N\ Z(w). There-
fore, > ienzewn) G W) < Dicmzm) G (w) < k. From equation (7.27), we have
N (w') = 0, implying >, | ¢i(w’') < k (by Theorem 7.1). But this is a contradiction
since ., ¢#(w') > k holds. Thus, \’(w) = \(w').

Next, we show that A’(w) = AY(w’) implies ¢ € Z(w') or >}, ¢i(w') < k holds.
Assumes € N\Z(w') and Y, g#(w') > k hold, instead. Therefore, we have \V(w) =
A"(w') > 0 from Theorem 7.1. And equation (7.27) implies > ;e\ 7 45 (W) = k. If
i € N\ Z(w), then ¢/ (w') > ¢} (w) from equation (7.6) since w; < w;. If i € Z(w), we
also have ¢} (w') > ¢¢(w) = 0. Furthermore, equation (7.7) implies that for any good
t#4:te Z(w')ifand only if t € Z(w) (because w, = w; and A’(w) = A¥(w’)). Thus,
the sets Z(w) and Z(w') are identical unless ¢ € Z(w). Therefore, N \ Z(w') = (N \
Z(w))U{i}. And for any good j # i such that j € N\ Z(w') we have ¢} (w') = ¢¥(w)
(from equation (7.6)). Therefore, > . 7y @ (W) > 3 i 2wy 45 (w) = k. But
this is a contradiction. Thus, ¢ € Z(w’) or Y, ¢*(w’) < k holds.

Next, we prove inequality (7.9) holds. If \?(w) = A?(w’), inequality (7.9) follows.
If \(w) < AY(w'), theni € N\Z(w')and >} | ¢#(w’) > k hold, as proven. Therefore,
we have A”(w’) > 0 from Theorem 7.1 and equation (7.27) implies 3 _ . Mzw) 4G W) =
k. Assume the inequality (A\”(w')+¢;)/ (A" (w)+¢;) > wi/w; holds, instead. Therefore,
rearranging terms, (A’(w') + ¢;)/w; > (A’(w) + ¢;)/w; holds. Corollary 7.2, then,
implies ¢;'(w') < ¢{(w) and that for any j € N\ Z(w) such j # i, we have ¢¥(w') <
gj (w) (because (A\”(w') +¢;)/wj > (A”(w) +¢;)/w; holds). The inequalities ¢¥(w') <
¢ (w) and X\(w) < AY(w') imply Z(w) C Z(w') (from equation (7.7)). Therefore,
N\ Z(w') C N\ Z(w). And we have k = > jen\zn G (W) < 2 jen\z(w) 4G (w)- But
this is a contradiction. Thus, inequality (7.9) follows.

If the supplier prepares k units of good ¢ under w and w’, then, from equation (7.6),
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we have that (AY(w') +¢;)/w} = (A\Y(w) +¢;)/w; holds. If (A\(w')+¢;)/w] = (A (w)+
¢;)/w; holds, then, from Corollary 7.2, we have that ¢}(w') = ¢¢(w). Furthermore,
since w; < w}, we have A(w) < A’(w’). Therefore, as proven, we have that good i
is included in the supplier’s inventory under w’ (and thus w) and that the capacity
constraint is binding for the supplier under w'. From Theorem 7.1, we have A (w’) > 0
and equation (7.27) implies ), Mz@w) 33 (W') = k. Assume the inequality ¢j (w') < k
holds, instead of the equality ¢ (w’) = k. Then, there exists at least one other good
0 € N\ Z(w'), where o # i. Good i is included in the retailer’s order under both w
and w’, and A\?(w) < A’(w'), therefore, we have Z(w) C Z(w') (from equation (7.7)),
implying N \ Z(w') € N\ Z(w). And for any good j # ¢ € N\ Z(w), from
Corollary 7.2, we have ¢}(w') < gj(w) because (A*(w) + ¢;)/w; < (\(w') + ¢;)/w]
holds. Therefore, we have k = 3 i 7y @ (W) < ez 3 (w). But this is a
contradiction. Thus, the equality ¢/ (w') = k follows. O

7.6.4 Proof: The effect of a wholesale price increase on the

supplier’s inventory.

Proof of Corollary 7.4. From Theorem 7.2, we have A¥(w) < A¥(w'). Since w) =
wW,, we have (A (w)+c,)/wo < (A(w')+¢,)/w,. The inequality ¢*(w') < ¢¥(w), then,
follows from Corollary 7.2. Furthermore, from inequality (7.9), we have (AY(w') +
¢i)/w; < (A"(w) + ¢;)/w;. Therefore, from Corollary 7.2, we have ¢ (w) < ¢*(w').

First, we show condition (b) implies condition (a). If ¢/ (w) < k, then, from Theo-
rem 7.2, we have the strict inequality (A?(w’)+¢;)/w} < (A\(w)+¢;)/w;. Since the re-
tailer orders good % under w’, from Corollary 7.2, we have max {\*(w’) + ¢;, w!} < wl.
Therefore, max {A*(w') + ¢;, wi} /w, < max {\*(w) + ¢, w;} /w; holds. And, since
the c.d.f. Fj is strictly increasing over [0,[;), we have ¢¥(w) < ¢’(w') (from Corol-
lary 7.2). Furthermore, condition (b) and Theorem 7.2 imply A¥(w) < A*(w’). Since
w, = W,, we have (A*(w) + ¢,)/w, < (A*(w') + ¢,)/w),. If o € N\ Z(w), then, from
Corollary 6.2, we have max { A (w) + ¢,, w,} < w,. Therefore, max {A¥(w) + c,, w,} <

max {AY(w’) + ¢,,w,}. And, from Corollary 7.2, we have ¢®(w') < ¢°(w) because the
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c.d.f. F, is strictly increasing over [0, [,).
Next, we show condition (a) implies condition (b). Assumei € Z(w') or Yy, gi(w’) <

k holds, instead. From Theorem 7.2, we have A’(w) = A’(w'). Therefore, for any
good o # i, we have (A\*(w) + ¢,)/w, = (A*(w') + ¢,)/w, because w, = w),. From
Corollary 7.2, then, we have ¢*(w) = ¢?(w’). But this contradicts condition (a) when

0o € N\ Z(w). It can be shown that the set N \ Z(w) includes some good o # i
when >0 g¥(w’) < k holds. When 7, ¢i(w’) > k and i € Z(w') hold, we have

¢’ (w) = ¢?(w') = 0 because ¢¢(w) < ¢f(w') holds and ¢} (w) must be nonnegative.
But this contradicts condition (a) since ¢} (w) < k holds, yet ¢f(w) = ¢} (w'). Thus,
condition (b) holds. [

7.6.5 Proof: A retailer effects the price for capacity via its

induced allocation.

Proof of Theorem 7.3. Since the wholesale price vector w induces the supplier
to prepare z units of goods for retailer Y, we have that when the supplier solves
the convex program SUPPLIER-PRIMAL(k,w) in the decision vector g, the optimal
stocking quantity vector ¢"(w) is also the unique solution to the following convex

program in the decision vector g:

SUPPLIER-WITH-Y-GUARANTEE (k,x,w):

n

maximize Z (Wi E[Si(q:)] — ciqi) (7.28)

i=1
subjectto ¢; >0, i=1,...,n

Z%’:CL‘

i€Y

k—zn:%' > 0.
i=1
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Therefore, since the objective function in (7.28) is separable into the sum of two

independent expressions,

n
Z (wE[Si(@:)] — ciqi) = Z (w; EB[Si(q:)] — cigi) + Z (wiE[Si(g:)] — cigi) » (7.29)
i=1 iEY ie?
the order quantity vector gj-(w) is the solution to the following convex program in
the decision vector ¢:

SUPPLIER-RESTRICTED-TO-Y -PRIMAL (k,x,wy):

maximize Z (w; E[Si(g:)] — cis) (7.30)

i€Y
subject to ¢; >0, 1 €Y

(k—w)-ZinO.

3%

The dual problem in the decision variables <y (the shadow price vector for the
nonnegativity constraints) and A (the shadow price for the capacity constraint) is:

SUPPLIER-RESTRICTED-TO-Y -DUAL (k,z,wy):

minimize max Z (sz[Sz(Qz)] - CiQi) + Z’Yi(h + A ((k —z)— Z Qi)

{qG]RE? k=Y sev 020} i€y €Y i€Y
(7.31)
subject to % >0, i€Y

A2>0.

Note that SUPPLIER-RESTRICTED-TO-Y -DUAL (k,x,wy ) is identical to SUPPLIER-

DUAL(k—z,wy), when N =Y. Therefore, we have from Theorem 7.1 that SUPPLIER-
RESTRICTED-TO-Y -DUAL(k,z,wy) has a unique solution which we denote by
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Y (T Wy ), A(Z; wyr) ). Furthermore, Irom Corollary 7.1 we have that
v (@3 wy), \*(z; wy)). Furth from Corollary 7.1 we have th

A"(x;w,—,):min{)\thF’t(qt)—ctS)\ vieY, thzmin{Zq}f(w),k—x , qE]RI_,—_fI

teyY teY

(7.32)

Since z < k, there exists at least one good j € Y such that qj(w) > 0. Since the

vector g2-(w) is the solution to SUPPLIER-RESTRICTED- TO-Y -PRIMAL (k,x,wy),
from Equation (7.6) in Theorem 7.1, we have that

A (x5 wy) = wiFy (¢ (w)) — ¢j. (7.33)

Since the vector ¢*(w) is the solution to SUPPLIER-PRIMAL(k,w), from Equa-

tion (7.6) in Theorem 7.1, we also have that
A (w) = w; F; (q;’(w)) —¢j. (7.34)

Therefore, from Equations (7.33) and (7.34), we have that A\*(w) = \(z; wy).

Next, we prove the partial converse. Denote the solution to SUPPLIER-RESTRICTED-

TO-Y -PRIMAL(k,z,wy) by the vector ¢(z; wy). From Equation (7.6) in Theo-
rem 7.1, we have that for every good j € Y such that q}-’(m; wy) > 0,

Az, wy) = ij'j (q;-’(:v;wy)) — ¢j. (7.35)

Furthermore, from Equation (7.6), we also have that for every good 7 € N such that
g;(w) >0,
2 (w) = w; Fj (g} (w)) — ¢;. (7.36)

Therefore, since A\*(w) = A’(z; wy), from Equations (7.35) and (7.36), we have that
g; (w) = ¢} (z; wy) for every j € Y, implying that

Y gw) =" gz wy) (7.37)

jey jey

}.
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holds. Since \*(z; wy) > 0, from Theorem 7.1 it follows that ). ¢ ¢} (z; wy) = k—=z.
So that from Equation (7.37), we can conclude that 3 ;¢ ¢j(w) = k — z. Since

A*(w) > 0, from Theorem 7.1 we also have that >y gj(w) = k. Therefore, since

2jen @G (W) = 2y @ (W) + ey @7 (w), we have 3y gf(w) =z O

7.6.6 Proof: The supplier’s price for capacity is continuous

and increasing.

Proof of Corollary 7.5. Suppose 0 < k — >, .y q;'(w). Then, there exists an z
that satisfies 0 <z < k — ), .y ¢i(w). For any such z, we have ), ¢ ¢ (w) < k —
x. Therefore, since SUPPLIER-RESTRICT. ED-TO-?-DUAL(k,m,wy) is identical
to SUPPLIER-DUAL(k — x,wy), when N = Y, we have from Theorem 7.1 that
A(z;wy) = 0 when z satisfies 0 <z < k — ), v ¢'(w).

Suppose that z; and x4 satisfy max {k‘ - Y ey G w), 0} <z < 29 < k. We show
that A’(z1;wy) < AY(z2; wy). Assume that \(z2; wy) < A¥(z; wy) holds, instead.
Denote the solution to SUPPLIER-RESTRICTED-TO-Y -PRIMAL (k,z;,ws) by the
vector ¢g-(z;; wy) for i = 1,2. From Equation (7.6) in Theorem 7.1, we have that for

every good j € Y such that g (zs; wy) >0,
N (25 wy) = wiFy (g (zi; wy)) — ¢, (7.38)

for ¢ = 1,2. Because of our assumption on the cumulative distribution functions and

AV(z2; wy) < AY(x1; wyr), from equation (7.38), we have

Yo g(eiwy) <Y gl(awy). (7.39)
jey jeY
Since k — z2 < ),y ¢i(w), from Theorem 7.1, we have 0 < AV(x2;wy), imply-
ing that 0 < A”(z1;wy) holds too. Therefore both 3. ¢ ¢} (z2;wy) = k — x5 and
Zj€7 qj (z1; wy) = k— 1 hold. But then equation (7.39) implies that k —x; < k — 1,
so that 2o < z; holds. But this is a contradiction. Thus, the inequality \V(z; wy) <

AY(z2; wy) follows.
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Next, we prove A’(z;wy) is continuous when z € [0,%). Since A’(z;wy) = 0
when z satisfies 0 < = < k — >,y ¢i'(w), we need to show that \'(z;wy) is
continuous when z satisfies max{k — D ey q}‘(w),()} < z < k. Suppose that z
satisfies max {k — ),y ¢*(w),0} < = < k. Denote the inverse of \¥(z;wy) by
A7 [0, max,cpwy — ¢) — [max {k— Y,y ¢*(w),0},k). (Note this exists since
AY is strictly increasing and onto the set [0, max,.y w; — ¢;)). Pick any number
€ > 0. Consider the neighborhoods around z defined by the radiuses &, -
A~ max {\’(z; wy) — €,0}) > 0 and 8y & A~ Y(min {\"(z; wy) + €, max,.y w; — ¢, })—
x > 0. It can be shown that both §; and d, can not be zero. If either §; or 4, is zero,
consider the radius 6 & max {61,02} > 0, otherwise we set & & min {61,802} > 0.
Denote the ¢ neighborhood around a number z by Ns(z). It can be shown that if

2’ € Ns(z) N [max {k — 3,y ¢*(w), 0} , k), then X*(z'; wy) € N.(A\(z;wy)). O

7.6.7 Proof: The marginal price for capacity is increasing.

Proof of Corollary 7.6. From Corollary 7.5, when x satisfies 0 < z < k—) .y ¢;'(w)

we have _579(%157_) = 0 and when 7 satisfies 0 < z < k — ),y ¢'(w) we have
8/\”8(3:;10——) -0
—

Denote the solution to SUPPLIER-RESTRICTED-TO-Y -PRIMAL(k,x,wy) by
the vector ¢3(z;wy). Let Z(k,z,wy) & {i | ¢(x;wy) = 0} C Y be the set of
products that are not ordered in the supplier’s decision problem. Suppose x satisfies
max {k — 3,y ¢*(w),0} < z < k. Observe that the equation Yoy @ (@ wy) =k —
z holds. Therefore, we can express « via the equation z = k— > ey 47 (x; wy). Denote
the inverse of A¥(z;wy) by z”(A;wy). Since A’(z;wy) is strictly increasing and

Bx¥ (X;

-1
continuous, when %l exists it must be the case that —%@ = (%‘d)
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where the equations A’(z; wy) = A and 2¥(\; wy) = z hold. Furthermore,

0z” (\; wy) _ 0 v
o o | F 2.4

1
== Y TwTimEed) (7:40)

te?\Z(k,m,w?)

1
= > . (7.41)
1P\ ) wy - fi (g (z; wy))
(Equation 7.40 follows from Theorem 7.1 because from Equation (7.6) we have that

for every good j € Y such that g (zs; wy) > 0, the equation
N (z;wy) = wi F; (g (@ wy)) — ¢,

1

-1
A (zywsr)
holds.) Therefore, we have that ——= = Zte?\ Zhwy) W) when z

satisfies max {k - Yy ¢(w),0} <z <k
Suppose z satisfies max {k — >, .7 ¢¥(w),0} < z < k. Consider the supplier’s
problem SUPPLIER-RESTRICTED-TO-Y -PRIMAL (k,z,wy). Let A(k,z,wy) &of

{i € Z(k,z,wy) | \’(z;wy) = w; — ¢;} C Y be the set of products that were almost
Y Y
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ordered by supplier. Then, we have

696”(,(;)\\;_1”7) - 63)‘_ (k - g(s; wv))

=— > - . (7.42)

W; - v T; Wy
teAk,zwy)U(Y\Z(kewy)) 1 - fi (qF (25 wy))

1
N 2 we - fe (6} (25 wyp))

teA(ka,wp)U(Y\Z(kz,wy))
1 1
= + S —
Z w; - fi (qf (z; wy)) Z w - f:(0)

te?\Z(k,a;,u)?) teA(k,a:,w?)

(7.43)

(Equation 7.42 follows from Theorem 7.1 because from Equation (7.6) we have that

for every good j € A(k,z,wy) U (Y \ Z(k,z,wy)), the equation
(@ wy) = w;Fj (65 (73 wy)) — ¢, (7.44)

holds.) Therefore, we have that

-1

X (z; wy) _ Z 1 (7.45)

or~ w, - fi (¢ (z; wy))

tGA(k,z,w?)U(V\Z(k,m,w?))

when z satisfies max {k — 3, .y ¢¥(w),0} < z < k.

Suppose \Y(x; wy) > 0 and \Y(z; wy) # w;—c; for any i € Y. From Corollary 7.5,
we have that « satisfies max {k — 3,y ¢¥(w),0} < z < k. And from the definition
of A(k,z,wy) we have that A(k,z,wy) = 0. Therefore, from Equations (7.41) and

oz (Awy) 9z (Mwy)

(7.43), we have that —3

25— which implies that 8'\"(;;”2"‘_’) = 6’\’;:[“’7)'

From Corollary 7.5, we have A\Y(z; wy) is continuous at z, implying that z¥(X; wy)
is continuous at A (where the equations A’(z;wy) = A and z(A\;wy) = z hold).
Therefore, from equation (7.44), we have that ¢} (z'(\; wy);wy) is continuous at

. ¥ (Awy) 1 . .
X Since =GB = 37 o 2w o (-Tr— and the p.d.f. f; is continuous for
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z¥ (\wy)

every good t € Y, we have that 2 5 1s continuous at A since the set of goods

Y\ Z(k,z,wy) do not change for small changes in A. Therefore, wg;—-w——?—l is continuous
at z.

Suppose x satisfies the equation max {k — Y7 4 (w),0} <z < k and the re-
tailer is service constrained for good(s) Y. From equation (6.46), we have that for ev-
ery good t € Y\ Z(k, z, wy), the order quantity ¢ (z¥()\; wy); wy) is strictly decreas-
ing in A. Since the retailer is service constrained for good ¢, we have f; (¢} (z"(\; wy); wy))

: : . o 8av (X; 8zv (X
is strictly increasing in A. Therefore, = é/\ Y ) and & a()\_w? )

are strictly decreasing in

A. So that we have 8'\v§i‘)? ) and a’\vng“? ) are strictly increasing in x. [

7.6.8 Proof: Partitioning the set of wholesale prices by ‘ca-
pacity charge’.

Proof of Theorem 7.4. Suppose A > 0. Consider a wholesale price vector w from

the set

v | wlw=(+r—v 1en)/Fi(g) VtEN, ¢veRM
W(A)dzf e = (cr Y - 1yq 0})/ i(a:) a,” + . (7.46)

ZteN ¢ = min { (ZteN qg‘(w)) o=y + 5 1paso), k}

For this vector w there exist vectors ¢ and v that satisfy the conditions in (7.46)
which guarantee w’s membership in the set W(A). From the proof of Theorem 7.1,

we have that The Karush-Kuhn-Tucker conditions for the supplier’s decision problem,

SUPPLIER-PRIMAL(k,w), are:
wF@) —a+%-A=0, t=1,...,n; (7.47)

@207 t:]'"'"n;

k—zn:@ZO;
t=1

% =0, t=1,...,n; (7.48)
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2 (k—Zat) =0; (7.49)
t=1
A>0, >0, t=1,...,n.

Because of the concavity of the objective function and the fact that the Slater condi-
tion is satisfied, the Karush-Kuhn-Tucker conditions are both necessary and sufficient
conditions for any primal optimal vector ¢ and dual optimal vector (7, X) Consider

a particular value for g, 7, and X In particular, suppose we set:

7=q,
:Y\ = (71 : 1{Q1=0}a veeyYn 1{9n=0}))
X=A\

It can be shown that these values for g, 7, and Py satisfy the Karush-Kuhn-Tucker
conditions so that A’(w) = X = X (There are two main steps in seeing this. First,
consider the cases A = 0 and A > 0 separately. Then, for each of those cases, confirm
that the equations (7.47), (7.48), and (7.49) are satisfied for these values §, §, A when
the wholesale price for good ¢ is wy = (¢; + A — ¥ - 1g,=01)/Fi(q:).) Therefore, the
wholesale price vector w induces the retailer to have shadow price A for the capacity
constraint k, i.e., A”(w) = A.

Next, we prove the converse. Suppose a wholesale price vector w induces retailer
shadow price X for capacity k, i.e., A(w) = . Therefore, there exist vectors ¢ and
~ that along with X and wholesale price vector w satisfy the Karush-Kuhn-Tucker
conditions. Suppose we set: ¢ = ¢, vy =7, and A = X. It can be shown that these
values for g, v, and A enable w’s membership in W()) using the conditions in (7.46).

Therefore, w € W(A) = WQA). O
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7.6.9 Proof: Partitioning the ‘binding’ wholesale prices by

‘induced allocation’.

Proof of Theorem 7.5. Suppose we have an order/stocking quantity vector q €
Rlivl such that the condition ),y ¢ = k holds. Consider a wholesale price vector w

from the set

Alq) ™ {w |we = (ce+ A=Y 1)) /Fil@) YEEN, A€R,, 7€ RLN'} .
(7.50)
For this vector w there exists a scalar A and a vector ~ that satisfy the conditions
in (7.50), guaranteeing w’s membership in the set A(g). The Karush-Kuhn-Tucker
conditions for the supplier’s decision problem, SUPPLIER-PRIMAL(k,w), written
in the proof of Theorem 7.4, are both necessary and sufficient conditions for any

primal optimal vector g and dual optimal vector (¥, A). Consider a particular value

for q, 7, and X In particular, suppose we set:

=g,
Y= (7" Lg=0}--+Mn" L{g.=0});
A=A

It can be shown that these values for g, 7, and P\ satisfy the Karush-Kuhn-Tucker
conditions so that ¢"(w) = ¢ = ¢. (To see this: verify that the equations (7.47),
(7.48), and (7.49) are satisfied for these values g, 5, A when the wholesale price for
good ¢ is wy = (¢; + A — 1 - 1{g=0)/ Fi(q:).) Therefore, the wholesale price vector w
induces the retailer to order according to the vector g, i.e., ¢*(w) = q.

Next, we prove the converse. Suppose a wholesale price vector w induces retailer
to order according to the vector @, i.e., ¢"(w) = . Therefore, there exists a vector ¥
and a scalar A that along with g and the wholesale price vector w satisfy the Karush-
Kuhn-Tucker conditions. Suppose we set: g =¢q, v =%, and A\ = X. It can be shown

that these values for g, v, and A enable w’s membership in .A(q) using the conditions
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n (7.50). Therefore, w € A(q) = A(g). O

7.6.10 Proof: The shadow price for retailer Y’s aggregate
induced order.

Proof of Theorem 7.6. Recall the definition g;(x) L. f(z)/F(x) of the gener-

alized failure rate function. For each good i € Y, we have that

a{;((’ : (iﬁ‘?()?;chz)'E[Si(%)]) P (q")_(q“v(m’?»'(1+ [E( ))] fZ(( ))>

Each c.d.f. F; is strictly increasing over [0,;], continuously differentiable, and has
the IGFR. property, so that E[Si(q)]- fi(¢:)/(Fi(g:))? is continuous, nonnegative, and
increasing in ¢; (see Lemma 1 in Cachon (2004) for the proof). For good i € Y, we
define the order quantity g; in terms of ¢, the equilibrium induced order for good 7 in
the unconstrained setting (see equation (7.4)), as follows: g; & nin {¢¢,k}. Observe

that the function

( AV (:17; w—y) + ¢
pi _— —

is strictly concave for ¢; € [0, ;] (and that any value that maximizes the function and

) -Elsia)

respects the capacity constraint must be in the set [0,g;]). Therefore, the objective
function for Y-RETAILER-PRICING-PRIMAL (z,wy) is strictly concave for qy €
{q € Rf' | 0 < ¢; < @} which is a superset of the feasible set for Y-RETAILER-
PRICING-PRIMAL(z,wy) (since z € (0,min {}",., ¢f,k}]). Because the feasible
set is convex and compact, Y -RETAILER-PRICING-PRIMAL (z,wy) has a unique
solution.

Consider the Lagrangian £(gy, Y1, - - -, Yy}, A) for Y-RETAILER-PRICING-PRIMAL (z,wy):

L(qy, Y1,y A) = Z (pi _X (xl%‘:zz; * Ci) ‘E[Si(Q'i)]’l“Z ViGi+A (iB — Z%) .

ey €Y i€y

The Karush-Kuhn-Tucker conditions for retailer Y’s decision problem, Y-RETAILER-
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PRICING-PRIMAL (zwy), are:

E[Si(q)] fi(q)
Ft(‘]t) Ft(Qt)

peF (@) — (ce + XY (z5wy)) - (1 + ) +%—-A=0, teY; (7.51)

T q=0;

tey

Yt > O, tev.

Since z # 0, it can be shown that a constraint qualification condition on a particular
matrix (each row of which is the gradient of an effective constraint at the optimal
order vector) is satisfied. Briefly, the constraint qualification condition requires that
the matrix have rank equal to the number of effective constraints. See Sundaram
(1996, Chap. 6, Thm 6.10, p.165) for a detailed description of the constraint quali-
fication condition. Therefore, the Karush-Kuhn-Tucker conditions are necessary for
any primal optimal vector gy. Furthermore, because of the concavity of the objec-
tive function and the functions that define the constraints, the Karush-Kuhn-Tucker
conditions are sufficient conditions for any primal optimal vector gy .

As a result, since the primal problem has a unique solution, it can be shown that

the dual problem has a unique solution using these conditions. Let

(0 (@509)) .y » (0 (@505)) oy, A (w507))

denote the unique vector that satisfies the Karush-Kuhn-Tucker conditions.
When j € Y\ ZY (z; wy), from equation (7.52) we have v} (z;wy) = 0. Therefore,

from equation (7.51) we have
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When i € ZY (z; wy), from equation (7.51), we have
N (@wy) =pi — e = X' (z3wy) + 9 (G wp) 2 pi— ¢ — X (z;wp).

Thus, the conditions in equations (7.16) and (7.17) hold.
Furthermore, suppose z = Etey ¢f < k. Assume that the inequality

)\Y(m;wy) + A(z;wy) >0

holds, instead. Therefore, for good t € Y, if we substitute ¢} (z;wy) into equa-

tion (7.4) we have

E[Si(g; (z3wy))] | filai (z;wy))
F(q) (z;wy))  Filg) (z;wy))

ptFt(qty(x;wv))—ct<1+ )>0, t=1,...,n.

(7.53)

But this is a contradiction, because equation (7.53) implies that the unconstrained
supplier should stock more than ), ¢f units of good in aggregate. And, so we have
that the inequality

XY (z; wy) + A (z; wy) <0

holds when z =}, ¢f < k.

Suppose that z; and z; satisfy 0 < 21 < z2 < min{> ., ¢¢,k}. We show
that AY (z2; wy) + AV (z2; wy) < AY (z1; wy) + A¥(z1; wy). Assume that Y (z1; wy) +
X (z1;wy) < A (z2; wy) + AY(z9; wy) holds, instead. From Equation (7.16) in The-

orem 7.6, we have that for every good 7 € Y such that q}'(m,-; wy) > 0,

E[S;(qf (zi;wy))] fi(g) (i wy))

XY (@3 wy) +X" (245 wy) = piF; (g (25 wy)) —(G+A° (€5 wy))—= =

v suy) =258, (g (@i wy)) ~(e X" (@i wr) Fi(gf (zi;wy))  Fi(gf (ziwy))
(7.54)

for i = 1, 2. Because of our assumption on the cumulative distribution functions and

MY (z1;wy) + A%(z1;wy) < AV (z2; wy) + A¥(z2; wy), from equation (7.54), we must

.._cj,
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have q]’./(xg; wy) < q}'(xl;wy) for every good j € Y. So that

Tg = Zq}'(xg; wy) < }:q]‘-’(xl;w}—,) = 1. (7.55)

jey jey
But this is a contradiction because z; < z holds. Thus, the inequality AY (z2; wy) +
N(zo;wy) < AY(zy;wy) + A(z1;wy) follows. And so we have that the function
XY (z;wy) + X¥(z; wy) is strictly decreasing as z € (0, min {},.y ¢f, k}] increases.

O

7.6.11 Proof: Any induced aggregate order above z is not

optimal.

Proof of Corollary 7.7. Suppose that for every good ¢t € Y, the c.d.f. F; has the
IGFR property. Assume that the conditions

Y (min {Z &, k} ;w—,;) <0, (7.56)

tey
0<max{p;—c¢— X" (Q;wy) | €Y}, (7.57)

hold. From Corollary 7.5, we know AY(z;wsy) is continuous at z = 0. Further-
more, the cumulative distribution functions are continuously differentiable. There-
fore, from equation (7.57), we have that there exists some small positive value § <

min {3,y ¢f, k} such that the condition

n E[Si(9)] )Y | .
0< iFi (0) — (ci + AV (6 A1+ === Y
e { By 0) = (4 X Giw) - (14 Z A EL) i e
holds. And so, from Theorem 7.6, it follows that there exists a small positive value
& < 0 such that A\Y(Z;wy) > 0. Using a technique similar to our proof that A¥(z; wy)
is continuous (i.e., Corollary 7.5), it can be shown that AY (z;wy) is continuous for
z € (0,min{Y,.y ¢, k}]. And from Theorem 7.6, it follows that AY (z;wy) is

strictly decreasing because we know that AY(z;wy) is nondecreasing from Corol-
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lary 7.5. Therefore, from equation (7.56), we have that there exists a value Z, where
&<z <mn{}, ., k}, that satisfies the equation A (Z;wy) = 0. For any unit
above T that retailer Y induces the supplier to stock (in aggregate), the retailer incurs
a loss because the marginal profit on the z'* unit is upper bounded by A\Y (z; wy),
which is a negative number for any > Z. Therefore, retailer Y would never induce
the supplier to stock more than Z units of good(s) Y in aggregate. Furthermore, from
Theorem 7.6, we have that AY (z;wy) < 0when z =3,y ¢f < k and that AY (z; wy)
is strictly decreasing. Therefore, we have T <, ., ¢f.

Now assume that the conditions

0< Y <min {Z &, k} ;w?) : (7.58)

tey
0 <max{p;—ci— A (O;wy) | i€Y}, (7.59)

hold instead. From Theorem 7.6, we have that A¥ (z;wy) <Owhenz =3, ¢f <k
and that AY(x;wy) is strictly decreasing. Therefore, from equation (7.58) we have
min {65, k} < 3 ,cy ¢, implying min {3,y ¢, k} = k. Suppose we define T
to equal min {Ztey q5, k} = k. It follows trivially that retailer Y would never induce
the supplier to stock more than Z units of good(s) Y in aggregate because the supplier
has a capacity constraint of k£ units.

Finally, assume the condition
max {p; —¢; — A" (Q;wy) | €Y} <0,

holds instead, and that we define ) Therefore, for any unit above Z that retailer
Y induces the supplier to stock (in aggregate), the retailer incurs a loss because the
marginal profit on the z*™ unit is upper bounded by A\Y(z;ws), which is a negative
number for any z > . And so, retailer Y would never induce the supplier to stock

more than Z units of good(s) Y in aggregate. [
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7.6.12 Proof: Optimal aggregate order for a fixed wy.

Proof of Theorem 7.7. The (Weierstrass) Extreme Value Theorem says that for
any continuous and real function f on a compact metric space X, there exists a point
z* € X such f(z*) = sup,cx f(z). (Rudin 1976, Theorem 4.16) From Corollary 7.5,
we have that \Y (Ztey Gs; w7) is continuous on the set of feasible capacity allocation
vectors, Q & {g e R | Y1, < k}. Therefore, we have that retailer ¥’s ob-
jective function, Y,y (pi — (A (X ey @ wy) + &) /Fi(a:)) - E[Si(g:)], when solving
Y-RETAILER-INDUCING-AGGREGATE-ORDER (wy), is continuous on @ (be-
cause it consists of a finite sum of products of continuous functions). The set @ is
closed and bounded (and hence compact) and is a metric space (under the Euclidean
metric). Therefore, applying the (Weierstrass) Extreme Value Theorem, we have that
an optimal aggregate order quantity z¥ (wy) and optimal induced order vector ¢* (wy)
exist for the problem Y-RETAILER-INDUCING-AGGREGATE-ORDER (wy).

From Theorem 7.6 we have that for any fixed value x, the optimal vector of goods
that retailer Y induces the supplier to stock is ¢ (z; wy), the solution to the decision
problem Y -RETAILER-PRICING-PRIMAL(xz,wy). Therefore, we can re-express

the objective function

Z (p,— X (Eteg;é;’f?) i CZ) - E[Si(q)]

for the problem Y -RETAILER-INDUCING-AGGREGATE-ORDER (wy) as

A (z; wy) + Ci) y
pi— = - B|Si(g (z5wy
> (= ity ) Pl )
so that the only decision variable we need to solve for is z.

Recall from Corollary 7.6 that A\”(z; wy) is not differentiable everywhere. However,
from the proof of Corollary 7.6, we know that both the derivative from the right and

left do exist for A(z; wy) (and are equal almost everywhere except at |Y| — 1 points
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at most). Therefore, we can write

__3_ '__)\v(:z:;w7)+ci (oY (22w
o (Z (n- Fels) - Bisial (o ym)

_ 2 ((n- m} . BlSia! (x;w-f))l)

E[Si(af (m;wv))])
Fi(g} (z;wy))

& (-5 w5

9 (v
_6?()\ (z; wy) -

>
i€Y\ZY (z;wy)
_ X (zwy)  E[Si(g (z;wy))]
Oz~ Fi(g} (z;wy))
_ Y (1 wer Y (s E[Si(g) (z;wy))] ) |
= o (PR e - (s )
_ X (zwy)  E[Sig] (z;wy))]
Oz~ Fi(gY (z; wy))
_ Y (o). 08 ON(@wy) ElSi(g (z;wy))]
_ieY\Z%c;w,w?))\ (@) Oz~ Oz~ Fi(q} (z; wy))

dgY

or~

=( 5 g‘;i‘_’)-mx;w?)—( 5 Eg?i(%Y(f;w))]),aAv(x;w)

€Y\ Z(k,x,wy") i€Y\Z(k,z,wy) E(Qz (.’IJ, w?))

N (@) — ( E[si(qnx;w?))]) OX(zwy)
ieY

Fi(q (z; wy)) Oz~ (7:60)
Since T # 0 and the cumulative distribution function for demand of each good y € Y
has the IGFR property, from Corollary 7.7 we have that A\Y (z;wy) is nonnegative
for every z € [0,Z]. Furthermore, from Theorem 7.6 we have that AY (z;wy) is
strictly decreasing as x increases. Since the retailer is service constrained for good(s)
Y, from Corollary 7.5 and Corollary 7.6 we have that Mﬂ_"—) is nonnegative and
nondecreasing. Furthermore, from Theorem 7.6 we have that for any good i € Y,
the function ¢} (z;wy) is nondecreasing as x increases, when the c.d.f. F; has the

IGFR property, so that the function E[S;(¢} (z; wy))]/Fi(q} (z; wy)) is nondecreasing

oz~
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as z increases. Therefore, from equation (7.60), we have that retailer Y’s objective
function is concave in the induced aggregate order . And so, equation (7.19) holds.

From the proof of Theorem 7.6, we have that equation (7.20) holds. O

7.6.13 Proof: Characterizing W2 (wy).

We apply Berge’s Maximum Theorem (Proposition 6.1) in the proof of Lemma 6.1,
below. See Section 6.6.13 for a statement of that Theorem. Now we state and prove

Lemma 7.1 (for use in the proof of Theorem 7.8 and Theorem 7.9).

LEMMA 7.1. Retailer Y ’s objective function,

v (wy, wy) & D (s~ wi) - E[Su(a? (wy, wy)))

when solving Y -RETAILER (wy), is continuous in the vector (wy, wy).

Proof of Lemma 7.1. First, we show that for any good ¢t € N, the supplier’s
induced stocking quantity g} (wy,wsy) is continuous in the vector (wy,wy). Denote
the set of feasible order quantity vectors by @Q &f {geRy | >0, q <k} and the
set of feasible wholesale price vectors by W & [L.cnlce, pe]. Consider the function
f: Q@ x W — R defined by the equation f(q,w) =] Yo wiE[Si(g:)] — cigi and
the correspondence D : W — 29 defined by the equation D(w) = Q. For any
good t € N, the expected sales E[S;(q;)], when the supplier stocks ¢ units, equals
@ Filq) + [) - filz)de = [ F(x)dz (by using integration by parts). Since
Fy(z) is continuous on @, we have that E[S;(¢:)] = [ Fi(z)dz is continuous on
@ (Rudin 1976, Theorem 6.20), so that the function f is continuous on Q x W
(since f involves finite sums and products of continuous functions). Furthermore, the
correspondence D is compact-valued and continuous, because for any wholesale price
vector w € W the equation D(w) = @ holds. Therefore, from Proposition 6.1, we
have that the correspondence D* (as defined in Equation (6.63)) is compact-valued

and upper-hemicontinous on W. However, every order quantity vector in the set

D*(w) is a solution to SUPPLIER-PRIMAL(k,w) and in the proof of Theorem 7.1,
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we showed that SUPPLIER-PRIMAL (k,w) has a unique solution, ¢/ (w). Therefore,
D*(w) is single-valued (for any w € W) and equals ¢f (w). Since D* is single-valued
and upper-hemicontinous on W it must, therefore, be continuous on W, implying
that the function ¢ is continuous on W. Therefore, the function E[S,(¢} (wy, wy))]
is continuous on W. Furthermore, since retailer Y’s profit 7y (w) is a finite sum of
products of continuous functions on W, the function 7y (w) is also continuous on
w. O
Proof of Theorem 7.8. The (Weierstrass) Extreme Value Theorem says that for
any continuous and real function f on a compact metric space X, there exists a
point z* € X such f(z*) = sup,cx f(z). (Rudin 1976, Theorem 4.16) Since, the
hypercube [ ],y [c:, ] is closed and bounded (and hence compact) as well as a metric
space (under the Euclidean metric), and since the retailer’s objective function is
(real) continuous in its decision vector wy (from Lemma 7.1), we, therefore, have (by
applying the Extreme Value Theorem) that retailer Y can attain the supremum of
its objective function (over its constraint set) from a vector in its constraint set, i.e.,
the hypercube [],.y [ct, pi], implying that the solution set W' (wy) is non-empty.
From the proof of Theorem 7.7, we have that when retailer Y solves Y -RETAILER-
INDUCING-AGGREGATE-ORDER (wy ), there exists an optimal (and unique) ag-
gregate stocking quantity z¥(wy) and an optimal (and unique) induced capacity
allocation vector ¢ (wy). Therefore, from equation (7.14), we have that the set
WY (zY (ws); wy) is non-empty. Furthermore, for every good j € Y\ ZY (z¥ (wy); wy),

we must have
(¢ + X(a" (wy); wy))/ Fy (g (a7 (wy); wy)) < pj, (7.61)

otherwise, the quantity =¥ (wy) and the vector ¢¥ (wy) would not be a solution for
Y-RETAILER-INDUCING-AGGREGATE-ORDER (wy) (because retailer Y could
increase the value of the objective function by choosing the induced stocking quan-
tity for good j to be zero, if equation (7.61) did not hold for good j). There-

fore, for every wholesale price vector w' € WY (zY¥ (wy); wy) and for any good j €
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Y\ Z¥(2¥ (wy); wy), we have ¢; < wj < p; from equation (7.14). Also, from
equation (7.14), we have that there always exists a wholesale price vector w' €
WY (z¥ (wy); wy) such that for every good i € ZY (z¥ (wy); wy), we have w) = ¢;.
Therefore, we have that the set WY (z¥ (wy); wy) N [1,cy s pi] is non-empty.

Next, we show that W (wy) € WY (¥ (wy);wy) () Tleylct: pi]. Consider any
wholesale price vector wy € Wy (wy) for goods Y. From the constraints of Y-
RETAILER (wy ), we know that wy € [],cy[ce, pe]). Assume that wy ¢ WY (a¥ (wy); wy).
From Theorem 7.1, we have that the objective function for Y-RETAILER (wy) sat-

isfies

D (i —wi) - E[Sig(w))] = Y (b — (\(w) + &) /Fi(q! (w))) - E[Si(q! (w))].
i€y i€y
(7.62)
And from Theorem 7.5 and equation (7.14), we have that for any induced order quan-
tity vector gy that maximizes the objective function of Y-RETAILER-INDUCING-
AGGREGATE-ORDER (wy) subject to its constraints, there exists a wholesale price
vector wy € WY (X, @i wy) N [l,eyles, pi] that satisfies

> \p ( (/\” (Z 9 Wy ) + ct> /Fz-(q;)) E[Silai)] =) (pi = w))-BISi(g} (wh, wy))).
i€y tey ey (7.63)

From our assumption that wy ¢ WY (z¥ (wy); wy), we have
Y (pi—w)-E w))] < Y (ps = wi) - E[Si(g} (wh, wy))]
ey €Y

so that wy ¢ WY (wy). But this is a contradiction. Thus, we have

wy € WY (z¥ (wy); ws) N H [ct, pr).-
tey

Next, we show that WY (¥ (wy); wy) ) [leylc, ) € WE(wy). Consider any
wholesale price vector wy € WY (¢¥ (wy);wy) () [Leylee pe) for goods Y. Then,

there exists a vector ¢y of order quantities such that for any good i € Y, ¢/ =
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q¥ (W, wy) and equation (7.63) holds. Assume that w} ¢ W (wy). Then, there

exists a wy € [],cy[ct, pe] such that

Y (i —wi) - ElSia(w)] > Y (ps = wf) - B[Si(q (wy, wy))):

ieY ieY

But, since A*(w) = X (3 ,cy ¢ (w); wy) (due to Theorem 7.3), from equation (7.62)

we have
Z (pi — wi)-E[Si(g] (w))] = Z (Pi = (Av (Z qf(w);w) + Ci) /F; (Qf(w))) -E[Si(q; (w))].
i€y i€y tey

(7.64)

Therefore, from equation (7.63), we have

3 (pi - (Av (}j q:<w>;w7) +) /F, (q?(w))> . B[Si(q} (w))

i€y tey

is strictly larger than

> (pz‘ - (A” (Z QQ;wv) +C¢) /Fi(q{-)) - E[Si(g;)]-

€Y teY

But, this is a contradiction because wy € WY (z¥ (wy);wy) (| [leyle:, pe] and the
vector ¢y (w) is in the feasible set of Y-RETAILER-INDUCING-AGGREGATE-
ORDER (wy). Thus, we have w, € W (w).

Finally, we show that the set WY (z¥ (wy); wy) () [l,eylce p) (as defined in equa-
tion (7.14)) is convex. Consider any two wholesale price vectors a,b € WY (z¥ (wy); wy)
and any real number 7 € [0,1]. For every good j € Y \ ZY¥ (z¥ (wy); wy), we have
a; = b; (from equation (7.14)). Furthermore, for every good i € Z¥ (z¥ (wy); wy), we
have n-a;+(1-n)-b; > min {a;, b;}. Therefore, ¢} (n-ay+(1—n)-by, wy) = ¢ (ay, wy),
implying that the wholesale price vector - a;+(1—n)-b; € WY (¥ (wy); wy). There-
fore, the set WY (z¥ (wy); wy) is convex, and WY (z¥ (wy); wy) () [Leylee pi] is also

convex since it is the intersection of two convex sets. [
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7.6.14 Proof: Existence of an equilibrium when s retailers

compete.

In this proof we apply Kakutani’s Fixed Point Theorem (Proposition 6.2). See Sec-
tion 6.6.14 for a statement of that theorem.

Proof of Theorem 7.9. Suppose there are s > 2 retailers identified by the sub-
sets of goods they offer: Yi,...,Y;. Denote the set of feasible retailer wholesale
price vectors by W % [Lienlct, pe]. Consider the retailer best response correspon-

dence W™ : W — 2% defined as the s-ary Cartesian product over the s retailer

best response mappings. Namely, for any wholesale price vector w € W, WP (w) o
Wi(wy,), - W (wy,)) = {(wy, - wy,) | wy € Wil(wy,), ..., wy, € W (uwy,)}-

In order to show that an equilibrium exists, we will apply Kakutani’s fixed point theo-
rem to the retailer best response correspondence W : W — 2W. First, observe that
the set W C R" is non-empty, compact, and convex. Furthermore, from Theorem 7.8,
we have that for any retailer Y C N that faces competing wholesale prices wy, the
best response mapping W (wy) is non-empty and convex’, implying that W (w) is
non-empty and convex.

Finally, we show that the correspondence W is upper hemicontinuous. Assume
WP is not upper hemicontinuous. Since W is compact, we have that the correspon-
dence WP is not closed.® Therefore, there exists wholesale price vectors @,z € W
such that the sequence {w'} of wholesale price vectors converges to @ and the se-
quence {z'} of wholesale price vectors satisfies 2! € WP (w!) and converges to z, yet
z ¢ WP (w). Therefore, if we denote retailer Y’s profit by my (wy, ws) &f Y ey (Di—
w;)E[Si(q} (wy, wy))], there exists some retailer Y, (a € {1,...,s}) and some whole-
sale price vector Wy, € [y, [ci, p] such that 7y, (Zy,, Wy, ) < 7y, (dy,, @y, ). There-

fore, there exists an € > 0 such that

WYD.(ZYG7’LD?Q> + €< 7rYa (’LDYGJ ’(D?a) - €. (7'65)

"Convexity follows from our assumption that the retailers are service constrained for good(s) Y, and the
cumulative distribution function for demand of each good y € Y has the IGFR property.

8See Border (1989) for the following result: Consider sets D C R, R ¢ R™ and the correspondence
C:D — 2% If R is compact and C is closed, then C is upper hemicontinuous.
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Retailer Y,’s objective function 7y, (w) is continuous on W (see Lemma 7.1), therefore
there exists an integer m such that for [ > m, we have |7y, (Zy,, @y, )7y, (24, wt )| <
e. So that the inequality 7y, (2}, ,w} ) < my,(Zy,,Wy,) + € holds. Therefore, from

Equation (7.65), we have
Ty, (2y,, Wy ) < my, (by,, By,) — €. (7.66)

Because of the continuity of retailer Y,’s objective function, there also exists an integer
o such that for [ > o, we have |y, (dy,,0y,) — 7rya(u“)ya,w’70)| < €. So that we
have 7y, (dy,,wy,) — € < 7y, (’lf}ya,’wl?a). Therefore, from Equation (7.66), for I >
max {m, o}, we have

Ty, (Zi/a, 'U)l?a) < Ty, (’lz)ya, w’va) (767)

But, this is a contradiction because z! € W™ (w'). Therefore, the correspondence
WY is upper hemicontinuous. And, therefore, by applying Kakutani’s fixed point
theorem to the retailer best response correspondence WP, we have that there exists

a vector w® € W of wholesale prices for all n goods, such that w® € WP (w®). O

7.6.15 Proof: Unique equilibrium shadow price for capacity

when s retailers compete.

Proof of Theorem 7.10. Suppose there is one retailer (i.e., s = 1) denoted by
the set N of goods offered. The (Weierstrass) Extreme Value Theorem says that
for any continuous and real function f on a compact metric space X, there exists
a point z* € X such f(z*) = sup,cx f(z). (Rudin 1976, Theorem 4.16) Since,
the hypercube [],.ylct, ] is closed and bounded (and hence compact) as well as a
metric space (under the Euclidean metric), and since retailer N's objective function
my(w) & Y ien (Pi — wi)E[S;(q?(w))] is (real) continuous in its decision vector w
(from Lemma 7.1), we, therefore, have (by applying the Extreme Value Theorem)

that retailer V can attain the supremum of its objective function (over its constraint

set) from a vector in its constraint set, i.e., the hypercube [1.enlct> pe], implying that
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a solution exists.

Next, we show that when there is one retailer (i.e., s = 1) every solution w to the
retailer’s decision problem in the first stage induces the supplier to have a shadow
price AV(w) = 0. Assume that some solution vector w' induces a positive retailer
shadow price A(w’) > 0 instead. From Theorem 7.5, we have that there exists
another wholesale price vector @ such that the supplier allocates the same amount
as under w’ (i.e., ¢"(@) = ¢*(w’)), but the shadow price \¥(@) = 0. Therefore, from
Theorem 7.1 we have that w; < w] for every good i that the supplier stocks so that
mn(w') < wn(W). But this is a contradiction because w' is a solution vector for the
retailer’s decision problem in the first stage. Thus, it follows that every solution w to
the retailer’s decision problem in the first stage induces the supplier to have a shadow
price A\’(w) = 0.

Suppose there is more than one retailer (i.e., s > 2). We denote retailer ¢ by
the subset Y; of goods offered. Furthermore, suppose that the retailers are service
constrained for goods N, the demand for each good ¢ € N has the IGFR property,
and Assumption 7.1 holds. We show that every equilibrium wholesale price vector
w induces the supplier to have the same shadow price which we denote by A®® (i.e.,
AV(w) = X4). Assume that instead we have two distinct equilibrium wholesale price
vectors, w’ and @, but that they induce different shadow prices for the supplier’s

capacity (i.e., AY(w’) # AY(@)). Without loss of generality, suppose
0 < A(w') < AY(w). (7.68)
Recall from Section 7.4.3 that the set

~ def ~
L(g"(®),¢"(w)) S {l € {L,...,s} | D g/ (@) > > g'(w))}
i€y i€y
denotes the retailers that have a larger share of the supplier’s capacity under wholesale
price vector W when compared to the allocation under wholesale price vector w'.

If the two distinct wholesale price vectors induce the supplier to make the same
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allocation, i.e., ¢"(W) = ¢"(w'), then the set L(q"(w), ¢"(w')) is empty, otherwise the

set L{q"(w), ¢"(w')) must be nonempty because the equation

Yo @w) <D @) =k . (T69)
ieN ieN
holds (which follows from equation (7.68) and Theorem 7.1).
Consider the case when the set L(¢"(@), ¢”(w’)) is nonempty. For the purposes of
this proof only, we define T % min {ZteY q, k} For every retailer | € L(q*(w), ¢*(w")),

from Theorem 7.7, we have that

E|S; f’x,u?y— N (z
o —sup{a:emxm"l( o7 — (2 e "”) (50 )20}.

i€y, i€y T; Wy))

(7.70)

From Theorem 7.6 (which implies that the function \¥(z; wiﬁ) is strictly decreasing
as ¢ € (0,min {3,y ¢f,k}] increases) and Theorem 7.7, we have that for every

retailer | € L{q"(W),q"(w')) the equation

E[Si(q;" (zwp))]  OA (w3 )
qu(w'>=inf{xe[o,o:~]|w(wwz)—(Z mq;( ‘ ) 130}

i€y, iev: T;we)) Ozt
(7.71)
holds. From Assumption 7.1 we have
E[S;(¢¥ (W ONY(x; Wy
3 (Z ][? (¢} wm) , é ) . -
leL(q(@),q°(w")) \i€Y; (g} () T =3 ey, 4 (D)

’ ONY(z; w;—l)
Z (Z ) ) T 9t

leL(g¥(@),g¥ (w’)) Y

IineYl q; (w')

Therefore, there exists a retailer I € L(g" (@), ¢"(w')) such that the equation

E[Si(g¢(@))] | ON(x;05) E[Si(q" (w"))] _BA”(w;w;—,l:)
(Z Fi(g} (w)) ) Oz~ m:zieyiq;(mz 2 Fi(g¥ (w")) oz*

ieY; icY;

2=y, 4 (w)

(7.73)



SECTION 7.6. PROOFS 215

holds. And so we have

(7.74)

“":EieYi q; (W)

[ ElSi(g¢@)] | 0N ()
2 Fi(q} (@) Oz~

0< N[ g¥(@); ty;
i€Y; i€Y;

N A
<,\Yz Zqi(w);wyi - 1[311(((113(50,);)} . e

i€y; i€Y;

=T iey, (@)

(7.75)

<0. (7.76)

(Equation (7.74) follows from equation (7.70). Applying Theorem 7.6 and noting the
equations (7.68) and (7.69), we have AYi (ZieYi q}’(’&?);f&g) <\ (Zleyl q}’(w’);w;—i)
holds. Therefore, from equation (7.73) we have equation (7.75). And, equation (7.76)
follows from equation (7.71).) Notice that equation (7.76) leads to a contradiction,
0 < 0. Thus, it follows that every equilibrium wholesale price vector w induces the

supplier to have the same shadow price which we denote by A®? (i.e., A’(w) = A°9).

O

7.6.16 Proof: Unique capacity allocation when s suppliers

compete.

Proof of Theorem 7.11. Consider the case when the supplier allocates capacity
for at least two retailers when offered wholesale price vector w’. Assume that the

equation
AY(@) > A(w') + min {my,(w') | j € {1,...,s}, ;N (N\ Z(w)) #0} (7.77)

holds, instead, for two equilibrium wholesale price vectors w and w’ that induce the
same supplier capacity allocation (i.e., ¢*(w) = ¢*(w’)) but induce shadow prices for

capacity satisfying A\’(w') < AY(w). Consider any retailer Y; such that

d € ar min (). -
gje{l ..... s}, V3N(N\Z(w'))#0 my; (w ) ( )
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We show that retailer Y; will deviate from the wholesale price vector Wy, when the
wholesale price vector for the other goods Y is held fixed at Wy, Since the two
equilibrium wholesale price vectors @ and w’ induce the same capacity allocation
(i.e., ¢°(w) = ¢'(w')), from the proof of Corollary 7.6 (see equation (7.45)) and

Theorem 7.6 we have that the equation

B[Si(a:(@))] ) X(z: D)
(Z Fa!(@) ) 6z~

i€Yy

E[&(qf(w’))])?f\"(w;w&—)

> i : .
m=EiEYd q (@) (iEYd E(q; ('LU’)) 8:17 m=zieyd ‘12’ (w')
(7.79)

holds. Furthermore, since ¢*(@) = ¢”(w’) holds, from Theorem 7.3 and Theorem 7.6

we have that the equation

(Z q; (W); w ) + AV (@) < AY (Z ¢’ (w'); w—) + A¥(w'). (7.80)
i€Yy i€Yy
holds. Therefore, we have

(@) & 2ve E[Si(q(@))] |  0A"(z; Wy;)
= (Zq’ ) (Z Fla (@) ) e

€Yy i€Yy

< A% (Z qf(w')mfﬁ;) + () = (@)

€Yy
[ ElSi@ @)\ V(@5 wp)
(Z Fi(g;(w)) ) da-

i€Yy

=5y, (@)

E=Zieyd Q,y('w')
= X(w) + my (W) — X'(@)
<. (7.81)

Equation (7.81) follows from equation (7.77). But this is a contradiction because,
according to Theorem 7.7, retailer Y; would deviate from the wholesale price vector

v, when the wholesale price vector for the other goods Yj is held fixed at tT)?; Thus,
equation (7.23) follows.

Consider the case when the supplier allocates capacity to only one retailer (i.e.,
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retailer Y') when facing wholesale price vector w’. Assume that the equation
AY(@) > A¥(w') (7.82)

holds, instead. Retailer Y’s objective function is my (w) & Y ey (Pi—wi) E[Si(gf (w))].
Since ) ey ¢ (W) = Y ey @' (w') = k, from Theorem 7.7 we have ¢} (@) = ¢ (w') for
every good i € Y. Therefore, from Theorem 7.1 we have that w; > wj] for every good i
that the supplier stocks so that my (@) < my(w’). Observe that my (w') = 7y (W}, Wy)
since A’(w') = A’(wy,cy) (for an equilibrium w’) implying A*(w') = A’(w},, Wy)
(using Theorem 7.4). And, so we have my (@) < my(wl,Wy). Therefore, retailer
Y prefers wholesale price vector w}, over Wy when the other good(s) Y have fixed
their wholesale price vector to be @y. But this is a contradiction because @ is an

equilibrium wholesale price vector. Thus, it follows that A\*(@) < A¥(w’). O

7.6.17 Proof: Retailer collusion.

Proof of Theorem 7.12. Denote retailer Y’s objective function by the function
my(w) & > ien (i — wi) E[Si(gf (w))]. From Theorem 7.5, we have that there exists
another wholesale price vector @ such that the supplier stocks the same amount as
under v’ (i.e., ¢*(w) = ¢*(w')), but the shadow price A”(@w) = 0. Therefore, from
Theorem 7.1 we have that w; < w] for every good 7 that the supplier stocks so that for
any retailer Y we have my(w') < my (). Furthermore, from Theorem 7.10 we have
that for the two-stage game with one retailer any equilibrium wholesale price vector

induces a shadow price of zero units. Therefore, if w* is a solution to (Y U...UY;)-

RETAILER (see Section 7.1.2), then we have

Y @) < mw?).

So we can conclude that

Z'/ryt(w') < Z?Wt(w*). O
t=1 t=1
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Conclusions and future work

The “accepted wisdom” in the supply contracts literature is that in single sup-
plier/single retailer situations, the supplier has no incentive to set a wholesale price
that will maximize the channel’s profits. Thus, simple contracts based on wholesale
price are considered inefficient. This observation has motivated the study of (the
harder to implement) risk-sharing contracts which allow for flexible allocation of the
(optimal) profit. The first half of our thesis focuses on coordination and demonstrates
that when the supply channel is resource constrained, wholesale price contracts can
be as efficient as risk-sharing contracts and even somewhat flexible in allocating chan-
nel profit. We show that this efficiency result holds regardless of the supply channel’s
mode of operation (push or pull). Intuitively, the efficiency and profit-allocation flex-
ibility of risk-sharing contracts are derived, in part, from additional contract param-
eters. However, when a supply channel is resource constrained, the inherent resource
parameter (e.g., capacity or budget), is sufficient for enriching a wholesale price con-
tract to have the benefits of a risk-sharing contract. More generally, we find that
resource parameters can enhance the efficiency properties of risk-sharing contracts
too.

The second half of our thesis focuses on competition rather than coordination. We
consider two supply channels (one operating in push-mode and the other operating in
pull-mode) each with one newsvendor with limited capacity and firms that compete
for that capacity in an equilibrium setting. After conducting some comparative statics

and analyzing each game’s ‘geometry’, we show that the equilibrium setting oftentimes

219
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creates an endogenous valuation for the newsvendor’s capacity. And we show that
when the firms collude against the newsvendor, they will decrease the value of the
newsvendor’s capacity to zero.

Before we describe some paths for future work, we highlight some of the ideas

from this thesis.

B 8.1 Resource parameters versus contract param-

eters

One of the reasons that revenue-sharing, buyback, and an assortment of other
contracts are able to coordinate the retailer in an unconstrained setting is because
those contracts have two or more parameters. Intuitively, the ‘flexibility’ of those
parameters creates contracts where the retailer has an incentive to order the system-
optimal amount and that allows the supplier to earn a profit. Interestingly, our model
also introduces another ‘parameter’, capacity. But capacity is not part of the contract.
Rather it is part of the system. So instead of introducing complexity into the contract
(with another contract parameter) one should check if an inherent resource parameter
(such as capacity) can lead to the use of simpler contracts.

In particular, if demand is large enough relative to capacity for the channel’s
problem, then wholesale price contracts that coordinate the channel and allow both
the supplier and retailer to profit exist. Consequently the potential to reach a channel
optimal outcome in a negotiation setting exists. Also, demand and capacity are both
levers in practice. Therefore, if demand is not large enough relative to capacity
for a wholesale price contract to be efficient, demand can increased (e.g., through
marketing) so that a simple wholesale price contract is efficient.

Resource constraints are a part of many supply channels. The first part of this the-
sis shows that taking them into consideration in the analysis is important in assessing

the actual efficiency of contracts for constrained channels.
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H 8.2 Extra flexibility in allocating profit

One of the problems with wholesale price contracts in an unconstrained setting
is that they do not provide any flexibility in allocating the channel-optimal profit.
In Section 3.2, we show that in a constrained setting wholesale price contracts offer
some flexibility in allocating the channel profit without sacrificing coordination. An-
other lesson for constrained channels is that buyback and revenue sharing contracts
still coordinate the channel (see Section 3.3.1). And those contracts coordinate the
constrained channel for a larger set of parameters than for the unconstrained case,
gaining some extra flexibility in allocating the channel-optimal profit for a given level

of risk.

M 8.3 Efficiency loss

Furthermore, in the Stackelberg game (Section 2.3) where the supplier acts as
the ‘leader’, if the capacity constraint is tight, the equilibrium outcome is channel
optimal. Otherwise, when the equilibrium is not efficient (because the capacity k is
not small enough), we provide a distribution-free worst-case characterization of the

efficiency loss, as measured by Eff(k, 5) (see Section 2.5).

H 8.4 Coordination when there are multiple goods

Chapter 4 shows that when a supply channel (operating in push-mode) has more
than one good (which most do) coordination is possible with wholesale price con-
tracts (depending on the capacity of the channel) but much care needs to be taken so
that the wholesale prices satisfy a very particular relationship with one another (as
specified in Theorem 4.1). If a manager negotiates prices blindly without considering
this relationship, the channel is forgoing profit (even though his firm may be better
off financially with those terms). Furthermore, the difficulty in maintaining the re-
lationship between these wholesale prices is further exacerbated by the fact that a

firm may have multiple divisions/silos each responsible for procuring and negotiating
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different goods (while maintaining an overall firm budget or capacity level). In other
words, coordination with multiple goods is difficult/tricky (due to the relationship

between the wholesale prices that needs to be preserved), but very much possible.

B 8.5 Capacity valuation and collusion

Chapter 6 introduced a model where suppliers compete for a retailer’s capacity.
We showed that competition creates an endogenous valuation for the retailer’s ca-
pacity and that supplier collusion can eliminate the value of that capacity entirely.
Interestingly, in practice some retailers can overcome this effect of collusion by own-
ing or contracting with a ‘private label’ supplier that has extremely low prices and
enough demand for its goods. By doing this, the retailer is adding an exogenous
supplier with fixed low wholesale prices to the game, thereby artificially creating a

lower bound for the retailer’s shadow price for capacity.

B 8.6 Future work

Cachon (2003) mentions that coordination in multiple supplier settings has not
been explored. Chapter 6 constitutes initial steps in that direction. A particularly
interesting question that we are pursuing as future work is the impact of supplier
collusion on the supply channel profit. In particular, when suppliers collude is the
channel profit larger in equilibrium when compared to a setting where suppliers com-
pete against one another? In other words, will the market operate more efficiently if
suppliers collude or, rather, if some subsets of suppliers collude?

Also as we showed in Chapter 4, coordination when there are multiple goods re-
quires a particular relationship to be satisfied between the wholesale price contracts.
As we've remarked, in practice this is difficult because a firm may carry out its pro-
curement function in a decentralized fashion. It seems that by merely choosing a
different contract (e.g., a buyback or revenue sharing contract) from the literature,

we will not make the coordination problem for multiple goods any easier in prac-
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tice. Therefore, are there non-traditional contracts that can incentivize different silos
within a firm to allocate the firm’s entire capacity more optimally?

In Section 2.5 and Section 5.5, we calculate the worst-case efficiency loss for a one-
supplier/one-retailer supply channel with a capacity constraint, operating in push-
mode and pull-mode, respectively. But how does this efficiency loss change as we add
more firms and goods as in Chapters 6 and 77 How is the efficiency loss affected by
collusion?

In Section 2.3 and Section 5.3, we considered equilibrium settings for a one-
supplier/one-retailer supply channel with a capacity constraint. The constraint was
exogenous. What happens if we allow the constraint to be endogenous? Consider the
game with the newsvendor moving first to choose capacity, the other firm(s) moving
second offering wholesale prices for that capacity, and finally the newsvendor mak-
ing a capacity allocation/ordering decision. In such a game, will every equilibrium
outcome have the property that the endogenous capacity constraint is binding? How

efficient will the channel operate in equilibrium?
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