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Abstract

Research on large-scale complex networks has important applications in diverse sys-
tems of current interest, including the Internet, the World-Wide Web, social, biolog-
ical, and chemical networks. The growing availability of massive databases, comput-
ing facilities, and reliable data analysis tools has provided a powerful framework to
explore structural properties of such real-world networks. However, one cannot effi-
ciently retrieve and store the exact or full topology for many large-scale networks. As
an alternative, several stochastic network models have been proposed that attempt
to capture essential characteristics of such complex topologies. Network researchers
then use these stochastic models to generate topologies similar to the complex network
of interest and use these topologies to test, for example, the behavior of dynamical
processes in the network.

In general, the topological properties of a network are not directly evident in the
behavior of dynamical processes running on it. On the other hand, the eigenvalue
spectra of certain matricial representations of the network topology do relate quite
directly to the behavior of many dynamical processes of interest, such as random
walks, Markov processes, virus/rumor spreading, or synchronization of oscillators in
a network.

This thesis studies spectral properties of popular stochastic network models pro-
posed in recent years. In particular, we develop several methods to determine or esti-
mate the spectral moments of these models. We also present a variety of techniques
to extract relevant spectral information from a finite sequence of spectral moments.
A range of numerical examples throughout the thesis confirms the efficacy of our ap-
proach. Our ultimate objective is to use such results to understand and predict the
behavior of dynamical processes taking place in large-scale networks.

Thesis Supervisor: George C. Verghese
Title: Professor
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Chapter 1

Introduction

Research in complex networks has important applications in today's massive net-

worked systems, including the Internet, the World-Wide Web (WWW), as well as

social, biological and chemical networks. The availability of massive databases, and

reliable tools for data analysis provides a powerful framework to explore structural

properties of large-scale real-world networks.

A complex network, in the context of this thesis, presents the following structural

properties [59]:

(i) Large size: ranging from thousands to millions of nodes.

(ii) Sparse structure: the average number of edges connected to a node is typically

small in comparison with the size of the network.

(iii) Absence of symmetries and regularities: there is no small lossless represen-

tation of the network structure (i.e., regular rings and lattices are, for example, not

"complex" in the context of this thesis).

In general, these properties foreclose the possibility of efficiently retrieving and/or

storing the exact structure of a complex network. In many complex networks, it is

often possible to gather a great deal of information by examining random samples of

the graph topology. These are usually samples of local properties, such as the degree

distribution (number of connections per node). Network researchers then use these

samples to generate topologies similar to the original complex network [131], [192],



and use these to test, for example, the behavior of dynamical processes within the

network [115].

Many dynamical processes on networks, such as random walks [9], Markov pro-

cesses [41], virus/rumor spreading [35], and synchronization of oscillators [160], are

interesting to study in the context of large-scale complex networks. In general, the

empirical measurements from the network are loosely related to the behavior of the

dynamical processes under study. In this thesis we are interested in studying network

properties that are more directly related to the dynamical behavior on the network.

Many of these characteristics are intimately related to the eigenvalue spectra of the

underlying graph structure.

Spectral graph theory studies the eigenvalues of matrices that embody the graph

structure. One of the traditional objectives in spectral graph theory is to deduce

structural characteristics of a graph from such eigenvalue spectra. Traditional ap-

plication of the study of the graph spectra can be found in chemistry (for example,

in molecular stability [18]), nuclear physics (models of the atomic nucleus [30]), and

quantum mechanics [45].

This thesis studies spectral properties of popular stochastic graph models proposed

in recent years. In particular, we develop several methods to determine the spectral

moments of these stochastic graph models. We also present a variety of techniques

to extract relevant spectral information from a given sequence of spectral moments.

Our final objective is to use these results to understand and predict the behavior of

dynamical processes taking place in large-scale networks.

1.1 Organization and Contributions

Chapter 2 motivates the usage of spectral graph theory to study dynamical processes

taking place in networks. In this thesis we pay special attention to three dynamical

processes that are highly representative: virus spreading, decentralized consensus, and



synchronization of oscillators. We show how the spectra of the adjacency, Laplacian

and Kirchhoff matrices determine the behavior of these dynamical processes in the

network.

Chapter 3 reviews probabilistic graph models of relevance in today's network re-

search. We classify these models into two different categories of stochastic networks:

static (also called off-line) models, and dynamic (also called evolving or on-line) mod-

els. A static model is defined as a random graph ensemble with a fixed number of

nodes. Different ensembles capture different structural properties observed in a real

network.

As an alternative to static random graphs, we review dynamic random graph

models. In these models, the number of nodes increases with time. The most popular

model in this category is the preferential attachment model proposed by Barabasi and

Albert [24]. This model aims to represent the forces driving the generation process

of a given complex graph that evolves over time.

In Chapter 4 we study the spectrum of static random graphs. We pay special

attention to a model proposed by Chung and Lu [55], that prescribes a given expected

degree sequence on the random graph ensemble. We deduce, for the first time, ana-

lytical expressions for the expected spectral moments of the adjacency matrix of the

Chung-Lu random graph model as a function of the given expected degree sequence.

In Chapter 5 we present a variety of techniques to deduce spectral properties of

relevance from a given set of spectral moments. First, we show how to use Wigner's

high-order moment method [203], to deduce bounds on the support of a spectral

distribution. Second, we propose several alternatives for fitting a piecewise-linear

function that preserves a given finite sequence of spectral moments. Third, we show

how to use semidefinite programming to deduce optimal bounds for several spectral

properties.

Chapter 6 is devoted to study the spectral moments of dynamically evolving

random graphs. The spectral moments of dynamic random graphs evolve as the graph



grows. We study the evolution of the expected spectral moments of the adjacency

matrix as the network grows. This evolution can be analytically solved in the case of

the Barabisi and Albert model (linear preferential attachment).

In Chapter 7 we apply some of the techniques developed in Chapters 4 and

5 to the analysis of the spectral properties of alternative matrix representations of

the graph structure. In particular, we study the eigenvalue distribution of Laplacian

and Kirchhoff matrices. We derive analytical expressions for the first three spectral

moments of these matrices for our random graph models. We apply the techniques

introduced in Chapter 6 to study implications of our results in the behavior of several

dynamical processes.

Chapter 8 is dedicated to drawing conclusions and suggestions for future work.

We include preliminary results concerning the problem of spectral design and the

analysis of directed networks. We also include open questions for future research.

1.2 Notes on the Literature

The work presented in this thesis lies in the intersection of graph theory, probability,

matrix analysis, and dynamical systems. We recommend the following books for

a general treatment of each of these fields. For an introduction to graph theory,

we recommend the books by West [202], or Diestel [67]. For rigorous treatments of

probability theory, see the books by Grimmett and Stirzaker [94], Karr [109], and Gut

[96]. For a classic matrix analysis text, we refer to the books by Horn and Johnson

[99], [100]. For a graduate-level exposition on linear systems and control theory, see

the books by Kailath [108], or Sontag [185].

The research presented in this thesis is mainly focused on the spectral/algebraic

analysis of random graph models of complex networks. We recommend the following

books and research monographs for a research-level exposition:



1. There is a large literature on algebraic aspects of spectral graph theory, docu-

mented in references such as by Biggs [32], or Cvetkovic, et al. [65]. A more

recent title by Godsil and Royle [91], is rewarding. Above all, we note the

monograph by Chung, Spectral Graph Theory [54], which includes an extensive

coverage of (normalized) Laplacian matrices.

2. For an in-depth study of random graph theory, we cite a highly technical book by

Bollobis [37]. A more gentle introduction to this field can be found in the book

by Janson, Luczak and Rucifiski [103]. We also make use of the probabilistic

methods presented in the book by Alon and Spencer [14].

3. The field of complex networks has experienced an impressive growth in recent

years. For an exposition from the physicists' point of view, we recommend

the compilation of papers by Newman et al. [151], as well as the monograph

by Dorogovtsev and Mendes [70]. Also, we must highlight the monograph by

Chung and Lu entitled Complex Graphs and Networks [59], which is the basis

of a substantial part of our research. A rigorous analysis of dynamic random

graphs is presented in a recent book by Durrett [72].





Chapter 2

Spectral Analysis of Dynamical

Processes in Networks

The eigenvalue spectra of a graph provide valuable information about the behavior

of many dynamical processes running within the graph. In this chapter, we intro-

duce examples of these dynamical processes and illustrate how spectral graph theory

arises as a fundamental tool to study their behavior. For each process, we transform

the set of equations governing its dynamical behavior into a form involving matrices

representing the network structure. We conclude the analysis of each process by illus-

trating how the eigenvalues of these matrices relate to the dynamics in the network.

Our final objective is to establish a clear connection between the dynamical behavior

of the network and the spectral properties of the underlying graph.

In our exposition, we make use of several basic elements of spectral graph theory

(see [32] and [54] for a thorough exposition).

2.1 Preliminaries: Spectral Graph Theory

We first introduce basic graph-theoretic notation (see [206] or [202] for graph-theoretic

terminology and results). We consider simple undirected graphs G = (V, E) with n

nodes, where V denotes the set of nodes, {1, ..., n}, and E denotes the set of edges of



G. If (i, j) E E is an edge of G, we say that nodes i and j are adjacent, and represent

this as i ~ j. The degree of i, denoted by dG (i) or di, is the number of nodes adjacent

to node i in G. The degree sequence of G is given by dG = {dG (i), i E V}, where the

sequence is usually given in monotonically non-increasing order. It is often convenient

to represent the degree sequence as a degree distribution. The degree distribution of

G is given by rG = {rG (0), rG (1) , rG (2) ,...}, where rG (k) denotes the number of

nodes with degree k in G (we also denote rc (k) by rk).

It is often convenient to represent graphs via matrices. There are several choices

for such a representation for a graph with n nodes or vertices. The adjacency matrix

of an undirected graph G, denoted by AG = [aij], is an n x n matrix defined entry-

wise as aij = 1 if nodes i and j are adjacent (i.e., connected by an edge), and aij = 0

otherwise; thus, AG is symmetric for an undirected graph. In this thesis, we consider

simple graphs with no self-loops; thus, we have that aii = 0 for all i.

The degree of node i, denoted by di, is the number of edges attached (or incident)

to it. The degree can be written in terms of the adjacency entries as di = Ej aij.

We can arrange the set of degrees on a diagonal matrix to yield the degree matrix,

DG = diag (di).

The Laplacian matrix is defined in terms of the degree and adjacency matrices,

DG and AG, as CG = In - DG1/2AGDG 1/ 2 . The eigenvalue spectrum of the Lapla-

cian matrix has applications in rapidly mixing Markov chains [8], [9], randomized

approximation algorithms [1971, and in the analysis of the dynamical behavior of

many decentralized network algorithms.

The Kirchhoff matrix KG of a graph G (also known as the combinatorial Lapla-

cian) is defined as KG = DG - AG (this matrix was originally proposed by Gustav

Kirchhoff in the context of the matrix tree theorem [112]). The Kirchhoff matrix,

also called combinatorial Laplacian, arises in combinatorial problems [141], and in

the analysis of random walks and electrical circuits [71]. The Kirchhoff eigenvalue

spectrum contains useful structural information about, for example, the number of



spanning trees in G, or the stability of synchronization of a network of nonlinear

oscillators [160].

We denote by {(i (AG)}i=1,...,n, Ai (CG)}i=1,...,n, and { A (KG)}i=1,...,n the set of

eigenvalues of the adjacency, Laplacian, and the Kirchhoff matrices, respectively

(where the sequence of eigenvalues is ordered in non-increasing order, i.e. A1 : A2 <

... < A,). The following are some relevant properties concerning these eigenvalues

[54]:

1. Both KG and CG have at least one eigenvalue at 0 (called the trivial eigenvalue)

with associated eigenvectors 1 = [1, 1, ..., 1]T and d1/2 = [dl/2, d 2 ,...,d 2•/2]T,

respectively. The multiplicity of the trivial eigenvalue equals the number of

connected components of the graph G.

2. For undirected graphs, AG, KG and CG are real symmetric matrices [32]. Con-

sequently, all three matrices have all real eigenvalues and a full set of n real and

orthogonal eigenvectors. Furthermore, KG and £G are positive semidefinite, so

all their eigenvalues are non-negative.

3. All the eigenvalues of the Laplacian £G fall into the interval [0, 2]. (This can be

shown by applying Gershgorin's circle theorem to the rows of £G.) Similarly,

the eigenvalues of the Kirchhoff matrix KG fall within the interval [0, 2 dmax],

where dmax = maxi di.

2.2 Spectral Analysis of Dynamical Processes

In this section we study a series of dynamical processes run on networks. In these

examples, the eigenvalue spectra of the underlying graph topology play a central role.

Although we describe very specific processes, each one of them represents of a wide

family of processes sharing a similar mathematical structure. We have chosen the

following processes for our illustrations:



(i) virus spreading in a social network,

(ii) distributed consensus in a network of agents, and

(iii) synchronization of nonlinear oscillators connected via a network of 'resistors'.

We explicitly show how the eigenvalue spectra of respectively the adjacency, the

Laplacian, and the Kirchhoff matrices are relevant in the analysis of the dynamics of

these processes.

2.2.1 Virus Spreading

The spreading of a virus in human populations is closely related to the network of

interactions within the population. In this section, we briefly review an automaton

model for interactions of individuals that is well-suited for capturing a specific net-

work of interactions among individuals. This model was proposed and analyzed in

[200], where the authors established a connection between the existence of an epi-

demic outbreak and the eigenvalues of the adjacency matrix of social interactions.

In this automaton model, each node represents an individual that is either infected

or susceptible to infection. A virus can spread from one node to another only along

the edges of G. This model involves several parameters. First, the infection rate /

represents the probability of a virus at an infected node i spreading to another node

j during a time step. Also, we denote by 6 the probability of recovery of any infected

node at each time step. For simplicity, we consider P and 6 to be constants for all

individuals in G.

We denote by pi [k] the probability that node i is infected at time k. The evolution

of the probability of infection can be modeled using the following difference equation:

Pi [k + 1] = [1- - (1 - pj [k])l + (1 - 6)pi [k] (2.1)

where XAi denotes the set of nodes adjacent to node i. Assuming that 3pj [k] <K 1,

the quantity 1 - -je: (1 - 3pi j[k]) can be approximated by j fpj [k]. Thus, we



can linearize Eqn. (2.1) and write the resulting system of linear equations in matrix

form as:

p [k + 1] = (A + A) p [k], (2.2)

where A is the adjacency matrix of the graph of interactions, A = diag (1 - 6), and

p [k] = [Pl [k] ,p2[k] , ...,p, [k]]T, where n is the number of nodes in the network.

Thus, the largest eigenvalue of the matrix (A + P A) (denoted by Amax (A + 5 A))

governs the spreading rate of the virus near a disease-free equilibrium. In particular,

the condition for a small initial infection to die out is |Ama. (A + # A) I < 1. One can

write this condition in terms of the maximum eigenvalue of the adjacency matrix as:

Amax (A) < -. (2.3)

In conclusion, the spectral radius of the adjacency matrix of the social network

determines whether or not an epidemic dies out in this model. There are other

spreading processes that can be analyzed in a similar way [95], [41), [177].

2.2.2 Distributed Consensus

We illustrate the dynamics of a distributed consensus protocol by considering a net-

work of n agents located at the nodes of a connected graph G. Associated with the

i-th agent, there is a positive scalar variable, mi (representing, for example, the tem-

perature measured by a sensor). A consensus protocol aims to compute the average

value of the set of n measurements, i.e., t = E• mi/n. In a distributed consensus

protocol, these agents can share information solely through the edges of G. In other

words, none of the agents has access to the whole set of measurements. Under these

constrains, the objective of the distributed consensus is to estimate the value of t

in an iterative manner. Distributed consensus protocols have a broad range of ap-

plications including congestion control in communication networks [156], flocking of



dynamic agents [170], or formation control of unmanned vehicles, [153].

In this subsection, we discuss the specific case of a linear distributed consensus

protocol in a bidirectional network with zero communication delay. This protocol is

defined by the following set of linear discrete-time difference equations:

xi [k + 1] = •E (xj [k] - xi [k]), for i = 1, 2, ..., n, (2.4)

where di denotes the degree of node i. The initial conditions, xi[0] for i = 1, ..., n, are

equal to the original set of distributed measurements, mi. After a transient period,

the iterated variables, xi[k], tend to the initial average value t.

We can write the discrete-time Eqn. (2.4) in matrix form as:

x [k + 1] = (D-'A) x [k],

where x [k] = [xi [k] , 2 [k],..., x, [k]]T and D = diag(di). Thus, the dynamics of

this linear protocol is ruled by the eigenvalues of D-1A. For a connected graph,

we have that D- 1A1 = D-'d = 1, where 1 = [1, 1 ,..., 1T and d = [dl,d 2,...,dn]T.

Thus, the uniform vector 1 is an eigenvector of (D-1A) with associated eigenvalue 1

(which we denote as the trivial eigenvalue). Also, one can prove that for any set of

initial conditions, {mi : m•i 0, i = 1, ..., n}, the iterations of the vector x [k] tend

asymptotically to r 1 if and only if the absolute value of the non-trivial eigenvalues

of D-1A are all strictly less than 1. We can state this condition in terms of the

eigenvalues of the Laplacian matrix, LG. First, we denote by ai and ui the set of

eigenvalues and eigenvectors of (D-1A), respectively (i.e., (D-1A)ui = ai ui). For

each eigenvector ui, we define a vector vi = D1 /2Ui. We can then transform the



eigenvalue equation for ui as follows:

D-1/2A ui = D-1/2aiui

D-1/2AD - 1/ 2 vi = rivi,

(I - D-1/2AD - 1/ 2) Vi = (1 - i) Vi,

£G Vi = (1 - i) Vi,

In other words, Ai A 1 - ai, i = 1, ..., n, are the (real) eigenvalues of the (symmetric)

Laplacian matrix, La, with associated eigenvectors vi. Therefore, the condition I 1I <

1 for i = 2, ..., n is equivalent to:

Ai (LG) E (0, 2) , for i = 2, ..., n.

2.2.3 Synchronization of Nonlinear Oscillators

The phenomenon of synchronization of a network of identical oscillators has been thor-

oughly studied in many scientific fields [190], [161], [196]. In this section, we establish

a connection between the stability of synchronization of a network of oscillators and

the eigenvalue spectrum of the associated Kirchhoff matrix.

Several techniques have been proposed to analyze the synchronization of coupled

oscillators. These include the master stability function approach [160] (extensively

used in the physicist literature), passivity analysis [207], Lyapunov-based methods

[208], and contraction analysis [182]. In [207], the author extends well-known results

in control theory, such as the passivity criterion, the circle criterion, and a result on

observer design of Lipschitz nonlinear systems, to global synchronization criteria on

coupled arrays of identical nonlinear systems. In [182], the authors use partial con-

traction theory to derive sufficient conditions for global synchronization of a network

of nonlinear oscillators. In this thesis we pay special attention to the master stability

function approach [160]. As we explain below, this approach provides a criterion for
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Figure 2-1: A network of identical oscillators connected through identical resistors

with admittance 7.

local stability of synchronization around the synchronization manifold based on the

numerical computation of Lyapunov exponents. Even though quite different in na-

ture, all these techniques note the key role played by the graph eigenvalue spectrum.

Consider a collection of n identical nonlinear oscillators, each one placed at the

node of a graph G. Each oscillator is described by a d-dimensional system of first-order

differential equations. We denote by xi(t) the d-dimensional state vector associated

with the oscillator in node i at time t. We shall usually drop the argument for

notational simplicity, and simply write the state as xi. The dynamics of the i-th

oscillator in isolation is described by the nonlinear differential equation ii = f (xi).

We now connect the collection of oscillators through a network of identical 'resistors'

placed along the edges of the graph G. The set of differential equations describing

the evolution of our network of oscillators is

N

*i = f (xi) + 7Y aijF(xj - xi), 1 <i < n, (2.5)
j=1

where the d x d real matrix F represents how states in neighboring oscillators are

linearly combined through a link, the aij are the entries of the adjacency matrix AG,



and the positive scalar y can be interpreted as a global coupling strength. Since the

degree di = E'-t= aij, we can rewrite Eqn. (2.5) as:

si= f(xi)+' • aijIF xj - diFxi)
j=1

n

= f (xi) - yrF kijx, (2.6)
j=1

where the kij are the entries of the Kirchhoff matrix KG, i.e., kii = di, and kij = -aij

for j : i.

We now analyze the dynamical behavior of Eqn. (2.6). We denote by k (t; xo)

the periodic solution to the ODE describing the isolated oscillator, x = f (x), with

suitably chosen initial condition x (0) = xo. Consider the dynamics of Eqn. (2.6)

when xi (0) = x0 for all i. In this case, each oscillator in the network behaves as

if in isolation, i.e., xi (t) = 4 (t; xo) for i = 1, ..., n. We would like to answer the

following question: Would the state vector of each oscillator, xi (t), converge to the

trajectory 0 (t; x0) if we slightly perturb the initial conditions, xi (0) = xo + ei, for

IIEill sufficiently small? We present the answer to this question next, referring to [160]

for a detailed derivation.

We first define an error variable, rqi (t) = xi (t) - k (t; xo), which represents the

deviation of xi (t) from the periodic trajectory 0 (t; xo). We assume these devi-

ations are small. Assemble these vectors into the nd-dimensional vector 77(t) =

[,qT (t) , ..., 71T (t)]T. Now define the linear change of variables, ( := (V ® 1)- ' t, where

V is the matrix that diagonalizes KG, i.e., A := diag (Ai (KG)) = V-'KGV (and 0

is the Kronecker product; see Appendix A for a brief review). It can then be shown

that a linearized model for C can be written in terms of blocks of d x d matrices as



follows:

Df(t) - yA•1 r  0 0

0 Df(t) - A2F 0 O

0 0 --- Df(t) -yTAn

where Df(t) is the Jacobian of f(x) evaluated along the periodic trajectory 0 (t; xo).

The block diagonal structure of the above equation allows us to decouple this system

of ODEs as follows:

ýi = [Df (t) + (-Ai) F] (i, for i = 1, 2,..., n. (2.7)

Observe that the d-dimensional ODE in Eqn. (2.7) is linear time-periodic (LTP).

We want to study whether the dynamical evolution of each oscillator, xi(t), tends to

the stable orbit 0 (t; xo). In other words, we want to study the stability of the LTP

ODE's in Eqn. (2.7). This problem can be solved applying the theory of stability

of periodic motions [77]. A classical criterion for the stability of Eqn. (2.7) is based

on the maximal non-trivial Floquet exponent, a real number uniquely determined by

the time-periodic matrix in (2.7), and measuring the maximum exponential rate of

divergence of two solutions of Eqn. (2.7) with different, but close, initial conditions.

For most LTP differential equations, the maximal Floquet exponent does not have a

closed-form solution, although it can be efficiently approximated by numerical meth-

ods [50]. Based on the theory of LTP systems [77], the ODE in (2.7) is asymptotically

stable if and only if the maximal non-trivial Floquet exponent is negative.

We now apply this result to a slightly modified version of Eqn. (2.7):

( = [Df (t) + aF] (, (2.8)

where we have substituted yAi in Eqn. (2.7) by a. For a given value of a, one can

compute the maximum non-trivial Floquet exponent. The Master Stability Function

~I



(MSF) proposed in [1601 is defined as the maximal Floquet exponent of Eqn. (2.8)

as a function of the real parameter a. We denote this function by F (a). Again, one

generally cannot derive an analytical expression for the MSF of an LTP differential

equation, although in most cases one can approximate this function by numerical

means at a set of points discretizing an interval of interest .

In the following example, we compute the MSF and illustrate how it can be used

to analyze the stability of synchronization in a network of nonlinear oscillators. We

study a network of R6ssler1 oscillators in our example.

Example Study the stability of synchronization of a ring of 6 coupled Rdssler oscil-

lators [173]. The dynamics of each oscillator is described by the following system of

three nonlinear differential equations:

ii = -(i + ),

1li = xi+a yi,

ii = b+ zi(xi-c).

The adjacency entries, aij, of a ring

1) mod 6, (i - 1) mod 6}, for i = 1, 2,

this ring of oscillators are defined by:

-(Yi + zi)
xi + a yi

b + zi (xi - c)

graph of six nodes are aij = 1 if j E {(i +

..., 6, and aij = 0 otherwise. The dynamics of

(2.9)
jER(i)

where we have chosen to connect the oscillators

Our choice is reflected in the structure of the 3 x

in Eqn. (2.9).

through their xi states exclusively.

3 matrix, F, inside the summation

1The R6ssler oscillator was proposed to model the kinematics of a type of chemical reaction and
it is known to be one of the simplest systems able to present chaotic behavior.



Numerical simulations of an isolated R6ssler oscillator unveil the existence of a

periodic trajectory with period T = 5.749 when the parameters in Eqn. (2.9) take

the values a = 0.2, b = 0.2, and c = 2.5 (see Fig. 2-2). We denote this periodic

trajectory by 0 (t) = [0. (t) , Oy (t) , z (t)]. In our specific case, the LTP differential

equation (2.8) takes the following form:

0

1

z (t)

-1 -1

a 0

0 c

1

+ a 0

0

(2.10)

where the leftmost matrix in the

lated Rbssler evaluated along the

represents r.

above equation represents the Jacobian of the iso-

periodic trajectory 4 (t) , and the rightmost matrix

z

Figure 2-2: Periodic orbit of a R6ssler oscillator in the x-y-z state space.

In Fig. 2-3, we plot the numerical values of the maximum Floquet exponent

of Eqn. (2.10) for a E [0, 15], discretizing at intervals of length 0.2. This plot

shows the range in which the maximal Floquet exponent is negative. This range of

stability is S = (0, a*), for a* - 4.7. The MSF approach provides a criterion for local

stability of the synchronization of the network of identical oscillators. This criterion,



introduced in [160], states that the synchronization is locally stable if the set of

values {1Ai, for i = 1, ..., n} lies inside the stability range, S. For the case of a 6-ring

configuration, the eigenvalues of KG are 0, 1,1, 3, 3, 4, so the set {yAi, for i = 1, ..., n}

is {0, -y, , 3-y, 3Y, 47} . Therefore, we achieve stability for 7 E (0, u*/Ama, (K)) =- B,

where in our case a*/Amax (K) , 1.175.

F(d)

5'

Figure 2-3: Numerical sweep of the maximal Floquet exponent in a periodic R6ssler
oscillator.

We now illustrate this result with several numerical simulations. First, we plot in

Fig. 2-4 the temporal evolution of the xi states of the 6-ring when 7 = 1.0. Observe

how, since y E B, we achieve asymptotic synchronization. On the other hand, if we

choose 7 = 1.3 0 B, the time evolution of the set of oscillators does not converge to

a common trajectory (see Fig. 2-5); instead, the even and odd nodes settle into two

different trajectories

In conclusion, we can use the MSF, F(o), and the set of Kirchhoff eigenvalues,

{ A(KG)}, to study the stability of synchronization in networks of identical nonlinear

oscillators. According to the MSF approach, the dynamics of the oscillator in isolation

f (x), and the type of coupling I, define a region of stability, S. In most cases, this

region, S, can be determined by numerical methods, independently of the graph

topology. In order to achieve synchronization, the set {-yA (KG) , i = 2, ..., n} must

lie in S.
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Figure 2-4: Temporal evolution of xi (t) in the ring, for i = 1, 2, ..., 6, with y E B.

x,()

0 10 20 30 40 50

Figure 2-5: Temporal evolution of a ring of 6 R6sslers for 7 = 1.3 V B.

2.3 Spectral Analysis of Structural Properties

Eigenvalue spectra are also related to structural properties of the graph. In this sec-

tion we enumerate results relating structural properties of a graph to the eigenvalues

of matrices representing the graph structure.

../It



2.3.1 Graph Partitioning

Spectral methods have been widely used for graph bipartition [40]. To understand

the basis of this method, it is useful to analyze the spectral properties of a graph,

G2, composed of two disjoint components. According to the properties introduced at

the end of Section 2.1, G2 has two zero Kirchhoff eigenvalues. In other words, the

second-smallest eigenvalue of the Kirchhoff matrix, A2 (KG2), is zero. Furthermore,

the eigenvectors, v 2 = [ 2) , ..., v ], associated with A2(KG) satisfy V2) = when

the nodes i and j are in the same component. This provides us with a clear criterion

to partition the graph into two disconnected components.

Loosely speaking, a connected graph with a 'small' second-smallest Kirchhoff

eigenvalue A2 (KG) may be considered as being 'close' to separable into two discon-

nected components, and will therefore have a relatively 'clean' bipartition. Examina-

tion of any eigenvector associated with A2 (KG) in this case will show entries clustered

around one of two values, and this guides the bipartition. In general, the smaller the

A2 (KG), the smaller the relative number of edges whose removal is required to perform

a bipartition.

The isoperimetric constant (also called Cheeger constant) of a graph is very rel-

evant to graph bipartitioning. A graph bipartition is defined by a set of edges that,

when removed, partitions the graph into two disconnected components, Si and S2.

We denote by E (Si, S2) the set of edges involved in the partition. Considering all

the possible bipartitions of the graph, the Cheeger constant, h(G), is defined as:

IE (S1, S2)h(G) := min (S1
(si,s2) min {ISi, 1 IS21

The Cheeger inequality relates the Cheeger constant and the second-smallest Lapla-

cian eigenvalue as follows [54]:

h2 (G)2h(G)> A2 (G)>
2



2.3.2 Matrix-Tree Theorem

The first articulation of a relationship between graph spectra and topological prop-

erties can be traced back to Gustav Kirchhoff's matrix-tree theorem [1121, a classical

result that provides the number of spanning trees in a graph.

Theorem 2.3.1 Given a connected graph G with n vertices, let 0 < A2 (KG) < ... <

A, (KG) be the non-trivial eigenvalues of the Kirchhoff matrix of G. Then, the number

of spanning trees of G is

T(G) = in As (KG)
s=2

As a conclusion, we have illustrated in this chapter how spectral graph theory

arises as a fundamental tool to study graph structure as well as the dynamical be-

havior of many processes running within a network. We now turn to present several

stochastic models of large-scale complex networks. Our final aim is to study the spec-

tral properties of these models in order to predict the dynamical behavior of many

processes taking place in complex networks.



Chapter 3

Stochastic Modeling of Large-Scale

Complex Networks

In Chapter 2, we introduced several dynamical processes running on networks. We

are interested in studying the behavior of these processes in large-scale complex net-

works. Recent mathematical work in network modeling has been driven by empirical

observation; hence, we begin by presenting several popular network data sets. In

order to extract valuable information, we also discuss common metrics quantifying

network properties.

We then present several popular random graph ensembles to model complex

topologies. We classify these stochastic graphs in two categories: static models and

dynamic models. In a static model, the stochastic graph has a fixed number of nodes

over which we define a random graph ensemble (i.e., a set of graphs with n nodes

together with a probability distribution defined on them). In dynamic models, the

number of nodes in the network varies over time, and edges are added (and/or deleted)

according to a set of probabilistic rules, at each time interval.

There are many review articles [7], [123], [148], and books [133], [59], [72], on

random graph models of complex networks. In this chapter, we cover some of the

most popular of them. In later chapters, we deduce properties of the eigenvalue

spectra of some of these stochastic models. We shall also analyze the behavior of



dynamical processes run on complex networks.

3.1 Complex Networks: Data Sets

Much of the recent mathematical work in network modeling has been driven by empir-

ical observations in real networks. For example, the comparative analyses presented

in the groundbreaking papers [201], [189], and [150] have inspired much of the recent

work in the area. In this section, we briefly present some relevant data sets in order

to motivate some of the random graph models of substantial impact in today's lit-

erature. Here, we divide our data sets into four categories: technological networks,

information networks, social networks, and biological networks. (The boundaries of

these categories are quite flexible, and it is possible to classify the same network into

several categories.)

3.1.1 Technological Networks: The Internet

A technological network is an artificial infrastructure designed and constructed for

the efficient distribution of a resource. We pay special attention to the distribution of

information packets in the Internet at the level of Autonomous Systems (ASes). An

AS is a group of routers under the control of a single entity. Examples of ASes are

universities, research centers, or Internet Service Providers (ISP's). In this context,

the nodes represent routers yielding the physical infrastructure of an ISP, and the

edges represent communication links among ASes. Several useful sources of topo-

logical data can be found online. For example, an exhaustive source of topological

data is publicly available at [47]. These data have been (and are still being) collected

by CAIDA (the Cooperative Association for Internet Data Analysis). For example,

in [48] we find a macroscopic snapshot of the IPv6 1 Internet topology collected by

CAIDA during the first week of January 2008 (source [47]). The snapshot reflects

1 Many regions are starting to transition from IPv4 to Internet Protocol version 6 (IPv6) to satisfy

the global need for a larger number of publicly accessible Internet addresses.



measurements from a total of 97 different IPv6 source addresses from 68 unique IPv6

prefixes and Autonomous Systems (ASes). The resulting IPv6-level graph contains

4,752 IPv6 addresses and 526 IPv6 prefixes.

Apart from studying the interconnections among Autonomous Systems in the In-

ternet, one can analyze the internal structure of each AS. In this case, each node

represents an individual router, and each edge represents a communication link be-

tween routers. ISP's generally regard their router-level topologies as confidential

information; thus, we need tools to reverse-engineer their topology from externally

available data. Several approaches have been proposed to estimate the topology of an

ISP from external data. In this thesis, we use the (publicly available) reconstruction

technique proposed in [187]. In Fig. 3-1, we represent the estimated topology of the

high-speed core of a medium-sized European ISP (Tiscali, SpA). We shall use this

topology as our test network for several experiments in this and later chapters.

Figure 3-1: Graphical representation of the topology of the high-speed core of a
medium size ISP (from [187]).



3.1.2 Information Networks: WWW and Peer-to-Peer

We consider two examples of information networks that use the Internet as their

physical infrastructure: the World-Wide Web (WWW) and peer-to-peer networks.

The Web graph has been the center of many studies since its appearance in the early

1990's. The works by Albert et al. [6], [25], Kleinberg et al. [113], and Broder et al.

[44] provide a strong foundation for subsequent work in this direction.

Decentralized peer-to-peer systems (such as Gnutella or BitTorrent [171], [105])

represent a popular alternative for file-sharing applications. An important problem in

the construction of a peer-to-peer network is the generation of a topology that enables

efficient content searching. Partial views of the Gnutella topology are available at

[125], although those topologies are limited to around 35,000 peers, and the accuracy

of the data is questionable.

4

Figure 3-2: Partial topology of the Gnutella network from
[http://home.comcast.net/].
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3.1.3 Social Network: Cyber-Communities

In a social network, nodes represent individuals (or organizations) and the edges

are a specific type of social relationship among them, such as friendship. A major

problem in traditional studies of social networks is that they are often inaccurate and

subjective [117]. In this context, the emergence of many online cyber-communities

(such as MySpace, Facebook, or Yahoo! 360) provides valuable data to be exploited in

social studies. Recent studies on the structure and evolution of some popular cyber-

communities can be found in, for example [117], [51], or [2]. In this field, network

theory represents a powerful tool, not only for the statistical characterization of these

virtual contacts, but also to achieve a better knowledge of the processes forming such

interactions.

I

Figure 3-3: Connections among friends in www.facebook.com.
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3.1.4 Biological Networks

A major challenge in the field of systems biology is to understand the principles behind

the organization of various genetic and metabolic networks. In metabolic networks

such as the E. coli metabolic networks (see [169]), the nodes represent metabolites and

edges represent reactions among them. Other examples of biological networks are the

yeast protein-protein networks (see [178]), and the yeast gene functional interaction

network (see [193]).

3.2 Topological Metrics

Network researchers have at their disposal a large variety of metrics quantifying net-

work properties. A wise selection of these metrics is key to the efficient extraction

of relevant features for modeling of a real network. In the following subsections, we

discuss the most common and useful graph metrics.

3.2.1 Degree Distribution

The degree distribution is probably the easiest metric to measure in a real-world

network. This measurement can be presented either as a degree sequence, (di)1<i<,,

or as a degree distribution, (rk)1<k<M, where rk represents the number of nodes with

degree k. Many real-world networks present heavy-tailed degree distributions. Some

of these distributions are believed to approximately follow a power-law (although such

claims are often contested). A network presents a power-law degree distribution if

the number of nodes with degree k is proportional to k- 0, for a positive parameter 3.

3.2.2 Joint-Degree Distribution

Although the degree distribution is a very valuable network metric, it does not pro-

vide any information about the pattern of interconnections among nodes of different
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Figure 3-4: The above figure represents the estimated degree distribution of the
high-speed core of a European ISP (Tiscali, SpA). (Estimation based on the publicly
available data in [1871.)

degrees. The joint-degree distribution is a network metric that provides information

about this pattern.

Denote by Dk the set of nodes with degree k, and by Mklk2 the total number of

edges connecting nodes of degrees kI and k2, i.e.,

Mk1 k2 = E aij (3.1)
iET)k

1 jED)k
2

n n

E- S Z ldi.=kl ld=k2aij.
i=1 j=1

We call the matrix M = [Mki,k2] the joint-degree matrix of G. The joint degree

distribution (JDD) is defined as

Mktk2Jktk2  2E '

where E is the total number of edges in the graph.

The JDD in an indicator of correlations between nodes as a function of their

degrees. For example, highly connected nodes in social networks tend to connect to

nodes of high degree. This connectivity pattern is usually called assortative mixing

[148]. On the other hand, in technological and biological networks nodes of high degree



tend to attach to nodes of low degree. This tendency is called disassortative mixing.

One can detect these types of mixing using the so-called neighbor connectivity. The

neighbor connectivity, dk, is defined as the average degree of the neighbors of a node

with degree k, i.e.,

S- ZiE*k D aE3=1

If dk is increasing with k, the network is assortative, since it shows that nodes of

high degree connect (on average) to nodes of high degree. (Alternatively, if dk is

decreasing, the network is disassortative.) The neighbor connectivity of a graph can

be plotted on a graph (see, for example, Fig. 3-5).
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Figure 3-5: Assortative patterns in several real-world networks. Assortative mixing
is defined as the tendency of high-degree nodes to link, on average, to high-degree
nodes (from [61]).

3.2.3 Triangular Distribution

We now define several alternative distributions measuring the number of triangles in

a given graph. The triangular coefficient, TG, is the total number of triangles in the
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graph G, i.e.,

TG= aijajkaki.
1<i<j<k<n

The triangular-degree distribution, Tk, counts the number of triangles touching nodes

of degree k. Lastly, the triangular distribution, Tk1 ,k2 ,k3 , counts the number of triangles

connecting nodes of degrees ki, k2, and k3.

3.2.4 Distance Distribution

The distribution of shortest paths between pairs of nodes in a network plays an

important role in transportation and communication tasks. Consider a graph with

one connected component. The distance lij between two nodes i and j is defined as

the length of the shortest path between them. We define the distance matrix of the

graph, LG = [lij], as the two-dimensional array containing the distances between every

pair of nodes in the graph. The maximum value among the entries of LG is called

the diameter of the graph. (In the presence of several disconnected components, the

above definitions are computed and listed per component.)

The following figure represents an estimate of the distribution of distances in

the Internet, obtained by CAIDA in 1998. For this estimation, a host computer in

Michigan measured the number of hops taken by information packets sent to about

13, 900 destinations [491].

3.2.5 Betweenness Distribution

Most information networks use shortest-path routing to distribute packets of infor-

mation. In this context, the number of shortest paths going through a node measures

the relevance of a given node in the routing process. Betweenness is defined as the

number of shortest paths passing through a given node under the assumption of uni-

form traffic (under this assumption, the same amount of information flows between
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Figure 3-6: Histogram of the number of hops taken by information packets traveling
from a host in Michigan to about 13,900 destinations (source [49]).

every pair of nodes in the network). Therefore, this metric measures the traffic load

supported by a node.

For a graph with n vertices, the betweenness of node i is defined as:

Bi :=ZZU3k(i)
j 3i k~i ajk

where Ujk is the number of shortest paths from j to k, and ajk (i) is the number of

shortest paths from j to k passing through a node i.

We now comment on the process of retrieving the information needed to compute

the various metrics above. In most complex networks, we do not have access to the

complete topology. On the other hand, one can usually retrieve information about

the topology of the neighborhood of a particular sampling node. The amount of

information that can be extracted from each sampling node depends on the particular

nature of the network under study. For example, in many online cyber-communities

(such as Facebook), we can access information about our friends, as well as the list of

friends of our friends. In other words, we have access to a second-order neighborhood.

In this context, an important challenge is to infer global network properties from local

samples of the topology.



We can classify the metrics presented in this section into two categories. First,

we have metrics that can be estimated from local samples of the graph topology. In

other words, we only need the topology of the neighborhood of a node to extract the

corresponding sample information. The degree distribution, joint-degree distribution,

and clustering distribution fall into this category. We denote this first category as

local metrics. In the second category, we include metrics that require a complete

knowledge of the graph topology for them to be computed. For example, in order to

compute betweenness, one must first solve the shortest path problem for every pair

of nodes in the network. Clearly, this task requires the knowledge of the whole graph

topology. We denote this second category as global metrics.

3.3 Static Graph Models

In this section, we briefly introduce some of the most popular random graph models in

the literature. (For a thorough survey, we direct the interested reader to the research

monographs [72], [59], and surveys [70], [189].)

3.3.1 Erdois-R nyi Random Graphs

The systematic study of random graph models was initiated by Erd6s and R6nyi

in 1959 with their seminal paper on random graphs [74]. Even though their model

cannot typically replicate properties measured in real networks, the problems and

techniques they introduced started a whole new branch of mathematical research. In

the classical Erd6s-R6nyi (ER) model, the graph is generated by taking n nodes and

connecting each pair of nodes by an edge with a fixed 'edge existence' probability p,

independently of all other pairs of nodes. This random graph ensemble is denoted by

Gn,p.

The main goal of the theory developed around this model is to determine the

values of p at which relevant properties of the graph arise with high probability. In



many cases, these values of p are exactly solvable in the limit of large graph size.

For example, if np < 1, then a graph in Gn,, will almost surely have no connected

components of size larger than O(log n); while if np tends to a constant c > 1, then a

graph in G,,P will almost surely have a unique 'giant' component containing a positive

fraction of the nodes. For large n, the graph presents a Poisson degree distribution.

Thus, this model is inadequate to replicate non-Poissonian degree distributions ob-

served in real-world networks. We shall examine an extension of this classical model

in Section 3.3.3.

3.3.2 Small-World Model

The term small-world effect refers to the notion that any two people in the world

can be related through a relatively short chain of acquaintances. Based on this

observation, Watts and Strogatz proposed in [201] the small-world family of random

graphs. These show the following apparently contradictory properties:

(i) most nodes are not neighbors of one another, and

(ii) most nodes can be reached from every other node by a small number of steps.

Watts and Strogatz proposed a model that takes a regular lattice and randomly

rewires edges with a fixed probability p. As shown in Fig. 3-7 (b), the resulting

architecture is intermediate between a regular lattice (achieved for p = 0) and a

classical random graph (achieved for p = 1).

An exciting result observed in this model was the following: for small probability

of rewiring, p < 1, the distribution of triangles is nearly the same as that of the

regular lattice, but the average shortest-path length is close to that of classical random

graphs. This property can be empirically observed in many real-world networks, such

as the WWW and metabolic networks.
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Figure 3-7: Examples of a power-law network and a small-world model, from [189].

3.3.3 Chung-Lu Random Networks

In the previous section, we have presented several network models that are useful to

gain insight into some high-level properties observed in real networks (such as, for

example, the origin of power-law degree distributions). In this section, we introduce

a random graph ensemble able to replicate a given degree distribution.

We shall illustrate the use of this random graph ensemble with a specific real-world

modeling problem. In particular, we shall model the topology of the optical high-speed

core of a European ISP: Tiscali S.p.A. (one of the main European telecommunication

companies). Since ISPs have economic incentives to maintain secrecy about their

topologies, an active field of research is the development of techniques to estimate

an ISP's topology based on externally available information. For example, Spring et

al. developed a computational tool to estimate the topology of several ISP's from

traceroute information [174]. In Fig. 3-8, we represent the estimate of the high-speed

core of Tiscali using Rocketfuel.

We pay special attention to the random graph model proposed by Chung and Lu

in [56]. In this model, we can prescribe a given expected degree sequence, wl, ..., wn,

in a random graph ensemble with n nodes. This model is useful when we do not have
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Figure 3-7: Examples of a power-law network and a small-world model, from [189].

3.3.3 Chung-Lu Random Networks

In the previous section, we have presented several network models that are useful to
gain insight into some high-level properties observed in real networks (such as, for
example, the origin of power-law degree distributions). In this section, we introduce
a random graph ensemble able to replicate a given degree distribution.

We shall illustrate the use of this random graph ensemble with a specific real-world
modeling problem. In particular, we shall model the topology of the optical high-speed
core of a European ISP: Tiscali S.p.A. (one of the main European telecommunication
companies). Since ISPs have economic incentives to maintain secrecy about their
topologies, an active field of research is the development of techniques to estimate
an ISP's topology based on externally available information. For example, Spring et
al. developed a computational tool to estimate the topology of several ISP's from
traceroute information [174]. In Fig. 3-8, we represent the estimate of the high-speed
core of Tiscali using Rocketfuel.

We pay special attention to the random graph model proposed by Chung and Lu
in [56]. In this model, we can prescribe a given expected degree sequence, wl, ..., wn,
in a random graph ensemble with n nodes. This model is useful when we do not have



measure the average degree and impose this value on the ensemble. In particular, the

estimated average degree of Tiscali's core is , = 4.0745. Since we know that Tiscali's

core has 161 high-speed routers, we can model this network with a random graph

with n = 161 nodes and an edge existence probability equal to p = · /n = 0.0252. In

Fig. 3-9, we show one random realization of this graph, as well as histograms for the

empirical eigenvalue distributions for the adjacency matrices of both the real Tiscali

core and the random graph model. We observe that, as expected, the classical model

is ill-suited to capture spectral properties of this ISP's core.
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Figure 3-9: In this figure we compare the topology and the eigenvalue spectrum of a
random realization of the classical ER model versus the graph representing Tiscali's
high speed core.

In the following, we describe a random graph ensemble that allows for a more

detailed description of the network topology. This model, proposed by Chung and

Lu in [56], generalizes the classical ER model to prescribe a given expected degree

sequence on it.

Due to the simplicity of sampling the degree distribution, several stochastic mod-

· Iia



els aiming to replicate a given degree sequence have been proposed. The configuration

model (first introduced by Bender and Canfield [28], and subsequently refined by Bol-

lobais [371) represents the most popular of this type of model. This model presents

serious drawbacks on a theoretical level. Firstly, the probability of having multiedges

increases dramatically as a function of the maximum degree. A series of (very restric-

tive) conditions on the degree sequence was proposed by Molloy and Reed [143] in

order to avoid this effect. The second drawback is the presence of strong statistical de-

pendencies among different edges. These dependencies complicate the mathematical

analysis of this model.

In [56], Chung and Lu defined a random graph model in which one can prescribe

a given expected degree sequence, {wI, w2, ..., wn}, with wi > 0 denoting the desired

expected degree for node i. We shall assume the nodes are numbered so that wl

w2 _ ... > wn. Many elaborate mathematical results concerning this model have

already been published [56], [581. This random graph is constructed by independently

assigning edges between each pair of nodes (i,j), 1 < i < j 5 N with probabilities

Pij := P (aij = 1) = pwiwj, where p = wk (3.2)

For the expected degree sequence to be realizable, we need the condition w? < k Wk

(which ensures pij 5 1). As a particular case, one can recover the classical Erdis-

Rinyi graph from a constant degree sequence, wi = W for all i.

We now model the Tiscali core network using this random graph ensemble. First,

we extract the sequence of degrees from the real network by counting the number of

optical links attached to each high-speed router. In Fig. 3-10, we plot this sequence for

the 161 high-speed routers in the network (ordered in non-increasing order). Next, we

use this sequence to define a Chung-Lu random graph ensemble with 161 nodes. In the

following figure, we show the topology of one random realization from this ensemble.

We also plot the eigenvalue histograms for both the adjacency and Kirchhoff matrices.

We observe how this model provides a surprisingly accurate description of Tiscali's



topology from a spectral point of view, including a good alignment between the

spectral radius of the real and the random graph for both the adjacency and Kirchhoff

matrices.
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Figure 3-10: Structure of the adjacency matrix

core (161 nodes).
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Figure 3-11: In this figure we compare the spectra of the adjacency and Kirchhoff

matrices of a random realization of the Chung-Lu model versus the graph representing

Tiscali's high speed core.
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3.4 Dynamic Graph Models

In the previous section, we introduced a random graph model able to prescribe rele-

vant empirical observations on a random graph ensemble. In contrast, there are other

random graph models, called dynamic models, that aim to explain the developmental

process of a complex network.

A network is named a power-law or scale-free if its degree distribution follows

a power law (the number of vertices with degree k is proportional to k- 0 for some

8 > 0). The observation that many real networks approximate power-law distri-

butions sparked the interest in such networks. Since then, several network models

presenting power-law distributions have arisen. For example, the Yule process [211],

was proposed in 1924 as a generative process for power laws. After Yule, this process

has been reinvented several times under different names: the Gibrat's principle by

Herbert Simon [1011, the Matthew effect [135], Zipf's law [212] and, most recently,

preferential attachment by Barabasi and Albert [24].

The model proposed by Barabisi and Albert has achieved great popularity in

recent years, inspiring a long series of computational models aiming to explain the

appearance of power laws. Among these models, we can cite the computational

framework for the generation of synthetic topologies proposed by Medina et al. in

[131]. In [3], Aiello et al. proposed a random graph model to generate massive

graphs with a power-law degree sequence. Jin et al. developed Inet, [106], which

is a computational framework aiming to generate synthetic topologies modeling the

Internet.

The Barabasi-Albert (BA) model has two fundamental ingredients:

(i) the sequential addition of nodes (in other words, the number of nodes in the

BA network grows in time), and

(ii) the preferential attachment process: This ingredient causes new edges to

attach to existing nodes of high degree with a higher probability than to nodes of low

degree (in other words, "popularity is attractive").



We now quote part of the model description given by Barabisi and Albert in [24]:

"... starting with a small number m0 of vertices, at every time step we

add a new vertex with m < mo edges that link the new vertex to m dif-

ferent vertices already present in the system. To incorporate preferential

attachment, we assume that the probability II that a new vertex will be

connected to a vertex i depends on the connectivity ki of that vertex, so

that Hi = ki /El kj. After t steps the model leads to a random network

with t + mo vertices and m t edges."

This growth mechanism is called linear preferential attachment, and has been

proved to yield a power-law degree distribution in the limit of large networks. (In

Chapter 5, we shall give an in-depth analysis of several structural properties regarding

this model.) Although the BA model represents a significant landmark in network

modeling, it lacks the accuracy to describe many topological characteristics observed

in real networks. For example, the degree distribution of the BA model is a power law

with a fixed exponent (# = 3), while most real networks present a different exponent

[150]. Also, the clustering coefficient and average path length are significantly smaller

than those observed in real networks [39], [168].

Based on the work of Barabisi and Albert, other dynamic models have been

proposed. Relevant examples of dynamic models are the following:

1. Growth with nonlinear preferential attachment (proposed by Krapivsky et al.

in [114]): In this extension of the BA model, the probability Hi that a new

node connects to an existing vertex vi depends nonlinearly on the degree ki of

that vertex. In particular, the authors in [114] studied the case in which this

probability is [i s- k7, for some real -y 0. Using a mean-field analysis of this

model, different behaviors have been detected depending on the value of 7. In

particular:

* For 7 < 1, the number of nodes with degree k varies as a "stretched

exponential".



. For y > 1, one node connects to a major portion of the network.

* For y = 1, the degree distribution follows a power law.

2. Accelerated growth process (proposed by Dorogovtsev and Mendes in [681):

In many real networks such as the WWW, the Internet, or the collaboration

network, the average degree of the network increases with time. In [68], the

authors studied the possible consequences of this accelerated growth.

3. Preferential attachment with aging (proposed in [69]): In many real networks,

the probability that a new node attaches to an older node depends on the age

of the older node. For example, old papers are less likely to be cited. In [69],

the authors analyzed the effect of aging on the structure of the network.

In the following chapters, we present an in-depth analysis of the spectral properties

of stochastic graph models of relevance. Chapter 4 is devoted to the spectral analysis

of static models, while Chapter 6 presents our results on dynamic networks.



Chapter 4

Spectral Analysis of Random

Static Graphs

In this chapter we study the eigenvalue distribution of adjacency matrices associated

with static random graphs. In particular, we study the random graph ensemble

defined by Chung and Lu in [56]. This model allows us to prescribe a given expected

degree sequence on the graph ensemble. We apply techniques from random matrix

theory to study the adjacency matrix ensemble associated with this random graph.

A classical result in random matrix theory is the Wigner semicircle law [203]. This

result states that the eigenvalue distribution of a random symmetric matrix with

independent and identically distributed random entries on and above the diagonal

(the other entries are fixed by the symmetry requirements) asymptotically follows a

semicircular function as the number of nodes, n, goes to infinity. In [84], Fiiredi and

Koml6s extended Wigner's results to random symmetric matrices with independent

entries presenting identical mean p and variance o2 (although not necessarily the same

distribution). They proved that, for IL 0, the largest eigenvalue Am,,, asymptotically

follows a normal distribution with expectation np and variance 2a for large n. They

also proved that, with probability tending to 1, as n increases

max I A < 2•-/ + O(n'/3 log n).
i>1



In this chapter, we study the spectral properties of the random adjacency matrix

associated with the static Chung-Lu model. We derive closed-form expressions for

the expected spectral moments of the random adjacency matrix as a function of

the expected degree distribution. We also prove quadratic convergence of the random

spectral moments to their expected values as the number of nodes in the graph grows.

We illustrate our results with both analytical and numerical examples.

4.1 Notation and Useful Results

In this section we introduce basic graph-theoretic notation and results (see [206] for

a complete exposition on graph-theoretic terminology and results). A closed walk

of length L in a graph G, denoted by CL, is an ordered sequence of nodes (possibly

repeated), CL = {il, i2, ...i, iL+1}, such that ik - ik+1 for k = 1,2,...,L and il =

iL+1. We denote by C(L) the set of all closed walks of length L on the complete graph

(i.e.,with all possible edges present) with n nodes, K,.

A tree is a connected graph in which any two vertices are connected by exactly one

path. Whether or not a connected graph is a tree can be uniquely determined from its

degree sequence or degree distribution. A connected graph, T, with s+1 nodes is a tree

if and only if its degree sequence, dT = {dT (1) , ..., dT (s + 1)}, satisfies E'' dr (i) =

2s, [188]. Similarly, a given degree distribution, {rT (1) , rT (2), ..., rT (s)} is associated

to a tree with s + 1 nodes if and only if Ek=l rT (k) = s + 1 and Ek=1 k rT (k) = 2s.

Consequently, we define the set of valid degree distributions for trees with s edges

(and s + 1 nodes) as:

Ts:= {{rlr 2 ...rs}ENS' : rk=s + 1, krk = 2s} (4.1)
k=1 k=1

We now define two useful combinatorial structures: rooted trees and ordered

rooted trees [188]. A rooted tree T is defined recursively, starting from a set of nodes

{1, ..., n}, as follows:



(a) One node is assigned to be the root of T. We denote the root by R (T).

(b) The remaining nodes are partitioned into m > 1 disjoint non-empty sets T1, ..., Tm,

each of which is a rooted tree (also called subtrees of the root).

The definition of an ordered rooted tree comes from replacing (b) in the above

definition with:

(b') The remaining nodes are put into an ordered partition (T1, ..., Tm) of m > 1

disjoint non-empty sets T1, ..., Tm, each of which is an ordered rooted tree.

One can use prefix notation to represent the structure of a ordered rooted tree

[188]. In this notation, we represent a tree with root r and subtrees T1 , ..., Tm as

r(T1, ...,Tm). We can recursively apply prefix notation on the set of subtrees to

obtain the final representation in prefix notation for a ordered rooted tree. Similarly,

we define an ordered rooted forest as an ordered collection of ordered rooted trees

(i.e., each connected component is an ordered rooted tree).

It is often convenient to describe the degree of a node in a rooted tree using the

number of successors of the node (i.e., the number of branches growing from a given

node). We call this quantity the 6-degree. The 6-degree of a node i, denoted by 6T (i),

satisfies:

T (i) = dT (i) , for i = R (T),
dT (i) - 1, otherwise.

Given an ordered rooted forest F, its 6-degree distribution is the sequence of integers

PF = {PF (0), PF (1) , ...}, such as pF (k) counts the number of nodes in F with 6-

degree equal to k. Given a sequence of nonnegative integers, p = {Po, Pi, ...}, there

exists an ordered rooted forest with s nodes and t components presenting a 6-degree

distribution equal to p if and only if [188]: •i pi = s, and Ei (i - 1) pi = -t.



4.2 The Chung-Lu Model and its Random Adja-

cency Matrix

We now describe the random graph model introduced by Chung and Lu in [56]. This

model allows one to prescribe a given sequence of expected degrees on a random

graph with n nodes. We denote the prescribed sequence of expected degrees by

w = (W1 , ..., wn), wi > 0, and the resulting graph ensemble by gS(w). In this random

graph, an edge joining nodes i and j appears, independently of the rest of edges, with

probability:

Pij := P(i , j) = pwiwj, (4.2)

where p is a normalizing factor defined as p := (k Wk) - 1. In order to guarantee

pij < 1 for all 1 < i, j < n, we assume maxi w? < J: wj. One can easily check that

the expectation of the degree of node i in this ensemble is:

E [di] = E[aij] = Z P(i j) = pwiwj = Wi.

Notice that we recover the classical Erd6s-R6nyi random graph for w = (pn, pn, ..., pn).

For each graph in the Chung-Lu random graph ensemble, G E g9 (w), we can

associate an n x n adjacency matrix A, := A, (G). Thus, we can associate a random

ensemble of adjacency matrices to gn (w). We denote this random matrix ensemble

by A,(w). Furthermore, for each matrix in the ensemble, An, A,(w), there is a

corresponding set of n eigenvalues {Aj(An,)}Ij . Therefore, the random matrix en-

semble An(w) induces an n-dimensional joint probability density of eigenvalues. This

density, called joint spectral density, is very difficult (if not impossible) to compute

explicitly. (In [132], we find explicit solutions for a handful of random ensembles of

matrices with i.i.d. Gaussian entries.)

In this chapter, we investigate the spectral density of the random adjacency matrix

A,(w). Before studying the random adjacency matrix .,(w), we introduce and study



a related class of random matrices in Section 4.4. Random matrices in this new class

present zero-mean random entries with nonidentical variances distributed according

to a particular pattern. To the best of our knowledge, spectral properties of random

matrices with non-identical variances are unknown [23]. In this chapter, we provide

a partial answer to this question. In later sections, we show how to apply the results

in Section 4.4 to g,(w).

Before we introduce the technical details, we motivate our approach with some nu-

merical experiments in which we observe the behavior of spectral densities associated

with random graphs of different sizes. In our first experiment, we consider a Chung-

Lu random graph with 10 nodes and expected degree sequence wi = 10 - 4(i/10),

i = 1, 2, ..., 10. (Notice that this sequence takes 10 equispaced samples of an affine

function.) In the first row of Fig. 4-1, we plot the eigenvalue histograms of three

empirical realizations of this random graph. We observe how, for all three realiza-

tions, the histogram of eigenvalues has approximately the same region of support and

approximately the same shape. In a second experiment, we consider a Chung-Lu

random graph with 100 nodes and expected degree sequence wi = 10 - 4(i/100),

i = 1, 2, ..., 100. (This degree sequence is a more finely sampled version of the affine

function used in the previous case.) In the second row of Fig. 4-1, we plot the

eigenvalue histograms for three realizations of this random graph. The eigenvalue

histograms in this case have supports that are even more closely aligned, and their

shapes are remarkably similar. In our last experiment we increase the size of the ran-

dom graph to 1000 nodes. We resample the same affine function yet more finely to

obtain the expected degree sequence wi = 10 - 4(i/1000), i = 1, 2, ..., 1000. The third

row in Fig. 4-1 shows the eigenvalue histograms of three realization of this random

graph. In this final experiment, we can clearly observe a well-defined common shape

for the three empirical eigenvalue histograms. Also, the shapes of the histograms are

significantly smoother that the ones obtained in our second experiment.

In these numerical experiments, we observe how the eigenvalue histograms con-

centrate around a particular density as the graph grows. This density is called the
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Figure 4-1: Eigenvalue histograms for three empirical realizations of g, (w) with
wi = 10 - 4(i/n), i = 1, ..., n, and n E {10, 100, 1000}. Observe how the eigenvalue
histograms concentrate around a limiting spectral density as n increases. We have
include a sketch of this limiting density in the lower-right histogram.

limiting spectral density. The rest of this chapter is devoted to characterize this den-

sity, and study the convergence to this density, for random static graphs generated by

the Chung-Lu model. We will do this by first examining another interesting class of

random matrices in Section 4.4, then applying those results to the Chung-Lu model

in Section 4.6.

4.3 The Method of Moments

In this thesis, we characterize a limiting spectral density using its sequence of mo-

ments. This 'method of moments' is extensively used in random matrix theory [1031.

In the following subsection, we introduce definitions used in our derivations.
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4.3.1 Basic Definitions and Notation

Consider an n x n real symmetric matrix A. Recall that {Ai(A), i = 1, ..., n} denotes

the set of eigenvalues of A. We define the k-th spectral moment of A as

k (A) = [Ai(A)]k (4.3)m[ (A)(=

The k-th spectral moment associated with the random matrix ensemble A,(w) is a

random variable. In this chapter we study the expectation and variance of the k-th

spectral moment for all values of k. In particular, we derive closed-form expressions

for the expected value of the spectral moments, EAEAn(w) [ink (A)], as a function of

the expected degree sequence, w = (wl, ..., wn). These expressions are multivariate

polynomials in the set of variables {W 1, ..., Wk }, where Wj is defined as:

n

wj := wi. (4.4)
i=1

(In other words, Wj is the j-th power sum of the given expected degree sequence w.)

We also prove that the variances of the random spectral moments converge to zero

as the graph grows (under some constrains in the expected degree sequence w).

As mentioned earlier, we characterize the limiting spectral distribution using its

sequence of moments, {ink, k = 0, 1, 2, ...}. An arbitrarily specified sequence of mo-

ments does not necessarily have an associated spectral distribution. The problem of

deciding whether or not a probability distribution matching a specified sequence of

moments exists is called the classical moment problem [5], and our objective of recon-

structing a spectral distribution from its moments can be discussed in this framework.

We can find in the literature several sufficient conditions for the existence of a dis-

tribution that matches a specified sequence of moments. Especially useful if the

following sufficient condition proposed by Carleman :

m2s-1/2sin2 = +oo
s=l



With these basic definitions now introduced, we present the main ideas behind

the method of moments applied to random graphs.

4.3.2 Graph-Theoretical Interpretation of the Spectral Mo-

ments

Consider a simple graph G, i.e., a graph with undirected (or equivalently, bidirec-

tional) edges, and no self-loops. We denote by AG = [ai] the n x n adjacency matrix

of G, and by Ai, i = 1, ..., n, the eigenvalues of AG. A closed walk of length k can be

described as the (ordered) sequence of nodes visited by the walk, ck = (il, i2, ..., ik, i1),

where nodes may repeat along the sequence. Associated with a walk ck, we define

the function:

WG (Ck) = aii2zai23 ... il , (4.5)

where aij is the (ij)-th entry of the adjacency matrix, AG. The variable wG (Ck) takes

the value 1 if the closed walk ck exists in G; otherwise, it takes the value 0. In other

words, wG (Ck) is the indicator function for the set of walks in G. Using this indicator

function, we can count the number of closed walks of length k in G as:

E WG(Ck),
ck ECk

n )

where C•k) is the set of possible closed-walks of length k in the complete graph with

n nodes, K,. (C(n) can also be described as the set of ordered sequences of k nodes,

(i, i2 , ... , ik), chosen with replacement from the set {1, ..., n}.)

An interesting graph-theoretical interpretation of the spectral moments comes

from the following two results:



(i) First, we have the following algebraic identity for the adjacency matrix:

Z Aý = tr Ak;
i=1

thus, the k-th spectral moment of A can be written as:

1 k
mk(A) = -tr A. (4.6)

n

(ii) Also, we have the following result from algebraic graph theory [32]: The trace

of Ak is equal to the number of closed walks of length k in G.

From (i) and (ii), we deduce that the k-th spectral moment of G is proportional

to the number of closed walks of length k in G. Therefore, we can write the k-th

spectral moment as:

mk(A) = w (ck) -i-i2 ai,, ... ik-liikilk. (4.7)
Ck k(n) 1<il,i2,...,ik<n

This formula allows us to transform the algebraic problem of computing spectral

moments of the adjacency matrix into the combinatorial problem of counting closed

walks in the graph. In a random graph ensemble, such as A,(w)), the number of

closed walks of length k is a random variable. In this chapter, we compute the

expected value of the number of closed walks of length k in An(w) and study its

statistical convergence for asymptotically large graphs.

4.4 Eigenvalue Spectrum of Random Symmetric

Matrices with Entries of Zero Mean and Non-

identical Variances

In [84], Fiiredi and Koml6s studied the limited distribution of eigenvalues of an en-

semble of random symmetric matrices An in which the upper-triangular entries, a~ij



for 1 < i < j < n, are independent random variables with the same mean and vari-

ance, denoted by p and r2 , respectively. In particular, it was proven that for p = 0

the set of eigenvalues of An, {A (An)}l<i<n, fulfills:

max IAi(AA) = 2v/- + O(nl/3 log n), (4.8)
l<i<n

with probability tending to 1 (under appropriate technical conditions).

For the Chung-Lu model, the (i, j)-th entry of the adjacency matrix, aij = [A]nj,

has mean and variance given by

E[aij] = Var[aij] = pwiwj. (4.9)

In other words, the means, and similarly the variances, are non-identical across entries

for the random adjacency matrix. Spectral properties of a random matrix ensemble

with non-identical distribution for its entries was mentioned as one of the main open

problems in random matrix theory in the review paper [23]. In this thesis we give

a partial answer to this problem by studying the eigenvalue distribution of random

matrices with a particularly interesting pattern of variances, specified in the next

subsection. In Section 4.6 we then apply the results of the present section to the

Chung-Lu model.

4.4.1 Asymptotic Behavior of Expected Spectral Moments

for Zero-Mean, Rank-One-Variance Matrices

In this section, we introduce a new ensemble of random zero-mean symmetric matri-

ces. This ensemble introduces the novelty of having random zero-mean entries with

non-identical variances distributed in a particular pattern. We derive closed-form

expressions for the expected spectral moments of this random matrix, An. First, we

define the ensemble:



Definition We define An (a), with a = {ai}l<i<n, as the random ensemble of n x n

real symmetric matrices, An = [aij], with diagonal and upper-triangular entries being

independent random variables satisfying the following conditions:

1. Uniformly bounded: I|ijl I< K,

2. Zero mean: E [ 3ij] = 0,

3. Rank-one pattern of variances: Var [-ij] = aoaj, where a = {ai}l<i<, is a

sequence of n non-negative numbers.

To the best of our knowledge, the distribution of eigenvalues of random matrices

with entries presenting non-identical variances remains an open problem. The follow-

ing two theorems state our main results in this direction. The corresponding proofs

can be found at the end of this chapter, in Section 4.5.

Consider the random matrix ensemble An (a) with a = (ala, .2, .an).

amax = max a, amin = min ai, Sk =-,
i i

j=1

T, • = {ri,r2,...,r,}N': rk =s+1,
I e k=1

Then, the even expected spectral moments of An (a) are:

EEA,(,)[m2s(A n) = (1 + o(1)) n- 1
S2( -, s Sl r 2 "...'S r, (4.10)(S(rl,...,rs)ET ' .

2s
in = o(n). (4.11)
ain

provided that

86 ams am

Theorem 4.4.1

Denote

krk = 2s;
k=1



Note that the set Fs was previously defined in Eqn. (4.1), and it represents the

set of valid degree distributions for trees with s edges (and s + 1 nodes). The set

of nonnegative integers in T, defines a base of monomials on the set of quantities

{S1,..., S,}. These monomials combine linearly, according to Eqn. (4.10), to yield

the expected moments, E[m2,(An)]. In other words, the even expected moments in

Eqn. (4.10) are multivariate polynomial expressions in the quantities {S1, ..., S)}.

Regarding the odd expected spectral moments, we prove the following result:

Theorem 4.4.2 Consider the random matrix ensemble An (a) with a = (ala, 2, ... , n)

satisfying n ar = o (1). Then, the odd expected spectral moments of A, E An (a)

are:

lEnEA.()[m28+1(Al.)] = o(1).

Proof (Proof in Appendix B.)

4.4.2 Closed-Form Expressions for Expected Spectral Mo-

ments

In this section, we provide explicit symbolic expressions for the multivariate poly-

nomials in Eqn. (4.10). In Appendix C, we describe an algorithm to compute the

exact polynomial expressions of the expected spectral moments in an efficient man-

ner. The cost of computing the 2s-th order spectral moment by this algorithm is

the same as that of computing the set of integer partitions of s + 1. Optimal al-

gorithms to generate integer partitions work in O (P (N)) time [2131, where P (N)

is the number of partitions of an integer N. Since the number of partitions ful-

fills P (N) = e (N - 1 exp (N1/ 2 )) [17], the cost of computing the 2s-th moment is

S(s-1 exp (1/2)).

We use the algorithm in Appendix C to compute the following symbolic multi-



variate polynomials for the first few even expected spectral moments of A, (a):

Ea,()[m2(A n)] = (1 + o(1)) -(S), (4.12)

EXea,,(U)[m4(An)] = (1 + o(1)) - (2Sn S2)

E Aa(o)[m6(An)] = (1+ o(1)) - (2S3S 3 + 3S2SI)

1
E [ms(A) = (1 + o(1)) -(2SS 4 + 8SjS 2 S3 + 4S2SJ),

EiAo [mlo(Af)] = (1 + o(1)) -(2S'S 5 + 10S4S 2S4 +5S S3

+20S S S3 + 5 S24),

We illustrate the utility of these expressions in the following numerical example:

Example Consider a random ensemble of 500 x 500 symmetric matrices, A5 00 (a),

with random entries aii distributed according to a uniform distribution in the inter-

val [-wij, wij] (thus, the mean and variance of the (i, j)-th entry are E [aij] = 0 and

Var [-ij] = wy/ 3). We can fit the pattern of variances Var [-ij] = aiaj for a particu-

lar sequence (ai)l<i<n using wij = 3 j. In this particular example, we study the

spectral moments of As00 (a) for the following affine sequence: a = {ak = 10 - k/100,

for k = 1,2,...,500}. We presents our results in Table 4.1. The second column of

this table shows the values of the analytical expectation obtained from Eqns. (4.12).

In the third column we list the corresponding empirical spectral moments from one

realization of this random matrix (i.e., without averaging over multiple realizations).

The last column represents the relative error between our analytical estimation and

the empirical value. The small relative errors indicate that the random moments

concentrate around the analytical expectations.

In the following subsection, we apply the results presented in Theorems 4.4.1 and

4.4.2 to study a classical result by Fiiredi and Koml6s regarding the spectral moments

of random matrices with entries having identical variances [84]. We then apply our

results in Section 4.6 to study the eigenvalue distribution of random graphs with a

given expected degree sequence, i.e., Chung-Lu graph.



2s-th order Analytical Expectation Numerical Realization Relative Error
m 2(An) 2.8088e+004 2.8024e+004 0.23 %
m4 (An) 1.6363e+009 1.6237e+009 0.77 %
m 6(An) 1.2075e+014 1.1870e+014 1.69 %
ms(An) 1.0040e+019 9.7485e+018 2.90 %
mio(An) 8.9736e+023 8.5881e+023 4.30 %

Table 4.1: Analytical expectations and numerical values for the even expected spectral
moments of the random matrix defined in the example.

4.4.3 Spectral Moments for Identical Entries

The random matrix ensemble An (a) generalizes the ensemble studied in [841. We

recover their results for the particular case of ai = a for all i. In this case, we have

that Sk = n ak, and the expected even spectral moments from Theorem 4.4.1 become:

r 1 -.. • rs i=1IElm 2 8(A~r] = (1+0(1)) n 1 Z 2(ri 1, rs) f~
= (1+ o (1)) nsoa2Zs 2 s) (4.13)

where we have used E• rj = s + 1 and Ej jrj = 2s (from the definition of the set

'T,) to derive the second equality. In Subsection 4.5.2, Corollary 4.5.6, we shall show

that:

S(s 1 (2s (4.14)
r.. r, , ., rs s + s 1 S

Thus, the moment sequence in Eqn. (4.13) becomes:

E [m 2 (An) = (1 + o(1)) ns 2s . (4.15)

Weusethes+1bound S 2

We use the bound (2s) 22s (proved in [198]), to deduce:

E [m 2,(i(n)] • (2or n)2s



We also have that E[Amax(An)] < E[E i AfS(A,)] = nE m2s(An)]; thus, via Markov's

inequality, one can prove the following (see [198] for a detailed derivation):

P (Amax(An) > 2oJ-n + cnl/2- logn) = o(1). (4.16)

For 6 = 1/6, we recover a bound reminiscent of Fiiredi and Koml6s' result in Eqn.

(4.8).

In the following section, we provide the details concerning the proof of Theorem

4.4.1.

4.5 Proof of Theorem 4.4.1: Expected Spectral

Moments of Even Order

In this section, we use the method of moments introduced in Section 4.3 to prove

Theorem 4.4.1. According to Eqn. (4.7), the k-th expected spectral moment of a real

symmetric n x n matrix, An = [aijl, can be written as:

mk(An) = n-ltrA (4.17)
n1

1- n a 2aii223 ...aik2-ikaikil, (4.18)
il,i2...,ik=l

The sequence of subindices in the above summation, (il , i2, ... k, i1), can be inter-

preted as a closed-walk of length k in the complete graph with n nodes, Kn. We

denote the corresponding walk by Ck := (il, i 2 ..., k, i1 ) (where we allow repeated

nodes in Ck). We denote by ck (j) the j-th node visited by the walk ck. Associated

with a specific closed walk ck, we define the following variable w (ck):

J (ck) := aili2ai2i3 ...ak-likaikil, (4.19)



We also denote by Ckn) the set of all closed walks of length k in K,. Thus, we can

rewrite Eqn. (4.18) as:

k (A) (ck). (4.20)
ckECk• )

Denote by 8 (ck) the set of undirected edges in the closed walk ck (independently

of the direction it is used in the walk), i.e.,

S (ck) = (i, j) : Ck () = i (or j) and ck (s + 1) = j (or i), 1 < s < k - 1}.

We denote by V (ck) the set of nodes visited in Ck. We also denote by mij the number

of times that the edge (i, j) appears in the closed walk ck (either as (i, j) or as (j, i)).

Therefore, we can rewrite Eqn. (4.19) as:

S(Ck)= H aij. (4.21)
(i,j)eE(ck)

Eqn. (4.20) involves a summation over the set of walks of k steps in Kn, Cn ). It is

useful to partition this set of closed walks, C(n), into subsets C (') of closed walks of

length k covering exactly p nodes, i.e.,

{n- Ck r kn) .t. (ck)l = p. (4.22)

Using this partition, we have from Eqn. (4.20) that

mk(A,) = I (Ck). (4.23)

p=1 ckE n)

Consider now a random matrix ensemble, An. We can use (4.23) to compute the



expected spectral moments in the ensemble as

EieA,[mk(An)1 = E E,,.eA,[ (ck)]. (4.24)
p=1 ckEC,

We define

Sk,p(An) E••) [P (ck)] (4.25)
ck E Ck

Hence, we can rewrite (4.24) as

k

EiEA [mk(A) = kp (An) (4.26)
p= 1

In the following, we prove that only a subset of walks in (kn) has a non-zero

contribution to the summation (4.25). In particular, the set of walks presenting a

non-zero weight is identified as follows:

n) ck E C ) s.t. mi > 2 for all (i,j) E (Ck)}. (4.27)

In other words, C(n) is the subset of walks of C(n) in which each edge is used at least

twice, regardless of the direction. In particular, we prove the following lemma:

Lemma 4.5.1 For Ck E C•n)\,n) we have:

EiEA [i (ck)] = 0.

Proof Since E [aij] = 0, the expectation of F (ck) in Eqn. (4.21) is non-zero only if

each edge appears in the walk Ck at least twice, i.e., min 2 2 for all (i,j) E 6 (Ck)

(where mij is the multiplicity of the undirected edge (i, j) in the walk). Thus, ck

must be in C(n) for E [P (ck)] to be non-zero.



This lemma implies that (4.25) can be redefined as:

tk,p(An) = Ee.a [ (ck)]. (4.28)
CkEP

In the next section, we analyze •,p(An) for different values of k and p. We shall show

that for k = 2s the above summation is dominated by the term I 2s,s1 +1 (An). This

term is associated with the set of closed walks of length 2s visiting s + 1 nodes. We

also show that these closed walks present a very particular structure. This structure is

specially amenable to combinatorial analysis, which allows us to derive exact closed-

form expressions for pk,p(An)

4.5.1 Probabilistic Analysis of Closed Walks

In this subsection, we prove that for k = 2s the term p2s,,+1 (A(a)) dominates the

summation in Eqn. (4.26) for the random matrix .An(a) defined in Definition 4.4.1.

As mentioned above, /2s,s+l(1 (a)) is related to closed walks of length 2s visiting

s + 1 nodes. These walks present a structure amenable to combinatorial analysis. In

coming sections, we exploit the special structure of these walks to derive a closed-form

expression for p 2s ,s+1(An ()).

First, from Eqn. (4.26) and for k = 2s, we have that:

EA•EA.[m2s(Af)] = I 2 ,,,+l(An) + Z /i2s,p(Ann)+ 2 ,2s,,p(An).
p<s+

1  
p>s+1

We prove that (under appropriate technical conditions) the term /P2s,s+1(An) domi-

nates the above summation. Our result reads as follows:

Lemma 4.5.2 Consider the random matrix ensemble An (a) in Definition 4.4.1. The

even expected spectral moments of An (a) satisfy

EInEA(an)[m2s(An) = (1 + o(1)) P28,s+(l(An (a)),



if the sequence a = (al ,a 2,, a-, n) satisfies:

S6 (amax 2s

max \ min]

In order to prove the above lemma, we study the order of magnitude of z•2,,p(An)

for different values of p. Specifically, we prove the following:

Lemma 4.5.3 Consider the random matrix ensemble A, (a) in Definition 4.4.1.

Then, for pk,p(An (a)) in Eqn. (4.28), we have that:

(i) 22s,pp(A n (a)) = 0, for p > s + 1.

(ii) >L2s,s+1(Al (Or)) Ž n s1) ( in2

(iii) P28,p(A (a)) = o(1)A 2s,s+ 1(An (a)), for p < s + 1,

if the sequence a = (al, a2, ..., an) satisfies:

6 (amax ) 2 = o(n).

ma.x \~amin)

Proof (We include the proof of this lemma in Appendix D.)

Obviously, Lemma 4.5.2 is a direct consequence of Lemma 4.5.3. These lemmas

allow us to approximate the even expected spectral moments of the random matrix

ensemble An (a) by P2s,,+1(An (a)). Although we give a complete proof of Lemma

4.5.3 in Appendix D, we mention the main ideas behind our proofs in this section.

According to Eqn. (4.28), the computation of /I2s,s+l (An (a)) involves a summa-

tion over the set of closed walks n). Walks in n) are closed walks of length k,k,p- lc,p

visiting exactly p nodes, and each edge in the walk is visited at least twice. As we

prove in Appendix D, each walk ck E ,) presents the following features:

1. Each edge in E (ck) is visited exactly twice (each time in a different direction).



2. Edges in C (Ck) are distributed according to a tree-like structure with s+l1 nodes

(see Fig. 4-2 for an example of a walk in Cs+).

6

i-,
It

Figure 4-2: We represent a closed walk ck of length 12 over 7 nodes in the dominant
family of walks, ()s+ In this walk, we can observe the main features of this family:
(i) the edges of the walk are distributed over an underlying tree, and (ii) each branch
of the tree is visited exactly twice by the walk (each time in a different direction).

As we mentioned above, the edges of the walks in C2,+) (plotted as solid lines in

Fig. 4-2) are confined to be in an underlying tree (plotted using dashed lines in Fig.

4-2). A walk ck e 2, visits each branch in the underlying tree exactly twice, each

time in a different direction. In Appendix D, we codify each walk in the dominant

set C2,,•+1 using its underlying tree.

Obviously, the underlying tree alone does not uniquely codify a closed walk ck. In

order to have a unique codification for each walk, we must include two extra features

to the codifying trees. First, we must indicate the starting node of the closed walk.

We assign the starting node to be the root of the tree; hence, the codifying structure

is a rooted tree. Apart from a starting node, we must also indicate the order in

which the nodes in the tree are visited by the closed walk. We indicate this order by

defining a total order over the set of s + 1 nodes of the underlying tree. Thus, the

codifying structure turns out to be an ordered rooted tree (ORT). (We provided a

formal definition of this combinatorial structure in Section 4.1.) In Appendix D, we



define a bijection between the set of dominant closed walks, 2,+1, and the set of

ORTs with s + 1 nodes chosen from the set {1, ..., n}. This bijection allows us to count

the number of closed walks in CSN,,Z by counting the number of ORTs spanning s +1

nodes chosen from the set {1, ..., n}.

The following example illustrates how to codify the closed walk in Fig. 4-2 using

an ORT:

Example Let us consider the walk represented in Fig. 4-2. The walk is defined by

the following ordered sequence of nodes: (il, i2, i3, i2, 2 ii, i2 , ii, i5 , i,, i 6, i6 1)

(In Fig. 4-2, we represent each step in the walk with a solid directed arc.) We

now illustrate the steps one can take to codify this walk using an ORT:

Step 1: We define the set of branches of the underlying tree, which we denote

by T,(ck). These branches are represented by dashed lines in Fig. 4-2.

Step 2: The root of the ORT is defined by the starting node in the walk, il.

Step 3: The total order in the set of nodes is induced by the order in which

nodes are visited by ck. Thus, the ordered set of nodes is: (it, i2, i3 , i2 , i4, i2 , i1 i 5, i1, i6, i7,

i6, i 1). We can codify an ORT using, for example, prefix notation [188]. In par-

ticular, the ORT associated with the walk in Fig. 4-2 can be represented by the

prefix code: (i1 (i2 (i3, i4) ,i5, 6 (i7)))-

The features observed in the dominant walks, ck E C21,7 allow us to rewrite

/2s,s+l(A~n) in a more convenient form. Since each edge in the closed walk ck E 2),s+1

is visited exactly twice, we can write Eqn. (4.21) as:

(ck) = aj , fr fCk E n)s+1
(ij)EC(ck)

We substitute the above expression in Eqn. (4.28) to derive:

ZP2ss+l(An) J1 E A [_]2 (4.29)
k 2(n) (ij)E(Cck)

Ck E 8s,s+1



where we have used independence of the random variables aij in order to shift the

expectation inside the multiplication symbol.

We now translate Eqn. (4.29) into graph-theoretical terms. We denote by T•1+

the set of ORTs spanning s + 1 nodes. Also, for a given ORT 7 E T+1, we denote by

. (T) the set of branches in T. Our translation of Eqn. (4.29) into graph-theoretical

terms takes place in two steps:

1. First, consider a given walk ck E s,+1, and denote by 7 its underlying ORT.

Since E (ck) = & (T), we can write the expectation of Eqn. (4.21) as:

AflEAl[n( k)la J iEiA[j] .
(ij)ES(r)

2. In the second step, we use the bijection between closed walks and ORTs de-

scribed earlier in this section. This bijection associates each closed walk ck E

2s,s+1 to two ingredients: (i) a set of s + 1 nodes chosen from {1,..., n} , and

(ii) an ORT spanning those s + 1 nodes (this ORT indicates the order in which

those s+l1 nodes are visited by the closed walk ck). Hence, we can substitute the

summation over Ck C2s,s+1 in Eqn. (4.29) by the following double summation:

P2s,s+1l(An) = E f I E[ J]. (4.30)
1_ij,...,is+il n -ETs+i (i,j)EE(7)

In the following section, we exploit this graph-theoretical framework to deduce a

closed-form expression (4.30) by combinatorial means.

4.5.2 Combinatorial Analysis of Dominant Closed Walks

In this section we derive an exact asymptotic expression for the even expected spectral

moments, IE•nCA'A,)[m2s2 (A)]. In our proof, we use several results regarding ordered

rooted trees (ORTs) and ordered rooted forests (ORFs). Our first lemma allows us to



count the number of ORFs presenting a given 6-degree distribution, p = (Po0, Pl --., Pm)

(see Section 4.1 to review terminology).

Lemma 4.5.4 Let p = (Po, PI,-, ,Ps) E N s+ , with ij pi = s and E• (1 - i) pi =

t > 0. Then, the number, R (p), of ORFs (with s vertices and t components) with a

6-degree distribution p = (Po, Pi, ., Pm) (i.e. pi vertices have i successors) is given by:

t(P)= ( s
s Po, Pi, ..., Pm

Proof (The proof can be found in [188], lemma 5.3.10, with minor nomenclature

modifications.)

The following lemma allows us to count the number of ORTs presenting a given

degree sequence, r = (rx, ..., re):

Lemma 4.5.5 Let r = (ri,...,r,) E N', with ZE ri = s + 1 and Ei iri = 2s > 0.

Then the number v (r) of ORTs (with s + 1 nodes) presenting a degree distribution

r = (ri, ..., re) is given by:

v(r) = 2 s ).
r •, r •, ..., rs

Proof (Proof in Appendix E.)

Note that the first line in Lemma 4.5.5 indicates that r is a valid degree distribution

for a tree with s + 1 nodes. We now use the above lemma to derive the following

result:

Corollary 4.5.6 Let r = (rs, ..., re) E N e. Then,

r r, ..., r s) + 1 s

where ., is the set of sequences of nonnegative integers defined in (4.1).



Proof (Proof in Appendix E.)

In the rest of this section we use the above results to prove the following theorem:

Theorem 4.5.7 Consider the random matrix ensemble A, (a), with a = {a, ..., a,}

(defined in Definition 4.4.1). Then, the term Z2 8,s+1 (An (a)) (defined in Eqn. (4.25))

is given by

p2s,s+l (An (a)) = n-1 2( ) _ Js;'
(Tl,.,rs )E r , =1...

where F, is the set of sequences of nonnegative integers defined in (4.1), and Sk

Proof For the random matrix A, E A. (a), we have that IE[aj] = aiaj. Therefore,

from Eqn. (4.30), we have that:

2s,s+1(An (a) n. (4.31)
1<ii,...,i,+ijln TrET+1 iEE(-r)

For a given tree 7, one can easily prove that:

JJ i a, = H d1r'i,
(ij)EE(r) ieV(r)

where V (7) denotes the set of nodes in r, and d, (i) is the degree of node i in -r.

Thus, Eqn. (4.31) can be written as:

I12s,s+l (An (Oa)) = n-- ( i n ,r(i)) (4.32)
n 7-6ET+1 1<ij,...,i,+j:n iEV(7")

where we have interchanged the order of the summations in Eqn. (4.31).

We now analyze the summation inside the parenthesis in Eqn. (4.32). Consider

an ORT T with s + 1 nodes and degree sequence (d, (1) , ..., d, (s + 1)). Then, the



term inside the parenthesis in Eqn. (4.32) can be rewritten as:

<i,...,i n i(i)
1•ii,...,iS+i<n iEV(-r)

n n n

d, (l) d(2) d (s+l)
-- C ... Oril 0"/ ... Ois+l
ii=1 i2 =1 i,+i=l

= Sd,(1)Sd,(2)...Sd,(s+1)

= S,(1) S2r'(2) ...Sr(),

where Sk := i ia, and (r, (1), r, (2),..., r, (s)) is the degree distribution of the

underlying tree r. Hence, we can rewrite Eqn. (4.32) as:

(4.34)L2s,s+1 (An ()) =
n7rETs+i

where, to simplify notation, we define rj = r, (j).

Furthermore, denote by 7T+1 (r) the subset of T7+ 1 consisting of ORTs with s + 1

nodes presenting a given degree distribution r = (ri, ..., r,). Also, the set of all valid

degree distributions for trees with s + 1 nodes is given by F, (defined in Section 4.1

,Eqn. (4.1)). Therefore, we can partition the set T,+1 as:

T,+1 = U 7+1 (r)

Using the above partition of T1+1, we can rewrite (4.34) as:

(4.35)
1

2s,s+1 (An (a)) = SE
rEs. rETs+t(r) j=l

Observe that the term inside the parenthesis in the above equation depends exclusively

on the degree distribution of r, i.e., r = (r1 , ..., r.). Hence, we can move this term

outside the second summation as follows:

p28s,s+l(A (a)) = (4.36)(j=1 7rET8 +l(r)

Finally, the last summation in Eqn. (4.36) counts the number of ORTs with a

(4.33)

S3 7 ,

S
IS •"



given degree distribution r, i.e., 1T8+1 (r)1. Lemma 4.5.5 provides us with a

form solution to this counting problem. Hence, using Lemma 4.5.5 in Eqn.

we have that:

p(+ 11 2
Pi2ss+l(An (Or)) = - 2(8r)

rEF8

S
j=1

This concludes the proof of Theorem (4.5.7).

From Lemmas 4.5.7 and 4.5.2 the following expression for the

tral moments is straightforward:

E.•.•(a)[m2s(An,) = (1 + o(1)) 2 r1, .. , rs)

even expected spec-

s Sj=

.2=1

(valid under the conditions of Lemma 4.5.2). This concludes the proof of Theorem

4.4.1.

We should also mention that the proof of Lemma 4.5.7 holds, with small varia-

tions, when the pattern of variances of An is EE[ rj] = (1 + o(1)) aiaj (i.e., a small

perturbation of the rank-one pattern defined in Definition 4.4.1). In this case, the

final expression for 1p2s,8+l (An) includes a small-order perturbation, i.e.,

A2s,s+1 (An) = (1 + o(l)) (-1E 2 sSrrer s  ri, r2, . .r.s j=1

Therefore, we can apply the expression in Theorem 4.4.1 to compute the even expected

spectral moments of the centralized adjacency matrix Ai associated with a Chung-Lu

random graph g (w).

closed-

(4.36),

(4.37)



4.6 The Eigenvalues of Chung-Lu Random Graphs

with Given Expected Degree Sequence

In this section, we apply Theorems 4.4.1 and 4.4.2 to compute the expected spec-

tral moments of the random adjacency matrix associated with the Chung-Lu model.

Notice that this random adjacency matrix, denoted by A,(w), does not fulfill the

conditions of applicability of Theorems 4.4.1 and 4.4.2. In this section, we present an

approach that allows us to apply those theorems to A,(w).

First, we motivate our approach with the following numerical example. Consider

a Chung-Lu random graph with an affine expected degree sequence: wi = 10-4i/500,

for i = 1, 2, ..., 500. In Fig. 4-3 (a) we plot one random realization of the empirical

eigenvalue histogram of A,(w). From this figure, we draw the following observations:

(i) Most graph eigenvalues fall within a well-defined bulk.

(ii) The largest eigenvalue (spectral radius) is located outside this bulk.

20
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Figure 4-3: In (a) we plot the eigenvalue histogram of the adjacency matrix A, for
n = 500. We observe a bulk of 499 eigenvalues and one isolated maximum eigenvalue,
Amax (An). In (b) we represent the histogram for the centralized adjacency matrix
An.

In the following, we show that these observations are common to Chung-Lu ran-

dom graphs with expected degree sequences satisfying certain technical conditions.
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In our derivations, we use the following result by Chung et al. concerning the spectral

radius of this random graph ensemble [58]:

Theorem 4.6.1 Consider the Chung-Lu random graph ensemble gn (w) with w =

(W1 , w 2 , ... , Wn). Define

n n

W = wi, and W2 = j .

Then the maximum eigenvalue of the adjacency matrix, An:= An(w), satisfies:

Amax(An) = (1 + o(1)) W2 /W 1, (4.39)

almost surely, assuming that:

W2/W 1 > /rwlogn. (4.40)

Under condition (4.40), we observe empirically that the eigenvector associated

with Amax(An) is highly concentrated around the vector w = (wl , w., ... , n). This

observation can be made plausible by analyzing the following equation:

An w = Aw + e, (4.41)

where we assume the vector e is not collinear with w. (Notice that if w were an

eigenvector of An, the 'error' vector E would be zero.) We have that the expectation

of the left-hand side of (4.41) satisfies E[An w] =E[An] w = pwwTw = (W2 /W1 ) w.

Hence, applying expectations to both sides of (4.41), we have that

(W2 /W 1) w =E[A] w+E[E].

(4.38)



This requires that either E[e] is collinear with w, or that

E[A]= (W2/W),

E[] = 0.

Assuming the latter case, and noting that (W2/W 1) is the asymptotic value for

Amax(A,) in Theorem 4.6.1, we surmise that the eigenvector associated with Amax(A.)

is highly concentrated around w under condition (4.40). We shall assume this in what

follows, and our experiments based on this assumptions yield good results. A rigorous

demonstration is left to future work.

In the following, we illustrate how to apply Theorem 4.4.1 in order to compute

the expected spectral moments of a Chung-Lu graph satisfying Eqn. (4.40). The

adjacency matrix An(w) does not satisfy the conditions defining the class of matrices

studied in Section 4.4.1; thus, Theorem 4.4.1 is not directly applicable. Specifically,

there are two reasons for which the random adjacency matrix, A,(w), does not satisfy

these conditions:

(R1) The mean of the random adjacency matrix A,(w) is

E[A,] = [pwwi]j = pwwT,

where w = (wl, w2, ..., w,)T is a column vector. Thus, the entries have non-zero

mean.

(R2) The random entries aij of A, have variance

Var[aij] = pwiwj(l - pwiwj).

This pattern of variances does not follow the rank-one pattern of variances

described in the definition of A (a).

In the following, we show how to overcome both (R1) and (R2). To overcome

(R1), we remove the mean from the entries, aij, and study the effect of this removal



on the spectral moments. We term this process of average removal as centralization.

The resulting matrix is

An = An - E[An] = [ag],

which we call the centralized adjacency matrix. (Notice that the variance of the entries

of An is still given by the expression in (R2).) Centralization of the adjacency matrix

modifies the distribution of eigenvalues in an interesting manner. We illustrate the

effects of centralization with a particular numerical example. Consider the expected

degree sequence

wi = 10 - 4i/500, i = 1, 2, ..., 500, (4.42)

and its associated random adjacency matrix, A,(w). In Fig. 4-3 (b), we plot the

histogram of the centralized adjacency matrix, An. In this figure, we observe the

following effects of centralization:

(El) removal of the largest isolated eigenvalue, Amax(An);

(E2) slight perturbation of the bulk of eigenvalues.

To understand why (El) and (E2) hold for random adjacency matrices A,(w)

with w satisfying Eqn. (4.40), we argue as follows. Assuming that, under the condi-

tion in Eqn. (4.40), the largest eigenvalue A1 = Amax(An) has algebraic multiplicity

1, we can decompose A,(w) as

A(w) = Ailb = A1D + An, (4.43)
i=1

where

,I1 = v iv{/ I1V112



and vl is the eigenvector associated with A1. The matrix A, has the same eigenvalues

as A,(w), except that the eigenvalue at A1 is replaced by an eigenvalue at 0. As we

mentioned above, we also assume that the eigenvector vl concentrates around w

(under the condition in Eqn. (4.40)). Thus, we can approximate I1 as

eb wwT/ 11w1 2 = WE[A (w)].
W2

This implies that

A1,11-dE[An (w)].

Substituting the above equation in (4.43), we find

A(w) - E[A, (w)] ; A,.

In other words, under our stated assumptions, adjacency centralization removes the

largest isolated eigenvalue and does not significantly perturb the bulk of eigenvalues.

Since the bulk of eigenvalues is only slightly perturbed, we can approximate the

spectral moments of the bulk of eigenvalues of An using the spectral moments of

A,. In Table 4.2, we compare the spectral moments of one random realization of the

centralized adjacency matrix, An, with the moments of the bulk of eigenvalues of the

adjacency matrix, An, for w defined in Eqn. (4.42). We observe a remarkable match-

ing in the even moments. We also observe odd moments are noticeably smaller than

even moments (which indicates a tendency to an even symmetry in the distribution).

Since we know the location of the maximum eigenvalue (given by Theorem 4.6.1),

we can quantify the effect of its removal on the spectral moments. In particu-

lar, one can easily prove that the effect on the k-th moment is to subtract (1 +

o(1))n-'(W2/W)k from mk(An), i.e.,

1 (W2
mk(An) mk(n) + - 2

n W,



We include Table 4.3 to compare the numerical value of one random realization of the

spectral moments of the adjacency, mk(An), to the moments of the approximation,

mk(An) + n-1(W2 /W1 )k. We again observe a remarkable matching in the even mo-

ments. Odd moments are notably smaller than even moments (due to the asymptotic

even symmetry in the bulk of eigenvalues).

k-th moment mk(Bulk of An) mk(An) Relative Error
1 -0.0187 -0.0163 12.8%
2 7.7724 7.8148 0.54%
3 -0.5179 -0.3973 23.2 %
4 133.4119 134.6208 0.90%

Table 4.2: Comparison of one numerical realization of the spectral moments of the
bulk of eigenvalues of An to the moments of the centralized adjacency An.

k-th moment mk(An) mk(An) + n-1(W 2/W 1)k Relative Error
1 0.0000 0.0000 -
2 7.9480 7.9480 0.0004 %
3 1.1280 0.6905 38.78%
4 148.8360 143.5001 3.58 %

Table 4.3: Comparison of one numerical realization of the spectral moments of An to
the moments of the centralized adjacency A~ including the correcting term (w2 /w1)k

In the following, we use adjacency centralization to overcome the difficulty de-

scribed in (R1). In order to overcome (R2), we must first study the pattern of

variances of the (centralized) adjacency matrix, An. The variances of the entries are

Var[ii]] = pwiwj(1 - pwiwj),

which do not follow the pattern in Definition 4.4.1. In this chapter, we are interested

in studying bounded expected degree sequences, i.e., wi < D < 00. In this case, one

can easily prove that pwiwj = o(1); thus,

Var [aij] = (1 + o(1))pwiwj.

In other words, the (centralized) adjacency matrix presents an 'almost' rank-one



pattern of variances. At the end of Subsection 4.5.2, we prove that Theorem 4.4.1

is also applicable to compute the expected spectral moments of A, (even though the

pattern of variances is not exactly a rank-one matrix). Therefore, we can compute

the expected spectral moments of A,(w) by applying Theorem 4.4.1 with

a = fpw. (4.44)

In Table 4.4, we compare the empirical spectral moments of one random realization

of A,(w), with w = (10 - 4i/500)i=1,2,..., 50o, and the analytical estimation obtained

by using Theorem 4.4.1 with a = /,fw. The relative errors in the last column are

reasonably small, specially for small-order moments. We shall show, in the last section

of this chapter, how these errors tend to zero for asymptotically large networks.

2s-th moment m 2,(A0) E[m2s(An)], for n -+ oo Relative Error
2 7.9278 7.9960 0.86%
4 135.7157 130.5387 3.81%
6 3.0028e3 2.6848e3 10.59%
8 6.5951e4 4.4678e4 32.32 %

Table 4.4: Comparison of one numerical realization of the even spectral moments of
An to the analytical estimations from Theorem 4.4.1, with a = Fpw.

In the following subsections, we apply the methodology introduced in this section

to compute the expected spectral moments of two random graphs of special impor-

tance: random power-law graphs, and random graphs with exponential expected

degree sequence.

4.6.1 Spectral Moments of Random Power-Law Graphs

Let us consider the random power-law graph proposed by Chung et al. in [58]. This

random graph presents the following expected degree sequence: wi = c i- 1/ -', for

i = io, io+ 1, ..., io+n-1. We can impose a prescribed maximum and average expected



degree, m and d, respectively, by choosing c and io to be:

/-2 1
c = dn6- 1

/-1

o (d( -d 2)) - 1

m(M - 1)

In Figures 4-4 (a) and (b) we include the empirical eigenvalue histograms of APL

and ApL := APL - E [APL], respectively. As we mentioned in the previous section,

centralization of the adjacency matrix has the following effects:

(i) removal of the largest isolated eigenvalue;

(ii) slight perturbation of the bulk of the empirical eigenvalue histogram.

-I----- O
5 10 15
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-0 -5 .0 (b) 5

Figure 4-4: Fig. (a) represents the eigenvalue histogram of a random power-law
network with n = 500, / = 3.0, d = 10, and m = 20. In Fig (b), we plot the histogram
after adjacency centralization. We observe how the largest isolated eigenvalue is
removed by centralization, while the bulk of eigenvalues is slightly perturbed.

We now apply Theorem 4.4.1, with a = V•w, to compute the even expected

spectral moments of the random power-law graph. First, we must compute the power

sum, Wk. We can use the following approximation for Wk:

io+n

i=io

_ /-1
k+1 -

Jio+n(0
0- d86nrk(6,
86

ckxa d
ckx-0--1 dx
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where:

t-l-k

rk (7 = 6 fl-l-k_ (1±6+') s
d(f# - 2)
m (0 - 1)

We use these expressions for the power sums, and use the identities F,, rj = s + 1 and

Ej jrj = 2s, to derive the following expressions for the expected spectral moments:

E[m2 (A)] = (1 + o (1)) p'n" 2 s (6, P) ,1 (4.45)

where

f2s (J, f) = 2 S (6 0; 0)) .- ... H q + 1--
rEF2, "' q=1

In order to compute f2s, we must determine the set of integer sequences Y2,. (This

set is the outcome of step (1.d) of the algorithm presented in Appendix C.)

In Table 4.5, we compare evaluations of the symbolic expressions in Eqn. (4.45)

with the spectral moments of one random realization of a power-law graph. In this

illustration, we use the following set of parameters: n = 512 nodes, # = 3.0, d = 10,

and m = 20. (It is important to notice that the numerical values in the table are

obtained for one realization only, with no benefit from averaging.)

2s-th order Analytical Expectation Numerical Realization Relative Error

m2 (An) 7.7930 7.5899 2.60%

m4(An) 140.9294 140.0645 0.61%

m6(An) 3.4111e3 3.4563e3 1.32%

ms(An) 9.5799e4 9.8988e4 3.32%
mlo(An) 2.9411e6 3.1152e6 5.91%

Table 4.5: Analytical expectations and numerical values for the even expected spectral
moments of the random matrix defined in the example.



4.6.2 Spectral Moments of Random Exponential Graphs

Consider a Chung-Lu random graph with an exponential expected degree sequence:

wi = m exp (-A i/n), i = 1, 2, ..., n, for A > 0. In this case, the power sums Wk can

be approximated by

n m k

Wk Ak [1 - exp (-Ak)].

For simplicity, we assume the maximum expected degree m to be much larger than

the average expected degree. Hence, we can approximate the power sums by: Wk 1

n mk/A k. Substituting Wk in the expressions of Theorem 4.4.1, and using the iden-

tities: E, rj = s + 1 and Ej jrj = 2s, we derive the following expressions for the

expected spectral moments of the centralized adjacency Aexp:

E [m2s- (exp)] = (1o(1)) 92s s+1l

where

92 s 2 n 1
rE.T , .- j= 1

In Table 4.6 we compare analytical expectations of the spectral moments with one

random realization for the following values of parameters: m = 10, and A = 1.

2s-th order Analytical Expectation Numerical Realization Relative Error

m2(An) 6.3149 6.4448 2.01 %
m4(A,) 86.2937 95.3967 9.54 %

m6(An) 1.5160e3 1.8410e3 17.65 %
ms(An) 2.2150e4 3.0576e4 26.33 %

Table 4.6: Analytical expectations and numerical values for the even expected spectral
moments of a random graph with an exponential degree sequence with m = 10, and
A=1.



4.7 Statistical Convergence of the Spectral Mo-

ments

In previous sections, we have studied spectral properties of the random adjacency

matrix A, = [aij] associated with a random graph ensemble, 9,(w). As a result

of our analysis, we have derived closed-form expressions for the expected spectral

moments of this random graph ensemble. As yet, nothing has been formally stated

concerning the concentration phenomenon illustrates in Section 4.2. In this section,

we focus our attention on studying the concentration properties of the bulk of eigen-

values'. As we justified in Section 4.6, the bulk of eigenvalues concentrates around

the spectrum of the centralized adjacency matrix A,. Consequently, in this section

we derive concentration results regarding the spectral moments of the centralized ad-

jacency matrix, mk(A,). Specifically, we prove quadratic convergence of the random

spectral moments of A, around their expectations.

For simplicity in our exposition, we limit our study to Chung-Lu random graphs

with uniformly bounded expected degree sequences, i.e., 1 < wi < D < 00. This case

is specially relevant, since it corresponds to degree sequences measured from real-world

networks presenting a physical limitation on the maximum number of connections per

node.

Our main concentration result reads as follows:

Theorem 4.7.1 Consider the centralized adjacency matrix A,n associated with a Chung-

Lu random graph gn(w) with a uniformly bounded expected degree sequence, 1 < wi <

D < oo00. Then,

Var[fik(A,)] = O (n-2).

Proof (In Appendix F.)

'Concentration properties of the maximum isolated eigenvalue were already studied by Chung et
al. in [58].



We illustrate the statement of the above theorem with a numerical example.

Consider a random Chung-Lu graph with an expected degree sequence as follows:

wi = 5 + 5(i/n), for i = 1, ..., n (i.e., a degree sequence that grows linearly from 5

to 10 as i grows). In this numerical experiment, we take samples for the empirical

spectral moments of the centralized adjacency for random graphs with different sizes.

In particular, we choose a set of sizes growing from n = 10 to 500 in increments of 10

nodes. For each value of n, we compute the empirical mean and empirical standard

deviation from 25 random realizations of the random network. In Fig. 4-5, we plot

the evolution of the empirical mean for the first 3 odd and even spectral moments as

a function of n, and compare them with their analytical expectations.

S50 100 150 200 250 300 350 400 450 500

(a) (b)

Figure 4-5: In (a) we represent the evolution of odd spectral moments from the above

experiment. Observe how odd moments tend to zero for growing network size. This

indicates that the limiting empirical spectral density is an even symmetric function. In

(b), we represent the evolution of even spectral moments. We also include horizontal

dashed lines corresponding to their limiting theoretical values.

More importantly, in Fig. 4-6, we plot the empirical standard deviation as a

function of n. From this plot, we observe how the empirical standard deviations

decays (though slowly) as the network grows.



n
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Figure 4-6: In (a), we represent the empirical standard deviation for the second (blue

line) and third (green line) spectral moment of An as a function of n, and denoted

by u2(An) and a 3(An), respectively. In (b), we represent the same plot for the forth

(blue line) and fifth (green line) moment, denoted by a4(An) and as(An).
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Chapter 5

Moment-Based Estimation of

Spectral Properties

In the previous chapter we derived closed-form polynomial expressions for the ex-

pected spectral moments of static random graphs with a given expected degree se-

quence. In this chapter we introduce several techniques to extract features of the

spectral distribution from a given sequence of spectral moments. In coming chapters,

we shall derive expressions for the expected spectral moments of other random graph

ensembles. The techniques introduced in this chapter are directly applicable to these

other ensembles as well.

The following is an enumeration of techniques introduced in this chapter:

1. Wigner's high-order method: We can use this technique to bound the largest

eigenvalue of the spectral distribution.

2. Piecewise-linear reconstruction of the spectrum: This methodology allows us to

compute a piecewise-linear reconstruction of the spectral distribution given a

sequence of moments.

3. Optimal probabilistic bounds via semidefinite programming: We also discuss a

technique that uses semidefinite optimization to find optimal bounds of spectral

properties, given a sequence of moments.



5.1 Wigner's High-Order Method

The following methodology, proposed by E.P. Wigner in [203], is useful to derive a

probabilistic upper bound on the largest eigenvalue of a random symmetric matrix

from the sequence of its spectral moments. Consider a real and symmetric n x n

random matrix, Mn. Denote by A1,..., A~ the set of real eigenvalues of Mn, and by

Amax(Mn) = max<i<•s IAil. For even-order expected spectral moments we have the

following:

n n

i=1

Wigner's method exploits this to deduce an upper bounds on Amax(Mn) from the

sequence of high order expected spectral moments.

Consider a sequence of even expected spectral moments E[m 2, (Mn)}. The first

step in this method is to find positive constants a, 6, c1 , and c2, such that 2s = c2 n6

and

E[m 2 (M)]< Cl (2,a ) 2s

If the upper-bounding sequence in the right-hand side of the above equation exists,

one can derive the following probabilistic upper bound on Amax (M,)f, [198]:

P (JAmx (M,)I > 2av+cn'/2-86 1nn) <_ o(1), (5.2)

for a sufficiently large c. This technique can be applied, for example, to estimate the

spectral support of the Wigner's semicircle law [203].

Example Consider a random symmetric n x n matrix An = [5ij] with random i.i.d.

upper-triangular and diagonal entries governed by the following discrete probability



distribution

ij -p, w.p. 1 - p,

1 - p, w.p.p.

(The entries have zero mean p = E [dij] = 0, and variance o2 = Var [i,j] =

p (1 - p). From Theorem 4.4.1, we can compute the following sequence of expected

moments:

E[m2,(An,)] =(l+o(l)) nsa"2s (2s)

Also, we can use the bound •(2ss) 22s (found in [198]) to derive

E [m 2s(An)] (2uv4 )2s

= (2 /np(1-p))2

Hence, from Eqn. (5.2), we find the following probabilistic bound on IAmax (An)

SAmax (An) I 2 np(1- p) + c n/2-6 •nn) o(1). (5.3)

We now illustrate the above result with a numerical experiment. In Fig. 5-1,

we plot the numerical values of Amax(An) for one empirical realization of A, when

n = 500 and p taking values in the set {i/500, i = 1, 2,..., 50}. We also plot the values

of the dominant term in the probabilistic bound in Eqn. (5.3), i.e., 2 /np (1 -p),

for the same values of n and p. Observe that the numerical realization of Amax(A,)

lies near the analytical upper bound 2/p (1 - p) n. This suggest that we can use

2 /p (1 -p) n as an estimation of Amax(An).
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Figure 5-1: We plot the maximum eigenvalue Ama(A,) for one empirical realiza-
tion of A, when n = 500 and p E {i/500, i = 1, 2, ..., 50} (blue line). We also plot
2 /np (1 - p) for the same values of n and p (dashed line).

5.2 Piecewise-Linear Reconstruction

In this section we introduce a technique that computes a piecewise-linear (PWL) re-

construction of an unknown spectral density given a sequence of its spectral moments.

We present two versions of this methodology:

(i) In the first version, apart from a sequence of spectral moments, we are given an

interval containing the spectral support.

(ii) In the second version, we are only given a sequence of three spectral moments

(without any prior knowledge of the spectral support).

The methodology introduced in this section yields a PWL function that fits a

given truncated sequence of spectral moments. We denote this PWL approximat-

ing function as Lp (A), and parameterize it using a set of P points on the plane,

{(xi, Yi) ,i 1, 2, ..., P}, where we set the ordinates yl and yp to be zero (see Fig.

5-2). In this parameterization, we have a total of 2P - 2 unknown scalar parameters:

P corresponding to the unknown abscissae {xp}1<p<p, and P - 2 corresponding to

the ordinates {yp}2<p<P-1.
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Figure 5-2: Plot of the parameterized version of the piecewise-linear function proposed
in this section.

We decompose the PWL function Lp (A) into a linear combination of triangular

functions. We denote each triangular function by Ti (A), for i = 2, ..., P - 1, and

parameterize it using three control points in the plane: {(xi-1, 0), (xi, yi), (xi+1, 0)}

(see dashed triangle in Fig. 5-2). Thus, we have the following linear decomposition:

P-1

Lp (A)= E Ti(A).
i=2

Since moments are linear functionals, the k-th spectral moment of the PWL function,

denoted by mk(Lp), can be written as the sum of the moments of the individual

triangles, denoted by mk(Ti), as follows:

P-1

mk(Lp)= mk(Ti)
i=2

Furthermore, the k-th spectral moment of each triangular function can be written as

mk (T) = Yi xh(Xi) dx
Si-1 Xi - Xi-1

y fi+ (X - Xi+1) dx.
-Y xh dx.

xi Xi+1 - Xi

97

X1 X2 ... Xi- 1 Xi Xi+l .. xP-1

L.,l O



Integrating the above expression, we obtain the following expressions for the moments

of the triangular function (after considerable algebraic manipulation) :

2 [Nk (xi-1,i, Xi+l)] (5.4)
(k + 1) (k + 2) [Dk i-, X i +1)'

where Nk and Dk are the following symmetric' polynomials:

Nk (p-1, xpi, Xp+l) = Xp-1k+2 + + Xp+1X pl (5.5)

k+2 k+2 -,1k+2
-p--1Xp - p p+l -1 Xý+Xp,

Dk (Xp-1,Xp, Xp+l) = (Xpp-1 - Xp) (Xp - p+l) (Xp+1  - Xp- 1 ). (5.6)

Therefore, the k-th spectral moment of Lp(A) is given by

P-1
mk(Lp) 2 1 Nk ( (5.7)

(k + 1) (k + 2) i=2 Dk i-1, xi i+)

Notice that the above expression for the k-th moment is linear in the set of or-

dinates {Yi}i=2,...,P-1, but nonlinear in the set of abscissae {xi}i=1,...,p. Our final

objective is to find a solution for both {Yi}i=2,...,P-1 and {xJ}i=1,...,p given a truncated

sequence of moment constrains, i.e.,

mk(Lp) = Mk, for k = 0, 1,..., K. (5.8)

Despite the difficulties in solving this (nonlinear) system of equations, there are two

cases in which we can find a closed-form solution:

(i) In the first case, the abscissae {xi}i=1,...,p are fixed a priori. Hence, the resulting

system of equation is linear in the unknowns.

(ii) In the second case, we are given the first three moments of the distribution,

but no prior knowledge on the spectral support. In this case, we exploit the

1A symmetric function is a multivariate function that takes the same value under any permutation
of its arguments.



symmetry in Eqn. (5.7) to solve the nonlinear system of equations efficiently.

5.2.1 Piecewise-Linear Fitting with Fixed Abscissae

As mentioned above, when we fix the abscissae, the system of equations (5.8) becomes

linear. Specifically, for a given set {xi}i=j,...,p, we define the coefficients

2 Nk (i-l, i, i+) (5.9)
k,i (k + 1) (k + 2) Dk (Xi-1,Xi, i+l)'

for k = 0, 1, ..., K and i = 2, 3, ..., P - 1, where Nk and Dk are defined in Eqn. (5.5)

and (5.6). From Eqn. (5.7) and (5.8), we have

rI 1
1 110,2 110,3 " 0 " 110,P-1

M M11, 2  1,3 "' " 1,P-1

M2 A 12,2  /12,3 .' - ]2,P- 1

• .

Y2

Y3

YP-1

, (5.10)

jL K L ILK,2 IK,3 "'" I'K,P-1 J

m M

If we choose the number of ordinates to match the number of given moments, i.e.,

P-2 = K, the matrix M becomes square, and the system of equation can be solved by

a simple matrix inversion. We illustrate this technique with the following examples.

Example Without performing an explicit eigenvalue decomposition, we estimate the

shape of the eigenvalue distribution of the Kirchhoff matrix KPL associated to one

random realization of a random power-law graph (see Subsection 4.6.1).

In this example, we use a piecewise-linear function to fit the shape of the eigenvalue

distribution associated to a power-law random graph with paramaters: n = 512,

d = 15, m = 30, and / = 3.0. Given one random realization, we can compute

numerical values for the low-order Kirchhoff moments using matrix multiplication,



i.e.,

1
mq (KpL) = -tr KL. (5.11)

n

In our particular case, we compute the following values for the first 8 moments: 11.73,

160.20, 2.58e3, 4.84e4, 1.02e6, 2.34e7, 5.68e8, 1.43e10 (in increasing order of q).

In order to perform a PWL reconstruction, we first need an estimation of the

spectral support. Since KPL is positive semidefinite (see Chapter 2), the spectral

support is in [0, oo). We can find several upper bounds on the largest eigenvalue of

KpL in the literature. In this example, we use the following simple bound proposed

in [134]: let mi denote the average of the degrees of the neighbors of vertex vi, i.e.,

1 n
?nj = diEai jdl

j=1

Hence, a simple bound for the largest eigenvalue of KpL is given by

Amax (KpL) < max di + mi.

Using our random realization of the Chung-Lu graph, we compute this upper bound

to be 52.65.

Once we have an estimation of the spectral support, we must choose a set of

abscissae {(s} 1<i<10. In our case, we divide the region (0,52.65) into equispaced

segments. Finally, applying Eqns. (5.9) and (5.10), we compute the set of unknown

abscissae {yi} 2<i<9. We plot our PWL reconstruction in Fig. 5-3.

5.2.2 Triangular Fitting with Unknown Abscissae

In this subsection, we consider the case in which the abscissae are unknown and

three spectral moments are given. In this case, we exploit the symmetries of the

polynomials in Eqns. (5.5) and (5.6) to find an efficient solution to the problem.
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Figure 5-3: Plot of the piecewise-linear reconstruction of the spectrum of KpL. We

also include the histogram of eigenvalues in blue.

We present our approach for the case in which only three abscissae, {xl, x 2 , X3,

are unknown. The PWL function L3 (A) in this case is a single triangular segment,

and its moments are

1
M, - (x + X 2 + X 3), (5.12)

3

M2 2 2 13 23)

M1 (x3 + x 2+ 23•X + 2 + XZ1= 10(2

+ x~ 3  + 2 + x + X1 2X3)

(In order to compute these moments, we have fixed Y2 = 2/(x3 - xl) to force the

triangle to have unit area.). In the following, we show how to solve this system of

nonlinear equations by exploiting the symmetries of the polynomials involved.

First, we introduce several basic results regarding symmetric polynomials

Definition A symmetric polynomial on q variables zl,..., z, is a polynomial that is

unchanged under any permutation of its variables. In other words, the symmetric

polynomials satisfy

P (y/, Y2, , y-) = p (x1, X2, Xq)
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where yi = X,(i) and 7 is an arbitrary permutation of the indices 1, 2, ..., q.

We now introduce two particular examples of symmetric polynomials. First, com-

plete homogeneous symmetric polynomials (CHSPs) are defined as:

hk (1, ..., q):= (5.13)

In other words, hk ( 1, ... , Xq) is the sum of all monomials of degree k involving q

variables. Second, elementary symmetric polynomials (ESPs) are defined as:

Sk (X1, .. , Xq) =

For example, in the case of three variables, {l, X2, X3} , we have

si ( 1,•2,X3)

S2 (•1, 2, 3)

s3 (XI, X2 ,X3)

= 1 + X2 +x 3,

= XX12 + X2 1 3 + X2X 3,

= X 1 X 2 X 3 ,

It is useful to express ESPs and CHSPs using the following generating functions

[119]:

00

E= Sk (X1, q)
k=O

S= hk (X1 ..., )
k=O

(5.14)

(5.15)

xk = (1 +xxi) ,
l<i<q

1 1s

X
k =

1 1 - x Xi
l<i<q

Notice that the generating functions S (x) and H (x) are related by the equation:

S (x) H (-x) = 1.
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Therefore, expanding the above expression, we obtain the following set of equalities:

q

Z(1)r sr
r=O

We can make this relation more

ering Eqn. (5.16) as a system of

equations, we find that:

Sk = det

(x1, ... , Xq) hq-r (xl, ..., Xq) = 0. (5.16)

explicit by regarding hi, ... , hq as fixed, and consid-

linear equations for sl, ..., sq. Solving the system of

hk-1 hk-2

hk hk-1

O ... O
1 ... O0

hk-3 ... 1

hk-2 ... hi

(5.17)

Another result regarding ESPs is the following [119]:

Claim 5.2.1 Given the values of the ESPs, si (xl,...,xq), for i = 1, 2,..., q, one can

determine the values of the variables ({x, x2, ..., Xq} as roots of the polynomial

X -qs x q - 1 + S2 Xq - 2 - ... + (- 1 )q Sq = 0. (5.18)

5.2.3 Exploiting Symmetric Polynomials

The first three moments of the triangular function in Eqn. (5.12) can be written in

terms of CHSPs as follows:

(5.19)

M2

M3

11 h2 (X1, 2, X 3)6
1

= -h 3 (x, X2, 3)10
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From the above equations, we write the CHSPs in terms of the moments, {M1, M2, M3},

and substitute them in Eqn. (5.17) to derive the following system of equations:

S1 (x 1,x 2,x 3) = 3M 1i, (5.20)

S2 (Z1, 2, 3) = 9 M1 -6M 2,

s3 (x 1 , 2 , 3) = 27 M13 - 36 MIM 2 + 10 M3.

For a set of given moments, we can use the above equations to compute the values

of the ESP's, {sl, s2, S3}. Then, we can use Claim 5.2.1 to compute the abscissae,

{z1, 2 , X3}, associated with the triangular function T3 (A) as roots of the following

polynomial:

x3 - Si2x + s2 1 - S3 = 0. (5.21)

As a final comment, the above procedure indicates what triads of moments {M 1, M2, M3}

can be fit using a triangular function. Those triads of moments producing imaginary

roots in Eqn. (5.21) cannot be fitted by a triangular function.

Example Without performing an explicit eigenvalue decomposition, and without

any prior knowledge of the spectral support, fit a triangular function to the Kirchhoff

spectrum of one random realization of a Chung-Lu graph with the following expected

degree sequence:

3
wi - (100 - i) + 10, i = 1, 2, ..., 200.100

We take one random realization of the above Chung-Lu graph, and compute the

following values for the Kirchhoff moments using matrix multiplication (Eqn. (5.11)):

M, = 1997.542, M2 = 4.793e6, and M3 = 1.392e10. We substitute these moments

in (5.20), and compute the values for the ESP's Sl,S 2, and S3. We then use the

particular values of the ESP's in the polynomial (5.21), and compute the following

values of the abscissae: xi = {3594.3, 9463.4, 46534.3}. In Fig. 5-4, we compare the
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histogram of the Kirchhoff eigenvalues with the triangular function preserving its first

three moments.

U.1

0.08

0.06

0.02

IIK(X)

x.
0 1e4 2e4 3e4 4C4 5e4

Figure 5-4: Plot of the triangular reconstruction and histogram of eigenvalues.

As a final comment in this section, we should mention that it is not always possible

to fit a triangular function to any given three moments. We say that a sequence of

three moments, {M1 , M2, M3}, is feasible if there exists a triangular function matching

the sequence of moments. In general, a moment sequence {M1, M2, M3) is feasible if

and only if the roots of the polynomial in (5.21) are all real. Hence, the discriminant

of this polynomial provides us with an algebraic criterion to decide whether or not a

sequence of moments is feasible.

Using the expressions in (5.20), we can write the discriminant of (5.21) as a func-

tion of the sequence of moments, {Mi, M2, M3 }. After simple algebraic simplifica-

tions, we derive the following algebraic criterion for feasibility of a sequence of three

moments:

8(M,2 _ M2 )3 + 25 (2 M1 - 3M 1M2 + M3 )2 < 0.
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5.3 Optimal Spectral Bounds via Semidefinite Pro-

gramming

In this section, we present a technique to find optimal bounds of spectral properties

via semidefinite optimization, given a truncated sequence of moments [29], [120], [641.

A sequence of spectral moments, {1, M, M2, ..., Mk}, is said to be feasible if there

exists a spectral distribution matching the sequence of moments. The problem of

deciding whether or not a moment sequence is feasible is called the classical moment

problem [5j. Depending on the restrictions we impose on the support of the probability

distribution, we find three classical cases:

1. The Hamburger moment problem, where the support is allowed to be the whole

real line.

2. The Stieltjes moment problem, where the support is allowed to be within [0, oo).

3. The Hausdorff moment problem, where the support is in a bounded interval

[a, b].

A necessary

for the Stieltjes

semidefinite:

R21

1

M,

and sufficient condition for a sequence of moments

moment problem is given by the following matrices

M1 ,

M2

M1+1

... M1+ 1

... M 2 1

M2

M3

M1+2

R21+1

for any integer 1 > 0. Similarly, a necessary and sufficient condition for a sequence of

moments to be feasible for the Hamburger moment problem is that R2[k/2J is positive

semidefinite.
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In the following subsection, we show how to use semidefinite programming to

derive optimal probabilistic bounds on spectral properties from a given sequence of

moments.

5.3.1 Notation and Problem Setup

Given a random variable A, we describe a technique to find the best upper bound on

E [0 (A)] for a given polynomial 4 (A), when A satisfies certain moment constraints,

E [Ai] = Mi. Given the first k moments MI, ..., Mk (we fix M0 = 1) of a real random

variable A with domain Q C_ R, we show how to find tight bounds on P(A E S) by

solving a single semidefinite optimization problem. An upper bound on P(A E S) can

be formulated as follows:

Zp = maximize, fs 1 du (5.22)

such that fs A dp = Mi, for i = 0, 1, 2, ..., k,

where g is a probability measure that we restrict to be of a particular convex class

P.

Using duality theory, one can associate a dual variable yi to each equality con-

straint of the primal, and thereby, obtain [120]:

ZD = minimize, Ek,= yiMi

such that g (A) = = yiA > 1, for A e S, (5.23)

g (A) = Cy, ~yA i 0, for A E 1.

In general, the optimum in Problem (5.23) cannot be achieved. Whenever the

primal optimum Z, is achieved, we call the corresponding distribution A* an extremal

distribution. It can be shown that if the truncated moment sequence {M ili = 0, 1,, ..., k}

is an interior point of the set of feasible moment vectors, then strong duality holds

(Z, = Z,, where Zý and Zj are the optima for the primal and dual problems,

respectively).
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5.3.2 Tight Bounds as Semidefinite Optimization Problems

In [162], the author show how solve the dual Problem (5.23) using semidefinite pro-

gramming. Notice that the constraints in this problem are given by the nonnegativity

of univariate polynomials. This naturally leads us to investigate conditions for polyno-

mials to be nonnegative. The feasibility region defined by semialgebraic constraints in

problem (5.23) can be rewritten using semidefinite constraints, (see [162] for details).

Three interesting particular cases of the above optimization problem are where

only (i) Mi, (ii) M1 , M 2, or (iii) M 1, M2, M2,M 3 are given (corresponding to the choices

k = 1, 2, or 3 in the preceding development). For these three cases, one can deduce

closed-form solutions for the optimization problem.

To present the result, it is helpful to define the squared coefficient of variation as

2 -M2 - M12
CM = Mi2

and the third-order coefficient of variation as

2 M1M3 -

Assume in the following that 6 > 0.

Theorem 5.3.1 The following table presents tight bounds

marked with an asterisk assume that 6 < 1):

for k = 1, 2, 3 (the bounds
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(k, Q) P(A>(1+(6)M) P (A>(1-6)M1)I P(A-MII>6MI1)

(1, R+) 1 1* 1*

(2, R) +62 min I

(3, R+) f(C2,DM, 6) f 2 (C, D2M,)* f3 (CM2, D,5)*



where

minc2i, , i 6 > • 2,

MD+(1+6) -) if 6 <_ C2
T+6 D2+ 1+CM) C _6) M

S1 - (C + 6)3

(D2 + (CM + 1) (CM + 6)) (D2 + (CM + 6)2)

= min 1, 1 + 33 D + C - 62
4 + 3 (1+ 362) + 2 (1 + 362)3/2

We now illustrate how to apply the above result to find bounds on the spectral

distribution, given three spectral moments. We consider the Kirchhoff matrix KPL

of one random realization of a random power-law graph (see Subsection 4.6.1), with

parameters n = 512, m = 30, d = 15, and / = 3.0. Using (5.11), we compute

the first three spectral moments: M1  =11.733, M2 =160.200, and M 3 =2.582e3,

without performing an explicit eigenvalue decomposition. We can use these moments

in Theorem 5.3.1 to compute an upper bound on the complementary cumulative

spectral distribution, i.e., P(A > x), using the last row of the second column in the

table in Theorem 5.3.1. We plot our result in Fig. 5-5, where we also include the

empirical complementary cumulative spectral histogram (i.e., number of eigenvalues

greater than x, in blue bars) for the Kirchhoff matrix under study. Better bounds

can be found in [162], but these require further assumptions on the spectral density,

such as convexity.

In coming chapters, we shall apply the arsenal of tools developed in this chapter

to study spectral properties of random graph models.
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Figure 5-5: Plot of the empirical complementary cumulative spectral histogram (in
blue bars), and the upper bound on the complementary cumulative spectral distribu-
tion given three spectral moments: M1 =11.733, M2 =160.200, and M3 =2.582e3.
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Chapter 6

Spectral Analysis of Dynamically

Evolving Networks

Although static random graph ensembles are useful for fitting empirical measurements

taken from a real-world network, they do not help us to understand how a real

network develops those properties in the first place. As an alternative, dynamically

evolving models try to represent the fundamental forces that produce global network

characteristics. In a dynamically evolving model, a network grows in time according

to a set of evolution rules aiming to replicate the growth processes taking place in a

real network.

In recent years, dynamically evolving models (also called dynamic graphs) have

been proposed to explain the origin of heavy-tailed degree distributions observed in

many real-worlds networks. For example, in the context of the Web graph [113],

the number of links per page follows a heavy-tailed distribution (which is usually

approximated by a power law). Inspired by these measurements, Barabasi and Albert

proposed in [24] a network growth process aiming to explain the appearance of power-

law degree distributions. The Barabisi-Albert (BA) model has two fundamental

ingredients:

(i) the sequential addition of nodes;

(ii) the so-called preferential attachment process.
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The first ingredient causes the number of nodes in the BA network to grow in time.

The second ingredient causes new edges to attach to existing nodes of high degree

with a higher probability than to nodes of low degree (in other words, "popularity is

attractive").

While many structural characteristics of the BA model are well known, analytical

results concerning spectral properties of this model are still an open question. In this

chapter, we present new results regarding the moments of the adjacency matrix for the

BA model, which can be used to obtain information about the eigenvalue spectrum,

using the ideas and tools presented in the previous chapters. Our approach is based

on the method of moments [1031. This method allows us to translate the algebraic

problem of computing the spectral moments of a graph into the combinatorial problem

of counting the number of closed walks of a particular length in the graph.

6.1 Preferential Attachment Model

In this first subsection, we describe the random graph process proposed by Barabasi

and Albert [24]. Loosely speaking, we start with a particular initial graph, and make

it evolve in discrete-time steps. At each time step, we add one new node that has

m new edges attached to it. The other end of each new edge attaches to an existing

node according to a probabilistic rule. In the particular case of a BA graph, each

new edge attaches to an existing node with a probability proportional to the degree

of that existing node.

Before we provide a formal description of this model, we introduce our nomen-

clature. First, for clarity of notation, we match the time slot with the size of the

network, i.e., at the n-th discrete time slot, there are n nodes in the network. Hence,

the initial time slot, denoted by no, is equal to the size of the initial graph config-

uration. For simplicity, we choose this initial graph to be the complete graph with

2m + 1 nodes. The average degree of our initial graph is obviously equal to 2m, and

one can easily prove that the addition of m edges at each time slot maintains this
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average unchanged over time. We denote by vi the node added at the i-th time slot,

and by di [n] the degree of vi at the n-th time slot. We also denote by Nk [n] the

number of nodes with degree k at time slot n. For a given i and k, both di[n] and

Nk [n] are discrete-time stochastic processes that evolve with n.

6.1.1 Algorithmic Description

In this section we provide an algorithmic description of the BA model. The model

herein presented is not exactly the one given in [24]; instead, we introduce slight mod-

ifications in order to avoid certain mathematical issues that appeared in the original

model [38]. The BA model is a random graph process, denoted by (Gm[n])n> 2,m+1,

where Gm[n] is a graph with n nodes and m new links per time slot. To each graph

Gm[n], we associate an adjacency matrix Am[n] = An (Gm[n]).

We describe the random graph process (Gm[n])n>2m+1 in algorithmic terms as

follows:

1. We choose the complete graph with no = 2m + 1 nodes, K2m+1, to be our initial

graph Gm[no]. Set n = no + 1.

2. Generate Gm[n] by adding to Gm[n - 1] a new node, vn, together with m new

edges connected to vn. The m new edges also connect to a set of m randomly

selected nodes in Gm[n - 1]. We denote the set of m randomly selected nodes

at time n by S,m[n] = {up[nT]}lp<m .* The nodes in Sm[n] are iteratively chosen

according to the following algorithm:

(a) Initialization: We first define the intermediate variables d p) [n], for 1 <

i < n and 1 < p _ m. We call these variables intermediate degrees. We

initialize those variables at p = 1 to be: d'1)[n] =di [n - 1], for 1 < i <

n - 1, and d4) [n] = m.
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(b) Iterative random growth: Choose one node from the set {vj)}1<j<n-_ to be

up[n] E S,a[n] with probability proportional to its intermediate degree, i.e.,

I? (up[n] = vj) = _d[ ) n] for 1 < j < n - 1. (6.1)

Consider vi to be the outcome of this random choice, i.e., up[n] = vi. Now,

upgrade the intermediate degree sequence as follows:

d + 1) [nh = d [) n] + 1,

dr + '1) [n] = d P) [n] for r :A i.

Finally, increment p by one.

(c) Stopping condition: If p < m, return to (b) and repeat. If p = m + 1, we

assign Sm[n] to be {vp[nl]}lp<Sm, increment n by 1 and return to (2).

Several comments are in order. First, since the probability of connection in Eqn.

(6.1) is linearly proportional to the degree of v3, this growth process is usually called

linear preferential attachment (LPA). Notice that this process allows the existence of

multiple edges between two given nodes, although this event is very rare for large n.

Also, it can be proved that different initial graphs give rise to the same asymptotic

behavior from a spectral point of view.

6.2 Evolution of Structural Properties

In this section, we review several results regarding dynamically evolving networks. In

particular, we discuss about both the evolution of the expected values of the degree

distribution Nk[n], and of the degree dj[n] of the node added at time j. The main

technique used in this section, as in the BA paper [241, is the rate equation approach

from statistical physics [114], [72].
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6.2.1 Degree Distribution

The evolution of the expected number of nodes with degree k, E[Nk[n]], can be

described using the model of bins and balls represented in Fig. 6-1. Each ball in

the model represents a node, and the k-th bin represents the collection of nodes with

degree k. In other words, the number of balls in the k-th bin at time n is equal to

Nk n].

There are three mechanisms that can modify the number of balls in the k-th bin

at a given time n, as illustrated in Fig. 6-1:

(1) If the new node v, attaches to an existing node of degree k - 1, then a ball

jumps from the (k - 1)-th bin into the k-th bin.

(2) If the new node vn attaches to a node of degree k, then a ball jumps out of the

k-th bin into the (k + 1)-th bin.

(3) Every new node v~ is initially attached to m edges; thus, a new ball is placed

in the m-th bin at every time slot.

(2)

r k+ 1 k k-1

(3)

m

Figure 6-1: Bins-and-balls model for the evolution of the degree distribution.

With these mechanisms in mind, one can write down the following difference
equation describing the evolution of the expected number of nodes in the k-th bin
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[114]:

k-1 k
E [Nk [n + 1]] = E [Nk [n]] + E[Nk-1 [n]] - E[Nk [n]] + 6 [k - m], (6.2)

2n 2n

for k > m. (Notice that for k < m, Nk [n] = 0 at all times.) The terms in the above

difference equation account for the following:

(i) The first term, E [Nk [n]], accounts for the number of nodes of degree k in the

previous time slot.

(ii) The second term, 'E [Nk1 [n]], accounts for the creation of a node of degree

k (if the new node v, attaches to a node of degree k - 1).

(iii) The third (negative) term, kE [Nk [n]], represents the loss of a node of degree

k (if vn attaches to a node of degree k).

(iv) The last term is a discrete Dirac delta (i.e., 6 [k - mi = 1 for k = m; 0 for

k # m) representing the creation of a new node of degree m at every time slot.

Since we start with the complete graph K2m+1 at the (2m + 1)-th time slot, the

initial conditions in Eqn. (6.2) are: N2m, [2m + 1] = 2m + 1, and Nk [2m + 1] = 0,

for k : 2m. The evolution of (6.2) has been studied in several papers [38], [114]. We

limit our discussion to the stationary behavior of (6.2) in the limit n -+ oo (as proved

in [72], this stationary limit exists). Let us define Ark = lim,,, E[Nk [n]]/n. Thus, in

the stationary limit, Eqn. (6.2) becomes

k-1
Afk= - lk-1, for k > m, (6.3)k + m

with boundary condition A.' = m/ m + k (which is derived from Eqn. (6.2) for

k = m). Eqn. (6.3) presents the following stationary solution:

m k-1 n (k - 1)! (2m+ 1)!
in= k = - .n-- (6.4)
-m+kj + J+m+ l m+k(m-1)!(k + m - 1)!"._,

116



For large degrees k, the stationary distribution in (6.4) can be approximated as

XAf c( k-m-1. In [24], the authors studied the specific case m = 2 and derived a degree

distribution flk cx k - 3, which is in accordance with the result in Eqn. (6.4).

6.2.2 Degree Evolution

In this subsection, we review results regarding the evolution of the expected degree

of a given node j, i.e., E [dj [n]] as n grows [114]. We represent the evolution of dj [n]

using the bins-and-balls model in Fig. 6-2. In this case, bins correspond to individual

nodes, and each ball represents an edge connected to that node. The probability of

a new ball falling in the j-th bin at time n is equal to: dj [n - 1] /(2 n). Accordingly,

we can describe the evolution of the expected degree using the following discrete-time

equation [114]:

d. [n - 1]E [dj [n]] = E[dj [n - 1]] + (6.5)
2n

Ii n=2

iiiAOL :
ti n

Figure 6-2: Bins-and-balls model for the evolution of the degrees, dj [n].

We continue our analysis by performing a mean-field approximation of (6.5). In

particular, we substitute dj [n - 1] in (6.5) by its expectation to find:

E[d [in]] = E[d [n - 1]] 1 + ) . (6.6)
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The solution to the recursion in (6.6) is

E [dj [n]] = E [dj [j]] (1 +) (6.7)
k=j+l

where E [dj [j]] = m. Furthermore, for j > 1, the product in (6.7) can be approxi-

mated as follows:

r 1 +(;: exp 2k
k=j+l k=j+1

Sexp - (log n - log j)

= )1/2 (6.8)

In conclusion, using (6.8) in (6.7), we can approximate the evolution of the expected

degree of the j-th node as

E[dj [n]] m m ()1/2 (6.9)

6.3 Expected Spectral Moments for Asymptoti-

cally Large Networks

Analytical results regarding spectral properties of dynamically evolving BA graphs

are, to our knowledge, an open question. In this section, we deduce approximate

closed-form expressions for the spectral moments of Gm[n] for n --+ co. The adjacency

matrix Am[n] associated with a BA graph is a random matrix that evolves in time,

i.e., (Am[n])n>no is a random matrix process. Consequently, the k-th spectral moment

of this matrix, mk(Am[n]), is a discrete-time random processes that evolves with n.

In this section we apply the method of moments, introduced in Chapter 4, to

study the spectral moments of a BA graph. Consider the adjacency matrix of a BA

graph, Am [n] = [aý ý]. According to this method, the expected spectral moments of
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Am[n] can be written as

1 n E (n) (n) (n)E[mk(Am[n])] = n E[a2 a i
2 3 " a - (6.10)

1n <i ,i2,...,ik n

We now rewrite Eqn. (6.10) using graph-theoretical elements introduced in Subsection

4.3.2. In particular, we use Eqn. (4.7) from Chapter 4, to rewrite (6.10) as follows:

E[mk(Am[n])] = E G [w.[l] (Ck)] , (6.11)
Ck E C n )

where ck is a closed walk of length k, Ckn) is the set of all closed walks of length k in

the complete graph K,, and WG,[n] (Ck) is defined as

WGm[n] (Ck) = ) ( mid, (6.12)
(i,j)EE(ck)

where 6 (Ck) is the set of edges visited by the closed walk Ck, and mi,j is the number

of times Ck visits edge (i, j) (see Chapter 4 for more details). From Eqns. (4.7) and

(6.12), we have the following expression for the expected spectral moments of the

adjacency matrix:

E[mk (Am [n])] = E[ (ai ))m]. (6.13)

ChECkn) (ii)E C(ck)

The above expression is difficult to analyze due to the dependencies among the ad-

jacency entries a.).In the following paragraph we introduce and justify a conjecture

that simplifies this analysis.

Recent studies on the correlation properties of several power-law graph models,

including the BA model, indicate that correlation among adjacency entries vanishes

as the network size grows to infinity. In particular, in [199] the authors studied the

asymptotic behavior of the degree correlation coefficient for several scale-free graphs

(including the BA model), and concluded that these graphs behave like if uncorrelated
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for n -+ co. Based on these results, we propose the following conjecture:

Conjecture 6.3.1 Consider a BA random graph process, (Gm[nl)n,>,. Then,

Z E[ J (aj))mij] - E [(a%))mij, (6.14)
Ck. kn ) (i,j)KC(ck) ck6 kn) (i'j)EE(ck)

for n -+ oo.

Although we have not found a rigorous proof of the above conjecture, subsequent

analytical results based on (6.14) are in excellent agreement with numerical simula-

tions. In particular, using the above conjecture in Eqn. (6.13), we have that

E [mk(Am[n]) -+ E [a )], (6.15)
n(n

ckEC cn) (i,j)EE(ck

for n -- oc (where, since a ) is a 0-1 variable, we can remove the power inside the

expectation, i.e., E[ (a ))m ij] = E[a )]).

In the following, we study the expectation of the binary random variable a .)

Assume i < j (i.e., the i-th node is 'older' than the j-th node). Obviously, there

cannot be a connection between vi and vj before vj is created; thus, ai) = 0 for

q < j. At the j-th time slot, the new node v, might connect to the existing node vi.

According to the linear preferential attachment rule, the probability of this connection

is given by

P(a = 1) - d [] (6.16)
2j

Note that if vj does not connect to vi at the j-th time slot, they will never connect.

Furthermore, since in the BA model existing edges are not deleted, we conclude that

aý) = a~). Hence, from (6.16), we have

Ea) ] = E[a d = . (6.17)
S3 ~2j
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Performing a mean-field approximation of (6.17), i.e., replacing di[j] by its ex-

pected value, we obtain

E[d, [j] (6.18)
E[aij 2 j (6.18)

According to (6.9), we have that E [di [j]] m V/i. Hence, (6.18) becomes

m/2
E[a( ) ]  z , i < j < n. (6.19)

(Notice that the same exact argument, with the same exact result, holds for j < i <

n.)

In the following, we use the above results to derive a closed-form expression for the

asymptotic value of E[mk(Am[n])]. Our approach is based on constructing a Chung-

Lu static random graph, Gn(w), with expected spectral moments matching those of

Am[n] for n -+ oo. In particular, we define a random graph ensemble 9n(w) with the

following prescribed expected degree sequence:

w = (Wi) 1<i<, with wi = m . (6.20)

The adjacency matrix, A, = An(w) = [aij], is a symmetric matrix with upper-

triangular independent random entries satisfying

P(aij = 1) = E [aij] = pwiWj. (6.21)

For the degree sequence in (6.20), we can approximate p as follows:

S-1 f~1

p wi) dx) 2mn'
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for n -+ oo. Thus, from (6.20) and (6.21) we have

1
E[aij] 2 muWiWj2mn

m/2m/2 (6.22)

Notice that, although formally equivalent, the expressions in (6.22) and (6.19) corre-

spond to a static and a dynamic random graph, respectively. This observation will

be key in subsequent derivations.

We now argue that the expected spectral moments of Am[n] (the adjacency matrix

of a dynamic random graph) tend to the moments of A, (the adjacency matrix of a

static random graph) for n -- oo (under Conjecture 6.3.1). Applying the method of

moments to the random adjacency matrix A,, we find

E[mk(A,)] = E [aj], (6.23)
ckEC (n) (i,j)EE(ck)

Since E [aij] in Eqn. (6.22) is (asymptotically) the same as E[ai )] in Eqn. (6.19),

we have that E [mk(An)] in (6.23) is asymptotically equal to the right-hand side of

(6.15); therefore,

E[mk(Am[n])] -+ E[mk(An)], (6.24)

for n -+ oo. In other words, we can approximate the asymptotic expected spec-

tral moments of the BA model using the expected spectral moments of a Chung-Lu

random graph 9 (w) with w defined in (6.20).

We illustrate (6.24) with the following numerical example. In Fig. 6-3, we plot

the eigenvalue histograms for the following two random graphs:

(R1) A Barabisi-Albert dynamic graph with m = 6 and n = 3000.

(R2) A Chung-Lu static graph with wi = 6 /3000/i for i = 1, ..., 3000.

In agreement with the result in (6.24), we observe a remarkable similarity between
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both eigenvalue histograms.

I.

-20 *1
-(b) --

Figure 6-3: In the figure we compare the eigenvalue histograms of a BA random
graph with m = 6 and n = 3000 (plot in (a)) to a Chung-Lu random graph (in
(b)) with an expected degree sequence equal to the degree sequence of (R1). We
observe a remarkable similarity between the largest eigenvalues, as well as the bulk
of eigenvalues, of both models. The higher center peak in the bulk of the Chung-Lu
random graph is due to the presence of isolated nodes in the random realization.

Table 6.1 contains numerical values of the empirical spectral moments of both

random graphs, (R1) and (R2). Although the relative error is small for low-order

moments, the errors become unacceptable for higher-order moments. This mismatch

is mainly due to the extreme sensitivity presented by high-order moments to the

location of the largest eigenvalue, Amax,.

Table 6.1:
network to
n = 3000.

k-th Moment mk(Am[n]) mk(An) Relative Error
1 -2.793e-15 -2.1672e-016 -
2 12.1920 11.9653 1.85%
3 6.8700 5.6600 17.61%
4 1.0040e3 793.8893 20.92%
5 8.6724e3 6.0107e3 30.69 %
6 3.9873e5 2.5511e5 36.02%

Comparison of the spectral moments of one random realization of
the Chung-Lu model (R2). The values for the parameters are m =

a BA
6 and

In Fig. 6-4, we plot the largest eigenvalue of both random graphs, (R1) and (R2),

as a function of the network size n. We observe that Ama,(An) provides us with a very
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good estimation of Amax(Am[n]). In the following paragraphs, we apply the results

introduced in Chapter 4 to study the spectral moments of the bulk of eigenvalues of

Am [n].

30

200 400 600 800 1000

Figure 6-4: The figure plots the evolution
Amax(An), as a function of network size n.

1200 1400 1600 1800 2000

of the spectral radii, Amax(Am[n]) and

As we discussed in Chapter 4, the effect of centralization on the spectrum of the

adjacency matrix (under certain conditions) is to remove the isolated largest eigen-

value for the eigenvalue spectrum. In this section, we have the following centralized

adjacency matrices

A, = A - E[A,],

Am[n] = Am[n] - E[Am[n]],

where, from (6.19) and (6.22), we have

E[Am[n]] I E[A,] = pwwT.

In Fig. 6-5, we plot the eigenvalue histograms of the centralized adjacency matrices

for both the Barabisi-Albert and the Chung-Lu random graphs. As expected, we

observe in Fig. 6-5 how the bulk spectrum is only slightly perturbed in each case

when the isolated largest eigenvalue is removed from the histogram.
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(a) (bi)

Figure 6-5: Fig. (a) represents the centralized eigenvalue histogram of the centralized
adjacency for the dynamic random graph (R1), and Fig. (b) represents the centralized
histogram for the corresponding to the centralized adjacency of the static random
graph (R2).

Hence, we can use the expected spectral moments of A, to describe the shape

of the bulk of eigenvalues of A,[n]. Theorem 4.4.1 in Chapter 4 provides us with

closed-form expressions for the asymptotic values of E[mk (An)]. In order to apply

this theorem, we first define the sequence a = {ai}1 i<sn such that oai = pVwi, where

wi is defined in (6.20). Thus, the power-sums Sk = Z= ai are equal to

n n

Sk = Z(VJwi)k pk/2 Zwi
i=1 i=1

n
pk/ 2mknk/ 2  1 P = pk/ 2mknk/ 2Hn,k/2,

i=1/2

where Hn,k/2 is the generalized harmonic number of k/2 of order n. For large n, Hn,k/2

converges to the Riemann zeta function, C (k/2), and p converges to (2mn)- 1. Hence,

for large n, we have

v2-mn, for k = 1,

Sk = (In n + 7) , for k = 2, (6.25)

(M)k/2 ( (k/2), for k > 3,

where - is the Euler-Mascheroni constant (y7 0.5772...). For convenience, we rewrite
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()rn k/2Sk 2 Ski

S2 \, for k = 1,
Sk= Inn + y, for k=2,

((k/2), for k > 3.

We now substitute (6.26) in the expression (4.10) from Chapter

ing expression for the even expected spectral moments of the

An:

4 to derive the follow-

centralized adjacency

E[m 2s(An)] = (1 + (1)) r., r, s (6.28)

where the set of integer sequences, F,, is defined in Theorem 4.4.1, Chapter 4. Sub-

stituting (6.27) in the above expression, we find the following explicit expressions for

the first few even expected spectral moments of An:

E[m 2(An)]

E[m 4 (,n)]

E[m 6 (A,)J

E[ms(A,)]

= (1 + o(1))2m,

= (1 + o (1)) 2m 2 (lnn + 7),

= (1+o(1))1 (n) (16n 3/2( (3/2) + 12n (Inn +7) y),

= (1+o(1))I (-) 4 (32n2( (2) + 64n3/2 (Inn + 7})C (3/2)

+16n (Inn + 7)2),

(6.29)

In agreement with the even symmetry observed in the bulk spectra, the odd expected

spectral moments of A, are of smaller order.

In Table 6.2 we compare the predictions of analytical expressions in (6.29) with

empirical spectral moments of one random realization of the BA graph using param-
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eters m = 6 and n = 3000.

2s-th order E[m 2 (An)] 2s(Am [n]) Error (%)
2 11.8410 11.9610 1.01%
4 618.030 727.6319 15.06 %
6 8.514e4 1.1146e5 23.60 %
8 1.915e7 2.5051e7 23.55 %

Table 6.2: In the second and third columns, we present numerical values for the
analytical prediction, E[m 28 (An)], and one numerical realization of the even spectral
moments of Am[n], respectively.

In this section, we derive asymptotic spectral properties of the BA model for
n -+ oo00. We now illustrate, via numerical simulations, how empirical spectral mo-

ments of the BA model converge to the analytical estimation, E[m 2s (An)}, as n grows.
In Fig. 6-6, we plot the values of the first three even moments for both the analyt-
ical estimation in Eqn. (6.28) and one random realization of the empirical spectral
moments as a function of n.

IC
10-

10

5

200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 6-6: Evolution of the second, fourth and sixth spectral moments of Am[n], for
m = 6, as a function of n. We include the factors JV/ and p to bring the numerical
values into a similar range.

In the final part of this section, we study the behavior of large-order expected
spectral moments in Eqn. (6.28). The expression for the 2s-th order expected spectral
moments in (6.28) is a multivariate polynomial with variables S1, ..., S,. From (6.25),
we have that the asymptotic behavior of the variables involved in (6.28) are: Si =
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0 (v,), S2 = O(logn), and Sk = (1) for k > 3. Hence, the dominant term in

(6.28), for n -+ oo, corresponds to the monomial with the highest power in S1. By

inspection of (6.29), we deduce that the dominant monomial in (6.28) is equal to

2S'Ss. Therefore, we have the following asymptotic expression for the even expected

spectral moments:

2
E[m 2s(An,) = (1 +o(1)) S- S,

(1+o(1)) s(ss.

For s > 3, we have:

2
E[m 2s(An)] = (1 + o(1)) -ms s/2 ( (s/2).

Furthermore, the Riemann Zeta function, ( (s/2), converges very fast to 1 as s in-

creases; thus, expected spectral moments of the centralized adjacency grow as

2
E[m 2 s(An)] = (1 + o(1)) -mS n"/2, (6.30)

n

for n -4 oc, and s > 3.

We can extract interesting information from Eqn. (6.30). For example, we can ap-

ply Wigner's high-moment method (introduced in Chapter 5) to study the asymptotic

behavior of the largest eigenvalue of Am[n] (in other words, the largest eigenvalue in

the spectral bulk of Am [n]). We denote this eigenvalue by Am,,[n]. Applying Wigner's

method, one can derive that:

P(Amax[[n ] E o(n1 /4)) = 1 - o(1).

In Fig. 6-7, we plot empirical values for max[n] and observe that in fact Amax[n] does

depends on the network size n as Amax,[n] cX n1/4, for large n.

128



64

, [n]
32 o-

16 .-'

8 n
I I I

103 104 105

Figure 6-7: Plot, in double logarithmic scale, of the largest eigenvalue of A6 [n] as a
function of n (circular dots). We also include a dashed line with rate of growth cc n1/4

for visual reference.

6.4 Evolution of the Number of Self-Avoiding Walks

A self-avoiding walk (SAW) in a graph is a path between two nodes that never visits

any intermediate node more than once. The study of SAW's in lattice grids is a well

developed field with many implications in statistical physics [128]. In this section,

we study SAW's in the context of large-scale random graphs. In particular, we study

the number of closed SAW's of length I in the BA dynamic model, (Gm[n])n>no.

We denote the number of closed SAW's of length 1 by q, [n]. Since (Gm[n])n>no is a

random graph process, q, [n] is a discrete-time random process that evolves in n. In

this section, we study the evolution of the expected number of closed SAW's, E[q, [n]l,

for asymptotically large graphs.

In the BA evolving graph, nodes and edges are added to the graph in each time

slot (and never removed). Thus, as n grows, new closed SAW's are added to the

graph (and never removed). In other words, q, [n] is a monotonically non-decreasing

function in n. Obviously, all closed SAW's generated at the n-th time slot must

include edges added at the same time slot n. Since all m new edges are attached to

the new node v,, new closed SAW's must pass through vn. Based on this concept,

we propose the following criterion to detect new closed SAW's:
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Criterion 6.4.1 New closed SAW's of length 1 are generated at the n-th time slot

when the new node v, connects to a pair of existing nodes, vi and vj, that are already

connected by an open SAW of length I - 2 (see Fig. 6-8).

Note that this criterion is applicable for m > 2, since for m = 1 the new node v,

cannot connect to a pair of existing nodes (only to one node).

V

node

V.
j

Figure 6-8: A new node vn connects to a pair of existing nodes, vi and vj, which are

already connected by an open SAW of length k- 2. This event generates a new closed

SAW of length k.

In the following, we apply the above criterion to compute the number of closed

SAW's generated at a given time slot. Denote by qý(h ) [n] the number of open SAW's

of length h from node vi to node vj in Gm[n]. We then define the following variable:

(6.31)Aq•ij)[n] := 21 a• jn q-2 [n

Notice that the factor a )a ( in (6.31) is equal to 1 if the v, connects to a pair of

existing nodes, vi and vj; and this factor is 0 otherwise. Also, q(i )r[n is greater than

0 if there exists at least one (open) SAW of length 1 - 2 connecting nodes vi and vj.

Therefore, according to Criterion 6.4.1, new closed SAW's of length 1 are generated at
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the n-th time slot when Aqi"j)[n] is greater than 0. Furthermore, Aqi(ij)[n] provides

us with the exact number of new closed SAW's of length 1 passing through nodes vi

and vj generated at the n-th time slot. The factor 21 in (6.31) takes into account

that:

(i) There are 2 possible directions for each new closed SAW (i.e., vn - vi - ...

vij v- , or vn 4 vj -+ ... --+ vi - Vn), and

(ii) There are 1 possible nodes on which each new closed SAW can start.

Therefore, summing over all possible pairs of vertices, the total number of closed

SAW's of length 1 generated at the n-th time slot is:

Aql[ n] = Z Aqi'j)[tn]
1<i<j<n-1

= 21 a (n) (6.32)
1<i<j<n-1

Consequently, the evolution of qt[n] can be described using the following stochastic

discrete-time equation:

q, [n] = qt [n - 1] + 21 a ) qn,) [n]J. (6.33)
1<i<j<n-1

In this section, we study the evolution of the expected number of closed SAW's,

E [q, [n]]. From (6.33), we have that E [q, [n]] satisfies the following differential equa-

tion:

E[q, [n]] = E [q [n - 111 + 21 E[aa q) (n [n]. (6.34)
1Li<jSn-1

The above expression is difficult to analyze due to the dependencies among the

terms inside the righmost expectation. In the following paragraph, we introduce

a conjecture that allows us to derive analytical results. As Conjecture 6.3.1, this

second conjecture is also motivated by the results in [199]. As mentioned before, the

BA model behaves like if uncorrelated for n -+ oo. Accordingly, we draw the following
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conjecture:

Conjecture 6.4.2 Consider a BA random graph process, (Gm[n])n>no. Then,

E[a an) j) [n] -4 E[a ] E Ea)] E[q(i') [n]), (6.35)

1<i<j<n-1 1<i<j<_n-1

for n -+ oo.

Eqn. (6.35) becomes an equality for all n in the case of uncorrelated random

graphs. Based on the above conjecture, we now derive analytical results concerning

the evolution of E [q, [n]] that are in excellent agreement with numerical simulations.

In particular, using Conjecture 6.4.2, we have that

IE[q, [n]l = E[qj [n - 1]] + 21 E[a ]n) E[an)] E[q"-j) [n]]. (6.36)
1<i<j<n-1

In Section 6.3, we studied the expectation of the binary random variable, aý , via

a mean-field analysis, and found:

E[a7)]  m/2 (6.37)

Hence, applying the above expression to E[ain ] and E[a n], we find that:

E[a n) E[a] (n) /2) 2  m m/2 _ E[a(N], (6.38)

where we have used (6.37) to derive the last equality in (6.38). Substituting (6.38) in

(6.36), we find that:

E [q [n]] P E [q, [n - 1]] + E[a7)] E[q') [n]]. (6.39)
n

1<i<jn-1

In our previous conjectures, we assume that the BA model behaves like an uncor-

related random graph for n -+ oo. In the following, we use the same justification to
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draw a final conjecture:

Conjecture 6.4.3 Consider a BA random graph process, (Gm[n])n>no. Then,

< E[an-1 ] E[ q [n]]
1<i<j!n-1

1 < E[a)j[nn
l<i<j<n-1

for n -4 oo.

This conjecture is exactly true for all n in the case of uncorrelated random graphs.

Based on Conjecture 6.4.3, we can rewrite (6.39) as:

a n) [n]ij)
ij qi-2 [n]].

E [q, [n]] = E [q, [n - 1]] + •E[
l<1i<j<n-1

In the following, we show that the summation in the above equation is proportional

to the number of closed SAW's of length 1 - 1, i.e.,ql [n]. Note that, if a. ) = 1 and

qi) [n] > 1, then vi and vj belong to a closed SAW of length 1 - 1. Furthermore, we

obtain the number of closed SAW's of length I - 1 by summing a•) q() [n] over all

pairs of nodes, 1 < i, j < n - 1, in the network. Hence, we have:

(6.40)q-x1 [n] = 2 a )q') [n],
1<i<j<n-1

(where the factor 2 is a consequence of summing over half the pairs of nodes, 1 < i <

j<n-1.)

Using (6.40), we can write Eqn. (6.39) as follows

ml
E[qt [n]] = E[qt [n - 1]] + nE[ql[n].

2n

The solution to the above recursion is given by

E [q, [n]] = q, [no] +
n

SjE[qi-l[k]],
k=no+1
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where ql [no] is the number of closed SAW's of length 1 at the initial time slot no. As

we mentioned in the description of the BA model, the asymptotic behavior of this

model is independent of the initial configuration graph, Gm[no]. For simplicity, we

assume the initial configuration to be a tree. Since a tree does not contain closed

SAW's of any length, the initial condition simplifies to q, [no] = 0 for all 1 > 1. (One

can verify that the following derivations also hold for other initial configurations,

although the intermediate expressions are more intricate.)

We can exploit the recursive structure provided by Eqn. (6.41) (with q, [no] = 0

for all 1 > 1) to find the following expression:

n n ki kjE [q, [n]] = (r)13 ( +1 ( I ( kI-3 E[.. [k-311)))
kl =no+l k2=o=n1 k_=o+l

(6.42)

Furthermore, in [89] we find the following expression for the number of triangular

SAW's, i.e., E[q3[n]]:

E[q 3[n] = (1 + O (log n)) () log3 n. (6.43)

Hence, substituting the above equation in (6.42), we have:

E[q,[n]]= (1+O(log-' n))( -...- 1 -Ink,-3
kl=no+l k1_s=no+1

(6.44)

The cascade of summations in (6.44) can be solved by using the following approxi-

mation:

Y 1 fY log" xE logp k x dx
k=yo Yo

= 1 (InP' y - InP+l Yo)
p+ 1

134



We finally apply this approximation in (6.44) recursively, and isolate the dominant

term in the resulting expression to find our main result:

E [q [n]] = (1 + (log' n)) )log' n, for m > 2. (6.45)

(We can check that, for 1 = 3, we recover Eqn. (6.43).) Eqn. 6.45 provides us with

the asymptotic rate of growth of the number of closed SAW's of length 1 in a BA

random graph process (Gm[n])n>no as n grows.

We now illustrate our main result with several numerical simulations. In our

illustrations, we use a BA random graph model with m = 2, and a complete graph,

K 2m+1 as the initial configuration. In Fig. 6-9, we plot the numerical evolution of the

empirical average for 25 random realizations of q, [n] for 1 = 3, 4, and 5 in a log-log

scale. As predicted by (6.45), our numerical values lie around straight lines. The

slopes of these lines depend on the particular value of 1.

104

1:03

qjfn]

102
101V~o?
tflO

101

Figure 6-9: Evolution of the number of SAW's of length 2, 3, and 4 as a function of
the network size, n. In the figure we observe an excellent agreement of our numerical
simulations with the rate of growth predicted in Eqn. (6.45).

In Chapter 4 and 6, we have studied the eigenvalue spectrum of the adjacency

matrix for both static and dynamic random graph models. In the following Chapter,

we study spectral moments for both the Laplacian and Kirchhoff matrices.
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Chapter 7

Moment-Based Analysis of

Laplacian and Kirchhoff Matrices

In previous chapters, we have studied the eigenvalue spectrum of the adjacency matri-

ces corresponding to both static and dynamic random graph models. In this section,

we study the eigenvalue spectrum of two other matrices representing the graph struc-

ture: the Laplacian and Kirchhoff matrices. In particular, we derive expressions

for the first three spectral moments, for both the Laplacian and Kirchhoff matrices,

based on algebraic graph theory.

To measure topological properties of many real-world networks, researchers usu-

ally design automatic agents that scan the network topology node by node. In the

design of these agents, one must take into account what topological information is

accessible to the agent while sampling a particular node. Usually, the agent can only

extract information about the particular node and its neighboring nodes. For exam-

ple, in on-line cyber-communities (such as Facebook), each person (or node) can only

access information about his/her friends (neighboring nodes). Motivated by potential

applications, we study spectral properties of Laplacian and Kirchhoff matrices based

on properties that are locally measurable. We say that a node property is locally

measurable if its value at a particular node can be computed based on the topology

of the neighborhood around the node. For example, the degree of a node and the
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number of triangles touching a node are easily measurable locally, while the number

of self-avoiding walks of length greater than three is not.

7.1 Moment-Based Analysis of Kirchhoff Matrices

In this section, we study spectral properties of the Kirchhoff matrix KG of a given

graph G. In the first subsection we derive expressions for the first three moments

of KG (also called Kirchhoff moments) for any given graph. These expressions are

functions of locally-measurable properties, in particular, the degree sequence and the

number of triangles in the graph. We illustrate our results with real data and analyze

implications. In the second subsection, we apply these expressions to compute the

expected Kirchhoff moments for the Chung-Lu random graph. We apply our results

to study the dynamic problem of synchronization of a network of oscillators.

7.1.1 Algebraic Analysis of Low-Order Kirchhoff Moments

In this subsection, we derive closed-form expressions for the first three Kirchhoff

moments based on algebraic graph theory. Using the method of moments (Eqn.

(4.6)), we write down the s-th order Kirchhoff moments as

m (KG)= - tr (D - AG)S. (7.1)
n 

n
i=1

where DG and AG are the diagonal matrix of degrees and the adjacency matrix of G,

respectively. For example, the first spectral moment is given by

1 1
mi (KG) = -tr (DG - AG) = di = d,

i=1

where d is the average degree of the graph G. We now study the trace of (DG - AG)s

for higher values of s. Since the multiplication of matrices DG and AG is not com-

mutative, we cannot use Newton's binomial expansion on (DG - AG)s. However,
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the trace operator allows us to cyclically permute any multiplicative chain of square

matrices (for example, tr (AGAGDG) = tr (AGDGAG) = tr (DGAGAG))

For multiplicative chains of matrices of length s < 3 involving matrices AG and

DG, one can cyclically arrange all the terms in the expansion of Eqn. (7.1) into the

standard binomial expression:

ms (KG) = n (s) (-1)Ptr(AD s-p), for s <3. (7.2)
p=0

We also have that tr(APD Sa- p ) = I1 (A )i, d - P . Thus, we can write Eqn. (7.2) as

m KG)= (-1) (AL)j ii for k < 3. (7.3)
i=1 p=O

Notice that this expression is not valid for s > 4 (for example, for k = 4, we have

that tr(AGAGDGDG) #tr(DGAGDGAG)).

We now rewrite Eqn. (7.3) in terms of the degree sequence and the number of

triangles in the network. We make use of the following result from algebraic graph

theory [32]:

Lemma 7.1.1 Let G be a simple graph (without self-loops or multiedges). Denote by

di the degree of node i, and by ti the number of triangles incident on node i. Then

(AG)ii = 0, (A) = di, and (A)i = 2ti. (7.4)

We apply this lemma in Eqn. (7.3), and perform simple algebraic simplifications

to derive the following expressions for the low-order Kirchhoff moments of G:

I En , di, for s = 1,

m (KG) = di + di) for s = 2, (7.5)

1 [(En1 di + 3d ) - 6TG], for s = 3,
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where TG is the total number of triangles in the network. Notice that these expressions

are valid for any simple graph. In the following examples, we illustrate the utility of

the above results and use them to study implications for further spectral properties.

Example Compute the low-order Kirchhoff moments of a complete (all-to-all) graph

of n nodes. This graph has n - 1 Kirchhoff eigenvalues located at n, and one trivial

eigenvalue at 0. Thus, the first-, second-, and third-order moments are n-l, (n - 1) n,

(n - 1) n2, respectively. Eqn. (7.5) allows us to compute these moments without an

explicit eigenvalue decomposition. In a complete graph, the degree sequence presents

a uniform value di = n - 1. Also, the total number of triangles TG is (N). Therefore,

after substituting these values of di and TG in Eqn. (7.5), and simple algebraic

simplifications, we reach ml(KG) = (n - 1), m2(Kc) = n2 -n, and mS(KG) = n3-n 2,

in agreement with the above results from the eigenvalue decomposition.

Both the degree sequence and the number of triangles are publicly available data

for many real-world networks (see [34] or [150], for examples). Hence, we can estimate

the low-order spectral moments of these networks based on partial knowledge of

the topology. In the following example, we illustrate how to compute the low-order

Kirchhoff moments in a real-world network: the Western States power grid. Although

we only use the degree sequence and the number of triangles in the network in our

computations, the complete topology is available at [66] to compare our results with

a complete eigenvalue decomposition. (Of course, our approach is more valuable in

cases where we do not have access to the complete topology.)

Example Compute the first three Kirchhoff moments of the Western States power

grid based on local measurements, namely, the sequence of degrees and the number

of triangles touching each node. In Figs. 7-1.(a) and (b), we plot both the degree

and triangle sequences, in non-increasing order.
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Figure 7-1: The sequences of (a) degrees and (b) triangles per node in the power grid.
We consider the undirected graph with 4941 nodes and 6594 edges.

From the given data, we compute: ••,di = 13188, Ej di = 51054, j d3 =

283086, and T = 651. Hence, the Kirchhoff moments from Eqn. (7.5) are:

mi (KG) = 2.6691, m2 (KG) = 13.0018, and m3 (KG) = 87.5009.

(Since we have access to the complete topology in [66], we have verified, via complete

eigenvalue decomposition, that these moments are exact.)

7.1.2 Probabilistic Analysis of Low-Order Kirchhoff Moments

In this section, we apply the results of the previous section to compute the expected

low-order Kirchhoff moments, E [m, (KG)], of the random Chung-Lu graph as a func-

tion of the given expected degree sequence, (wi)1<i<n . We derive closed-form ex-

pressions for the expected moments for asymptotically large graphs, n --+ oo, and

bounded expected degree sequences, i.e., 1 < wi < D < oo for i = 1, ..., n.

We now introduce several results needed in our derivations. First, we introduce

a lemma that describes the behavior of the sum of non-identical, but independent,

random variables satisfying certain conditions [121]:

Lemma 7.1.2 Consider n non-identical binomial trials, with probability of success of

the i-th trial equal to pi. Denote by X the number of successes out of all the n trials.
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If, for n -+ o, have that •i=1 pi - w and pi -+ 0, then X behaves asymptotically as

a Poisson variable with rate w, i.e., X ~Poi(w) for n -- oo.

One can verify that in a Chung-Lu random graph with a bounded expected degree

sequence, the (i, j)-th entry of the adjacency matrix, aij, is a binomial trial with

probability of success equal to pij -- pwiwj = o (1). Hence, the degree of node i,

di = Ej aij, satisfies the conditions of Lemma 7.1.2. Thus, di behaves asyptotically

like a Poisson variable with rate wi for n -* oc. It is useful to have expressions for

the asymptotic expected moments of the random degree, E [dj]:

E [di] - wi,

E [d2] --+ w+wi, (7.6)

E[d3] -_ w3 +3 w2 + w,

for n -+ oc.

We now introduce another important result to compute the expected Kirchhoff

moments in Eqn. (7.5):

Lemma 7.1.3 Consider the Chung-Lu random graph model, 9 (w"), with wi < D <

00, for i = 1, ..., n. Denote by TG the number of triangles in a graph G. Then, the

expected number of triangles satisfies

E[TG] = 0(1).

Proof The number of triangles can be written in terms of the adjacency matrix

entries as:

TG = aijajkaki
1<i<j<k<n
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Since p = 1/nru, we have that E [aij] = nwiwj. Hence,

IE[T] w i wj wk

1<i<j<k<n

< 3n = (1)-Vn 3

We now apply the above results to compute the expectation of the asymptotic

low-order Kirchhoff moments in Eqn. (7.5):

Theorem 7.1.4 Consider the Chung-Lu random graph ensemble g (wn), with wi <

D < oo for i = 1, ..., n. Denote Wk = i wik . The expected Kirchhoff moments of the

ensemble, for n -+ oo, are:

SW1, for s = 1,
EGeg(wn) [ms (KG)] = (1 + o (1)) ' (W 2 + 2W 1), for s = 2, (7.7)

1 (W3 + 6W 2 + 4W), for s = 3.

Proof Eqn. (7.7) is a direct consequence of applying Lemmas 7.1.2 and 7.1.3 to Eqn.

(7.5).

We illustrate the above result with the following example:

Example Compute the expected Kirchhoff moments of a random power-law graph

with degree sequence defined in [58] as:

wi = ci - 1/ - ' for io < i < io + n, (7.8)

where

c -- w-- nW$Z-1
1-1

143m ( - 1)
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The parameters w and m are prescribed average and maximum expected degrees,

respectively. In this example, we use the following values for the parameters: w = 50,

m = 100, 3 = 3.0, and n = 500.

First, we approximate the power-sums, Wk, in Theorem 7.1.4 as

io+n
WkE=C (io + n)0j=Z0w ( - 1 -k)

In the second column of Table 7.1, we include the values of the analytical estima-

tions from Eqn. (7.7). We compare these estimations with the empirical values of

the moments for one random realization of this random graph with no benefit from

averaging. We include the empirical moments in the third column of Table 7.1. The

match is very good.

s-th order E[m, (KG)] ms (KG) Error (%)

1st 25e3 25.062e3 0.25%

2nd 30.307e3 30.447e3 0.55%

3 rd 44.175e3 44.615e3 1.75%

Table 7.1: Analytical expectations and empirical realization of the first three Kirchhoff
moments of a random power-law graph.

In the following section, we apply the above results to study the dynamical prob-

lem of synchronization in a random network of identical oscillators.

7.1.3 Application in Synchronization of Oscillators

In this subsection, we use our results regarding Kirchhoff moments to predict syn-

chronization in a random network of identical oscillators. In Chapter 3, we introduced

the master stability function (MSF) approach to study synchronization of a network

of identical oscillators. We showed how the network synchronized whenever the spec-

trum of Kirchhoff eigenvalues was contained in a certain region on the real line. We

also illustrated this approach with an examination of how a network of identical

RSssler oscillators synchronizes.
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Based on the MSF approach, we can follow the steps below to predict if a random

network of oscillators with a given expected degree sequence synchronizes:

1. Given the expected degree sequence of a random Chung-Lu network, (wi) 1<i<n,

we compute the first three expected Kirchhoff moments of the random graph

ensemble using Eqn. (7.7).

2. Using the piecewise-linear approximation introduced in Chapter 5, we use the

first three Kirchhoff moments to fit a triangular function to the unknown spec-

trum of Kirchhoff eigenvalues. For many expected degree sequences, this ap-

proximation provides us with a reasonable estimation of the support of the

Kirchhoff eigenvalue spectrum.

3. From the estimation of the spectral support, we can decide whether or not the

(estimated) Kirchhoff eigenvalue spectrum lies in the region of stability for the

network to synchronize.

We illustrate the above steps in the following example:

Example Predict synchronization in a random Chung-Lu network with 200 identical

R6ssler oscillators. The dynamics of the network is described by:

Xi - (Yi + zT) 1 0 0 z
i = zi + a yi - E [K]ij 0 0 0 Yj ,

zi b + zi (xi - c) j0 0 0 z

where i = 1, ..., 200 and KG is the Kirchhoff matrix corresponding to a random graph

with the following affine expected degree sequence:

wi := 0.03 (100 - i) + 10, i = 1, 2, ..., 200

First, using Theorem 7.1.4, we compute the first three expected Kirchhoff mo-

ments: mi = 10, m2 = 122.67, and m3 = 1742.5. Second, following the methodology
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in Chapter 5, we use these moments to approximate a triangular function to the

Kirchhoff eigenvalue distribution. We obtain the following knot points for this tri-

angular function: xl = 1.798, x2 = 4.732, and X3 = 23.470. In Fig. 7-2 we plot

this triangular function, as well as one random realization of the Kirchhoff spectrum.

Third, we use the extreme knot points, xl and z3, to provide a reasonable estimate of

the spectral support. We then use this estimate to study the stability of synchroniza-

tion in a random network with the given affine expected degree sequence. As a result

of this analysis, we conclude that a random network of R6ssler oscillators with the

given affine expected degree sequence synchronizes if the global coupling strength, 7,

is in the interval (0.0444, 0.2113).

n(
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Figure 7-2: Eigenvalue histogram and triangular estimation of a 200 nodes network

with an affine expected degree sequence.

In Fig. 7-3, we plot the dynamical evolution of the network of oscillators for

several values of y. For each coupling strength, we plot a superposition of 200 plots

representing the time evolution of all the x states. Also, we plot 199 plots representing

the errors between the x state of each oscillator and the one with the highest degree,

i.e., xi (t) - x (t), i = 2, 3,..., 200 (these errors are scaled in the plot for better

discernment).

In Fig. 7-3 (a), we use a coupling strength y, = 0.01. Since this coupling strength

is below 0.0444, the eigenvalue spectrum invades the unstable regions. Fig. 7-3 (a)

shows how synchronization is clearly not achieved. In fact, we observe an exponential

divergence in the scaled error plots. In Fig. 7-3 (b) we plot the temporal evolution for
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a coupling strength yb = 0.1 (which lies within the region of stable coupling strength).
In this case, we observe an exponential convergence of the errors. In Fig. 7-3 (c),
we use a strength y, = 0.35 (which is outside the region of stable coupling strength).
Although we observe an initial period of convergence in the time evolution, this is
followed by a region of clear divergence.

(4.
) n (b

V V

iO 15 20 25 0 35

(0)

Figure 7-3: Plots of the evolution of the network of oscillators for several couplingstrengths: (a) 'y = 0.01 (unstable region), (b) y = 0.1 (stable region), and (c) -y = 0.35
(unstable region). We superpose 200 plots representing the time evolution of all thex states and the errors between the x state of each oscillator and the one with thehighest degree

7.2 Moment-Based Analysis of Laplacian Matrices

In this section, we study the spectral moments of the Laplacian matrix, 1£G
I - DG1/ 2AGDG1 /2, where AG and Dc are the adjacency matrix and the diagonal
matrix of degrees, respectively. (In order to avoid singularities in the Laplacian, we

147



consider graphs with no isolated nodes. Multiple components are allowed.) In the

following subsection, we use algebraic graph theory to study low-order moments of

the Laplacian matrix for any given graph. We apply our results to compute these

Laplacian moments for a large subgraph of the Internet. In the subsection after that,

we use our results to compute the low-order expected Laplacian moments of a random

graph ensemble with a given expected degree sequence.

7.2.1 Algebraic Analysis of Low-Order Laplacian Moments

In this section, we derive closed-form expressions for the first three Laplacian moments

for any graph. Our expressions are functions of locally-measurable topological prop-

erties of the graph, in particular, the joint-degree distribution and the distribution of

triangles (as defined in Chapter 3).

Denote by {Ai (CG)}l<i<n the set of eigenvalues of the Laplacian matrix £G. The

following holds for the set of Laplacian eigenvalues:

{ A(I - DG1/2AGD 1/2) l<i<n

Hence, the Laplacian moments satisfy:

i=n

i=~1

n i=l

(1 - Ai (D-1A))k

We now apply Newton's binomial expansion of (1 - x)k to obtain

mk (G) =
r=O

r=O
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mk(,G) =

(7.9)

(k)1_ i (D-'A)
(1)r n i=1

(-1) r
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Thus, we can compute the k-th Laplacian moment as a linear combination of the

spectral moments of DG~AG. We now analyze the r-th spectral moments of DajAG

for a given graph. Applying the method of moments to DG1 AG, we can derive the

following expression for the spectral moments of DG1 AG:

mr (DG'AG)
1

= -tr(DG1AG) r
n

n

E E (ai,il aiii2 ...air1i) (didi ...di,_1) 1
n

We now study the above expansion for r = 1, 2, and 3.

First, since we do not allow self-loops (i.e., ajj = 0 for all j), we have that the

first moment mi (D-1A) = 0. For the second moment, we have that:

m 2 (D =-AG ai,il (didi) 1 .1ni=1 (i1=1
(7.11)

Denote by Dk the set of nodes with degree k, and by M the maximum degree in

the graph. We can partition the set of nodes, {1, ..., n}, into groups having the same

degree. Hence, we can rewrite Eqn. (7.11) as follows:

M

m2 (Da'AG) =
k 1=1 iEDk 1

Ek a=l i,i (ddi)•)
k2=1 il EVk 2

Re-ordering the summands in the above equation, we obtain:

m 2 (DG1AG) =
1•kl,k 2 M

(k1k2) 1 ( E a-iil
SiEkl E1Dk 2

where the term in the last parenthesis counts the number of edges between the sets

of nodes with degree kI and degree k2. In Chapter 3, we noted this number of edges

by Mki,k2 (in the context of the joint-degree distribution, JDD). Thus, the second
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moment of D3'AG can be written as:

1 x--, Mk1,k 2
M2 (DG1 AG) = z.n1<k klk 2l<kl,k2 •M

(7.12)

Similarly, from Eqn. (7.10) we have that the third spectral moment of D-jAG is:

m 3 (DG1 AG) - 1 E (ai,ai,i 2 aii2i ) (didi di2)-1
1<_i,ili2<n

n Lk
1kl ,k2,k3<M

In the above equation, the last term in parenthesis counts the number of triangles

with nodes having degrees kj, k 2 and k3 . We denote this number of triangles by

Tki,k 2,ks. Thus, the third order spectral moment of DjIAG becomes:

1
m3 (DG1 AG)

n E Tkl,k23,k3
<kl,k2 ,k3<M 2k3

In conclusion, we can compute the first three spectral moments of DG1 AG from the

local measurements Mki,k2 and Tk1 ,k2,k3.

Once the first three moments of DG1 AG are computed, we combine them to obtain

the first three Laplacian moments of any given graph. By substituting Eqns. (7.12)

and (7.13) into (7.9) and performing simple algebraic simplifications, we derive the

following expressions for the first three Laplacian moments:

1,

1 + -1 1 E l kl,k2 M (kik 2 ) -1 M k k2,mk(I G)=
1 + 3n-1 Z1<kl,k2<M (kik 2 )- 1 M ki,k2

-n-1 1lk,k2,k3<M (kk2k3)-1 Tk,,k 2,k3 ,

for k = 1,

for k = 2,

for k = 3.

(7.14)

We elaborate on these expressions in the following examples:
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Example Consider the complete tripartite graph in Fig. 7-4. The groups of nodes
have sizes ni, n2, and n3. We compute the first three Laplacian moments of this graph
without performing an explicit eigenvalue decomposition.

Figure 7-4: Tripartite graph with groups of nodes of sizes ni, n2, and n3.

In order to apply Eqn. (7.14), we must determine Mk,,k 2 and Tk,,k2 ,kS. These
distributions are symmetric functions' taking the following values:

Mkli,k2

Tnin2,

nin3,

n2n3,

0,

for ki = n2 + n3 and k2 = nl + 3,
for ki = n2 + n3 and k2 = nl + n2,

for ki = ni + n3 and k2 = nl + n2,

otherwise,

Tk,2,k = nn23, for ki = n 2 + n3, k2  nL + n 3, and k3 = nl + n 2

1 0, otherwise.

'Any permutation of their subscripts keeps the function unchanged.
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Hence, we have that:

Mkik2<klk 2 •m klk 2
l<kl,k2<m

E Tki,k 2,k3

1<kl,k 2 ,k3 <n

2 2 2 2 2 2n2n1 n2 + nli2 + nin3 - nl n 3 + n2 n 3 + n2 n 3

(n1 + n 2) (n2 + n3) ( 1 ± n3)

= 6
(ni + n2 ) (n 2 + n 3) (n +n 3)

We can substitute the above expressions in Eqn. (7.14) to compute the Laplacian

moments. For example, for the specific values: ni = n2 = n 3 = 10, the first three

Laplacian moments from Eqn. (7.14) are:

mi (L) = 1, m 2 (L) = 21/20, and m3 (L) = 9/8.

One can validate that these values are exact by performing an explicit eigenvalue

decomposition of the Laplacian of the tripartite graph: Ltri = I - D /2 AtriDjt /2

with

Oni,nl Kni,n2

Kn2,nl 0 n2,fn2

Kn3,nl Kn3 ,n2

(n2 ±- n 3) In1

On2 3,n

On3,nl

Knl,n3

Kn2,n3

On3,n3

Onl,n2

(nl + n3) In2

On3,22

Onl,n3

On2,n3

(nl + n2 ) If3

where Oni,nj

respectively.

In, and K,,,1 , are the all-zeroes, identity, and all-ones block matrices,

In this chapter we have derived closed-form expressions for the Laplacian and

Kirchhoff first three low-order moments. Our expressions present the desirable feature

of being dependent on locally measurable graph properties such as the joint-degree

distribution and the distribution of triangles.

152

Atri =

Dtri =



Chapter 8

Conclusions and Future Research

This thesis has been devoted to developing a better understanding of the spectral

properties of large-scale complex networks. Spectral graph theory provides us with

a framework in which to connect graph-theoretical properties to the behavior of dy-

namical processes taking place in networks. In this thesis, we have illustrated this

relationship by studying the following three canonical processes:

(a) spreading processes (such as virus or rumor spreading);

(b) distributed consensus of autonomous agents;

(c) synchronization of nonlinear oscillators.

The dynamical behavior of these processes is closely related to the distribution of

eigenvalues of the following matrices representing the network structure:

(1) Adjacency matrix (whose eigenvalues are related to spreading processes).

(2) Laplacian matrix (whose eigenvalues are related to distributed consensus).

(3) Kirchhoff matrices (whose eigenvalues are related to synchronization of oscilla-

tors).

With the connection between graph eigenvalues and dynamics established, we

analyzed spectral distributions of large-scale complex networks. For this, we used
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stochastic models of the graph structure to infer spectral information from a set of

local measurements. We paid special attention to two popular classes of stochastic

graph models:

(i) Static models (also called generalized Erd6s-Renyi models, or off-line models).

Models in this class aim to fit a set of measurements taken from a real-world

network into a random graph ensemble with a fixed number of nodes n.

(ii) Dynamically evolving models (also called dynamic models, growing models, or

on-line models): In these models, a network grows in time according to a set

of stochastic growth rules aiming to replicate the generational process of a

particular real network.

The core of this thesis is devoted to analyze spectral properties of these two classes

of stochastic graph models. We extensively used the method of moments to derive

closed-form expressions for the expected spectral moments of the adjacency, Lapla-

cian, and Kirchhoff matrices for both static and dynamic stochastic graph models.

We also introduced several techniques to extract spectral features from a truncated

sequence of spectral moments. These features have interesting applications for the

global dynamics of processes taking place in networks.

8.1 Additional Further Research

During the development of this thesis, we have found many other interesting potential

avenues for extending the results developed in this dissertation. Of these problems,

we find specially challenging the following:

1. Proofs for several conjectures drawn in this thesis. In particular, we have the

following pending work: (i) prove that the eigenvector associated to the max-

imum eigenvalue of a Chung-Lu random graph concentrates around w under

certain technical conditions, and (ii) prove that the BA dynamic network model

behaves like if uncorrelated for asymptotically large networks.
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2. Design of large-scale networks from a spectral point of view. Eigenvalue opti-

mization is a fundamental problem with applications in many fields of science

and technology. Optimization of a graph structure, on the other hand, is most

often a hard combinatorial problem. In most cases, the objective function is

nonlinear, nondifferentiable, and very sensitive to small perturbations of the

graph structure. There are a few cases in which the graph optimization prob-

lem has been found to be specially tractable. Some of the recent advances in

graph design are related to semidefinite optimization (SDP). Recently, an im-

portant set of papers casts several optimization problems involving Laplacian

eigenvalues into an SDP formulation [41], [42].

3. Spectral analysis of random directed networks. Throughout this thesis, our focus

has been on unweighted, undirected graph. Analysis of directed graphs is,

arguably, the main open questions in the field of spectral graph theory [54].

In this case, the adjacency matrix is not symmetric anymore. Consequently,

the eigenvalue distribution lies, in general, on the complex plane. Therefore,

one would need to adjust the moment approach to hold for two-dimensional

distributions.

4. Development of more realistic stochastic models. In this thesis we have focus

our attention on stochastic models able to reproduce degree distributions. For

many applications, reproducing a graphs degree distribution may not be enough

to capture important properties of the network topology. The field of complex

networks still lacks a systematic method to analyze and synthesize network

topologies reproducing other structural properties.

5. Study networks with geographical constrains. In some real-world networks,

nodes are embedded into a geographical area, and distances among connected

nodes should be taken into account. Analysis and design of realistic large-scale

stochastic models taking into account this ingredient is another relevant issue.

6. Practical applications. We have focused our attention on problems of theoretical
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nature. One open interesting research line is to explore the applicability of our

results in real engineering systems (such as on-line cyber-communities), or in

physical applications (such as molecular dynamics).

We hope this work encourages further research on the emerging field of complex

networks, their evolution, their application to artifical networks, and their connection

with real-world large-scale networks.

156



Appendix A

Miscellanea of Notation

A.1 Asymptotic Notation

Many of the results in this thesis are of asymptotic nature (for very large graphs).

We use the standard asymptotic notation [14]. For two functions f and g of the same

argument (usually the graph size n for us), we write f = O(g) if f < c1 g + c2 for all

possible values of the argument, where cl and c2 are constants. We write f = 0 (g)

if g = O(f), and f = E (g) if f = O(g) and f = Q (g). If the limit of the ratio f/g

tends to zero as the argument tend to infinity, we write f = o(g). Finally, f e g

denotes that f = (1 + o(1))g, i.e., that f/g tends to 1 when the argument tend to

infinity.

A.2 Kronecker Product

Given an m x n matrix A and a p x q matrix B, their Kronecker product C = A® B is

defined component-wise as c,, = aijbkl, where a := p (i - 1)+k and 3 :=q (j - 1)+1.

This can be written in block matrix form as

allB al2B ...
C = a21B a22B
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This product has many interesting properties, see [100]. In particular,

(A ® B) (C 0 D) = (AC) 0 (BD),

provided the dimensions of the matrices are commensurate.
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Appendix B

Proof of Theorem 4.4.2

Theorem B.0.1 Consider the random matrix ensemble An (a) with a = (a0, "2, ..., an)

satisfying n ax = o (1). Then, the odd expected spectral moments of An E An (a)

are:

E~A,EA(a) [m2s+l(A1n) = o(1).

Proof We prove our claim by analyzing the terms 128+1,p(A•) in Eqn. (4.25) for

different values of p.

First, for p > s + 1, one can prove that every walk Ck E +1 have an edge

with multiplicity one. This implies that, E[Co (ck)] = 0 for all ck E 5 ,p. Thus,

-2s+l,p(An) = 0 for p > s +1.

Second, for p < s + 1, we find in [58] the following bound C28+1,I < cn P. Also,

one can prove the following upper bound

E [C (Ck) ] : K2s-2 p+3 a2p-2

which implies that p2s+1,p (An) cK 2s+3- 2p (n 2 Thus, the odd spectral mo-

ments can be upper bounded as follows:

s+1

E[m 2s+1 (An)] 5 E cK 2s+3-2p (n a2 ,p-1
p=1
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Since c and K are constants, and n max = o(1), we have

E[m 2z+5 (An)]= o (1).
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Appendix C

Explicit Expressions for the

Polynomials in Eqn. (4.10)

In this appendix we present an algorithm to efficiently compute an explicit represen-

tation of the symbolic polynomials in (4.10). Along with the algorithmic steps, we

shall illustrate their use with a specific example: the 8-th order expected spectral

moment (s = 4 in (4.10)).

The following is a description of the algorithmic steps:

1. Computation of the set of exponents associated to the set of monomials inside

the summation in Eqn. (4.10). Note that this set is defined by the set of

feasible sequences of non-negative integers Y,. Those sequences r = (ri, ..., r,)

fulfill E,•= Jrj = 2s, and represent all the possible degree distributions of

trees with s + 1 nodes. Hence, we can generate this set of possible degree

distribution by generating the set of possible degree sequences (and transforming

them into degree distributions). A feasible degree sequence d = (dl, ..., de+l)

satisfy E di = 2s, for di 2 1 . We can generate the set of feasible degree

sequences using the following steps:

(a) Find the set of non-negative integer partitions of s - 1, i.e., (1, 62, ...) such

that Ej 6j = s - 1, ~i E N. (The number of positive integers in each
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partition is less or equal to s - 1.) For example, for s = 4, the partitions

are (3), (2, 1), and (1, 1, 1).

(b) From each partition, we yield a sequence of s + 1 nonnegative integers by

filling up the sequence with zeroes. For example, for s = 4, we obtain

(3, 0, 0, 0, 0), (2, 1, 0, 0, 0) and (1, 1, 1, 0, 0) (sequences of length 5).

(c) Construct the set of feasible degree sequences by summing 1 to each en-

try in the previous sequences. In our example, we obtain (4, 1, 1, 1, 1),

(3, 2, 1, 1, 1) and (2, 2, 2, 1, 1). One can prove that the resulting sequences

fulfill the condition S+ di = 2s, for di > 1; thus, these sequences are the

set of feasible degree sequences for trees with s + 1 nodes.

(d) Construct the set of feasible degree distributions from the set of degree

sequences. In our example, we obtain the following degree distributions

from the above degree sequences: (4,0,0,1), (3,1,1,0), and (2,3,0,0),

respectively. (Note how these sequences, (ri, r2, ... , r.) , satisfy -j=- j rj =

2s.)

2. Once the set of feasible degree distributions (rl, r2,..., rs) are computed, we can

compute the set of monomials

W WrlT 2 2 T

and mount the final polynomial expression in (4.10). For s = 4, the monomials

take the form 2W4W2°W°oW4, 8W1 W21WYW°4, and 4W2C W 3W°WW , and the final

multivariate polynomial expression in (4.10) is

E [ms (A,)1 = [2W 1  4 +8 W 2W3 + 4W 2n
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Appendix D

Proof of Lemma 4.5.3

Lemma D.O.2 Consider the random matrix ensemble An (a). Then, for Pk,p(An)

defined in Eqn. (4.25), we have that:

(i) /2s,(An) = 0, for p > s + 1,

(ii) 1p2s,+1((An) > n 1 (2)a in ,

(iii) 2s,p(An) = o(1)A2s,s+l(An), for p < s + 1,

if the sequence a = (al, 2, ..., an) satisfies:

86 (max 2s  (

Omax , amin,

Proof of Item (i) Assume k = 2s and p > s + 1. One can easily prove, using the

Pigeonhole principle, that any closed walk ck E 'P covering more than s + 1 nodes

cannot be in C). Thus, according to Lemma 4.5.1, we have that LO (ck) = 0. Thus,

/2s,p(An) = 0, for p > s + 1. (D.1)

Proof of Item (ii) Assume k = 2s and p = s + 1. We prove that:

1 2s 2sP2ss+ n) s+ s ( a2in (D.2)
/las~sls+1~ sS I mn
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We prove this result using Eqn. (4.28) and following two steps:

(a) we count the number of closed paths in q(n) and

(b) we bound the contribution of each walk in Eqn. (4.28), i.e., E[c (ck)] for
C (n)

Ck q V2s,s+1"

The counting problem in step (a) is solved by assigning a code to each walk

Ck il, i2, i2si il, for Ck E C,+I, and counting the number of possible codes.

In this thesis, we propose a coding scheme based on ordered rooted trees (ORT's). In

particular, we codify a given walk, ck E C2,, following the next three steps:

C1. Determine the ordered set of s + 1 nodes in V(ck). The nodes are ordered

according to the order of appearance in the walk.

C2. Find a rooted tree T, (ck) with the following characteristics:

(i) it is rooted at il,

(ii) it spans the set of nodes V (ck), and

(iii) the branches of T, (ck) are chosen from the set of edges E (ck).

Since each undirected edge must appear at least twice in ck (mi,j > 2 in Eqn.

(4.27)), one can easily prove that all the edges in E (ck) overlap with branches of

T, (ck)

C3. The order in which nodes appear for the first time in the walk ck, induces

a total order on the set of nodes in the spanning tree T, (ck). Thus, a closed walk

ck E q2,,+1 uniquely defines an ORT on the set of nodes V (ck). Reciprocally, one

can prove that an ORT spanning the set of nodes V (ck) uniquely defines a walk

ck E 2•(+1) In other words, there is a bijection between the set of closed walks in

2ss+ and the set of ORT's spanning s + 1 nodes.

Based on this bijection, we count the number of walks in Cs,+ by counting the

number of associated ORT's. We solve this counting problem in two steps:

(a) We first count the number of possible choices for the set of s + 1 nodes V (ck).

This number is equal to n (n - 1) ... (n - s).

(b) We count the number of ORT's spanning V (ck). This number is given by the

2s-th order Catalan number [188], defined as C2 - 1().

164



Therefore, the number of walks in C,2),, is:

102(n, +Is+1 s(D.3)

We now lower-bound the contribution of each walk in Eqn. (4.28). According to

this equation, the contribution associated to each walk is given by E[C (ck)]. Since

every edge in ck E C(n),+1 satisfies that mij = 2 in Eqn. (4.21), we have that:

E[Cj (Ck) ]  2sin, (D.4)

where amin = mini ai.

Finally, we use Eqns. (D.3) and (D.4) in Eqn. (4.25) to deduce the bound in Eqn.

(D.2).

Proof of Item (iii) Assume k = 2s and p < s + 1. We show that, under the condi-

tion

86 (am 28
SU = o(n),

aOmmax O /min

we have that

2s,p(,n) = o(1)P2s,s+1l(An), for p < s + 1. (D.5)

We prove this result by following the methodology proposed in [84] (and refined in

the more recent papers, [198], [58]). First, we derive an upper bound of J2 ,,P for

p < s + 1. We find this bound, from Eqn. (4.25), following the same two steps that

we used in the proof of item (ii), i.e.: (a) we bound the number of walks in (n), for

p < s + 1, and (b) we bound E[o(Ck)] for Ck E n2sp. For step (a), we use a refined

version of the bound proved in [84] (see also [198]):

S,• < 4 n 4 2 2 p4(s-p+1) for p < s + 1. (D.6)
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For step (b), we deduce a bound of E [C (ck)] using the methodology introduced in

[84]:

02 p- 2

E [ (Ck)] < max (D.7)- K2p-2-2s

Finally, we can use Eqns. (D.6) and (D.7) in Eqn. (4.25) to bound the value of P2s,p

as follows:

P2s,p(A) < np-14 2p- 2 P4(s-p+1) K ax (D.8)

In order to prove Eqn. (D.5), we study the ratio between lP2s,s+l and P2s,p. Assume

s is an arbitrarily large integer, then from Eqns. (D.2) and (D.8), we have:

PI2s,s+l(An) 1 4n s+1-p 2s
n)?2 >min

12s,+,Vn) - 2 K2p4s 2 2p-2

2nor2 mn 2s
> max (min (D.9)

- K 2 s 6  max

where, in the first inequality, we have used that:

(2s 2s 2s-2p+2 < 2S2s-2p+2
2p-2 2)- 2s - 2p + 2

and, in the second inequality, we take into account that the greatest lower bound

is achieved for p = s, [84]. In order for t2s,s+1l to dominate the summation in Eqn.

(4.26), we need the lower bound of the ratio in Eqn. (D.9) to be Q(1), which is

achieved for:

S6 (max)2s

= o (n). (D.10)
Umax \min

166



Appendix E

Proofs of Lemma 4.5.5 and

Corollary 4.5.6

Lemma E.0.3 Let rT = {r, ..., r)} E NS, with Zj ri = s + 1, and •j i ri = 2s > 0.

Then the number v (rT) of ORT's (with s +1 nodes) presenting degree distribution rT

is given by:

v (rr) = 2 s
rl, r2, ..., rs

Proof Consider a ORF F on s nodes and t (ordered) components presenting a 6-

degree distribution pF = {PF (0), PF (1),..., pF (s - 1)} E Ns-i. We can uniquely

construct a ORT, T, by connecting the components of F to a root node i (see Fig.

E-1). (Notice that this construction is unique because there is an order in the set of

components of F). Since F has t components, the 6-degree of i is equal to t; thus,

the 6-degree distribution of T is pr = {pr (0), p (1) , ..., pT (s)} such that pr (k) =

PF (k) for k # t and PT (t) = PF (t) + 1. Reciprocally, given T, we can uniquely

reconstruct the ORF, F, by removing the root node r and associated edges. From

this construction, we conclude that there is a bijection between the set of ORT's

having both a root degree of t and a 6-degree distribution PT, and the set of ORF's

with s components and 6-degree distribution PF. Therefore, based on lemma 4.5.4,
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we can count the number of ORT's with root degree t and degree distribution pT as:

t s

s PF (0) , ..., PF W --> PF MF)

Summing over the possible degrees for the root (i.e., t = 1, ..., s) we obtain the total

number of ORT's with degree distribution pT as:

t=1 s PF (0) ,..., PF (t) , pF, (mF)

Furthermore, the degree distribution of T can be written as rT = {rr (1), rT (2) ,..., rT (mT + 1)}
with rT (k) = PF (k - 1) + 1 for k : t and rT (t) = PF (t - 1) + 1. Thus, the number

of ORT's, v (rT), with degree distribution rT is given by:

Ss
(rT) s rt (1), rT (k) - 1, ... rT (S)

t=1

Is (rT(1),...,rT(k),...,rT(S)) t=

rT 2 1) ,...)rT (s))

where, in the first equality, we multiply numerator and denominator by rt, and in the

second equality we use Et t rT (t) = 2s.

Corollary E.0.4 Let r = {ri, ... , e} E Ne . Then,

(2 s ) 1 - I 2s)
r r, ... , rs s + 1 s

where F, is the set of nonnegative integer sequences defined in (4.1).

Proof In Lemma 4.5.5, we proved that the number of ORT's with degree distribution

r = (r1 ... ,rs) is equal to 2(ri.,rs) . Since .F represents the set of all possible degree

distributions for trees with s+ 1 nodes, we have that ErEYs 2(rl, s.,s) counts the total
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T
.............. f.. .. ........ .. le'00.1 ......... ... I. .... ............... ..., ..

.. · ;I-·~t~··N··..

F .... ..........

Figure E-1: In this Figure, we encircle by a dashed ellipse the isolated components

of the forest F. The complete forest is inside the smaller dashed rectangle. Adding

a root i, we can construct a tree T (inside the outer dashed rectangle). The subtrees

of T are the components of F.

number of ORT's with s + 1 nodes. The solution to this counting problem is known

to be the Catalan number C, = - ( ), [188].
S+ S() [8]

169

~i po

f

'.

b i
r

: : iE3 1: T "P
I :

t I I



170



Appendix F

Proof of Theorem 4.7.1

Before we provide a proof of Theorem 4.7.1, we introduce notation and several useful

results. First, according to the method of moments (Section 4.3), we can compute

the spectral moments as:

1
mk(A,) = -trAn

- 1 E al i 2i3 ... "k-lik ikil. (F.1)
1<i1 ,i2,...-,ik •

Using the graph-theoretic nomenclature introduced in Subsection 4.3.2, we can rewrite

Eqn. (F.1) as:

mk n)Z= C (Ck), (F.2)
nck (n)

where ck represents a closed walk of length k, ck = (il, i2, ... , k, il), and Ckn) is the

set of possible closed walks of length k in the complete graph with n nodes, K,. We

also define the following function:

o (Ck) =- aili2 2 i3 ... a ik1ik aikil, (F.3)
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which, apart from closed walks, can take a graph as its argument. In particular, we

are interested in using multigraphs1 as the argument of CD (-). For a given multigraph

G, we denote by 8(G) the set of different edges in G, and by mij the multiplicity of

a particular edge (i, j) E S (G) (where the multiplicity is defined as the number of

edges connecting the same pair of nodes). Hence, we have

Co (G)= i j. (F.4)
(i,j)E&(G)

The above function presents the following property: For two multigraphs, G1 and G2 ,

we have

D (Gi U G2-) = G1) w (G2) C (Gi n G2), (F.5)

where G0 and G2 are defined as: GI - (G1 n G2) and G2 - (G1 n G2), respectively.

Apart from the above notation, we introduce the following useful results:

Lemma F.0.5 Consider the centralized adjacency matrix A• associated to a Chung-

Lu random graph 9,(w) with an uniformly bounded expected degree sequence, i.e.,

1 < wi _ D < oo. Then,

E[adm = o (n-l)

Proof The proof is a consequence of the definition of &ij in the Chung-Lu model.

Since iij are the entries of the centralized adjacency matrix, we have

1 - pij, w.p. pij,

a -pij, w.p. 1 - pij,

where Pij = pwiwj, with p = (Z. i wi) - '. From the condition 1 < wi < D < Co, we

1A multigraph is a graph in which multiple edges are allowed to connect to the same pair of
nodes at the same time.
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have that p = O (n-1 ), which implies pij = O (n-l). Thus, we obtain

E[5i] = Pij (1 - pi)m + (1 - pij) (-Pij)m = O (n-') .

Using the above lemma, we can prove the following corollaries:

Corollary F.0.6 Consider the centralized adjacency matrix A, associated to a Chung-

Lu random graph g,(w) with an uniformly bounded expected degree sequence, 1 <

wi < D < oc. Then, for a multigraph, G, such that mij 2 2 for all (i, j) e & (G), we

have

E[- (G)] = E(n-(G)

Proof Using independence

from (F.4), that

among different edges in a Chung-Lu graph, we have,

E[CD (G)]= f E['"].
(i,j)EE(G)

Hence, we conclude the proof by applying Lemma F.0.5 to the above equation.

Corollary F.0.7 Consider the centralized adjacency matrix A, associated to a Chung-

Lu random graph Gn(w) with an uniformly bounded expected degree sequence, 1 <

wi < D < oc. Then, for a multigraph G satisfying mij > 2 for all (i,j) E E (G), we

have

Var[c(G)] = 0 (n- JE(G)I)

Proof First, we expand (F.6) as

Var [c(G)] = E[C2 (G)] - E2 [&D(G)]
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Using independence among different edges in a Chung-Lu graph, and Lemma F.0.5,

we derive:

E[2 J(G)] = E[a2mi = e (n- I(G)I
(i,j)EE(G)

•[(G)] = ( 1- E[•~i])2 = e (n-2E(G)I),
(i,j)EE(G)

which proves our statement.

After introducing the above

Theorem 4.7.1:

nomenclature and results, we now provide a proof of

Proof of Theorem 4.7.1 Using the notation introduced in Eqns. (F.2) and (F.3),

we can write the variance of the k-th spectral moment of A, as:

Var[mk(A)] = n-2 EE E[ (CI) l (c2)1 - E [ (Cc)] E[C (c2)],
ciEC n) c 2 eC n)

(F.7)

where cl and c2 represents two closed walks of length k, and C(n) denotes the set of

closed walks of length k in the complete graph with n nodes, Kn. In a slight abuse of

notation, we denote by cl and c2 the undirected multigraphs associated to the closed

walks of the same name.

We define the following subgraphs:

Cn := Cln C2 , ZCj :-C 1 - Cn, C 2 := C 2 - Cn-

Since cl = cl U cn and c2 = C2 U Cn, we can use (F.5) to derive:

E [w (cl) L (c2)]

E [C (c,)] E [C (c2)]

= E [ (I1)] E [ (i 2 )] E [C2 (cn)] , and

= IE[ (El)] E [ (22)] E2 • C (cn) ].

Substituting the above expressions in Eqn. (F.7), we derive the following expression
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for the variance:

Var[mk(An)] = n- 2  E [~ (Cl)] E [L~ (2)] (E [[2 (cn)] -- E2 [((C)])
e,c2 C(n)
C1,C2ECk

= n-2 E [4 (e)] E [C (E2)] Var[&(cn)]. (F.8)

C1,c2ECkn)

Notice that applying Corollaries F.0.6 and F.0.7, we can derive the following orders

of magnitude for the factors involved in (F.8):

E[Cj(Ej~j = E(n 1e(Z1)I),

E [CD(~2)1 = E(n 1
-E(c2)I),

Var [L: (cn)] = 0(n- ~ (cn)l).

Hence, the term inside the double summation in (F.8) satisfies:

E[CJ (el)] E [C (E2)] Var [c (cn)] = E (n - (I E(e1 )l+l e ( 2) I+i(cn) ))

= e (n-Ie(ciUC2)j) . (F.9)

We now analyze conditions under which the term inside the double summation

in Eqn. (F.8) becomes zero. This occurs when any of the three factors inside the

double summation becomes zero. There are two possible conditions under which this

can happen:

(Z1) The factor E [D (El)] (or E [C (E2)1) is zero if there is an edge with multiplicity

one (i.e., mij = 1) in Ec (or E2).

(Z2) The factor Var [& (cn)] becomes zero if cl and c2 have no common edges.

Hence, for the term inside the double summation in (F.8) to be non-zero, the

following conditions must be simultaneously satisfied:

(C1) The closed walks cl and c2 must have at least one common edge.

(C2) The complementary closed walks E1 and z2 must have edges of multiplicity

greater or equal than 2.
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In the following, we use conditions (C1) and (C2) to upper bound the order of

magnitude of the double summation in Eqn. (F.8). First, from (C1) and (C2), we

deduce that all the edges in the union graph, c1 U c2, must have multiplicity at least

2. Hence, since both cl and c2 are closed walks of length k, the maximum number

of edges that can be covered by cl U c2, satisfying (C1) and (C2), is equal to k.

Therefore, defining the set:

k, = (C1, C2) E (Cn))2 s.t. C (cl U c2 = ,

we can rewrite Eqn. (F.8) as:

k

Var[mk( An)] = n-2 SE-E [CE (El)] E[o (i 2)] Var [& (cn)], (F.10)
p=l (c1,c2)EDn)

where p denotes the number of edges covered by the union of cl and c2 . For a given

p, we can apply Eqn. (F.9) to compute the order of magnitude of the term inside the

double summation in Eqn. (F.10) as follows:

E [C ()1 E [j (-2)] Var [L (Cn)] = 8 (n-P) . (F.11)

Furthermore, we can also apply the constrains (Cl) and (C2) to upper bound

the order of magnitude of the number of non-zero terms in the rightmost summation

in (F.10), i.e., ID, 1. This is achieved by bounding the maximum number of nodes

that the union graph cl Uc 2 can span under the constrains (C1) and (C2). One can

prove that cl U c2 span a maximal number of nodes when the following two conditions

are satisfied:

(Ml) Both cl and c2 are composed by multiedges of multiplicity greater or equal

than 2 arranged in a tree structure.

(M2) The intersection subgraph, cn, is composed by multiedges arranged in a

cycle.

Thus, the maximum number of nodes spanned by CIUC2, such that I (cl U c2)1 = p
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(and satisfying (C1) and (C2)), is equal to p. Since each node in c1 U c2 can be a

member of {1, ..., n}, we have that

Dk,p = O (np). (F.12)

Finally, we apply Eqns. (F.11) and (F.12) in (F.10) to upper bound the asymptotic

behavior of the variance as follows:

Var[mk (An)]

k= n-2 E (n-p)
p=l (cl,C2)ED kp

k

= n-2 O(nP)O (n-) = (n-2).
p=

1

This concludes our proof.
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