
Goal-oriented Hardware Design

by

Man Ping Grace Chau

B.Eng.(Hons), The Chinese University of Hong Kong (2006)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008

@ Massachusetts Institute of Technology 2008. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

17 July, 2008
/

Certified by.......
steve Ward

Professor
Thesis Supervisor

Accepted by
/ Terry P. Orlando

Chair, Department Committee on Graduate Students

ARCHIVES

MASSACHU SETTS INSTITUTE
OF TECH.•OLOG %I

OCT 2 22008

UBý,RARI ES

Goal-oriented Hardware Design

by

Man Ping Grace Chau

Submitted to the Department of Electrical Engineering and Computer Science
on 17 July, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

This thesis presents Fide, a hardware design system that uses Goal-oriented program-
ming. Goal-oriented programming is a programming framework to specify open-ended
decision logic. This approach relies on two fundamental concepts-Goals and Tech-
niques. Goals encode decision points and Techniques are scripts that describe how to
satisfy Goals. In Fide, Goals represent the functional requirements (e.g., addition of
two 32-bit binary integers) of the target circuit. Techniques represent hardware im-
plementation alternatives that fulfill the functions. Techniques may declare their own
subgoals, allowing a hierarchical decomposition of the functions. A Planner selects
among Techniques based on the Goals declared to generate an implementation of the
target circuit automatically. Users' preferences can be added to generate circuits for
different scenarios: for different hardware environments, under different circuit con-
straints, or different implementation criteria etc. A Beta processor is implemented
using Fide. The quality of the implementation is comparable to those optimized
manually.

Thesis Supervisor: Steve Ward
Title: Professor

Acknowledgments

I would like to thank my advisor, Steve Ward, for being such a wonderful mentor. He

is always insightful, supportive and patient with me. It is my blessing to be able to

work with him and I am very, very grateful for that.

Thanks also goes to my groupmate Justin Mazzola Paluska, the Planner creater

who has taught me so much about research and writing. He is kind, intelligent and

I respect him a lot. Thanks to Hubert Pham, for his random yet vital help. He was

also my first project partner and helped me adapt when I arrived. Thanks to Chris

Stawarz for his Python expertise.

A lot of thanks to the CSAIL community. Thanks to Alvin Cheung, an amazing

friend who is simply a Wikipedia alive. Thanks to Alfred Ng, an outstanding TA for

6.823, for teaching me so much about hardware design. Thanks to my officemates:

Jim Sukha, Asif Khan, Jason Ansel and Bill Thies, for the random entertainment

and the sharing of their research expertise. Thanks to Eunsuk Kang, for teaching me

Alloy. Thanks to Winnie Cheng, Sung Kim, Chen-Hsiang Yu, Angelina Lee for their

academic advices and friendships.

Many thanks to the brothers and sisters in the MIT Hong Kong Student Bible

Study Society and the Boston Chinese Evangelical Church. The Hong Kong commu-

nity in MIT has also offered me great support. Their friendships are vital to maintain

my sanity.

Thanks to my friends and family in Hong Kong, supporting me 12-hour-timezone

away. Thanks to Cammy Poon for being my best friend over a decade and Kara Cheng

for her thoughtful gifts. I am extremely grateful to my parents for their endless love

and encouragement. They have done so much for me and there is simply nothing I

can do in return to repay them.

Most importantly, I need to thank God. He teaches me much on every aspect of

life and leads me through all the difficult times. His love never fails.

Contents

1 Introduction 13

1.1 Fide: Goal-oriented Hardware Design 14

1.2 Thesis Outline 15

2 Fide Overview 17

2.0.1 An addition circuit-a motivating example 17

2.1 Goal-oriented programming 21

2.1.1 Goals 21

2.1.2 Techniques 21

2.1.3 Plan Tree 22

2.2 Modifying the circuit 23

2.3 Generating the implementation 26

3 Design and System Architecture 29

3.1 Design principle 29

3.2 Design challanges 30

3.3 Overall system architecture 31

3.4 Construction and Evaluation of the Plan Tree 33

3.4.1 The Beta architecture 33

3.4.2 Construction and evaluation 35

3.4.3 Technique programming 36

3.4.4 Goal node sharing 40

3.4.5 Reusing components 41

7

3.4.6 Searching and Technique selection

4 Application and Evaluation

4.1 Evaluation

4.1.1 Quality of the implementations generated

4.1.2 The Planner performance

5 Implementation

5.1 The Planner API

5.1.1 The Plan Tree API . .

5.1.2 The GUI API

5.1.3 The User API

5.2 The Planner GUI architecture

5.3 The JSim Component library

5.3.1 Composite

5.3.2 Connector

6 Related Work

6.1 High-level hardware description languages

6.2 Circuit optimization and Al Planning

6.3 Hardware design methodologies

7 Conclusion

7.1 Future work

7.1.1 More efficient search

7.1.2 Better estimate of the circuit properties

7.2 Conclusion

A The Planner GUI

B Goal Specifications and Technique Scripts

C JSim Implementations Generated by Fide

42

45

45

45

45

49

.. . . . 49

.. . . . 49

.. . . . 50

... . . . 51

.. 52

.. . . . 54

... . . . 56

.. . . . 57

59

59

60

60

63

63

63

63

64

65

77

125

List of Figures

2-1 The Plan Tree that represents the decision logic for implementing an

Addition circuit. 19

2-2 After changing the weighting from "choose the cheapest one" to "choose

the fastest one", the carry select adder is chosen. 19

2-3 The Kogge-Stone adder is added and chosen. 20

2-4 The addition Goal specification. 21

2-5 The ripple carry adder Technique. 22

2-6 The Planner GUI. The left panel shows the Plan Tree, with the chosen

Techniques in blue and failing Techniques in red. The Goal parameters

and Properties of the Techniques are also shown. The right panel shows

the implementation generated. 24

2-7 A sightly more complicated Goal specification. 25

2-8 During commit, the components are instantiated and propagated up

the Plan Tree. 27

2-9 The generated Addition circuit. 28

3-1 Fide architecture. 32

3-2 The Beta architecture. Each circle represents a subgoal. Circle of the

same color represents subgoal of the same kind. 34

3-3 The flow chart showing the Plan Tree construction and evaluation pro-

cess. 37

3-4 The carry-select adder Technique. 39

3-5 A Technique fragment testing whether the implementation exceeds the

maxinum cost

3-6 A Technique fragment testing whether there are enough resources.

... 4 1

3-8 Showing how node cloning works

4-1 The specification of the Goal processor

4-2 The graph showing the running time for evaluating an

of different widths.

5-1

5-2

5-3

5-4

ALU Plan Tree

The Planner GUI architecture.

Instantiate a Pebble in Technique.....

Instantiate a Composite in Technique.

Instantiate a Circuit in Technique. .

5-5 Implementing the ripple carry adder using the JSim component library.

A-1 Asserting the Addition Goal

A-2 The information panel showing the nodes properties

A-3 Viewing two Plan Trees side-by-side.

A-4 Choosing the hardware package

A-5 Changing the satisfaction formula

A-6 Searching the tree, the search results are colored green.........

A-7 Displaying the chosen nodes only to ease browsing the chosen Plan.

A-8 The statistics panel listing all the Goals with the number of occurance.

A-9 The VirtualGoalNodes in grey, the original Goal node highlighted and

the parent Techniques of the sharing nodes in orange..........

A-10 Showing the Technique script.

.. 53

. 54

. 55

. 56

3-7 The left shifter Technique.

List of Tables

4.1 The quality of the implementations generated

4.2 Time needed to evaluate different circuits 47

5.1 Constructor API for the JSim Component Library 54

Chapter 1

Introduction

The hardware design process involves decisions of choosing an implementation for

each required function in the circuit. The decision process is complex: (1) the imple-

mentation has to satisfy multi-dimensional constrains e.g. cost, performance, heat,

energy, and (2) implementation strategies depend largely on the hardware environ-

ment as well as application-specific knowledge.

For example, handheld devices demand energy-efficient hardware, but can toler-

ate a slower implementation. In constrast, machines specially designed for encryption

must run efficiently even at the cost of a more expensive implementation. The de-

cision criteria for an implementation differs in different scenarios. In the case of

implementing addition in hardware, we can choose a ripple carry adder if the cost is

the most important constraint. Otherwise, a Kogge-Stone adder [1] can be used if

performance is critical.

The properties of an implementation change when it is ported to a different hard-

ware environment. This is because the building blocks (e.g. the logic gates) have

different properties (e.g. area), and/or the architecture (e.g. the interconnection

between the components) differs. The same function might require a different imple-

mentation in order to match the users' design constraints.

Designing hardware for different applications or hardware environments is cur-

rently done manually. It is desirable to be able to evaluate and compare the existing

implementation recipes according to the design specification, and choose the appro-

priate ones to generate an implementation automatically. A framework for managing

the implementation recipes is desirable.

1.1 Fide: Goal-oriented Hardware Design

This thesis presents Fide, a hardware design system that uses Goal-oriented program-

ming [2, 3, 4]. Goal-oriented programming is a programming framework to specify

open-ended decision logic. This approach relies on two fundamental concepts-Goals

and Techniques. Goals encode decision points and Techniques are alternative ways

to satisfy Goals.

In Fide, the circuit implementation decision logic is encoded using Goal-oriented

programming. Goals represent the functional requirements (e.g., addition of two

32-bit binary integers) of the target circuit. Techniques represent hardware imple-

mentation alternatives that satisfy the Goals. Techniques may declare their own

subgoals, allowing a hierarchical decomposition of the functions. Based on the Goals

asserted and decision criteria of the circuit specified, the Planner can generate an

implementation automatically, eliminating tedious trial-and-error decision processes.

For example, by changing the decision criteria from "choose the cheapest imple-

mentation" to "choose the most efficient implementation", Fide explores the imple-

mentation alternatives and changes the circuit design to fit in the constraints. On

the other hand, if the underlying hardware environment changes from one type of

FPGA to another, the implementation recipes are automatically re-evaluated. Based

on the performance of the recipes in the new environment, the Planner selects a new

implementation for the design which is optimal for the new hardware environment.

Fide provides a powerful way to reason about design. Goals represent the im-

plementation decisions at different abstraction levels that the Planner has to make

to progressively build the system. Techniques can represent any arbitrary type of

building blocks as they are simply wrappers of the implementation recipes for eval-

uation. Therefore, reasoning about a design is no longer limited in terms of the

abstraction/layer/language of the building blocks. Instead, a system is reasoned as

a whole in terms of Goals, which is an abstraction layer independent of the tech-

nologies involved in the implementation. Fide enhances hardware/software co-design

because both the hardware and software components are represented by Techniques

and therefore reasoned about together.

Finally, Fide is useful in training hardware designers. The designers use the GUI

provided by Fide to interactively examine and manipulate the decisions made by

the Planner. They gain insight on how each implementation decision affects the

performance of the circuit in real time, and modify the choices to further optimize

the design.

1.2 Thesis Outline

The next chapter gives a simple scenario of implementing an addition circuit to show

how the system works. Chapter 3 describes the design and architecture of the system

through implementing the Beta processor. Chapter 4 evaluates the Beta processor

generated by Fide. Chapter 5 details the implementation. Chapter 6 presents the

related work. Finally, chapter 7 outlines future work and concludes.

Chapter 2

Fide Overview

Hardware design in Fide consists of three steps: specification, evaluation and gener-

ation of the implementation. In this chapter, a circuit that adds two 32-bit binary

integers is implemented to demostrate the ideas.

2.0.1 An addition circuit-a motivating example

A Goal is a parameterized decision point that describes what function is needed

without specifying how to implement that function [4]. In this example, a circuit

that adds two 32-bit binary integers is represented by the Goal Addition (width=32,

hardware_database=Handler, costvsdelay=l). Addition names the Goal, which

represents the function. width=32 is a Goal parameter that restricts the semantics

of the Goal. The handler to the hardware component database for querying the

hardware information is passed as Goal parameter hardware_database. Parameter

cost_vs_delay is passed to specify how the user weights the properties of the im-

plementation recipes while choosing which one to use. In this example, the user set

cost_vs_delay to 1, which means the user wants the cheapest implementation.

Goals do not specify how to implement the functions but Techniques do. Tech-

niques that satisfy the Addition Goal are ripple carry adder, carry-select adder and

a Xilinx-specific verilog addition implementation that only works when targeting an

FPGA. The Planner resolves the Addition Goal by searching the above Techniques.

In order to evaluate the properties of the Techniques and choose the best one

to satisfy the Addition Goal, the dependencies of the Techniques must be resolved.

The dependencies are specified as subgoals. For example, the 32-bit ripple carry

adder has 32 FullAdder subgoals. A Technique fails if the dependencies cannot be

satisfied e.g. there are not enough full adders. At the same time, the Techniques

access the hardware database through the Goal parameter hardware_database to

query whether the current environment supports the corresponding implementation.

A Technique fails if the hardware environment does not match the implementation.

After resolving all the dependencies, the Plan Tree is built. Evaluation starts at

the leaf Techniques, where the Techniques check the properties of the basic building

blocks by querying the hardware database. At each Goal point, the Planner calcu-

lates the satisfaction value for each Technique according to the satisfaction formula

specified in the Goal. The Technique with the highest satisfaction is chosen to satisfy

the Goal. The properties e.g. cost, delay of the subgoals are passed up the Plan Tree

for the parent Techniques to compute their own properties. The evaluation is done

when the top Goal is reached, and an implementation can be generated.

Figure 2-1 shows the Plan Tree in this example. The Verilog Technique fails since

the target environment is not an FPGA as indicated in the hardware environment.

Once a Technique fails, the Planner stops exploring the subgoals for the Technique.

Notice the carry select adder recursively depends on subgoal of its own kind. The

recursion here means the implementation of the function (e.g. addition of two 32-bit

binary integers) depends on the same function but with different parameters (addition

of two 16-bit binary integers being performed twice in parallel). The ripple carry adder

is chosen because it is the cheapest implementation.

It is simple to create another implementation for a different decision criteria. For

example, instead of generating the cheapest implementation, the user now wants the

fastest implmenetation. This is done by changing the Goal parameter costvsdelay

from 1 to 0. It means the weighting of the cost in the satisfaction formula has changed

from 100% to 0. Figure 2-2 shows the resulting Plan Tree.

Fide benefits from the open-ended nature of Goal-oriented programming. Suppose

Sub-bee

0.CE GoW Eway

Figure 2-1: The Plan Tree that represents the decision logic for implementing an
Addition circuit.

U Goal

Te nique. unchoew:

Tdth*qoa. dim..

Sub-tme

Figure 2-2: After changing the weighting from "choose the cheapest one" to "choose
the fastest one", the carry select adder is chosen.

the user learns a new way to implement the addition circuit and wants to include that

into the planning process. The user wraps the new implementation-the Kogge-Stone

adder-as a Technique by specifying how to evaluate and instantiate the implementa-

tion. After the new Technique is added, the Planner adopts the new implementation

as it is faster than the one chosen-the carry select adder. The resulting Plan Tree

is shown in figure 2-3.

Goal-oriented programming enables system evolution. The functions required in

the system represented by Goals are the guidelines to select the necessary building

blocks. The Planner deploys better implementation alternatives for the asserted Goals

as they appear to improve the system over time, without any manual redevelopment.

Adde~wd~th~32J

c arry Slewdadderr

Adder~wldth=16)

Dn ln

C\1

ASIP ASIP ASIP ASIP
typeX type Y typeX typeY

Figure 2-3: The Kogge-Stone adder is added and chosen.

Kogges torae
add! __

2.1 Goal-oriented programming

In Fide, the hardware implementation decision logic is represented by the Plan Tree

made up of Goals and Techniques.

2.1.1 Goals

Figure 2-4 shows the Addition Goal specification. Besides the Goal name and the

Goal parameters, the Goal specification includes the Goal properties and the satis-

faction formula. The Techniques that satisfy this Addition Goal must report Goal

properties, which describe the qualities of the implementations, e.g. cost and delay.

The satisfaction formula declares what properties of the Goal should be included

for calculating the satisfaction, and the weighting for each properties. The user can

change how the Planner calculates the satisfaction by changing those weighting pa-

rameters. The Goal parameters are divided into two types: functional parameters

and non-functional parameters. The functional parameters restrict the semantics of

the Goal e.g. width is a functional parameter as it further specifies the function of the

Addition circuit. On the other hand, costvsdelay is a non-functional parameter

as it is simply a weighting factor in the satisfaction formula.

name: Add
properties:delay cost
functional attributes:width=O #default value
non-functional attributes: cost_vsdelay=O hardware_database=None #default value
evaluation:
satisfaction=1/(cost * cost_vs_delay + delay * (1 - cost vs_delay))

Figure 2-4: The addition Goal specification.

2.1.2 Techniques

Figure 2-5 shows a Technique script that implements a ripple carry adder. The first

line declares the Goal that the Technique satisfies. The via statement names the

Technique. The rest of the Technique is divided into phases. The eval phases are

to Add(width, hardware_database, costvs_delay):
via ripplecarry:

first:
solution.delay = 0
solution.cost = 0

subgoals:
fas = subgoalarray(goal=FullAdder, number=goal.width,

hardware_database=goal.hardware_database,
cost_vs delay=goal.cost_vs_delay)

eval:
for fa in subgoals.fas:

solution.delay += fa.s_delay
solution.cost += fa.cost

commit:
sub_comp = { "fulladder' : subgoals.fas [0]. component}
adder = adderRCA(' 'rca'', component=subcomp,

parameters={' 'width'' :goal.width})
adder. initialize()
solution. component = adder. instantiate()

Figure 2-5: The ripple carry adder Technique.

imperative code that computes the properties of the recipe i.e. speed and area in

this example. The subgoals phases declare the dependencies of the implementation.

Finally, the commit phase instantiates and connects the chosen implementation to

the rest of the system.

2.1.3 Plan Tree

The Plan Tree is a data structure that represents the decision logic. The Planner

builds the Plan Tree by finding Techniques that might satisfy the top level Goal,

which involves recursively matching the subgoals of each Technique it finds. The

Plan Tree takes the form of an AND/OR tree since each Goal can be satisfied by any

one Technique, but each Technique needs all of its subgoals satisfied. The Plan Tree

enumerates all known strategies for the implementation, where a path from the root

Goal node to leaf Techniques represents a particular implementation strategy [4].

The Planner is application-generic-it does not require any specific knowledge

about the implementation choices to execute the decision logic. It runs the eval

phases of the Techniques to expose the properties of each choice in the Plan Tree.

It then chooses the best Technique for each Goal to generate the implementation.

Figure 2-6 shows the Planner GUI with the chosen implementation for the addition

circuit.

A new implementation recipe is added to the system by wrapping it in new Tech-

nique, which is evaluated by the Planner automatically. Nothing else in the existing

system needs to be changed-the decision logic is truly open-ended. Old implementa-

tions, when worse than the new ones, simply "fade out" and never get chosen again.

2.2 Modifying the circuit

The users can modify the design by changing the Goal parameters. The followings

are some of the examples on how the users can change the system:

1. The user can change the circuit requirements. Examples are changing the hard-

ware environment or changing the parameters of the circuit (e.g. the input

width). For example, instead of generating a 32-bit ALU, the users now want

a 64-bit one. These are done by changing the Goal parameters of the top level

Goal. The changed parameters are propagated down the tree. The affected

Techniques are re-evalated again to compute new Properties. The Planner then

re-selects the appropriate Techniques to generate a new design that fits the new

requirements.

2. The user can change the decision criteria. For example, when porting the cir-

cuit from a general-purpose machine to a handheld device, the users want the

most energy-efficient implementation instead of the fastest one. This is done

by changing the weighting factors, which are the Goal parameters, in the Sat-

tree: Addition .. "l...

T: typel (delay-0.68, cost=7422) osnegcarryopI g p g2 ngo utao 1
I G: zlogic(width=32 ,db=<db.Comp_db instance .ends

> G: v_ output(width=32 ,db=<db.Comp_ db instanc subckt adder32 AWFNO A[31:0] 8[31:0] S[31:0] z v n
: Adder(width=32 caryin=0 .db adder320 B[31:0] AUFNO#32 bx[31:01 xor2

G: Adder(width=32 ,carryin=0 db=<dbCompdb adder32 1 AWFNO A[31:01 bx[31:0] S[31:01 cdummy sub_adder
T: RCA (delay= 4.52, cost=3104) i I adder322 S[31:0] z z_output

I T: CSA (delay=1.76, cost= 10660) connect 531 n
D, T: CSA (delay=0.75, cost=8643) adder323 A31 bx3l S31 v v_output

T: ksa_even [fall: log(width) Is not even] (delay=(ends
v T: ksa_odd (delay=0.68, cost=6288) .subckt sub adder Cin A[31:0] B[31:0] S[31:0] Cout

I G: NegPosCarryOp (array=75)(db=<db.Compj connect po0_ vdd
G: PosNegCarryOp (array=54)(db=<db.Comp Xsubadder A[31:1] B[31:11 g0_[31:11 p0_[31:1] neghalfadder

T: typelr (delay=0.07, cost=23) ' su b - adder l AO 80 Cin g0_0 SO negfulladder
Tsubadder2 g0_[31:11 p0[31:11 g0_[30:01 p0 j30:01 g1_[31:11 p1l31:11

i .egposcarryop
> G: AOl(db=<db.Comp_db instance at 0x8 <subadder3 gO[0:0] p0(0:0] gl_[0:0] p1_(0:0] inverter

G: NegFullAdder(db=<db.Compdb instance 4 <sub-adder4 gl_[31:2] p1_[31:2] gl_[29:0] pl_[29:0] g2_[31:21 p2331:21
osnegcarryop

Ssub adder5 gl [0:11 pl [0:1] g2_[0:11 p2_[0:1] inverter
G: NegHalfAdder (array=31)(db=<db.Comp d sub adder6 g2_[31:4p2:4] p31:4 g227:0 p227:0] g3[31:4 p331:41
G: NOT (array= 62)(db= <db.Comp_db instanc egposcarryop

sub adder7 g2_[0:3] p2_[0:3 g3_[0:31 p3_[0:3] inverter
Isub adderB g3_[31:8] p3_[31:8] g3_[23:0] p3_[23:0] g4_[31:8] p4_[31:81
Iosnegcarryop
Xsub_adder9 g3_[0:71 p3[0:7] g4_[0:7] p4_[0:7] inverter
xsub_adderl0 g4_[31:161 p4[31:16] g4_[15:0] p4[j15:01 g5331:161 p5 31:16]
negposcarryop
Xsub_adderl g4_[0:15] p410:151 g5_[0:15] p5_[0:15] inverter
Ssub adderl2 A[31:11 B[31:11 g5 [30:0] S[31:11 xor3
connect g531 Cout

S.subckt neghalfadder a b ng np

Search c
P~~W:~s~4>

Figure 2-6: The Planner GUI. The left panel shows the Plan Tree, with the chosen Techniques in blue and failing Techniques

in red. The Goal parameters and Properties of the Techniques are also shown. The right panel shows the implementation

generated.

isfaction formula of the Goals. After re-evaluation, the Planner selects the

Techniques that meet the current criteria most to generate the implementation.

3. The user can change the design constraints. For example, because of the budget

limit, there is now a maximum cost imposed. Figure 2-7 shows a slightly more

complicated Satisfaction formula. The Satisfaction formula is a Python script

that computes the Satifaction value at the end. The execution environment

of the Satisfaction script is made up of the Goal parameters and the Goal

Properties. It states if the cost is under mincost, the cost will not contribute

to the Satisfaction computation. However, if the cost is greater than maxcost,

the Satisfaction value will be set to -1. Because conventionally the Satisfaction

value for any runnable Technique should be positive, setting the Satisfaction

value to -1 is equivalent to failing the corresponding Technique. By changing

the mincost and max_cost, which are the Goal parameters, the users can

change the constraint imposed on all the implementations of a function. After

the modification, the Plan Tree starts re-evaluation as described previously.

name: processor
properties: MIPS cost
functional attributes: width=O
non-functional attributes: mincost=O max_cost=O hardware_database=None
cost_vs_delay=O
evaluation:
if cost < min_cost:

satisfaction = 1/delay * 100
elif cost < max_cost:

satisfaction = 1/(delay * cost) * 100
else:

satisfaction = -1

Figure 2-7: A sightly more complicated Goal specification.

2.3 Generating the implementation

If the user is satisfied with the design, she commits the Plan to generate the imple-

mentation. Committing the plan means executing the commit phases of the chosen

Techniques.

In this example, committing the FullAdder Goal creates instances of full adders.

The instantiated components are passed up to the Plan Tree. The parent Technique

i.e. the ripple carry adder Technique connects the full adders from the subgoals to

generate the addition circuit. Figure 2-8 shows how an implementation is generated

from the Plan Tree. Commit starts at the leaves of the tree to satisfy the implemen-

tation dependencies of the components higher in the hierarchy.

In this thesis, the hardware is implemented in JSim[5]. JSim is chosen for its ease

of use and test cases of Beta are readily avaliable as developed in 6.004[6]. To ease

Technique programming, we use a Python-based hardware component library that

"compiles to" JSim. The library aims to provide a well-defined interface to instantiate

and connect each component, and to generate the corresponding JSim implementation

after commit. As a result, programming the commit phase of a Technique is trivial

as the underlying complexity of creating the hardware description is delegated to

the component library. Figure 2-9 shows the JSim implementation that the Planner

generates for the adder.

Figure 2-8: During commit, the components are instantiated and propagated up the
Plan Tree.

.subckt fulladder a b cO ci s
XfulladderO a b gl xor2
Xfulladderl gl cO s xor2
Xfulladder2 a b g2 nand2
Xfulladder3 a cO g3 nand2
Xfulladder4 b cO g4 nand2
Xfulladder5 g2 g3 g4 cl nand3
.ends

.subckt z_output S[31:0] z
Xz_outputO S[31:0] zO[7:0] nor4
Xz_outputl zO[7:0] zl[1:0] nand4
Xz_output2 zi[1:0] z nor2
.ends

.subckt adder32 ALUFNO A[31:0] B[31:0] S[31:0] z v n
Xadder320 B[31:0] ALUFNO#32 bx[31:O] xor2
Xadder321 ALUFNO A[31:0] bx[31:0] S[31:0] cdummy rca
Xadder322 S[31:0] z z_output
.connect S31 n
Xadder323 A31 bx31 S31 v v_output
.ends

.subckt rca CO A[31:O] B[31:0] S[31:0] C32
XrcaO AO BO CO cl SO fulladder
Xrcal A[31:1] B[31:1] c[31:1] c[32:2] S[31:1] fulladder
.ends

.subckt v_output A31 B31 S31 v
Xv_outputO A31 na inverter
Xv_outputl B31 nb inverter
Xv_output2 S31 ns inverter
Xv_output3 A31 B31 ns fir nand3
Xv_output4 na nb S31 sed nand3
Xv_output5 fir sed v nand2
.ends

Figure 2-9: The generated Addition circuit.

Chapter 3

Design and System Architecture

3.1 Design principle

Fide provides a framework to add, enumerate, evaluate and compare the implementa-

tion recipes systematically. Goal-oriented programming makes explicit the seperation

of circuit specification and implementation. By exploiting the underspecified nature of

Goals, the Planner automatically chooses among the recipes to generate the required

implementation.

The users should be able to interact with Fide in three ways. The first is by

asserting the Goals-the user specifies what functions are needed in a design. The

second is by programming Techniques-the users specify how to evaluate and generate

the circuit in Techniques. The third is by controlling how the Planner should make

the decision. However, the ways that the users interact with the system might conflict

with the open-ended nature of Goal-oriented programming. For example, in order to

allow users to specify preferences over the choices, it is tempting to create syntax

in Techniques to rank the subgoal choices. However, adding a new Technique for

the subgoals would then require modification of the existing Technique scripts. The

system should strive to be easy for users to program and control the decision logic,

at the same time not restricting the implementation choices.

3.2 Design challanges

The followings are a few key design challanges of Fide:

Ease of Technique programming Technique programming involves two parts: spec-

ifying the how to evaluate the implementation recipe and the instantiation of

the hardware components when chosen. To enhance encoding of the imple-

mentation decision logic, the new syntax are added to (1) reduce the amount of

redundant codes for evaluating similar implementations, and (2) make it natural

to declare hardware implementation dependencies.

The commit phase of Technique is not the place to program the circuit imple-

mentation. It is simply a placeholder to instantiate and connect the building

blocks when the corresponding implementation is chosen. A JSim Component

library is therefore created to bridge between the Technique and the actual im-

plementation. This keeps programming Technique simple, without exposing the

internal structure of the circuit in the Technique.

Scalability Compared to the examples in JustPlay[4], where the number of nodes

in the Plan Tree is less than a hundred, Fide's Plan Trees are huge. The Plan

Tree contains up to a thousand nodes when Technique evaluation goes down to

the gate level. Thus, there are performance and memory problems for building,

evaluating and browsing the Plan Tree.

The scalability problem involves both computation and representation issues.

Brute-force search is the simplest way to find the optimal implementation. How-

ever, it is not feasible if the search space is huge. In Fide, even the performance

of heuristic search is not always acceptable with such a huge Plan Tree. On

the other hand, full representation of the Plan Tree takes a long time to build.

The system might even run out of memory when it tries to store the data struc-

ture. Direct display of the Plan Tree in the Planner GUI also makes browsing

difficult.

As such, scalability comes with the tradeoff of the quality of the implementation

generated, as well as the completeness of the Plan Tree representation. It is

important to strive a balance between the two.

Incremental circuit refinement The main goal of Fide is to achieve automatic

circuit generation for different applications. The users should therefore be able

to incrementally modify the design in order to tweak the circuit for different

scenarios.

The followings are a few requirements to ease design refinement:

1. It should be easy for users to understand why the Planner made such

decisions and provide sufficient information for the users to decide how to

tweak the circuit.

2. It should be straightforward for the users to specify the changes e.g. deci-

sion criteria, parameters of the circuit (e.g. width of the input, the input

function), the hardware environment, the constraints of the circuit, etc.

3. Re-evaluation of the Plan Tree should be done efficiently.

3.3 Overall system architecture

Figure 3-1 shows the overall architecture of Fide, which consists of the followings.

The JustPlay paper [7] gives more details on the Planner architecture.

* The Planner which manipulates the Plan Trees. It consists of:

- A Goal cache, to check for Goal reuse in the Tree.

- A scheduler, to queue the tree nodes for evaluation. From the JustPlay[7]

paper, it shows that the PrecedentQueueScheduler is the most efficient

scheduler. It always queues a tree node before its parents to avoid schedul-

ing a node redundantly.

- A Technique database, to search for Techniques for the Goals.

- A Technique interpreter, to translate the Technique into a Technique class.

The Technique class has a standard API for the Planner to invoke evalu-

ation and commitment of the Technique.

- A Goal parser, to parse the Goal specification and compute the Satisfaction

value for the Techniques.

* The Planner GUI which sits between the users and the Planner.

0
Users

GUI

i
Plan Trees

(
Technique Inte

4l

c"Cne3Ue Goal Parser

Figure 3-1: Fide architecture.

t '•A• •
•

r

eterpr

oves 0 .0.. l

3.4 Construction and Evaluation of the Plan Tree

In this section, a Beta processor is implemented as an example to illustrate the

construction and evaluation process of the Plan Tree. To be able to understand

the example, the Beta architecture is presented first.

3.4.1 The Beta architecture

Figure 3-2 shows the Beta architecture and how that can be broken down hierarchi-

cally into a Plan Tree representation. The two Techniques implement the Beta in this

example are the pipelined and unpipelined architecture. The pipelined architecture

is a 2-stage pipeline, divided into the instruction fetch stage and everything else in

the second stage. The following is the Beta subsystems:

* The program counter. It consists of D flip flops to store the address, the PC+4

circuit to compute the following address and a 5-way multiplexer to select the

next address based on the reset signal and the current opcode. There are

multiple ways to implement the PC+4 circuit e.g. a normal adder tied to 4, or

an incrementer.

* Memory. The memory is for storing both the data and the instructions. There

are multiple ways to implement the memory-for example, with different num-

bers of ports. The easiest implementation is to have three ports: one for in-

struction read, one for memory read and one for memory write. To decrease

the memory size, the memory can be implmeneted by eliminating one or more

ports. For example, the data read and data write can share the same port. To

implement that, additional logics are needed to multiplex the data access to the

memory. Eliminating the ports reduces the size of the memory as an additional

port requires additional drivers and storage cells. However, it may introduce

very slight delay due to the additional multiplexing logics.

* Register file. It is a 32-bit register with 31 slots.

B, Ao Bo

Figure 3-2: The Beta architecture. Each circle represents a subgoal. Circle of the
same color represents subgoal of the same kind.

I

* ALU. The ALU consists of an adder/substractor, a shift unit, a comparator

and a Boolean unit. There are at least two ways to implement the shift unit:

1. use two seperate shifters for shifting right and left, or 2. use just one shifter

and add additional logic to control shifting left or right. The latter approach

adds slightly more delay but is cheaper to implement.

There are numerous ways to implement the adder/substractor. The slowest but

the cheapest implementation is the ripple carry adder. The carry select adder

is a faster implemention but takes up more space. The Kogge-Stone adder is

a parallel prefix form carry look-ahead adder. It is fast-it can generate carry

signals in O(log n) time, and is smaller than the carry select adder.

* Control logic unit. It generates the control signals e.g. write enable, PC select

etc. based on the opcode. The easiest implementation is to generate all signals

using a ROM. However, this is expensive and half of the storage is wasted

because there are 64 entries (address width=6) in total in the ROM but there

are only 32 valid Beta instructions. A cheaper way to implement the control

logic unit is by generating some of the signals using logic gates.

* Other miscellaneous logics required: multiplexers for the write-back/selecting

the ALU input/selecting the register address, logics for computing the branching

address, logics for controlling the supervisor bits etc.

3.4.2 Construction and evaluation

Figure 3-3 shows the Plan Tree construction and evaluation flow chart. Initially,

the Planner discovers that the Beta Technique implements the processor Goal from

the Technique database. In order to compute the Properties of the Beta Technique,

the Planner has to resolve the implementation dependencies for Beta, i.e. finding

Techniques to satisfy its subgoals. The subgoals of Beta are the ALU, the data

memory, the register file, the program counter and some logic gates that generate

the control signals. While the Planner is searching the Techniques to recursively

satisfy the subgoals, it discovers some building blocks can be reused. For example,

there are multiple adders having the same input bits in a recursive carry-select adder

architecture. The Planner realizes the redundant components from its "hardware

environment cache". More details on the cache will be discussed in section 3.4.5. As

a result, the Planner would only instantiate one instance of the adder and reuse it in

other part of the circuit.

The construction process ends when the Planner finishes resolving the Technique

dependencies. Evaluation starts at the leaves of the Plan Tree, where it chooses the

most suitable Technique to satsify each Goal. The Properties of the subgoals are

copied to the Solution objects and are propagated up the Tree. The parent Tech-

nique, which depends on the subgoals, copies the Properties of the subgoals from the

Solution objects to compute its own Properties. For example, the Beta pipelined ar-

chitecture implementation depends on the register file, the control logic unit, the logics

that compute the branching address and other components. The branching address

computation can run in parallel with the control signal generation and the register

data retrieval. In other words, these components form two independent datapaths.

As the subgoals report their Properties, the Beta_pipelined Technique realizes the

two datapaths have different delay: the delay of the branching adress computation is

less than the summation delay of the control logic unit and the register file. It can

then determine where the critical path is and compute the overall delay for itself,

which equals the summation delay of the control logic unit, the register file, the ALU

and the write back logic.

When the evaluation has reached the top Goal, a Plan is chosen and the evaluation

is done.

3.4.3 Technique programming

A Technique provides evaluation information for the recipe it represents to give the

Planner a generic way to search for feasible implementation. It mixes both imperative

and declarative style code. Programmer declares Goals to recursively decompose the

implementation decision logic and writes codes to analyze the implementation choices.

To support encoding of the hardware implementation decision logic, the following

S Top iWv Go aswedi-

Figure 3-3: The flow chart showing the Plan Tree construction and evaluation process.

semantics are added:

* To make it easy to declare a large number of hardware dependencies that are of

the same type, a new construct "subgoalarray" is introduced for subgoals decla-

ration in Techniques. For example, in order to specify a 32-bit ripple-carry adder

depends on 32 full adders, declaration like "subgoaLarray(goal=fulladder, num-

ber=32)" is made. An example can be found in figure 2-5.

* There are cases where several very similar architectures can share the same

evaluation code, and therefore it is desirable to be able to represent them all in

one single Technique script. For example, there are multiple ways to divide a 32-

bit carry-select adder while they all satisfy the Adder(bit=32) Goal. Because

the architectures are basically the same and the only difference is the parameter

applied to divide the adder into smaller ones, these implementations can share

the same evaluation code. To make that happen, a new "choice" phase is

introduced in Technique as shown in figure 3-4.

At the choice phase, the Technique node will fork itself, each copy with a dif-

ferent divideparameter which represents the two different ways to divide the

adder. The evaluation then continues.

As shown in the example in figure 3-4, a Technique can recursively depend on

subgoal of its own kind. An ending case is needed to make sure the recursion does

not loop. This is achieved through fail () to signal the Planner that the base case

has reached. When fail () is called, the Planner terminates exploration of the cor-

responding subtree.

fail () is also useful in other scenarios: specifying constraints and checking the

suitability of the implementation in the design. Figure 3-5 shows an adder Technique

testing whether its cost violates the constraint. Figure 3-6 shows a XOR gate Tech-

nique checking whether such building block exists in the hardware environment and

fails itself if not.

to Adder(width, carryin, db, cost_vs_delay):
via carry_select_adder:

first:
solution.delay = 0
solution.cost = 0
if goal.width < 5:

planner.fail("the width is less than 5")

choice:
self.divideparameter = choose(choice_list=[goal.width/2, goal.width/2+1])

eval:
self.widthone = self.divideparameter
self.width_two = goal.width - self.divideparameter

subgoals:
adder1 = Adder(width=self.widthone, carryin=goal.carryin, db=goal.db,

cost_vs_delay=goal.cost vsdelay)
adder2 = Adder(width=self.widthtwo, carryin=O, db=goal.db,

cost_vsdelay=goal.cost vs_delay)
adder3 = Adder(width=self.widthtwo, carryin=1, db=goal.db,

cost_vsdelay=goal.costvs_delay)

eval:
solution.delay = max(subgoals.adder2.delay, subgoals.adder3.delay)

+ subgoals.adderl.delay

solution.cost = subgoals.adderl.cost + subgoals.adder2.cost
+ subgoals.adder3.cost

Figure 3-4: The carry-select adder Technique.

eval:
if solution.cost > goal.adder_max_cost:

planner.fail("exceed max cost! ' '")

Figure 3-5: A Technique fragment testing whether the implementation exceeds the
maxinum cost.

eval:
if not goal.db.queryavaliability("'XOR"):

planner.fail(" Cno XOR gate avaliable! ' ')

Figure 3-6: A Technique fragment testing whether there are enough resources.

3.4.4 Goal node sharing

In order to solve the scalability problem mentioned in section 3.2, we use subgoal

sharing. Subgoal sharing is to exploit the fact that there are many duplicate Goals

(e.g. AND-gate) in the tree. As Goals represent functions needed in the circuit, the

implementation choice for the same function should be identical in the same hardware

environment in most cases. As a result, the Goal only needs to be evaluated once.

Sharing greatly reduces the number of nodes in the tree without affecting the final

decision made.

For example, figure 3-7 shows an implementation of a leftshifter. This Technique

depends on an array of multiplexers. This is wasteful if the Planner expands all the

multiplexer subtrees (totally 160 subtrees if width=32) in the array because they

all share the same Properties in the same hardware environment, and expanding

the subtrees simply takes up more memory without providing more information. To

achieve Goal node sharing, the multiplexer subtree is only expanded when the Planner

first meets the Goal. The expanded Goal then leaves a record in the "Goal cache" of

the Planner. When the multiplexer Goal is requested the second time, the Planner

looks up the Goal Properties from the "Goal cache" instead of expanding the subtree.

The Goal Properties are stored in a VirtualGoalNode where the parent Technique

can access the subgoals Properties as usual.

to leftshifter(width, db, cost_vs_delay):
via typel:

first:
solution.cost = 0
solution.delay = 0
self. level = int(math.log(goal.width, 2))

subgoals:
mux_array = subgoal_array(goal=Mux, number=self.level * goal.width,

width=2, db=goal.db,
cost_vs_delay=goal.costvs_delay)

eval:
solution.cost = subgoals.mux array[O].cost * self.level * goal.width
solution.delay = subgoals.mux_array[0].delay * self.level

commit:
sub_comp = { "mux2": subgoals.mux_array[O] . component}
fa = leftshifter("leftshifter", component=sub_comp,

parameters={' "width" :goal.width})
fa. initialize ()
solution.component = fa.instantiate()

Figure 3-7: The left shifter Technique.

3.4.5 Reusing components

Goals represent the functions required in the circuit and the Planner searches through

the Techniques database to fill in the corresponding implementation. The Planner

has to be careful that it does not fill in the same building block in the circuit multiple

times if the component can be reused. For example, the instruction fetch stage circuit

of the pipelined Beta architecture is composed of a memory to store the instructions,

the D flip-flops to store the instruction address, an incrementer circuit to add 4 to

the program counter, and a mux to select the next instruction. While resolving the

dependencies for the memory subgoal, the Planner figures out the data memory is

designed to store the instructions as well-the data memory can be reused as the

instruction memory. Instead of expanding the subtree for the instruction memory

subgoal, the Planner replaces the subgoal with a VirtualGoalNode, with the Prop-

erties copied the main memory Goal node. The VirtualGoalNode is then marked

"reused" and the parent Technique can access the subgoal Properties as usual.

To support component reuse, the Planner has to know what already exists in the

circuit. A data structure named the "hardware environment cache" (env) is created

for the Planner to check and reuse the hardware components.

3.4.6 Searching and Technique selection

Heuristic search is enough for the examples so far to generate implementations that are

comparable to manually optimized circuit. However, it might require more extensive

search if the circuit requirements are more complex. For example, a design criteria

may be "under cost x, generate the fastest implementation". In order to generate

the fastest implementation, the Planner selects the fastest implementation at each

decision point. However, the final design violates the cost constraint. In order to

generate an acceptable design, backtracking is needed. The Planner must choose a

cheaper implementation instead of the fastest one for the building blocks that are not

on the critical path.

To achieve exhaustive exploration of all the possible choices, a technique called

"node cloning" [4] is introduced in the Planner. The Planner tests the combination

of the subgoal choices while maintaining a record of Satisfaction of all combinations.

This is done by storing the Satisfaction in cloned Technique nodes that represent the

subgoal choices combination. The combination with the highest Satisfaction without

violating the constraint is chosen for the implementation. Figure 3-8 shows a simpli-

fied example for generating a 2-stage pipelined Beta processor. The building blocks

which do not contribute to the critical path can opt for a less costly implementation

after cloning to generate a feasible implementation.

Choose the fastest iplemetbn
C

Chose the fastest imple an

ge pipeline beta

Os
151 microns^2

D Goal

STechnique, undcho

Technique, chosen

Sub-tree

Figure 3-8: Showing how node cloning works.

via wo-stage Pl
#1:

fdelay- l3ns
cost - 2546851

1 I

Chapter 4

Application and Evaluation

4.1 Evaluation

4.1.1 Quality of the implementations generated

The implementations generated are verified using the 6.004 project checkoff file. Ta-

ble 4.1 shows the qualities of the implementations generated. They are measured in

terms of the area, the cycle time, and the Benmark with the corresponding points.

The Benmark is the scoring system for the 6.004 design project. The smaller the

circuit and the faster it completes the checkoff benchmark, the better the Benmark.

Our result shows the Planner generates good implementations under all three

different decision criteria-the smallest implementation, the fastest one, and the one

with the highest Benmark. The Goal specification of processor is shown in figure 4-1.

The weighting between the cost and the delay can be modified by changing the Goal

parameter costvs_delay. To choose the Benmark as the satisfaction calculation

method, the Goal parameter Benmark is set to True. We include a reference Beta

that represents a very highly hand-tuned design.

4.1.2 The Planner performance

For all the examples, Fide runs on a Pentium 4/1.8GHz with 512MB RAM running

Linux 2.6.18. Table 4.2 shows the running time for evaluating an adder, an ALU,

name: processor
properties: delay cost
functional attributes: width=0
non-functional attributes: cost_vs_delay=0 Benmark=False hardware_database=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * costvsdelay + delay * (1 - cost_vs_delay))

Figure 4-1: The specification of the Goal processor.

Table 4.1: The quality of the implementations generated
Decision criteria Area (microns2) cycle time (ns) Benmark Points
The highest Benmark 291546 9.19 39.58 10
The fastest 322165 8.8 37.41 10
The smallest 277095 17.5 21.87 6
Best students' work 318465 9.5 35.05 10

and a Beta Plan Tree. Figure 4-2 shows the running time for evaluating an ALU

Plan Tree of different widths and it consists of two graphs. One includes the carry

select adder Technique and the other does not. The running time of graph withCSA

increases exponentially while the adder width increases exponentially. This is because

the number of nodes in the Tree increases proportionally with the width as the carry

select architecture recursively breaks up the adder into smaller ones. The smaller

adder Goals expand into subtrees, with size proportional to the width.

On the other hand, the running time of graph withoutCSA increases at a slower

rate while the width increases. Unlike graph withCSA which includes the carry select

adder Technique, increasing the width does not introduce new Goal node type (smaller

adder) into the Plan Tree. Even though the width is increasing, many building blocks

(e.g. full adders, multiplexers) are duplicate. Because of the Goal node sharing

mechanism, increasing the width only increases the number of VirtualGoalNode

to represent the duplicate building blocks, in which the VirtualGoalNode does not

expand.

Width of the ALU

Figure 4-2: The graph showing the running time for evaluating an ALU

different widths.

Plan Tree of

Table 4.2: Time needed to evaluate different circuits
A Beta (width=32) An ALU (width=32) An Adder (width=32)
134.68s 64.51s 59.58s

Chapter 5

Implementation

Given the system design and architecture presented in the chapter 3, this chapter

details the system interface and the implementation of Fide. Fide is implemented

in Python2.5 and the GUI is implemented using the wxPython2.8 library. Even

though no code of the Planner depends on special feature unique to Python, using

an interpreted language make implementing Fide easier. This is to ease parsing and

executing the Goal satisfaction formula and the Technique evaluation scripts on-the-

fly.

5.1 The Planner API

The Planner API can be divided into three types: the Plan Tree API, the GUI API

and the User API.

5.1.1 The Plan Tree API

The Plan Tree API is the interfaces for manipulating the Plan Tree. It includes the

following:

* plan(goal, schedulerclass) This starts the construction of the Plan Tree.

It is given the top level Goal instance. The top level Goal instance is generated

by the Goal Parser by parsing the Goal specification. Instead of the default value

stated in the specification, the parser modifies the Goal Parameters according to

the users' input. The schedulerclass is a scheduler instance that the Planner

uses to queue the tree nodes for evaluation.

During plan(), the Planner constructs the Plan Tree by finding Techniques

that satisfy the top level Goal, and recursively matching the subgoals of each

Technique it finds.

* evaluate() During evaluate(), the Planner polls the scheduler for tree nodes

for evaluation. If it is a Goal node, evaluation means computing the Satisfaction

values for each child Technique and choosing the one with the highest Satisfac-

tion. If it is a Technique node, evaluation means executing the evaluation phases

to compute the Goal Proeprties.

When the users are modifying the design, the affected Tree nodes are marked as

invalid. The users call evaluate() to invoke re-evaluation of the Plan Tree,

where all the invalid nodes are enqueued by the scheduler.

* commit () When commit () is called, the Planner recursively calls commit on the

chosen Technique nodes, where it stops at the leaves. The Technique nodes pass

the building blocks they instantiate up the Tree to contruct the implementation.

5.1.2 The GUI API

The GUI API is the interface where the Planner provides Plan Tree information for

the GUI for display purpose. It includes the following:

* add_inspector (inspector) This adds the GUI handler to the Planner, which

the Planner invokes whenever there are changes in the Plan Tree. The handler

should provide the following callbacks:

- finish_evaluation(plan) This is called after evaluation is done.

- f inish_commit (plan) This is called after commit is done.

For both callbacks, the Plan object is passed. The Plan provides a pointer

to the top level Goal, and a method to create a snapshot of the Plan Tree.

The snapshot is useful for the GUI to create the tree view.

5.1.3 The User API

The User API is the interface where the users modify the Plan Tree. It includes the

following:

* modify (goal) This is useful for changing the Goal Parameters. The caller

creates a new Goal instance according to the new Goal Parameters and passes it

to modify. The Planner changes the top level Goal using the new Goal instance

and passes the changed Parameters down the tree during re-evaluation.

* update_goal (goalname, goal) This is useful for changing the Satisfaction

formula of Goals. The caller creates a new Goal instance using the new Sat-

isfaction formula. Based on the goal name given, the Planner updates the

corresponding Goal node during re-evaluation using the new Goal instance.

* add_technique(goalname, techniqueclass) This is useful for adding a new

implementation recipe on-the-fly. The caller creates the Technique class using

the Technique interpreter and passed it to this method. Before re-evaluation,

the Planner creates a new Technique node and attaches it to the corresponding

parent Goal. The new Technique node is marked as "invalid", which will be

enqueued and evaluated.

* update_technique(goalname, technique_class) This is useful for updating

an implementation recipe on-the-fly. The update mechanism is mostly the same

as adding a Technique, except that the Planner is replacing the old Technique

node with the new one.

5.2 The Planner GUI architecture

Figure 5-1 shows the architecture of the GUI which consists of the followings:

1. Plan Tree snapshot. The Plan Tree snapshot is given by the Planner, which

reflects the latest Plan chosen. Based on the snapshot, the GUI generates the

tree view.

2. Model. Based on users' input, the Model sends signals to modify the Plan Tree

through the Planner inspector. After re-evalaution, it signals View to re-draw

the Plan Tree. The users commit the Plan similarly through Model.

It is also responsible for "manipulating" the GUI internal Plan Tree represen-

tation e.g. searching the tree, tracing the Technique dependencies etc.

3. View. It draws the GUI: the tree view with all the highlightings and display

options, as well as the information/commit/statistics/Technique script display

panels.

4. Controller. It interprets the users' input and signals the responsible callbacks

for further actions. For example, right-clicking on a virtual Goal node in the

tree view means highlighting the original Goal node as pointed by the virtual

node.

5. Planner inspector. It acts as a "broker" between the Planner and the Model. It

can handle multiple Plan Trees at the same time. Each Plan Tree corresponds to

a seperate thread. Thus, the evaluation of multiple Plan Trees can take place in

parallel while the users can still interact with the GUI. After evaluation/commit,

it posts an event back to the Model to signal update for the latest changes. It

also generates the Plan Tree internal representation based on the Plan Tree

snapshot.

Users Input

Change display

Modify Plan Tree

Modify Plan Tree

Update tree
model

Modify Plan

Figure 5-1: The Planner GUI architecture.

Ask for tree io Update display

J/

I@

5.3 The JSim Component library

The building blocks in the JSim Component library are divided into three data types:

Pebble, Composite and Circuit. In addition, the data type named Connector provides

the building blocks the notion of input and output connection to other components.

A Connector of width=1 represents a wire connection, and with width greater than 1

represents a bus connection. Table 5.1 shows the constructor API for these four data

types. The library provides a block diagram abstraction to describe hardware. This

is to avoid exposing unnecessary internal structure of the circuit in Technique to ease

Technique programming.

Table 5.1: Constructor API for the JSim Component Library
Pebble Pebble (function, input= [], output= [])
Composite Composite(function, components= [], parameters={})
Circuit Circuit (composite)
Connector Connector (name, width)

Pebble is the most primitive type, which represents the fundamental building

blocks in the circuit that do not have any dependency. The Pebble constructor simply

takes the function name and the Connectors for the input/output ports. Figure 5-2

shows how a Pebble is used. The leaf Technique instantiates an instance of Pebble in

the commit phase for the logic gate it represents. After commit, the Pebble instance

is copied up the tree in solution. component for the parent Techniques to composite

the circuit using this gate.

commit:
inl = Connector(name=c'inl'')
in2 = Connector(name= c in2 ')

in3 = Connector(name=''in3'')
out = Connector (name=' out'')
solution.component = Pebble(' nor3'', input=[inl, in2, in3], output=[out])

Figure 5-2: Instantiate a Pebble in Technique.

A Composite represents a collection of interconnected components (Pebble or

Composites). The programmer creates a new type of building block that is composed

commit:
sub_comp = {''mux4'': subgoals.mux_array[O].component,

' adder'": subgoals. add. component,
'boole' ' : subgoals.boole.component,
''shift'': subgoals.shift.component,
''compare" : subgoals.compare.component}

alu = ALU("' 'alu' ', component=subcomp, parameters={ 'width'' :goal. width})
unmatch = alu.initialize()
if unmatch:

planner.fail("Commit error: interface not match!'')
solution. component = alu. instantiate()

Figure 5-3: Instantiate a Composite in Technique.

of smaller components by subclassing Composite. The programmer defines the inter-

face (i.e. input and output ports) and how the inner components are connected during

subclassing. Section 5.3 details how to subclass Composite. Figure 5-3 shows how a

Composite is used. The Technique copies the sub-components from its subgoals and

passed them to ALU, a Composite subclass. The Technique also parameterizes ALU by

passing it the Goal Parameter, i.e. the data width. It calls initialize() to connect

the sub-components. During initialize(), ALU also checks whether the interface

of the sub-components match and fails the Technique otherwise. After creating the

circuit using the sub-components, the Technique instantiates the ALU and passes it

up the tree for composition of even more complex building blocks.

A Circuit represents the actual instantiation of the building blocks in the imple-

mentation. Pebble and Composite create the circuit definitions and Circuit "instan-

tiates" the building blocks by creating the netlists. The Circuit Constructor is given

instances of Composites. By subclassing Circuit, the programmer defines how the

connections to the outside world are made for the different Composites. Figure 5-4

shows how a Circuit is used. The circuit definition of Beta, which is a Compos-

ite subclass instance copied from the subgoal, is passed to the Circuit constructor

Betaprocessor. The Connectors to the outside world are passed and the netlist of

Betaprocessor is created. Finally, output_circuit() creates the JSim implemen-

tation of Beta, along with all the circuit definitions of the sub-components.

commit:
beta = subgoals.beta.component
beta_circuit = beta_processor(beta)
clk = Connector(name="'clk")
reset = Connector(name="'reset")
qid = Connector(name=''id"', width=32)
mrd = Connector(name=' 'mrd", width=32)
ia = Connector(name="ia'', width=32)
ma = Connector(name="ma'', width=32)
moe = Connector(name="moe")
wr = Connector(name="'wr'")
werf = Connector(name=''werf")
mwd = Connector(name="mwd", width=32)
betacircuit.create(clk=clk,

reset=reset,
qid=qid,
mrd=mrd,
ia=ia,
ma=ma,
moe=moe,
wr=wr,
werf=werf,
mwd=mwd)

solution.component = output_circuit(beta_circuit)

Figure 5-4: Instantiate a Circuit in Technique.

5.3.1 Composite

The following shows the internal methods of Composite. They are for connecting the

interal components while extending initialize ():

1. _initinterface() It creates the interface of the Composite using the in-

put/output Connectors instantiated in the constructor.

2. _connect_point(a, b) It connects the two given points a and b.

3. _connect (*args) It connects all the points in *args together.

4. _connect_component (comp, input= [], output = []) It connects the given in-

ternal component using the Connectors in the input and output array.

5. _connect _memory (width, nlocations, readPort= [] , writePort= [] , contents=" ,)

It creates a memory and connects it using the Connectors given in the readPort

and writePort array. readPort and writePort are arrays of read/write inter-

faces, where each interface is an array of Connectors in the order of [oe, clk,

wen, addr, data]. oe is the output enable, clk is the clock, wen is the write

enable, addr is the address with the most significant bit first, and data is the

data inputs/tristate outputs.

5.3.2 Connector

The followings show the API of a Connector:

1. bit (*args) It returns a subset of the bus. If *args only consists of 1 parameter,

it means selecting the particular bit. Otherwise, the first and second parameters

are the first and Second indices of the bus sequence.

2. num(num) It returns multiple copies of the same connection.

Both methods return a new Connector representing the new type of connection. Thus,

the following can be made to describe duplicating a bus subset:

newconnector = data.bit(15,0) .num(2)

Figure 5-5 shows how to implement the ripple carry adder by subclassing Com-

posite and using Connectors.

class Ripple_CarryAdder(JSimComponent):
def __init__(self, name, component=[], parameters={}):

self.width = parameters["width"]
self.bit = self.width-1
self.input = [Connector(name=' 'ALUFNO"),

Connector(name=' 'A"', width=self.width),
Connector(name="B"', width=self.width)]

self.output = [Connector(name="S'', width=self.width),
Connector(name=' 'z"),
Connector(name=' 'v'),
Connector(name=' n")]

JSimComponent.__init__(self, name, component, parameters)
self.interface = self._initInterface()

def initialize(self):
bx = Connector("bx"), width=self.width)
c = Connector("c"'', width=self.width)
self._connectcomponent(self.component ['xor2''],

input=[self.B, self.ALUFNO.num(self.width)],
output=[bx])

self ._connect_component(self.component [fulladder'],
input=[self.A.bit(0), bx.bit(0), self.ALUFNO],
output=[c.bit(0), self.S.bit(0)])

self. connect_component(self.component [fulladder'],
input=[self.A.bit(self.bit, 1),

bx.bit(self.bit, 1),
c.bit(self.bit-1, 0)],

output=[c.bit(self.bit, 1),
self.S.bit(self.bit, 1)])

self ._connect_component(self.component['zcircuit'],
input=[self.S],
output= [self .z])

self._connect(self.S.bit(self.bit), self.n)
self ._connect_component(self.component ['vcircuit''],

input=[self.A.bit(self.bit), bx.bit(self.bit),
self.S.bit(self.bit)],

output= [self. v])

Figure 5-5: Implementing the ripple carry adder using the JSim component library.

Chapter 6

Related Work

6.1 High-level hardware description languages

The building blocks in Fide are implemented using existing languages and are repre-

sented as Techniques for evaluation. Besides popular choices like Verilog or VHDL,

there are options of using general-purpose high-level programming language to de-

scribe hardware. There are C-based languages like HandelC[8], OCAPI[9], HardwareC[10]

and Transmogrifier-C[11]. Recently there is MyHDL[12]-a Python-based hardware

description language. These projects have two common goals: (1.) Using a famil-

iar, high-level imperative language to ease hardware programming. (2.) enhancing

software/hardware co-design by providing a unified design environment. Some other

languages have special design rationale behind, e.g. Pebble[13], which is tailored for

describing reconfigurable hardware. Functional programming also inspires hardware

design. There are Haskell-based languages like Bluespec[14] and Lava[15]. Bluespec

enhances design of concurrent system by managing the complexity of shared resources

with special compilation technology. Lava enables design to be simulated, verified and

instantiated using the same high-level description. Finally, there are Prolog inspired

languages e.g. [16] is designed to ease design verification.

In Fide, using an existing language allows the implementation to enjoy what-

ever language features or compiler technologies that come with the language. Some

languages provide special features to allow modeling hardware at different abstrac-

tion levels, or a high-level parametrized and reusable hardware library to enhance

programming. Some of them come with compilation advantages: able to synthesize

and verify the circuit efficiently and systematically, or the compiler is optimized for

different applications to give better synthesis result. Some languages enhance soft-

ware/hardware co-design that it is easy to represent, transform and partition the

system into hardware/software synthesizable descriptions.

6.2 Circuit optimization and AI Planning

Fide does not compete with existing hardware optimization algorithms [17]. Instead,

Fide complements them. Goal-oriented programming encodes the decision logic, and

how the Planner makes the decision can be customized-according to any optimiza-

tion method. In other words, what the Planner fundamentally offers is a data struc-

ture i.e. the Plan tree that represents the decision logic. The Plan tree enumerates

all known strategies for the implementation, where a path from the root Goal node

to leaf Techniques represents a particular implementation strategy [4]. This also dis-

tinguishes our "planning" from planning in Al sense. Al Planning is a much broader

area involving research like how to model a problem, how to program the planning

algorithm, how to execute the sequence of actions etc. While Fide is not considered

to be in the Al discipline, a lot of related work e.g. dependencies backtracking could

inspire Fide on how to improve the "smartness" of the Planner in decision making.

6.3 Hardware design methodologies

There is work focusing on design rationale for different architectures. For example,

Lin, et al. [18] focus on design method for pipelined heterogeneous multiprocessor

system (to be specific, ASIP), Todman, et al. [19] focus on reconfigurable architecture

(FPGAs) and Pham, et al. [20] focus on multi-core architecture. Knowing when to

apply the right design strategy, or combine a hybrid of them to give optimal design,

is difficult and highly application specific. Goals provide an abstraction layer above

all these design methods. Each design method is an alternative to satisfy the Goals

and is evaluated and compared systematically. There is also work that focuses on

automatic circuit exploration. For example, Verma, et al. [21] focus on the automatic

optimization of arithmetic circuits. All of these are considered as an implementation

choice which can be easily added in Fide for evaluation under the open-ended decision

logic nature of Goal-oriented programming.

Chapter 7

Conclusion

7.1 Future work

7.1.1 More efficient search

In the current Planner, exhaustive search is needed to give optimal design, which is a

very expensive operation in terms of both computation and memory. There are two

ways to improve this:

* To be able to perform smart partial search. The hints could be inferred from

past decision history, cleverly collected user preferences, or from the design itself

(e.g. only perform exhaustive search on components on the critical path).

* Because the Plan tree is essentially an AND-OR tree, it could be possibly trans-

lated into a SAT problem, which can be solved by a SAT solver. The transfor-

mation could be assisted with avaliable modeling languages like Alloy [22].

7.1.2 Better estimate of the circuit properties

The circuit properties computed in Techniques are all programmed manually. This is

not practical, not feasible for huge design and not accurate as it does not include the

routing cost etc. It is desirable to invoke external libraries to perform more realistic

circuit synthesis. Theoretically, this can be done as the Technique eval phase can

be any arbitrary code. Thus, more engineering effort e.g. explore which libraries to

use, understand the synthesis result and translate that into Goal Properties etc. are

needed to make it happen.

7.2 Conclusion

This thesis presents Fide-applying Goal-oriented programming to enhance hardware

design. Goals represent the decision points in the hardware implementation decision

logic and Techniques represent the recipes to implement the circuit. By exploiting the

explicit seperations of the decision logic and the implementation chocies, the Planner

is able to generate an implementation of the target circuit automatically. Users' pref-

erences can be added to generate circuits for different scenarios: for different hardware

environments, under different circuit constraints, or different implementation criteria

etc. A Beta processor is implemented using Fide. The qualities of the implementation

is comparable and a logic minimization to those optimized manually.

Appendix A

The Planner GUI

Before the users can specify the refinements, they need a thorough understanding of

the properties of the current design. Fide has a Planner Viewer that allows the user

to explore the Plan Tree and current design.

1. The Plan Tree is presented as a collapsable tree to ease browsing. The tree

nodes are colored for easy identification. The chosen Techniques are in blue,

the failing Techniques with fail reasons are in red, the VirtualGoalNode are in

grey, and the remaining nodes in black. The reused components are marked as

"reused".

2. The users can choose to display the Goal Properties, Goal Parameters, Satis-

faction values and Satisfaction formula on the tree node.

3. A search tree control is provided to quickly find any node in a huge tree.

4. The subgoals in an array, which are of the same type, are represented as one

node with the array size shown to save space and memory.

5. By right-clicking the VirtualGoalNode (shared Goals/reused components), the

Viewer highlights the "original" Goals where the VirtualGoalNode copies the

Goal Properties from. The users can then retrieve the subtree information of

the "original" Goal. In the other way round, by selecting "show reuse" on the

"original" Goal, all parent Techniques of the related VirtualGoalNodes are

colored orange. This is to ease verifying whether Goal sharing is appropriate

for each parent Technique.

6. To get a quick understanding of the Plan chosen, the users can choose to show

the chosen nodes only.

7. The users can view multiple Plan Trees side-by-side. This is useful for comparing

the same circuit with different constraints/requirements, or taking references

from other designs etc.

8. It has a statistics panel listing all the Goals with the number of occurance.

9. By choosing "show Technique code" for the highlighted Technique, the Viewer

displays the corresponding Technique script.

10. It has a commit panel showing the implementation generated.

11. It includes user interfaces for modifying the design.

The followings are the screenshots of the GUI.

Figure A-i: Asserting the Addition Goal.

I

Pn T s v e s

LWe ttee\VIew Modify WfindQW
tree: processor

T: type l (delay=0.6, cost= 4347) Alj
G: Compare(width=32 ,db=<db.Comp_db instar Select node frothetree:

T:typel(delay=0.4, cost=113) chnique
Name: RCA
Properties: delay=4.52, cost=3104

G: Add(width=32 ,db=<db.Comp_db instance a
T: typel (delay=4,52, cost=4238)
> G: z_logic(width=32 ,db=<db,Comp_db inst

> G: v_output(width=32 ,db=<db.Comp_db in
G: Adder(width=32 carryin=0 ,db=<db,Co

G: FullAdder (array=32)(db=<db Comp
T: ksa odd (delay=0D.68, cost=6288)

G: NegPosCarryOp (array=75)(db=<dbj
G: PosNegCarryOp (array=54)(db=<db .
S: NegFullAdder(db=c<db .omp_db ins
ST: typel (c_delay=0.1, s_delay=0.28,;

G: FullAdder(db= < db.Comp_db ins

L G: XOR3 (array=31)(db=<db.Comp_db
SG NegHalfAdder (array=3l)(db=<db.C1 :

T: ksa_even [fail: the width is not even] (d(j

Search tree:
Adder

Parameterized: False
Subgoals FullAdder

Remove 1View code

Name ksa odd
Perties: delay=0.68, cost=6288
Paaeterized as

Subgoals NegPosCarryop,PosNeg
NegHalfAdder NOT

Remove VMew code

CarryOp, NegFullAdder, XOR3,

Figure A-2: The information panel showing the nodes properties.

'~'~"I"I^"I~-I"~-Illll~l-_-_ill-· lil^LL-_~~Lli_~~ii__-tll-iliiliii__Llii

es I Statistic I Hints history]

;"

. :. .. : t •r
¸
: : >

" G: processor(width=32, db=<db.Comp_db instance at Ox8cd5a6c>)
T: beta (delay=18.5. cost=266210)

- G: memory(nlocations= 1024 ,width=32 ,db=<db.Comp_db instar
T: one_port (delay=4.29, cost=233953)

C G: memport_mux(width=32 ,db=<db.Comp_db instance at(
ST: typel (delay=0.29. cost=1593)

G: THStates (array=64)(db=<db.Comp_db Instance at Oxi
T: typel (delay-0.15, cost=23)

- G: Mux (array=3)(width=2 ,db=<db.Comp_db instance al
T: typel (delay=0.12, cost=27)

G: NOT (array=2)(db=<db.Comp_db instance at Ox8cd5a
G: NOR (array=2)(width=2 ,db=<db.Comp_db Instance a

T: two port (delay=4, cost=265340)
v G: beta(wldth=32 ,db=<db.Comp_db instance at Ox8cd5a6c>)

" T: unpiplined (delay= 14.21, cost=32257)

C G: pcselz(width=32 ,db=<db.Comp_db instance at OxScd5aE
O T: typel (delay=0.33, cost=113)

G: PC(width=32 ,db=<db.Comp_db Instance at Ox8cd5a6c>)
P T: typel (delay=4.48, cost=3917)

SG: dreg (array= 30)(width=0 ,db=<db.Comp_db instance

C G: Incrementer(width=32 ,db=<db.Comp_db instance at
ST: adder (delay=4.06. cost= 1373)

C G: HA (array=29)(db=<db.Comp_db Instance at 0x8(

ST: typel (delay=1.03, cost=17834)
C G: boole(width=32 ,db=<db.Comp_db instance at Oxae285cc>)
w T: typel (delay=0.19, cost=2112)

P G: Mux (array=32)(width=4 ,db=<db.Comp_db instance at Oxae285cc>)
- G: shifter(width=32 ,db=<db.Comp_db Instance at Oxae285cc>)

0 T: two (delay=0.72, cost=9531)
- T: one (delay=0.84, cost=6075)

C G: Compare(width=32 ,db=<db.Comp_db instance at Oxae285cc>)
v T: typel (delay=0.4, cost= 113)

r G: Add(width=32 ,db=<db.Comp_db instance at Oxae285cc>)

Figure A-3: Viewing two Plan Trees side-by-side.

JG: 32~~aaaip~grssaasag

74x86 (XOR)

74x21 (4-input AND)
74x11 (3-input AND)

74x32 (2-input OR)

74x04 (NOT)

74x08 (2-input AND)

Figure A-4: Choosing the hardware package.

Figure A-5: Changing the satisfaction formula.

Chang Satsfacion @graioso

Goal
IAddition
Goal Satisfaction-
Cost Delay

59

Change satisfacion Custom sadsfaction

QK X Canceli

I: unpipllneu utCely= Lu.It, LUbL=

0 G: pcselz(width=32 ,db=<db.Comp_db instance at Ox8cd3ca
> G: PC(width=32 ,db= <db.Comp_db instance at Ox8cd3cac>)
0 G: reg(width=32 ,db=<db.Comp_db instance at Ox8cd3cac>

> G: ctl(width=32 ,db=<db.Comp_db instance at Ox8cd3cac>)
> G: pcmux(width=32 ,db=<db.Comp_db instance at Ox8cd3ca

G: ALU(width=32 ,db=<db.Comp_db instance at Ox8cd3cac>
v T: typel (delay= 1.03, cost= 17834)

> G: boole(width=32 ,db=<db.Comp_db instance at Ox8cd
- G: shifter(width=32 ,db=<db.Comp_db instance at Ox8cc

v T: two (delay=0.72, cost=9531)

> G: leftshifter(width=32 ,db=<db.Comp_db instance a
> G: rightshifter(width=32 ,db=<db.Comp_db instance

- T: one (delay=0.84, cost=6075)

G: leftshifter(width=32 ,db=<db.Comp_db instance a
0 G: Compare(width=32 .db=<db.Comp_db instance at Oxl

ý G: Add(width=32 ,db=<db.Comp_db instance at Ox8cd3c
v T: pipeline (delay=5,68, cost=43024)

> G: buffer_2 (array=32)(db=<db.Comp_db instance at Ox8cd3J

Figure A-6: Searching the tree, the search results are colored green.

Pn T s V ei

G: memory(nlocations= 1024 ,width=32 ,db=<db.Comp_db instance at Ox8cd5a6c>)
T: one_port (delay=4.29, cost=233953)

G: mem_port_mux(width=32 ,db=<db.Comp_db instance at 0x8cd5a6c>)
V T: typel (delay=0.29, cost=1593)

ý G: TriStates (array= 64)(db=<db.Comp_db instance at Ox8cd5a6c>)
V G: Mux (array=3)(wldth=2 ,db=<db.Comp_db instance at Ox8cd5a6c>)
0 G: NOT (array=2)(db=<db.Comp_db instance at Ox8cd5a6c>)
l> G: NOR (array=2)(width=2 ,db=<db.Comp_db instance at OxBcd5a6c>)

V G: beta(width=32 ,db=<db.Comp_db instance at Ox8cd5a6c>)
V T: unpiplined (delay= 14.21, cost=32257)

G G: pcselz(width=32 ,db=<db.Comp_db instance at OxBcd5a6c>)
? G: PC(width=32 ,db=<db.Comp_db instance at Ox8cd5a6c>)

G G: reg(width=32 ,db= <db.Comp_db instance at Oxacd5a6c>)

> G: ctl(width=32 ,db=<db.Comp_db instance at OxBcd5a6c>)
1 G: pcmux(width=32 ,db=<db.Comp_db instance at Ox8cd5a6c>)
> G: ALU(width=32 ,db=<db.Comp_db instance at Ox8cd5a6c> ,func=[])

Ic SearchC :~~ ~ ~ ~ ~~~ ~~~~ ~

Figure A-7: Displaying the chosen nodes only to ease browsing the chosen Plan.

·-· :-~~··i-~~~-·-:·~;;·;- ;-- ··-- ·;··-·-I-I~··-·--:-···:-~--·--·~~···

Pla Tre Viwe <@erai a

file Re1#iw Mdf rn

tree: processor iXI

G: NegPosCarryOp (array=75)(db=<db.
SG: PosNegCarryOp (array=54)(db=<db.

G: NegFullAdder(db=<db.Comp_db inst
ST: typel (c_delay=0.1, sdelay=0.28,

G: FullAdder(db=<db Comp db ins i

SG: XOR3 (array=31l)(db=<db.Compdb
G: NegHalfAdder (array= 31)(db=<db.Cc

T: ksa_even [fail: the width is not even] (de

Search tree:

infrmtin omit epndncesStatsi Hnshitr

item I count ISG: leftshifter(width=32 ,db=<db.Comp_db ir
I T: typel (delay=0.6, cost=4320)

SG: rightshifter(width= 32 ,db= <db.Comp_db
I T: typel (delay=0.6, cost=4347)

G: Compare(width=32 ,db=<db.Comp_db instar
T: typel (delay=0.4, cost= 113)

G: Add(width=32 ,db=<db.Comp_db instance al
ST: typel (delay=4.52, cost=4238)

G: zlogic(width=32 ,db=<db.Comp_db inst

I G: v_output(width=32 ,db=<db.Comp_db in
SG: Adder(width=32 carryin=0 db=<db.Cor

ST: RCA (delay=4.52. cost=3104)
' G: FullAdder (array=32)(db= <db Comp_

PosNegCarryop(db=<db.Compdb in

p db instance at Ox8cd5a6c>)

Figure A-8: The statistics panel listing all the Goals with the number of occurance.

.ý18'm 4e'e', " , , , , -, .I .. - -1-1 ., , - -1 .1.1 ý - .1 1.

I

Number of nodes
Number of goals
Number of techniques
Number of failing techniques
ALU(width=32, db= <db.Comp_db instance at Ox8cd5a6c>, func=[])
Mux(width=4, db= <db.Comp_db instance at Ox8cd5a6c>)
shifter(width=32, db=<db.Comp_db instance at OxBcd5a6c>)
NegFullAdder(db= <db.Comp_db instance at Oxacd5a6c>)
OAl(db= < db.Compdb instance at Ox8cd5a6c>)
PC(width=32, db=<db.Comp_db instance at Ox8cd5a6c>)
Mux(width=2, db= <db.Comp_db instance at Ox8cd5a6c>)
Compare(width=32, db=<db.Comp_db instance at Ox8cd5a6c>)
NegHalfAdder(db= <db.Comp_db instance at Ox8cd5a6c>)
zlogic(width=32, db=<db.Comp_db instance at Ox8cd5a6c>)
memportmux(width=32, db=<db.Compdb instance at OxBcd5a6c>)
NAND(width=4, db=<db.Comp_db instance at Ox8cd5a6c>)
ctl(width=32, db=<db.Compdb instance at OxBcd5a6c>)
buffer_2(db=<db.Comp_db instance at Ox8cd5a6c>)
rightshifter(width=32, db= <db.Comp_db instance at Ox8cd5a6c>)
NegPosCarryop(db=<db.Compdb instance at Ox8cd5a6c>)
XNOR(width=0, db=<db.Comp_db instance at Ox8cd5a6c>)
NOT(db=<db.Comp-db instance at Ox8cd5a6c>)
NOR(width=4, db=<db.Comp_db instance at Oxecd5a6c>)
leftshifter(width= 32, db=<dbComp_db instance at Ox8cd5a6c>)
TriStates(db= <db.Comp_db instance at OxScd5a6c>)
AOI(db= <db.Comp_db instance at OxBcd5a6c>)
HA(db=<db.Comp_db instance at Oxscd5a6c>)
Add(width=32, db=<db.Comp_db instance at Ox8cd5a6c>)
FullAdder(db= <db.Comp_db instance at Ox8cd5a6c>)
memory(nlocations= 1024, width=32, db=<db.Compdb instance at Ox8cd5a...
pcselz(width=32, db= <db.Comp_db instance at Ox8cd5a6c>)

Iq Adder +

Figure A-9: The VirtualGoalNodes in grey, the original Goal node highlighted and
the parent Techniques of the sharing nodes in orange.

74

v G: leftshifter(width=32 ,db=<db.Comp_db
t~ T: typel (delay=0.6, cost=4320)
G: rightshifter(width=32 ,db=<db.Comp_di

j T: typel (delay=0.6, cost=4347)
G: Compare(width=32 ,db=<db.Comp_db insta

v T: type1 (delay=0.4, cost=113)

G: Add(width=32 ,db=<db.Comp_db instance
" T: typel (delay=4.52, cost=4238)

ý G: z_logic(width=32 ,db=<db.Comp_db in

P G: v_output(width=32 ,db=<db.Comp_db ir
" G: Adder(width=32 ,carryin=O .db=<db.Cor

vT: RCA (delay=4.52, cost=3104)
> G: FullAdder (array= 32)(db=<db,Comp_

G: NegPosCarryOp (array= 75)(db=<db
G: PosNegCarryOp (array=54)(db=<db
G: NegFulIAdder(db=<cdbComp_db insi

" T: typel (c_delay=0.1. s_delay=0.28,
G: FullAdder(db=<db.Comp_ db ins

I G: XOR3 (array= 31)(db=<db.Comp_db
• G: NegHalfAdder (array= 31)(db= <db.C

T: ksaeven [fail: the width is not even] (

first:
solution.delay = 0
solutioncost = 0
self.level = int(math.log(goal.width, 2))
if (math.cell(self.level) - math.log(goal.width, 2)) != 0:

planner.fail("not power of 2!")

if self.level % 2 == 0:
planner.fail("the width is not odd")

self.posneg = math.floor(self,level/2)
self.negpos = self.posneg + 1
firstpos = False
self.posnegno = 0
self.negposno = 0
self.notno = 0
for i in range(self.level):

lbit = 2 ** i
if first_pos:

self.posnegno += goal.width - Ibit
self.notno += Ibit * 2

else:
self.negposno += goal.width - Ibit
self.notno += Ibit * 2

first_pos = not first_pos

subgoals:
not gate = subgoal_array(goal= NOT, number= self.notno, db= goal.db)

subgoals:
ha = subgoal_array(goal=NegHalfAdder, number= goal.width-1, db= goal.db)

subgoals:
fa = NegFullAdder(db=goal.db)

subgoals:
pnco = subgoal_array(goal=PosNegCarryOp, number=self.posnegno, db=goal.db)

subgoals:
npco = subgoal_array(goal= NegPosCarryOp, number= self.negposno, db= goal.db)

subgoals:
xor3 = subgoal_array(goal=XOR3, number= goal.width-1, db= goal.db)

eval:

Add(

Figure A-10: Showing the Technique script.

-ý-rdd 1 d ýý 1,12-i~as ~9

Appendix B

Goal Specifications and Technique

Scripts

Adder.goal

name: Adder
properties:delay cost
functional attributes: width=0 pin=0] carryin=0O
non-functional attributes: costvsdelay=0 Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs.delay + delay * (1 - cost vs_delay))

AdderRCA.teq

from jsimtest import adderRCA
to Adder(width, pin, carryin, db, Benmark, cost_vs_delay):

via RCA:

first:

solution.delay = 0

solution.cost = 0

if goal.width < 5:
planner.fail("ripple carry adder fails: width < 5")

subgoals:
fas = subgoalarray(goal=FullAdder, number=goal.width, db=goal.db,

costvsdelay=goal.costvsdelay,
Benmark=goal.Benmark)

eval:
for fa in subgoals.fas:

solution.delay += fa.sdelay

solution.cost += subgoals.fasl0].cost * goal.width

commit:
sub_comp = {"fulladder": subgoals.fas[0]. component}
fa = adderRCA("rca", component=sub_comp, parameters={"width" :goal.width})
fa.initialize()
solution.component = fa.instantiate()

Adderlksaeven.teq

from jsim.test import koggeStoneAdder
import math
to Adder(width, pin, carryin, cost_vsdelay, Benmark, db):

via ksa_even:

first:
solution.delay = 0
solution.cost = 0
self.level = int(math.log(goal.width, 2))
if (math.ceil(self.level) - math.log(goal.width, 2)) != 0:

planner.fail("not power of 2!")
if self.level %/ 2 == 1:

planner.fail("log(width) is not even")
self.posneg = self.level/2
self.negpos = self.level/2 #odd + 1
first_pos = True
self.posnegno = 0
self.negposno = 0
self.notno = 0
for i in range(self.level):

lbit = 2 ** i
if first_pos:

self.posnegno += goal.width - ibit
self.notno += lbit * 2

else:
self.negposno += goal.width - ibit
self.notno += lbit * 2

firstpos = not firstpos

subgoals:
not-gate = subgoalarray(goal=gate_fixwidth, number=self.notno,

func="not", db=goal.db,
cost_vs_delay=goal.cost_vs_delay,

Benmark=goal.Benmark)
subgoals:

ha = subgoalarray(goal=HalfAdder, number=goal.width-i, db=goal.db,

costvsdelay=goal.costvs-delay,
Benmark=goal.Benmark)

subgoals:
fa = FullAdder(db=goal.db, costvsdelay=goal.cost_vs_delay,

Benmark=goal.Benmark)

subgoals:
pnco = subgoal_array(goal=PosNegCarryOp, number=self.posnegno, db=goal.db,

cost-vsdelay=goal.cost vs_delay,
Benmark=goal.Benmark)

subgoals:
npco = subgoal_array(goal=NegPosCarryOp, number=self.negposno, db=goal.db,

costvs-delay=goal.cost_vsdelay,
Benmark=goal.Benmark)

subgoals:
xor3 = subgoal-array(goal=XOR3, number=goal.width-1, db=goal.db,

cost-vsdelay=goal.cost_vsdelay,
Benmark=goal.Benmark)

eval:
solution.cost = subgoals.ha0] .cost * (goal.width-1) + \

subgoals.fa.cost + subgoals.pnco[O].cost * self.posnegno + \
subgoals.npco[O] .cost * self.negposno + \
subgoals.notgate [0] .cost * \
self.notno + subgoals.xor3[O].cost * (goal.width-i)

solution.delay = subgoals.ha[0].delay + subgoals.pnco[O].delay * self.posneg\
+ subgoals.npco [0]. delay * self.negpos + subgoals.xor3 [0] .delay

commit:
sub-comp = {"halfadder": subgoals.ha[0]. component,

"fulladder": subgoals.fa.component,
"posnegcarryop": subgoals.pnco [0]. component,
"negposcarryop": subgoals.npco [0] .component,
"xor3": subgoals.xor3 [0].component,
"inverter": subgoals.not_gate [0]. component}

fa = koggeStoneAdder("sub_adder", component=sub comp, parameters={"width":32})
fa.initialize()
solution.component = fa.instantiate ()

Adderksa_odd.teq

from jsimtest import koggeStoneAdder
import math
to Adder(width, pin, carryin, cost_vsdelay, Benmark, db):

via ksa_odd:

first:
solution.delay = 0
solution.cost = 0

self.level = int(math.log(goal.width, 2))
if (math.ceil(self.level) - math.log(goal.width, 2)) != 0:

planner.fail("not power of 2!")

if self.level % 2 == 0:
planner.fail("log(width) is not odd")

self.posneg = math.floor(self.level/2)
self.negpos = self.posneg + 1
firstpos = False
self.posnegno = 0
self.negposno = 0
self.notno = 0
for i in range(self.level):

ibit = 2 ** i
if firstpos:

self.posnegno += goal.width - lbit
self.notno += lbit * 2

else:
self.negposno += goal.width - lbit
self.notno += lbit * 2

firstpos = not firstpos

subgoals:
not_gate = subgoal_array(goal=gatefix_width, number=self.notno,

func="not", db=goal.db,
cost_vs delay=goal.cost-vsdelay,
Benmark=goal.Benmark)

subgoals:
ha = subgoal_array(goal=NegHalfAdder, number=goal.width-i, db=goal.db,

costvs_delay=goal.cost_vsdelay,
Benmark=goal.Benmark)

subgoals:
fa = NegFullAdder(db=goal.db,

cost_vsdelay=goal.costvsdelay,
Benmark=goal.Benmark)

subgoals:
pnco = subgoalarray(goal=PosNegCarry0p, number=self.posnegno, db=goal.db,

cost_vs_delay=goal.costvsdelay,
Benmark=goal.Benmark)

subgoals:
npco = subgoalarray(goal=NegPosCarry0p, number=self.negposno, db=goal.db,

costvs_delay=goal.costvs_delay,
Benmark=goal.Benmark)

subgoals:
xor3 = subgoal_array(goal=XOR3, number=goal.width-1, db=goal.db,

costvsdelay=goal.cost-vs.delay,
Benmark=goal.Benmark)

eval:
solution.cost = subgoals.ha[0].cost * (goal.width-1) + subgoals.fa.cost + \

subgoals.pnco[0) .cost * self.posnegno + subgoals.npco [0] .cost * \
self.negposno + subgoals.not-gate[0].cost * self.notno + \
subgoals.xor3[0] .cost * (goal.width-1)

solution.delay = subgoals.ha[0).delay + subgoals.pnco[0].delay * self.posneg\
+ subgoals.npco [0] .delay * self.negpos + subgoals.xor3[0] .delay

commit:
sub_comp = {"neghalfadder": subgoals.ha[0].component,

"negfulladder": subgoals.fa.component,

"posnegcarryop": subgoals.pnco [0]. component,
"negposcarryop": subgoals.npco [0] .component,
"xor3": subgoals.xor3[0. component,

"inverter": subgoals.notgate [0] component}
fa = koggeStoneAdder("subadder", component=sub_comp, parameters={"width":32})
fa. initialize()
solution.component = fa.instantiate()

Adder_CSA.teq

from addcost import addingcost
from jsimtest import adderRCA-CSAlo, adderRCA_CSAhi, \
adderCSAlo, adderCSAhi, adderCSAhihi

def compute.breakpoint(width, number, goal):

result = []
for i in range(number):

bp = goal.width * 1/2 + i
pin_set = goal.pin[:bp]
result.append([bp, pin_set])

return result

to Adder(width, pin, carryin, db, cost_vs_delay, Benmark):
via CSA:

first:
solution.delay = 0
solution.cost = 0

choice:
self.break_choice = choose(choice_list=compute_breakpoint(goal.width, 2, goal))

eval:
self.breakpoint = self.break_choice[O]
self.pin_set = self.break_choice[l]
self.second_pin_set = goal.pin[self.breakpoint:]
self.second_breakpoint = goal.width - self.breakpoint

if self.breakpoint <= 2 or self.second_breakpoint <= 2:
planner.fail("Width too narrow to divide further!")

subgoals:
mux = Mux(width=2, db=goal.db, cost_vs_delay=goal.cost_vs_delay,

Benmark=goal.Benmark)

subgoals:
csal = Adder(width=self.breakpoint, pin=self.pin_set, carryin=goal.carryin,

db=goal.db, cost_vs_delay=goal.cost_vs_delay,
Benmark=goal.Benmark)

subgoals:
csa2 = Adder(width=self.secondbreakpoint, pin=self.second_pin_set, carryin=O,

db=goal.db, cost_vs_delay=goal.cost_vs_delay,
Benmark=goal.Benmark)

subgoals:
csa3 = Adder(width=self.second_breakpoint, pin=self.second_pin_set, carryin=1,

db=goal.db, cost_vs_delay=goal.cost_vs_delay,
Benmark=goal.Benmark)

eval:
solution.cost = adding_cost(planner, subgoals.mux, subgoals.csal,

subgoals.csa2, subgoals.csa3)
solution.delay = max(subgoals.csal.delay, subgoals.csa2.delay,

subgoals.csa3.delay) + subgoals.mux.delay

commit:
if subgoals.csa2.is_virtual or subgoals.csa3.is_virtual:

solution.component = {}
elif not subgoals.csa2.is_shared and not subgoals.csa3.is_shared:

if subgoals.csa2.component.name.find("CSA") == -1 and \
subgoals.csal.component.name.find("CSA") == -1:

sub_comp = {"sub_adder": subgoals.csal.component,

"mux2": subgoals.mux.component}
fa = adderRCA_CSAlo("adderlo"+str(goal.width),

component=sub comp,
parameters={"width" :goal.width,

"divide":self.breakpoint-1})
fa.initialize()
solution.component = fa.instantiate()

else:
if subgoals.csa2.component == {}:

hi_comp = subgoals.csa3.component
else:

hi_comp = subgoals.csa2.component
sub_comp = {"csa_lo": subgoals.csal.component,

"csa_hi": hi_comp,
"mux2": subgoals.mux.component}

fa = adder_CSAlo("adderlo"+str(goal.width),
component=sub_comp,
parameters={"width" : goal.width,

"divide":self.breakpoint-1})
fa.initialize()
solution.component = fa.instantiate()

elif subgoals.csa2.is_shared or subgoals.csa3.is_shared:
if subgoals.csa2.component.name.find("CSA") == -1 and \

subgoals.csal.component.name.find("CSA") == -1:

sub_comp = {"sub_adder": subgoals.csal.component,
"mux2": subgoals.mux.component}

fa = adderRCA_CSAhi("adderhi"+str(goal.width),
component=subcomp,
parameters={"width" : goal.width,

"divide":self.breakpoint-1})
fa.initialize()
solution.component = fa.instantiate()

elif subgoals.csal.component.name.find("hi") != -1:

hi_comp = subgoals.csal.component
sub_comp = {"csa_hi": hi_comp,

"mux2": subgoals.mux.component}

fa = adder_CSAhihi("adderhi"+str(goal .width),
component=sub_ comp,
parameters={"width":goal.width,

"divide":self.breakpoint-1})
fa.initialize()
solution.component = fa.instantiate()

else:
if subgoals.csa2.component == {}:

hi_comp = subgoals.csa3.component

else:

hi_comp = subgoals.csa2.component

sub_comp = {"csa_lo": subgoals.csal.component,
"csa_hi": hi_comp,
"mux2": subgoals.mux.component}

fa = adderCSAhi("adderhi"+str(goal.width),
component=sub comp,

parameters={"width":goal.width,

"divide":self.breakpoint-1})

fa.initialize()

solution.component = fa.instantiate()

Add.goal

name :Add
properties:delay cost

functional attributes: width=O
non-functional attributes: cost_vs_delay=O Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

Addtypel.teq

from jsim_test import adder
to Add(width, db, Benmark, cost_vs_delay):

via typel:

first:

solution.cost = 0

solution.delay = 0

self.pin = []

for i in range(goal.width):

self.pin.append(i)

subgoals:

adder = Adder(width=goal.width, pin=self.pin, carryin=0, db=goal.db,

cost_vs_delay=goal.cost_vs_delay,
Benmark=goal.Benmark)

subgoals:

v_output = v_output(width=goal.width, db=goal.db,

cost_vs_delay=goal.cost_vs_delay,
Benmark=goal.Benmark)

z_output = z_logic(width=goal.width, db=goal.db,

cost_vs_delay=goal.cost_vs_delay,

Benmark=goal.Benmark)

xor_array = subgoal_array(goal=gate_width, width=2, number=goal.width,
func="xor", db=goal.db,
cost_vs_delay=goal.cost_vs_delay,

Benmark=goal.Benmark)
eval:

solution.cost = subgoals.adder.cost + subgoals.v_output.cost + \

subgoals.zoutput.cost + subgoals.xorarray[0] .cost *\

len(subgoals.xor_array)

solution.delay = subgoals.adder.delay

commit:

sub_comp = {"sub_adder": subgoals.adder.component,
"zcircuit": subgoals.z_output.component,
"v_circuit": subgoals.v output.component,

"xor2": subgoals.xor_array[0] . component}

fa = adder("adder32", component=subcomp,
parameters={"width":goal.width})

fa. initialize()
solution.component = fa.instantiate()

ALU.goal

name:ALU

properties:delay cost

functional attributes: width=0

non-functional attributes: cost_vsdelay=0 Benmark=False db=None
evaluation:

if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

ALUtypel.teq

from jsim_test import ALU
to ALU(width, db, Benmark, cost_vs_delay):

via typel:

first:

solution.cost = 0
solution.delay = 0

subgoals:

add = Add(width=goal.width, db=goal.db,
cost_vs_delay=goal.cost_vs_delay,

Benmark=goal.Benmark)

subgoals:

boole = boole(width=goal.width, db=goal.db,
cost_vs_delay=goal.cost_vs_delay,

Benmark=goal.Benmark)

subgoals:

shift = shifter(width=goal.width, db=goal.db,
cost_vs_delay=goal.cost_vs_delay,

Benmark=goal.Benmark)

subgoals:

compare = Compare(width=goal.width, db=goal.db,
cost_vs_delay=goal.cost_vs_delay,

Benmark=goal.Benmark)
subgoals:

mux_array = subgoalarray(goal=Mux, number=goal.width, width=4,
db=goal.db, cost_vs_delay=goal.cost_vs_delay,

Benmark=goal.Benmark)
eval:

solution.cost = subgoals.add.cost + subgoals.boole.cost + \
subgoals.shift.cost + subgoals.compare.cost + \

subgoals.mux_array [0] .cost *goal.width

solution.delay = max(subgoals.add.delay, subgoals.shift.delay) + \
subgoals.muxarray[0].delay

commit:

sub_comp = {"mux4": subgoals.mux_array[0] .component,

"adder": subgoals.add.component,

"boole": subgoals.boole.component,

"shift": subgoals.shift.component,

"compare": subgoals.compare.component}

fa = ALU("alu", component=sub_comp, parameters={"width":goal.width})
fa.initialize()

solution.component = fa.instantiate()

beta.goal

name :beta

properties:delay cost

functional attributes: width

non-functional attributes: cost_vs_delay=0 Benmark=False db=None

evaluation:

if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

beta_pipelined.teq

from jsimtest import betapipe

to beta(width, cost_vs_delay, Benmark, db):
via pipeline:

first:
solution.delay = 0
solution.cost = 0

subgoals:
pc = PC(width=goal.width, db=goal.db, Benmark=goal.Benmark,

cost_vsdelay=goal.costvssdelay)

subgoals:
ctl = ctl(width=goal.width, db=goal.db, Benmark=goal.Benmark,

cost-vsdelay=goal.cost_vs.delay)

subgoals:
regfile = reg(width=goal.width, db=goal.db, Benmark=goal.Benmark,

costvsdelay=goal.costvsdelay)

subgoals:
alu = ALU(width=goal.width, db=goal.db, Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vsdelay)

subgoals:
mux2_array = subgoalarray(goal=Mux, number=goal.width * 2 + 5,

width=2, db=goal.db,
Benmark=goal.Benmark,
costvs_delay=goal.costvs_delay)

mux4_array = subgoal_array(goal=Mux, number=goal.width,
width=4, db=goal.db,
Benmark=goal.Benmark,
cost_vsdelay=goal.costvsdelay)

dreg-array = subgoal_array(goal=gate_fix_width, number=goal.width,
func="dreg", db=goal.db,
Benmark=goal.Benmark,
cost_vsdelay=goal.costvsdelay)

buffer_array = subgoal_array(goal=gate fix_width, number=goal.width,
func="buffer_2", db=goal.db,
Benmark=goal.Benmark,
costvsdelay=goal.cost_vsdelay)

subgoals:
pcmux5 = pcmux(width=goal.width, db=goal.db,

Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

subgoals:

pcselz = pcselz(width=goal.width, db=goal.db,

Benmark=goal.Benmark,

cost_vs_delay=goal.cost vsdelay)

subgoals:

zoutput = zlogic(width=goal.width, db=goal.db,

Benmark=goal.Benmark,

cost vsdelay=goal.costvsdelay)

eval:

solution.delay += subgoals.alu.delay + \
max(subgoals.pcmux5.delay, subgoals.ctl.delay +

subgoals.regfile.delay) + \

subgoals.mux4_array[O] .delay

solution.cost += subgoals.pc.cost + subgoals.ctl.cost + \

subgoals.regfile.cost + subgoals.alu.cost +\

subgoals.mux2_array[O].cost * (goal.width*2+5) \

+ subgoals.mux4_array[O].cost * goal.width + \

subgoals.pcselz.cost + subgoals.pcmux5.cost\

+ subgoals.zoutput.cost + \

subgoals.dregarray[O].cost *goal.width + \
subgoals.bufferarray[0] .cost * goal.width

commit:

subcomp = {"pc": subgoals.pc.component,
"ctl": subgoals.ctl.component,

"regfile": subgoals.regfile.component,

"alu": subgoals.alu.component,

"mux2": subgoals.mux2_array[0] .component,

"mux4": subgoals.mux4_array[0].component,
"pcmux5": subgoals.pcmux5.component,

"pcselz": subgoals.pcselz.component,

"z_output": subgoals.z output.component,

"dreg": subgoals.dregarray[0].component,

"buffer_2": subgoals.buffer_array[O] .component}

fa = beta_pipe("beta", component=sub_comp, parameters={"width"'' :goal.width})

fa.initialize()

solution.component = fa.instantiate()

beta_unpipelined.teq

from jsim_test import beta_unpipe
to beta(width, cost_vs_delay, Benmark, db):

via unpiplined:

first:
solution.delay = 0
solution.cost = 0

subgoals:
pc = PC(width=goal.width, db=goal.db, Benmark=goal.Benmark,

cost-vsdelay=goal.costvs-delay)

subgoals:
ctl = ctl(width=goal.width, db=goal.db, Benmark=goal.Benmark,

cost_vsdelay=goal.costvs.delay)

subgoals:
regfile = reg(width=goal.width, db=goal.db, Benmark=goal.Benmark,

cost_vsdelay=goal.costvs.delay)

subgoals:
alu = ALU(width=goal.width, db=goal.db, Benmark=goal.Benmark,

cost_vsdelay=goal.costvs-delay)

subgoals:
mux2_array = subgoalarray(goal=Mux, number=goal.width * 2 + 5,

width=2, db=goal.db, Benmark=goal.Benmark,
cost_vs_delay=goal.cost-vs_delay)

mux4_array = subgoal_array(goal=Mux, number=goal.width, width=4,
db=goal.db, Benmark=goal.Benmark,
costvs-delay=goal.costvsdelay)

subgoals:
pcmux5 = pcmux(width=goal.width, db=goal.db,

Benmark=goal.Benmark,
cost_vsdelay=goal.costvs_delay)

subgoals:
pcselz = pcselz(width=goal.width, db=goal.db,

Benmark=goal.Benmark,
cost_vs delay=goal.cost_vsdelay)

subgoals:
z_output = z_logic(width=goal.width, db=goal.db,

Benmark=goal.Benmark,
costvsdelay=goal.cost_vs-delay)

eval:
solution.delay += subgoals.pc.delay + subgoals.alu.delay + \

max(subgoals.pcmux5.delay, subgoals.ctl.delay +
subgoals.regfile.delay) + \
subgoals.mux4_array[0]. delay

solution.cost += subgoals.pc.cost + subgoals.ctl.cost + \
subgoals.regfile.cost + subgoals.alu.cost +\

subgoals.mux2_array[O] .cost * (goal.width*2+5) + \
subgoals.mux4 array[O].cost + subgoals.pcselz.cost + \
subgoals.pcmux5.cost + subgoals.z_output.cost

commit:
subcomp = {"pc": subgoals.pc.component,

"ctl": subgoals.ctl.component,
"regfile": subgoals.regfile.component,
"alu": subgoals.alu.component,
"mux2": subgoals.mux2 array [0]. component,
"mux4": subgoals.mux4_array[0]. component,

"pcmux5": subgoals.pcmux5.component,
"pcselz": subgoals.pcselz.component,
"zoutput": subgoals.z-output.component}

fa = beta_unpipe("beta", component=sub_comp, parameters={"width":goal.width})
fa. initialize()
solution.component = fa.instantiate()

boole.goal

name:boole
properties:delay cost
functional attributes: width
non-functional attributes: costvsdelay=0 Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * costvsdelay + delay * (1 - cost_vsdelay))

booletypel.teq

from jsimtest import boole
to boole(width, db, Benmark, cost_vs_delay):

via typel:

first:
solution.cost = 0
solution.delay = 0

subgoals:
muxarray = subgoal_array(goal=Mux, number=goal.width,

width=4, db=goal.db,

Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

eval:

solution.cost = subgoals.mux_array[0] .cost * goal.width

solution.delay = subgoals.mux_array[0].delay

commit:

sub_comp = {"mux4": subgoals.mux_array[O].component}

fa = boole("boole32", component=subcomp,

parameters={"width" : goal.width})

fa.initialize()

solution.component = fa.instantiate()

Compare.goal

name :Compare
properties:delay cost
functional attributes: width

non-functional attributes: cost_vs_delay=0O Benmark=False db=None

evaluation:

if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

Comparetypel.teq

from jsim_test import compare

to Compare(width, db, Benmark, cost_vs_delay):

via typel:

first:

solution.cost = 0
solution.delay = 0

subgoals:

xor2 = gatewidth(func="xor", width=2, db=goal.db,
Benmark=goal.Benmark,

cost vs_delay=goal.cost vs_delay)

nor2 = gatewidth(func="nor", width=2, db=goal.db,
Benmark=goal.Benmark,

cost_vs delay=goal.cost vs_delay)
notgate = gate fix width(func="not", db=goal.db,

Benmark=goal.Benmark,

cost_vs delay=goal.costvsdelay)
mux = Mux(width=4, db=goal.db,

Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

eval:
solution.cost = subgoals.xor2.cost + subgoals.nor2.cost + \

subgoals.not_gate.cost + subgoals.mux.cost

solution.delay = subgoals.xor2.delay + subgoals.nor2.delay +\

subgoals.not_gate.delay + subgoals.mux.delay

commit:

sub_comp = {"xor2": subgoals.xor2.component,
"nor2": subgoals.nor2.component,

"inverter": subgoals.not_gate.component,
"mux4": subgoals.mux.component}

fa = compare("compare32", component=sub_comp,
parameters={"width" : goal.width})

fa.initialize()

solution.component = fa.instantiate()

ctl.goal

name:ctl

properties:delay cost

functional attributes: width

non-functional attributes: cost_vsdelay=O Benmark=False db=None

evaluation:

if Benmark:

satisfaction = 1/(delay * cost)

else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

ctLmix.teq

from jsim_test import ctl_mix

from jsim_component import cal_reg

to ctl(width, db, Benmark, cost_vs_delay):

via mix:

first:

solution.delay = 0
solution.cost = 0

subgoals:

nor3_array = subgoal_array(goal=gate_width, number=3,

func="nor", width=3, db=goal.db,

Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

subgoals:

nand2 = gate_width(func="nand", width=2, db=goal.db,

Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

subgoals:
nand3 = gatewidth(func="nand", width=3, db=goal.db,

Benmark=goal. Benmark,

cost-vs-delay=goal.cost_vs_delay)
subgoals:

nand4_array = subgoal_array(goal=gatewidth, number=3,
func="nand", width=4, db=goal.db,
Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)
subgoals:

nor2_array = subgoal_array(goal=gate_width, number=4,
func="nor", width=2, db=goal.db,
Benmark=goal.Benmark,

costvs_delay=goal.costvsdelay)
subgoals:

nor4 = gate width(func="nor", width=4, db=goal.db,
Benmark=goal.Benmark,
costyvsdelay=goal.cost_vsdelay)

subgoals:
not_array = subgoal_array(goal=gate_fix_width, func="not",

number=6, db=goal.db,

Benmark=goal.Benmark,

cost vsdelay=goal.costvsdelay)
subgoals:

xnor = gate-fix.width(func="xnor", db=goal.db,
Benmark=goal.Benmark,

costvs_delay=goal.cost vs_delay)
subgoals:

xorarray = subgoalarray(goal=gate-width, number=2,
func="xor", width=2, db=goal.db,
Benmark=goal.Benmark,
costvsdelay=goal.costvsdelay)

eval:
solution.delay += subgoals.nor3_array[0] .delay + subgoals.nand3.delay + \

subgoals.not_array[0]. delay * 2 + subgoals.nor2_array[Ol] .delay
solution.cost += subgoals.nor3_array[O] .cost * 3 + subgoals.nand2.cost + \

subgoals.nand3.cost + subgoals.nand4_array[O] .cost * 3 + \
subgoals.nor2_array[O] .cost * 4 + subgoals.nor4.cost + \
subgoals.not_array[Ol.cost * 6 + subgoals.xnor.cost + \
subgoals.xor-array[O].cost * 6

c, d = calreg(ports=l, read=l, write=0, width=8, addr=6,
nlocations=64)

solution.delay += d

solution.cost += c

commit:
sub_comp = {"nor3": subgoals.nor3_array[0] .component,

"nand3": subgoals.nand3.component,

"inverter": subgoals.not_array [0] .component,
"nor2": subgoals.nor2_array[0 .component,
"nand2": subgoals.nand2.component,
"xor2": subgoals.xor_array [01 .component,
"nor4": subgoals.nor4.component,
"nand4": subgoals.nand4_array [01 .component,
"xnor2": subgoals.xnor.component}

fa = ctl_mix("ctl", component=sub_comp)
fa.initialize()
solution.component = fa.instantiate()

ctlrom.teq

from jsim_test import ctl_rom
from jsim_component import calreg

to ctl(width, db, Benmark, cost_vs_delay):
via rom:

first:
solution.delay = 0
solution.cost = 0

subgoals:
nor2 = gate_width(func="nor", width=2, db=goal.db,

Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

subgoals:
not_gate = gate_fix_width(func="not", db=goal.db,

Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

eval:
solution.delay += subgoals.nor2.delay + subgoals.not_gate.delay
solution.cost += subgoals.nor2.cost + subgoals.not_gate.cost

c, d = calreg(ports=l, read=l, write=0, width=18, addr=6,
nlocations=64)

solution.delay += d
solution.cost += c

commit:
sub_comp = {"inverter": subgoals.not_gate.component,

"nor2": subgoals.nor2.component}
fa = ctl_rom("ctl", component=sub.comp)
fa.initialize()
solution.component = fa.instantiate()

FullAdder.goal

name :FullAdder
properties:delay cost cdelay sdelay
functional attributes:
non-functional attributes: costvsdelay=O Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * costvs_delay + delay * (1 - costvs_delay))

FullAdder_typel.teq

from jsimtest import fulladder
to FullAdder(db, Benmark, cost_vs_delay):

via typel:

first:
solution.cdelay = 0
solution.sdelay = 0
solution.cost = 0
solution.delay = 0

subgoals:
xor_array = subgoal_array(goal=gate-width, number=2, func="xor",

width=2, db=goal.db, Benmark=goal.Benmark,
costvsdelay=goal.costvsdelay)

nand2_array = subgoalarray(goal=gatewidth, number=3, func="nand",
width=2, db=goal.db,
Benmark=goal.Benmark,
costvsdelay=goal.cost_vsdelay)

nand3 = gate.width(func="nand", width=3, db=goal.db,
Benmark=goal.Benmark,
costvsdelay=goal.costvsdelay)

eval:
solution.c_delay = subgoals.nand2_array[0].delay + subgoals.nand3.delay
solution.s_delay = subgoals.xorarray[O] .delay * 2
solution.cost = subgoals.xorarray[O0.cost * 2 + \

subgoals.nand2_arrayl0] .cost* 3 + subgoals.nand3.cost

solution.delay = max(solution.c_delay, solution.s_delay)
commit:

sub-comp = {"xor2": subgoals.xor_array[0] .component,
"nand2": subgoals.nand2_array[0. component,
"nand3": subgoals.nand3.component}

fa = fulladder("fulladder", component=sub_comp)
fa.initialize()
solution.component = fa.instantiate()

gate_width.goal

name:gate_width
properties:delay cost
functional attributes: func="" width=0
non-functional attributes: costvsdelay=0 Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - costvs.delay))

gate_width_jsim.teq

from jsimcomponent import Connector, Pebble
to gate_width(func, width, Benmark, cost.vsdelay, db):

via jsim:
first:

solution.cost = goal.db.query-cost(goal.func, width=goal.width)
solution.delay = goal.db.querydelay(goal.func, width=goal.width)

commit:
incon = []
for i in goal.width:

in_con.append(Connector(name="in" + str(i)))

out = Connector(name="out")
solution.component = Pebble(goal.func,

input=incon,
output= [out])

gatefixwidth.goal

name:gatefix_width
properties:delay cost
functional attributes: func

non-functional attributes: cost_vs_delay=O Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

gatefixwidth_jsim.teq

from jsim_component import Connector, Pebble
to gate_fix_width(func, db, Benmark, cost_vs_delay):

via jsim:
first:

solution.cost = goal.db.query_cost(func=goal.func)
solution.delay = goal.db.query_delay(func=goal.func)

commit:
in_con = []
width = goal.db.query_width(func=goal.func)
for i in width:

in_con.append(Connector(name="in" + str(i)))

out = Connector(name="out")
solution.component = Pebble(goal.func,

input=in_con,
output= [out])

HA.goal

name :HA
properties:delay cost
functional attributes:

non-functional attributes: cost_vs_delay=O Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

HA_adder.teq

from jsim_test import ha
to HA(db, Benmark, cost_vs_delay):

via adder:

first:
solution.delay = 0
solution.cost = 0

subgoals:

notgate = gatefixwidth(func="not", db=goal.db,

Benmark=goal.Benmark,

cost_vs_delay=goal.cost vs delay)

subgoals:

xor2 = gate width(func="xor", width=2, db=goal.db,
Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

subgoals:

nand2 = gate_width(func="nand", width=2, db=goal.db,
Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

eval:

solution.delay += subgoals.xor2.delay

solution.cost += subgoals.xor2.cost + subgoals.not_gate.cost + \
subgoals.nand2.cost

commit:

sub_comp = {"xor2": subgoals.xor2.component,

"nand2": subgoals.nand2.component,

"inverter": subgoals.not-gate.component}

fa = ha("ha", component=sub_comp)

fa.initialize()

solution.component = fa.instantiate()

Incrementer.goal

name: Incrementer
properties:delay cost

functional attributes: width=0O

non-functional attributes: cost_vsdelay=O Benmark=False db=None

evaluation:

if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

Incrementer_adder.teq

from jsim_test import adder_incrementer

to Incrementer(width, db, Benmark, cost_vs_delay):

via adder:

first:
solution.delay = 0
solution.cost = 0

subgoals:

notgate = gate_fixwidth(func="not", db=goal.db,
Benmark=goal.Benmark,

costvsdelay=goal.costvsdelay)

subgoals:

ha = subgoalarray(goal=HA, number=goal.width-3, db=goal.db,
Benmark=goal.Benmark,

cost_vsdelay=goal.cost vsdelay)

eval:

solution.delay += subgoals.ha[0] .delay * (goal.width-3)

solution.cost += subgoals.ha[O].cost * (goal.width-3) + \
subgoals.notgate.cost

commit:

subcomp = {"ha": subgoals.ha[01 .component,

"inverter": subgoals.not-gate.component}

fa = adder_incrementer("adder_incrementer",
component=sub-comp,

parameters={"width":goal.width})
fa.initialize()

solution.component = fa.instantiate()

Incrementertypel.teq

from jsim_test import incrementer

to Incrementer(width, db, Benmark, cost_vs delay):

via typel:

first:

solution.delay = 0
solution.cost = 0

subgoals:
nand_array = subgoal_array(goal=gate_width, func="nand",

number=goal.width-3, width=2, db=goal.db,

Benmark=goal.Benmark,

costvs_delay=goal.cost_vs_delay)
subgoals:

not_array = subgoal_array(goal=gate_fix_width, func="not",
number=goal.width-3, db=goal.db,

Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

subgoals:
xor_array = subgoal_array(goal=gate_width, func="xor",

number=goal .width-2, width=2,
db=goal. db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

eval:
solution.delay += subgoals.nand_array[O] .delay * (goal.width-3) + \

subgoals.not_array[0] .delay * (goal.width-3) + \
subgoals.xor_array[0] .delay

solution.cost += subgoals.nand_array[O] .cost * (goal.width-3) + \
subgoals.not_array[O].cost * (goal.width-3) + \
subgoals.xor_array[0].cost * (goal.width-2)

commit:
sub_comp = {"nand2": subgoals.nand_array[0 .component,

"inverter": subgoals.not_array [01 .component,
"xor2": subgoals.xor_array[0] .component}

fa = incrementer("incrementer", component=sub_comp,
parameters={"width" :goal.width})

fa.initialize()

solution.component = fa.instantiate()

leftshifter.goal

name: leftshifter
properties:delay cost
functional attributes: width=0
non-functional attributes: cost_vs_delay=0 Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

leftshifter_typel.teq

from jsim_test import leftshifter
import math
to leftshifter(width, db, Benmark, cost_vs_delay):

via typel:

first:

100

solution.cost = 0
solution.delay = 0
self.level = int(math.log(goal.width, 2))

subgoals:
mux_array = subgoal_array(goal=Mux, number=self.level * goal.width,

width=2, db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

eval:
solution.cost = subgoals.mux_array[0].cost * self.level * goal.width
solution.delay = subgoals.mux_array[O].delay * self.level

commit:
sub_comp = {"mux2": subgoals.mux_array[0] .component}
fa = leftshifter("leftshifter", component=sub_comp,

parameters={"width":goal.width})
fa.initialize()
solution.component = fa.instantiate()

memory.goal

name: memory
properties:delay cost
functional attributes: width=O nlocations=0
non-functional attributes: cost_vs_delay=0 Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

memoryoneport.teq

from jsim_test import memory_one
from jsim_component import cal_reg

to memory(width, nlocations, db, Benmark, cost_vs_delay):
via one_port:

first:
solution.delay = 0
solution.cost = 0

subgoals:

101

mem_split = mem_port_mux(width=goal.width, db=goal.db,
Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

eval:

c, d = cal_reg(ports=2, read=2, write=l, width=goal.width,
addr=10, nlocations=goal.nlocations)

solution.delay += d + subgoals.mem_split.delay

solution.cost += c + subgoals.mem_split.cost

commit:

solution.circuit = memory_one(mem_split=subgoals.mem_split.component)

memorytwo_port.teq

from jsim_test import memory_two

from jsimcomponent import cal_reg

to memory(width, nlocations, db, Benmark, cost_vs_delay):

via two_port:

first:

solution.delay = 0
solution.cost = 0

eval:
c, d = cal_reg(ports=3, read=2, write=1, width=goal.width,

addr=l0, nlocations=goal.nlocations)

solution.delay += d

solution.cost += c

commit:
solution.circuit = memorytwo()

mem_port _mux.goal

name: mem_port_mux
properties:delay cost
functional attributes: width=0

non-functional attributes: cost_vs_delay=0 Benmark=False db=None
evaluation:

if Benmark:

satisfaction = 1/(delay * cost)
else:

102

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

memport mux_typel .teq

from jsimtest import mem_port_split
to mem_port_mux(width, db, Benmark, cost_vsdelay):

via typel:

first:
solution.cost = 0
solution.delay = 0

subgoals:
tristate_array = subgoal_array(goal=gate_fix_width,

func="tristate", number=goal.width*2,
db=goal.db, Benmark=goal.Benmark,
cost_vsdelay=goal.costvsdelay)

subgoals:
mux_array = subgoal_array(goal=Mux, number=3, width=2, db=goal.db,

Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vsdelay)

subgoals:
not_array = subgoal_array(goal=gatefix_width, number=2, func="not",

db=goal.db, Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vsdelay)

subgoals:
nor2_array = subgoal_array(goal=gate_width, number=2, func="nor",

width=2, db=goal.db, Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

eval:
solution.cost = subgoals.mux_array[0].cost * 3 + \

subgoals.not_array[O] .cost * 2 + \
subgoals.nor2_array[O].cost * 2 + \
subgoals.tristate_array[0].cost * goal.width * 2

solution.delay = subgoals.mux_array[O] .delay + \
subgoals.not_array[0].delay + \
subgoals.tristate_array[0] .delay

commit:
sub_comp = {"mux2": subgoals.mux_array [0] . component,

"inverter": subgoals .not_array [0] .component,
"nor2": subgoals.nor2_array[0] . component,
"tristate": subgoals .tristate_array[0] . component}

fa = mem_port_split("mem_port", component=sub_comp,
parameters={" width" :32})

103

fa.initialize()
solution.component = fa.instantiate()

Mux5.goal

name: Mux5
properties:delay cost

functional attributes:

non-functional attributes: cost_vs_delay=O Benmark=False db=None \
nlocations=O

evaluation:

if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

Mux5_typel.teq

from jsim_test import mux5

to Mux5(db, Benmark, cost_vs_delay):

via typel:

first:

solution.delay = 0
solution.cost = 0

subgoals:

mux4 = Mux(width=4, db=goal.db, Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

mux2 = Mux(width=2, db=goal.db, Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

eval:

solution.delay += subgoals.mux2.delay + subgoals.mux4.delay

solution.cost += subgoals.mux2.cost + subgoals.mux4.cost

commit:

subcomp = {"mux2": subgoals.mux2.component,
"mux4": subgoals.mux4.component}

fa = mux5("mux5", component=sub_comp)
fa.initialize()

solution.component = fa.instantiate()

Mux.goal

104

name:Mux

properties:delay cost

functional attributes: width=0

non-functional attributes: cost_vs_delay=0 Benmark=False db=None

evaluation:

if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vsdelay + delay * (1 - cost_vs_delay))

Muxjsim.teq

from jsim_component import Connector, Pebble

to Mux(width, Benmark, cost_vs_delay, db):

via jsim:

first:

solution.cost = goal.db.query_cost("mux", width=goal.width)
solution.delay = goal.db.querydelay("mux", width=goal.width)

commit:

if goal.width == 2:
w= 3

else:

w = 6

in_con = []
for i in w:

in_con.append(Connector(name="in" + str(i)))

out = Connector(name="out")

solution.component = Pebble(goal.func,

input=in_con,

output=[out])

NegFullAdder.goal

name:NegFullAdder
properties:delay cost c_delay s-delay

functional attributes:

non-functional attributes: costvsdelay=0 Benmark=False db=None
evaluation:

if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

NegFullAdder typel.teq

105

from jsim_test import negFA

to NegFullAdder(, Benmark, cost_vs_delay, db):

via typel:

first:

solution.cdelay = 0

solution.sdelay = 0

solution.cost = 0

solution.delay = 0

subgoals:

fa = FullAdder(db=goal.db,

Benmark=goal.Benmark,

cost_vs delay=goal.cost_vs delay)

not_gate = gate_fixwidth(func="not", db=goal.db,
Benmark=goal.Benmark,

cost_vs delay=goal.cost vs_delay)

eval:

solution.cdelay = subgoals.fa.cdelay + subgoals.notgate.delay

solution.sdelay = subgoals.fa.s_delay

solution.cost = subgoals.fa.cost + subgoals.not_gate.cost
solution.delay = max(solution.cdelay, solution.sdelay)

commit:

subcomp = {"fulladder": subgoals.fa.component,
"inverter": subgoals.notgate.component}

fa = negFA("negfulladder", component=subcomp)

fa.initialize()

solution.component = fa.instantiate()

NegHalfAdder.goal

name:NegHalfAdder

properties:delay cost
functional attributes:

non-functional attributes: cost_vsdelay=O Benmark=False db=None

evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

NegHalfAddertypel.teq

from jsim_test import neghalfadder

to NegHalfAdder(db, Benmark, cost_vs_delay):

106

via typel:

first:
solution.cost = 0

solution.delay = 0

subgoals:
nor2 = gate_width(func="nor", width=2, db=goal.db,

Benmark=goal.Benmark,

cost_vs_delay=goal.costvsdelay)
nand2 = gate_width(func="nand", width=2, db=goal.db,

Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

eval:
solution.cost = subgoals.nor2.cost + subgoals.nand2.cost
solution.delay = subgoals.nor2.delay

commit:
sub_comp = {"nor2": subgoals.nor2.component, "nand2": subgoals.nand2.component}
fa = neghalfadder("neghalfadder", component=sub_comp)

fa.initialize()
solution.component = fa.instantiate()

NegPosCarryOp.goal

name:NegPosCarry0p
properties:delay cost
functional attributes:
non-functional attributes: cost_vs_delay=0 Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

NegPosCarryOp_typel.teq

from jsim_test import negposcarryop
to NegPosCarry0p(db, Benmark, cost_vs_delay):

via typel:

first:
solution.cost = 0
solution.delay = 0

subgoals:

107

nor2 = gate_width(func="nor", width=2, db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

oai = gate_fix_width(func="oai", db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

eval:
solution.cost = subgoals.oai.cost + subgoals.nor2.cost
solution.delay = max(subgoals.nor2.delay, subgoals. oai.delay)

commit:
sub_comp = {"nor2": subgoals.nor2.component, "oai21": subgoals.oai.component}
fa = negposcarryop("negposcarryop", component=sub_comp)
fa.initialize()
solution.component = fa.instantiate()

pcmux.goal

name :pcmux
properties:delay cost
functional attributes: width=O
non-functional attributes: cost_vs_delay=O Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

pcmux_typel.teq

from jsim_test import pcmux5
to pcmux(width, db, Benmark, cost_vs_delay):

via typel:

first:
solution.delay = 0
solution.cost = 0
self.pin = [1
for i in range(goal.width):

self .pin. append(i)

subgoals:
not_gate = gate_fix_width(func="not", db=goal.db,

Benmark=goal. Benmark,
cost_vs_delay=goal.cost_vsdelay)

108

nand2 = gate_width(func="nand", width=2, db=goal.db,
Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

mux5 = Mux5(db=goal.db,

Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

subgoals:

adder = Adder(width=goal.width, pin=self.pin, carryin=O, db=goal.db,
Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

eval:

solution.delay += subgoals.adder.delay + subgoals.mux5.delay

solution.cost += subgoals.adder.cost + subgoals.mux5.cost +\

subgoals.not_gate.cost + subgoals.nand2.cost

commit:

sub_comp = {"adder": subgoals.adder.component,
"mux5": subgoals.mux5.component,

"inverter": subgoals.not_gate.component,
"nand2": subgoals.nand2.component}

fa = pcmux5("pcmux5", component=sub_comp,
parameters={"width":goal.width})

fa. initialize()

solution.component = fa.instantiate()

pcselz.goal

name :pcselz

properties:delay cost

functional attributes: width=O

non-functional attributes: cost_vs_delay=O Benmark=False db=None

evaluation:

if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

pcselz_typel.teq

from jsim_test import pcselz

to pcselz(width, db, Benmark, cost_vs_delay):

via typel:

first:

109

solution.delay = 0
solution.cost = 0

subgoals:

notgate = gatefix width(func="not", db=goal.db,
Benmark=goal.Benmark,

cost_vs delay=goal.cost vsdelay)

nor2 = gatewidth(func="nor", width=2, db=goal.db,
Benmark=goal.Benmark,

cost vsdelay=goal.cost vsdelay)

mux4 = Mux(width=4, db=goal.db,

Benmark=goal.Benmark,

cost vsdelay=goal.costvsdelay)

xor2 = gate width(func="xor", width=2, db=goal.db,
Benmark=goal.Benmark,

cost vsdelay=goal.cost vsdelay)

eval:

solution.delay += subgoals.xor2.delay + subgoals.mux4.delay

solution.cost += subgoals.notgate.cost + subgoals.mux4.cost + \

subgoals.xor2.cost + subgoals.nor2.cost

commit:

subcomp = {"inverter": subgoals.notgate.component,
"nor2": subgoals.nor2.component,

"xor2": subgoals.xor2.component,

"mux4": subgoals.mux4.component}

fa = pcselz("pcselz", component=subcomp, parameters={"width":goal.width})

fa. initialize()
solution.component = fa.instantiate()

PC.goal

name :PC

properties:delay cost

functional attributes: width=0

non-functional attributes: cost_vs_delay=0 Benmark=False db=None

evaluation:

if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

PC_typel.teq

from jsim_test import pc

import functools

to PC(width, db, Benmark, cost_vsdelay):

110

via typel:

first:
solution.delay = 0
solution.cost = 0

subgoals:
dreg_array = subgoal_array(goal=gate_fix_width, func="dreg",

number=goal.width-2, db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

mux_array = subgoal_array(goal=Mux, number=goal.width, width=2,
db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

increm = Incrementer(width=goal.width, db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

subgoals:
instruct_mem = memory(width=goal.width, nlocations=1024, db=goal.db,

Benmark=goal.Benmark,
costvsdelay=goal.cost_vs_delay)

eval:
solution.delay += subgoals.instruct_mem.delay + subgoals.dreg_array[O].delay

solution.cost += subgoals.dreg_array[0].cost * (goal.width-2) + \
subgoals.muxarray[O].cost * goal.width + \
subgoals.increm.cost

if not subgoals.instruct_mem.is_virtual:
solution.cost += subgoals.instruct_mem.cost

commit:
sub_comp = {"incrementer": subgoals.increm.component,

"dreg": subgoals.dreg_array [0]. component,
"mux2": subgoals.mux_array [O] .component}

fa = pc("pc", component=sub_comp, parameters={"width"'':goal.width})
fa.initialize()
solution.component = fa.instantiate()

PosNegCarryOp.goal

111

name:PosNegCarry0p

properties:delay cost
functional attributes:
non-functional attributes: cost_vs_delay=O Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

PosNegCarryOp_typel.teq

from jsim_test import posnegcarryop
to PosNegCarry0p(db, Benmark, cost_vsdelay):

via typel:

first:
solution.cost = 0
solution.delay = 0

subgoals:
nand2 = gate_width(func="nand", width=2, db=goal.db,

Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

aoi = gate_fix_width(func="aoi", db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

eval:
solution.cost = subgoals.aoi.cost + subgoals.nand2.cost
solution.delay = max(subgoals.nand2.delay, subgoals.aoi.delay)

commit:
sub_comp = {"nand2": subgoals.nand2.component, "aoi2l": subgoals.aoi.component}
fa = posnegcarryop("posnegcarryop", component=sub_comp)
fa.initialize()
solution.component = fa.instantiate()

processor.goal

name: processor
properties:delay cost
functional attributes: width=0
non-functional attributes: cost_vs_delay=O Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

112

processor_beta.teq

from jsim_component import output_circuit, Connector

import functools

to processor(width, db, Benmark, cost_vs_delay):

via beta:

first:

solution.delay = 0
solution.cost = 0

subgoals:

mem = memory(width=goal.width, nlocations=1024, db=goal.db,

Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

subgoals:

beta = beta(width=goal.width, db=goal.db,

Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

eval:

solution.delay += subgoals.mem.delay + subgoals.beta.delay

solution.cost += subgoals.mem.cost + subgoals.beta.cost

commit:

beta = subgoals.beta.component
beta_circuit = beta_processor(beta)

cir = ""

clk = Connector(name="clk")
reset = Connector(name="reset")
qid = Connector(name="id", width=32)
mrd = Connector(name="mrd", width=32)
ia = Connector(name="ia", width=32)
ma = Connector(name="ma", width=32)
moe = Connector(name="moe")
wr = Connector(name="wr")
werf = Connector(name="werf")
mwd = Connector(name="mwd", width=32)

mem_circuit = subgoals.mem.circuit

cir += beta_circuit.create(clk=clk,

reset=reset,

qid=qid,
mrd=mrd,

113

ia=ia,

ma=ma,

moe=moe,

wr=wr,

werf=werf,

mwd=mwd)

cir += mem_circuit.create(clk=clk,

reset=reset,

qid=qid,

mrd=mrd,

ia=ia,

ma=ma,

moe=moe,

wr=wr,

werf=werf,

mwd=mwd)

solution.component = output_circuit(cir)

reg.goal

name: reg

properties:delay cost

functional attributes: width=O

non-functional attributes: cost_vsdelay=O Benmark=False db=None

evaluation:

if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

regypel.teq

from jsim_test import regfile

from jsim_component import cal_reg

to reg(width, db, Benmark, cost_vs_delay):

via typel:

first:

solution.delay = 0
solution.cost = 0

subgoals:

mux_array = subgoal_array(goal=Mux, number=goal.width+5,
width=2, db=goal.db,

Benmark=goal.Benmark,

costvsdelay=goal.cost vs_delay)

114

nand2_array = subgoalarray(goal=gate_width, func="nand", number=2,
width=2, db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

nand3_array = subgoal_array(goal=gate_width, func="nand", number=2,
width=3, db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

nor_array = subgoal_array(goal=gate_width, func="nor", number=2,
width=2, db=goal.db,
Benmark=goal.Benmark,
cost_vsdelay=goal.cost_vs_delay)

eval:
solution.delay += subgoals.mux_array[0] .delay * 2
solution.cost += subgoals.mux_array[O].cost * (goal.width+5) + \

subgoals.nand2_array[O] .cost * (2) + \
subgoals.nand3_array[O] .cost * (2) + \
subgoals.nor_array[] .cost * (2)

c, d = cal_reg(ports=3, read=2, write=1, width=32,
addr=5, nlocations=31)

solution.delay += d
solution.cost += c

commit:
sub_comp = {"mux2": subgoals.mux_array[0] . component,

"nand2": subgoals. nand2_array [01 .component,
"nand3": subgoals.nand3_array [0] .component,
"nor2": subgoals .nor_array [0] .component}

fa = regfile("regfile", component=sub_comp,
parameters={"width":goal.width})

fa.initialize()
solution.component = fa.instantiate()

rightshifter.goal

name: rightshifter
properties:delay cost
functional attributes: width=0
non-functional attributes: cost_vs_delay=0 Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)

115

else:
satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

rightshifter_typel.teq

from jsim_test import rightshifter
import math
to rightshifter(width, db, Benmark, cost_vs_delay):

via typel:

first:
solution.cost = 0
solution.delay = 0
self.level = int(math.log(goal.width, 2))

subgoals:
mux_array = subgoal_array(goal=Mux, number=self.level * goal.width + 1,

width=2, db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

eval:
solution.cost = subgoals.mux_array[O] .cost * (self.level * goal.width + 1)
solution.delay = subgoals.mux_array[0].delay * self.level

commit:
sub_comp = {"mux2": subgoals.mux_array [0] .component}
fa = rightshifter("rightshifter", component=sub_comp,

parameters={"width"'':goal.width})
fa.initialize()
solution.component = fa.instantiate()

shifter.goal

name: shifter
properties:delay cost
functional attributes: width=0
non-functional attributes: cost_vs_delay=O Benmark=False db=None
evaluation:
if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

shifter_one.teq

from jsim_test import smallshifter
to shifter(width, db, Benmark, cost_vs_delay):

via one:

116

first:
solution.cost = 0

solution.delay = 0

subgoals:

is = leftshifter(width=goal.width, db=goal.db,
Benmark=goal.Benmark,

cost_vs delay=goal.cost vsdelay)

subgoals:

muxarray = subgoalarray(goal=Mux, number=goal.width * 2 + 1,
width=2, db=goal.db,

Benmark=goal.Benmark,

cost_vsdelay=goal.costvsdelay)

eval:

solution.cost = subgoals.ls.cost + subgoals.muxarray[O].cost \
*(goal.width*2 + 1)

solution.delay = subgoals.ls.delay + subgoals.muxarray[O].delay * 2

commit:

subcomp = {"mux2": subgoals.muxarray[0]. component,

"leftshifter":subgoals.1s.component}

fa = smallshifter("shifter32", component=sub_comp,

parameters={"width":goal.width})

fa.initialize()

solution.component = fa.instantiate()

shiftertwo.teq

from jsim_test import shifter
to shifter(width, db, Benmark, cost_vs_delay):

via two:

first:

solution.cost = 0
solution.delay = 0

subgoals:

is = leftshifter(width=goal.width, db=goal.db,
Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

subgoals:

rs = rightshifter(width=goal.width, db=goal.db,
Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

117

mux_array = subgoal_array(goal=Mux, number=goal.width,
width=2, db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

eval:
solution.cost = subgoals.ls.cost + subgoals.rs.cost + \

subgoals.mux_array[0] .cost *goal.width
solution.delay = max(subgoals.1s.delay, subgoals.rs.delay) + \

subgoals.mux_array[0] .delay

commit:
sub_comp = {"mux2": subgoals.mux_array[0] . component,

"rightshifter": subgoals.rs.component,
"leftshifter":subgoals.1 is.component}

fa = shifter("shifter32", component=subcomp,
parameters={"width" : goal.width})

fa.initialize()
solution.component = fa.instantiate()

v_output.goal

name: v_output
properties:delay cost
functional attributes: width=O

non-functional attributes: cost_vs-delay=O Benmark=False db=None

evaluation:

if Benmark:

satisfaction = 1/(delay * cost)

else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

voutputtypel.teq

from jsim_test import v_output

to v_output(width, db, Benmark, cost_vs_delay):

via typel:

first:

solution.cost = 0

solution.delay = 0

subgoals:
inverter_array = subgoal_array(goal=gate_fix_width,

func="not", number=3,

118

db=goal.db,

Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

nand3_array = subgoal_array(goal=gate_width, func="nand",
width=3, number=2, db=goal.db,
Benmark=goal.Benmark,

cost vsdelay=goal.cost_vs_delay)
nand2 = gate_width(func="nand", width=2, db=goal.db,

Benmark=goal.Benmark,

cost_vs_delay=goal.cost vs_delay)

eval:
solution.cost = subgoals.inverter_array[O].cost * len(subgoals.inverter_array) +

subgoals.nand3 array[O].cost * len(subgoals.nand3_array)+ \
subgoals.nand2.cost

solution.delay = subgoals.inverter_array[O].delay + \
subgoals.nand3_array[0].delay + \
subgoals.nand2.delay

commit:
subcomp = {"inverter": subgoals. inverter_array [0O].component,

"nand3": subgoals.nand3_array[0]. component,
"nand2": subgoals.nand2.component}

fa = voutput("v.output", component=sub_comp)
fa.initialize()
solution.component = fa.instantiate()

XOR3.goal

name: XOR3

properties:delay cost

functional attributes:

non-functional attributes: cost_vs_delay=0 Benmark=False db=None

evaluation:

if Benmark:

satisfaction = 1/(delay * cost)
else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

XOR3_typel.teq

from jsim_test import xor3

to XOR3(db, Benmark, cost_vs_delay):

via typel:

first:

119

solution.cost = 0

solution.delay = 0

subgoals:

xor2 = subgoalarray(goal=gatewidth, func="xor", number=2,
width=2, db=goal.db,

Benmark=goal.Benmark,

costvsdelay=goal.cost vs_delay)

eval:
solution.cost = subgoals.xor2[0] .cost * 2
solution.delay = subgoals.xor2[0] .delay * 2

commit:

sub_comp = {"xor2": subgoals.xor2 [0] .component}
fa = xor3("xor3", component=sub_comp)
fa.initialize()

solution.component= fa.instantiate()

zJogic.goal

name: z_logic

properties:delay cost

functional attributes: width=0

non-functional attributes: cost_vs_delay=O Benmark=False db=None

evaluation:

if Benmark:

satisfaction = 1/(delay * cost)

else:

satisfaction = 1/(cost * cost_vs_delay + delay * (1 - cost_vs_delay))

zlogic_typel6.teq

from jsim_test import z_output

to z_logic(width, db, Benmark, cost_vs_delay):

via typel6:

first:

solution.cost = 0

solution.delay = 0

if goal.width == 16:

self.nor4_no = 4

else:
planner.fail("this is not 16")

subgoals:

nor4_array = subgoal_array(goal=gate_width, func="nor",

120

width=4, number=self.nor4_no, db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

nand2 = gate_width(func="nand", width=4, db=goal.db,
Benmark=goal.Benmark,
costvs_delay=goal.cost_vs_delay)

notgate = gate_fix_width(func="not", db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

eval:
solution.cost = subgoals.nor4_array[O].cost * len(subgoals.nor4_array) +\

subgoals.nand2.cost + subgoals.not_gate.cost
solution.delay = subgoals.nor4_array[O] .delay + subgoals.nand2.delay +\

subgoals.not_gate.delay

commit:
sub_comp = {"nor4": subgoals.nor4_array [0] .component,

"nand4": subgoals.nand4_array[0] . component,
"nor2": subgoals.nor2.component}

fa = z_output("zoutput", component=sub_comp,
parameters={"width":goal.width})

fa.initialize()
solution.component = fa.instantiate()

zlogictype32.teq

from jsimtest import z_output

to zlogic(width, db, Benmark, cost_vs_delay):
via type32:

first:
solution.cost = 0
solution.delay = 0
if goal.width == 32:

self.nand4_no = goal.width/4/4
self.nor4_no = goal.width/4

else:
planner.fail("this is not 32")

subgoals:
nor4_array = subgoal_array(goal=gate_width, func="nor", width=4,

number=self.nor4_no, db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

nand4_array = subgoal_array(goal=gate_width, func="nand", width=4,
number=self.nand4_no, db=goal.db,

121

Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

nor2 = gate_width(func="nor", width=2, db=goal.db,
Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

eval:
solution.cost = subgoals.nor4_array[O].cost * len(subgoals.nor4_array) + \

subgoals.nand4_array[]O .cost * len(subgoals.nand4_array)+ \
subgoals.nor2.cost

solution.delay = subgoals.nor4_array[0].delay + \
subgoals.nand4_array[O] .delay + \
subgoals.nor2.delay

commit:
sub_comp = {"nor4": subgoals.nor4_array[0] .component,

"nand4": subgoals.nand4_array [O] .component,
"nor2": subgoals.nor2.component}

fa = z_output("z_output", component=sub_comp, parameters={"width":goal.width})
fa.initialize()
solution.component = fa.instantiate()

zlogictype8.teq

from jsim_test import z_output

to zlogic(width, db, Benmark, cost_vs_delay):
via type8:

first:
solution.cost = 0
solution.delay = 0
if goal.width == 8:

self.nor4_no = 2

else:
planner.fail("this is not 8")

subgoals:
nor4_array = subgoal_array(goal=gate_width, func="nor", width=4,

number=self.nor4_no, db=goal.db,
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

nand2 = gate_width(width=2, db=goal.db, func="nand",
Benmark=goal.Benmark,
cost_vs_delay=goal.cost_vs_delay)

not_gate = gate_fix_width(db=goal.db, func="not",

122

Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

eval:

solution.cost = subgoals.nor4_array[O].cost * len(subgoals.nor4_array) + \
subgoals.nand2.cost + subgoals.not_gate.cost

solution.delay = subgoals.nor4 array [0].delay + \
subgoals.nand2.delay + subgoals.not gate.delay

commit:

sub_comp = {"nor4": subgoals.nor4_array[O] .component,
"nand4": subgoals.nand4_array [0]. component,
"nor2": subgoals.nor2.component}

fa = z_output("zoutput", component=sub_comp,
parameters={"width" : goal.width})

fa.initialize()

solution.component = fa.instantiate()

z_logic_type64.teq

from jsimtest import z_output

to z_logic(width, db, Benmark, cost_vs_delay):

via type64:

first:

solution.cost = 0

solution.delay = 0
if goal.width == 64:

self.nand4_no = goal.width/4/4
self.nor4_no = goal.width/4

else:
planner.fail("this is not 64")

subgoals:

nor4_array = subgoal_array(goal=gate_width, func="nor",
width=4, number=self.nor4_no, db=goal.db,
Benmark=goal.Benmark,

costvs_delay=goal.cost_vs_delay)

nand4_array = subgoal_array(goal=gate_width, func="nand",
width=4, number=self.nand4_no, db=goal.db,
Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)
nor2 = gate_width(func="nor", width=4, db=goal.db,

Benmark=goal.Benmark,

cost_vs_delay=goal.cost_vs_delay)

123

eval:
solution.cost = subgoals.nor4_array[O] .cost * len(subgoals.nor4_array) + \

subgoals.nand4_array[01 .cost * len(subgoals.nand4_array)+ \
subgoals.nor2.cost

solution.delay = subgoals.nor4_array[0] .delay + \
subgoals.nand4_array[0] .delay + \
subgoals.nor2.delay

commit:
sub_comp = {"nor4": subgoals.nor4_array [0] .component,

"nand4": subgoals.nand4_array[O] .component,
"nor2": subgoals.nor2.component}

fa = z_output("z_output", component=sub_comp,
parameters={"width":goal.width})

fa.initialize()
solution.component = fa.instantiate()

124

Appendix C

JSim Implementations Generated
by Fide

Highest Benmark

.include "nominal.jsim"

.include "stdcell.jsim"

.include "projcheckoff.jsim"

.subckt knex a b

.connect a b

.ends

.subckt xor3 a b c z
Xxor30 a b t xor2
Xxor3l t c z xor2
.ends

.subckt negfulladder a b cO cl s
XnegfulladderO a b cO nout s fulladder
Xnegfulladderl nout ci inverter
.ends

.subckt incrementer ia[31:01 increment[31:0]
XincrementerO ia[1:0] increment[1:0] knex
.connect c2 vdd
Xincrementerl c[30:2] ia[30:2] nc[31:3] nand2
Xincrementer2 nc[31:33 c[31:3] inverter
Xincrementer3 c[31:2] ia[31:2] increment[31:2] xor2
.ends

.subckt posnegcarryop g2 p2 gl pl ngout npout
XposnegcarryopO pl p2 npout nand2
Xposnegcarryopl gl p2 g2 ngout aoi21
.ends

125

.subckt alu ALUFN[5:0] A[31:0] B[31:0] alu[31:0 z v n
XaluO ALUFNO A[31:0] B[31:0] S[31:0] z v n adder32

Xalul ALUFN[3:0] A[31:0] B[31:0]1 boole[31:0] boole32

Xalu2 ALUFN[1:O] A[31:0] B[4:0] shift[31:01 shifter32

Xalu3 ALUFN[2:1] z v n compare[31:0] compare32

Xalu4 ALUFN5#32 ALUFN4#32 S[31:0] shift[31:0] boole[31:0] compare[31:0] alu[31:O] mux4

.ends

.subckt z_output S[31:0] z

Xz_outputO S[31:01 zO[7:0] nor4

Xz_outputl z0[7:0] zl[1:0] nand4

Xz_output2 zl[1:O] z nor2

.ends

.subckt v_output A31 B31 S31 v

Xv_outputO A31 na inverter

Xv_outputl B31 nb inverter

Xv_output2 S31 ns inverter

Xv_output3 A31 B31 ns fir nand3

Xv_output4 na nb S31 sed nand3
Xv_output5 fir sed v nand2

.ends

.subckt pc clk reset ini[31:O] ia[31:O] nextia[31:O] increment[31:0]

.connect ial 0

.connect iaO 0

XpcO muxout[31:2] clk#30 ia[31:2] dreg

Xpcl muxout[31:0] nextia[31:0] knex

Xpc2 reset#32 ini[31:0] vdd 0#31 muxout[31:0] mux2

Xpc3 0 ia[31:0] 0#29 vdd 0#2 increment[31:0] cdummy sub_adder

.ends

.subckt boole32 ALUFN[3:0] A[31:0] B[31:0] boole[31:0]

Xboole320 A[31:0] B[31:0] ALUFNO#32 ALUFN1#32 ALUFN2#32 ALUFN3#32 boole[31:0] mux4

.ends

.subckt regfile clk werf ra2sel ra[4:0] rb[4:0] rc[4:0] wdata[31:O]

+ radata[31:01 rbdata[31:01
XregfileO ra2sel#5 rb[4:0] rc[4:0] ra2mux[4:0] mux2

Xregfilel ra[4:31 nanO nand2

Xregfile2 ra[2:0] nanl nand3

Xregfile3 nanO nanl nra3l nor2

Xregfile4 ra2mux[4:31 nbn0 nand2

Xregfile5 ra2mux[2:0] nbnl nand3

Xregfile6 nbn0 nbnl nrb31 nor2

Xregfile7

126

+ vdd 0 0 ra[4:0] adata[31:0]
+ vdd 0 0 ra2mux[4:0] bdata[31:0]
+ 0 clk werf rc[4:0] wdata[31:0]
+ $memory width=32 nlocations=31
Xregfile8 nra31#32 adata[31:0] 0#32 radata[31:01 mux2
Xregfile9 nrb31#32 bdata[31:0] 0#32 rbdata[31:0] mux2
.ends

.subckt fulladder a b cO cl s
XfulladderO a b gi xor2
Xfulladderl gi cO s xor2
Xfulladder2 a b g2 nand2
Xfulladder3 a cO g3 nand2
Xfulladder4 b cO g4 nand2
Xfulladder5 g2 g3 g4 ci nand3
.ends

.subckt negposcarryop ng2 np2 ngi npl gout pout
XnegposcarryopO npl np2 pout nor2
Xnegposcarryopi ngi np2 ng2 gout oai2i
.ends

.subckt shifter32 ALUFN[1:O] A[31:O] B[4:0] shift[31:0]
Xshifter320 ALUFN1 0 A31 ctl mux2
Xshifter321 ALUFNO#32 A[31:0] A[0:31] ins[31:0] mux2
Xshifter322 ctl ins[31:0] B[4:0] outs [31:0 leftshifter
Xshifter323 ALUFNO#32 outs[31:0] outs[0:31] shift[31:01 mux2
.ends

.subckt adder32 ALUFNO A[31:0] B[31:0] S[31:0] z v n
Xadder320 B[31:0] ALUFNO#32 bx[31:0] xor2
Xadder321 ALUFNO A[31:01 bx[31:01 S[31:03 cdummy sub_adder
Xadder322 S[31:01 z zoutput
.connect S31 n
Xadder323 A31 bx31 S31 v voutput
.ends

.subckt neghalfadder a b ng np
XneghalfadderO a b np nor2
Xneghalfadderl a b ng nand2
.ends

.subckt pcselz xpcsel[2:0] id27 z irq pcsel[2:0]
XpcselzO xpcselO nxpcsel0 inverter
Xpcselzl nxpcsel0 xpcsell btestout nor2
Xpcselz2 id27 z bzout xor2
Xpcselz3 irq#3 btestout#3 xpcsel[2:0] vdd 0#4 bzout vdd 0#2 pcsel[2:01 mux4

127

.ends

.subckt compare32 ALUFN[1:O] z v n cmp[31:0]
Xcompare320 n v gt xor2
Xcompare321 gt z nlet nor2
Xcompare322 nlet let inverter
Xcompare323 ALUFN[1:0] 0 gt z let cmp0 mux4
.connect 0 cmp[31:1]
.ends

.subckt beta clk reset irq nextid[31:0] mrd[31:0] nextia[31:01 ma[31:0]
+moe wr mwd[31:0] werf
XbetaO nextid[31:0] clk#32 id[31:0] dreg
Xbetal clk reset pcmux5out[31:0] ia[31:0] nextia[31:0] pcpf [31:0 pc
Xbeta2 reset id[31:26] ra2sel bsel alufn[5:0] wdsel[1:01 werf moe
+wr xpcsel[2:0] wasel asel ctl
Xbeta3 clk werf ra2sel ra[4:0] rb[4:0] rc[4:0] wdata[31:0] radata[31:0]
+rbdata[31:0] regfile
Xbeta4 alufn[5:0] A[31:0] B[31:0] alu[31:0] aluz v n alu
Xbeta5 bsel#32 rbdata[31:01 id15#16 id[15:0] BB[31:0] mux2
Xbeta6 BB[31:01 B[31:0] buffer_8
Xbeta7 wdsell#32 wdsel0#32 ia31 pcpf[30:0] mrd[31:0] alu[31:0] 0#32
+ wdata[31:0] mux4
Xbeta8 pcsel[2:01 id[15:0] pcpf[31:0] radata[31:0] ia3l
+ pcmux5out[31:0] beq[31:0] pcmux5
Xbeta9 xpcsel[2:0] id27 z irq pcsel[2:0] pcselz
XbetalO wasel#5 xrc[4:01 vdd#4 0 rc[4:0] mux2
Xbetall asel#32 radata[31:0] 0 beq[30:01 A[31:01 mux2
Xbetal2 radata[31:0] z z_output
Xbetal3 alu[31:0] ma[31:01 knex
Xbetal4 rbdata[31:0] mwd[31:0] knex
Xbetal5 id[15:1 rb[4:0] knex
Xbetal6 id[25:21] xrc[4:0] knex
Xbetal7 id[20:161 ra[4:0] knex
.ends

.subckt leftshifter ctl A[31:01 B[4:0] shift[31:0]
XleftshifterO B4#32 A[31:01 A[15:0] ctl#16 w[31:0] mux2

Xleftshifterl B3#32 w[31:0] w[23:0] ctl#8 x[31:01 mux2

Xleftshifter2 B2#32 x[31:0] x[27:0] ctl#4 y[31:0] mux2

Xleftshifter3 B1#32 y[31:0] y[29:0] ctl#2 z[31:0] mux2
Xleftshifter4 BO#32 z[31:0] z[30:0] ctl shift[31:0] mux2

.ends

.subckt mux5 sO sl s2 dO dl d2 d3 d4 out
Xmux50 sl s2 dO dl d2 d3 outl mux4
Xmux51 sO out1 d4 out mux2

128

.ends

.subckt ctl reset id3l id30 id29 id28 id27 id26 ra2sel bsel alufn[5:0]
+ wdsel[1:0] werf moe wr pcsel[2:0] wasel asel
XctlO
+ vdd 0 0 id31 id30 id29 id28 id27 id26 alufn[5:0] bsel wdsel0
+ $memory width=8 nlocations=64 contents=(
+ Ob11100000
+ Ob11100000
+ OblllO0000
+ OblllO0000
+ OblllO0000
+ Ob11100000
+ Ob11l00000
+ OblllO0000
+ Ob11100000
+ Ob111O0000
+ Oblll00000
+ Ob11100000
+ Ob11100000
+ Ob11100000
+ Ob11100000
+ Ob11100000
+ Oblll00000
+ OblllOOOO0000
+ OblllO0000
+ Ob111O0000
+ Ob111O0000
+ Ob11100000
+ Ob11100000
+ Ob11100000
+ Ob00000010 //18 Id
+ Ob00000010 //19 str
+ OblllO0000
+ Ob00000000 //lb jmp
+ Ob11100000
+ Ob00000000 //id beq
+ Ob00000000 //le bne
+ Ob01101000 //If Idr
+ Ob00000001 //20 add
+ ObOO00000101 //21 sub
+ ObOO0001001 //22 mul
+ Ob00001101 //23 div
+ Ob110l01101 //24 cmpeq
+ Ob11010101 //25 cmplt
+ Obil011101 //26 cmple
+ Ob11100000 //

129

+ Ob01100001 //28 and

+ b001111001 //29 or

+ Ob01011001 //2a xor

+ Obll100000 //

+ Obl0000001 //2c shl

+ Ob10000101 //2d shr

+ Ob10001101 //2e sra

+ Ob11100000

+ Ob00000011 //30 add

+ b000000111 //31 sub

+ Ob00001011 //32 mul

+ Ob01001111 //33 div

+ Ob11001111 //34 cmpeq

+ Ob1100111 //35 cmplt

+ Ob11011111 //36 cmple

+ Ob1100000

+ Ob01100011 //38 and

+ Ob01111011 //39 or

+ Ob01011011 //3a xor

+ Ob11100000

+ OblO000011 //3c shl

+ Ob10000111 //3d shr

+ Ob10001111 //3e sra

+ Ob11100000)

Xctll id3l id28 id27 nisst0 nor3

Xctl2 id30 id29 id26 isstl nand3

Xctl3 nisst0 isst0 inverter

Xctl4 isstl isst0 isst nor2

Xctl5 isst werf inverter

Xctl6 isst xwr knex

Xctl7 ra2sel isst knex

Xctl8 id30 id29 isldl nand2

Xctl9 id28 id27 isld2 xor2

XctllO id27 id26 isld3 xor2

Xctlll id31 isldl isld2 isld3 isld nor4

Xctll2 isld moe knex

Xctll3 xwr nxwr inverter

Xctll4 nxwr reset wr nor2

.connect 0 wasel

Xctll5 id29 id28 id27 id26 isldrO nand4

Xctll6 id30 nid30 inverter

Xctll7 id31 nid30 isldrO isldr nor3

Xctll8 isldr asel knex

Xctll9 isldr isld nwdsell nor2

Xctl20 nwdsell wdsell inverter

Xctl2l id30 id29 id27 id26 isj0 nand4

Xct122 id31 id28 isj0 isjmp nor3

130

Xct123 pcsell isjmp knex
Xctl24 id31 nid3l inverter
Xct125 nid3l id30 id29 id28 isbe0 nand4
Xctl26 id27 id26 isbel xnor2
Xctl27 isbeO isbel be nor2
Xct128 pcselO be knex
.connect 0 pcsel2
.ends

.subckt pcmux5 pcsel[2:0] id[15:0] ia[31:0] radata[31:0] pc3l out[31:0]
+ beq[31:0]
Xpcmux5O radata3l pc31 npc3l nand2
Xpcmux5l npc3l jpc31 inverter
Xpcmux52 0 ia[31:0] ia31 idl5#13 id[15:0] 0#2 beq[31:0O cdummy subadder
Xpcmux53 pcsel2#32 pcsell#32 pcselO#32 pc31 ia[30:0] jpc31 radata[30:2] 0#2 pc3l beq[30:0
.ends

.subckt subadder Cin A[31:0] B[31:0] S[31:0] Cout

.connect pO0O vdd
Xsub_adderO A[31:1] B[31:1] gO[31:1] p0_ [31:1] neghalfadder
Xsub-adderl AO BO Cin gO0O SO negfulladder
Xsub-adder2 gO_[31:1] pO_[31:1] g0 [30:0] pO_[30:0] gl_[31:1] pl_131:1] negposcarryop
Xsub-adder3 gO_[0:0] pO_[0:0] gi_[0:0O pl_[0:O] inverter
Xsub-adder4 gl [31:2] pl_[31:2] gi [29:0] pl_[29:0] g2_[31:2] p2_[31:23 posnegcarryop
Xsub-adder5 gl_[0:1] pl_10:1] g2_[O:1] p2_[0:1] inverter
Xsub-adder6 g2-[31:4] p2 _[31:4] g2-[27:0] p2_[27:01 g3_[31:4] p3_[31:4] negposcarryop
Xsub.adder7 g2 [0:3] p2_[O:3] g3_[0:3] p3 [O:3] inverter
Xsub-adder8 g3 [31:8] p3 _[31:8] g3_[23:03 p3_[23:0] g4_[31:8] p4 _[31:8] posnegcarryop
Xsub_adder9 g3 [0:7] p3_[0:7] g4_[0:7] p4 [0:71 inverter
Xsub_adderlO g4_[31:16] p4_[31:16] g4_[15:0] p4_[15:0] g5_ [31:16] p5_[31:16] negposcarryo
Xsub_adderll g4_[0:15] p4 _[0:15] g5_[0:15] p5_[0:15] inverter
Xsub_adderi2 A[31:1] B[31:11 g5_[30:0] S[31:1] xor3
.connect g5_31 Cout
.ends

Xbbb clk reset 0 id[31:0] mrd[31:0] ia[31:0] ma[31:0] moe wr mwd[31:0] werf beta
.subckt memport moe wr clk werf reset mwd[31:0] port[2:0] mrd[31:0] rw[31:01
XmemportO werf 0 moe portO mux2
Xmem_portl clk nclk inverter
Xmemport2 werf nclk 0 port1 mux2
Xmemport3 wr nwr inverter
Xmemport4 reset nwr port2out nor2
Xmemport5 werf port2out 0 port2 mux2
Xmemport6 reset werf nwerf nor2
Xmem_port7 nwerf#32 mwd[31:01 rw[31:0] tristate
Xmemport8 werf#32 rw[31:0] mrd[31:0] tristate
.ends

131

Xm_port moe wr clk werf reset mwd[31:O] mport[2:0] mrd[31:0] rw[31:0] mem_port
Xmem
+ vdd 0 0 ia[11:2] id[31:O]
+ mportO mportl mport2 ma[11:21 rw[31:0]
+ $memory width=32 nlocations=1024 file="/mit/6.004/jsim/projcheckoff.bin"
Vclk clk 0 pulse(3.3,0,4.5850000ns,.Ons,.Ons,lns,4.585000ns)
Vreset reset 0 pwl(Ons 3.3v, 9.190000ns 3.3v, 9.200000ns Ov)
.tran 8666ns

The fastest implementation

.include "nominal. j sim"

.include "stdcell.jsim"

.include "projcheckoff.jsim"

.subckt knex a b

.connect a b

.ends

.subckt xor3 a b c z
Xxor30 a b t xor2
Xxor3l t c z xor2
.ends

.subckt negfulladder a b cO cl s
XnegfulladderO a b cO nout s fulladder
Xnegfulladderl nout ci inverter
.ends

.subckt incrementer ia[31:0] increment[31:0]
XincrementerO ia[1:0] increment[1:0] knex
.connect c2 vdd
Xincrementerl c[30:2] ia[30:2] nc[31:31 nand2
Xincrementer2 nc[31:3] c[31:3] inverter
Xincrementer3 c 31:2] ia[31:2] increment[31:2] xor2
.ends

.subckt posnegcarryop g2 p2 gl pl ngout npout
XposnegcarryopO pl p2 npout nand2
Xposnegcarryopl gl p2 g2 agout aoi2l
.ends

.subckt alu ALUFN[5:0] A[31:0] B[31:0] alu[31:0] z v n
XaluO ALUFNO A[31:0] B[31:01 S[31:01 z v n adder32
Xalul ALUFN[3:0] A[31:0] B[31:0] boole[31:0] boole32
Xalu2 ALUFN[1:0] A[31:0] B[4:0] shift[31:01 shifter32
Xalu3 ALUFN[2:1] z v n compare[31:0] compare32

132

Xalu4 ALUFN5#32 ALUFN4#32 S[31:0] shift[31:0] boole[31:0] compare[31:0]
+ alu[31:0] mux4
.ends

.subckt zoutput S[31:01 z
Xz_outputO S[31:0] zO[7:0]1 nor4
Xz_outputl zO[7:0] zl[1:01 nand4
Xz_output2 zl[1:0] z nor2
.ends

.subckt v_output A31 B31 S31 v
Xv_outputO A31 na inverter
Xvoutputl B31 nb inverter
Xv_output2 S31 ns inverter
Xvoutput3 A31 B31 ns fir nand3
Xv_output4 na nb S31 sed nand3
Xv_output5 fir sed v nand2
.ends

.subckt pc clk reset ini[31:0] ia[31:O] nextia[31:0] increment[31:01

.connect ial 0

.connect iaO 0
XpcO muxout[31:2] clk#30 ia[31:2] dreg
Xpcl muxout[31:0] nextia[31:0] knex
Xpc2 reset#32 ini[31:0] vdd 0#31 muxout[31:0] mux2
Xpc3 ia[31:01 increment[31:0] incrementer
.ends

.subckt boole32 ALUFN[3:0] A[31:0] B[31:0] boole[31:O]
Xboole320 A[31:0] B[31:0] ALUFNO#32 ALUFN1#32 ALUFN2#32 ALUFN3#32
+boole[31:0] mux4
.ends

.subckt regfile clk werf ra2sel ra[4:0] rb[4:0] rc[4:0] wdata[31:0]
+ radata[31:0] rbdata[31:0]
XregfileO ra2sel#5 rb[4:0] rc[4:0] ra2mux[4:0] mux2
Xregfilel ra[4:3] nanO nand2
Xregfile2 ra[2:0] nanl nand3
Xregfile3 nanO nanl nra3l nor2
Xregfile4 ra2mux[4:3] nbn0 nand2
Xregfile5 ra2mux[2:0] nbnl nand3
Xregfile6 nbn0 nbnl nrb31 nor2
Xregfile7
+ vdd 0 0 ra[4:0] adata[31:0]
+ vdd 0 0 ra2mux[4:0] bdata[31:0]
+ 0 clk werf rc[4:0] wdata[31:0]
+ $memory width=32 nlocations=31

133

Xregfile8 nra31#32 adata[31:0] 0#32 radata[31:0] mux2
Xregfile9 nrb31#32 bdata[31:0] 0#32 rbdata[31:0] mux2
.ends

.subckt fulladder a b cO cl s
XfulladderO a b gi xor2
Xfulladderl gi cO s xor2
Xfulladder2 a b g2 nand2
Xfulladder3 a cO g3 nand2
Xfulladder4 b cO g4 nand2
Xfulladder5 g2 g3 g4 cl nand3
.ends

.subckt negposcarryop ng2 np2 ngl npl gout pout
XnegposcarryopO npl np2 pout nor2
Xnegposcarryopl ngl np2 ng2 gout oai21
.ends

.subckt shifter32 ALUFN[1:0] A[31:0] B[4:0] shift[31:0]
Xshifter320 0 A[31:0] B[4:0] 1[31:0] leftshifter
Xshifter321 ALUFN1 A[31:0] BC4:0] r[31:01 rightshifter
Xshifter322 ALUFNO#32 1[31:01 r[31:0] shift[31:0] mux2
.ends

.subckt adder32 ALUFNO A[31:0] B[31:0] S[31:0] z v n
Xadder320 B[31:0] ALUFNO#32 bx[31:0] xor2
Xadder321 ALUFNO A[31:0] bx[31:0] S[31:0] cdummy sub_adder
Xadder322 S[31:0] z z_output
.connect S31 n
Xadder323 A31 bx3i S31 v v-output
.ends

.subckt neghalfadder a b ng np
XneghalfadderO a b np nor2
Xneghalfadderl a b ng nand2
.ends

.subckt pcselz xpcsel[2:0] id27 z irq pcsel[2:0]
XpcselzO xpcsel0 nxpcsel0 inverter
Xpcselzi nxpcsel0 xpcsell btestout nor2
Xpcselz2 id27 z bzout xor2
Xpcselz3 irq#3 btestout#3 xpcsel[2:0] vdd 0#4 bzout vdd 0#2
+ pcsel[2:0] mux4
.ends

.subckt compare32 ALUFN[1:0] z v n cmp[31:01
Xcompare320 n v gt xor2

134

Xcompare321 gt z nlet nor2

Xcompare322 nlet let inverter

Xcompare323 ALUFN[1:0] 0 gt z let cmp0 mux4

.connect 0 cmp[31:1]

.ends

.subckt beta clk reset irq nextid[31:0] mrd[31:0] nextia[31:0]

+ ma[31:0] moe wr mwd[31:0] werf

XbetaO nextid[31:0] clk#32 id[31:0O dreg

Xbetal clk reset pcmux5out[31:0] ia[31:0] nextia[31:0] pcpf[31:0] pc
Xbeta2 reset id[31:26] ra2sel bsel alufn[5:0] wdsel[1:0] werf moe wr

+ xpcsel[2:0] wasel asel ctl
Xbeta3 clk werf ra2sel ra[4:0] rb[4:0] rc[4:0] wdata[31:0]

+radata[31:0] rbdata[31:0] regfile

Xbeta4 alufn[5:0] A[31:0] B[31:0] alu[31:0] aluz v n alu

Xbeta5 bsel#32 rbdata[31:0] id15#16 id[15:0] BB[31:0] mux2

Xbeta6 BB[31:0] B[31:0] buffer_8

Xbeta7 wdsell#32 wdsel0#32 ia31 pcpf[30:0] mrd[31:0] alu[31:0] 0#32

+wdata[31:0] mux4

Xbeta8 pcsel[2:0] id[15:0] pcpf[31:0] radata[31:0] ia31 pcmux50out[31:0]
+beq[31:0] pcmux5

Xbeta9 xpcsel[2:0] id27 z irq pcsel[2:0] pcselz

XbetalO wasel#5 xrc[4:0] vdd#4 0 rc[4:0] mux2
Xbetall asel#32 radata[31:0] 0 beq[30:0] A[31:0] mux2

Xbeta12 radata[31:0] z zoutput
Xbeta13 alu[31:0] ma[31:0] knex

Xbeta14 rbdata[31:0] mwd[31:0] knex

Xbeta15 id[15:11] rb[4:0] knex

Xbetal6 id[25:21] xrc[4:0] knex

Xbeta17 id[20:16] ra[4:0] knex

.ends

.subckt rightshifter ctl A[31:0] B[4:0] shift[31:0]

XrightshifterO ctl 0 A31 sign mux2

Xrightshifterl B4#32 A[31:0] sign#16 A[31:16] w[31:0] mux2

Xrightshifter2 B3#32 w[31:0] sign#8 w[31:8] x[31:0] mux2

Xrightshifter3 B2#32 x[31:0] sign#4 x[31:4] y[31:0] mux2

Xrightshifter4 B1#32 y[31:0] sign#2 y[3 1: 2] z[31:0] mux2

Xrightshifter5 BO#32 z[31:0] sign z[31:1] shift[31:0] mux2
.ends

.subckt leftshifter ctl A[31:0] B[4:0] shift[31:0]
XleftshifterO B4#32 A[31:0] A[15:0] ctl#16 w[31:0] mux2
Xleftshifterl B3#32 w[31:0] w[23:0] ctl#8 x[31:0] mux2
Xleftshifter2 B2#32 x[31:0] x[27:0] ctl#4 y[31:0] mux2
Xleftshifter3 B1#32 y[31:0] y[29:0] ctl#2 z[31:0] mux2
Xleftshifter4 BO#32 z[31:0] z[30:0] ctl shift[31:0] mux2

135

.ends

.subckt mux5 sO sl s2 dO dl d2 d3 d4 out
Xmux50O sl s2 dO dl d2 d3 outl mux4
Xmux51 sO outl d4 out mux2
.ends

.subckt ctl reset id31 id30 id29 id28 id27 id26 ra2sel bsel alufn[5:0]
+wdsel[1:O] werf moe wr pcsel[2:01 wasel asel
XctlO
+ vdd 0 0 id31 id30 id29 id28 id27 id26 alufn[5:0]1 werf bsel wdsel[1:0]
+xwr ra2sel pcsel[2:01 asel wasel moe
+ $memory width=18 nlocations=64 contents=(
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000

+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ ObO00000000000000000
+ Ob000000111000000001
+ ObO00000100001000000
+ ObO00000000000000000
+ ObO00000100000010000
+ ObO00000000000000000
+ Ob000000100000001000
+ ObO00001000000001000
+ ObO11010100llOlOlO00000101
+ Ob000000100100000000 //20 add
+ Ob000001100100000000 //21 sub

136

+ ObOO00O10100100000000 //22 mul

+ ObO00011100100000000 //23 div

+ ObllO0011100100000000 //24 cmpeq

+ ObllO1010O0100000000 //25 cmplt

+ Ob110llllO0100000000 //26 cmple

+ Ob0000000 00000000 //

+ ObO11000100100000000 //28 and

+ ObOO11110100100000000 //29 or

+ ObO10101000000000000 //2a xor

+ Ob000001000000000000 //2b

+ Obl00000100100000000 //2c shl

+ OblOO001100100000000 //2d shr

+ OblO00011100100000000 //2e sra

+ ObO000000000000000000

+ ObOO0000110100000000 //30 add

+ Ob00001110100000000 //31 sub

+ ObOO00O10110100000000 //32 mul

+ ObOlO010011110100000000 //33 div

+ ObO110011110100000000 //34 cmpeq

+ ObllOlOlllOlO0000000 //35 cmplt

+ ObllOlllllOO1110100000000 //36 cmple

+ ObOO00000000000000000

+ Ob01lO00110100000000 //38 and

+ ObOlO111011010000000 //39 or

+ ObOOO011010100000000 //3a xor

+ ObO00000000000000000

+ OblO0000110100000000 //3c shl

+ OblO00001110100000000 //3d shr

+ OblO0011110100000000

+ Ob000000000000000000)

Xctll xwr nxwr inverter

Xctl2 nxwr reset wr nor2

.ends

.subckt pcmux5 pcsel[2:0] id[15:0] ia[31:0] radata[31:0] pc31 out[31:01 beq[31:0]

Xpcmux50O radata31 pc31 npc31 nand2
Xpcmux51 npc31 jpc31 inverter

Xpcmux52 0 ia[31:0] ia3l idl5#13 id[15:0] 0#2 beq[31:0] cdummy sub_adder

Xpcmux53 pcsel2#32 pcsell#32 pcsel0O#32 pc31 ia[30:0] jpc3l radata[30:2] 0#2 pc31 beq[30:0

.ends

.subckt sub_adder Cin A[31:0] B[31:0] S[31:0] Cout

.connect pO_O vdd

Xsub_adderO A[31:1] B[31:1] gO_[31:11 pO_[31:1] neghalfadder

Xsub_adderl AO BO Cin gO_O SO negfulladder

Xsub_adder2 gO_[31:1] pO_[31:1] gO_[30:0] pO_[30:0] gl_[31:1] pl_[31:1] negposcarryop
Xsub_adder3 gO_[O:01 pO_[O:0] gl_O0:0] pl_[O:O] inverter

137

Xsub_adder4 gl_[31:2] p_ [31:2] g1_[29:0] p1_[29:0] g2_[31:2] p2 _[3 1 : 2] posnegcarryop
Xsub_adder5 gl_[0:1] p1_[0:1] g2_[0:1] p2_[0:1] inverter
Xsub_adder6 g2_ [31:4] p2_[31:4] g2_[27:0] p2_ [27:01 g3_ [31:4] p3 [31:41 negposcarryop
Xsubadder7 g2_[0:3] p2 [0:3] g3_[0:3] p3 [0:3] inverter
Xsub_adder8 g3_[31:8] p3_[31:8] g3_ [23:0] p3 [23:0] g4_[31:8] p4_[31:8] posnegcarryop
Xsub_adder9 g3 [0:7] p3 [0:7] g4_10:7] p4 _[0:7] inverter
Xsub_adderlO g4_[31:161 p4_[31:16] g4_[15:0] p4 _[1 5 :0] g5_[31:16] p5_[31:16] negposcarryo
Xsub_adder11 g4 [0:15] p4_[0:15] g5_[0:15] p5_[0:15] inverter
Xsub_adder12 A[31:1] B[31:11 g5_ [30:0] S[31:1] xor3
.connect g5_31 Cout
.ends

Xbbb clk reset 0 id[31:0] mrd[31:0] ia[31:0] ma[31:0] moe wr mwd[31:0] +
werf beta
Xmem
+ vdd 0 0 ia[11:2] id[31:0]
+ moe 0 0 ma[li:2] mrd[31:01
+ 0 clk wr ma[11:2] mwd[31:0]
+ $memory width=32 nlocations=1024 file="/mit/6.004/jsim/projcheckoff.bin"

Vclk clk 0 pulse(3.3,0,4.390000ns,.01ns,.01ns,4.390000ns)
Vreset reset 0 pwl(0ns 3.3v, 8.800000ns 3.3v, 8.810000ns Ov)
.tran 8298ns

The smallest implementation

.include "nominal.jsim"
.include "stdcell.jsim"
.include "projcheckoff.jsim"

.subckt knex a b

.connect a b

.ends

.subckt zoutput S[31:0] z
Xz_outputO S[31:0] zO[7:0] nor4
Xz_outputl zO[7:0] zl[1:0] nand4
Xzoutput2 zl[1:0] z nor2
.ends

.subckt alu ALUFN[5:0] A[31:0] B[31:0] alu[31:0] z v n
XaluO ALUFNO A[31:0] B[31:0] S[31:0] z v n adder32
Xalul ALUFN[3:0] A[31:0] B[31:0] boole[31:0] boole32
Xalu2 ALUFN[1:0] A[31:0] B[4:0] shift[31:0] shifter32
Xalu3 ALUFN[2:1I z v n compare[31:0] compare32
Xalu4 ALUFN5#32 ALUFN4#32 S[31:0] shift[31:01 boole[31:0] compare[31:0]
+ alu[31:0] mux4
.ends

138

.subckt rca CO A[31:O] B[31:0] S[31:0O C32
XrcaO AO BO CO cl SO fulladder
Xrcal A[31:1] B[31:1] c[31:11 c[32:2] S[31:1] fulladder
.ends

.subckt voutput A31 B31 S31 v
XvoutputO A31 na inverter
Xvoutputl B31 nb inverter
Xv_output2 S31 ns inverter
Xv_output3 A31 B31 ns fir nand3
Xv_output4 na nb S31 sed nand3
Xv_output5 fir sed v nand2
.ends

.subckt boole32 ALUFN[3:O] A[31:O] B[31:O] boole[31:0]
Xboole320 A[31:O] B[31:O] ALUFNO#32 ALUFN1#32 ALUFN2#32 ALUFN3#32 boole[31:0] mux4
.ends

.subckt adderincrementer ia[31:01 increment[31:0]
Xadder-incrementerO ia[1:0] increment[1:0] knex
Xadderincrementerl ia2 increment2 inverter
Xadderincrementer2 ia3 ia2 increment3 c3 ha
Xadderincrementer3 ia[31:4] c[30:3] increment[31:4] c[31:4] ha
.ends

.subckt pcselz xpcsel[2:0] id27 z irq pcsel[2:0]
XpcselzO xpcselO nxpcsel0 inverter
Xpcselzl nxpcsel0 xpcsell btestout nor2
Xpcselz2 id27 z bzout xor2
Xpcselz3 irq#3 btestout#3 xpcsel[2:0] vdd 0#4 bzout vdd 0#2 pcsel[2:0] mux4
.ends

.subckt compare32 ALUFN[1:0] z v n cmp[31:0]
Xcompare320 n v gt xor2
Xcompare321 gt z nlet nor2
Xcompare322 nlet let inverter
Xcompare323 ALUFN[1:0] 0 gt z let cmp0 mux4
.connect 0 cmp[31:1]
.ends

.subckt pc clk reset ini[31:0] ia[31:01 nextia[31:0] increment[31:0]

.connect ial 0

.connect iaO 0
XpcO muxout[31:2] clk#30 ia[31:2] dreg
Xpcl muxout[31:0] nextia[31:0] knex
Xpc2 reset#32 ini[31:0] vdd 0#31 muxout[31:0] mux2
Xpc3 ia[31:0] increment[31:01 adderincrementer

139

.ends

.subckt beta clk reset irq id[31:0] mrd[31:O] ia[31:0] ma[31:O] moe wr
+ mwd[31:0] werf
XbetaO clk reset pcmux5out[31:0] ia[31:0] nextia[31:0] pcpf[31:0] pc
Xbetal reset id[31:26] ra2sel bsel alufn[5:01 wdsel[1:0] werf moe wr
+xpcsel[2:0] wasel asel ctl
Xbeta2 clk werf ra2sel ra[4:0] rb[4:0] rc[4:0] wdata[31:0] radata[31:0]
+ rbdata[31:0] regfile
Xbeta3 alufn[5:0] A[31:O] B[31:0] alu[31:O] aluz v n alu
Xbeta4 bsel#32 rbdata[31:0] idl5#16 id[15:0] B[31:0] mux2
Xbeta5 wdsell#32 wdse10#32 ia3l pcpf[30:01 mrd[31:0] alu[31:0 0#32
+wdata[31:0] mux4
Xbeta6 pcsel[2:0] id[15:0] pcpf[31:01 radata[31:0] ia31 pcmux5out[31:0]
+beq[31:01 pcmux5
Xbeta7 xpcsel[2:0] id27 z irq pcsel[2:0] pcselz
Xbeta8 wasel#5 xrc[4:0] vdd#4 0 rc[4:0] mux2
Xbeta9 asel#32 radata[31:0] 0 beq[30:0] A[31:0] mux2
XbetalO radata[31:0] z z_output
Xbetall alu[31:0] ma[31:01 knex
Xbetal2 rbdata[31:0] mwd[31:0] knex
Xbetal3 id[15:11] rb[4:01 knex
Xbetal4 id[25:21] xrc[4:0] knex
Xbetal5 id[20:16] ra[4:0] knex
.ends

.subckt regfile clk werf ra2sel ra[4:0] rb[4:0] rc[4:0O wdata[31:0]
+radata[31:0] rbdata[31:0]
XregfileO ra2sel#5 rb[4:0] rc[4:0O ra2mux[4:0] mux2
Xregfilel ra[4:3] nan0 nand2
Xregfile2 ra[2:0] nanl nand3
Xregfile3 nan0 nant nra31 nor2
Xregfile4 ra2mux[4:3] nbn0 nand2
Xregfile5 ra2mux[2:0] nbnl nand3
Xregfile6 nbn0 nbnl nrb3l nor2
Xregfile7
+ vdd 0 0 ra[4:0] adata[31:01
+ vdd 0 0 ra2mux[4:0] bdata[31:0]
+ 0 clk werf rc[4:0] wdata[31:0]
+ $memory width=32 nlocations=31
Xregfile8 nra3l#32 adata[31:0] 0#32 radata[31:0] mux2
Xregfile9 nrb31#32 bdata[31:0] 0#32 rbdata[31:0] mux2
.ends

.subckt shifter32 ALUFN[1:O0 A[31:0] B[4:01 shift[31:0]
Xshifter320 ALUFN1 0 A31 ctl mux2
Xshifter321 ALUFNO#32 A[31:01 A[0:31] ins[31:0] mux2

140

Xshifter322 ctl ins[31:0] B[4:0] outs[31:0] leftshifter
Xshifter323 ALUFNO#32 outs[31:01 outs[0:31] shift[31:0] mux2
.ends

.subckt ctl reset id3l id30 id29 id28 id27 id26 ra2sel bsel alufn[5:0] wdsel[1:0] werf mo
XctlO
+ vdd 0 0 id3l id30 id29 id28 id27 id26 alufn[5:0] bsel wdselO
+ $memory width=8 nlocations=64 contents=(
+ Ob11100000

+ Ob11100000

+ Ob11100000

+ b011100000

+ b011100000

+ Ob11100000

+ Ob11100000

+ Ob11100000

+ Ob11100000

+ Obll100000

+ b011100000

+ Ob11100000

+ OblllO0000

+ ObllO00000

+ Ob1110000

+ ObO1100000

+ Ob1100000

+ Oblll00000

+ OblllO0000

+ OblilO0000

+ OblllO0000

+ OblllO0000

+ Ob110000

+ OblllO0000

+ ObO0000010 //18 Id
+ ObO0000010 //19 str
+ OblllO0000

+ ObO0000000 //lb jmp
+ OblllO0000

+ Ob00000000 //ld beq
+ ObOO000000 //le bne
+ ObO110000 //if Idr
+ b00000001 //20 add
+ Ob00000101 //21 sub
+ Ob00001001 //22 mul
+ Ob0001101 //23 div
+ b011001101 //24 cmpeq
+ Ob11010101 //25 cmplt
+ Ob11011101 //26 cmple

141

+ OblllO0000 //

+ ObO1100001 //28 and

+ Ob01111001 //29 or

+ ObO101001 //2a xor

+ OblllO0000 //

+ OblO0000001 //2c shl

+ OblO0000101 //2d shr

+ OblO0001101 //2e sra

+ OblllO0000

+ b00000011 //30 add

+ ObOO00000111 //31 sub

+ ObOO0001011 //32 mul

+ ObOO1001111 //33 div

+ ObO1001111 //34 cmpeq

+ OblOlOlll0 //35 cmplt

+ Ob110Ollll //36 cmple

+ OblO110000

+ ObO1100011 //38 and

+ ObOO111101 //39 or

+ ObOOO101101 //3a xor

+ OblllO0000

+ OblO000011 //3c shl

+ OblO0000111 //3d shr

+ OblO001111 //3e sra

+ OblllO0000)

Xctll id31 id28 id27 nisst0 nor3

Xctl2 id30 id29 id26 isstl nand3

Xctl3 nisst0 isst0 inverter

Xctl4 isstl isst0 isst nor2

Xctl5 isst werf inverter

Xctl6 isst xwr knex

Xctl7 ra2sel isst knex

Xctl8 id30 id29 isldl nand2

Xctl9 id28 id27 isld2 xor2

XctllO id27 id26 isld3 xor2

Xctlll id3l isldl isld2 isld3 isld nor4

Xctll2 isld moe knex

Xctll3 xwr nxwr inverter

Xctll4 nxwr reset wr nor2

.connect 0 wasel

Xctll5 id29 id28 id27 id26 isldrO nand4

Xctll6 id30 nid30 inverter

Xctll7 id3l nid30 isldrO isldr nor3

Xctll8 isldr asel knex

Xctll9 isldr isld nwdsell nor2

Xctl20 nwdsell wdsell inverter

Xctl21 id30 id29 id27 id26 isj0 nand4

142

Xct122 id31 id28 isj0 isjmp nor3
Xct123 pcsell isjmp knex
Xctl24 id3i nid31 inverter
Xctl25 nid3i id30 id29 id28 isbe0 nand4
Xctl26 id27 id26 isbel xnor2
Xctl27 isbe0 isbel be nor2
Xctl28 pcselO be knex
.connect 0 pcsel2
.ends

.subckt pcmux5 pcsel[2:0] id[15:0] ia[31:0] radata[31:0] pc31 out[31:0] beq[31:O]
Xpcmux50 radata3i pc3i npc3i nand2
Xpcmux51 npc3i jpc3l inverter
Xpcmux52 0 ia[31:0] ia3i id15#13 id[15:0] 0#2 beq[31:O] cdummy rca
Xpcmux53 pcsel2#32 pcseli#32 pcse10#32 pc3i ia[30:01 jpc3i radata[30:2] 0#2 pc3i beq[30:0
.ends

.subckt ha a cO s cl
XhaO a cO s xor2
Xhal a cO ncl nand2
Xha2 ncl ci inverter
.ends

.subckt adder32 ALUFNO A[31:0] B[31:0] S[31:0 z v n
Xadder320 B[31:01 ALUFNO#32 bx[31:0] xor2
Xadder321 ALUFNO A[31:0 bx[31:0] S[31:0] cdummy rca
Xadder322 S[31:O] z zoutput
.connect S31 n
Xadder323 A31 bx31 S31 v voutput
.ends

.subckt leftshifter ctl A[31:0] B[4:0] shift[31:0]
XleftshifterO B4#32 A[31:01 A[15:0] ctl#16 w[31:0] mux2
Xleftshifterl B3#32 w[31:0] w[23:0] ctl#8 x[31:0] mux2
Xleftshifter2 B2#32 x[31:0] x[27:0] ctl#4 y[31:0] mux2
Xleftshifter3 Bi#32 y[31:0] y[29:0] ctl#2 z[31:0] mux2
Xleftshifter4 BO#32 z[31:0] z[30:0] ctl shift[31:0] mux2
.ends

.subckt fulladder a b cO cl s
XfulladderO a b gl xor2
Xfulladderl gl cO s xor2
Xfulladder2 a b g2 nand2
Xfulladder3 a cO g3 nand2
Xfulladder4 b cO g4 nand2
Xfulladder5 g2 g3 g4 cl nand3
.ends

143

.subckt mux5 sO sl s2 dO dl d2 d3 d4 out

Xmux50 sl s2 dO dl d2 d3 outi mux4

Xmux51 sO outl d4 out mux2

.ends

Xbbb clk reset 0 id[31:O] mrd[31:01 ia[31:0O ma[31:0] moe wr mwd[31:O]
+werf beta

.subckt mem_port moe wr clk werf reset mwd[31:O0 port[2:0] mrd[31:O] rw[31:0]
Xmem_portO werf 0 moe portO mux2

Xmem_portl clk nclk inverter

Xmem_port2 werf nclk 0 portl mux2

Xmem_port3 wr nwr inverter

Xmem_port4 reset nwr port2out nor2

Xmem_port5 werf port2out 0 port2 mux2

Xmem_port6 reset werf nwerf nor2

Xmem_port7 nwerf#32 mwd[31:01 rw[31:O] tristate

Xmem_port8 werf#32 rw[31:0] mrd[31:0] tristate

.ends

Xm_port moe wr clk werf reset mwd[31:0] mport[2:0] mrd[31:O] rw[31:0] mem_port
Xmem

+ vdd 0 0 ia[11:2] id[31:0]
+ mportO mportl mport2 ma[11:2] rw[31:0]

+ $memory width=32 nlocations=1024 file="/mit/6.004/jsim/projcheckoff.bin"

Vclk clk 0 pulse(3.3,0,8.740000ns,.Olns,.Olns,8.740000ns)

Vreset reset 0 pwl(Ons 3.3v, 17.500000ns 3.3v, 17.510000ns Ov)

.tran 16502ns

144

Bibliography

[1] H.S. Stone and P.M. Kogge. A parallel algorithm for the efficient solution of a general
class of recurrence equations. Trans. Computers, 22(8):786-793, Aug 1973.

[2] J. Mazzola Paluska. Automatic implementation generation for pervasive applications.
Master's thesis. Massachusetts Institute of Technology, 2004.

[3] U. Saif, H. Pham, J. Mazzola Paluska, J. Waterman, C. Terman, and S. Ward. A case
for goal-oriented programming semantics. In System Support for Ubiquitous Computing
Workshop at the Fifth Annual Conference on Ubiquitous Computing, 2003.

[4] J. Mazzola Paluska, H. Pham, U. Saif, G. Chau, C. Terman, and S. Ward. Structured
decomposition of adaptive applications. In Proceedings of the 6th IEEE International
Conference on Pervasive Computing and Communication, March 2008.

[5] The JSim documentation. http://6004.csail.mit.edu/currentsemester/handouts/jsim.pdf.

[6] 6.004 website. http://6004.csail.mit.edu/.

[7] J. Mazzola Paluska, H. Pham, U. Saif, G. Chau, C. Terman, and S. Ward. Structured
decomposition of adaptive applications. Pervasive and Mobile Computing, 2008.

[8] I. Page. Closing the gap between hardware and software: hardware-software cosynthesis
at Oxford. Hardware-Software Cosynthesis for Reconfigurable Systems (Digest No:
1996/036), IEE Colloquium on, pages 2/1-211, 22 Feb 1996.

[9] S. Vernalde, P. Schaumont, and I. Bolsens. An object oriented programming approach
for hardware design. VLSI '99. Proceedings IEEE Computer Society Workshop On,
pages 68-73, 1999.

[10] R.K. Gupta and G. De Micheli. Hardware-software cosynthesis for digital systems.
Design and Test of Computers, IEEE, 10(3):29-41, Sep 1993.

[11] D. Galloway. The transmogrifier C hardware description language and compiler for FP-
GAs. FPGAs for Custom Computing Machines, 1995. Proceedings. IEEE Symposium
on, pages 136-144, 19-21 Apr 1995.

[12] MyHDL - Python hardware description language.
http://myhdl.jandecaluwe.com/doku.php.

[13] W. Luk and S. McKeever. Pebble: A language for parametrised and reconfigurable
hardware design. In FPL '98: Proceedings of the 8th International Workshop on Field-
Programmable Logic and Applications, From FPGAs to Computing Paradigm, pages
9-18, London, UK, 1998. Springer-Verlag.

145

[14] Arvind. Bluespec: A language for hardware design, simulation, synthesis and verifi-
cation invited talk. In MEMOCODE '03: Proceedings of the First ACM and IEEE
International Conference on Formal Methods and Models for Co-Design, page 249,
Washington, DC, USA, 2003. IEEE Computer Society.

[15] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design in haskell.
In International Conference on Functional Programming, pages 174-184, 1998.

[16] Deepinder P. Sidhu. Logic programming applied to hardware design specification and
verification. SIGMICRO Newsl., 15(4):309-313, 1984.

[17] S. P. Boyd and S. J. Kim. Geometric programming for circuit optimization. In ISPD
'05: Proceedings of the 2005 international symposium on Physical design, pages 44-46,
New York, NY, USA, 2005. ACM.

[18] S. S. Lin and Parameswaran. Design methodology for pipelined heterogeneous multi-
processor system. Design Automation Conference, 2007. DAC '07. 44th ACM/IEEE,
pages 811-816, 4-8 June 2007.

[19] T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk, and P.Y.K.
Cheung. Reconfigurable computing: architectures and design methods. Computers
and Digital Techniques, IEE Proceedings -, 152(2):193-207, Mar 2005.

[20] D. Pham, E. Behnen, M. Bolliger, H.P. Hofstee, C. Johns, J. Kahle, A. Kameyama,
J. Keaty, B. Le, Y. Masubuchi, S. Posluszny, M. Riley, M. Suzuoki, M. Wang,
J. Warnock, S. Weitzel, D. Wendel, and K. Yazawa. The design methodology and
implementation of a first-generation CELL processor: a multi-core SoC. Custom In-
tegrated Circuits Conference, 2005. Proceedings of the IEEE 2005, pages 45-49, 18-21
Sept. 2005.

[21] A.K. Verma and P. lenne. Towards the automatic exploration of arithmetic-circuit
architectures. Design Automation Conference, 2006 43rd ACM/IEEE, pages 445-450,
2006.

[22] D. Jackson. Software Abstractions. The MIT Press, 2006.

146

