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Abstract

This thesis explores the application of organic thin-film transistors (OTFTs) for
temperature-sensing. The goal of this work is twofold: the understanding of the
OTFT's electrical characteristics' temperature dependence, and the creation of OTFT
temperature-sensing circuits. We find that OTFTs have temperature-dependent
current-voltage (I-V) characteristics that are determined by trap states inside the
bandgap. Based on this understanding, a DC OTFT circuit model is developed
which accurately fits the measured I-V data in all regions of device operation and
at different temperatures. Using this model, we design and fabricate two OTFT
temperature-sensing circuits. The first circuit achieves a responsivity of 22mV/°C
with 12nW of power dissipation, but has a nonlinear temperature response that is
dependent on threshold voltage shifts. The second circuit achieves a responsivity
of 5.9mV/°C with 88nW of power dissipation, and has a highly linear temperature
response that is tolerant of threshold voltage shifts. Both circuits exceed silicon tem-
perature sensors' typical temperature responsivity of 0.5 - 4mV/°C while dissipating
less power. These traits, along with the OTFT's ability to be fabricated on large-area
and flexible substrates, allow OTFT temperature sensors to be used in both existing
and new application environments.
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Chapter 1

Introduction

The organic thin-film transistor (OTFT) is a field-effect transistor technology that

uses an organic material as the semiconductor.

Recently, OTFTs have generated much research and commercial interest because

of their electronic and mechanical properties. Electronically, OTFTs have field-effect

mobilities and on/off current ratios that are comparable to those of hydrogenated

amorphous silicon (a-Si:H) TFTs [1]. Mechanically, because organic molecules inter-

act by weak Van der Waals forces, they have low melting temperatures and can be

soluble at room temperature [2]. The possibility of low temperature processing allows

inexpensive methods such as inkjet and roll-to-roll processing, and permits substrates

that are low-cost and mechanically flexible [3].

As a result, the target applications for OTFTs are large-area and mechanically

flexible electronics. Such applications include display backplanes, imagers, photo-

voltaics, radio frequency identification tags, and transparent electronics [3, 4].

This thesis explores the novel application of OTFTs for temperature-sensing. The

goal of this work is to understand the OTFT's temperature characteristics and to

create OTFT temperature-sensing circuits. Traditionally, several technologies have

been used for temperature-sensing:

* Silicon BJT and MOSFET integrated temperature sensors use the AVBE prin-

ciple [5-9] or the AVT principle [10, 11] to create proportional-to-absolute-



temperature (PTAT) circuits. These silicon PTAT circuits typically offer a

temperature responsivity of 0.5 to 4mV/°C [10], consume tens of nano-watts to

tens of micro-watts of power [11-13], and are used for temperatures lower than

150 0C [14].

* Resistance temperature detectors (RTDs) use metal's electrical resistance's char-

acterized temperature dependence to sense temperature [15]. RTDs typically

offer 0.1C00 of resolution [16], consume micro-watts of power [17], and can op-

erate at temperatures up to 600'C [18].

* Thermocouples measure the temperature-dependent voltage difference between

two metals according to the Seebeck Effect [19]. Thermocouples typically offer

tens to hundreds of IuV/°C of responsivity [20, 21], use no external power, and

can operate at temperatures up to 1, 2000C [22].

The most obvious advantage of an OTFT temperature-sensing circuit over the above

technologies is the OTFT's ability to be fabricated on large-area and flexible sub-

strates. However, it will also be shown that the OTFT's temperature characteristics

allow OTFT temperature-sensing circuits to exceed the above technologies' temper-

ature responsivities. while dissipating nano-watts of power. Two such OTFT circuits

will be presented. The first circuit has the greater temperature responsivity, while

the second circuit achieves high linearity with temperature while compensating for

common-mode threshold voltage shifts.

This thesis begins by describing the OTFT's device structure, electrical character-

istics, and temperature characteristics in Chapter 2. From these characteristics and

using device physics, a unified DC OTFT circuit model is developed in Chapter 3.

This model is used for the temperature-sensing circuit design in Chapter 4, where the

two temperature-sensing circuits are presented with measured results.



Chapter 2

The Organic Thin-film Transistor

This chapter is divided into three sections. The first section treats the OTFT from

a device perspective. The second section treats the OTFT as a circuit element by

presenting its electrical characteristics. The third section discusses the OTFT's tem-

perature characteristics.

2.1 Device Description

This section describes the OTFT from a device perspective, starting from the device

materials, to the fabrication process, and finally to the basic operating principle.

2.1.1 Device Materials

The OTFT uses pentacene as the semiconductor, parylene-C as the gate dielectric,

and gold as the gate and source-drain metal. The transistor is classified as thin-film

because pentacene and parylene are deposited as thin-films.

Pentacene is chosen as the semiconductor material because of its relatively high

charge mobility of approximately 1.0 cm 2/Vs [1]. Chemically, pentacene is a hydro-

carbon consisting of five fused benzene rings (C22H14), as shown in Figure 2-1.



Figure 2-1: Pentacene, C22H 14.

0 2.00 pm
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Figure 2-2: Atomic force microscopy (AFM) image of the amorphous pentacene film

used in this work as deposited on parylene (image by permission, Sung Gap Im, MIT).

The pentacene films used in this work are amorphous, as seen in Figure 2-2.

Charge transport is typically modeled by hopping between localized trap states, which

represents the movement of charges in the overlapped 7r-orbitals between molecules.

Charge transport in pentacene consists of holes, thus making pentacene a p-type

semiconductor. The low electron mobility means that pentacene conducts only by

hole accumulation, not by electron inversion.

Parylene-C is used for both the gate dielectric and the encapsulation material.

Chemically, parylene-C consists of a chlorine atom attached to a benzene ring (C8sH8C),

as shown in Figure 2-3.



-(CH2

Figure 2-3: Parylene-C, C8H8C1.

Parylene-C is chosen for the following reasons:

* It is chemically compatible with pentacene.

* It can be deposited at room temperature as a conformal and smooth thin-film.

* Its high electrical insulation (1015 Qcm) and high dielectric strength (2.7 MV/cm)

make it an excellent dielectric material (dielectric constant of 3.10 at 1 kHz).

* Its low moisture and low gas permeability make it suitable as an encapsulation

layer to protect pentacene.

Gold is used as the gate and source-drain metal because gold's high workfunction

decreases the energy difference between gold's Fermi energy level and pentacene's

highest occupied molecular orbital (HOMO) energy level. This leads to a lower hole

injection barrier [23], which decreases contact resistance. An additional benefit of

gold is that it does not oxidize in air.

2.1.2 Device Fabrication Process

The OTFTs are fabricated using a photolithographic process developed by Kymissis

et al. [24]. The process flow is illustrated in Figure 2-4:

CH2
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area stack
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Transistor Via

Figure 2-4: The OTFT photolithographic process flow (figure by Kymissis [24]).

Each step in Figure 2-4 is described below:

1. 100A of Cr (to promote adhesion to the substrate) and then 600A of Au are

e-beam evaporated onto the substrate. The patterned result forms the gate

layer.

2. 2000A of parylene is deposited via chemical vapor deposition (CVD) and is

subsequently patterned. This forms the gate dielectric layer.

3. 400A of Au is e-beam evaporated onto parylene and is subsequently patterned.

This forms the source-drain layer.

4. 150A of pentacene is deposited via thermal evaporation (< 95'C), and then

2000A of parylene is deposited via CVD as an encapsulation layer.

5. The active layer is patterned.

2) Mask II

3) Mask III

4)

5) Mask IV

~t~t~-"t~s



Figure 2-5: The OTFT device cross-section.

Figure 2-6: Top view of an OTFT, 200 mrn/25pmrr.

The resulting OTFT cross-section in Figure 2-5 shows a bottom-contact inverted-
staggered-gate field-effect transistor. "Bottom-contact" refers to the position of the
source-drain metals relative to the pentacene. Bottom-contact OTFTs suffer from
higher contact resistances [23, 25], but the pentacene is deposited after the source-

drain metal is e-beam evaporated, thus avoiding damage to the pentacene. Unlike
silicon MOSFETs, the OTFT structure is called "inverted" in the sense tha t• the gate
layer is underneath the semiconductor layer and the source-drain layer. Again, this
arrangement is to protect the pentacene by depositing it after the metal.

In the above process, the maximum temperature is 950C, the ininninn feature
size is 3/mr (limited by mask supplier), and the alignment tolerancie is 1pum. Figulre 2-
6 shows the top view of an OTFT. A completed wafer on a 4-inch glass su•lstrate is
shown in Figure 2-7.

Encapsulation (parylene)
Semiconductor (pentacene)
Source/drain layer (Au)

O Gate dielectric (parylene)
Gate (Cr-Au)

ý- -\.\- I I cý- -



Figure 2-7: A 4-inch OTFT wafer on a glass substrate.

2.1.3 Basic Device Operation

Similar to MOSFETs, OTFTs operate by field-effect. The fabricated devices are

enhancement-mode because the drain current is small under zero gate bias'. Under

negative gate bias, holes will accumulate in the pentacene, thus forming a conductive

channel between the source and the drain. When a positive source-drain voltage

is applied, holes will travel through the channel by hopping between localized trap

states. The device operation for a negative gate bias and a positive source-drain bias

is illustrated in Figure 2-8.

Source Drain

Figure 2-8: The OTFT device operation under a negative gate bias and a positive

source-drain bias.

'Under zero gate bias, the drain current is in the subthreshold region and is typically six to seven
orders of magnitude less than the on-current. See Section 2.2 for plots.



2.2 Current-voltage Characteristics

This section describes the OTFT from an electrical perspective using current-voltage

(I-V) characteristics. Figure 2-9 shows the OTFT current and voltage conventions

used in this work, where VGS = VG - Vs = -VsG and VDS = VD - Vs = -VSD. All

characteristics were measured with a Signatone S-250 probe station and an Agilent

4156C parameter analyzer. Wafer temperature was controlled by a Silicon Thermal

TH170 thermal head attached to a LB320 thermal controller.

\/Gs = -\/SG -S

G + VDS = -V SD

Figure 2-9 The OTFT current and voltage conventions.

Figure 2-9: The OTFT current and voltage conventions.

1.OE-05

1.OE-06

1.0E-07

I.OE-08

I.OE-09

, 1.OE-10

- 1.OE-11

1.0E-12

1.OE-13

1.0E-14

1.0E-15

1.0E-16

**** Subthreshold * ID, VDS=-20V
* ID, VDS=-IV

.... **" ** 0IG, VDS=-20V
IG, VDS=-IV

14

? + :1 A
** * n Q

4
*

Above-threshold

-20 -15 -10 -5

VT

0 5

VGS [V] VOFF

Off

10 15 20 25

Figure 2-10: Typical OTFT transfer characteristics on a semi-log scale, 200[m/25tm.

Figure 2-10 shows typical transfer characteristics obtained at VDS = -20V and -1V
on a semi-log scale. From Figure 2-10, one can see three distinctive regions:



* Off Region, VOFF < VGs : At VGS greater than a certain voltage, the transistor

is turned off. Here, IDo is dominated by the gate leakage current IG. The lowest

VGs at which ID = Ia is defined2 as the off-voltage, or VOFF. We will treat ID

as effectively zero in this region.

* Subthreshold Region, VT < VGS < VOFF: In the subthreshold region, ID is

approximately exponentially controlled by VGs. The effectiveness of VGS control

is quantified by the inverse subthreshold slope, S (mV of VGS per decade of ID).

The VGS at which ID starts to deviates from the exponential increase is defined3

as the threshold voltage, VT.

* Above-threshold Region, VGS < VT: When VGS is sufficiently negative, ID

ceases to increase exponentially and the transistor enters the above-threshold

region.

2.2.1 Above-threshold Current-voltage Characteristics

Figure 2-11 re-plots Figure 2-10 on a linear scale. One can see that at VDs = -1V, ID

increases in a linear relationship versus VGs, whereas when VDS = -20V, ID increases

in a power relationship versus VGS.

I 2E21 7 1 6E-06 -------------
o Data AE-6

10E.07 - Model, Power 1

1.2E-06

8.0E48 1.0E-07

E.0E-07
4.0E-08

4.0E-07

2.05-08 2.0E-07

0.0E+00 ......... ...... .• O * 0.0E+00 -
-25 -20 -15 -10 0 5 10 15 20 25 -25 -20 -15 -10 -5 0 5 10 15 20 25

VGS IV] VDS -1V VGS [V] @ VDS -20V

(a) VDs = -1V. (b) VDs = -20V.

Figure 2-11: Transfer characteristics on a linear scale, 200pim/25/pm.

2 This definition makes VOFF dependent on IG. However, this is a weak (logarithmic) dependence
because Ic is in the subthreshold ID range.

3To be physically accurate, this voltage should be named the flat-band voltage. However, "thresh-
old" voltage is used to allow terminologies such as "subthreshold" and "above-threshold."



However, Figure 2-11(a) is misleading because, at a small VDS, contact resistance

has a significant effect on the drain current. We plot the transfer curves again in Fig-

ure 2-12 for a longer channel device, for which contact resistance has a proportionally

smaller impact.

2.0 -08 - 1. ..6E ......................................................... ...............................................................

1.8E-08

1.6E48

1.4E8 -

1.2E08

1.0E48

8.0500

4.0E-09

2.0E-9 ]
O.OE+00 .,

D - o r . 1.4E047

1.2E047

1.0E07

6.0E-08
8.04OB

4.0E48

2.0E-08

O.OE+O0 -
-25 -20 -5 -10 4 0 5 10 1 2 220 25 -2 -20 -15 -10 - 0 5 10 1s 20 25

VGS MV]VDS -V VGS V@ VDS .. -20V

(a) VDS = -1V. (b) VDs = -20V.

Figure 2-12: Transfer characteristics on a linear scale, 100m/200OOm.

As shown in Figure 2-12, when contact resistance's effect is diminished, both VDS's

yield power relationships versus VGS. The power dependence is a consistent result

for a device whose mobility increases with negative VGS [25]. The power difference of

"1" between low VDs and high VDS is consistent with a p-type transistor going from

the linear region to the saturation region.

Figure 2-13 shows the output characteristics obtained at VGS = -20V to OV.

1.6E-06

1.4E-06

1.2E-06

I.OE-06

8.OE-07

6.0E-07

4.OE-07

2.OE-07

O.OE+OO
-320 V -25 .12 .10 .5 a

VDS [V] @ VGS = -20V to OV in 2V increments

Figure 2-13: Typical OTFT output characteristics, 200jum/25ym.

'OVAan l

,,,,,



Figure 2-13 shows that the OTFT has a linear region at small4 VDs's and a

saturation region at large VDs's. In the linear region, ID increases linearly with VDS.

In the saturation region, ID is relatively unaffected by VDS.

2.2.2 Subthreshold Current-voltage Characteristics

The subthreshold region is defined by ID's apparently exponential dependence on

VGs. In Figure 2-14, ID begins to increase exponentially at VGS < VOFF = 0.1V. The

exponential increase occurs with a slope of S = 0.36V/dec. At VGs < VT = -0.5V,

ID ceases to increase exponentially, and the exponential model begins to deviate

from data. The subthreshold output characteristics in Figure 2-15 show that for any

appreciable VDS, the subthreshold ID is saturated.

I -
1.OE-10

1.0 E-11

1.OE-12

1.OE-13
-1 -0.5 0 0.5 1

VGS [V] @ VDS = -20V

Figure 2-14:

1,000pm/5~m.

Subthreshold region transfer characteristics on a semi-log scale,

4The concave curvature at VDS near zero is due to contact resistance. This behavior can be
modeled by a series resistor and a pair of anti-parallel Schottky diodes at the source and the drain [26].



1.6E-11 .

1.4E-11 Vs= -03V

1.2E-11

1E-.11

8E-12

6E-12

4E-12 V(< =o0,25V

2E-12 • ...... *.
Vrs 

= 
OV

-5 -4 -3 -2 -1

VDS [V]
0

Figure 2-15: Subthreshold region output characteristics, 1,000pm/5pm.

2.2.3 Typical Characterized Parameters

Typical characterized I-V parameters are shown in Table 2.1. The data is measured

from nine wafers fabricated over the span of two years. Some parameters are nor-

malized per micron of channel width. All characterized transistors have 5[tm channel

length. ION is defined as the drain current at VGS = VT - 20V and at VDS = -20V.

Mobility is calculated using the method outlined by Ryu et al. [25]. VSHIFT is ob-

tained from the double-sweep capacitance-voltage (C-V) plot's voltage hysteresis, and

is a rough measure of device stability under bias. RCONTACT is obtained by the trans-

mission line method (TLM) [27] and is used to calculate mobility.

Parameter Mean Std. Dev. Maximum Minimum

VT [V] -0.42 0.79 1.0 -2.0

ION [nA/pm] 11 7.5 29 3.3

Mobility [cm 2/Vs] 0.024 0.016 0.062 0.0030

S [V/dec] 0.71 0.32 1.5 0.34

IG,leak [fA/pum] 10 11 40 1.8

IDS,leak [fA//pm] 1.2 0.38 2.1 1.0

VSHIFT [V] 0.18 0.16 0.40 0.10

RCONTACT [MQ -pm] 6.3 x 102 3.4 x 102 1.4 x 103 82

Table 2.1: Compiled OTFT I-V parameters.



2.3 Temperature Characteristics

So far, the OTFT's transfer and output characteristics in both subthreshold and

above-threshold regions have shapes that are very similar to silicon MOSFET's. How-

ever, we observe differences once the device temperature is varied.

VGs [V]

Figure 2-16: BSIM3 silicon MOSFET's temperature characteristics.
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Figure 2-17: OTFT's measured temperature characteristics.

The silicon MOSFET's temperature characteristics (BSIM3 model) are shown

in Figure 2-16. Two properties should be noted. First, the subthreshold current
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increases with temperature, while the above-threshold current decreases with tem-

perature 5. Second, the MOSFET's inverse subthreshold slope becomes softer as tem-

perature increases. This is because S = (nkT/q)ln(l0) [28]. For comparison, OTFT's

measured temperature characteristics are shown in Figure 2-17. Unlike MOSFETs,

the OTFT's current increases with temperature in both subthreshold and above-

threshold regions. Furthermore, the OTFT's S appears to be temperature indepen-

dent. These observations have also been made in [29, 30].

This suggests that fundamental differences exist between the MOSFET and the

OTFT. Indeed, as mentioned in Section 2.1.1, an important difference is that the

MOSFET is an inversion-mode transistor, while the OTFT is an accumulation-mode

transistor. Another significant difference is that pentacene contains substantial trap

states in its bandgap [31, 32] whereas silicon does not. This is illustrated in Figure 2-

18. The trap states will be revisited in Chapter 3 to develop the OTFT circuit model.

Pentacene
Density of trap states

ELUMO

EF

EHoIuI

Silicon
Density of trap states

Ec

EF

Ev

Figure 2-18: Pentacene contains substantial trap states in the bandgap, whereas

silicon does not.

5In the subthreshold MOSFET, the channel's carrier concentration increases exponentially with
temperature. In the above-threshold MOSFET, the degradation of carrier mobility with temperature
is the dominant reason behind the current decrease.



2.3.1 Above-threshold Temperature Characteristics
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Figure 2-19: Saturation reglOn temperature characteristics on a semi-log scale,
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Figure 2-20: Arrhenius plot of saturation region ID at two Vcs's, 1,000p,m/5p,m.

The OTFT temperature characteristics in the saturation region are shown in Figure 2­

19, where one can see that the I-V shape remains similar as the temperature is varied.

To investigate further, we graph an Arrhenius plot of ID at two Vcs's in Figure 2-20.

Figure 2-20 shows that I D is thermally activated. Its temperature dependence can

28



be modeled by ID oc exp(-alT), where ac decreases with increasingly negative VGS.

This is equivalent to saying that the activation energy of carriers decreases as VGS

becomes more negative, which implies that additional trap states are filled and the

energy required for charges to reach the HOMO energy level is reduced [31, 32].

The temperature characteristics in the linear region are shown in Figure 2-21.
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Figure 2-21: Linear region temperature characteristics on a semi-log

1,000pLm/5pm.

We graph an Arrhenius plot of ID at two VGS's.
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Again, the Arrhenius plot shows that ID's temperature dependence can be mod-

eled by ID oc exp(-o/T). Also, as in the saturation region, cz decreases with negative

VGS .

2.3.2 Subthreshold Temperature Characteristics
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Figure 2-23: Subthreshold region temperature characteristics on a semi-log scale,
1,000[im/5pm.

The subthreshold temperature characteristics are shown in Figure 2-23. Unlike sil-

icon MOSFETs, where S is temperature dependent, OTFT's S is not affected by

temperature in the temperature range tested6. This is shown in Figure 2-24.

6As temperature nears the processing temperature of 950C, the pentacene morphology becomes
irreversibly changed. As temperature decreases to below -50'C, Knipp et al. [33] show that the
inverse subthreshold slope of OTFTs becomes temperature dependent.
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Figure 2-25: Arrhenius plot of subthreshold I D at various Vcs's, 1,OOOfLm/5fLm.

Further insight can be gained by graphing an Arrhenius plot of I D at various

Vcs's in Figure 2-25. Again, the temperature dependence can be modeled by I D ex:

exp( -aIT). However, as shown by Figure 2-25, subthreshold OTFT's ex does not

change with Vcs , unlike subthreshold MOSFET's a = qVcsl(nk).

A detailed model in all regions of operation will be developed in Chapter 3.
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Chapter 3

A Unified OTFT DC Circuit

Model

This chapter develops a unified OTFT DC circuit model for all operating regions and

under varying temperatures. This model will serve as an analysis and simulation tool

for the circuit design in Chapter 4.

3.1 Model Development

The development of the model is based on the Rensselaer Polytechnic Institute (RPI)

a-Si transistor model [34, 35]. It is chosen because it models the a-Si transistor, which

is an amorphous, trap-dominated, and accumulation-mode thin-film transistor just

like the OTFT. In addition, this model is derived from device physics [34, 36, 37] that

may apply to OTFTs [38, 39].

Bandgap trap states are central to the model. As previously mentioned in Sec-

tion 2.3, OTFTs contain significant trap states in the bandgap. As done in [31, 32],

we assume that the traps have an exponential density of states. The expressions for



the density of states are shown below in terms of energy (E) and potential (V).

g(E) = goexp EFo - E

g(V) = goexp Vtap( V )r

(3.1)

(3.2)

In Equation 3.1, EFo is the Fermi level at equilibrium, Etrap is the characteristic

trap energy, and go is the density of states at EFo. In Equation 3.2, V is defined as

V = (EFo - E)/q, and Vtrap = Etrap/q.

The density of trap states is illustrated in Figure 3-1, where ELUMO is the low-

est unoccupied molecular orbital (LUMO) energy level, and EHOMO is the highest

occupied molecular orbital (HOMO) energy level. This figure is based on Figure 5-1

in [34].

Density of trap states (log)

go
)ensity of trap states (log)

go

EF = EFO - qV

Filled trap states

Exponential density of trap states in pentacene, under equilibrium and

3.1.1 Above-threshold Model: Linear Region

Assuming that the diffusion current is negligible when above-threshold, we begin by

stating that the drain current is the product of the channel width (W), the elementary

ELUMO

EF = EFo

EHOMO

Figure 3-1:

under bias.

r-



charge (q), the charge velocity (v), and the sheet density of free holes (ps).

ID = Wqvp, (3.3)

We will first treat ps, which can be found by integrating the volume density of free

holes (Pv) over the vertical thickness of the free hole layer (t):

, = P, dy (3.4)

The volume density of free holes, P,, can be found by Boltzmann statistics1 :

P = Pvoexp ) (3.5)

Pvo = NHOMOeXP (EFO E H OMO (3.6)

In Equations 3.5 and 3.6, P, is the free hole volume density under an applied potential

of V, P,o is the free hole volume density at equilibrium, and NHOMO is the HOMO

energy level's effective density of states. We substitute Pv into Equation 3.4 to obtain

PS:

p, = P dy (3.7)0
= PVo exp -•) dy (3.8)

= Pov0 ( exP V) dV (3.9)

Instead of integrating over thickness in Equation 3.8, an indirect but simpler method

is to integrate over potential from deep substrate (zero potential, equilibrium) to the

dielectric-semiconductor interface (surface potential, 0,). This change of variables is

done in Equation 3.9, where E(V) = -dV/dy is the vertical electric field.

Two unknowns, the electric field (E(V)) and the surface potential (0s), need

to be found before Equation 3.9 can be integrated. E(V) can be stated in terms

1We make the reasonable assumption that the semiconductor is not degenerate.



of charge density (p) by using Poisson's equation in Equation 3.10 and by using

E(V) = -dV/dy in Equation 3.12.

dE(V) p

dy E,
dE(V) dV

dV

E(V) dE(V)= -=dV

E(V)2=•2 fCS
To find the charge density, we use the density of states equation (Equation 3.2) to

sum the trapped holes in the bandgap.

p(V) = -q
0/

g(V') dV'

= -qgoVtrap (exp

(3.14)

(3.15)(Vtr~)
E(V) can be calculated by substituting Equation 3.15 into Equation 3.13:

(V (expE(V) -(2qgoVtra

= 2qgoVtrap268;

Vi)

(exp t

dV 1/2

V 1

Vtrap 1))1/2

Next, the surface potential (0,) can be found by defining VT as the voltage when

the device reaches flat-band condition2 . In Equation 3.18, VGT is defined as the

overdrive voltage, and it is assumed that VGT »> 8 when strongly above-threshold.

VGT = VsG + VT = Eoxtox + Os ! Eoxtox (3.18)

Eox can be found by the continuity of fields:

(3.19)

2As previously mentioned in Section 2.2, the threshold voltage is actually the flat-band voltage.

= PdV

(3.10)

(3.11)

(3.12)

(3.13)p(V') dV'

(3.16)

(3.17)

_o

-1)

-1)

Eox = sE
EX--



In Equation 3.19, E, is the electric field at V = 08. We use Equation 3.17 to find E,:

E, = E(,) = 2qgoV trap2IEs

2qgo Vrap 2k eCs

exp (Vtr)

VtrapJ

In Equation 3.21, we assume that , >» Vtrap. This is a reasonable assumption

because Vtrap z 0.03V for the tested OTFTs. Using Equations 3.18 and 3.19, VGT

can be rewritten in terms of E,:

VGT Esto
VET-

(3.22)

After substituting E, from Equation 3.21 into Equation 3.22 and rearranging, we

obtain an expression for 8,:

8 Vtrapln ( 2 tox2VGT2 2

2qesto 29oVeap2

With both E(V) and q, known, we can finally calculate p, from Equation 3.9:

pS = PvO
o

1
E(V) exp

2kT
Pvotm 2qVtrap - kT

= NHoMoep - E( E

(qV\ dV
kT

2qVtrap

tm Co8 VGTrap

tox Es Vtrap )

- EHOMO) 2kT
t2qVtr - kT

2
qVt

k p _

tom ox VGT
tox 'Es Vtrap)

where tm is defined below [34]:

0 ) - )1/2 (3.20)

(3.21)

(3.23)

(3.24)

(3.25)

(3.26)

t = go 1/2
2 qgo

(3.27)



Looking back at the initial current equation (repeated below), we have found the

sheet density of free holes, ps, but we still need to find the charge velocity, v.

ID = Wqvp, (3.28)

To find v, we assume that v is proportional to the lateral electric field. As done

for MOSFETs, we name the proportionality constant as mobility, or /i. This is a

reasonable assumption because the lateral field is low when in the linear region. The

low field also permits the assumption that the field is constant in the channel.

v = PElateral (3.29)

VsD
= VSD (3.30)

To investigate M's dependencies, we plot the measured exponent of VGT (from transfer

characteristics) versus temperature in Figure 3-2.
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Figure 3-2: Exponent of VGT versus 1/T for a 1, 000pm/5/tm device in linear region.

According to Equation 3.26, the exponent of VGT versus 1/T should have a y-axis

intercept at -1 because p, yields a VGT exponent of 2qVt,,p/(kT)- 1. However, based

on Figure 3-2, the y-axis intercept is -0.14. This discrepancy can be modeled by a

mobility 3 that increases with VGT, or /p = Po(VGT/V,) n , where 1uo, n, and V, are
3This mobility is affected by contact resistance because, as seen in Section 2.2.1, the VGT exponent

in linear region is limited by contact resistance.

* Measured

y= 450.16x - 0.1423 **

"I I I ,



constants. This results in the following empirical model for the charge velocity:

S= VSD (3.31)
v="L

(AVGT n VSD (3.32)

Inserting Equations 3.31 and 3.26 into Equation 3.28 yields the equation for the drain

current in the above-threshold, linear region:

2
qVtrap -1

W EFo - EHOMO 2kT tm Eox VGT kT

L kT tM 2qVtrap - kT tox e, Vtrap
(3.33)

3.1.2 Above-threshold Model: Saturation Region

As observed in the output characteristics in Figure 2-13, the OTFTs devices saturate

at a sufficiently large VSD. This behavior may be attributed to the decreased accu-

mulation layer in the channel near the drain. The decrease in accumulated charges

will decrease the channel conductance in the region. Therefore, additional VSD will

be dropped across this region instead of increasing the lateral field and the current in

the channel.

We use the empirical approach described in [34, 37] to model saturation. This

approach replaces VSD with an effective VSDE. At low VSD, VSDE r VSD. At high

VSD, VSDE ~ O'satVGT, thus increasing the overall exponent of VGT by one and is

consistent with Figure 2-12.

VSDE = D (3.34)

In Equation 3.34, asat adjusts the onset of saturation with respect to VGT, and m

adjusts the width of the transition region. This transition is illustrated in Figure 3-3.
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Figure 3-3: VSDE versus VSD, with ,,satVGT = 5V and m = 3, 5, 10.

3.1.3 Subthreshold Model

Figure 2-14 shows that the subthreshold current has an apparently exponential de-

pendence on VGT. However, the transition between subthreshold and above-threshold

regions is gradual. Furthermore, using an exponential model for the subthreshold re-

gion and a power model for the above-threshold region would make simulation conver-

gence difficult. For these two reasons, we opt for an approximation of the exponential

behavior by using a power model as done in [34]. To do this, VGT is replaced with an

effective VGTE. At low VGT, VGTE is approximately exponentially dependent on VGT.

At high VGT, VGTE e VGT-

VGTE VMIN 2 + 1 (3.35)

2VTE VMIN MIN

In Equation 3.35, 6 is a transition parameter, and VMIN is a convergence parameter.

The use of VGTE effectively unifies the above-threshold and subthreshold regions in a

smooth manner, as shown in Figure 3-4.
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Figure 3-4: VGTE versus VGT, with 6 = 200 and VMIN = 0.003, on (a) linear and (b)

semi-log scales.

3.1.4 The Unified Model

By using VSDE and VGTE, we obtain a unified model that is valid for both linear

and saturation regions, and for both above-threshold and subthreshold regions. The

unified model is shown below, followed by a summary of parameters in Table 3.1.

w (
ID = -q[UVSDENHoMOeXp

L

EFO - EHOMO

kT
2kT

tm2qVtrap - kT
tm 6 ox VGTE
tox 6 s Vtrap

(3.36)

where:

VSD

+VGT

VI N

VGT = VSG + VT

(V GTE 
n

P = /o V )

2qgo)1/

3

2.5

2

z 1.5

0.5
I-
C,

0 1 . I L_ r I .

-0.5 0 0.5 1 1.5 2

2 qVtrap
kT

VSDE

+ ( VS DTE
Csat VGTE

VMIN
VGTE -

2

m

SVGT _ V 122 + VMIN

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)



Parameter Unit Description

asat - Onset parameter for current saturation.

6 - Transition parameter for the subthreshold region.

EFo eV Fermi energy level at equilibrium.

EHOMO eV HOMO energy level.

Eox - Relative dielectric constant of the gate dielectric.

Es - Relative dielectric constant of the substrate.

go0 cm-3eV - 1 Density of states at EFO.

L um Channel length.

m - Transition parameter for current saturation.

I/o cm 2 /(Vs) Mobility parameter.

n - Exponent of mobility's power dependence on VGTE.

NHOMO cm - 3  Effective density of states at HOMO energy level.

tox m Gate dielectric thickness.

VMIN V Convergence parameter for the subthreshold region.

V, V Mobility's VGTE-dependence parameter.

Vtrap V Characteristic voltage for the trap states.

W jTm Channel width.

Table 3.1: Summary of model parameters.



3.2 Model Versus Measured Data

The model is validated by its accuracy in fitting the measured OTFT characteristics.

First, the above-threshold transfer characteristics are compared in Figure 3-5. Ar-

rhenius plots of the above-threshold ID are compared in Figure 3-6. Both figures use

the parameters in Table 3.2.
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Figure 3-5: Measured versus

1,000ptm/5pm, on (a) linear and

modeled above-threshold transfer characteristics,
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Figure 3-6: Measured versus

VGS's, 1,000ttm/5Lm.

modeled above-threshold Arrhenius plots of ID at two

Table 3.2: Model parameters used in Figures 3-5 and 3-6.

Next, subthreshold transfer characteristics are compared in Figure 3-7. Arrhe-

nius plots of the subthreshold ID are compared in Figure 3-8. Both figures use

the parameters in Table 3.3. Some parameters are different from Table 3.2 because

the subthreshold characteristics were measured separately and the devices had been

stressed from the above-threshold measurements4

4 As a reminder, because the model contains empirical components, there may be more than one
set of parameters that fit a group of transfer characteristics. Therefore, one cannot extract physical
values from the parameters.
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Parameter Value Parameter Value

Ousat 0.64 6 120

EFO - EHOMO 0.2eV 6oX 3

e, 6 L 5upm

m 4.4 n 1.5

I-h 0.009cm2/(Vs) NHOMO 2.2 x 1019 cm - 3

tm 5.2nm tox 200nm

VMIN 0.01V v, 1V

VT -1V Vtrap 0.02V

W 1, 000pm

r
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Figure 3-7: Measured versus modeled subthreshold transfer characteristics,
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Table 3.3: Model parameters used in Figures 3-7 and 3-8.

Lastly, the output characteristics at room temperature are modeled in Figure 3-9

using the parameters from Table 3.4. The parameters are different from Table 3.2

because a device with a longer channel is used to minimize the effects of contact

resistance.
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Figure 3-9: Measured

200pm/25pm.

0 5

versus modeled output characteristics at room temperature,

Parameter Value Parameter Value

Osat 0.64 6 90

EFo - EHOMO 0.25eV 6ox 3

ES 6 L 5,pm

m 4.4 n 1.5

tPo 0.009cm2/(Vs) NHOMo 2.2 x 1019 cm- 3

tm 5.2nm tox 200nm

VMIN 0.005V v,1 1V

VT -0.5V Vtrap 0.016V

W 1, 000pm

i



Parameter Value Parameter Value

Osat 0.64 6 120

EFo- EHOMO 0.2eV Eox 3

Es, 6 L 25/m

m 4.4 n 1.2

1o 0.025cm2/(Vs) NHOMO 3.0 x 1019cm - 3

tm 5.5nm tox 200nm

VMIN 0.01V V, 1V

VT -0.5V Vtrap 0.022V

W 200ym

Table 3.4: Model parameters used in Figure 3-9.

3.3 Model Implementation in Verilog-A

Verilog-A is an analog behavioral modeling language that can be used to model an

arbitrary device as a circuit element. The Verilog-A code specifies the device's ports

and the I-V relations between the ports. The specified device can then be used as a

circuit element in circuit simulators such as SPICE or Spectre.

The OTFT is represented by a three-port device (drain, gate, and source), and

the unified OTFT model (Equation 3.36) is used to relate ID to VGs and to VDs.

The Verilog-A code is included in Appendix A. Figure 3-10 shows the simulated

temperature characteristics using the parameters from Table 3.2.



(a) Simulation schematic.

DC Response

(b) Simulation result.

Figure 3-10: Simulated transfer characteristics at various temperatures using Verilog-

A model, 1,000tm/5tum. Cadence's Virtuoso Spectre Circuit Simulator is used.

The simulation exactly matches the model from Figure 3-5 because the same

equations and parameters are used. The Verilog-A model will be a design tool for the

temperature-sensing circuit design in Chapter 4.



Chapter 4

OTFT Temperature-sensing

Circuits

In this chapter, temperature-sensing circuits are designed using the OTFT circuit

model as a tool. First, the single-ended circuit topology is discussed, and then the

improved differential circuit topology is presented.

4.1 The Single-ended Topology

This section describes the circuit design and the measured results of the single-ended

topology.

4.1.1 Single-ended Topology Circuit Design

The design of a temperature-sensing circuit begins with the OTFT temperature char-

acteristics, which are repeated in Figure 4-1.
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Figure 4-1: Temperature characteristics on a semi-log scale, 1,000bm/5um.

In Figure 4-1, the dotted line represents a constant ID bias. By looking at the

operating points on the dotted line, one notices that VGS is a function of temperature

when ID is held constant. Using VGS to detect temperature is the key principle of

operation for the temperature-sensing circuits in this work.

Constant ID

Vo = VSG

GND

Figure 4-2: The single-ended temperature-sensing circuit.

A circuit that implements this idea is shown in Figure 4-2, where the OTFT is

diode-connected to ensure that it operates in the saturation region. For this circuit,

the dependence of VGS on temperature can be found by using the circuit model from

Chapter 3. The model in saturation region is repeated below in a simplified form

~_



where A, B, C, and D are constant with temperature1 .

ID = Aexp

where:

B> T
T (D VTGTE)nTl C-T

A = 2-qPu -VNHOMOtmCasat
L P(V)" Dn+1

= EFO - EHOMO
B =

C 2qVtrap

tm Cox 1
D -

tox Es Vtrap

We rearrange Equation 4.1 for an expression of VGTE.

VGTE = (ID C- Texp ) 

T

T

(B»\/ C+nT

Subsequently, VGTE can be converted to VGs using Equation 3.38. Using the equa-
tions, we can calculate the output of the circuit, Vo = VSG. Vo versus temperature for
several ID'S is plotted in Figure 4-3. Values from Table 3.2 are used for the constants.

-20 -10 0 10 20 30 40 50
Temperature [deg C]

Figure 4-3: Calculated Vo versus temperature using the model, at several ID'S.
1,000 m/5pm.

'Sample values using the
D = 0.65, n = 1.5.

parameters from Table 3.2: A = 1.2 x 10- 5, B = 2,300, C = 460,

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

W 1



An important figure of merit is the temperature responsivity in mV/OC, which is

the absolute value of the slope of the plots in Figure 4-3 and is defined in Equation 4.7.

responsivity(To) = T IT=T

In Figure 4-3, the responsivity depends on ID. In fact, responsivity also depends on

the parameters A, B, C, and D. However, to the circuit designer, the only alterable

parameters are ID and W/L. Therefore, we focus on the slope's dependence on ID

and A (A oc W/L).

The model allows us to find responsivity by differentiating2 VGTE with respect

to T. The calculated result for responsivity versus Io is shown in Figure 4-4, which

demonstrates that a higher drain current results in a greater responsivity.

U flf

Z 0

E

P i**

IOU

160
140
120
100
80
60
40
20
0

1.0E-09 1.0E-08 1.OE-07 1.0E-06 1.0E-05 1.0E-04

ID [A]

Figure 4-4: Calculated responsivity versus ID at 2700C. 1,000,um/5ym. Parameters

values are from Table 3.2.

2Because VGTE _Vs = Vo, this is only an approximation. However, VGTE is used because there
is a closed-form solution to dVGTE/OT, whereas dVsc/OT does not have a closed-form solution.

(4.7)



The calculated result for responsivity versus W/L is shown in Figure 4-5.

9n-
'IOU

I E~ 151
3 10>

1.OE+00 1.OE+01 1.OE+02 1.OE+03 1.OE+04 1.OE+05

WIL Ratio

Figure 4-5: Calculated responsivity versus W/L at 270C. ID = InA. Parameters

values are from Table 3.2, except W and L.

Figure 4-4 shows that a lower W/L results in a greater responsivity, in a manner

that is inverse to ID's effect. The inverse behavior is expected because ID/A is a

coefficient in Equation 4.6. In other words, responsivity is related to the current

density (ID/W) when L is fixed. The disadvantage in having a high current density

is a higher VSG, which leads to a higher voltage supply and greater power dissipation.

4.1.2 Single-ended Topology Circuit Results

The singled-ended topology with an external current source is tested at three settings

of ID. The die photo and the circuit schematic are shown in Figure 4-6.

i

i



nA, 25nA, 125nA

VSG

GND

(a) Die photo (1, 000rnm/5pm OTFT). (b) Circuit schematic.

Figure 4-6: Die photo and circuit schematic of the singled-ended topology with ex-

ternal current source.

The Vo measurement is done by sweeping the die temperature from -20 0 C to

50'C in 10'C increments. At each temperature, 20 to 30 samples of Vo are taken at 2

samples/second. The raw data of Vo versus time for ID = 5nA is shown in Figure 4-7.

10C increments
-200C

3j.0

2.5

2.0

1.5 -

1.0 -

0.5

500C

70 120 170 220 270 320 370 420 470

Time [s]

Figure 4-7: Measured Vo versus time for ID = 5nA as temperature is swept from
-20'C to 50'C in 10oC increments.

At each temperature, one can notice fluctuations in Vo. These fluctuations are

I I I -- - i7 -

"Jn -



magnified in Figure 4-8.
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Figure 4-8: Measured Vo fluctuations at O°C and 100 C. ID = 5nA.

The fluctuations can be characterized in two ways: standard deviation and his-

togram. The standard deviation at each temperature and at each ID setting is plotted

in Figure 4-9. The standard deviations increase with ID because the responsivities

increase with ID. In fact, as seen later in Table 4.1, the average standard deviation

increases with IDn at approximately the same rate as the responsivity's increase with

ID -
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9
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7
6 -
5
4
3-
2
1-

* 0

E.A

U .----

-30 -10 0 10 20 30

Temperature [deg C]

Figure 4-9: Standard deviations of sampled Vo

each ID setting.

* ID=125nA
* ID=25nA
A ID=5nA

40 50 60

at each temperature setting and at



A typical histogram of samples is plotted in Figure 4-10.

-7.4 -5.6 -3.7 -1.9 0.0 1.8 3.7 5.5 7.4

Deviation From Mean at -20 deg C [mV]

Figure 4-10: Histogram of sampled Vo for ID = 125nA at -20 0 C.

Finally, the samples at each temperature are averaged to a single Vo value. The

averaged Vo values are plotted versus temperature in Figure 4-11 at three ID settings.

At each temperature, the standard deviation of the Vo samples is represented as a

vertical error bar. The error bars are very small because the standard deviations of

Vo are insignificant when compared to Vo.

5nA
nA

A

-10 0 10 20

Temperature [deg C

30 40 50 60

Figure 4-11: Averaged Vo versus temperature at three ID settings with standard

deviations of Vo samples as vertical error bars.
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Figure 4-11 corresponds well with the calculated Vo in Figure 4-3. Both calculated

and measured Vo's have concave curvatures and shift higher with increased ID. As

predicted, responsivities increase with greater ID. The small discrepancy between

measurement and calculation is due to the use of different 1, 000ym/5pm OTFTs for

modeling and measurement.

Table 4.1 summarizes the measured results. One notices that the ratio between

standard deviation and responsivity is nearly independent of ID. In other words,

the Vo fluctuations increase proportionally when Vo is more responsive to temper-

ature changes. Furthermore, the highest sensitivity is achieved at low ID because

responsivity increases with ID at a slower rate than the overall Vo.

Figure of merit ID = 5 nA ID = 25 nA ID = 125 nA

Maximum power dissipation [nW] 12 96 790

Responsivity at 20 OC [mV/°C] 22 31 46

Sensitivity at 20 'C, (DV/eT)(T[0K]/V) 4.7 x 106 3.7 x 106 3.2 x 106

[ppm]
Maximum standard deviation of samples 4.2 6.1 8.6

[mV at 50 oC]

Average standard deviation of samples 2.8 4.7 6.1

[mV]

Table 4.1: Measured results for the temperature-sensing

6(b).

circuit shown in Figure 4-

4.2 The Differential Topology

The single-ended topology, though simple, has two disadvantages. The first disadvan-

tage is the single-ended output Vo's direct dependence on VT. This is demonstrated

in the equation below, where it is shown that Vo not only contains the temperature



dependence offered by VGT (Equation 4.6), but Vo also contains a VT term.

Vo = VSG = VGT - VT (4.8)

The problem with Vo's dependence on VT is that the OTFT's VT shifts with time

and bias. This behavior is well documented in several studies [40-42]. The undesired

result is that the single-ended circuit's Vo will track VT'S uncontrolled shift. The

second disadvantage with the single-ended circuit is nonlinearity. As seen in Figure 4-

11, the output voltage Vo is nonlinear versus temperature. A nonlinear Vo requires

either a look-up table or a curvature correction circuit before the temperature can be

extracted, thus voiding the simplicity that the single-ended circuit offers.

The following sections will show that both mentioned problems can be solved by

using a differential topology.

4.2.1 Differential Topology Circuit Design

The differential topology

shown in Figure 4-12.

is simply two branches of the single-ended topology, as

ID1

Vol V0 2

GND

Figure 4-12: The differential topology for the temperature-sensing circuit.

The differential topology effectively cancels the VT dependence because VT is a

common-mode component in the output voltage Vo. This is shown by the following



equations.

Vo0 = VSGa = VGT1 - VT (4.9)

Vo2 = VSG2 = VGT2 - VT (4.10)

Vo = Vo0 1 - V0 2 = VGT1 - VGT2 (4.11)

Even if the two OTFTs have different VT's, VT's effect on Vo is a constant offset as long

as both OTFT's V7's shift in the same manner. To ensure device similarity, 01 and

02 are designed to have the same channel dimensions W and L. In the calculations

to follow, we assume that 01 and 02 have identical parameters A, B, C, D, and VT.

This is a reasonable assumption because interdigitated or common-centroid layout

can be used to minimize device variations between the two identically-sized OTFTs.

Prior to investigating the curvature correction, we need to first calculate Vo. We

begin with the VGTE expression from Equation 4.6 and calculate the differential Vo.

1 T C-T (B) \C 4  T
VGTE = (ID) c+-T exp - (4.12)

D AT T)T

Vo = Vol - Vo2 (4.13)

= VGT1 - VGT2 (4.14)

1 CC-T BT T
. VGTE1 - VGTE2 = - xT C ((ID1) C+nT - (D2) C- nT

(4.15)

Equation 4.15 shows that Vo is temperature dependent if ID1 # ID2. Vo can

be rewritten as an ID-independent term g(T) multiplied by an ID-dependent term



h(T, ID1, ID2).

Vo = g(T) h(T, ID1, ID2) (4.16)

where:
T

g(T) = 1 (CTex ) CT (4.17)
D AT T

h(T, ID1, ID2) (ID1)nT - (ID2) T  (4.18)

Figure 4-13 plots g(T) using the parameters3 from Table 3.2.

800 ------------- ----.----------..-----.

700 _
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-20 -10 0 10 20 30 40 50

Temperature [deg C]

Figure 4-13: g(T) versus temperature using extracted parameters from Table 3.2.

In Figure 4-13, g(T) has a negative slope and a slightly convex shape. Next,

h(T, ID1, ID2) is plotted in Figure 4-14 using the same parameters and using ID1 =

1OnA and ID2 = 10pA to 5nA.

3 A = 1.2 x 10- 5, B.= 2, 300, C = 460, D = 0.65, n = 1.5.
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Figure 4-14: h(T, ID1, ID2) versus temperature using extracted parameters from Ta-

ble 3.2. ID = O1nA. ID2 = 10pA, 100pA, InA, and 5nA.

Figure 4-14 shows that h(T, ID1, ID2) has a negative slope and a concave shape.

Compared to g(T), which changes by 7% over the 700 C temperature range, h(T, ID1, ID2)

changes by more than 47% over the same range. Consequently, we expect the plot

of Vo = g(T)h(T, ID1, ID2) to resemble h(T, ID1, ID2). Figure 4-15 confirms this. The

calculated responsivities for the four ID2'S range from 3mV/'C to 15mV/oC.

3.5

S.ID=10nA ....-- Single-ended (ID2=OA)
3 ID2=10OpA

- ID2=100pA
E 2.5 -. - i - ID2=lnA

0 - ID2=5nA

0 - -
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Figure 4-15: Calculated Vo versus temperature for the differential topology at several

ID2's. Parameters used are from Table 3.2.
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The dependence of Vo on ID2 can be understood by rewriting h(T, ID1, ID2):

T T

h(T, ID1, ID2) = (ID)c + T - (ID 2) c + T (4.19)

T 'D2 C+nT
= (ID1)c +-A ( •(ID1) (4.20)

Equation 4.20 shows that when ID2 < ID1, h(T, ID1, ID2) 1 (Ol)C+T, and the

circuit transforms into the single-ended topology. As ID2 -+ ID1, h(T, D1, ID2) - 0,

resulting in zero differential output. These behaviors are evident in Figure 4-14,

where the ID2 = 10pA plot approaches the single-ended plot, and the ID2 = 5nA plot

approaches zero. Therefore, the differential topology is a compromise between two

extremes: 1) the single-ended topology that has the highest responsivity (mV/OC)

but has zero common-mode rejection of threshold voltage shifts, and 2) the common-

mode topology that has complete common-mode rejection of threshold voltage shifts

but has zero responsivity.

In addition to changing the ratio of ID2/ID1, the circuit designer can also change

ID1 and W/L 4. The effects are identical to the single-ended topology because the

expression for Vo has the same form. Namely, increasing ID1 will increase responsivity

as shown in Figure 4-4, and increasing WIL will decrease responsivity as shown in

Figure 4-5. Of course, the absolute responsivity for the differential topology will be

lower than the single-ended topology's responsivity in Figures 4-4 and 4-5 because

ID2 decreases responsivity, as shown previously in Figure 4-15.

So far, the differential Vo's curvature remains nonlinear versus temperature. To

investigate how a differential topology can perform curvature correction, we need

to look at a more practical implementation. This implementation replaces the two

current sources with a current sink and current mirrors, as shown in Figure 4-16.

4 W/L = W 1/L 1 = W2 /L 2 because, as previously mentioned, both 01 and 02 have the same
W/L to minimize device parameter variations.
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Figure 4-16: A more practical implementation of the differential topology.

In Figure 4-16, the branch currents are controlled by the mirror sizings as follows:

ID1 = ISINK (W5/L5
ID2 = 'SINK ( W/L

(4.21)

(4.22)

(4.23)

We use simulation to investigate the new implementation because it requires iterative

solutions. The chosen device sizes and currents are shown in Figure 4-17. ID1 is

chosen to be 10OnA and ID2 is chosen to be lnA in order to have an even trade-off

between responsivity and rejection of threshold voltage shifts (see Figure 4-15). Also,

the chosen ID's ensure that all transistors stay above-threshold.

VDD = 10V

05:

ISINK = 1n)

GND

Figure 4-17: The differential circuit schematic used in simulation.

The simulated output voltages Vol and Vo2 along with Vo = Vol - Vo2 are plotted

in Figure 4-18.
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Figure 4-18: Simulated output voltages Vol, Vo02, and Vo versus temperature for the

differential topology. Parameters used are from Table 3.2.

As expected, both the differential and single-ended output voltages have concave

shapes. Also, the differential output's responsivity at 27°C (8mV/°C) is indeed lower

than the single-ended outputs' responsivities (Vol : 25mV/oC, V02 : 17mV/oC).

However, we observe an interesting effect on Vo as ISINK is varied. This effect is

demonstrated in Figure 4-19.

I- 1 ~1rO - IDC2W?.VO - IDC=3nOo -. ID. =4rVO IDC=.rfyO
qVO - IDC="7nriv IDC=-8n"NO IDC--Srfy0 IDC="10r,'O

Temperature 0

Figure 4-19: Simulated differential output voltage Vo versus temperature as ISINK is

varied from InA to 10nA. Parameters used are from Table 3.2.
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From Figure 4-19, we make three observations:

1. Vo's curvature progresses from being concave at ISINK = InA to being con-

vex at ISINK = lOnA. At ISINK = 6nA, Vo is approximately linear versus

temperature.

2. Vo is shifted higher with increased ISINK. This is expected from Equation 4.20,

which shows that a greater ISINK (equivalent to a greater ID1 and a constant

ID1/ID2 ratio) increases h(T, ID1, D2) and thus Vo.

3. Responsivities are within 5% of each other even as ISINK is changed from 3nA

to lOnA.

We focus on the first observation because it offers a method of curvature correction

for the differential Vo. To explain the dependence of Vo's curvature on ISINK, we

need to inspect IDl and ID2. We set ISINK to 6nA, and plot Vo, ID1, and ID2 in

Figure 4-20. Note that the simulated currents are negative by convention.

Figure 4-20: Simulated Vo, ID1, and ID2 versus temperature at ISINK = 6nA. Pa-

rameters used are from Table 3.2.

If the current mirror transistors 03 and 04 were ideal, then ID1 = 60nA and ID2 =

6nA. However, in Figure 4-20, we observe that the currents increase in magnitude



as temperature increases, past their nominal values. To explain this, we refer to the

OTFT's output characteristics shown previously in Figure 2-13, where the OTFT's

ID increases with VSD in both linear and saturation regions due to increasing lateral

electric field and due to finite output resistance, respectively.

The dependence of currents on VSD's prompts a. closerI inspection of the Vsj)'s of

the current mirror transistors 03, 04, and 05:

VoD

VSD,

ISINK

GND

Figure 4-21: The differential circuit schematic showing the VSD's of the current mirror

transistors.

* The VSD of transistor 03 can be rewritten as VSD,o0: = VDD -- 101 a.s shown

in Figure 4-21. Figure 4-18 and the single-ended topology show tllhat Vol dc-

creases with temperature. Therefore, we conclude that 03's DsKu increases with

temperature.

* The VSD of transistor 04 also increases with tenmperature for the same reason

as 03. However, VSD,04 > VSD,03 because V0 2 < VoI, which is in turn because

ID2 < ID1 by design.

* The VSD of transistor 05 is equal to VSG,0 5 because 05 is diode-connected. As

seen in Figure 4-1, when the current is fixed as in the case of 05, 1/•,( decreases

with temperature. Therefore, VSD,05 decreases with teniperat, llre.

For verification, the simulated VSD'S of 03, 04, and 05 are plotted in Figure 4-22.

From the markers in this figure, one also notices that ID, = 60nA and ID2 = 6,nA

only when VSD,03 and VSD,04 are respectively equal to Vs1),05.
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Figure 4-22: Simulated VSD'S of 03, 04, and 05

Parameters used are from Table 3.2.

-100 0 10.0 2,-0.0 3.0 400 0.

-40 0 10.0 20.0 30.0 40.0 S0,0
TUmpmlre 0

versus temperature at ISINK = 6nA.

In summary, the VSD of 05 decreases with temperature, but the VsD's of 03 and

04 increase with temperature. Both trends lead to an increase in ID1 and ID2 with

temperature. Next, we analyze how ID and ID2's temperature dependence affects

Vo's curvature. To do so, we plot several scenarios of IDl and ID2's temperature

dependence.
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Figure 4-23: Three calculated scenarios of ID1 and ID2's temperature dependence

and the resulting shapes of h(T, ID1, ID2) and Vo. R-squared values for linear Vo fit

(dotted) are included. ISINK = 6nA.

In Figure 4-23(a), the ideal scenario is presented. Here, ID1 and ID2 are constantly

equal to their respective nominal values of 60nA and 6nA. These ideal mirrors make

the circuit equivalent to the original differential circuit presented in Figure 4-12. As

expected, the Vo is concave. In Figure 4-23(b), ID1 and ID2 increase linearly with tem-

perature. This scenario assumes that 03 and 04 are operating in the linear region of

the output characteristic. Despite the linear increase in currents, Vo remains concave

and its linearity only incrementally improves. In Figure 4-23(c), ID1 and ID2 increase

with temperature, but with a saturating characteristic. This scenario assumes that

03 and 04 are in the wide transition region between linear and saturation region. As

a result, the currents exhibit a convex shape. This leads to an h(T, ID1, D2) that is

slightly concave, and when multiplied by the slightly convex g(T) (Figure 4-13), Vo
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becomes linear and curvature correction is achieved.

Altogether, the differential topology offers two advantages over the single-ended

topology. First, the differential setup allows common-mode rejection of threshold

voltage shifts, albeit at the cost of temperature responsivity. Second, at a certain

ISINK bias setting, IDl and ID2 acquire a particular saturating characteristic that

corrects the curvature in Vo. In the next section, the measured results of the differ-

ential circuit are presented

4.2.2 Differential Topology Circuit Results

The differential temperature-sensing circuit's die photo and circuit schematic are

shown in Figure 4-24. One difference between the actual circuit and the simulated

circuit is that 01 and 02 are 10, O000prin/5p1rn instead of 1, 0001tm./5p7m. The wider

channel is a design choice that allows temperature sampling of a larger surface area.

The wider channel also reduces the Vol and Vo2 for the sanlme current, thus lowering

the VDD requirement. As mentioned in Section 4.2.1, the trade-off in using a larger

W/L is a lower responsivity.

VDD

05:

ISIN

4: 50u/5u

ID2

0,000u/5u

GND

(a) Die photo. (b) Circuit schematic.

Figure 4-24: Die photo and circuit schematic of the fabricated differential

temperature-sensing circuit.

First, the bias settings of the circuit need to be determined. Because of the

wider 01 and 02, VDD can be decreased from 10V to 4V and still provide sufficient

headroom for Vol and VO2. Prior to setting ISINK, we verify if the branch curretnts



indeed possess a saturating characteristic (Figures 4-20 and 4-23(c)) that is required

for curvature correction. Figure 4-25 plots the total current supplied from VDD (sum

of ISINK, ID1, and ID2) versus temperature as ISINK is swept from InA to 10nA.
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InA to 10nA

IDD = ISINK + -D1 + ID2 versus temperature as

in InA increments

ISINK is swept from

Having confirmed the saturating characteristic in Figure 4-25, we can proceed to

setting ISINK. To do so, ISINK is swept to determine the setting that yields the most

linear Vo. This sweep is shown in Figure 4-26.
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Just as simulated in Figure 4-19, Figure 4-26 shows that Vo indeed shifts from

a concave curvature to a convex curvature as ISINK is increased. In addition, at

between ISINK = 2nA and ISINK = 3nA, Vo has the highest linearity. Therefore, we

choose ISINK = 2.5nA as the bias current. Figure 4-27 summarizes the bias settings.

VDD = 4V

05:

ISINK = 2.5nA

4: 50u/5u

0D2 = 2.5nA
(nominal)

0,000u/5u

GND

Figure 4-27: Differential circuit schematic with bias settings shown.

At this bias setting, we proceed to make a detailed measurement of Vo versus

temperature. The measurement is done by sweeping the die temperature from -20 0 C

to 450 C in 500C increments. At each temperature, 30 to 40 samples of Vo are taken

at 1 sample/second. The raw data of Vo versus time is shown in Figure 4-28.
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Figure 4-28: Measured Vo versus time as temperature is swept from -20'C to 450C

in 5°C increments.

Just like the single-ended circuit, one can notice fluctuations in Vo at each tem-

perature. These fluctuations are magnified in Figure 4-29.
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Figure 4-29: Measured Vo fluctuations at 50C and 1000C.

As done in Section 4.1.2, the fluctuations can be characterized by standard de-
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viation and histogram. The standard deviation at each temperature

Figure 4-30. The standard deviations are 1.3mV on average, with a

1.6mV at 200C.
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Figure 4-30: Standard deviations of sampled Vo at each temperature setting.

At the temperature with the highest standard

histogram of samples is plotted in Figure 4-31. The

distribution of samples.
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Finally, the samples at each temperature are averaged to a single Vo value. These

Vo values are plotted versus temperature in Figure 4-32. At each temperature, the

standard deviation of the Vo samples is represented as a vertical error bar. The error

bars are very small because the standard deviations of Vo are insignificant when

compared to Vo. In addition, a best-fit line is superimposed on the data, with an

R-squared value to gauge Vo's linearity.
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Figure 4-32: Averaged Vo versus temperature, with standard deviations of Vo sam-

ples as vertical error bars, and with a superimposed best-fit line (R-squared value

displayed).
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Several figures of merit for the temperature-sensing circuit are shown in Table 4.2.

Figure of merit Value

Maximum power dissipation l0nW

Responsivity 5.6mV/oC

Sensitivity at 20 'C, (OV/eT)(T[oK]/V) 2.3 x 106 ppm

Maximum standard deviation of samples 1.6mV at 20"C

Average standard deviation of samples 1.3mV

Average standard deviation of samples, in unit of temperaturea 0.23°C

Maximum deviation from straight line 1.4% at 200C

Average deviation from straight line 0.44%

aConverted by dividing the average standard deviation of samples by the responsivity.

Table 4.2: Measured figures of merit for the temperature-sensing circuit shown in

Figure 4-27

The above measured result is confirmed on a different die. This additional mea-

surement, shown in Figure 4-33, yields a slightly higher responsivity (5.9mV/oC), a

lower maximum power dissipation (88nW), and a greater linearity (R 2 = 0.9999). It

should be noted that an increase in responsivity is possible by simply decreasing the

channel widths of 01 and 02 because, as mentioned in Section 4.2.1, responsivity

and power dissipation increase with the current densities of 01 and 02.
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Figure 4-33: Averaged Vo versus temperature as measured on a different die, with a

superimposed best-fit line (R-squared value displayed).

In summary, the differential OTFT temperature-sensing circuit is verified to per-

form as designed and as simulated. The differential circuit is tolerant of common-

mode threshold voltage shifts and has a linear temperature response. As predicted,

this linear response comes at the cost of decreased temperature responsivity when

compared to the single-ended circuit.



Chapter 5

Conclusion

The goal of this work is twofold: the understanding of the OTFT's temperature

characteristics, and the creation of OTFT temperature-sensing circuits.

For the first goal, we begin with electrical characterizations of the OTFT. From

these characterizations, we find OTFTs' I-V characteristics to be similar to those

of silicon MOSFETs. However, we notice that OTFTs have different temperature

characteristics. This difference is due to the OTFT's population of trap states inside

the bandgap. From this physical reasoning, a DC OTFT circuit model is developed.

The model development is based on the RPI a-Si model, and offers a physical un-

derstanding of the OTFT's temperature dependence. The model is verified to be an

excellent match to the characterized data in all regions of device operation and at

different temperatures.

With the understanding of the OTFT's temperature characteristics and with a

model as a circuit design tool, we proceed to design OTFT temperature-sensing cir-

cuits. Two circuit topologies are presented. The single-ended topology achieves high

responsivity at low-power. However, the single-ended output is nonlinear with tem-

perature and is dependent on threshold voltage shifts. Both problems are addressed

by the differential topology, which has a highly linear temperature response and is

tolerant of common-mode threshold voltage shifts.

Both circuits exceed silicon temperature sensor's temperature responsivity while

dissipating less power. These traits, along with the OTFT's ability to be fabricated



on large-area and flexible substrates, allow OTFT temperature sensors to be used in

both existing and new application environments.



Appendix A

OTFT Model's Verilog-A Code

// VerilogA for OTFT_Circuits

'include "constants.vams"

'include "disciplines.vams"

module OFET(G, S, D);

inout G, S, D;

electrical G, S, D;

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

real

real

real

real

real

real

real

real

real

real

real

real

AA = 1.65e-8;

ASAT = 0.64;

DD = 0.62;

DEF = 0.2;

DELTA = 120;

L = 5e-6;

MSAT = 4.4;

N = 1.5;

T = 27;

VTRAP = 0.021;

VMIN = 0.01;

VT = -1;



parameter real W = 1000e-6;

real ID, k, q, TKel, VDS, VSDE, VGS, VGT, VGTE;

analog begin

k = 1.3807e-23;

q = 1.6e-19;

TKel = T + 273.15;

VGS = V(G,S);
VDS = V(D,S);

VGT = -VGS+VT;

VGTE = VMIN/2* (1+VGT/VMIN+sqrt (DELTA*DELTA+pow(VGT/VMIN-1,2)));

begin

if (VDS < 0)

begin

VSDE = -VDS/pow((1+pow((-VDS/(ASAT*VGTE)),MSAT)), /MSAT);

ID = AA*W/L*pow(VGTE,N)*VSDE*exp(-DEF*q/(kTKel)) *2*k*TKel/...

... (2*q*VTRAP-k*TKel) *pow(DD*VGTE, 2*VTRAP*q/(k*TKel) -);

end

else

ID = 0;

end

I(S,D) <+ ID;

I(G,D) <+ 0;

I(G,S) <+ 0;

end

endmodule



Bibliography

[1] Y.Y. Lin, D.J. Gundlach, S.F. Nelson, and T.N. Jackson. High-mobility
pentacene-based organic thin film transistors. Device Research Conference Di-
gest, 1997. 55th, pages 60-61, 23-25 Jun 1997.

[2] Y.L. Slovokhotov, I.S. Neretin, and J.A.K. Howard. Symmetry of van der waals
molecular shape and melting points of organic compounds. New Journal of
Chemistry, 28:967-979, 2004.

[3] M. Chason, P.W. Brazis, J. Zhang, K. Kalyanasundaram, and D.R. Gamota.
Printed organic semiconducting devices. Proceedings of the IEEE, 93(7):1348-
1356, July 2005.

[4] I. Nausieda, K. Ryu, I. Kymissis, A.I. Akinwande, V. Bulovic, and C.G. So-
dini. An organic active-matrix imager. Electron Devices, IEEE Transactions on,
55(2):527-532, Feb. 2008.

[5] D. Hilbiber. A new semiconductor voltage standard. Solid-State Circuits Con-
ference. Digest of Technical Papers. 1964 IEEE International, VII:32-33, Feb
1964.

[6] R. Widlar. New developments in ic voltage regulators. Solid-State Circuits
Conference. Digest of Technical Papers. 1970 IEEE International, XIII:158-159,
Feb 1970.

[7] R. Dobkin. Monolithic temperature transducer. Solid-State Circuits Conference.
Digest of Technical Papers. 1974 IEEE International, XVII:126-127, Feb 1974.

[8] A.P. Brokaw. A simple three-terminal ic bandgap reference. Solid-State Circuits,
IEEE Journal of, 9(6):388-393, Dec 1974.

[9] M.P. Timko. A two-terminal ic temperature transducer. Solid-State Circuits,
IEEE Journal of, 11(6):784-788, Dec 1976.

[10] Y-H. Shih, S-R. Lin, T-M. Wang, and J-G. Hwu. High sensitive and wide detect-
ing range mos tunneling temperature sensors for on-chip temperature detection.
Electron Devices, IEEE Transactions on, 51(9):1514-1521, Sept. 2004.

[11] Y. Zhai, S.B. Prakash, M.H. Cohen, and P.A. Abshire. Detection of on-chip tem-
perature gradient using a 1.5v low power cmos temperature sensor. Circuits and



Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium
on, pages 4 pp.-, May 2006.

[12] F. Kocer and M.P. Flynn. An rf-powered, wireless cmos temperature sensor.
Sensors Journal, IEEE, 6(3):557-564, June 2006.

[13] P. Chen, C-C. Chen, C-C. Tsai, and W-F. Lu. A time-to-digital-converter-
based cmos smart temperature sensor. Solid-State Circuits, IEEE Journal of,
40(8):1642-1648, Aug. 2005.

[14] K. Sakurano, H. Katoh, Y.J. Chun, and H. Watanabe. Operation of a work
function type soi temperature sensor up to 250c. SOI Conference, 2007 IEEE
International, pages 149-150, Oct. 2007.

[15] M. Imran and A. Bhattacharyya. Effect of thin film thicknesses and materials on
the response of rtds and microthermocouples. Sensors Journal, IEEE, 6(6):1459-
1467, Dec. 2006.

[16] E.J.P. Santos and I.B. Vasconcelos. Rtd-based smart temperature sensor: Pro-
cess development and circuit design. Microelectronics, 2008. MIEL 2008. 26th
International Conference on, pages 333-336, May 2008.

[17] W-S. Chung and K. Watanabe. A temperature difference-to-frequency con-
verter using resistance temperature detectors. Instrumentation and Measure-
ment, IEEE Transactions on, 39(4):676-677, Aug 1990.

[18] D. Wobschall and W.S. Poh. A smart rtd temperature sensor with a prototype
ieee 1451.2 internet interface. Sensors for Industry Conference, 2004. Proceedings
the ISA/IEEE, pages 183-186, 2004.

[19] D. Randjelovic, G. Kaltsas, Z. Lazic, and M. Popovic. Multipurpose thermal
sensor based on seebeck effect. Microelectronics, 2002. MIEL 2002. 23rd Inter-
national Conference on, 1:261-264 vol.1, 2002.

[20] K. Miyazaki, T. Takamiya, and H. Tsukamoto. Fabrication of micro-thin film
thermocouples. Thermoelectrics, 2003 Twenty-Second International Conference
on - ICT, pages 673-676, Aug. 2003.

[21] Z. Dashevsky, D. Rabinovich, G. Fish, S. Kokolova, and A. Lewis. Ultrafast re-
sponse and high sensitivity semiconductor thermocouple. Thermoelectrics, 1996.,
Fifteenth International Conference on, pages 321-325, Mar 1996.

[22] C.W. Glassburn and C.M. Henderson. High temperature thermoelectric research.
Aerospace, IEEE Transactions on, 2(2):711-721, April 1964.

[23] C. Di, G. Yu, Y. Liu, Y. Guo, Y. Wang, W. Wu, and D. Zhu. High-performance
organic field-effect transistors with low-cost copper electrodes. Advanced Mate-
rials, 2008.



[24] I. Kymissis, C.G. Sodini, A.I. Akinwande, and V. Bulovic. An organic semicon-
ductor based process for photodetecting applications. Electron Devices Meeting,
2004. IEDM Technical Digest. IEEE International, pages 377-380, 13-15 Dec.
2004.

[25] K. Ryu. Characterization of organic field effect transistors for oled displays.
Master's thesis, Massachusetts Institute of Technology, June 2005.

[26] P.V. Necliudov, M.S. Shur, D.J. Gundlach, and T.N. Jackson. Modeling of
organic thin film transistors of different designs. Journal of Applied Physics,
88(11):6594-6597, 2000.

[27] H. Berger. Models for contacts to planar devices. Solid State Electronics, 15:145-
158, February 1972.

[28] E.P. Vandamme, P. Jansen, and L. Deferm. Modeling the subthreshold swing in
mosfet's. Electron Device Letters, IEEE, 18(8):369-371, Aug 1997.

[29] S. Grecu, M. Roggenbuck, A. Opitz, and W. Bruetting. Differences of interface
and bulk transport properties in polymer field-effect devices. Organic Electronics,
7:276, 2006.

[30] E. Calvetti, L. Colalongo, and Z.M.K. Vajna. Organic thin film transistors: an
analytical model for circuit simulation. TENCON 2004. 2004 IEEE Region 10
Conference, D:306-309 Vol. 4, 21-24 Nov. 2004.

[31] E. Cantatore and E.J. Meijer. Transistor operation and circuit performance
in organic electronics. Solid-State Circuits Conference, 2003. ESSCIRC '03.
Proceedings of the 29th European, pages 29-36, 16-18 Sept. 2003.

[32] M.C.J.M. Vissenberg and M. Matters. Theory of the field-effect mobility in
amorphous organic transistors. Phys. Rev. B, 57(20):12964-12967, May 1998.

[33] D. Knipp, R.A. Street, and A.R. V6lkel. Morphology and electronic trans-
port of polycrystalline pentacene thin-film transistors. Applied Physics Letters,
82(22):3907-3909, 2003.

[34] H.C. Slade. Device and Material Characterization and Analytic Modeling of
Amorphous Silicon Thin Film Transistors. PhD thesis, University of Virginia,
May 1997.

[35] M.S. Shur, H.C. Slade, M.D. Jacunski, A.A. Owusu, and T. Ytterdal. Spice
models for amorphous silicon and polysilicon thin film transistors. Journal of
The Electrochemical Society, 144(8):2833-2839, 1997.

[36] M. Hack, M.S. Shur, and J.G. Shaw. Physical models for amorphous-silicon
thin-film transistors and their implementation in a circuit simulation program.
Electron Devices, IEEE Transactions on, 36(12):2764-2769, Dec 1989.



[37] K. Lee, M.S. Shur, T.A. Fjeldly, and T. Ytterdal. Semiconductor device modeling
for VLSI. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[38] B. Iiguez, R. Picos, M. Estrada, A. Cerdeira, T.A. Ytterdal, W. Jackson,
A. Koudymov, D. Veksler, and M.S. Shur. Modeling of thin film transistors
for circuit simulation. Mixed Design of Integrated Circuits and Systems, 2007.
MIXDES '07. 14th International Conference on, pages 35-40, 21-23 June 2007.

[39] 0. Marinov, M.J. Deen, and B. Iniguez. Charge transport in organic and poly-
mer thin-film transistors: recent issues. Circuits, Devices and Systems, IEE
Proceedings, 152(3):189-209, 3 June 2005.

[40] C. Pannemann, T. Diekmann, and U. Hilleringmann. On the degradation of
organic field-effect transistors. Microelectronics, 2004. ICM 2004 Proceedings.
The 16th International Conference on, pages 76-79, Dec. 2004.

[41] T.H. Kim, C.K. Song, J.S. Park, and M.C. Suh. Constant bias stress effects on
threshold voltage of pentacene thin-film transistors employing polyvinylphenol
gate dielectric. Electron Device Letters, IEEE, 28(10):874-876, Oct. 2007.

[42] M. Matters, D.M. de Leeuw, P.T. Herwig, and A.R. Brown. Bias-stress induced
instability of organic thin film transistors. Synthetic Metals, 102:998-999(2),
June 1999.


