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Abstract

Silicon cochleas are inspired by the biological cochlea and perform efficient
spectrum analysis: They realize a bank of constant-Q N™-order filters with ON)
efficiency rather than O(N?) efficiency due to their use of an exponentially tapered filter
cascade. They are useful in speech-recognition front ends, cochlear implants, and hearing
aids, especially as architectures for improving spectral analysis in noisy environments
and for performing low-power spectrum analysis. In this thesis I describe four
contributions towards improving the state-of-the-art in silicon-cochlea design, two of
which involve theoretical modeling, and two of which involve integrated-circuit design.

On the theoretical side, I first show that a simple rational approximation to
distributed partition impedances in the biological cochlea captures its essential features
and enables an efficient artificial implementation achieving maximum gain in a minimum
number of stages while still maintaining stability. In particular, I show that the
terminating impedance of the cochlea is crucial for its stability and discuss various
analytic methods for termination. Second, I derive a novel composite artificial cochlear
architecture composed of a cascade of all-pass second-order filters from a first-principles
analysis of the biological cochlear transmission line. The novel all-pass architecture
reduces phase lag and group delay in the silicon cochlea, a problem in prior designs,
sharpens its high-frequency rolloff slopes, increases its frequency selectivity, and
improves its nonlinear compression characteristics.

On the circuit side, I first present a novel current-mode log-domain topology that
simultaneously increases signal-to-noise ratio (SNR) and dynamic range while lowering

power consumption in resonant filters with high quality factor Q. The novel topology is



validated in a second-order low-pass resonant filter, which is employed in the silicon
cochlea, demonstrating a reduction in power consumption and increase in SNR by a
factor of Q. When bias currents in the filter are adjusted as the signal level varies, this
technique enables an improvement in maximum SNR by a factor of Q and an increase in
maximum non-distorted signal power and dynamic range by a factor of Q.
Measurements from a chip in a 0.18-pm 1.1-V CMOS technology achieve a quiescent
power consumption of 580-nW at a 15-kHz center frequency with a maximum SNR of
41.3dB and dynamic range of 76dB for a Q=4. Finally, I describe a current-mode 33-
stage 0.18-um silicon cochlea that achieves 79dB of dynamic range with 41-uW power
consumption on a 1-V power supply over a usable 3.5kHz-14kHz frequency range. These
numbers represent an 18dB improvement in dynamic range and a 12.5x reduction in

power consumption over prior state-of-the-art silicon cochleas.
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1. Introduction

Bionic ears, or Cochlear Implants, have been implanted in more than 20,000 people
(Spelman 1999). They mimic the functionality of the ear by stimulating neurons in the
cochlea in response to sound. Various algorithms have been employed in bionic ears. The
sound is captured by a microphone, divided into frequency bands, then the power in those
frequency bands is measured, and finally the neurons are stimulated (Loizou 1998, Ay 1997).
In commercially available cochlear implants, a constant-Q wavelet-like bank of bandpass
filters is used to decompose the sound signal into frequency bands. But a distributed system
of traveling-wave amplifiers is vastly more efficient than a bank of bandpass filters at
performing low-power, wide-dynamic-range frequency analysis (Sarpeshkar 2000). One
implementation models the system of traveling-wave amplifiers as a cascade of second-order
filters with exponentially decreasing corner frequencies (Sarpeshkar 1998, van Schaik 2001).
However, a filter cascade is prone to excessive parameter variation sensitivity, noise
accumulation and amplification, and also to an accumulation of excessive group delay that
complicates the spectrum analysis. This architecture also requires additional filter sections
spanning at least one octave to build up the collective amplification. Since the filters in the
idle sections operate at the higher end of the frequency range of interest, the system takes a
heavy hit in power consumption. Another approach to building an electronic cochlea is by the
implementation of transmission-line models. Various kinds of such models were proposed
(Zweig 1991, Hubbard 1993, Mammano 1993, Hubbard 2000). The goal of my research is to
develop the theoretical aspects of some of the proposed cochlear models with circuit
implementations in mind, and to build a low-power wide-dynamic-range active cochlear chip

for use in speech processors.



The rest of this Introduction is organized as follows. In section 1.1 we review some
previous research on both theory and electronic implementation of the bionic ear. We discuss
(1) the standard filter bank architecture of the speech processor used in cochlear implants, (2)
a cascade-of-filters architecture emulating active-cochlear operation, (3) passive and active
cochlear transmission line modeling and (4) implementation issues. In section 1.2 we present
and compare two analog design paradigms, namely voltage-mode, and log-domain or current-

mode methods. In section 1.3 we outline the organization of this thesis.

1.1.Background

1.1.1. Mammalian Cochlea

Figure 1 (A) shows the anatomy of the human auditory periphery.

Figure 1: (A) Anatomy of the human auditory periphery; (B) Cross-section through the cochlea. Adapted from

(Kessel and Kardon 1979).

Sound waves travel down the canal and vibrate the eardrum of the middle ear. The
middle ear serves as an impedance transformer from the low-pressure high-velocity air to the
high-pressure low-volume-velocity fluid-filled cochlea. Vibrations of the eardrum couple into
the stapes via that transformer. The footplate of the stapes presses on the oval window of the
cochlea. The fluid-filled cochlea is partitioned into three compartments, the scala vestibuli,

the scala media, and the scala tympani (Geisler 1998) as shown in Figure 1 (B). The oval



window displaces fluid in the cochlea and generates a traveling wave of fluid pressure down
the length of the cochlea (Dallos 2002). This fluid pressure wave causes displacement of the
basilar membrane together with the organ of Corti, which compose a boundary of the

cochlear partition (Geisler 1998). The organ of Corti is shown in Figure 2.

Reticular Tectorial Membrane
Lamina

Outer Hair Cell

Inner Hair Cell

T 7
=le =

Basilar Membrane Nerve Fibers

Dieter's Cells

Pillar Cells
Figure 2: The organ of Corti with the tectorial membrane partially cut away. Adapted from (Kessel and Kardon
1979).

The basilar membrane varies from being light and stiff at the basal end, the end near
the stapes, to being heavy and flexible at the apical end. The properties of the tectorial
membrane, reticular lamina and outer hair cells within the organ of Corti also vary with the
position along the cochlea; the so-called scaling of the organ of Corti’s mechanical
impedance. As the wave moves from the base to the apex, it resonates with the impedance of
the basilar membrane and the organ of Corti peaks at a location that has an associated “best
frequency” which matches the frequency of the incoming wave (Dallos 2002). Thus, the

cochlea performs a frequency-to-place transformation on the incoming signal.
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Figure 3 (left) shows the propagation of the traveling wave down the unrolled
cochlear structure by the combined movement of the fluid and the basilar membrane with the
organ of Corti. The frequency-to-place analysis performed by such a structure on the
incoming signal is illustrated by Figure 3 (middle). The typical scaling of the basilar

membrane stiffness with the position along the cochlea is shown in Figure 3 (right).
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Figure 4: The traveling wave propagation, wave envelopes, and the phase responses for the passive (saturated)

cochlea — on the left; and active (alive and unsaturated) cochlea — on the right.
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Figure 5: The non-linear characteristics of the healthy cochlea: The output signal magnitude in dB versus
frequency at a fixed position on the basilar membrane at various input sound levels (left); the output versus the
input signal magnitude in dB (right).

Figures 4 and 5 illustrate the active and non-linear properties of the mammalian
cochlea. Figure 4 depicts the traveling membrane-displacement wave propagating in the
cochlea. The envelope of the wave exhibits peaking at the best place. The passive cochlear
response (on the left) corresponds to either a dead cochlea as in the early experiments
(Bekesy 1960), or in response to very loud incoming sounds, and consequently the peak is
not highly tuned, and the amplification is not high. Later measurements performed on living
cochleae exhibit much sharper frequency localization and much less damping for low sound
levels (Geisler 1998) as in Figure 4 (right). This nonlinearity is further illustrated in Figure 5
showing that the response is highly tuned for quiet sounds below 30dB SPL, and the peak
gain is up to 60dB. The cochlea exhibits essentially linear behavior in this region. For very
loud sounds above 100dB SPL, the cochlear response is again linear and not very different
from that of a dead cochlea. The peak is broad with a peak gain of about 0dB. However,

within the range of normal acoustic input the cochlear response exhibits a strong compressive
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non-linearity at the peak. This is necessary for the auditory pathway to be able to resolve and
interpret information encoded in varying sound frequencies and over wide range of sound
levels, converting almost 120dB of input sound dynamic range into about 40dB of basilar
membrane displacement.

As an amplifier and analyzer of sound, the cochlea acts as an active non-linear signal
processor that performs its calculations in parallel, attaining an extremely wide dynamic
range of 120dB over the wide frequency range that spans 3 decades with an extremely low
noise and power consumption. The “cochlear amplifier” algorithm holds great promise to
vastly improve the performance of the frequency analyzers operating over a very wide

frequency range in low-power wide-dynamic-range applications.

1.1.2. Cochlear Implant Speech Processor Standard Architecture

Figure 6 shows an overview of a standard filter bank signal-processing chain in

commercially available cochlear implant systems.
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Figure 6: Standard filter bank architecture of the bionic ear.

The system mimics the function of the biological ear in stimulating neurons in the
cochlea in response to sound. Only three channels of processing are shown although typical

speech processors have 16 channels. Sound is first sensed by a microphone. Pre-emphasis
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filtering and automatic gain control (AGC) are then performed on the input. A bank of
constant-Q wavelet-like bandpass filters decomposes the AGC output into different frequency
bands. Envelope detectors then extract the envelope of the waveform in each channel. The
dynamic range of each channel’s envelope output is compressed to fit into the electrode
dynamic range via the nonlinear compression blocks. Finally, a fixed-rate carrier is
amplitude-modulated by the compressed envelope information and sent to the electrodes to
create charge-balanced current stimulation (Loizou 1998).

Current systems use a DSP-based processor that may be worn as a pack on the belt or
as a Behind-The-Ear unit. The challenge now is to move to designs that can be fully
implanted. Reducing the power of the speech processor is one of the keys to moving to a

fully implanted system.

1.1.3. Cascaded Implementation of the Active Cochlea

If we want to construct a low-power, wide dynamic range frequency analyzer, using a
system of distributed traveling-wave amplifiers is vastly more efficient than a bank of
bandpass filters (Sarpeshkar 2000). Figure 7 shows a 117-stage 100Hz-to-10kHz cochlea that
attains a dynamic range of 61dB while dissipating 0.5 mW implemented as an overlapping

cascade of second-order low-noise lowpass filters (Sarpeshkar 1998).
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Figure 7: An overlapping cascade of the second-order lowpass filters, where the input is fed in parallel to

smaller cochlear cascades whose corner frequencies overlap by 1 octave.
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(Sarpeshkar 2000).
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Figure 9: Frequency Response. (a) The frequency response for various input rms amplitudes is shown. Compare

to Figure 5. (b) The corresponding gain of the cochlea (Sarpeshkar 1998). Compare to the experimental data
from (Ruggero 1992).

This electronic cochlea faithfully reproduces many aspects of the biological cochlea.
Figure 8 illustrates how the cascade of lowpass second-order filters with exponentially
tapered corner frequencies forms a bandpass transfer function. Due to the distributed nature
of the amplification in the cascade we can obtain a high peak gain and sharp roll-off after the
peak even though the order and the Q of each individual filter are low.

Figure 9 demonstrates an experimentally measured bandpass frequency response of
the electronic cochlea with maximum active amplification of about 50x at the peak,
compressive nonlinearity at the peak for the normal input signals, and a sharp (10™ to 16®
order) roll-off after the peak.

However, this architecture has a range of issues like noise accumulation in the
cascade, which is why the cochlear cascade was partitioned into an overlapping cascade

structure. The group delay of the system was too high, which can be a problem in cochlear
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implant or speech recognition applications. In addition, the cochlear cascade was too
compressive due to the local nature of the Q-adaptation. All these issues are inherent in the
cascaded architecture, prompting the development of alternative approaches. One of the
alternative approaches is modeling and implementation of the cochlea as a passive or active

transmission-line-like structure.

1.1.4. Passive Cochlear Transmission-Line Model and its
Implementation

The rectangular-box two-dimensional model of the cochlea is shown in Figure 10.
The fluid is assumed to be incompressible, so that we can ignore the sound wave in the

cochlear fluid, and consider only relatively slow traveling wave excitation.
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Figure 10: The physical two-dimensional model of the cochlea. (A) The model showing both chambers. (B)
Fluid movement in both chambers assumed to be complementary in this approximation, so we can consider only

one chamber. Adapted from (Watts 1993).
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Figure 11: The electrical circuit equivalent of a one-dimensional single-line cochlear transmission-line model.
In addition to the single-chamber approximation, the traveling wave is assumed to be much longer than the
cross-sectional dimension of the cochlea. The inductances model the fluid mass and the boxes model the shunt

admittance of the basilar membrane and organ of Corti, which vary along the length of the cochlea.

Figure 10 (A) shows both chambers of the cochlea with the basilar membrane and the
organ of Corti in the center. Assuming that the basilar membrane with the organ of Corti
move as a whole, the incompressible fluid displacement in both chambers is complementary,
and we can consider only one chamber for the modeling, as in Figure 10 (B). If the voltage
signals represent the pressure in the fluid, and the electric currents represent the volume
velocities, we arrive at the electrical circuit equivalent of our model shown in Figure 11. In
addition to the single-chamber approximation, the traveling wave is assumed to be much
longer than the cross-sectional dimension of the cochlea. Therefore, there is no appreciable
movement of the fluid in the y-direction, and the fluid mass can be modeled as one-
dimensional array of inductors. The hydrodynamic impedance of the basilar membrane and
organ of Corti, which vary along the length of the cochlea, is modeled by the set of electronic
filters BM presenting the electric impedances Z(jw,x). The series connection of the
inductor and resistor models the mass and viscosity of the cochlear fluid moving through the
small hole of the helicotrema. The motion of the stapes at the left side of the model drives the

system and is represented by the input voltage V(#). This model is referred to as the one-

dimensional single-line cochlear transmission line. If we assume that the basilar membrane

17



and organ of Corti present only acoustic compliance, viscosity and mass with no active
processes inside, our model is passive and Z(jw,x)=K(x)/jw+R(x)+ jo-M(x). Since

the model is also linear time-invariant, we can divide the electrical impedances of all the

elements by jo for the ease of electronic implementation as shown in Figure 12. Now we

need to implement Z'(jw,x)= K(x)/(ja))2 +R(x)/jo+M(x) where masses become

resistors, viscosities — capacitors, and the acoustic compliances become “supercapacitors”.
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Figure 12: Two-dimensional cochlear circuit model. The chip has 64 stages, although we show only 6 for
clarity. The resistive network models the cochlear fluid mass. The hard-wall boundary conditions are
represented by the floating edges on the right and bottom sides of the network. The input signal V(t) is applied

to the left end of the cochlea. The outputs are the currents flowing into the filter circuits at each stage.
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Figure 13: Experimentally measured magnitude of frequency response of every 5" current tap, from tap 10 to

60, in a 64-stage cochlear chip. Adapted from (Watts 1993).
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A chip was fabricated in a CMOS process consisting of a two-dimensional 64x5
resistor array modeling the cochlear fluid mass, and 64 filter circuits modeling the passive

impedance of the basilar membrane and organ of Corti. The increasing-mass scaling
configuration, where M (x)=M "', R(x)=R,, K(x)=K,e™", was applied to the set of 64

filter circuits. The input signal V(t) is applied to the left end of the cochlea. The outputs are
the currents flowing into the filter circuits at each stage. Figure 13 shows the frequency
response magnitude of every 5™ current tap, from tap 10 to 60, measured on this cochlear
chip.

This passive cochlear transmission-line model faithfully reproduces some aspects of
the biological cochlea, for example a steep cut-off in the frequency response magnitude after
the best place. But since this model assumes no active processes in the organ of Corti, it
models a dead biological cochlea, and therefore lacks a very important feature of the real
cochlear response — sharply tuned peak with a high gain near the best place. Active cochlear

models attempt to solve this very important issue.

1.1.5. Active Cochlear Transmission-Line (TL) Models

1.1.5.1. One-dimensional single-line active cochlear TL model by (Zweig 1991).

One of the earliest and most successful attempts to build an active cochlear transmission-
line model was to “derive” theoretically the hydrodynamic impedance of the basilar
membrane and organ of Corti in Figure 11 based on the experimental data. Zweig assumed a
certain type of scaling of the parameters along the length of the cochlea when they do not
depend on the position x and frequency @ independently, but rather depend on their

combination - a new independent variable s, = jo-e*' / w(0) (Zweig 1991). In fact, this is

the same increasing-mass scaling configuration, where

M (x)=M,e", R(x)=R,, K(x)=K,e ™', and the inductances in Figure 11 increase as

20



M (x)=Me”" with position too. He also assumed that the parameter values change

insignificantly along the wavelength of the traveling wave. After confirming this assumption,
Zweig employed the WKB approximation to solve the problem. He arrived at the following

expression for the impedance of the basilar membrane and organ of Corti:

Z(jo,x)=Z(s,)= Moa)(O)-(sf +38s, +1+ pe™¥ )/sn , where

ﬁ, 0= Ry =-0.1217, p=0.1416, v =1.742- 27 .
M, M,w(0)

Physically, the outer hair cells (OHCs) within the organ of Corti were presumed to provide
both the active amplification resulting in negative damping J, and the stabilizing term pe™™*

that represents the compliance with pure delay. Although it remains unclear how the required
acoustic impedance would be formed based on the anatomy of the organ of Corti, this model
provides an excellent agreement with the available experimental data, faithfully reproducing
both magnitude and phase of the frequency response, sharply tuned high gain peaks, steep
roll-off after the best place, and even otoacoustic emissions. This model can also naturally
incorporate cochlear nonlinearity by making the negative damping ¢ dependent on the signal
level. This thesis intends to build upon this model. The only issue of practical implementation

is that the pure delay pe™™" can not be built with a finite number of lumped elements in
p y p p

analog circuitry.
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1.1.5.2. One-dimensional two-line active cochlear TL model by (Hubbard 1993).

Another active cochlear transmission-line model was developed by (Hubbard 1993). This
model draws its inspiration from the traveling wave amplifier in RF design (Ginzton 1948).
The traveling wave amplifier consists of an input transmission line, where the signal from the
source propagates. The input line is tapped and the signal is coupled to a second transmission
line via active elements. The signal in the second line experiences constructive interference
from the multiple active devices and is amplified if the group velocities in both transmission
lines are matched. In Hubbard’s cochlear model shown in Figure 14, the input transmission
line is replaced by the resonant passive-cochlea-like line, where the group velocity decreases
exponentially as the traveling wave propagates along the line. The group velocity in the
second line is chosen to be small, such that the group velocity match occurs at the best place

of the first line. Significant amplification occurs here due to the active coupling.
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Figure 14: One section of the two-line one-dimensional active cochlear transmission-line model by (Hubbard
1993). Connecting 400 similar sections forms two coupled transmission lines, which are terminated at each end

as shown.

The results from this model compare favorably with the experimental data, for example from
the chinchilla (Ruggero 1990), as shown in Figure 15. Specifically, the height and the

bandwidth of the peak response are in excellent agreement. One issue with this model is that
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its elements could not be mapped to the structures of the biological cochlea. This model is not
friendly to an electronic implementation since it contains a lot of inductors, which would
introduce a noise, complexity and power consumption hit associated with the audio-

frequency electronic implementation of an inductor.
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Figure 15: Comparison of Hubbard model data (solid lines) and experimental data (Ruggero 1990) from the
chinchilla (dots). (A) The ratio of basilar membrane to stapes velocity. Calculated power transfer (dashed line)
is also shown, on a linear scale. (B) Phase response. The points * and O are the extremes of the experimental

data.

1.1.5.3. Active cochlear TL model by (Mammano 1993).

Mammano and Nobili proposed a model of the cochlea that can be described by the

equation: m-j}+r-y+k(x)-y:p—ai(s-§)y , where y is the basilar membrane
x\  ox

deflection, ¥<0 represents the net effect of the cochlear fluid viscous damping and the OHC’s
active force undamping action, m and k(x) are mass and stiffness of the basilar membrane,

and p is the pressure in the cochlear fluid that drives the basilar membrane and organ of Corti

. 0 o). . . . .
motion. The term E—(Sa—j y describes the shearing motion between adjacent segments of
X x

the organ of Corti and s is the shearing resistance coefficient. This shearing motion provides a

stabilizing action to the undamped cochlea, just like the pure delay term provided the stability
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in Zweig’s cochlear model with negative resistance. A circuit representation of this model

that corresponds to a one-dimensional (long-wave) approximation of the cochlear fluid

3

motion is shown in Figure 16.
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Figure 16: Circuit representation of a one-dimensional version of an active cochlear transmission-line model

with negative and possibly nonlinear resistance Rn created by OHC action, and viscous stabilization with

R2-Ax?
s=-2 . By (Mammano 1993).
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Figure 17: Basilar membrane velocity magnitude and phase response of the Mammano and Nobili model.
Comparison with the experimental data of (Sellick 1982) (open circles).

The magnitude and phase of the frequency response of this model with the experimental data
of (Sellick 1982) are shown in Figure 17. The major problem of this model is that it requires
the OHC’s undamping forces to exceed realistic value by about two orders of magnitude in
order to produce the active amplification observed in experiment, as estimated in (Dimitriadis

1999). This casts doubt whether this model utilizes the collective action of the active
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elements efficiently, and would introduce excessive noise and power consumption should an
electronic implementation be attempted.

1.1.5.4. Three-line active cochlear TL “Sandwich” model by (Hubbard 2000).

The biological three-compartment multi-mode wave-propagation model was proposed by
Hubbard et al. in 2000. The interior of the Sandwich is the organ of Corti (OC), which is
bounded by the reticular lamina (RL) with the fluid-filled scala vestibuli (SV) and .the basilar
membrane (BM) with the fluid-filled scala tympani (ST). Unlike all previous models, this
model does not assume that the basilar membrane with the organ of Corti move as a whole,
so the incompressible fluid displacement in both scala vestibuli and scala tympani is not
assumed to be complementary. The circuit representation of this model that corresponds to a
one-dimensional (long-wave) approximation of the cochlear fluid motion in all three
compartments is shown in Figure 18. Hubbard et al. assumed the OHC active force

production to be proportional to the OHC’s stereocilia deflection, which is proportional to the

I
displacement of the RL: ¥, = M -—Z (x)

ctive .

Jo

-e™*'". Hubbard et al. was able to produce realistic

results, shown in Figure 19, which utilized realistic OHC force production. Lu et al. took into

account the slow time constant 7 (x) due to the RC cutoff of the active potential in the OHC

. 1,(x) e
jo-(1+ jo-z(x))

membrane: V.. =M

active
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2005) model to account for the slow OHC membrane time constant ¢ ( x)- M can be varied to study the effects of

nonlinearity.
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Figure 19: Comparison of (Hubbard 2000) Sandwich model data (solid lines - active, and dashed lines — passive
responses) and experimental data (Ruggero 1990) from the chinchilla (dots). (A) The ratio of basilar membrane

to stapes velocity. (B) Phase angle of responses relative to stapes velocity. The points + and O are the extremes

of the experimental data.
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Figui-e 20: Sandwich model with realistic OHC active force taking the slow OHC membrane time constant into
account by (Lu 2005). Comparison of the results (solid lines - active, and dashed lines — passive responses) and
experimental data (Ruggero 1990) from the chinchilla (dots). The ratio of basilar membrane to stapes velocity

(left); phase (right).

The data produced with this more realistic form of the OHC active force is shown in
Figure 20. Thus, this result explains how a slow OHC with realistic force production enables
fast cochlear amplification via a negative feedback mechanism (Lu 2005). The effect of
nonlinearity can also be approximated by varying the level of the OHC active force
production M. By setting M=0, a passive cochlear response was obtained, shown in Figure
20. More extensive research on the effects of the nonlinearities is planned. While this model
is an excellent candidate for a parameter-tolerant biological cochlear amplifier, it is not
friendly to an electronic implementation. Preliminary results show that the OC (third) line is
not essential to reproducing the cochlear features faithfully. But even a reduced two-line
model contains a lot of inductors, which would introduce a noise, complexity and power

consumption hit associated with the audio-frequency inductor implementation.

1.2. Analog Filter Topologies: Gm-C and Log-Domain Topologies

Two classes of topologies have emerged in analog filtering applications: Gm-C and log-

domain. The Gm-C topology is defined as filters built using linear voltage to current
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converters (Gm) and capacitors (C). Sanchez-Sinencio and Silva-Martinez provided an
excellent overview of Gm-C filters (Sanchez-Sinencio 2000). The log-domain topology, also
known as translinear, current-mode, or companding filters exhibit in theory an externally
linear frequency-dependent transfer function even though the internal signal path contains
nonlinear elements. An excellent general overview of companding filters can be found in
(Tsividis 1997).

1.2.1. G-C topology overview.

The simplest implementation of the most common differential transconductor is shown in

Figure 21.

Figure 21: The simplest 5-transistor OTA transconductor.

The differential pair splits the current 7, between two legs. The current mirror formed by
the bottom two transistors performs the current subtraction to form 7 ,. Using the source-

referenced transistor model in the subthreshold region, we can derive 7, :

_K(V'&_V:) K(V‘_VJ)

L=le * ; L=Ie *

M) k()

x(V,-V,) x(V.-V,)
— — ¢ 4
Li.=L+L=11e +e
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KV _ KV,

4 ¢

e " —e® V.-V
Iaut = Ibias —;l_/_e—xV_ = Inul = Ibias tanh (+—/_)

e—7‘+e_7’ 2¢’ *

The linear range is 2¢,/x ~75mV . If the input voltage swing ¥, —V_is below that
value, the output current is assumed to be approximately linear with the input voltage, and the

bias

linearization gives G, = .
24 /x

Linear range is one of the major limitations in low-power wide-dynamic-range
applications. A wide variety of techniques have been used to improve this linear range, but

they can be broadly divided into three categories: attenuation, degeneration, and nonlinear

term cancellation (Sarpeshkar 1997).

ﬂ%gé pe ﬁﬂ}

Figure 22: Linear range enhancement techniques. (A) Well attenuation. (B) Diode degeneration. (C) A
combination of well attenuation, and diode and gate degeneration.

Attenuation is the simplest of the techniques; the signal is simply scaled by a factor less than
1 prior to controlling the differential pair. By using the well as the input to the circuit rather
than the gate, as shown in Figure 22 (A), the transconductance of the differential pair is
decreased. Degeneration schemes also lower the voltage across the control terminal, but they
do it through feedback. The circuit in Figure 22 (B) shows diode degeneration. The voltage

across the diode connected transistor lowers the voltage on the source of the input PMOS,
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decreasing the current through the device. If the diode and the transconducting device are the
same dimensions, they will split the input voltage evenly, doubling the linear range. This
technique limits the common mode range of the circuit because of the DC voltage drop across
the diodes. Figure 22 (C) shows a combination of well attenuation, diode degeneration, and
gate degeneration. The voltage induced across diode-connected transistors lowers the voltage
difference between the source and the gate. Both terminals act to lower the current
(Sarpeshkar 1997).

The technology scaling and low-power applications require decreased supply voltages.

But mixed-signal applications require a relatively large threshold voltage V, to limit
transistor OFF currents in the digital part. This makes the analog design difficult as V,

becomes a very large part of the supply voltage. While the techniques shown in Figure 22 (B)
and (C) are quite effective in enhancing the linear range of the transconductor, they require
larger Vdd. One of the ultra-low power-supply-voltage techniques was developed by
Chatterjee, Kinget and Tsividis in 2004 (Chatterjee 2004). A fully-differential gain stage
running on a 0.5V power-supply with local common-mode feedback is shown in Figure 23.

The ¥V, of the devices was about 0.5V.
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Figure 23: A 0.5V fully differential gain stage. The ¥, of the devices is about 0.5V.

In this circuit ¥, _, biases the input transconducting devices M,, and M, . Resistors R

detect the output common mode voltage which is fed back to the gates of M,,, M,,, M,

30



and M, for common mode rejection. The output common mode DC voltage is set by pulling

a small current through resistors R with V., . The bulk-inputs of M,, and M,, form a cross

ias! *
coupled pair that adds an incremental negative resistance to the output, which boosts the
differential gain and positive resistance, further decreasing the common mode gain

(Chatterjee 2004).

1.2.2. Log-domain topology overview.

Unlike in Gm-C, log-domain filters do not approximate the transconductor as a linear
element. Instead, the transistor’s exponential relationship between the input voltage and the
output current is exploited.

We proceed to describe the most powerful log-domain circuit synthesis technique (Frey
1996). Suppose that we have the following system of N=2 equations:

X =A4-x,+B-x,+E-u
X, =C-x,+D-x,+F-u

This state-space representation implements the transfer function of the order N :

x,___ sE+(B-F-D-E)
u s’-s:(4+D)+(4-D-B-C)’
X, s F+(C-E-4-F)

u s’-s(4+D)+(4-D-B-C)’

It is obvious that there is some freedom in choosing 4, B, C, D, E and F in practice. The
implementation of the Nth order transfer function requires N state equations with N state
variables, thus N capacitors are needed. Applying the exponential mapping:

vilu.

- — T .oVl
x,=1-e""; u=I e "™

Where I, I, - some DC currents, V, - ith capacitor voltage and U, - a constant that equals 4,

for bipolar, and ¢,/ x for subthreshold CMOS implementations. The ith capacitor’s current

is:
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capi iV i"Yy

=

I

Denoting the DC, but not necessarily positive currents with the following equations,

I I
1,=Cr U4, I,=CoU Bk, I=CoU Bt
1 1

I, I

1.=C,-U,-C-=~, I,=C,-U-D, I,=C,-U,-F-=~

12 12

Our state-space representation becomes:

= IA +]B .e(Vz“Vl)/Uz + IE .e(Vm_V])/Ur

= IC .e(Vl'Vz)/Ur +]D +I}-‘ _e(Vm'Vz)/Ux

Note that the components of each 7,

; should be of different signs. For example, /,, I,

and /, cannot all be positive, otherwise 1. is always positive and the capacitor voltage can

only increase. That circuit will not work. This condition imposes some limitation on our
freedom in choosing 4, B, C, D, E and F. Sometimes this limitation is so severe that no
constants can be chosen to satisfy it and implement the required transfer function
simultaneously. In this case the operating point can be adjusted by adding an additional input
to the state space representation. Because the filter is externally linear, a DC value applied to
this input will simply shift the output.

In order to implement any state-space representation, we just need to implement

[, =+, 7= s

ap

Some of the building block circuits used by Frey are shown in Figure 24 (Frey 1996).
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cap
The Dynamic Trans Linear (DTL) is another current-mode circuit synthesis

technique. Consider the basic building block shown in Figure 25 (Mulder 2001).

. lou
l P VCOI'ISt '
Ve |capl ——C

I

T @A ®

Figure 25: Principle of DTL circuits: (A) basic building block; (B) DTL loop.

The basic building block shown in Figure 25 (A) can be simply analyzed.

I :I.eVbe/Ut — Iaut= e _ _cap
out s

I,=CV, =CU,-I~"—“’— = CU,-1,=1I,-1I
caqj I ou cap

cap out
out

The last equation states the DTL principle: A time derivative of a current can be mapped onto
a product of currents. And the product of currents can be realized using Gilbert multipliers,
allowing for the implementation of a linear or nonlinear differential equation.

Figure 25 (B) shows a generalization of the DTL principle. A corresponding equation is:
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I = CU, Zi Ioul,i

cap

i out i
The + sign of each term depends on the orientation of the corresponding transistor. This
equation is applied to each capacitance in the circuit. Elimination of the intermediate currents
yields the differential equation describing the output current (Mulder 2001).
Log-domain circuits can be operated in a class-AB mode to improve performance

(Frey 1999, Serdijn 1999). The log-domain circuits as presented require that /., include a DC

offset such that it never becomes negative. This DC current is equal to half of the maximum
signal swing. As the signal grows it begins to clip on the bottom as shown in Figure 26 (b).

But on the top there is no clipping even if the signal amplitude is much larger than the offset

JAVAVAV:
0 A\

Figure 26: Clipping.

current.

This property of log-domain filters allows the creation of a special type of differential circuits.
As with other differential systems, the composite variable is the difference of the signals in two
paths. But, rather than keeping the sum of the two constant, a rule is created such that both
currents are always positive. A common rule is that the product of the two variables is constant.

Figure 27 demonstrates the difference.
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Figure 27: Differential signals: a) constant common mode; b) class AB.

Current splitting is a nonlinear process. Practical nonlinear devices present a dead-zone that
should be overcome. To do so consumes power and limits the dynamic range of the filter. A
low-power wide-dynamic-range current splitter is presented in (Zhak 2003).

The noise that log-domain class-AB circuits produce has very different properties
from that of the G,,-C circuits. In G,,-C circuits, where all transfer functions are linear and the
noise sources are stationery, the output noise is independent of the signal level. On the
contrary, in log-domain class-AB circuits’ noise depends on the signal level in a way that the
signal-to-noise ratio stays approximately constant (Serdijn 1999). Heuristically, G,-C filters
correspond to fixed-point arithmetic signal processing, whereas log-domain class-AB circuits
behave more like floating-point arithmetic. Log-domain class-AB circuits also provide other

benefits like small voltage excursions.

1.3. Thesis outline

This thesis is organized as follows. In Chapter 2 we present the design of the novel low-power
wide dynamic range envelope detector, which was developed to implement a standard cochlear
implant speech processor. 60-dB dynamic range version was used in a channel, and 75-dB 1-
1A version was used for the input automatic gain control of that chip. This envelope detector is
one of the most important part of our cochlear implementation, providing both gain adjustment

of the section to mimic biological cochlea, and adjusting the bias currents of the filter in the



section implementation to lower noise at the low signal levels and lower the distortion at the
high signal levels. In Chapter 3 we present our two novel cochlear architectures. Both are
useful in implementation of the cochlear algorithm. We choose to realize the cascade of all-pass
second-order filters for our audio-frequencies application as this implementation provides the
same benefits as active transmission-line cochlear model reducing the phase lag and the group
delay in the cascade, sharpening the high-frequency slope and increasing Q.joq4p, and improving
nonlinear compression characteristics of the system. In Chapter 4 we present novel technique
for analyzing multi-mode transmission-line cochlear models. Chapter 5 presents a novel design
method for very efficient implementation of high-Q log-domain filters, which our architecture
requires. Combined with adjustment of biases in those filters, our method enables cutting
power consumption by a factor of Q and simultaneous improvement in maximum SNR by Q
and extension of the dynamic range by a factor of Q. Chapter 6 presents experimental data
from our electronic cochlea implementation. Chapter 7 summarizes our work and suggests

directions for future improvement and commercialization of our system.
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2. A Low Power Wide Dynamic Range Envelope Detector

Abstract—We report a 75dB, 2.8uW, 100Hz-10kHz envelope detector in a 1.5pm 2.8V CMOS
technology. The envelope detector performs input-dc-insensitive voltage-to-current-converting
rectification followed by novel nanopower current-mode peak detection. The use of a subthreshold wide-
linear-range transconductor (WLR OTA) allows greater than 1.7Vpp input voltage swings. We show
theoretically that this optimal performance is technology-independent for the given topology and may be
improved only by spending more power. A novel circuit topology is used to perform 140nW peak
detection with controllable attack and release time constants. The lower limits of envelope detection are
determined by the more dominant of two effects: The first effect is caused by the inability of amplified
high-frequency signals to exceed the deadzone created by exponential nonlinearities in the rectifier. The
second effect is due to an output current caused by thermal noise rectification. We demonstrate good
agreement of experimentally measured results with theory. The envelope detector is useful in low power
bionic implants for the deaf, hearing aids, and speech-recognition front ends. Extension of the envelope
detector to higher-frequency applications is straightforward if power consumption is increased.

Index Terms—Bionic Ear, Cochlear Implant, Envelope Detector, Rectifier, Peak Detector, Ultra-Low

Power, Hearing Aids

2.1.Introduction

BIONIC ears (BE’s) or Cochlear Implants have been implanted in more than 20,000 people [1].
They mimic the function of the ear in stimulating neurons in the cochlea in response to sound. Figure
1 shows an overview of a common signal-processing chain. Only four channels of processing are
shown although typical BE’s have 16 channels. Sound is first sensed by a microphone. Pre-emphasis
filtering and automatic gain control (AGC) are then performed on the input. Analog implementations
of the AGC require envelope detection to be performed [2]. Bandpass filters (BPF’s) divide the AGC
output into different frequency bands. Envelope Detectors (ED’s) then detect the envelope of the

waveform in each channel. The dynamic range
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Figure 1: Bionic Ear Overview.
of each channel’s envelope output is compressed to fit into the electrode dynamic range via the
nonlinear compression blocks. Finally, the signals from each channel are modulated by the
compressed envelope information and sent to the electrodes to create charge-balanced current
stimulation [3].

Current systems use a DSP-based processor that may be worn as a pack on the belt or as a Behind-
The-Ear unit. The challenge now is to move to designs that can be fully implanted. Reducing the
power of the BE is one of the keys to moving to a fully implanted system, and all-analog processing
strategies promise power reductions of an order of magnitude over even advanced DSP designs [4, 5,
6, 7]. We would like to implement envelope detectors with microwatt and submicrowatt power
consumption to serve as building blocks in such ultra low power all-analog processing
implementations.

Portable speech-recognition systems of the future will likely have more analog processing before
digitization to reduce the computational bandwidth on the DSP and save power. The front end for
such systems is remarkably similar to that shown in Figure 1 for bionic ear processing. Envelope
detection is required for gain control and spectral energy estimation. Hearing aids perform broadband
and multiband compression and require envelope detection for gain control and spectral energy
estimation as well. Since the input to our envelope detector is a voltage but the output of the envelope
detector is a current, translinear circuits can be used to implement a wide range of nonlinear functions
on the output currents, which is useful for compression [8]. Thus, the envelope detector that we

discuss in this paper is likely to have wide applicability in audio applications like implant processing,
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speech recognition, hearing aids.

If one is willing to increase power consumption, extensions to higher frequency applications like
sonar or RF demodulation appear straightforward although we have not investigated the use of the
envelope detector in such applications. Throughout the rest of the paper, we shall focus on the bionic
ear application since that is the primary motivation for this work.

The BE application offers a number of constraints on the design of envelope detectors. It is battery
powered and required to run off a low voltage; this design is optimized for 2.8 Volts. The envelope
detector must provide frequency-independent operation over most of the audio range, from 100Hz to
10kHz. It should have a dynamic range of at least 60dB for narrowband envelope detection, and
70dB for broadband envelope detection. It must be insensitive to the input DC voltage providing a
DC-offset-free current output. The envelope detector should have an adjustable attack time constant
of around 10ms, and an adjustable release time constant of around 100ms. And, most importantly, it
must minimize power while achieving all these specifications.

The organization of this chapter is as follows. In Section 2.2, we discuss the design of the voltage-
to-current-converting rectifier, the first half of the envelope detector. In Section 2.3, we discuss the
design of the current-mode peak detector, the second half of the envelope detector. In Section 2.4 we
present experimental results from a chip. Finally, in Section 2.5, we conclude by summarizing the key

contributions.

2.2.Rectifier Design
The basic current-converting rectifier topology examined here is a subthreshold G,,-C first-order
high-pass filter, where the current through the capacitor is split into a positive half and a negative half
by an intervening class-B mirror. Figure 2 shows the circuit. We can use one or both halves of the
current in the rectifier output depending on whether we wish to perform half-wave or full-wave

rectification respectively. Circuit operation is based on the fact that provided,
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Figure 2: Basic Rectifier Topology.
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1, =—1,, the voltage across the capacitor is the low-pass filter transfer function: V,,,, = —*—

I+s—

Gm
b sC-V, G, .
Then, the current through the capacitor is: 7, = — If the pole el is chosen to be
l+s—
G

m

sufficiently below the lowest frequency of interest fni,=100Hz, we have I, =G, -V, -

independent of the input DC voltage or carrier frequency. In this implementation, the rectifier output

current [, is the negative half-wave correspondingto /,,, =1, =G, -V, . with ideally zero DC

offset. As we have seen, however, there is one very important condition: /,,, =/, . We will show
that both the minimum detectable signal and an observed residual DC offset component of the
I,,. current are determined by this condition. We have described a different variation of this topology
with significantly lower dynamic range in [9].

When designing the rectifier, we would like G, to be constant over a wide range of input

voltages. We also want to avoid tiny input signals that are prone to noise and other effects [10]. These

conditions require using wide-linear-range transconductor techniques to implement the Gy,
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transconductor in Figure 2. These techniques are described in detail in [10]. The topology of the
transconductor used in our design is shown in Figure 3 and is hereafter referred to as the WLR OTA.
Much of the increase in the input voltage swing of the transconductor comes from using the well
rather than the gate as an input in the differential-pair devices. The gates of these devices are
connected to their respective drains to implement gate degeneration [10], which further increases the
input voltage swing. Transistors Bl and B2 implement bump-linearization techniques [10]. The
combination of these techniques allowed us to obtain 1.7Vpp of the input voltage swing. We
implement a geometric scaling factor of N=3 in the output current mirror arms of the WLR OTA of
Figure 3. This scaling improves power consumption, at the cost of worsening noise performance a
little, as we discuss later.
2.2.1. Rectifying Class-B Mirror Topology

The implementation of a basic class-B mirror is shown in Figure 2. This structure is capable of

sourcing and sinking current from the input /,, and mirroring it to the output /_, and is an example

out >
of a class of current conveyor circuits. If no current is applied to the input node, the input devices, Mn
and Mp, are both turned off. Since the magnitude of the gate-to-source voltages for Mn and Mp must

be sufficient to obtain a source or sink current equal to the input current, large voltage swings are
required at the input node ¥ to turn these diode-like devices on. Thus, a voltage dead-zone is present

at the input node such that no current is mirrored until the node voltage has changed significantly. The
deadzone is about 2.2Vpp in the MOSIS 1.5um process, and is comprised of the sum of the NMOS
and PMOS diode drops. This dead-zone is typically not a problem for high-current systems that are
able to recharge any parasitic capacitance quickly. However, for micropower systems this dead-zone
presents a power-speed tradeoff, causing the rectification to fail if /,, is unable to recharge the
parasitic node capacitance fast enough to turn the input devices Mn and Mp on during some portion of
the input cycle. The magnitude of the deadzone is a weak logarithmic function of the input current
level, but, for simplicity, we shall assume that it is almost constant.

Dead-zone reduction techniques for class-B mirrors have received attention for signal-processing

applications in the recent past [11]. Class AB biasing techniques with output offset-correction to
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subtract the quiescent bias current have been proposed. We chose to alleviate the dead-zone problem

with a combination of an amplification and a class AB biasing technique as shown below.

Assume that I, = I, -sin(wt) and that the dead-zone width is a constant V;, peak-to-peak. The

parasitic capacitance C, at the node V] consists of two parts: The capacitance C due to the

node >

output WLR parasitics and node capacitance, and C »» the gate-to-source parasitics of Mn and Mp.
So,

C, =Chpe +C,, where C,, 0 C, (1)

Now if the amplitude /,, is small enough as to be guaranteed not to turn Mn and Mp on, we have

L, 1
"G, +sC, sC,

@

where G, , the output conductance of WLR OTA, is very small and may be neglected in the

frequency range of interest. The voltage V| amplitude increases as we increase /. Finally, as the V]

14
amplitude approaches 7", the rectifier starts to output current. Thus, the minimum detectable 7,

current is

14

Lypay =@-C}, 'TD

in,

3

Since the maximum possible I, current is the effective bias current of the WLR OTA,N -1, we

obtain a dead-zone output dynamic range limitation in currents D, given by the ratio of Nl to L, ymv

to be,

Dys—1s @
7T faux CrVp
Since the transconductor is just linear over this range of operation of currents, the dynamic range in

input voltages is the same as the dynamic range in the output currents and also given by Equation (4).

We notice that we need to spend power by increasing I if we desire to have a large dynamic range D,

or a large frequency of operation f;,,,. In other words, as is commonly observed, power is necessary to

get both speed and precision. Equation (4) quantifies our earlier power-speed tradeoff discussion.
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Figure 4 illustrates a circuit modification of a basic class-B mirror topology to improve the dead-

zone limited dynamic range D, . Here, the feedback amplifier, 4, drives the gates of Mn and Mp, thus
reducing the voltage swing needed at the V| node, and keeping it almost clamped. Again, assuming

that /, is small enough to not turn Mn and Mp on, we get,

]0 ~ 10
+4-C,) $(C,u+4-C,)

Vv, = 5
"G, +s(C ©)

node node

where 4-C, represents the Miller multiplication of source-to-gate capacitances of Mn and Mp. Now,

V1 ~ 10
s(C, +C

/4 6

node

. . V
and increases as we increase /. Finally, as V, approaches 7[’ , the current starts to come out. Thus,

the minimum detectable /,, current is now given by

Cons V, v,
Ly =0(C, +=22). L 2 0-C, -2 0

in

provided that the gain A4 is high enough. Now the dead-zone dynamic range limitation is given by

N-1
b < . ®)
7 fuax Cp Vo
: H CL CVnode B :
and constitutes an improvement by a factor of C—z 1+TD 1 over the basic class-B mirror
P p

topology. We see that it is important to have the gate-to-source capacitances that constitute C , beas

small as possible to get a large improvement in dynamic range. That’s why we use minimum size
devices for Mn and Mp, connect the well of the Mp device to V), rather than to its source although

this increases the dead-zone Vp, and operate in subthreshold as far as possible since the only

contributor to the gate-to-source capacitances in subthreshold are overlap capacitances in Mn and Mp.

Tying the well of the Mp device to Vpp increases V,, somewhat, but the decrease in C » due to the

exclusion of C,, is a far more substantial effect, especially on the low end of the dynamic range that
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we are interested in, where Mn and Mp are in subthreshold, and C o is the major contributor to C -
A further improvement in D, is possible by reducing the dead-zone V,. Figure 5 shows that this
reduction can be accomplished by introducing a constant DC voltage shift V, between the gates of the
Mn and Mp rectifying devices. In this circuit if the /,, current is positive, Mp has to be on, so its gate
voltage V,,, 5o, is low enough. The device Mn’s gate voltage V,,, ,, is higher by V, and needs to
go up by only V, —V, to open Mn as the [, current’s sign changes. Therefore, the dead-zone is

reduced to V,, -V, . This dead-zone reduction technique is limited because of an upper bound on V.

From applying the translinear principle, it follows that this technique will result in an output offset

current — even with no [, current present, V,, ., and V,, . gate voltages will be set by the 4

amplifier such that the Mn and Mp standby currents (zero-input currents) are equal. These standby
currents have an exponential dependence on ¥, and are mirrored directly to the output of the rectifier
stage. We require this zero-input offset current to be no more than a few pA, thus setting a ceiling on
V, of approximately 1.55V in the MOSIS 1.5um process for minimum size Mn and Mp. It is possible
to have dummy devices and subtract some of these standby currents, but as we will discuss later,

having a large V, where such subtraction would be beneficial is undesirable because of thermal noise

rectification. The class AB V, technique yields a dead-zone reduction from 2.2Vpp to 0.65Vpp — an

improvement of a factor of 3, or 10dB in D, . Figure 6 illustrates one possible implementation of an 4
amplifier with the “floating battery” V. The value of V, can be adjusted to some degree by changing
the bias current /,, of the 4 amplifier.

2.2.2. Theoretical Analysis of Thermal Noise Rectification
We now examine another limitation on the system dynamic range due to the noise of the WLR
OTA. For our device sizes and currents the effect of 1/f noise in our circuit is negligible in
subthreshold operation [10]. However, the thermal noise current at the WLR OTA output is fed to the
class-B mirror, rectified by it, and mirrored to the output, creating a residual output current floor that

degrades the minimum detectable signal and dynamic range of the system. The current power spectral
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density of the white noise at the WLR OTA output is

lTnzoise(f)zn.q'NIB (9)
where,
2
2K
n:[ 2 j N+2N+2=~2.68N +2 (10)
K, +K,

represents the effective number of noise sources in our WLR OTA, 7, is the subthreshold exponential
parameter of the NMOS transistors in the current mirror of Figure 3, and [J, is the subthreshold
exponential parameter of the differential-pair PMOS transistors. Details of how to compute the
effective number of noise sources in such circuits are provided in [10].

From our previous discussion about the dead-zone limitation, it is clear that the higher the

frequency of the input current, the higher the threshold presented by the dead-zone
Iin,MiN:”'f'Cp'(VD—Vo) (11)
Therefore, almost all of the low-frequency part of the white noise spectrum passes to the output,
whereas the high-frequency part gets filtered out by the capacitor C,. For simplicity, we shall assume
that the dead-zone and C, create a low-pass filter with an infinitely steep slope at a still-to-be-

determined cut-off frequency f,. With this assumption, the class-B mirror behaves as if the 7,

current were Gaussian with zero mean and
o’=n-q-NI,-f, (12)

Then,

I TI-—I——eé-d]

rec_"0 (2”0_
o  |n-q-Nl;-f,

—\/27z - 2

To estimate the cut-off frequency f, we note that once the frequency-dependent threshold presented

(13)

by the dead-zone in Equation (11) gets higher than the o of Equation (12), little current is output by
the rectifier. Therefore, a reasonable estimate is to assume that the frequency-dependent threshold at

fy is at 6. Thus,
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”'fo'Cp'(VD"Vo)z\/n'Q'NIB'fo
-q- 14
7 = Jn-q-NI, (14)

7-C,-(Vy~Vy)

Plugging the result for f, back into Equation (13), we obtain

- n-q-NI,
" w2 C, (Y, V)

n

(15)

Recalling Equation (8) for the dead-zone dynamic range limitation, we have

I :n"I'fMAX'Do

rec = (16)
N2z
In our design, N=5=>n~154, q=16-10°C, D, was designed and simulated to be

80dB =10* for f,,,, =10kHz , I,=200nd (bias current through WLR OTA), and

1,, =200n4 (bias current through 4 amplifier yielding Vo = 1.55V and a deadzone of 0.65V pp).
That gives us 1, =100pA . The corresponding experimentally measured result, which we present in

Section IV, is / .« =119pA, indicating that our approximations and assumptions are sound.

The implication of Equation (16) is that the larger we make D, to increase the minimum detectable
signal limited by the dead-zone non-linearity, the higher the rectified-noise-current floor becomes,
and the greater is the degradation in minimum detectable signal caused by this current floor. Since the
overall dynamic range of the system is determined by whichever effect yields a larger minimum
detectable signal (dead-zone limitation or noise-rectification), the maximum dynamic range is
achieved if both effects yield the same limit. At this optimum, we are spending as much power as
necessary to achieve the highest D, possible but not so much power that the rectification-noise-floor
increases and limits the dynamic range to values below D,. Alternatively, at a fixed power level, if the
deadzone and noise-rectification limits match, the deadzone is at a small enough value such that we
can overcome it with faint amplified signals but not so small that the rectified-noise-current floor
swamps the output current due to the faint signals. Thus, the optimum dynamic range is achieved
when the limit of minimum detectable signal due to the rectified-noise-current floor of Equation (15)

becomes equal to the mean value of the dead-zone minimum detectable current. The dead-zone
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minimum detectable current is a half-wave rectified sinusoid with an amplitude given by Equation
(11). If we realize that a half-wave-rectified sine wave has a mean current that is 1/(Jof its amplitude,

and use Equations (15) and (11) we find at the optimum that

n’q'NIB :”'fMAX'Cp.(VD_VO) (17)
w27 -C,-(V, ~V,) P

Algebraic simplification yields

[, @ V)] = /—”:’/5‘1; -fB_ (18)
MAX

Substituting this result back into Equation (8), we obtain

Doplimumzi/z' _]V-I—B;_ (19)
7 \n-q- fuum

From Equation (18) we see that the optimal dynamic range depends only on topological parameters
like # and N, the charge on the electron g, and is independent of technological parameters like C, and
Vp. To get more dynamic range at a given f,,,, and in a given technology, we must spend more power
according to Equation (19), and simultaneously decrease V,, in Equation (18) to ensure that we are at
the optimum. Intuitively, we burn power to allow smaller and smaller signals to break the deadzone
but concomitanly increase the deadzone such that the noise-rectification limit always matches the

deadzone limit.

In our design, due to the power constraints, we can only afford [, =200n4 . According to

Equation (19), that gives us a maximum possible system dynamic range of D ~ 75dB . In order

optimum
to reach this optimum we decrease V,, and increase the deadzone, by turning down the bias current
I,, of the 4 amplifier. In section 2.4, we show experimentally, that we can actually achieve this

theoretical optimum.

2.3.Peak Detector Design
Figure 7 illustrates a simple current peak detector topology described in [4]. We will just highlight

some nuances of its operation since they are important to the discussion of a better peak detector

51



presented in this paper. As [, increases (the “attack™), it discharges parasitic capacitance C par

decreasing the V| voltage. The decrease in V; causes transistor M1 to open and to quickly decrease
the V, voltage almost instantaneously (we have a very fast attack time constant). The decrease in V,
increases I, and also increases the drain current of M2 to a point where it equals /,, via negative-
feedback action. The phase margin of this feedback loop determines overshoot of the output current
I,,, during the attack. As I, decreases (the “release”), drain current in M2 quickly increases the V,

voltage across parasitic capacitance C ,, . The increase in V| causes transistor M1 to turn off. Now

V, changes due to the «charging of C, by I . This change is linear, i.e.,

r

dv,

C,
dt

1
=1,=V,=V,, +C—’t. The dynamics of V, yields an expression for decay of the output

r

Ky «,
-l —L
. . . . . C
current (M3 drain current expression for the weak inversion) during release / ,, ce # e O

Since the definition of the release time constant is obtained from 7, oc e'™, we have

C '¢t
T, =— 20
"ok, 20)
k- T . .
where ¢ =——~25mV , and x is the subthreshold exponential parameter of the PMOS
q

transistors. We now analyze the feedback loop inherent in Figure 7. The block diagram of this
feedback loop is shown in Figure 8 and is based on standard small-signal parameters of the transistors

M1 and M2. Taking Equation (20) into account, the loop transmission is given by

1 A4
L(s) =~ — 1)
l+s-7, Crar
I+5—
8as2
where 4, = Em2  we have ignored capacitances between nodes 7| and V), in our analysis. The Bode

8us2

plot of the loop transmission is shown on Figure 9. The criterion for good phase margin in the

A
feedback loop (45 degrees or more) is that —2% < Euz , which can be rewritten as
T

r par
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Cpar 2
I,>1, 2 4 (22)

We see that the dynamic range of good-phase-margin operation of this peak detector is limited to
large currents even for modest values of 4,

Figure 10 illustrates a standard current-mode low-pass filter topology. For a review of the ideas
behind current-mode filtering, see [12]. Again, we will highlight nuances of its operation crucial to

the discussion of our peak detector functioning. The time constant of this filter is [12]

C, ¢
T ——a Tt 23
“ox, 3)

Transistor M1 converts the input current into its logarithm. Transistor M2 performs dynamic
translinear low-pass filtering, such that its source voltage is proportional to the logarithm of the low-
pass filtered input current. This voltage is then shifted by M3 to keep the gain of this structure close to
unity, and then expanded by M4 to convert a logarithmic voltage into an output current.

Figure 11 shows our novel current-mode peak detector topology with wide-dynamic-range

nanopower operation. The attack and release time constants are adjustable. First, we note that the
current through the M3 transistor is always equal to /, provided that the parasitic capacitance of the
¥V, node is small. Therefore, like in current mode low-pass filter, the source voltage of M2, ¥, is
proportional to a logarithm of the low-pass-filtered input current with a time constant given by
Equation (23). The M3 transistor, however, only acts like a simple shifter during attack: As /,,
increases during an attack phase, the V), voltage decreases. This decrease causes the drain current of

M3 to decrease. The /, current then quickly discharges parasitic capacitance C,,, decreasing V. The

decrease in V| causes transistor M5 to open and to quickly decrease V,, thus restoring M3’s drain

current. Since M3 does behave like a shifter during attack, the attack time constant is given by
Equation (23). The feedback loop formed by M5 and M3 is similar to the one in the simple peak-

detector topology of Figure 7, and has already been analyzed. To provide good phase margin, the

current [, still has to satisfy Equation (22), but now the good-phase-margin conditions do not affect
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the dynamic range of operation, because all currents in the M3-M35 feedback loop are fixed. Thus, we

may pick current values in the loop to give us good phase margin for all inputs. As I, decreases
during release, the ¥V, voltage goes up. This causes the drain current of M3 to increase, increasing the

V| voltage, which turns off transistor M5. Now, ¥, only changes due to charging of C by I, such
that the release time constant is given by Equation (20).

The peak-detector topology of Figure 11 does experience a slight dependence of its output current
on frequency: The ripple at the I, node after attack filtering is larger for low carrier frequencies than
for high frequencies. Consequently, the following release filter will follow the peaks of the ripple
around the frequency-independent V, mean, and cause a slight rise in the output current for low
frequencies.

2.4.Experimental Results

A chip with this envelope detector was fabricated on AMI’s 1.5um CMOS process through MOSIS.

Figure 22 shows a photograph of the die.
Figure 12 shows experimental waveforms of the rectifier output current at f = 100Hz for a tone-

burst input. The half-wave rectification is clearly evident. Figure 13 shows experimental waveforms
of the envelope-detector output current for three tone-burst carrier frequencies of 300Hz, 1kHz, and
10kHz with the same input signal amplitude. We can see that the attack time constant is
approximately 10ms, and the release time constant is approximately 100ms. Both these time constants
may be adjusted by altering I, and I; in Figure 11. We do observe more ripple for low-frequency
inputs than high-frequency inputs and a weak dependence of the output current as well.

Figure 14 shows experimentally measured envelope detector characteristics at 100Hz, 1kHz, and

10kHz for input signal amplitudes ranging over the entire 75dB of operation. The plot saturates at

V,=17Vpp on the high end of the dynamic range, and flattens out at approximately

V., ~300uVpp on the low end, revealing that the envelope detector provides proportional and linear

information about the input signal envelope over a dynamic range of 75dB at all audio frequencies of

interest. The saturation is caused by the WLR OTA moving out of its linear range while the flattening
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is due to the thermal-noise-rectified output current floor that we discussed in Section II.

Figure 15 shows experimentally measured envelope detector characteristics at 10kHz for various

I,,,i.e., various dead-zone widths. At low values of /,,, the dead-zone is wide, implying that both

the dead-zone-limited dynamic range and the rectified-noise current floor are low. By increasing /,,
we may decrease the dead-zone width, improving the dead-zone-limited dynamic range, but also
increasing the rectified-noise current floor. At the optimal point ( /,, =25n4 ) the dead-zone
minimum detectable signal equals the rectified-noise current floor, and we obtain 75dB of dynamic
range, in excellent agreement with the theory of Section II. Further increases in /,,, i.e., reductions
in dead-zone width, lead to improvement of the dead-zone minimum detectable signal, but degrade
the rectified-noise current floor, degrading overall dynamic range of the system. Figure 16 illustrates
this point further, showing the overall dynamic range of the system vs. /,,.

Figure 17 shows the rectified-noise current floor measured at the output of the class-B NMOS

mirror (1, y05 ), PMOS mirror (1, 5,5 ), and the output of the peak detector (7, ,, ), as the WLR

OTA bias current, [, varies. As we would expect, all three currents are almost identical. The data

also reveal that the peak detector contributes little to the noise of the whole system.

Figure 18 confirms the independence of the rectified-noise current floor from the input DC voltage
over a wide range of operation. This result is consistent with the theory of Section II and also reveals
the insensitivity to the input DC voltage of our system. The output current of the system was also
invariant with the input DC voltage but we have not shown this data.

Figure 19 shows the output current floor measured for various /,, A-amplifier biases, i.e. for

various dead-zone widths. Although it was impossible to measure the dead-zone width quantitatively,
we observed qualitative agreement between this experimental result and Equation (15).

Figure 20 confirms that the rectified-noise current floor is invariant across several fabricated chips
and not a parasitic “leakage” effect but a fundamental one due to thermal noise. We see that the slope

of the lines is different from unity, implying that the output noise floor has a slightly nonlinear

dependence on [, instead of the purely linear dependence predicted by Equation (15). This
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nonlinearity may be explained by the lowering of the number of effective noise sources, i.e. n in
Equation (15) as the increasing WLR OTA bias current /, causes a transition from subthreshold
operation into moderate-inversion or strong-inversion operation. Such effects have also been
described in the measurements described in [10].

Finally, we performed an experiment to estimate » experimentally: We lowered the WLR OTA bias
current [, significantly, effectively lowering its own thermal noise to small levels. Then, we input a
white-noise voltage into the envelope detector and measured the output current. The input now creates

the rectified-noise current floor rather than the internal white noise. Figure 21 shows the output

current vs. generator voltage VO~ for [ p =20n4 and I, =40nA4. We observe a leveling off of the

output current floor at low input voltages due to the intrinsic internal white noise of the WLR OTA.

We can “map” I, from Figure 20 to VO * from Figure 21 such that they produce exactly the same

output current “noise floor”. This mapping means that the current spectral power on the output of the

WLR OTA would have to be the same in both cases, i.e.

2
N-I
n-q NIy, =n-q-Nly, +0° -(—B’“]

Vi

2
2. N'IB,zl (24)
B V

q'N'(IB,zo _13,21)

where N=5,V, =0.85V, I,, =20n4 (we used the right curve in Figure 21).

From the experiment we estimate that # ~ 25, which is in reasonable agreement with our theoretical

calculations of n=15.4

2.5.Conclusions
The combination of a wide-linear-range transconductor topology, a modified class-B current mitror,
and a novel current-mode peak-detector yielded a 75dB 2.00JW envelope detector with frequency-
independent operation over the entire audio range from 100Hz to 10kHz. The current-mode peak
detector provided wide-dynamic-range good-phase-margin operation with adjustable attack and

release time constants. We confirmed theoretical predictions of the minimum detectable signal of the
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envelope detector due to dead-zone-limiting effects and thermal-noise-rectification effects
experimentally. We also achieved the maximum possible dynamic range predicted from theory. The
detector should be useful in ultra low power bionic implants for the deaf, hearing aids, and low-power
speech-recognition front ends where automatic gain control and spectral-energy computations require
the use of envelope detection. The topology of the detector could also potentially be useful in higher-

frequency applications like sonar or RF-demodulation if more power is consumed.
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Error! Objects cannot be created from editing field codes.

Figure 3: A Wide-Linear-Range Transconductor (WLR OTA) [10].
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Figure 4: Class-B Current Mirror with Active Feedback.
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Figure 5: Modified Class-B Mirror with Active Feedback and Dead-Zone

Reduction.
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Figure 6: Active Feedback Amplifier with “Floating Battery”
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Figure 7: Simple Current Peak Detector [4].
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Figure 8: Block Diagram of the Small-Signal Feedback Loop of Figure 7.
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Figure 9: Bode Plot of the Loop Transmission of Figure 8.
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Figure 10: Current Mode Low-Pass Filter [12].
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Figure 11: Wide Dynamic Range Current-Mode Peak Detector with

Adjustable Attack and Release Time Constants.
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Figure 12: Experimental Rectifier Output Current Waveform.
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Figure 13: Experimental Peak Detector Output Cusrrent Waveform;
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Figure 14: Experimentally Measured Envelope Detector Characteristics;
f=100Hz, 1kHz, and 10kHz.
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Figure 17: Output Current vs. WLR OTA Bias Measured at NMOS and

PMOS Rectifter Outputs, and PD Output.
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Figure 18: Output Current vs. Input DC Voltage.
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Figure 20: Output Current vs. WLR OTA Bias Across Several Fabricated
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Figure 22: Envelope Detector Die Photo.
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3.

Single-mode one-dimensional transmission-line cochlear

architectures

Abstract—Rational approximations to distributed irrational partition impedances in the biological
cochlea are shown to capture its essential features: These include good frequency- selectivity and steep
roll-offs, high active amplification, peak-frequency shifts and gain adaptation with stimulus level, and
invariance of the fine time structure of the impulse response with stimulus intensity. It is shown that the
terminating impedance at the end of the cochlea is crucial for its stability, and various analytic methods
for termination are discussed. These termination techniques may suggest why the biological cochlea
tapers its amplification at the apex. A composite cochlear architecture that is a good approximation to a
transmission-line model is derived with cascaded second-order filters. Our results enable efficient
cochlear implementations to be designed as front ends for speech recognition, cochlear implants, or RF
spectrum analyzers.

Index Terms—Cochlear models, rational impedance, stability, cascade implementation.

3.1. INTRODUCTION
THE biological cochlea has remarkable sensitivity, frequency selectivity, high gain at the peak
frequency or the “best place” of the response, steep roll-offs, a broad frequency range of operation
over approximately 3 decades (10 octaves), and an input dynamic range that spans 6 orders of
magnitude in sound pressure. The amplification mechanism in the cochlea is nonlinear, compressing a
wide input dynamic range into a much narrower output dynamic range in the auditory nerve fibers by
reducing the sensitivity and selectivity of the cochlear amplifier with stimulus intensity. The peak (or
best) frequency of the response exhibits an approximately “half-octave shift” towards lower
frequencies at high stimulus intensities [1]. In addition, the fine time structure of the impulse response
remains relatively invariant with stimulus intensity [2]. In a healthy ear, the fine time structure of the
cochlear response is represented in the temporal discharge patterns of auditory nerve fibers for

frequencies up to 4 kHz [3], [4].
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Cochlear implementations are useful as front ends for various applications including speech
recognition, cochlear implants, and RF spectrum analysis [5]-[7]. The collective amplification and
exponential taper of the cochlea provide a very efficient method for implementing a high-resolution
spectrum analyzer with a wide frequency range of operation [8]. The nonlinear gain-control and tone-
to-tone suppression properties of the cochlea allow good preservation of spectral peaks in the signal,
naturally enhancing channel outputs with high signal-to-noise ratio (SNR) with respect to neighboring
channels [9]. Speech and other sound stimuli contain information in both their slowly varying
envelope and their rapidly varying fine time structure [10]. Frequency modulation derived from the
fine time structure can be helpful for speaker identification, music perception [11], and tonal language
perception. The precise encoding of stimulus phase in bilateral auditory systems is useful for sound
localization and spatial separation of the sound sources, an important cue for localizing signals in
noisy environments. Future cochlear implants may attemptto include fine time structure information
in the signals delivered to the stimulating electrodes [12], [13]. Therefore, preserving the fine time
structure of the speech processor’s response with stimulus intensity is needed. Future processors in a
cochlear implant or in speech-recognition front ends would benefit from a simple cochlear model that
realistically reproduces the features that we have described [14]-[16]. Furthermore, such cochlear
models are amenable to very low power analog implementations [6], an important consideration in
portable speech processors.

Various cochlear models have been developed. An incomplete list of these might include [17]-[28].
The emphasis in such models has been in understanding the biology rather than in implementation
efficiency. One of the earliest attempts to build an active cochlear transmission-line model was to
derive theoretically the hydrodynamic impedance of the cochlear partition (CP) based on the
experimental data [29]. This model achieves its high amplification and realistic cochlear response by
zeroing CP impedance over an appreciable spatial region in the vicinity of the peak (best place) of the
response. This model is also one of the simplest — it is one-dimensional and single-mode. However, it
contains a pure delay term that can not be implemented with a finite number of lumped elements.
Another cochlear model that produces a realistic response is described in [30]. This model assumes

that the main effect of the cochlear amplifier is to reduce the CP impedance, which increases CP
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motion even without an increase in pressure difference across the CP. The model achieves
amplification without requiring extra energy to be injected into the traveling wave. It is simple, one-
dimensional and single-mode, with a rational form of the CP impedance, although it is not amenable
to easy circuit implementations. It also does not exhibit shifts in the peak frequency with input
stimulus level, nor does it reproduce the approximate invariance of the fine time structure of the
response with stimulus intensity.

The model presented in [29] was extended in [31] with three forms of the intensity dependence of
the CP impedance. Intensity-invariance of the fine time structure of each model response was
examined by applying the EQ-NL theorem [25], [32] and [33], which replaces the difficult problem of
investigating one nonlinear cochlear model with the simpler problem of investigating a family of
linear cochlear models.

In section 3.2 we develop a very simple single-mode one-dimensional cochlear model with a
rational form of CP impedance, which still captures the important features of the biological cochlear
response such as high selectivity and sensitivity at the best frequency, and steep roll-off beyond it. We
show that such nonlinear effects as shift in the peak frequency and the near-invariance of the fine time
structure of the response with intensity are preserved. In section 3.3 the time-domain stability of this
model is investigated. We show that the terminating impedance at the end of the cochlea is crucial for
its overall stability, an issue that has not been studied in much detail in prior work but that is
extremely important for hardware and software implementations. We discuss various methods for
apical termination. Our work on termination might provide insight into the operation of the biological
cochlea. In section 3.4 we derive a composite cochlear architecture composed of a cascade of second-
order filters from the model of section 3.2. This architecture solves the problem of excessive group
delay and excessive compression seen in earlier composite architectures built with second-order filters
[6] but essential features of the cochlear response are still preserved. We summarize our contributions

in section 3.5.
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3.2.Cochlear Model with Rational Shunt Impedance
We adopt the classical point-impedance model of the cochlea. The fluid flow is approximated to be
one-dimensional. This approximation is valid if the wavelength of the traveling wave is large
compared to the cross-sectional dimensions of the scalae. Therefore, the model can be represented by
a transmission line divided into a number of sections. The series inductance represents longitudinal
fluid coupling, and the shunt branch represents the CP impedance. The pressure difference P across

the CP and the volume velocity U satisfy the transmission-line equations:

_a_P=ja,L(x).U (1a)
ox
v _, P (1b)

PG Z(jo,x)
where L(x) is the per-length fluid mass in the scalae, //Z(jw,x) is the per-length point-admittance of
the CP, and Vcp(jw,x) is the linear velocity of the CP motion. Equation (1a) describes
macromechanical longitudinal fluid coupling in the cochlea, and (1b) represents CP micromechanics.
Note that the linear velocity of the CP motion and the volume velocity of the cochlear fluid motion
have different dimensions but differ only by a constant factor corresponding to the area of the
partition represented by a single lumped section. The definition of the cochlear transfer function (TF)

is:

, Ve 1 P
TP (Jo3) =506y " T(0) ZGwd) @

We assume local scaling symmetry [29], which implies that rather than depending on position and
frequency independently, CP impedance Z(jw,x), velocity U, pressure difference P and cochlear TF
depend only on the following combination of x and w:

® @ .exll

), B e @

s=jp

where w.(x) is the CF at the location x along the CP, and [ is the space constant or characteristic
length of the exponential cochlear taper; these parameters define the cochlear position-frequency map.
Equations (1a) and (1b) lead to the following ordinary differential equation (ODE) for the pressure

difference P:
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‘Z :f i (s)-P (42)
where

e)= L0 (4b)
and

=

The mass of the cochlear partition at the beginning of the transmission line is Lcp(0); the impedance
Z,(s) is dimensionless and obtained by normalizing Z(jw, x) by w.(0)Lcp(0); N is a dimensionless
constant approximately equal to the total number of wavelengths of the traveling wave on the CP [29].
Note that L(0)/Lcp(0) has units of 1/F because L(0) is defined in terms of volume velocity while
Lcp(0) is defined in terms of linear velocity.

The boundary condition that P remains finite as f—<o implies that only the forward-traveling wave
is present [34]. If we assume that the properties of the cochlea scale slowly relative to the wavelength

of the traveling wave, the analytical WKB-approximate solution for the pressure difference P is given

by,

P(s) o k2 (s).exp[— jk(s’)ds'] )

0
From (2) and (4b), the WKB-approximate solution for the cochlear TF then becomes [29]:
TF(s)xc s k> (s).exp(— Ik (s’)dslj (6)
0

Ignoring the pre-exponential terms, which change slowly with s=j[J in comparison with the

exponential term, taking the logarithm and then derivative of (6), we get,
k(jB)~ —iPhase{TF(ﬁ)}+j.ilog|TF(ﬂ)| (M
dp ap
From measured cochlear transfer functions of the gain and phase, we can calculate (¢j3) from (7). It

is worth noting that the long-wave approximation and the use of WKB approximation are not

necessary for determining k(s) from experimental data: Shera provided a method [35] for obtaining
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the wave number k(j8) in a two-dimensional cochlear model without computing the derivatives of
TF(B) as in (7).

Calculating the wave number k(jf) and applying the definition (4b), we can compute sZ,(s) and then
find a suitable rational approximation for it. Zweig’s form for sZ,(s) derived from experimental data is
s*+6-s+1+pe*¥ [29]. This expression hints at a possible rational form for sZ,(s), which is more easily
implementable in hardware. If we replace the pure delay term pe™" with an all-pass rational Pade
approximant, sZ,(s) becomes a ratio of polynomials, with the order of the numerator polynomial
higher than the order of the denominator polynomial by 2. The work [29] emphasized the importance
of two conjugate zero pairs near s=+j in sZ,(s) for providing collective amplification in the cochlea.
Therefore, the simplest and most general rational form for sZ,(s) that approximates cochlear behavior
in its low-intensity linear regime is given by:

(s2 +2d-s+1)2 ®

2, M 2
s“+s+u
Q

s-Z,(s)=

Here, 1/2d is the quality factor of the two overlapping zero pairs in the CP impedance, while x and
Q are the natural frequency and quality factor of its pole pair. We show that the values of these

parameters can be determined by matching desired features of the cochlear response.

3.2.1. Nonlinear Transmission-Line Model Formulation

Following [25], [32] and [33] we may write the local CP impedance in the form:

Z,(s7)=Z,(s)+7-Z,(s) )

where Z,(s) represents the maximum contribution of the outer-hair-cell (OHC) active force
generators, Z,(s) represents the “passive” cochlea, and the real parameter 0<y<! is the efficiency of
the OHC transduction that depends only on the amplitude of local CP motion. In the low-intensity
limit, y approaches 1. At high levels, y approaches 0. Its precise value at any given level depends on
the form of OHC force nonlinearity, which is assumed to be memoryless and instantaneous, and was

calculated in [25]. The parameter y defines a family of linear models. According to the EQ-NL

theorem [33], each model in the family has the same input-output cross-correlation function as a
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nonlinear model, where the input-output cross-correlation function is measured with flat-spectrum
wideband noise at some input intensity. Such a wideband noise input enables one value of y to
characterize OHC saturation throughout the cochlea as all parts of it are equally stimulated and
equally saturated. The substitution of the analysis of one nonlinear model with the analysis of a family
of linear models is valid only for wideband noise stimuli. The response of the nonlinear model to a
single tone stimulus will be quite different. Nevertheless, a linear analysis with [ is useful for
designing a cochlea with a local nonlinearity (whether due to a slowly varying automatic gain control
(AGC) or instantaneous function) such that its impedances have a well-characterized behavior for one
class of inputs that is predictable from theory. Cochlear responses to other classes of inputs then
emerge from the designed impedances and may be verified to yield desirable properties through
experiments or simulations.

Two impedances define the model: The “passive” impedance Z,(s), and the low-level “threshold”
impedance Z,(s;1). A simple resonator is usually chosen to represent the passive CP such that

s-Z,(s)=5"+5-6,+1 (10)

Here, J, is the damping when the OHC is disabled. Equation (8) represents the low-level linear limit

corresponding to 0=1:

stes-£10,+ f2)
S’Z"(s;‘)J EI ) v

where £, and Q, characterize the double-zero, and f, and (, characterize the pole location of the
shunt impedance. Some simple but tedious algebra and (9), (10), and (11) yield an expression for the
maximum contribution of the OHC active force generators Z,(s) given by

s’+s-a +a
Z(s)=6-6,+p———— 1% _ (12)
a(s) 0 ps-(s2+S'§p+f;)
where J, p, a; and a, are computed from f,, O,, £, and {,. The parameter & represents the effective

damping with maximum OHC contribution.

It was conjectured in [31] that requiring the near-invariance of fine time structure of the cochlear impulse
response with stimulus intensity, an experimentally observed fact [2], implies that the zeros of the effective local

CP impedance Z,(s;) move almost perpendicularly to the jw-axis as the parameter y is varied. This requirement
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imposes some constraints on the values of our parameters. Our system continuously moves from having two
zero-pairs and one pole-pair to having only one zero-pair as the parameter y is reduced from 1 to 0. Therefore,
the double-zero must have separated somewhat, with one zero pair moving into the pole pair and getting
cancelled, and the other zero pair becoming the “passive” CP impedance Z,(s). Requiring the two zero pairs to
move almost perpendicular to the jw-axis implies that the two zero pairs and pole pair of Z,(s; 1) and the zero
pair of Z,(s) are nearly on a line that is perpendicular to the jw-axis. Z,(s) defines that line, and its damping
parameter 3 is picked to yield a desirable passive response. Fixing Q, to yield a desirable active response then
defines f;, and choosing {, to mimic a shift in the peak frequency as y goes from 1 to 0 defines f,. Values of 4, p,

a; and ap are then computed.
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[4] Fig 1. Trajectories of the zeros of sZ,(s,y) as a function of y (only Im>0 part of each complex conjugate pair is shown). At
y=1 sZ,(s;y) has two overlapping conjugate zero pairs and a conjugate pole pair. As the signal level increases, y decreases, the
overlapping zero pairs separate slightly and create two non-overlapping conjugate zero pairs; the zeros move out nearly
perpendicularly to the frequency axis, as shown with the arrows; the conjugate pole pair does not move with y. We show zero
positions for 0<y<l, in steps of 0.1 in y. As y decreases to 0, one of the zero pairs cancels the pole pair, and sZ,(s;y) becomes a
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{2] Fig. 2. Intensity dependence of cochlear transfer functions and impulse responses simulated with 16 sections per
octave over 6 octaves (96 sections overall): (A) amplitude in dB; (B) phase in cycles (one cycle corresponds to 27 radians),
(C) impulse response. Cochlear transfer functions TF(B;y) are measured as cross-correlation functions with wide band
noise as an input stimulus, as y varies from 0 to 1 in steps of 0.1. The abscissa is the dimensionless frequency variable
B=flfcr(x). Impulse responses are computed using inverse Fourier transforms of those transfer functions at several values of
v={1.0.9. 0.7. 0} The abscissa is the dimensionless time variable r=t-f-=/x)
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3.2.2. Results

The discrete cochlea was simulated with 16 sections per octave over 6 octaves (96 sections overall).
The parameter values used were 6,=0.6, Q,=3, {,=1, £,~0.88, £~=0.96, yielding 6=-0.6, p=0.7, a,;~-
0.24, and a,~0.1.

Parasitic reflections from section-to-section discontinuities may be observed by examining
frequency responses: These reflections cause the standing wave in a basal region of the cochlea to
manifest as a series of notches in the transfer function amplitude and as a series of jumps in the
transfer function phase. Through simulations, we found that these reflections are avoided if N<1.3
such that the phase accumulation over a section is not too large.

Figure 1 shows the trajectories of the zeros of sZ,(s,y) as y varies from 1 to 0 in steps of 0.1. As
expected, the double zero pair separates slightly with one zero pair moving towards a pole pair to
eventually get cancelled and the other zero pair moving towards the passive-impedance zero pair
location. All zeros move out nearly perpendicularly to the frequency axis.

Figures 2 (A) and (B) show cochlear transfer functions 7F(f;y), computed using y as a parameter,
with 0<y<I, varying in steps of 0.1. The transfer functions 7F(f;y) at different y are input-output
cross-correlation functions obtained from a nonlinear model with wideband white noise at different
intensities as an input stimulus. Cochlear amplification, defined as the ratio of peak gains in the low-
level linear limit to that of the passive cochlea, is 34 dB. The maximum Q.45 of the transfer function
is 4.7, and the high-frequency slope is about 146 dB/octave.

Figure 2 (C) shows impulse responses, normalized by input at the stapes, and computed using
inverse Fourier transforms of TF(B,y) at several values of y={1, 0.95, 0.7, 0}. As the intensity of the
input stimulus increases and y decreases, the envelope of the impulse response decreases in maximum
amplitude and in duration, peaking at earlier times, but fine time structure remains nearly invariant, as
can be seen from the timing of zero crossings of the response.

Figure 3 shows local CP impedances Z,(jB,y). The top panel shows resistance Re{Z,(j3;y)} and the
bottom panel shows reactance Im{Z,(jB;y)} as y varies from 0 to 1 in steps of 0.1. Although the
impedances are calculated for a given CP section for various frequencies, we can also interpret Figure

3 as showing local CP impedances along the length of the CP for a fixed frequency f and fixed
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[61 Fig. 3. Intensity dependence of local CP impedances Z,(jB;y). The top panel shows resistance Re{Z,(jf;y}} and the bottom
panel shows reactance Im{Z,(jB,;y)} as y varies from O to 1 in steps of 0.1. The abscissa is the dimensionless frequency variable
B=ffcr(x). The discrete cochlea was simulated with 16 sections per octave over 6 octaves (96 sections overall).

parameter y, and varying with the position x as determined from S=f/fcr(x). At the low-level limit the
real component of the impedance is negative basal to the place where the transfer function amplitude
peaks, and turns positive apical to that place. A negative real component of the local impedance
indicates energy transfer to the traveling wave, while positive resistance indicates absorption of
energy from it. The imaginary component of the impedance is negative basal to the place of local
resonance, defined to be the place at which the imaginary component of Z,(s) is zero. The transfer
function peaks at a place basal to the local resonance. The magnitude of the imaginary component of
the impedance is higher than that of the real component; therefore, it plays a larger role in local CP
impedance magnitude.

The effect of the double zero in Z,(s) is to decrease the magnitude of the local CP reactance making
it close to zero over an extended region basal and around the place of transfer-function peaking such
that more stages can provide significant cochlear amplification. A single zero is not as effective as a
double zero because the double zero has a more extended region of frequencies (or places) where it is
small [29].

The decrease in the magnitude of the local CP impedance allows high CP velocities to be achieved
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without a significant increase in pressure difference and associated high infusions of energy into the
traveling wave. As the intensity of the input stimulus increases and y decreases, the CP resistance
becomes less negative, and the place where it crosses to positive values moves closer to the base. This
collective behavior causes a shift in the peak frequency as the input intensity varies [31]. The decrease
in CP reactance magnitude diminishes as well, making it less close to zero, especially basal to the new
peak in transfer-function amplitude. The reduced negative resistance and increased local CP
impedance magnitude reduce the height of the transfer-function amplitude peak as the input level
increases. At y=0.45 the CP resistance becomes positive everywhere, but the cochlear amplifier still

helps in reducing net local CP resistance, thereby increasing cochlear gain.

3.3. Time-Domain Stability Analysis

Implementing our cochlear model in hardware requires that the system be bounded-input bounded-
output (BIBO) stable. A technique to determine the stability of time-domain solutions from
frequency-domain transfer functions was proposed in [36] for linear active cochlear models.
However, this technique is based on comparison of two numerically computed functions, and
therefore can not unambiguously determine whether the system is stable or not. In our cochlear model
the local CP impedance Z,(s) is rational, so the system has a finite order. Transforming (1a) and (1b)
with rational Z,(s) in (8) or (11) into the time domain and discretizing in x using equally spaced
spatial mesh to reflect the known nature of the cochlear response, we apply a state-space

representation method to investigate BIBO stability:

ix:Ax+Bu,n (13)
dt

where X is a vector of state variables such as currents in inductors and voltages on capacitors, u;, is
an input scalar signal, B is a column vector, and A is the state-space matrix of our cochlear model
determined by the spatial discretization and the parameters describing Z,(s). The necessary and
sufficient condition for BIBO stability of the system is that all the eigenvalues of A have negative real

parts:
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Re{/ (A)} <0 (14)

Criterion (14) ensures that hardware or software implementations of the cochlear model will be
stable.

Figure 4 (A) shows all the eigenvalues of matrix A for the cochlear model with y=/ with 23
sections per octave over 6 octaves (138 sections overall). The termination of this system at the apical
end is discussed later. Parasitic reflections from section-to-section discontinuities are insignificant if
N<2.2. The cochlear amplification is 45dB. Figure 4 (B) shows low-frequency eigenvalues in more
detail. Note that the biggest challenge to the stability of the system comes from the eigenvalues with a
frequency of approximately
0.9-w.(0)-2°~0.014-w.(0). An input tone of that frequency causes the response to peak at the apical
termination. This peaking suggests how instability arises in the system.

Suppose there is a weak low-frequency signal somewhere in the cochlea propagating toward the
apex. It propagates without appreciable attenuation and then undergoes significant cochlear
amplification just basal to the place of its peak. A large reflected wave is produced if the amplitude of
this signal peaks at the apical termination, and the termination impedance deviates from the
characteristic impedance at the apex of the cochlea around the frequency of this signal. This reflected
signal undergoes still more amplification just basal to the place of its peak, because it travels back
through the region where the local CP resistance is negative and the reactance magnitude is small.
This signal now propagates back toward the base of the cochlea without appreciable attenuation, and
reflects from basal or section-to-section discontinuities, to create a return signal and enable multiple
reflections. If cochlear amplification is significant, and the terminating impedance at the apex does
not match the characteristic impedance precisely, the net round-trip gain can become larger than 1,

causing instability due to buildup of reflections.
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if the real parts of all the eigenvalues are negative. The cochlear amplification is 45dB. (B) A close-up view of the low-
frequency eigenvalues, which present the biggest challenge to the stability of the system due to reflections from mismatched
apical termination. The termination consists of a resistor and an inductor in series approximating the characteristic impedance at
the apex at frequencies both higher and lower than the CF at the apex. The system is barely stable. If the amplification is
increased, instability results. Better apical termination is required in order to further increase cochlear amplification without
going unstable.

Stabilizing a cochlea demands either improving the matching between the impedance of the apical
termination section and the characteristic impedance of the cochlea at the apex, or reducing the
amplification of the cochlear sections near the apex gradually, or both. Another technique of finding
optimal initial conditions in the cochlea to minimize the effects of instability was presented in [37].
However, this technique is not suitable for hardware implementations since the initial conditions that
were proposed are not easily controlled.

We first consider the technique of matching the impedance of the apical termination section to the
characteristic impedance of the cochlea at the apex. Cochlear characteristic impedance was studied in

[38]. The characteristic impedance Z, in the cochlea is defined in terms of the volume velocity U and

the pressure difference P:

(15)

~ |

1
ZL‘
The volume velocity U is proportional to dP/ds, as can be seen from the macromechanical equation

(1a) rewritten in terms of variable s defined by (3). We then obtain:

1 1 d
70" TIore© &L )] (16)

Substituting the WKB-approximate solution for the pressure difference P(s) from (5) into (16)

yields the following expression for the characteristic impedance of the cochlea:
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1L __ k) -{1-1-1(LH (17)
Z(5) 1L(0) w(0) | 2 @\ k()

Once again, assuming that the properties of the cochlea scale slowly relative to the wavelength of

i)

the pre-exponential term in (5). We obtain:

the traveling wave, i.e., 0 1> We can ignore the second term in the brackets that comes from

(U k(s) (18)
Z.(s) 1-L(0)-o,(0)

c

Invoking the definition (4b), we can rewrite (17) and (18):

.(0)-1-L(0) 4N _l.%[sZ"(S)]z 4N (19)
z(s)  \sz,(s) 4 sZ(s)  |fsz,(s)

It is evident that the form of the cochlear characteristic impedance Z.(s) might be irrational even if
the CP impedance Z,(s) is rational. Therefore, we use a rational approximation to synthesize the

admittance G,(jw) that terminates the cochlea at the apical end:

B
Z‘[a»f(io)]

We design G,(jw) to achieve good impedance match at the frequencies around w.(xy), where x, is

G,(jo)~ (20)

the location of the apical termination, and w.(xg)= ©.(0)-exp(-xy/l) is the CF at the apex. It is also
immediately obvious from (19) that the characteristic impedance of the cochlea depends on the signal
amplitude through the parameter y. This dependence should be taken into account when designing the
apical termination. In the simplest case, the admittance G,(jw) is designed for the low-level limit y=1/
in the hope that even as y decreases with increasing signal level, and the deviation of the admittance
G(jw) from the cochlear characteristic admittance at the apex grows along with the reflection
coefficient, the reduction in cochlear amplification associated with lower y will still reduce the
reflected signal and therefore decrease the round-trip gain. In this case, stability at y=1 also guarantees
stability for y<I.

One of the simplest rational forms for the termination is a resistor and an inductor in series

approximating the characteristic impedance at the apex at frequencies both higher and lower than
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[10]Fig. 5. A comparison of cochlear stability for two types of apical termination impedance: (A) A resistor and inductor in series
approximate the characteristic impedance at the apex at frequencies both higher and lower than the CF at the apex but the system is
unstable at 51dB of amplification. (B) An impedance described by the ratio of a fourth-order polynomial to a third-order polynomial
approximates the characteristic impedance at the CF at the apex more accurately and leads to a barely stable system at 51dB of
amplification. The cochlear model has 30 sections per octave over 6 octaves (180 sections overall). If the amplification is increased
beyond 51dB, instability results, and a better termination technique becomes necessary.

wc(xy). At frequencies lower than w.(x,) the resistor dominates, and its resistance can be computed
from (20), (19) and (8):

zwc(i)]\-/l -L(0) Q1)
Y

At frequencies higher than w,(x;) the inductor dominates, and its inductance can be computed from
(20), (19) and (8):

i 1-L(x) (22)
4N

where L(x,)= L(0)-exp(xy/l) is the per-length fluid mass in the scalae at the apex.

The simple apical termination defined by (21) and (22) does not depend on y, but nonetheless
ensures the stability of the system for cochlear amplifications no higher than 45dB. This level of
amplification is achieved with 23 sections per octave and N=2.2, as shown in Figure 4 (A) and (B).
However, the system is barely stable. If the amplification is increased above 45dB, instability results.
A better apical termination is required in order to further increase the cochlear amplification without
going unstable.

Figure 5 (A) shows low-frequency eigenvalues of matrix A for the cochlear model with 30 sections
per octave over 6 octaves (180 sections overall). The simple apical termination defined by (21) and

(22) is used. The standing wave in the basal region of the cochlea due to the parasitic reflections from
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section-to-section discontinuities is avoided if N<3.0. The cochlear amplification is 51dB. However,
the system is clearly unstable, and increasing the number of sections per octave beyond 30 leads to
just more populated plot that looks like Figure 5 (A), but does not improve the stability. A more
sophisticated apical termination is required to achieve BIBO stability in the cochlear model. Figure 5
(B) shows the same cochlea when a higher-order approximation to the characteristic impedance at the

apex is used to terminate it:

Gls= jo_|_ 4N . Cotoste,s s (23)
! o,(x)) @/ (0)-1-L(0) 1+ds+d,s’+d,s* +d,s*

The eight parameters in (23) were chosen to accurately approximate the cochlear characteristic
impedance, calculated in (19), for y=1. Two degrees of freedom were used to approximate the
characteristic impedance at frequencies much lower and much higher than the CF at the apex. The six
other degrees of freedom were used to accurately approximate the characteristic impedance at
approximately 0.9-w.(xo), which is where peaking occurs at the apex. Note that the apical termination
defined in (23) does not depend on y. This termination ensures the stability of the system with
cochlear amplification of up to 51dB, which extends the use of the single-section termination
technique by 6dB. If the amplification is increased above 51dB, the cochlea with this single-section
termination becomes unstable, and even better apical termination techniques become necessary.

The perfectly matched layer (PML) concept originally devised in [39] involves surrounding the
computational domain with an artificial layer which absorbs outward traveling electromagnetic
waves, thus preventing parasitic reflections into the computational domain. Several related techniques
gradually reduce the amplification of the cochlear sections towards the apex, and were described in
[40], [41]. In one of them the damping of the simple resonator that characterizes the CP impedance in
the passive cochlear model was gradually increased towards the apex [40]. This technique is not
applicable for the models presented in this section since these models are active, and the local CP
impedance is not a simple resonator. Another technique gradually introduces viscosity into
longitudinal fluid coupling between the cochlear sections near the apex [41]. This scheme reduces the
amplification of the cochlear sections helping to stabilize the system. Although this method could be

used in the models presented in this section, it would likely require redesigning the sections near the
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12]Fig. 6. A comparison between two techniques for apical termination in a cochlear model with 50 sections per octave over
6 octaves (300 sections overall): (A) Termination with an impedance implemented as the ratio of a fourth-order polynomial to a
third- order polynomial approximates the characteristic impedance at the apex but the system is highly unstable at 72dB of
amplification. (B) Termination implemented by gradually decreasing the gains of stages towards the apex; gain tapering is
accomplished by lowering Q, from 5 to 5/1.5 over the last 75 sections (1.5 octaves). The tapering technique reduces the strength
of reflected signals instead of reducing the apical reflection coefficient. The tapering needs to be gentle enough to avoid
reflections from the associated discontinuities. The system is stable when the first 4.5 octaves have 72dB of amplification.

apex in an actual hardware implementation. In contrast, we reduce the amplification of the cochlear
sections near the apex by gradually decreasing Q, towards the apex. Such a technique is easily
realizable in hardware, does not require redesigning the sections near the apex, and appears to be a
solution seen in biology as well.

Figure 6 (A) shows low-frequency eigenvalues of A for the cochlear model with 50 sections per
octave over 6 octaves (300 sections overall). The single-section apical termination defined by (23)
was used. Parasitic reflections from section-to-section discontinuities are insignificant if N<5.24. The
cochlear amplification is 72dB. The system is unstable, and increasing the number of sections per
octave does not improve the stability. The single-section apical termination is not robust enough to
ensure BIBO stability. Figure 6 (B) shows the same cochlear model using the apical termination
technique of gradually decreasing the gains of stages towards the apex. Gain tapering is accomplished
by lowering Q, from 5 to 5/1.5 over the last 75 sections (1.5 octaves). The tapering needs be gentle
enough to avoid reflections from the associated discontinuities. Figure 6 (B) reveals a second set of
eigenvalues that challenge the stability of the system. These occur at a frequency of approximately
0.9-0.(0)-2°°-2"?~0.04-0.(0). An input tone of that frequency causes the cochlear response to peak at
the place where we start tapering the gain. The system is nevertheless stable, and achieves a cochlear

amplification of as high as 72dB in the first 4.5 octaves, indicating the superiority of this technique
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over single-section matching techniques. The price for the increased robustness of the gain tapering
technique is an increase of chip area or reduced cochlear amplification at the low frequencies when

the system is implemented in hardware.

3.4.Composite Cochlear Architecture
3.4.1. Analysis

The biological cochlea appears to primarily support forward traveling waves [34] such that its
architecture can be simplified into a unidirectional filter cascade, an architecture that we shall term
composite in keeping with prior convention [42]. Determining the transfer functions of the filters in
the cascade yields simple models suitable for hardware implementation. A second-order low-pass filter
section was proposed in [43], and an analog low-power wide-dynamic-range integrated-circuit
cochlea was built [6] with such composite architectures. However, the low-pass resonant filter
sections in these cochleae gave rise to excessive group delay of the cochlear output when compared
with auditory data [44]. A compromise between the desired frequency response and the group delay
was achieved in [44] by introducing a zero pair and increasing the number of poles in the filter section
to three. In addition, practical realization of such a composite cochlea required additional second-
order output filters to enhance resolution [42]. The modified transmission-line model in [42] also uses
a filter cascade, but with the filter transfer functions now representing isolated sections of a one-
dimensional transmission line with simple mass-elasticity-damping local impedances. Each section of
such a filter cascade is formed by isolating a lumped section of a one-dimensional transmission line
from its neighbors and loading it with the characteristic impedance of the cochlea in that location. The
transfer function of a filter section that represents a one-dimensional transmission line with simple
mass-elasticity-damping shunt impedances was derived in [45]. This stage has a relatively high-Q
zero pair and a pole pair combined with a low-Q zero pair and pole pair. A second-order
approximation to this transfer function, formed by dropping the low-Q zero and pole pairs and
adjusting the high-Q zero and pole pairs, was implemented in [42]. However, relatively high values of

Q and additional second-order output filters were still needed [42]. In this section we derive transfer
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functions for filters in a composite cochlea from our transmission-line model with the local
impedance (8).

We start with the WKB-approximate analytical solution for the cochlear TF (6). Recognizing that
the essence of cochlear action is collective amplification, represented by the exponential term in (6),

and, therefore ignoring the pre-exponential dependencies, TF(s) can be written as:
TF(s)e ﬁexp{— J'j' k(s’)ds’J @4

We have split up the integral in the exponential into m smaller regions of integration (with s,=0 and
s»=s). If the input to the system is a pure tone with fixed frequency w, then s,=jw/w.(x;), and (24)
describes spatial propagation of the signal in a cascade of filter stages, with the transfer function of

the i-th stage being
H = exp[— j.k(s')a’s'J (25)

where x;; is the location of the input of the i-th stage (and the output of the i-/ th stage), and x, is

the location of the output of the i-th stage (and the input of the i+ th stage). If this composite cochlea

S,

is finely quantized, i.e., enough stages are used, s-s.; and I k(s')ds' become small. Using the

approximation exp(-x)}=1/(1+x) for x[J 1, H; can be written as:

1 1 (26)

H = ~
1 (s s,
1+ Ik(s’)ds' +k(s,) (s SH)

i

where we have assumed that k(s')=k(s;) over the (small) interval /s, , s,/.

As in sections II and III, the discretization of the model in x is chosen to reflect the known nature of
the cochlear response. The most efficient implementation of the algorithm uses a spatial mesh that is
equally spaced in x, resulting in an exponential taper of filter characteristic frequencies in the cascade.

Therefore, we have:

sa_ @) _ T, 27)
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where Ax=x;-x; ; is the constant length of the interval in spatial quantization, and N, is the number
of filters per octave span. Using (27) and (4b), we can rewrite (26) as:

1 (28)

where H(s) is the normalized filter transfer function and « is a constant given by

L .
aE4N'[1—2N”’]z%n(2) (29)

oct

Note that (28) and (29) could alternatively be obtained by isolating each lumped section of the one-
dimensional transmission line from its neighbors and loading it by the cochlear characteristic
impedance Z.(s;), as in [42]. Ignoring the local admittance with respect to the characteristic admittance
then yields a voltage divider between the longitudinal fluid coupling impedance jw-L(x)Ax
=syw.(0)-L(0)-Ax and the characteristic impedance Z.(s;) computed in (19). The transfer function of
this divider again gives (28) and (29).

Using sZ,(s) in the form of (8), we obtain:

1 30)

oz~s,~\/s,2+s,.‘,u/Q+/12
sP+2-d-s,+1

H{s)=

1+

The expression in (30) is not a rational function in s;, and therefore cannot be implemented using a
lumped system. However, the magnitude and phase-response shapes of the model defined by (8) are
not sensitive to the value of Q. Setting 0=0.5 completes a square under the square root, and the

normalized filter transfer function becomes rational:

1 _ si+2-d-s +1 G1)
a-s,(s+4) (lva)s+(2-d+a-p)-s+1
sP+2-d-s,+1

H(s)=
1+
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[14]Fig. 7. Frequency response of the nonlinear composite cochlea measured at position xo to a pure fone input stimulus with
frequency f and amplitudes varying from -60dB to 0dB in steps of 6dB. The abscissa is the dimensionless frequency variable
B=ffcr(x): (A) amplitude of the output signal in dB; (B) phase in cycles (one cycle corresponds to 2= radians). (C) Output amplitude
as a function of the input-stimulus amplitude at the small-signal peak frequency. The composite cochlea was simulated with 25
sections per octave over 6 octaves (150 sections overall).

The pole pair at B, = 1/V1+a <1 causes the amplitude of the normalized transfer function (31) of the

section to first peak, and then drop sharply due to the zero pair at slightly higher frequency B,~I. The
peak contributes to the collective cochlear amplification, while the near-null sharpens the roll-off
slope beyond the peak and thus increases frequency resolution. The zero pair also nearly offsets the
group delay accumulation due to the pole pair of the filter.

To preserve the nonlinear properties of the transmission-line model in section II, we require that
only the damping d of the local CP impedance zeros in (8) varies with the signal level. If &[] 1, the
double-zero pair in (8) moves almost perpendicularly to the jw-axis similarly to Fig. 1. Therefore, d in
(31) depends only on the envelope of the local signal, i.e., either the input or output of the i-th filter in
the cascade, which simplifies the design of the AGC. In this work we simulate a linear dependence of
d on filter’s input signal envelope |4|, the “power-1 law” nonlinearity also implemented in [6]:
d(|A|)=dpn+o|A|.

As the parameter ¢ in (31) increases, the shift in the peak frequency with the stimulus level
increases, but the collective cochlear amplification drops as the poles of each filter section become
more and more over-damped. As the parameter « in (31) increases, cochlear amplification grows, but

so does the group delay. This represents a tradeoff between group delay and amplification in the

cochlea.
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3.4.2. Results

A composite cochlea was simulated with N,.,=25 sections per octave over 6 octaves of frequency
(150 sections overall). The parameter values d,;,=0.1, dpy=0.5, u=0.45, a=0.33 were chosen so that
the cochlear responses TF(;d) measured as cross-correlation functions with a wide band noise as an
input stimulus, when parameter d is varied linearly from d,;, to d,., are close to those of the
transmission-line cochlear model in section II shown in Fig. 2 (A), (B). The simulated cochlear
amplification is 35 dB, the maximum Q_y45 is 3.8, and the high-frequency slope is 200 dB/octave.
Impulse responses, normalized by input at the stapes and computed as inverse Fourier transforms of
TF(B:d), are also close to those shown in Fig. 2 (C). The group delay in the composite architecture is
slightly higher than in our transmission-line model, but still almost a factor of 3 lower than in [6]. The
fine time structure invariance with stimulus intensity is satisfactory.

One of the most interesting characteristics of nonlinear cochlear implementations is the response to
pure tone input stimuli of various frequencies and amplitudes. However, unlike with a wide band
noise input stimulus, the shape of magnitude and phase responses to the pure tone stimulus depends
on the form of the nonlinearity.

Figures 7 (A) and (B) show frequency responses of the nonlinear composite cochlea measured at
position x, to pure tone input stimuli with frequencies fand amplitudes from -60dB to 0dB in steps of
6dB. The slope o of the AGC function is chosen so that d(|A|=0dB)=d,. Figure 7 (A) shows the
amplitude of the output signal, Figure 7 (B) shows phase; Figure 7 (C) shows the output amplitude
versus input amplitude for a pure-tone stimulus at the small-signal peak frequency. The curves of

Figure 7 are very similar to those measured in the biological cochlea [1], [46].

3.5. Conclusion
We showed how single-mode transmission-line cochlear models can be efficiently implemented
using rational approximations to the CP impedance with nonlinear active elements. We introduced the
state-space representation method to analyze BIBO stability of the active cochlear model. The overall
stability is shown to be greatly influenced by the amount of gain and the terminating impedance at the

end of the cochlea. We derived an efficient composite model from transmission-line cochlea using a
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WKB approximation. Each second-order filter in the cascade uses a simple AGC and the model
exhibits many linear and nonlinear properties of the biological cochlea, including low group delay
accumulation, steep roll-off and high resolution, and the fine time structure invariance with input

signal level.
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4, Multi-mode one-dimensional transmission-line cochlear models

Abstract-An approximate analytical technique for analyzing multi-mode one-dimensional transmission-
line cochlear models is presented. This technique allows separating the modes, which can then be
analyzed by any method for single-mode models, including the analytical WKB-approximate solution.
The usage of this technique is illustrated by two examples: applying it to two-mode Sandwich, and to
traveling-wave-amplifier cochlear models. The approximate analytical solutions agree qualitatively and
quantitatively with the exact numerical simulations for both models. The presented technique also helps
to provide physical intuition and insight into cochlear model functioning: In the two-mode Sandwich
cochlear model, the effect of the additional transmission line is shown to be significant only in the cut-off
region. In the traveling-wave-amplifier cochlear model the second transmission line is shown to be crucial
for mimicking the behavior of the biological cochlea, such as high frequency resolution, large active
amplification and steep roll-off. The second line lowers the impedance that the first line sees over an
extended region basal to and around the peak, allowing high current peaks to be achieved without

excessive infusion of energy into the traveling wave.

4.1. INTRODUCTION

Mammalian cochlea provides frequency-to-location mapping with remarkable sensitivity,
frequency resolution, amplification at the characteristic frequency (CF) and steep roll-off beyond CF
in a broad frequency span of about 3 decades (10 octaves). It has an input dynamic range that spans 6
orders of magnitude in sound pressure. Numerous cochlear models of varying complexity have been
propos:ed to account for these and many other features of the biological cochlea. The type of models,
where two symmetric chambers of fluid are separated by a flexible membrane that consists of a
number of sections coupled only by the fluid, received a lot of attention. Initially, the membrane was
modeled as the simplest mass-elasticity-viscosity resonator with properties slowly varying along its
length (Allen 1980, Watts 1993). Later works modeled the membrane as having an active process in
the form of pressure sources controlled by the membrane motion. The longitudinal fluid coupling in
the chambers can be approximated as one-dimensional (Kolston 1990, Zweig 1991, Neely 1993,
Fukazawa 1997), which leads directly to a second-order differential equation, two-dimensional (Allen

1980, Watts 1993), or three-dimensional (deBoer 1982, Steele 1999, deBoer 2000, Lim and Steele
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2002). However, these models could not reproduce all the important aspects of biological cochlea
with realistic parameter values. Therefore, other types of cochlear models were proposed. In one type
the assumption that the sections of the membrane were coupled only by the fluid was relaxed (Steele
1993, Mammano and Nobili 1993, Geisler and Sang 1995, Nobili and Mammano 1996). In the second
type, the membrane was no longer assumed to be moving as a whole, which led to two- and three-
mode transmission-line cochlear models (deBoer 1990, Hubbard 1993, Chadwick 1996, Dimitriadis
and Chadwick 1999, Hubbard 2000, Lu 2005).

There are numerous analytical methods for solving two- and three-dimensional models. Yet
Zweig (Zweig 1991) and Shera (Shera 2005) contend that in the hierarchy of approximations, the
cochlear partition representation might be more important than the dimensionality of the longitudinal
fluid coupling. The numerical solutions to the multi-mode transmission-line cochlear models are not
always straightforward or easy to handle. This hinders the study of the effects of parameter variation
or obtaining physical insight.

In section 4.2, we develop an approximate analytical technique for analyzing multi-mode
transmission-line cochlear models. We approximate fluid flow to be one-dimensional. This
approximation is valid if the wavelength of the traveling wave is large compared to the cross-sectional
dimensions of the scalae. Our technique allows to separate the modes and to compute the effective
local admittances that produce the corresponding mode in a single-mode one-dimensional
transmission-line model. Each mode can then be analyzed separately by any method for single-mode
models, including the analytical WKB-approximate solution (Zweig 1991). In section 4.3, we
demonstrate the application of our technique to two-mode one-dimensional transmission-line cochlear
model (deBoer 1990, Chadwick 1996, Dimitriadis and Chadwick 1999, Hubbard 2000, Lu 2005). We
show that the second mode is significant only in the cut-off region, and that the first mode achieves
high peaks by having low effective local impedance over an appreciable region basal to and around
the CF — a mechanism also observed in other models (Kolston 1990, Zweig 1991, Geisler and Sang
1995, deBoer 2000, Zhak 2004). In section 4.4, we apply our technique to traveling-wave-amplifier
cochlear model similar to the one reported in (Hubbard 1993). We show that the second mode is

crucial to obtaining high peaks in this model, and it does so by lowering the effective local impedance
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seen by the first mode over an extended region basal to and around the peak. Our analytical solutions
agree qualitatively and quantitatively with the exact numerical simulations, which we use as a

standard of comparison for our approximate analytical technique. We conclude and summarize in

section 4.5.

4.2. TWO-MODE COCHLEAR MODEL ANALYSIS
Figure 1 shows the general representation of the two-mode one-dimensional transmission-line
cochlear model. Voltages P represent pressures, currents U represent volume velocities, and currents /
represent linear velocities. The voltages P,, P, and the currents U,, U, satisfy the following two-mode

transmission-line equations:

—%zij,(x)-Ul (1a)
i’@%: joL,(x)-U, (1b)
“%=115K1'E+K2'5 (1¢)
_aaliz:]zz};l.})l+y'22.}>2 (1d)

where L;(x) and L,(x) are the per-length inductances representing fluid mass in the scalae and
Ymm(joo,x) are per-length local admittances that depend on specifics of the cochlear model being used.
Equations (1a,b) describe macromechanical longitudinal fluid coupling in the cochlea, while (1c,d)
represent cochlear model micromechanics.

We assume local scaling symmetry (Zweig 1991), which implies that rather than depending
on position and frequency independently, parameters such as local admittances ¥,,, voltages and

currents in Figure 1 depend only on the following combination of x and w:

= w,(x) @,(0) V)
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where w.(x) is the CF at the location x along the cochlea, and / is the space constant or characteristic
length of the exponential cochlear taper; these parameters define the cochlear position-frequency map.

Equations (1a-d) then lead to the following coupled ordinary differential equations for P, and P;:
i{ﬁ}:{an(‘g) au(s)HE} 3a)
ds’ | P | |a,(s) ay(s)|| B
where

-L (0)/
—'”(), (m,n)e{l,2} (3b)

We assume that the matrix elements a;i(s), a;,(s), a(s) and ax(s) vary slowly relative to the
wavelength of the traveling wave. To solve the Equation (3a) approximately, we consider the solution
on a narrow spatial region that corresponds to s,<s<s,, where s,=s+-¢, s,=s++¢, |g|<<|ss|. Then the

matrix elements can be considered approximately constant over this narrow region:

SEg Wk .
ds’ | B | |a,(s) a,(s)||B]| |an an]||B

The equation (4) is diagonalized by the following linear transform:

P =x+b,(s.)-x, (5a)
P =b21(s')-xl+x2 (5b)

We set all the diagonal elements of the matrix of the transform (5a,b) to unity for convenience. The

equation (4) transforms into:

x| | 0flx ©
ds* | x, 0 & ||x

where k,%(s+) and k,*(s.) are eigenvalues determined from the characteristic polynomial:

(au _kfz)'(azz _klz,z)_alzam =0 Q)

The eigenvalues k,°(s+) and k,’(s.) also satisfy the equality that follows from the general properties of

characteristic polynomials:

klz + k22 =a, tay, )
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The solution of the quadratic equation in (7) is:

2
a,+a a,+a
kiz (s.)= = 2 2 i\/( = 2 22) _(auazz _a12a21) )]

The equation (6) decouples the two modes of wave-propagation, so that each mode can be

analyzed separately. The boundary condition that x,(s) m e {1,2} remain finite as  — o implies

that only forward-traveling waves are present (deBoer 1982). We have assumed that the properties of
the cochlea scale slowly relative to the wavelength of both traveling waves, so we can use a WKB-

type approximation to compute x,,(s):

x,(s)=c, k" (s)-exp(—]'km (s')ds'] (10)

0

Here me {l, 2} ; 8¢ corresponds to the basal end of the cochlea, and the c,,‘s are constants that depend

on the basal boundary conditions for each mode. To complete our analysis of the problem, we need to
compute b;,(s) and b,,(s) in the equations (5a,b), and then ¢, and c; in (10).

We know from linear algebra that the matrix by, of the transform (5a,b) that diagonalizes the

q, a
system (4) consists of the eigenvector columns of the matrix 4= [ 1 12] in (4):
a, ap

(4-k2-1)-b, =0 (11
where m € {l, 2} , I is the identity matrix, b,, is the m-th column of the matrix b,, of the transform

(5a,b), by, is also the eigenvector corresponding to the eigenvalue k,,’.

The system (11) yields the following expressions for b;,(s) and b;(5):

2
bzl(s)___kl —a4, __ 9%,

a9, klz_azz (12)
a ki —a
bolo) = = =
k, —a, a

One can imagine the traveling wave in a two-mode cochlear model to be the result of the two
modes x; and x, propagating and slowly rotating along the cochlea to add and form P; and P,

voltages. This slow rotation along the cochlea is defined by the equations (5a,b).
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As an example, let us determine the constants ¢, for the simple case of a Dirichlet basal
boundary condition for P;. This boundary condition corresponds to having a voltage source V,,
present at the cochlear input:

R(s,)="Y, (13)
The boundary condition for P, is defined by the termination impedance at the basal end of the second

line of the cochlea:
dP,
az-d—;(s0)+ﬂ2-l’2(so):0 (14)

Ignoring the pre-exponential dependencies in the equation (10), we can write:

dxm

I(s)z—km(s)-xm(s), me{l,Z} (15)

d
Applying the (az d—+ ,32) operator to the equation (5b) and again assuming that b;,(s) and b;(s)
s

vary slowly, the Equations (14) and (15) give us:

xz(so)N_ _ﬁz_az'kl(so)
by, (So) B, —a, -k, (So) (16)

Using the boundary condition (13) with the equations (5a), (16) and (10), we calculate the constants

Cm

& oy (o) E0) S k()
G A klllz(so) :Bz_az'kz(so)

1/2 , =~k (S
Clein'kl (so)/{l_blz(SO)'bZI(SO).m]

(17)

If a,=0, the boundary condition (14) for P, degenerates to a Dirichlet boundary condition P,(s,)=0,
which corresponds to terminating the second line at its basal end with a short circuit.
If B,=0, the boundary condition (14) for P, degenerates to a Neumann boundary condition

ar,

4 (so) =0, which corresponds to terminating the second line at its basal end with an open circuit.
s
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To analyze the two modes in our cochlear model, it is convenient to define the effective local
admittances Y.gn(s), me {1,2} , such that the single-mode cochlear model with the characteristic

length I, longitudinal fluid coupling L,(x), and the local admittance Y,;,(s) would have the wave
number k,(s) defined in the equation (9). Repeating the derivation of the equations (3a,b) for the case

of the single transmission line, we obtain the definition of Y, (s):

Tan ()= ooy Ly 0 et sy

The physical meaning of Y,4,(s) is further exposed by computing the local admittance seen by each
line in the two-mode cochlear model. The first line sees the local admittance Y;=I,/P,, and the second

line sees Y,=I/P,. The equations (1¢,d), (5a,b) and the definition (3b) then give us:

bn-x,+xzj

R6=5 0 (o)ﬂ( oy
1 (s)=

(19)

Often, there are regions of s in the cochlea where one mode dominates. Consider regions where the
first mode dominates, i.e., |xl (s)| d |x2 (s)l . The equations (19), (12), (8) and the definition (18) give

us:

K(s
L (s

Yy.(s)

(9 w

)=
)=1,

eff .1

In the regions where the second mode dominates, i.e., |x2 (s)| 0 |x1 (s)l , we similarly get:

F(s)=Y4,(s)

(21)
F,(5) = Yya ()2

2
The equations (20) and (21) show that the effective local admittances are not just theoretical variables,
but the admittances that each line sees in the regions where the corresponding mode dominates.

Generalization of the presented technique to the case of N-mode one-dimensional

transmission-line cochlear models is straightforward. Using Equation (3b) for (m,n) € {1,..N } , We
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obtain a N-by-N matrix instead of the 2-by-2 matrix in Equations (3a) and (4). We diagonalize this N-
by-N matrix by solving the characteristic polynomial for eigenvalues k,’, m € {1, N } , and using the

equation (11) to compute the matrix b,, that consists of N eigenvector columns b,, corresponding to
the eigenvalues &, . The matrix b,, transforms the separated modes x,,(s) into the voltages P,. We
calculate these modes x,(5) in Equation (10). To determine N constants ¢, in Equation (10), we

impose the boundary condition (13) and N-/ boundary conditions of the form (14). Applying these N

basal boundary conditions to the x,, (s) — P, transform and using Equations (15) and (10) at s=sj,

we solve for the constants c,. The definition (18) for m e {1,..N } is still useful, and our result that

each line sees a local admittance equal to Y,4m(s) in the regions where the mode x,,(s) dominates still
applies.
4.3. TWO-MODE SANDWICH COCHLEAR MODEL EXAMPLE
4.3.1. Analysis

Figure 2 shows the two-mode one-dimensional Sandwich cochlear model (deBoer 1990, Chadwick
1996, Dimitriadis and Chadwick 1999, Hubbard 2000, Lu 2005). Parts of this model represent
physical structures of the biological cochlea such as fluid coupling in the scala vestibuli (SV) and
scala tympani (ST), the reticular lamina (RL) and basilar membrane (BM), and outer hair cells
(OHCs). Figure 2 shows the electrical circuit representation of the acoustic properties of this cochlear
model. In this representation voltages are analogous to acoustic pressures and currents correspond to
the velocities. This convention causes parallel mechanical networks to be mapped to series electrical
networks and vice versa. In addition, acoustic compliance, viscosity and mass become equivalent to
capacitance, resistance and inductance respectively. Capacitances and inductances scale exponentially
and resistances stay constant along the length of the cochlea, so that impedances depend only on the
combination of x and w defined in Equation (2). We choose the characteristic frequency w.(x) at the
location x along the cochlea to be the local resonant frequency of the BM:

_ 1
w,(x)= MOENE) (22)
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We model V., the active force generated by the OHCs, as being proportional to the RL deflection,

or equivalently to the integrated RL velocity, I,/s:

Vaﬂive

B,(5)- (23)

where B,(s) is a proportionality coefficient that depends on s, the combination of x and w defined in
Equation (2). In this model of the biological cochlea, OHCs are assumed to transduce the RL
deflection into the potential, which is then low-pass filtered by the OHC membrane. The resultant
trans-membrane potential drives OHC force generation. We define the D.C. RL-deflection-to-voltage
ratio to be K, the D.C. OHC-voltage-to-force gain to be K; and the OHC membrane time constant to
be T,. Local scaling symmetry demands that the OHC gain K,K(x) exponentially decrease and the
OHC membrane time constant 7,,(x) exponentially increase with x such that B, depends only on s
(deBoer 1990, Chadwick 1996, Lu 2005):

B, = B (24)
1+s7,

The definitions and values of the dimensionless parameters that we use for this cochlear model are
given in Table 1. The parameter values are similar to those used in (Lu 2005) and measured in the
papers cited therein. Note that the technique that we developed in Section II is general; it works for
any model described by Figure 1, and for any parameter values. The values in Table 1, therefore, are
for illustrative purposes only.

We define the following normalized functions to be impedances of the BM, RL and OHC respectively

multiplied by s/(, (0) L, (0)) (see Figure 2):

Z,, =s"+s/Q,, +1 (25)
Zrl EM'(SZ +s.er/er +wr21) (26)
Zoths'c'M.wrl/QrI-i_K (27)

We can derive the expressions for 1; and 7,,,, given the voltages P, and P:

§
) | hi=Zue B 28
Irl a, (O) me (0) . ZZ (S) [(me + Zoh,,-) 1 ohe 2:| ( )
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Ibm: . )'[—(Zohc+Ba).Pl+(Zrl+Zohc+Ba).I)2:| (29)

where

ZZ (S) = ZrI (me +Zohc)+me (Z

ohc

+B,) (30)

Equations (28) and (29) have the same form as equations (lc, d), so we can relate the admittances

Yaun(s) to parameters of this model. Equation (3b) then yields:

d2 P1 (4N)2 me +Zohc wZohc Pl
- = . . 31
ds’| B | Z,(s) |-R(Zy.+B,) R(Z,+Z,.+B,)||P

ohc

Equation (31) is of the same form as (3a), so we can apply the technique developed in Section II.

The second line is terminated at the basal end with an open circuit. This termination
corresponds to 3,=0 in the boundary condition (14). We now substitute ,=0 into Equation (17) to
compute the constants c,,.

Bounded-input bounded-output (BIBO) stability of this cochlear model was checked for the
parameter values in Table 1. A standard state-space system representation can be used to investigate
BIBO stability because the model comprises a finite number of elements with rational frequency-
domain impedances. The necessary and sufficient condition for BIBO stability of the system is that all
the eigenvalues of its state-space matrix have negative real parts. The active gain parameter B, was
tapered down towards the apex to reduce apical reflections and improve stability at low frequencies.

4.3.2. Results

Equations (9), (31) and Ygm(s)=1/Z.5m(s) (from Equation (18), with L;, replacing L,) yield

the following expression for the effective local impedances normalized by w.(0)L;,(0):

Z,(s)-(1+s7,)

SZ, . ,(8)= (32)
(%) Z,(s)£[Z2 (5) - R-[ 2, (s)-(1+57,,) |- (1+57,,)

where:

z,(s)=[2,,+ 2, +R(Z,+Z,,+B,)](1+s1,)/2 (33)
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To visualize Equations (9) and (32), we would like to approximate sZ.; »(s) in Equation (32)
by using rational functions. The numerator in Equation (32), i.e., Z, (s)-(1+srm), is a fifth-order

polynomial. Therefore, sZ.4 »(s) has five zeros. The function Z,(s) defined by the Equation (33) is a
third-order polynomial, making the expression under the square root in Equation (32) a sixth-order
polynomial. Therefore, the square root in the Equation (32) behaves like a third-order polynomial at

very low and very high frequencies (s—;j0 and s—j). So we attempt to approximate the denominator
of the Equation (32) using a third-order polynomial of the form p, -(s + pz)-(s2+s- it p4). This

simple approximation works very well for the first mode: both real and imaginary parts of Z.(s)
(from Equation (32)) match their rational approximations closely over a wide range of frequencies.
The pole-zero plot of this rational approximation to sZ,4(s) is shown in Figure 3 (A). We observe two
zero pairs and a pole pair close to the imaginary axis. This structure is similar to that seen in (Zweig
1991, Zhak 2004).

Approximating the denominator of Equation (32) by a similarly simple third-order
polynomial does not work for the second mode. The four degrees of freedom that are offered by the
four coefficients in the third-order polynomial allow us to match the real and imaginary parts of
Zyp(s) for the very high and very low frequencies s, but the match around s=j/ is inadequate. To

increase the number of degrees of freedom, we use a Pade-like rational approximation to the

2 2
rels+r) (s +srm+r)s s+,
denominator of the Equation (32) for the second mode: - ( 2) ( : 4) ( 2 6)

S +s-r, 4,
Now we are able to match real and imaginary parts of Z(s) for a wide range of frequencies s. The

pole-zero plot of this rational approximation to sZ.(s) is shown in Figure 3 (B). We see that the poles

due to rl-(s+r2)-(s2 +s-r +Q)'(S2 +8-7 +r6) in the denominator cancel out the zeros due to the
numerator polynomial Z, (s)-(1+sz'm) almost exactly. Therefore, we are left with just a zero pair

for sZ,p(s). The rational approximation sZ ., qu-(s2+s-q2/ q3+q22 ) provides an excellent

match to the sZ.;, computed in Equation (32) for the second mode over a wide frequency range. The

pole-zero plot of this very simple rational approximation to sZ,g(s) is shown in Figure 3 (C). The zero
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pair corresponds to propagation in a single-mode cochlear model with local impedance resulting from
a simple resonator with relatively low Q. Therefore, we expect the first mode to be primarily
responsible for cochlear amplification near the peak of the amplitude response.

Figure 4 shows the modal decomposition of the RL shunt current I,. The bold solid line
shows I,; amplitude when the two-mode Sandwich cochlear model described by Equation (31) is
solved exactly. The dashed line shows I; amplitude calculated using the technique described in
Section II assuming only the first mode is present. The solid line shows ,; amplitude when only the
second mode is present. Note that the second mode, which is due to longitudinal fluid coupling L,(x)
in the scala tympani, contributes significantly to the solution only in the cut-off region. It has
negligible effect on cochlear amplification near the peak, as expected from the pole-zero plots in
Figure 3 (A) and (C).

Figure 5 demonstrates good agreement between the exact (solid line) solution for current I
and the approximate (dashed line) solution computed using the technique described in Section II.
Figure 5 (A) shows the amplitude of the current I,,;, and Figure 5 (B) shows its phase.

Figure 6 shows the modal decomposition of the BM shunt current I;,,. The bold solid line
shows the J,,, amplitude when Equation (31) is solved exactly. The dashed line shows I;,, amplitude
calculated using the technique described in Section II when only the first mode is present. The solid
line shows I, amplitude when only the second mode is present. Again, the second mode has
negligible effect on cochlear amplification near the peak, contributing to the solution only in the cut-
off region.

Figure 7 further illustrates good agreement between the exact (solid line) solution for current
I;» and the approximate (dashed line) solution. Figure 7 (A) shows the amplitude of the current I,
and Figure 7 (B) shows its phase.

Figure 8 shows the local impedance P,/I,; seen by the first line in the two-mode cochlear
model, demonstrating good agreement between the exact solution (solid line) of Equation (31), and
the approximate solution (dashed line) described in Section II. The top panel shows the real part of the
impedance (resistance), and the bottom panel shows the imaginary part (reactance). The first mode

dominates at every s except in the cut-off region, so the approximate impedance in Figure 8 is very
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close to 1/Y,g(s). The rough, but rather accurate approximation to &,%(s) in Sandwich cochlear model
is a;(s), because in this model the coupling between the two modes is weak. This approximation
corresponds to shorting P, to ground. Thus, cochlear amplification can be analyzed by considering a
single-mode cochlear model with a local impedance Z;(s) given by

s

@, (O) L, (0) .

The EQ-NL theorem (deBoer 1997, deBoer 2000) can be applied to the approximation (34) to gain

ZI(S)NZ’_,'F me'Zohc + Ba'me

VA

34
bm +Zahc me +Zohc ( )

intuition about the cochlear amplifier in the Sandwich model. We interpret Figure 8 as showing the
local impedance along the length of the cochlea for fixed frequency. The effect of the cochlear
amplifier is to reduce the magnitude of the local impedance over an extended region basal to and
around the peak, allowing high peaks in I, to be achieved without significantly increasing voltage P,
and infusing excessive amounts of energy into the traveling wave.

The basal termination of the second line does not affect peak gain in this cochlear model,
because the output currents 7, and J,,, are determined by the first mode everywhere except in the cut-

off region.

4.4. TRAVELING-WAVE-AMPLIFIER COCHLEAR MODEL EXAMPLE
4.4.1. Analysis

Figure 9 shows the two-mode one-dimensional traveling-wave-amplifier cochlear model similar to
the one reported in (Hubbard 1993). The only difference between the model investigated in this
Section and the one reported in (Hubbard 1993) is the sign of the feedback between the two
transmission lines. It turns out that the model can have cochlea-like responses and be BIBO stable for
both signs of the feedback. However, choosing the values of the parameters of the model to obtain
frequency responses reported in (Hubbard 1993) leads to singularities of the matrix A in (4) near jo-
axis. Our assumptions about the matrix A and the WKB approximation break down near the
corresponding frequencies, which might indicate reflections of various modes invalidating the
reasoning that lead to (10). Therefore, we only consider one model in this Section, and the work to
incorporate reflections and other interactions among the modes near the regions where our

assumptions about the matrix 4 and the WKB approximation break down is still ongoing.
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In the two-mode one-dimensional traveling-wave-amplifier cochlear model shown in Figure 9 the
capacitances and inductances scale exponentially and resistances stay constant along the length of the
cochlea, so that impedances depend only on g, the combination of x and w defined in (2). We choose
the characteristic frequency w.(x) at location x along the cochlea to be the local resonant frequency of

the first line:

o, (x) = (35)

The definitions and values of the dimensionless parameters that we use for this cochlear
model are given in Table 2. These values are only illustrative; the generic technique described in
Section II works for any model represented by Figure 1 and for arbitrary parameter values, as long as
the assumptions about the matrix A in (4) hold.

Physically, parameter D represents the ratio of the group velocities (at low frequencies) of the
first (resonant) and second transmission lines. Parameter y, represents coupling between the lines.

Deriving the expressions for I;=I,, and I, as functions of P; and P, to compute local

admittances Y,,,(s), and applying (3b), we obtain:

R R |

ds* |V, _s-(s2+s/Q1+l)' -D’ Dz-{(s+a)2)-(s2+s/Ql+l)—ya} v,
where:
VZEPZ.M 37)

12
The output current ,,, is given by:

;= s _B+y. 1
™ ,(0)-L,(0) s*+5/Q+1

c

(3%)

Equation (36) is of the same form as (3a), so we apply the technique developed in Section II.
The second line is terminated at the basal end with a resistance Z, = /L, (0) / C,(0) that is

approximately equal to its characteristic impedance. Substituting (1b) into the boundary condition

(14) and noting that P,(s,)/U,(s,)=-Z,, we obtain:
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B,/a,=—-4N-D (39)
We can now substitute (39) into (17) to compute the constants c,,.

Bounded-input bounded-output (BIBO) stability of this cochlear model was checked for the
parameter values listed in Table 2. We can use a standard state-space system representation for
evaluating stability because the model comprises a finite number of lumped elements. We gradually
introduced viscosity in series with L;(x) and L,(x) near the apical end to reduce the amplification of
the cochlear sections (Xin 2003). This gain tapering reduces apical reflections and therefore improves
the stability of our cochlear model at low frequencies.

4.4.2. Results
Equations (9), (36) and the definition (18) for Y.zm(s)=1/Z.4m(s) yield the following expression for

effective local impedances normalized by w.(0)Ly(0):

s-(s2+s/Q1+1)

Zaa s)= Z, (s)i\/Zl2 (s)-Dp? -s-(s2 +5/Q, +1)-(s +@,) “0)
where:
Z,(s)s[s+D2 -{(s+a)2)-(s2 +s/Q1+l)—ya}]/2 (41)

As before, we approximate sZ.4; (s) using rational functions. The function Z,(s) defined by
(41) is a third-order polynomial, so the expression under the square root in (40) is a sixth-order
polynomial with coefficients of s® and 5° equal to those of Z,%(s). Therefore, the square root in (40)
behaves at high frequencies like a third-order polynomial with coefficients of s* and s’ equal to those
of Z,(s). For the first mode the terms with s° and s° in the denominator of (40) will therefore cancel
out. However, approximating the denominator with a first-order polynomial does not offer enough
degrees of freedom to match both real and imaginary parts of Z.;(s) for a wide range of frequencies.

To increase the number of degrees of freedom, we use a Pade-like rational approximation to the

r;-(s+r2)-(s2 +5-7 +r;)

denominator of (40) for the first mode, as follows: . The pole-zero plot of

2
S +Ss-r+r

this rational approximation to sZ.(s) is shown in Figure 10 (A). We observe that the pole pair due to
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s> +5-r,+7, in the denominator cancels out the zero pair due to s°+s/Q, +1 in the numerator

almost exactly. So the quality factor, or sharpness, of the first mode is much lower than Q,.

For the second mode approximating the denominator of the (40) by a third-order polynomial
of the form p, -(s+ pz)-(s2 +s-p,+ p4) works very well. Both real and imaginary parts of Z(s)

(from (40)) closely match its rational approximation over a wide frequency range. The pole-zero plot
of this rational approximation to sZ.(s) is shown in Figure 10 (B). Note that the square root in (40)
behaves at high frequencies like a third-order polynomial with coefficients of s° and s’ equal to those
of Z,(s) in (41). It makes the factor p, close to D?, reducing the effective local impedance Zega(s) by
the same factor and increasing the effective wave number £;(s) of the second mode by the factor D.
This factor D appears under the exponential in (10) and affects the gain and phase shift of the second
mode. In this cochlear model, we therefore expect the second mode to be primarily responsible for
amplification near the peak.

Figure 11 shows the modal decomposition of current I, The bold solid line shows Z,,
amplitude when (36) is solved exactly. The dashed line shows [,,, amplitude calculated using the
technique described in Section II when only the first mode is present. The solid line shows I,
amplitude when only the second mode is present. Interference effects caused by interaction between
the first and the second modes can be seen at $<(.7, although the first mode is dominant in this
region. The second mode dominates in the region 0.7<f</.I and thus determines the active gain of
this cochlear model. The first mode dominates again in the cut-off region for f>1.1.

Figure 12 demonstrates excellent agreement between the exact (solid line) solution for current
1,,, and the approximate (dashed line) solution computed using the technique described in Section II.
The top panel shows the amplitude of the current I, and the bottom panel shows its phase.

Figure 13 shows the modal decomposition of local impedance P,/1,,, seen by the first line in
this two-mode cochlear model. Figure 13 (A) shows the real part of the impedance (resistance), and
Figure 13 (B) shows the imaginary part (reactance). The solid line in Figure 13 (A) and (B) shows the
local impedance computed from the exact solution, while the dashed line shows the effective local

impedance of the first mode, Zg(5)=1/Y;(s). The bold solid line shows the effective local
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impedance of the second mode, Z,g(s)=1/Yp(s). In the region £>1.1 the first mode dominates, so the
exact impedance follows the effective impedance of the first mode. In the region <0.7 we notice
interference between the first and the second modes, with the first mode dominant. In the region
0.7<p<1.1 the second mode dominates, and the exact impedance follows the effective impedance of
the second mode. The real and imaginary parts of this effective impedance are shown with greater
resolution in Figure 13 (C). The resistance is negative over the region 0.7<8 <0.95, basal to the peak,
which corresponds to energy transfer into the traveling wave. As expected, the magnitude of the
effective local impedance of the second mode is greatly reduced because of the 1/D’ factor. This
reduction allows high peaks in I, to be achieved without significantly increasing voltage P; and
infusing excessive amounts of energy into the traveling wave from the first line. Another way of
explaining high peaks in I, was discussed in (Hubbard 1993). That reasoning still holds for the
traveling-wave-amplifier that we investigate in this Section that has the opposite sign of the feedback
between the two transmission lines. The traveling wave in the first line slows down around its
resonant location, making its group velocity closer to that in the second line, causing coherent
excitation of the second line. This coherent excitation causes the amplitude of P, to rise sharply. It can
be seen as follows: on Thevenizing the transconductor G,; and resistor R;, we obtain a voltage source
proportional to P, that drives the current I,,, even if the amplitude of P, does not increase.

Figure 14 demonstrates excellent agreement between the local impedance P,/I,,, computed
from the exact solution (solid line) of (36), and the approximate solution (dashed line) found using our
technique described in Section II. The top panel shows the real part of the local impedance

(resistance), and the bottom panel shows the imaginary part (reactance).
In this cochlear model the value of ¢, is very sensitive to 8ya;, because Ik1 (so ) / k, (s0 )| 01.

Therefore, the termination of the second line at its basal end is very important for determining the
peak gain of this cochlear model. For example, terminating the second line with an open circuit would

significantly degrade the peak gain.
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4.5. CONCLUSIONS
We have developed an approximate analytical technique for analyzing multi-mode one-dimensional
transmission-line cochlear models. This technique allows separating the modes. For each mode, we
have computed the effective local admittance that would produce that mode in a single-mode one-
dimensional transmission-line model, which can then be analyzed by any method for single-mode
models, including the analytical WKB-approximate technique. We have demonstrated the application
of our technique to two-mode Sandwich cochlear model, obtaining an important physical insight that
the second mode is significant only in the cut-off region. We have also applied our technique to
traveling-wave-amplifier cochlear model, showing that the second transmission line is crucial to
achieving high peaks, doing so by lowering the effective local impedance seen by the first line over an
appreciable region basal to and around the peak. Our analytical solutions agree qualitatively and
quantitatively with the exact numerical simulations, which we use as a standard of comparison for our

approximate technique.
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TABLE 1. Parameter definitions and values that we use for the two-mode Sandwich

cochlear model.

Parameter Definition Value
L (x) )
4NY ===
N ( ) me (x)/l 1.5
L,(x)
R = st
R L (x) 1.5
Bt Bt EKva (x)'Cbm (x) 0.7
T 7, =0, (x)T,(x) 33
Y= L, (x)C,, (x) 076
Wy, = .
! \/Lr, (x)C,(x)
_ 1 L)
er er - er Cﬂ ( x) 3.8
_ 1 [ Lw(x)
Ovm Oy = &, \C, (%) 4.4
L, (x)
M = rl
M L (x) 0.08
Cpn (%)
K = bm
K C, ( x) 0.04
RO C
C ¢= _R: 0
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TABLE 2. Parameter definitions and values that we use for the two-mode traveling-
wave-amplifier cochlear model.

Parameter

N

Va

0

(0F)

Definition

S~

D= L,(x)C,(x)

L(x)Co (x)

- G12G21'R1

"o (v)-C.(x)

_ 1 |L(x)

Ql:El. Co(x)
e 1
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Value

0.75

50

0.28

0.33



FIG. 1. The generic two-mode one-dimensional transmission-line cochlear model.
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FIG. 2. The two-mode Sandwich cochlear model (Chadwick 1996, Dimitriadis and
Chadwick 1999, Hubbard 2000, Lu 2005).

Lsv P'I

Mng...—m_ - oo
= : Lri
!

l
N
=
L
0
||
__ _ 11000
-

- —-——-r - - - -~ - | Vactive

N
o
ER
L,
o
3 &
A
___:-____
O
3
||l

118



FIG. 3. The pole-zero plot of the rational approximation to sZ.q; >(s) in the two-

mode Sandwich cochlear model: (A) The first (dominant) mode, (B) the second

mode, (C) the second mode, simplified.
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FIG. 4. Modal decomposition of I,; amplitude in the two-mode Sandwich model:
(Bold solid) shows the exact solution; (Dashed) shows the first mode; (Solid) shows

the second mode.
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FIG. 5. I,; in the two-mode Sandwich model: (Solid) shows the exact solution,
(Dashed) shows the approximation described in Section II; (A) Amplitude (dB), and
(B) Phase (cycles).
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FIG. 6. Modal decomposition of I;,, amplitude in the two-mode Sandwich model:
(Bold solid) shows the exact solution; (Dashed) shows the first mode; (Solid) shows
the second mode.
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FIG. 7. I}, in the two-mode Sandwich model: (Solid) shows the exact solution,
(Dashed) shows the approximation described in Section II; (A) Amplitude (dB), and
(B) Phase (cycles).
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FIG. 8. The local impedance P;/I,; seen by the first line in the two-mode Sandwich
model: (Solid) shows the exact solution, and (Dashed) shows the approximation
described in Section II. The top panel shows the real part of the impedance
(resistance), and the bottom panel shows the imaginary part (reactance).
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FIG. 9. The two-mode traveling-wave-amplifier cochlear model (Hubbard 1993).
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FIG. 10. The pole-zero plot of the rational approximation to sZ,4; »(s) in the

traveling-wave-amplifier cochlear model: (A) The first mode, (B) the second

(dominant) mode.
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FIG. 11. Modal decomposition of 1,,, amplitude in the traveling-wave-amplifier
cochlear model: (Bold solid) shows the exact solution; (Dashed) shows the first
mode; (Solid) shows the second mode. Interference between the first and second
modes can be seen for §<0.7.

Dashed - Mode 1; Solid - Mode 2; Bold Solid - Exact

30, __ :
20 S S SN
10
0

Amplitude, dB
)
o

10-. -0. 1003
Frequency / CF

127



FIG. 12. I, in the traveling-wave-amplifier cochlear model: (Solid) shows the exact
solution; (Dashed) shows the approximation described in Section II; the agreement
is excellent. (A) Amplitude (dB), (B) Phase (cycles).

30
20}

Amplitude, dB
)
(=)

Phase, cycles

108 10°°
Frequency / CF

128



FIG. 13. Modal decomposition of the local impedance Py/1,, seen by the first line in
the traveling-wave-amplifier cochlear model: (A) the real part of the impedance
(resistance), and (B) the imaginary part (reactance). (Dashed) shows the effective
local impedance of the first mode, Z4:(s)=1/Y(s); (Bold solid) shows the effective
local impedance of the second mode, Z,>(s)=1/Y 42(s); (Solid) shows the local
impedance computed from the exact solution. Note that for f>1.1, where the first
mode dominates, the exact impedance follows the effective impedance of the first
mode. In the region #<0.7 we see the interference between the first and the second
modes, with the first mode dominant. For 0.7<f<1.1, where the second mode
dominates, the exact impedance follows the effective impedance of the second mode.
The real and imaginary parts of this effective impedance are shown with greater

resolution in (C).
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FIG. 14. The local impedance P;/1,, seen by the first line in the traveling-wave-
amplifier cochlear model: (Solid) shows the exact solution, and (Dashed) shows the
approximation described in Section II. The top panel shows the real part of the
impedance (resistance), and the bottom panel shows the imaginary part (reactance).
Agreement between our approximate analytical and the exact numerical techniques

is excellent.
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5. High-Q Low Power Wide Dynamic Range Log-Domain
Filter Design

Abstract—A technique that simultaneously reduces the power consumption and increases the SNR
and the dynamic range of log-domain filters with high Q is introduced. As an example, a second-
order low-pass filter is analyzed, showing the reduction in power consumption and the increase in
SNR by a factor of Q. If bias currents in the filter are adjusted as the signal level varies, this
technique enables the improvement in maximum SNR by a factor of Q and the increase in maximum
non-distorted signal power and the dynamic range by a factor of Q*. A duality with voltage-mode
G,-C filter design is discussed. Experimental results from a chip in a 0.18-um 1.1-V CMOS
technology are presented for an electronically tunable second-order log-domain filter with adaptive
biasing. This filter operates at Q=4, consuming 580-nW at 15-kHz in its quiescent condition.
Maximum SNR of 41.3-dB and the dynamic range of 76-dB are achieved. The filter is useful in
electronic cochlea, fully implantable bionic ears, hearing aids, and speech-recognition front-ends.

Index Terms—Analog Filters, High-Q, Log-Domain, Adaptive Bias, Figure of Merit, Low Power,

Wide Dynamic Range, Bionic Ear, Cochlear Implant

S.1. INTRODUCTION

HIGH resolution frequency discrimination, i.e., high-Q filtering, is required for a variety of
applications such as signal processing, speech recognition, hearing aids [1]-[4]. Portable devices
are battery powered and required to run off a low voltage, minimize power consumption, and
maximize the dynamic range of the system. The challenge in designing biomedical systems is to
move to designs that can be fully implanted, and reducing the power consumption is the key. All-
analog processing strategies promise power savings of an order of magnitude over even advanced
DSP implementations [2]-[4]. However, efficient realization of high-Q analog filters
electronically tunable over a wide range of their parameters remains a challenge. The log-domain

filtering approach [5]-[7] offers integratable, compact filters that allow wide tuning range and

131



low-voltage operation due to the voltage companding principle [8]. The input signal of the log-
domain core is a voltage logarithmically compressed by the diode-connected transistor. The
output voltage of the log-domain core is exponentially expanded into current ensuring externally
linear operation of the filter. The voltage swings at each node are strongly reduced enabling the
low-voltage operation, mitigating parasitic capacitances, and relaxing capacitor linearity
requirement. Log-domain can be efficiently combined with dynamic biasing technique [9], where
the bias current is kept at the minimum value necessary for the input signal being processed,
minimizing noise and power consumption. Log-domain circuits can be realized using CMOS
transistors biased in subthreshold. Unlike bipolar transistors, CMOS devices do not suffer from a
finite base current. However, threshold voltage mismatches and exiting subthreshold region for
higher bias currents limit the performance of CMOS log-domain circuits. This performance
degradation is especially pronounced for high-Q filters. Log-domain filters are usually designed
using the exponential state-space (ESS) method, in which the desired state-space equations are
transformed to the log-domain using an exponential mapping [6], [7]. Related approach is to
substitute transconductors in the G,-C implementation of the filter by nonlinear transconductor
blocks. Transfer functions from the input to state-space variables can have amplitudes that are
different at DC and at their peak values, usually near the corner frequency. Because of the
exponential mapping, no state-space variable can become negative, which means that the
maximum amplitude of the signal should not exceed the DC operating point for all state-space
variables, otherwise distortion will result. In many filter topologies, both log-domain and linear
Gn-C, a single state-space variable becomes a bottleneck, limiting the maximum non-distorted
signal and degrading SNR, dynamic range and power consumption. This inefficiency is especially
pronounced in high-Q filters, where the disparity between the peak and the DC gain from the
input to state-space variables is greatest. The proposed technique adds constant terms to the linear
state-space equations, effectively adding DC-biased inputs to shift DC operating points of the

state-space variables without altering any transfer functions in the filter. Intuitively, if the DC
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operating points of all state-space variables are made equal to their signal maximum amplitudes,
then all nodes would be biased just as needed and efficiency gains should arise. To judge the
efficiency, we utilize the maximum power dissipation of the filter normalized to the 3-dB
bandwidth, the order and the maximum SNR, which is a figure of merit (FOM) that can be used
to compare filters of different orders and bandwidths [10].

The organization of this paper is as follows. In Section 5.2, we introduce the technique of pre-
biasing state-space variables on the example of second-order log-domain low-pass filter design.
We analyze noise, maximum non-distorted signal and power consumption effects of pre-biasing.
We also quantify the benefits of the proposed technique to log-domain filters with dynamic
biasing. In Section 5.3, we compare our log-domain filter to the voltage-mode G,,-C design. In
Section 5.4 we present experimental results from a chip. Finally, in section 5.5, we conclude by

summarizing the key contributions.

5.2. Theoretical Analysis of Proposed Log-Domain Technique

We would like to implement a second-order low-pass transfer function:

I 1
TF(s)="%= —
I, l+s7/Q+s°t

mn

)

Here s=jw, Q is the quality factor, 7 is the time constant, 7, and I, are the input and output of
the filter, which will be currents in the circuit realization. We would like all parameters to be
electronically tunable over wide range of values. State-space realization for this transfer function

is not unique, and we pick the following:

T-X,==x,+1

z""-52:)‘:1_362/Q )
1

out

:x2

Here x; and x; are the state variables. The transfer function from the input to x; is:

X sT+1/Q
TE(s)0 L=
() I, 1+s7/Q+s7 )

mn
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To implement the log-domain filter in PMOS in weak inversion with each well tied to the
respective source terminal, we use the following exponential mappings on the input, output and

state variables [7], [11]:

K,V -V
x1=]0.exp[— ;j l); xzzlo.exp(_xpl] 2)

t t

I I Kp : Vin I I Kp : I/out
n =1y €Xp| — ; 1, =1,-exp| —
in 0 p U’ t 0 p Ut

Here k, is the subthreshold exponential parameter of the PMOS transistors, I is some arbitrary

@

constant current, U, is the thermal voltage k7/g, ¥, and ¥, are the mappings of the state variables,
and V3, and V,,,=V; are the mappings of the input and output that can also be interpreted as input
and output voltages of the log-domain core of the filter. Dividing the first equation in (2) by x;
and the second equation by x; and utilizing the mappings (4), we obtain a set of nodal equations
that we will realize with PMOS transistors in subthreshold with wells tied to their respective

sources, grounded capacitors C, and current sources:

U, U,
(h-1)) 1 ?
K . -
-C-V, =1, exp(— r L2 ]——’
U, Q

Here I, = L is the current that sets the time constant z, allowing it to be electronically

K'p°T

tunable over several orders of magnitude. Figure 1 shows the circuit implementation of nodal
equations (5) using blocks as in [7], [11]. The overall gain of this filter is //1; and can be tuned in
the wide range.

The input current /,, is the sum of the DC component I5c and the signal I,c. The amplitude of
I4c should not exceed Ipc for I, to stay positive. We determine the DC operating point of the
circuit from either its state-space equations (2) or the transfer functions (1) and (3) at DC:

x; pc=Ipc/Q; X3 pc=Ipc. The transfer functions (1) and (3) also give us the maximum amplitudes
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of signals at x; and x; that occur near the resonant peak of the filter:

X maxac = Luc '\/QZ_""“Q‘IAC (6)

X max ac = Q-1

Here the approximations are acceptable for Os higher than 2. For the exponential mappings (4)
to hold, state variables x; and x, need to stay positive, i.e., Q-Lic<Ipc/Q for the node x;, and
O-Iyc<Ipc for the node x,. Clearly, the state variable x; becomes a bottleneck in the system
limiting the maximum input non-distorted signal amplitude to IAC<IDC/Q2 . The maximum output
non-distorted signal amplitude is therefore Inc/Q. For high Q filters this inefficiency is clearly a
problem, because high bias current Ipc increases power consumption and noise, lowering the
maximum SNR. To eliminate bottlenecks in the filter, the amplitudes of the signals at the state
variables should just reach their DC operating points as the amplitude of the input signal I,c
reaches its bias Ipc. The transfer function should remain the same, so according to the equations
(6) the maximum amplitudes of the signals at x; and x, are Q-Ipc. We modify the state-space
equations (2) to shift the DC operating points for the state variables without changing the transfer
function by adding constant terms:

T% =—(x% -0 Ipc )+ (1, —Ipc)

T'xz=(x1—Q'IDc)_(x2_Q'IDc)/Q )
I

out = x2
This modification to the state-space representation is equivalent to adding the DC-biased inputs

to the filter. Denoting I, = I, -(Q—l) for 0>1, and appending the exponential mappings (4)

K, -V
with I, =1, -exp (— ;j . ), we obtain the new set of nodal equations:

t

-C-H, =-1f'exP(‘LZZ—V;)J+I -exp(—ﬁ’—.(—l-V'}':-V'—)}H -exp[—."p (7 _Vl)]
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Figure 2 shows the circuit realization of these nodal equations using blocks as in [7], [11]. In
fact, the only modification to the previous implementation is addition of the two PMOS
transistors to the log-domain core and the log-compressor transistor, which is highlighted in
Figure 2. This filter can also be dynamically biased as in [9]. In this case it needs to be pseudo-
differential, and Figure 2 shows only one of the two identical log-domain cores. It is clear that by
setting ,=0 the implementation in Figure 2 reduces to that in Figure 1, so we consider only our
proposed realization with bias current Z, varying between 0 and Ipc(Q-1).

We shall analyze the power consumption of the log-domain core in Figure 2, ignoring the power

associated with 7;, I, the input and the output DC currents for now. For convenience, we define a

i : I : . :
dimensionless variable O, = —"-+1, which varies from / to O as we change the bias current I,
DC

from 0 to Ipc(Q-1). Note that Q,=1 corresponds to the conventional implementation in Figure 1.
Assuming that I,=I, so that the filter gain is /, and imagining the PMOS transistor with its gate
connected to voltage V;, the source tied to either sources of M1 and M2 or M3, so that its drain
current will be equal to x;, we apply translinear principle [5] to derive the DC currents in the

circuit and its power consumption:

Ly Ly =1y, x

Ly Lo =1ys %
X, 'IMs = IM7 Xy )

%Ly =1y %,

Ly Iz = Lyis - %,

In DC equilibrium, Zz,+Is=hy7, so adding the first two equations in the set (9), substituting the
sum into the third equation, and recognizing that /s, pc=Ipc and I s,=I,, we have:

Xypc =L+ 1pe =0, Ipc (10)

Also at DC, L;=hy;+1/Q, substituting this equation into the fourth and fifth equation of the

set (9), using the equation (10) and recognizing that I,,;,=I,, we obtain after some algebra:
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1 1
X1.0c =ch‘Qa'(1+§—aJ (11)

These results allow us to calculate the current consumption of the log-domain core:

I,=2-1,,,+1 +2-1,,,,+1,=2-1 - 1+++(1+5—LJ (12)

1 1
The expression in (12) is minimized by the value of Q, where 1+——-—=1, i.e., 0,=0.

a

Therefore, the current consumption of the proposed circuit realization is the minimum possible:

1,,(0,=0)=6-1, (13)

The current consumption of the circuit in Figure 1, where Q,=1, equals:
1
1,,(0,=1)=2-1- 1+Q+§ (14)

Therefore, the power reduction from the proposed technique is approximately proportional to Q
and becomes significant for Os higher than 3. If the filter is dynamically biased as in [9], its
quiescent power consumption is dominated by that of its log-domain core computed in the
equations (12)-(14), because in quiescent condition the currents /;, I; and the input bias current
Inc only need to drive parasitic capacitances at the frequencies of interest, while the current 7,
needs to be high enough to drive the capacitors C at those frequencies.

We shall analyze the noise in the log-domain filter in Figure 2. Many authors have contributed
to the topic of calculating the noise in externally linear and companding systems [12]}-[15]. The

noise current spectral density for CMOS device in weak inversion is given by:
i’ =2q-1,-Af (15)
Here I is the drain current of the device. If the transistor is sized such that it is in strong

inversion when its drain current is Ip, then the noise current spectral density is
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- 2
i’ =4kT '3 g, MUa-2q-1,-Af , where g, is the transconductance of the device in strong

inversion. We have defined the dimensionless coefficient a that can be calculated as

4
a= E U, -i—'" . It equals to x/0.75 in weak inversion, which is close to / as expected. In the strong
D

inversion, a drops with the device efficiency g./Ip. We size the transistors in all current mirrors
and current sources such that they are in strong inversion for both matching and the noise reasons.
We will arbitrarily assume a=0.5 for all current mirrors and current sources in Figure 2.

We first calculate the noise in the log-domain core in Figure 2. Like in voltage-mode G,-C
filters, it is convenient to calculate the equivalent noise contribution of each nonlinear
transconductor and then compute the noise of the log-domain core based on the transfer functions
to the output.

Transistors M4-M10 and the current source I, comprise the first nonlinear transconductor
shown in Figure 3. First we note that the movement of voltage at the node V,,; does not propagate
to the current i,;. This is because J,4,+1I);5=1)4; at the DC operating point, and any deviation of the
voltage from the equilibrium at the node V,,; changes each of the currents 4, Jy;s and Iy, by the
same factor, thus these changes cancel out at the current output i,;. Therefore, only the drain noise
currents of transistors M4, M5, M7 and the strongly inverted transistors of the current mirror M9
and MI10 are contributing to the equivalent noise output current i,; of this nonlinear
transconductor. Calculating ), from the third equation of the set (9), recognizing that I =1, and

using the equations (10), (11) and (15), we compute i,;:

K 2-(1+a)-I
=Ly +(Lye + Lys) 4+ 2-@-(Iyg + I ys) = — L0 16
2q Af M7+( M4+ M5)+ o ( 4+ 5) 1+__L ( )

Q 0,

Transistors M11-M16 and the current sources I, and I/Q comprise the second nonlinear

transconductor shown in Figure 4. In this circuit the movement of voltage at the node V,,, affects
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the current i,, because 1,,,, # I,,,;. The noise currents that flow directly into the node V,,; see the

low impedance due to the negative feedback loop M12, M14, and cause negligible movement of
the voltage at this node. The noise currents that flow into the drain of M12, however, move the
voltage ¥, and contribute to the current i,,. These currents are due to the noise of the transistor
M12 and the current source /. To compute the transfer coefficient from the noise current flowing
into the drain of M12 to the output #,,, we assume that the deviation of the voltage V,,; changes
each of the currents Iy, Ly, and Iy;; by the factor . Then i,,=I/Q+& Ly 3-€- Ly 1 =(1-¢)-1/Q. Here
we recalled that I, =13+ 1/Q at the DC equilibrium. The deviation of the voltage V,,, must have
been caused by the noise current I,-¢f,=(1-¢)-I,. Comparing the two expressions, we see that the
transfer coefficient for the noise current is 7/0Q, so for the noise power it is 7/Q°. Calculating I/,

from the fifth equation of the set (9) and using the equations (10) and (15), we compute i,;:

lTZ 1 Ir
_Zq'jzAf 25'([M12 +a'11)+[M13 +l +2-a 1y, +a'§
=2.(1+a).lr-[1+é——é—]—é‘~[l—a—%] a7
zz.(lm).z,-(ué—gi]

We compute the linearized transfer functions from i,; and i,, to the output Z,,,. Calculating the
linearized transfer functions for the noise in this nonlinear system is justified because the noise is
just a small perturbation around the DC operating point. Rewriting the nodal equations (8),

implemented by the proposed log-domain core, and including the currents i,; and i,,, we obtain:

~C -V, +i, =—Irﬁ+1,1i+lrl—”
X Xy X (18)
; x 1 I
_C.V2+ln2= T -k r-a—
x, Q X,

Multiplying the first equation in (18) by x,/; and the second equation by x,/I;, and linearizing at

the DC operating point, we have:
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Xy pc

TX i - ] =X, +Ip. +1,
, ’ (19)
. . 2,DC
X, t1," 7 =x1"x2/Q"Ia
T

The linearized transfer functions from i,; and i,, to the output Z,,,=x; are:

X, __ Xipc 1 i =0
i L l+s7/Q+s7 . =

nl T (20)
X, X2.0c ST .
P : 720 = 0
i, I, l+st/Q+s’t

Using the equations (10), (11), (16), (17) and (20), we calculate the spectral power of the

output noise of the filter:

72 . 72 .02 2
i 2-(1+a)- IO -[1+ 1 1 ) 1+]sz| an

2q-Af I 0 0, |l+s1’/Q+.92z'2|2

T

To get the total output noise over all frequencies, we integrate the spectral power 7,2, ( f)

given in the equation (21) from 0 to . It can be shown by contour integration that:

2
3 1 T
J dr=>0
1-x2+jx 2
: J /Q2 @)
Jx _r
ojl—x2+jx/Q d=59

The total output current noise power over all frequencies due to the log-domain core is then

given by:
_ 2-(1+a)-I%.- 0 -k -
o) ey g () O @3)
' C.Ut Qa

Referring this noise current to the output of the log-domain core ¥V, in Figure 2, we obtain the

equivalent noise voltage:

2
D—nz =@=k_T.2_(l_+q_).(Q+1_2 24)
gm,M3 C K



Here gn3 1is the transconductance of the transistor M3 in weak inversion
Enmz=Kp Ly Ur=KpX2 po/ U=k, O Inc/U,, and the last equality uses the equation (10). The noise
voltage in the equation (24) is independent from the bias Ipc, which allows us to draw the

equivalent circuit of the log-domain filter shown in Figure 5 that is valid even for the dynamic
biasing. The equation (24) and Figure 5 also imply that one can compute L_)n2 treating any log-

domain core as a voltage-mode circuit and calculating its small-signal noise transfer functions.
Figure 5 suggests the other sources of noise in the system; minimizing their effects leads to
additional design considerations. As an example, we study the noise contribution due to the

current /;. The noise current i,y flowing into the drain of the transistor MO moves the voltage

i iU . . :
Uy =—22—=22—L  where we are using small-signal voltage-mode analysis and the

8o 1, K,

subthreshold expression for g, . Voltages ¥V, and ¥, move in tandem with Vj;, and these

perturbations are filtered by the log-domain core, adding to its output voltage noise 17,,2. The

___ Vo,

v, l+s7/Q+sc

m

Uout

small-signal voltage transfer function of the core is , U, =0. The factor

1/Q, is due to the ratio of transconductances of the input and the output devices that equals to
Ipo/%; pe. Using the equation (19) with i,;=i,,=0, we determine the transfer function from I, to the
output [,,,=x;:

X,

1-s7
= R I =0 25
I, 1+st/Q+sc> " (@)

a

The ratio of transconductances of the transistor M2 and the output transistor M3 is I/x; pc=1-

1/Q,, so the small-signal voltage transfer function of the core s

U, 1 1-s7
2= 1-— > U, =0.Because v, and v, correlate perfectly, we have:
v, Q. ) l+st/Q+5’c
Uout — Ut _I_ST'(l_l/Qﬂ)

= 26
io 1k, 1+s7/Q+sc’ (26)
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From the equation (15) we see that 5 l""Af =1 -(1+a) . Then taking the square of the
q.

absolute value of the equation (26), integrating over all frequencies and applying the equations

(22), we calculate the additional voltage noise contribution due to the current 7; in Figure 5:

) 2
Bj:U_'z_.q_llq.Q 1+(1_LJ 27
K, T 0

a

We need to ensure that this additional noise does not significantly degrade filter’s performance,

i.e., that 0 <0, . This condition leads to the following design consideration for the current I;:

I L 1+(-Y0) 28)
4 1+1/0-1Q,

For the circuit in Figure 1, where Q,=1, the condition (28) yields:

L>Q-1/4 (29)

For the proposed technique, where Q,=Q, the condition (28) implies:

I >1 / 2 (30)

Therefore, the power consumption of the control circuits in the proposed circuit of Figure 2 can
be reduced by a factor of O/2. In the equations (12)-(14) we obtained the similar power savings
from the log-domain core.

Finally, the input transistors M1 and M2, and the output transistor M3 contribute the noise of
their own. Using the equation (15) and the transfer functions (1) and (25), we compute the

uncorrelated noise contributions of the input devices M1 and M2. Integrating over all frequencies,

we obtain:

LI E AP AT 61

Factor a accounts for the fact that current sources supply the input currents 7, and ,. Note that

the noise power component (31) is proportional to the bias current Ipc, not to Inc. This
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dependency is analogous to the noise of the current mirror. For large bias currents Ipc the
contribution (31) is negligible. However, as we reduce Ipc in the dynamically biased filters, the
noise contribution (31) decreases slower than that in the equation (23) and might become
dominant. Further reduction in ¢ in this case does not lead to the improvements in filter’s noise
performance expected from the equation (23).

If the conditions (28)-(30) for the current /; are met and the input bias current Iy is large
enough so that the noise term (31) can be neglected, then the equation (23) determines the noise

performance of the filter. For the circuit in Figure 1, where Q,=1, the equation (23) gives:

_ 2'(1+a)°’€p'q.12

52

ltot,out,l - C. Ut DC (3 2)
For the proposed technique, where 0,=0Q, the equation (23) yields:

- 2-(1+a)x,q

ltoiaul,Z = C . Ut £ ' lf)C ' Q3 (33)

The discussion after the equation (6) established that for the conventional circuit in Figure 1,
the maximum non-distorted output signal amplitude was Ip/Q, while for the proposed circuit in
Figure 2 the maximum non-distorted signal amplitude was IpcQ. Therefore, the maximum SNR,

or the dynamic range, of the filter in Figure 1, is:

I 2 C-U, 1
SNR,..., = m;";“/ = : — (34)
llot,out,l 4 ’ (1 + a) : Kp ' q Q
The maximum SNR, or the dynamic range, of the proposed filter in Figure 2, is:
I ) C.U 1
SNR,,., = 72’“/ = ’ — (39
ltot,oul,2 4'(1+a)'Kp q Q

So, the dynamic range of the proposed filter is improved by a factor Q over the conventional
log-domain filter topology. This improvement is in addition to the power savings (12)-(14)
proportional to Q in the log-domain core, and the similar power reduction (28)-(30) in the control

circuitry. To quantify this efficiency, we use the figure of merit (FOM), which is the power
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consumption of the filter normalized to its 3-dB bandwidth, the order and the maximum SNR

[10]. The equations (14) and (34) yield the FOM of the filter in Figure 1:

_ Voo 'IDD,I T/Q

FOM, = 2SN, =4-(1+a)-q-V, (@ +0+1) (36)

We calculate the FOM of the proposed filter in Figure 2 using the equations (13) and (35):

Voo '11)1),2 T/Q
2. SNRM"2

FOM, = =12-(1+a)-q-V,, (37)

We see that the efficiency, expressed as the FOM, is improved by a factor (O°+Q+1)/3 by the
proposed technique. Even for Q=4 this improvement amounts to a factor 7, and grows
quadratically for higher QOs. It is worth mentioning, however, that we have excluded the input bias
Ipc and the output Q, Ipc currents from the power consumption calculation in the equations (36)
and (37), which will diminish the benefit of the proposed technique somewhat if the bias currents
are not dynamically adjusted. In this case we recommend reducing the overall gain of the filter by
either sizing down the transistors M2 and M3 or decoupling the reference voltages V. and
adjusting each one separately as recommended in [11]. In the dynamically biased filters the
quiescent power consumption of the input and output devices is negligible because the minimum
Inc only needs to drive device parasitic capacitances and can therefore be much smaller than 7,
that drives capacitors C.

As we discuss next, the efficiency improvement enabled by the proposed technique for log-
domain filters can also be observed in voltage-mode filters. Selecting the topologies carefully, we

can achieve the similar efficiencies for high Os in the G,-C designs.

5.3. Comparison to Voltage-Mode G,,-C Design

A conventional voltage-mode second-order low-pass filter topology was analyzed in [2] and is
shown in Figure 6 for convenience. It was derived in [2] that this filter implements the transfer

function (1) if G;=(C/r)-Q and G,=(C/z)/Q. If the transconductors with the input voltage swing V.
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are used in Figure 6, their bias currents are [,=G,V; and I,=G,V}, as described in [16]. The
current consumption of the transconductor circuit in [16] and [2] is approximately twice its bias

current; therefore, the current consumption of the filter in Figure 6 is:

Ippy =20 '(Q+l] (38)

T 0
We determine the maximum undistorted output signal by assuming that the distortion of the
transconductor is low as long as the voltage between its positive and negative input terminals
does not exceed V;. The transfer functions from the input voltage V, to the voltages V4 and

Vi between the first and the second transconductors’ input terminals in Figure 6 are:

Vign _ st/Q+s7°

V. 1+st/Q+s’c’

Vg _ sT-Q
V. l+st/Q+s*7

n

(39)

We see that the maximum gain from the input to the first transconductor is approximately

VO’ +1~ 0, and the maximum gain from the input to the second transconductor is about (7.

Therefore, saturating the second transconductor is the bottleneck in the filter with high Q. The
maximum undistorted input voltage is thus equal to ¥;/Q°, which gives the maximum undistorted
output signal amplitude as Vuow;=V:/Q. The total output voltage noise power over all

frequencies for this filter topology was computed in [2] and is repeated here for convenience:

_ N-g-V,
B2, s = 7‘%— (40)

Here N is the effective number of shot-noise sources in the transconductor. Details of how to
compute the effective number of noise sources in transconductance circuits are provided in [16].

The maximum SNR, or dynamic range, of this filter and its FOM are then given by:
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V2 2 .
SNR s = "ii"’;’“”/ - (;VVL L
Dtot,out,S q Q

FOMa _ VDD -IDD,;; T/Q =N‘q'VDD (QZ +1)
2-SNRKm’3

(41)

The equations (38), (40) and (41) for the voltage-mode filter in Figure 6 have very similar
structure to the equations (14), (32), (34) and (36) for the conventional log-domain filter in Figure
1, if we substitute N by 4-(I+a), and V, by U/k,. In fact, the input voltage swing of a simple 5-
transistor differential-pair transconductor is ¥;=U/k,, and typical values of N are 4.8-5.3, which
is very close to 4-(1+a) for typical values of a as was illustrated in [16]. Both topologies are
similarly inefficient for high-Q filter realization, and we would like to design a voltage-mode
circuit that improves the efficiency for high Qs mirroring our proposed technique for the log-
domain filters. We generally start with the state-space representation with its coefficients either
independent or inversely proportional to Q. In voltage-mode G,,-C realizations the state-space
variables are the voltages on the grounded capacitors and the coefficients are proportional to the
transconductances and hence the power consumption. The state-space representations (2) or (7)
satisfy the above requirement, and their G,,-C realizations are the same. Figure 7 shows the half
of the fully differential voltage-mode circuit implementing the state-space equations (2) or (7)
and the transfer function (1) if G=C/r. If the transconductors with the input voltage swing ¥} are

used, the current consumption of this filter is:

1, =255 -(3+l) “2)
3 T Q

The gains from the input V;, to the transconductors are determined by the transfer functions
Vou/Vin(s) and V;/Vy(s), given by the equations (1) and (3), respectively. The maximum gains of
these transfer functions were calculated in the equations (6); they approximately equal Q.
Therefore, the maximum undistorted input voltage is equal to ¥;/Q, which gives the maximum

undistorted output signal amplitude as Viyax out =V
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We shall calculate the output noise of the filter in Figure 7. Similar to the equation (15), each

transconductor produces the noise current with spectral density ?;2 / Af=N-q-1,, on its

output. The calculation of the transfer functions from those noise sources to the output voltage
V., is very similar to that of the equations (19), and the result is identical to the equations (20) to
the scaling factor. The spectral power of the output noise of the filter is thus given by:
— 2
00 T-N-q-V, 2+|st| -(1+1/Q)

> 43)
Af C il+sr/Q+s22'2‘

Using the integrals (22), we compute the total output voltage noise power over all frequencies:

—2 _N'Q'VL'(3'Q+1)

Utol,oul,4 - 4.C (44)
The maximum SNR, or dynamic range, of this filter and its FOM are then given by:
Ve 2 Ccv, 2
SNRmax4 = m_a);out,4/ — L,
, tot ,out 4 N ' q 3 ) Q +1
(45)

2
FOM EVDD.IDDA.T/Q—_-N.q.V l 3+l
Y 2-SNR... ) 0

The equations (42) and (45) for the G,,-C filter in Figure 7 have very similar form to the
equations (13), (35) and (37) for the proposed log-domain filter in Figure 2, if we again substitute
Nby 4(1+a), and C-V; by C-U/k,. The advantage of voltage-mode realizations with wide-linear-
range transconductors [16] is reducing the size of the capacitance C by a factor of V;/(U/k,) for a
given specification of SNR,,, and Q, which can be very important in applications like electronic
cochlea, fully implantable bionic ears, hearing aids, and speech-recognition front-ends [1]-[4].
The advantage of log-domain filters is revealed when we compare the equation (44) for the total
output noise of the G,,-C circuit to the equation (33) for the total output noise of the log-domain
design. The former is constant and independent of the signal level, whereas the latter is
proportional to the square of the input bias current and thus can be made proportional to the

signal power if the bias is dynamically adjusted as in [9]. Therefore, the noise is reduced for the
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faint signals, keeping the SNR constant at its maximum value over very wide range of input

signals thereby increasing the circuit’s dynamic range, and reducing the quiescent power

consumption.

5.4. Experimental Results
A chip with this filter was fabricated on UMC’s 0.18-um CMOS process. Power supply is 1.1-V.

Figures show experimental data taken from the chip.

5.5. Conclusions

The.
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Log-compressor Log-domain core Exp-expander

Figure 1: Conventional second-order low-pass log-domain filter topology.

Log-compressor Log-domain core Exp-expander

Figure 2: Proposed filter (one-half only is shown). The modifications are highlighted.
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Figure 3: The first nonlinear transconductor from the log-domain core of the filter.
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Figure 4: The second nonlinear transconductor from the log-domain core of the filter.
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Figure 5: The equivalent circuit of the log-domain filter.
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Figure 6: Conventional second-order voltage-mode low-pass filter [2].
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Figure 7: Improved filter modified to become differential (one-half only is shown).
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Figure 8: Measured transfer functions for various frequency settings of the filter.
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Figure 9: Transfer functions for various quality factor settings.
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Figure 10: Output signal dependence on frequency is shown for the input signal magnitude

varying over 70 dB range.
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Conventional
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Figure 21: Maximum output signal (*) and noise at the output (o) dependence on the input bias
current for the conventional log-domain design approach of Figure 6. The ratio of the input signal

amplitude to the input DC bias was adjusted to hold the THD approximately constant.
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Figure 12: SNR versus the input DC bias for the conventional log-domain design. The SNR was
computed from Figure 11. Figures 11 and 12 demonstrate the maximum SNR of 35.1 dB and the

DR of 56 dB. Quality factor Q=4.
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Figure 13: Maximum output signal (*) and noise at the output (o) as a function of the input signal

level for the proposed method. The ratio of the input signal amplitude to the input bias was 0.8,

which resulted in approximately steady THD equal to that observed in the measurements of

Figures 11 and 12.
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Figure 14: SNR dependence on the input signal level for the proposed log-domain design
technique. The SNR was calculated from Figure 13. Figures 13 and 14 demonstrate the maximum

SNR of 41.3 dB and the DR of 76 dB. Quality factor Q=4.
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Figure 15: As the filter is programmed for higher Q, the maximum achievable SNR degrades. In
the conventional filter of Figure 6 this degradation (shown in circles) is proportional to Q* in
terms of signal power, whereas in the proposed filter the degradation (shown in squares) is

proportional to only Q.
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Figure 16: In the conventional log-domain design the power consumption (shown in circles)
normalized to corner frequency and the number of poles (Figure of Merit) degrades as the filter is
programmed for higher Q. In the proposed filter the Figure of Merit (FOM) stays approximately

constant (shown in squares).
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Figure 17: Harmonic distortion of the output signal in the proposed filter as a function of the ratio

of the input signal amplitude to the input bias measured at the corner frequency of the filter.
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6. Electronic Cochlea

Abstract - Silicon cochleas are inspired by the biological cochlea and perform efficient spectrum
analysis: They realize a bank of constant-Q N™-order filters with O(N) efficiency rather than O(N?)
efficiency due to their use of an exponentially tapered filter cascade. They are useful in speech-
recognition front ends, cochlear implants, and hearing aids, especially as architectures for
improving spectral analysis in noisy environments and for performing low-power spectrum
analysis. In this Chapter we describe a current-mode 33-stage 0.18-pm silicon cochlea that achieves
79-dB of dynamic range with 41-uW power consumption on a 1-V power supply over a usable
3.5kHz-14kHz frequency range. These numbers represent an 18dB improvement in dynamic range

and a 12.5x reduction in power consumption over prior state-of-the-art silicon cochleas.
6.1. Ultra-low-power wide-dynamic-range front-end

In this section we describe the ultra-low-power wide-dynamic-range front-end of the cochlea chip,
which is able to accept either current inputs from MEMS or commercial electret microphones, or
auxiliary voltage inputs.

The most straightforward way to input a signal from an off-chip current source onto a chip is

shown in Figure 1 (A).
(A) M2 Ms

P Ve

Pin lout lout
Ll :
hn :::"Z:::: P
Cc : Cp
|in 1 Vout |out
1 gm2 >
gin + gds2 + s{Cc+Cp)

Figure 1: (A) The simplest way to input an off-chip current signal onto a chip; the current I, has to be always
positive, which can be achieved through class-A technique by adding to the AC signal the DC current that can be
adjusted as the signal level varies. (B) Block diagram showing the first-order low-pass transfer function of this circuit
with bandwidth g,,»/(C.+C,) limited by the sum of the off-chip and on-chip parasitic capacitances C and C,,. Here g, is

the current source’s I, conductance, g,,; and g are the transconductance and the output conductance of M2.
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This circuit is a simple current mirror; it is the first-order low-pass passive RC-filter with the
bandwidth determined by the ratio of the incremental conductance g, of the diode-connected
transistor M2 to the sum of the off-chip C, and on-chip C, parasitic capacitances. We can also treat
this circuit as a negative feedback system. The block diagram of such feedback system is shown in
Figure 1 (B). The loop gain has one left-half-plane pole on the real axis, so the system is always
stable. To compute the unity-gain cross-over frequency that is equal to the bandwidth for the first-
order systems, we ignore the conductance g;, of the current source and the output conductance gy,

of M2 to obtain:

o =g,/(C.+C,) (1)
Here g, is the transconductance of M2. In the subthreshold region of CMOS operation:
8w =K, Ly e U, @

Here x, is the subthreshold exponential parameter of the PMOS transistors, U, is the thermal voltage
kT/q, and I, pc is the DC component of the input signal 7,,. The drain current Z,,, has to be always
unidirectional; therefore, 7, has to be unidirectional, which can be achieved through the class-A
technique by adding the DC current that is equal or exceeds the maximum amplitude of the signal
Lic. However, this method is power-hungry and adds a lot of noise to the output ,,,. We would like
to adjust ;, pc as the signal level varies to follow the signal’s I, envelope. However, for soft signals
the transconductance g,,, becomes small, and (1) shows that the front-end becomes slow. The fast-
alternating input current [, would not propagate to the output, being used up to change the voltage
on the parasitic capacitance C.+C,. We add an amplifier into the feedback path to reduce the
voltage swing on the pin and mitigate the effect of the off-chip parasitic capacitance C.. Figure 2
(A) shows the front-end circuit with added common-gate amplifier M1. Figure 2 (B) shows the
block diagram of this feedback system. The leftmost block in this diagram contains the additional
term g, the transconductance of M1, in the denominator. This is because the node V,, sees the
input conductance of the common-gate amplifier M1 that is approximately equal to the
transconductance of M1, g,,;. However, near the unity-gain cross-over frequency the s-C, term still

dominates the sum of the conductances so that we can ignore the latter.
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Figure 2: (A) Common-gate amplifier M1 is added into the feedback path to reduce the voltage swing Vg on the

pin and the off-chip capacitance C.. (B) Block diagram indicating the speed-up of the circuit by a factor of
ARgni/ (8ot 8as))~i Vi/(2-U). Here A4, is the voltage gain of the common-gate amplifier, g,; and gy, are the
transconductance and output conductance of M1, g, is the conductance of the current mirror I, approximately equal to gz,
%, is the subthreshold exponential parameter of the PMOS transistors, V is the Early voltage, and U, is the thermal voltage
kT/q. However, the on-chip parasitic capacitance C,, can cause stability problems; then, C, needs to be increased, but the
speed of the circuit is determined by the on-chip parasitic C,, as opposed to much larger off-chip C..

The voltage gain of the common-gate amplifier M1 is represented by the second block in the
diagram, where g is the conductance of the current mirror J, that is approximately equal to g ;, the
output conductance of M1. In the first approximation, if we ignore the on-chip parasitic capacitance
term s-C,, the unity-gain cross-over frequency is:

0, =48 [Co ™ 4 (3)
Where 4, is the DC gain of the common-gate amplifier M1:
4=—Sm Ve )

&+8m 2°U,

Here Vr is the Early voltage. The equation (3) demonstrates the increase in bandwidth by the
factor 4; — at negligible cost in power consumption and noise, if the current J; is chosen near the
amplitude of the softest expected signal I, i.e., near the minimum value of I, pc. However, taking
into account the on-chip parasitic capacitance C,, we note that the system response is second-order.
To avoid the overshoot and ringing, we need to ensure that the phase margin of our system is
acceptable. If we require the phase margin to be greater than 45°, for example, then C, should be

small enough to guarantee:
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+ A -
= gO gds'l > 602 — 1 gm2 (5)
C C.

p

W,

The above equation can be rewritten to explicitly illustrate the so-called A’-stability problem that

circuits with two high-gain nodes have:

Sl B U L ©)
CC A12 gm2 A12 I

in,DC
In the 0.18-um process that was used to fabricate the electronic cochlea the equation (6) held even
for the maximum value of 7, pc. But for older processes, where C, is larger relative to the off-chip
parasitic capacitance C, and the equation (6) does not hold, the additional explicit compensating
capacitor would need to be used so that the response of the front-end is acceptable. In this case the
bandwidth is determined by w; and the speed-up over the simple current mirror is smaller than 4,.
Somewhat better results could be achieved if the resistor is added in series to the external
compensating capacitor to form an off-chip lead compensation network.

Implementation of the adjustable current /,, pc that follows the envelope of the signal I, requires
an envelope detector. Chapter 2 describes the envelope detector comprising the rectifier shown in

Figure 3 (A) and the peak detector with asymmetric attack and release time constants shown in

Figure 3 (B).

Vout
: o v
Vin out
|in @_ — ve C Peak Detector| Ml
T 1
=k

___1 ‘ r eiT Ienv* 'rec
]
L ()

|||

Figure 3: (A) Rectifier from Chapter 2; I,,,=-I,, within the dynamic range of the operation, /. is either half-wave
rectified (shown here) or full-wave rectified signal, and Z,,, is the envelope of the signal. (B) Peak detector circuit from

Chapter 2 with the asymmetric attack and release time constants.
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Figure 4 shows the proposed ultra-low-power wide-dynamic-range front-end circuit. The minor
negative feedback loop comprising the rectifier, the transconductor M7 and the sped-up current
mirror M1-M3 eliminates the low-frequency components of the current 1, flowing into the ¥, and
¥ nodes by injecting the current into the ¥, node such that the low-frequency components of the
drain current of M3 become equal to those of MS5. Therefore, the minor loop ensures the rectifier’s
normal operation. The major negative feedback loop additionally includes the peak detector and the
current mirrors M4-M6. This loop provides the bias current I, that adjusts as the I, amplitude
varies ensuring the normal operation of the entire system. The analysis of the major loop is
complicated, but it is obvious that fast attack time of the peak detector is crucial for its stability.

The major loop adapts the bias currents to the signal level, reducing the quiescent power
consumption and noise. This adaptive biasing increases the SNR for low signal levels extending the
dynamic range of the system by the dynamic range of the rectifier. The proposed circuit can accept
current inputs from MEMS or commercial electret microphones, or auxiliary voltage input V, as
shown in Figure 4, or even all of the above simultaneously. This front-end has very low distortion in
converting voltage signals into the current as this conversion happens in the linear resistor R
connected to the virtual ground node Vg, The proposed front-end is useful for any current-mode

circuit, but adaptive bias topologies benefit the most.

|||

Figure 4: Ultra-low-power wide-dynamic-range front-end of the cochlea chip, which is able to accept either current

inputs from MEMS or commercial electret microphones, or auxiliary voltage input V;, as shown. The output current is
mirrored out from M3, the rectified and envelop detected versions are also available. When the input signal is soft, the

currents are low contributing little to noise and power consumption. When the signal is large, the envelop detector provides

the necessary current in the feedback loop to avoid distortion.
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6.2. Stage’s All-Pass Filter Implementation

6.2.1. Practical All-Pass Transfer Function

In Chapter 3 we designed the transfer function for the stage of the cochlear cascade to be (see (31)
in3.4.1):

s*+2d-s+1 (7
s'+(2d+a-p)-s+1

1=y

Here s=j-w, w is the frequency normalized to the spatial-dependent corner frequency, d is the signal
level dependant damping factor that realizes the distributed gain control in the cochlear cascade, o
and y are the constants.

But the exact implementation of this transfer function is impractical. To arrive at the transfer
function that permits efficient implementation and maintains the properties needed to realize the
cochlear cascade that we discussed in Chapter 3, we consider transfer functions in the following

form:

1
H(s)=k +k - ®
(s) =k +h, (1+a)s’+(2d +a- u)-s+1

We choose the coefficients £, and k; such that the group delays of the transfer functions in (7) and
(8) are the same, and also k;,+4;=1 to maintain unity low-frequency gain. These conditions give:

__@H
' 2d+a-pu 9)
2

2d+a-u

in

The coefficients in (9) are signal level dependant, but the transfer function described by (8) with (9)
can be efficiently implemented in analog log-domain circuits. Figure 8 (A) shows the magnitude of
such a transfer function with a=0.7, 4=0.2, and 2d varying from 0.2 to 0.8. Cascading the stages
with the above parameter values and exponentially tapered corner frequencies at 12 stages per

octave realizes the cochlea with 44-dB of collective gain.

6.2.2. Circuit Realization of the All-Pass Filter

Figure 5 shows the log-domain implementation of the second-order low-pass filter adapted from
Chapter 5 (see Figure 2 in Chapter 5). The compressed input signal is supplied to V;, terminal,
scaled and compressed input signal’s envelope is supplied to V, terminal, and the voltage V is

expanded into an output current.
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Figure S: The low-pass filter (LPF) log-domain core from Chapter 5. The compressed input signal is supplied to V,,
terminal, scaled and compressed input signal’s envelope is supplied to V, terminal, and the voltage V., is expanded into

an output current. The corner frequency of this filter is controlled by 7, and the quality factor Q is programmed by //Q.

Va It
LPF
log-domain
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l2d

|”

1 |am
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Figure 6: Implementation of the coefficients ; and ;, from (9) to realize the complex zero pair and the gain control.

Only one half of pseudo-differential system is shown.

The corner frequency of this filter is controlled by 7, and the quality factor Q is programmed by
1/Q. This log-domain core realizes the second term of the transfer function in (8). Figure 6 shows
the implementation of the stage’s filter. The circuit in Figure 6 realizes the following transfer

function:
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am

I
o) = L T ’
Iz 2d am 2d am ]+S.II—M.(12d+1am)-C.U'+S2~ CU,

I'Z_SA'I K sA

scale P

K, Ir,

Here C is the capacitor value in the log-domain low-pass core, the current I, is the scaled version of
the envelope of the output signal from the previous stage implementing the feed-forward gain
control, the currents /, ;4 and /; ;4 decrease exponentially along the cochlear cascade to implement
the exponential tapering of the corner frequencies, and the rest of the currents are constants

determined by the values of parameters such as a and u.

6.3. Offset Current Cancellation and Efficient Rectification Circuit

To prevent the accumulation of the offset currents in the cascade, we need to have a low-frequency
feedback loop that injects offset canceling current, similar to what we’ve done in the front-end

circuit.

________________________________________
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Figure 7: Offset current cancellation circuit. The feedback loop comprising the rectifier (in a dashed box)
and the transconductor M3-M8 eliminates the low-frequency components of the current I,c by injecting the
offset canceling current into the difference of the pseudo-differential filter output currents I and Iyp. This

circuit also provides the half-wave rectified current I, and the output’s envelope L.
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Figure 8: (A) Transfer function of the cochlear stage, which shows that the difference in output signal
magnitudes of any consecutive stages does not exceed 18dB, implying that the envelope detection with 18dB
dynamic range is sufficient to realize electronic cochlea’s with any dynamic range. (B) Feedforward
implementation of the efficient rectification in the cochlear cascade of all-pass filters, where the variable gain

G is inversely proportional to the envelope of the previous stage’s output signal.

Rectifier
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Figure 9: The efficient rectification from Figure 8 is coupled with adjustable offset cancellation. The
maximum offset that can be cancelled is no longer limited by the bias current /5 of the transconductor M3-M8,
but adjusts as 1/G proportionally to the signal level. This adjustable offset cancellation circuit allows reducing

I and cutting its noise contribution, power consumption and capacitance C.
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Figure 10: Transistor-level implementation of the efficient rectification and adjustable offset cancellation
techniques. Transistors M12-M23 realize the variable gain amplifiers and attenuators G and //G controlled by
the envelope of the previous stage’s output L,..,zvy- The offset-cancelled output signals that go to the next
stage are obtained by subtracting the copies of the currents from transistors M2 and M10. The rectified signal

L. goes to the peak detector circuit to obtain the output signal’s envelope.
6.4. Experimental Results

6.4.1. 33-Stage Cochlea Chip

The experimental results from the chip:
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Figure 11: Transfer functions of the first stage are measured as the ratio of the envelope detector outputs of
the first stage and the front-end. The corner frequency programming over the range of 16-kHz to 21-kHz is

shown.
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Figure 12: Magnitudes of frequency responses taken at outputs 9 (top), 17 and 23 (bottom) with varying
intensity of the input signal are shown. This figure demonstrates the spatial distribution of the peak
frequencies. The peak gain at low intensities is approximately 24-dB, and Q_jo4s is approximately 3.6. The

usable frequency range is 3.5-14 kHz (best frequency range of 3.5-9 kHz is shown here).
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Figure 13: Top figure shows the noise (0) and the maximum signal (*) and the bottom figure shows SNR
calculated from the top figure as a function of the input signal level. Output 17 is shown. As the input signal
level increases, two conflicting effects take place: the increase in noise due to increasing bias current; and the
decrease in the cochlear gain due to the gain control (compression) and the associated decrease in noise. This

figure demonstrates the dynamic range of 79-dB and the maximum SNR of 44-dB.
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Figure 14: Compression curve taken at output 17. This figure shows the dependence of the output signal
measured at the best frequency for the soft input signals versus the input signal level. The electronic cochlea

compresses almost 4 decades of input signal magnitude span into approximately 2 decades of output signal

variation, which is similar to the biological cochlea.
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Figure 15: Step response taken from the half-wave rectified output 17. This figure shows that the step
response peaks after only 4 periods of the local best frequency demonstrating low phase run-up and group

delay accumulation in the cochlear cascade of all-pass filters.

6.4.2. The discrete version of the cochlear cascade with AGC

To correct the mistake in on-chip programming DACs, we have built a discrete version of the

cochlear cascade with 30 stages.
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Figure 16: The discrete version of the cochlear cascade with AGC. Magnitudes of frequency responses
taken at outputs 6, 12, 18, 24 and 29 with varying intensity of the input signal are shown. This figure
demonstrates the spatial distribution of the peak frequencies. The peak gain at low intensities is approximately

50-dB, and Q.,04p is approximately 4.2. The usable frequency range is 4-16 kHz.
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Figure 17: The discrete version of the cochlear cascade with AGC. Top figure shows the noise (0) and the
maximum signal (*) and the bottom figure shows SNR calculated from the top figure as a function of the
input signal level. Output 24 is shown. Similarly to the integrated version, two conflicting effects take place:
the increase in noise due to increasing bias currents; and the decrease in the cochlear gain due to the gain
control (compression) and the associated decrease in noise. This figure demonstrates that the dynamic range
of the integrated version can be improved to 92-dB by redesigning the programming DACs on the chip to
increase the stage gain to 6-dB and the cochlear cascade gain from 24-dB to 50-dB.
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Figure 18: Harmonic distortion versus input signal level for output 24 of the discrete version of the cochlear

cascade with AGC.
6.5. Comparison to State-Of-The-Art

Table I shows the comparison of our two designs to the best state-of-the-art:

LPF cascade Cochlear chip Discrete version
[Sarpeshkar 1997]
# of sections per octave 12 12 12
Frequency range 100Hz-18kHz 3.5kHz-14kHz 4kHz-16kHz
(# of octaves) (7.4 octaves) (2 octaves) (2 octaves)
Peak gain 35dB 24 dB 50dB
Phase run-up ~7 cycles ~2 cycles ~2.5 cycles
Q.10a8 1.5 3.6 42
High-freq. rolloff ~74 dB/octave ~100 dB/octave ~150 dB/octave
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Input DR 61 dB 79 dB 92 dB
SNR 23 dB 40 dB 40 dB
(prevailing number) (44 dB max) (44 dB max)
Quiescent power cons. 500 pW 41 pW 102 pW
vdd ¥ 1V 1.1V

6.6. Summary

We have presented two electronic cochlea designs

6.7. References

[1] M.W. Baker “Analog Front End,” JSSC
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7. Conclusions

« Simple rational approximation to partition impedances shown to capture the cochlea’s
essential features. It achieves maximum gain in a minimum number of stages.

« The novel cascade of all-pass stages reduces phase lag and group delay, sharpens high-
frequency roll-off slopes.

A novel log-domain technique demonstrates a reduction in power consumption and

increase in SNR by a factor of Q, and an increase in dynamic range by a factor of Q4
* A 33-stage 0.18um silicon cochlea achieves 79dB of dynamic range with 41pW power
consumption on a 1V power supply over a usable frequency range of 3.5kHz-14kHz
— An 18dB improvement in dynamic range and a 12.5x reduction in power
consumption over state-of-the-art silicon cochleas

8. Future Work

Redesign the programming DACs to match the cochlear gain and achieve 92dB dynamic range of
the discrete version with no increase in power consumption.

Incorporate the cochlea chip into a speech processor for cochlear implants:

Assembly of 33-channel Microphone
Audio Pr!qcessors / Printed Circuit Micro-Board
Auxiliary
Audio Input ——

Chip Programming

From Computer To
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/ Implant

Electrodes
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AIS Processor A!S Neural
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Speech Recognition
Output To Computer
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