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Abstract

The proposed research is a study of designing high-efficiency Mid-IR quantum cascade lasers
(QCL). This thesis explores "injector-less" designs for achieving lower voltage defects and im-
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Chapter 1

Introduction

Quantum Cascade Lasers (QCL) since their invention in 1994 have become the dominant source

for compact, robust, tunable, high powered lasers in the mid-infrared (Mid-IR) spanning 3 to 20

Pm [4]. Current QCL performance ranges from 300-400K and CW power of 1.6 W [5]. The main

driving factors behind these squrces are numerous sensing applications in the Mid-IR. Chemical

spectroscopy and trace gas sensing are the most common areas due to strong spectroscopic

signatures in the Mid-IR caused by molecular vibrational resonances. Furthermore, due to low

atmospheric absorption between 3 to 5 pm work is being done on developing communication

links that would be stable irrespective of weather conditions as well as infrared counter measures.

These applications for a portable Mid-IR laser source motivate the need for an efficient lasing

source, in order to reduce the need for excessive cooling and power supplies. Currently, the

maximum wall plug efficiency (WPE) is only 12 % WPE under CW conditions [5]; however the

desired WPE for these applications would ideally be 25-50 %. Therefore, there is still a lot of

work necessary to achieve these performance levels. The quantum cascade laser is a powerful

example of band structure engineering. The original concept for a QCL dated back to 1971 by

Kazarinov and Suris [6]. However, it was not until 1994 that the concept was first demonstrated.

With the development of heterostructure quantum wells, electronic states could be engineered

into a laser structure. Unlike traditional interband semiconductor lasers which rely on the

intrinsic properties of the materials to define the wavelength, QCL's emission wavelength can be

engineered by varying the thickness of the quantum wells. This flexibility means with a given

material system such as InGaAs/InA1As various wavelength lasers can be made. Designing these

quantum wells has yielded many various configurations and design paradigms, one of which the



"injectorless" will be the primary focus of this work. [1].

A Quantum Cascade Laser (QCL) is a series of quantum wells grown in a periodic manner

that create a cascaded structure of energy states when a voltage bias is applied. Semiconductors

when grown on top of different semiconductors form heterojunction quantum wells. These quan-

tum wells provide confinement for electrons. The appropriate energy levels and confined states

can solved by using Effective Mass theory to simplify the problem down to a 1-D Schroedinger

equation. Solving for the quantized states in these heterostructures is similar to solving "particle

in a box"-like problems as shown in the energy band diagram in figure 1-1. Electrons sit in these

Figure 1-1: Two Phonon Design with miniband injector [1]

energy states and with an applied electric field, cause current to pass through these devices. In

figure 1-1, an electric field has been applied to bring levels (g) and (4) into alignment. Electrons

in (g) tunnel into level (4); the rate of tunneling is controlled by the thickness of the injection bar-

rier. Electrons in level (4) due to a strong coupling with light fall to level (3) and emit a photon.

Electrons in level (3) can also absorb a photon and become excited into level (4). Therefore, for

proper lasing to occur, we require a population inversion between levels (3) and (4). To achieve

this, electrons in level (3) need to scatter quickly to lower levels (2) and (1). By designing the

level pairs (3),(2) and (2),(1) to each be resonant with a Polar Longitudinal Phonon or lattice

vibration, electrons in level (3) can rapidly scatter into lower states. Level (1) was introduced to

prevent thermally excited electrons in (2) from backscattering into (3). Electrons then transit

·e



from one module to the next through a quasi-continuum of states or miniband. This process is

repeated for each module, typically 30-40 modules; electrons are recycled allowing one electron

to emit one photon per module. The two-phonon design with miniband presented here has so

far produced some of the higihest wall plug efficiencies and CW performance.

It was originally thought that a miniband was necessary for proper device operation and

stable current injection. However, recently a series of papers have explored the possibility of

an "injectorless" design [7] [8] [2]. Essentially, these designs remove the miniband and electrons

from the active region are directly injected into the next. These injectorless designs have already

5
4

3
2
1

5
4

3
2
1

Figure 1-2: Injectorless Design [2]

demonstrated room temperature CW performance and some of the lowest threshold operation

S0.150 kA/cm 2 [2] at 77K; however, the performance drops at 300K. Furthermore, these in-

jectorless designs have some promising benefits for higher WPE that have not yet been fully

explored. This will be covered in chapter 2, when deriving the metrics responsible for WPE.

Therefore, the work presented here will focus on the injectorless design as an approach for

higher WPE. This includes:

1. Theory - Fundamentals of effective mass theorem, nonparabolicity, spontaneous and stim-

ulated emission, nonradiative scattering, resonant tunneling, and WPE.

2. Simulation - Band Structure and Monte Carlo Simulations of QCL



3. Experimental Setup - Design and construction of device characterization Software and

Hardware

4. Designs - New Designs for Injectorless Structure

5. Measurements - Preliminary measurements of samples as well and Fourier Transform

Hakki-Paoli Method for measuring waveguide loss.



Chapter 2

Theory

The theory behind quantum cascade lasers involves understanding the underlying electron trans-

port and scattering in semiconductors, as well as, how light and matter interact. Therefore, we

will focus initially on describing electrons in solids and heterostructures through envelope for-

malism. This formalism simplifies the microscopic details of a system and allows electrons to be

described by a simple envelope function. These envelope functions will be important later on

for computing electron scattering as well as spontaneous and stimulated emission.

-.-

2.1 k. -i Hamiltonian

In order to describe an electron in a solid, we must first derive the bandstructure in a semi-

conductor. This derivation for the K.P. Hamiltonian follows from references [9] [10]. For a

semiconductor we can write down the time-independent Hamiltonian for the system.

+ V(r) + h4 (a x VV)-p (r) = EV)(r) (2.1)2mo 4mgc 2

V r + nai) = V (r) (2.2)

In equation (2.1), the third term describes the spin-orbit coupling term. Because we have

assumed a periodic potential, the solution O(r) to (2.1) takes the form of a Bloch wavefunction

(2.3).

?Onk(r) = Nunk(r)eik.r (2.3)



where N is a normalization coefficient. The Bloch wavefunction is labeled by n and k,

the electronic band and crystal momentum respectively. Assuming this bloch form for the

wavefunction we can obtain equation (2.4) by substituting (2.3) into-(2.1)

p2 hh2 k2 hk h
EnkUk V(r) (a VV) + + - + X VV nk (2.4)

2mo 4m2c2  2mo mo 4moc2

As is often the case, we are concerned about describing electrons at high symmetry points such

as the r or k = 0. In order to solve (2.4) we can take a perturbative approach by expressing the

solutions in terms of known solutions at k = 0.

Assume the unperturbed hamiltonian for k = 0 does not include effects due to spin orbit

coupling.

Ho = + V(r) (2.5)
2mo

Houno - EnoUno (2.6)

Therefore uno, assuming a tight binding method, represents S and P atomic orbitals centered on

the periodic lattice sites. Adding back the spin-orbit coupling terms as a perturbation allows us

to use a finite basis expansion to expand the solution in terms of these atomic orbital terms.

h h2  h2
H = Ho + k p + (VV x k) -a + (VV x p) a (2.7)

mo 4mTc 2  4m2c2

E'k = Enk - (2.8)
2mo

In most cases, kl << pl, so we drop the third term in H.

H Ho k -p + (VV p) - a (2.9)
mo 4m0c2

Using the complete basis centered at F we can write our full solution as a sum of the k = 0

states.

Unk(r) = alt(k)uzo(r) (2.10)

where 1 is the electronic bands at k = 0 and at(k) represents the weighting coefficients for the

various basis states.



Table 2.1: Basis Functions uo(r)

Where in Table 2.1, we have defined the following terms.

1

3

3 4(PY4m c22 19P

(2.11)

(2.12)
V Pa ) Px)

Given our full Hamiltonian including perturbation and applying a finite basis expansion, we

can solve for the weighting coefficients.

(2.13)S[(uno(r)IHIumo(r)) - Enk] an(k) = 0
m=1

Hnm = (uno(r) Hlumo(r)) =
H1

H2
H2

H1

Where the Kane parameter is P = -i-(SIpi Pi) C (x, y, z) and k+ = '(kx + ik). These

matrix elements can be computed by applying symmetry and parity properties of the Bloch



Table 2.3: H2 = (uo(r)lH umo(r))
U50  U60  U70  U80

u1o 0 - Pk_ 0 - Pk_

U20  6Pk 0 0 0

U3o 0 0 0 0

U4 0 / Pk_ 0 0 0

atomic orbitals [10].

Fully solving the 8x8 K.P. Hamiltonian in equation (2.13) will yield the energy dispersion

(E vs. k) relationship for the conduction, light, heavy hole, and split off bands. This provides

a method for estimating the band structure of a material by utilizing known solutions around a

fixed k point. Furthermore the microscopic properties of the material have been absorbed into

the Kane Parameter and Spin Orbit Split Off, which can be estimated experimentally.

Because we are dealing with bulk materials, we can choose to an orientation where k//J//z.

This choice of direction, greatly simplifies the math due to the decoupling of many of the basis

states from each other. Table 2.4 shows the reduced k.p matrix.

The characteristic equation for the eigenvalues of this matrix are E'k = -Eg or

(Elk)(Enk + E,)(Enk + E9 + A) = k2P2(E'k + Eg + ) (2.14)

while no closed form expression exists for the eigenvalues, we can solve for the conduction band

energy dispersion by assuming that Ik is located near the r pt, so we can look at the lower



Table 2.4: HI = (uno(r)IHlumo(r))
i 10 U20  J30 U40

uio 0 - Pko 0 Pk
U20 - Pkz -Eg 0 0

uso 0 0 -E, 0

U4o FPkz 0 0 -E -A

order terms of Ec = 0 + e(k2).

h2k2 [ 1 4P 2  2P2  1 k2k2

E ck = Ec(k) = -2 • + 2 +  2(E + ) (2.15)2 mo 3hEg2E (E+ A) 2m

Looking at the 4 possible solution, near the band edge, we see that the heavy hole states decouple

and are not dependent on k. In order to include the curvature of the heavy hole, one needs to

consider inclusion of remote band effects, which are derived by Bastard [9]. Even though the

k.p. hamiltonian solves for the bulk bandstructure of semiconductor, we will show shortly its

use for describing electrons in heterostructure quantum wells.

2.2 Envelope Approximation

For devices of interest, we are concerned with describing electronic waveforms of semiconductor

heterostructures. Heterostructures are made from growing layers of different materials on top

of one another. Due to differences in band alignments between materials, quantum wells and

thus electronic confinement are created. By assuming that the scale of variation of the materials

is greater than the actual atomic variation, an envelope approximation can be used to greatly

simplify the problem. This envelope approximation is otherwise known as the Effective Mass

Theorem [9] [10]. Therefore, the solution for the various bound states and energy values can be

reduced to solving equation (2.16), where k --+ iV.

[ Hnm(k = -iV)Fm(r) + Fn(r)U(r)] = EF(r) (2.16)
Em~)(.6



Where Fn(r) represents the envelope function for band (n), and U(r) is the slowly varying

potential. For most cases, our perturbation is due to the various band offsets in the growth

direction. Therefore, let us limit U(r) to U(z). While solving equation (2.16) yields an accurate

solution, this equation can be written in its more common form for the conduction band, by

utilizing equation (2.13)

[E,(k = -iV) + U(z)]Fn(r) = EF,(r) " (2.17)

Using equation (2.15), we can rewrite equation (2.17).

-&2V2_-h2 _

'F- FV(r) + Vz VzF(r) + U(z)Fe(r) = EFe(r) (2.18)
2m (z) .+ ())

From equation (2.18) the envelope wavefunction takes on the form

F(r) = eik_-rI F(z) (2.19)

Substituting equation (2.19) into (2.18), we get

h2k2 -h 2  1
'Fe(z) + Vz VzF (z) + U(z)Fc(z) = EFe(z) (2.20)

2mC(z) 2 m (z)

Equation (2.20) couples k with z, which complicates the problem. For simplicity, we assume

parabolic subbands in k with the effective mass of the well.

-(2 1h 2k2)F
V2 Zm(z) VzF(z) + U(z)Fc(z) = E + Fe(z) (2.21)

Equation (2.21) takes on the simplified form of a 1-D Schroedinger Equation, where the micro-

scopic properties of the material are grouped into the effective mass parameter. This equation

assumes parabolic bands close to the band minimum; however, for most Mid-IR device, this is

not the case. Therefore, we must introduce higher order effects to deal with non-parabolic bands

A common approach involves using an energy dependent effective mass, which can be derived

explicitly by solving the full k.p. Hamiltonian in equation (2.16).

To reduce the complexity of the problem, we still assume parabolic subbands in k±, but we



ignore the free electron terms 2
k

2 , which contribute terms on the order of (Ec - Elh,so)/Ep << 1.

Therefore if we assume k E (0, 0, kz) we arrive at the set of equations

Ec(z) 2Pkz - VPk ( Fe(z) Fe(z)

Pkz Elh(z) 0 Flh(z) = E Flh(z)

- Pkz 0 E,,(z) F8o(z) F,,(z)

Implicitly, the Bloch components of the different materials are taken to be equal. This is because

the Kane Parameter (P) does not change significantly between the well and the barrier material.

The only change between the well and the barrier is due to different energy alignments of the

conduction, light-hole and split off bands. We can write the closed form solution by explicitly

cross eliminating the light hole and split off envelope functions from the first row of k.p. matrix,

which yields
1

Pz 2m(E zF) + E,(z)Fe = EFe (2.22)2m(E, z)

m(E, z) = moE- Ev(z) (2.23)
Ep

Where E,(z) = (2Elh(Z) + Eso(z))/3 is the effective valence band and P = iE- [11]. We

can rewrite equation (2.23) in terms of conduction band effective mass in a material m =

mo(Ec - E,)/Ep.

m(E, z) = m (z) I + E - Ec(z)

As for the appropriate boundary conditions, we assume the continuity of

1. Fe

2. 1 dFa
m*(E,z) dz

Figure (2-1) shows the importance of nonparabolicity away from the conduction band edge for

the upper lasing level.



Number of nodes in x grid = 1000

x 10

Figure 2-1: Effect of Nonparabolicity on QCL energy levels. Dotted lines are without non-

parabolicity, solid lines are with nonparabolicity

2.3 Intersubband radiative transitions and gain

Given the envelope wavefunction for an electron in a quantum well, we can now describe optical

processes for lasers such as spontaneous and stimulated emission. We first need to derive the

interaction hamiltonian due to light. From the Lorentz Force Law, we know

F = q(E +v x B) (2.24)

(2.25)
(2.26)

0A
E = -V -

at
B = V xA

Where, B and E are the magnetic and electric fields, and A and ¢ are the magnetic vector

potential and electric scalar potential. The Lagrangian is defined

L=KE-U (2.27)



Where KE is the kinetic energy, and U is the potential energy. Therefore, under this definition

we can also define the force in terms of U.

Fx U+ d= ( U +(2.28)

The solution to this equation in terms of the scalar and vector potentials is

U = q(0 - v -A) (2.29)

Therefore, classically we can write out explicitly the Lagrangian in terms of position and velocity.

1
L(r, v) = -mv2 - q(¢ - v - A) (2.30)

2

Furthermore, we can express velocity in terms of canonical momentum.

8L(r, v)S-OL(r, v) = mvx + qAx (2.31)vx(
1v = - (p - qA) (2.32)

m

Upon substitution of equation (2.32) into (2.30), we can define a constant of motion

1
E = q + 1(p - qA) 2  (2.33)2m

Since we are considering the interaction of light and electron in a solid, we will assume the mass

is the effective mass (m*). We can also write the quantum mechanical hamiltonian by replacing

variables with their analogous quantum mechanical operators. If we assume a Coulomb Gauge

V -A = 0, the interaction hamiltonian is

Hint = - A -p (2.34)
m*

Where A and p are operators now. To compute optical transitions we apply the results of

time-dependent perturbation theory and Fermi's Golden Rule.

2 (2.35)
W__.; = -- I(ilHitlf)j26(Ef - Ei - hw) (2.35)



Where in equation (2.35) the time oscillations of the field have already been accounted for in

the interaction hamiltonian and are represented in the delta function. (i) and (f) represent the

full initial and final wavefunction states of the system. This explicitly includes the envelope

functions, Bloch functions of the electrons, as well as the photon field. The description of the

photon fields is the result of second quantization, which is derived in [12].

ji) = |ki)Inq,,) (2.36)

If) = Ik)lmq,a) (2.37)
1

Ik,) = uv,(r) exp(ik± -rl)Fi(z) (2.38)

n and m represent the photon number in the cavity with polarization a and in mode q, and

u, (r) represents the initial bloch wavefunction for band (v), and S is the normalization factor.

Utilizing the results from second quantization of the field we can express A in terms of lowering

and raising operators that act only on the photon number.

A = [qaq, etiqr + aqe-i.r] (2.39)

Substituting equation (2.39) into the matrix element of Fermi's Golden Rule, we get

(ijHintlf) = q h m*3q 2wV 6m -l,nq,a(kie|q,a -pe q.r kf) +

q h ir

m* 2EWqV mqa + 16mq,,+1,nq,r]j(kiIq,a -pe-i.jkf)

Given that q = j, where A is on the order of 10plm, the wavefunction and r vary on the order

of order of nanometers, therefore, we can approximate q -r P 0

(iIHintlf) -= m*q / 6m,,,-l1nq,,,q,a * (kilplkf) +

m* 2EWqV



We have computed the photon part of the wavefunction; however, we still need to compute the

spatial component of the wavefunction, which includes the entire wavefunction including the

envelope and bloch wavefunctions.

(klle" plkf) = q,, ] d3ru*(r)--exp(-ik() " r±)F*(z)puv,(r) exp(ik) -r2)Ff(z)

= eq,,. dru* (r)- 1exp(-ik() -r±)F*(z)-expp(ikf) r±)Ff(z)pu,(r) +

(r)1 ex (i -)Fj*(z)u,( r 1 en(ik) -Lr)Ff(z)

Due to the periodicity and rapid variation of the bloch wavefunctions compared to the slowly

varying envelope function, we can approximate the integrals

(kzlplkf) - (uv,(r)Ipjuv,(r)) dr exp(-ik -•) r±)*(z) Sexp(ik) -r )Ff(z) +

(U,(r)|(r)) d3r-exp(-ik(') -r )Fi*(z)p exp(ik' r)F(z)

Reintroducing the dot product of the polarization and the momentum we get

(kil|q, -plkf) = (uv,(r)l q,. pluv,(r)) 6c(k~) - kf))(F,(z)IFf(z)) + (2.40)

(u - k¶ )(-ihevk + -iheyku)(Fi(z)lFf(z)) + (F(z)lez plFf(z)) (2.41)

So the first term in equation (2.41) represents an interband transition for example between

conduction and valence band. Furthermore, in an optical transition, the transverse k is conserved

between transitions. For the case relevant to intraband transitions, i.e. bound conduction band

states, the envelope functions between different states are orthogonal due to the hamiltonian.

This yields the famous intersubband selection rule, where the polarization can only be in the z

or growth direction.

(kle -plkf) = 6,,,(k( )- k f))ez(F,(z)IpzFf(z)) (2.42)



Furthermore by applying the commutation relation, we can write the momentum matrix element

in a more familiar form in terms of a dipole moment.

PZh [Ho, z] =
- m*

im*
(Fi (z) pz F(z)) = (Ef - Ei)(Fi(z) z IFf(z))hi

(2.43)

(2.44)

However, when using equation (2.42) one has to pay careful attention to the form of the operator

and envelope function used. When including non parabolicity, the conduction envelope functions

are not guaranteed to be orthonormal since the full solution to the Hamiltonian must take into

account the sum of all the envelope functions and Bloch wavefunctions from all the bands. We

will discuss this complication in the following section.

2.3.1 Dipole Moment with nonparabolicity

Due to nonparabolicity, we need to consider the envelope functions

bands in order to properly compute the dipole matrix element [11]..

Hamiltonian used to derive the envelope functions is

Ec(z)
- PkZ

513Pk,

/Pkz

Elh (z)

0

- Pk z

0

E8o(z) ItFec
FIh

Fso

=E

from the various valence

The exact definition and

Fc

Flh

Fso

the Pz operator is actually the off-axis matrix elements,

k -p in our original hamiltonian.

Pz=
0O

- VPmo

SPmo

which originally were the result of the

VPmo - APmo

0 0

0 0

We can express the light hole and split off envelope functions in terms of the conduction band

envelope functions.

- ePpzF = (E - Elh(z))Flh (2.45)



1••PPPzFC = (E - E so(z)) Fo (2.46)

The full expression for the optical matrix elements is

0 Pmo - /Pmo Fcf)
( i(z)pzlP0f(Z)) = Fj) F(i) F ) -Pmo 0 0 F1

Pm 0 0 F/ )9o/Pmo o I
Fortunately, we can write a closed form expression for the optical matrix element, without having

to compute all the valence envelope functions.

1 10 Mn MO_)
(Obi(z) PZOf (z)) =mo mo pF+ IF') (2.47)

2 m(Ei, z) m•(Ef , z) c

In addition, the total wavefunction is normalized to one, not just the conduction band compo-

nent. Therefore, the proper normalization is

2 JPJ2/m2 1 p2/ 2
(~c|1 + 0Pz + 1 Ppc)= 1 (2.48)p [E(, - ELh(z)]32P • +-P [E(,) - E80o()]2

According to Sirtori [11] the use of standard dipole moment for computation is still valid and

commonly overestimates ; 5-10 percent. Finally, we can write the total optical scattering rate

for emission as

Weis r q2 qo, + 1) e2p(i-f) 26(Ef - E, + hWq) (2.49)

W i = rq2w(mq, + 1) e(i-f)2(Ef - E + ) (2.50)ems icV-EC+h) 25

Where p(--f) and z ( i- ' ) are computed normally or by taking into account nonparabolicity by

equation (2.47).

2.3.2 Spontaneous Emission Lifetime

From equation (2.50), we can define two individual rates, one that is dependent on the photon

number (m) in the cavity and one that is independent. The former is stimulated emission, the



latter is spontaneous emission. Electrons can automatically emit a photon given a certain proba-

bility. However, our previous derivation assumes emission into a specific mode and polarization.

To compute the total rate, we need to sum the total rates into all available modes (q) and

polarizations (a).

Wi - q2  e |z(i--f)126(E - Ei + hwq) (2.51)

If we assume box resonator, then in q space the available states available are uniformly spaced

discrete points. The density of q states is 1/(27r/L)3 . In spherical coordinates.

q = d3q Vq2 sin OdqdOdq (2.52)
p(q)d3q (2.=5/2)87r3/V 87 3

ot = Wlmode (q)p(q)d3q = • (i- f) 2 qeq 2 sin 06(E - Ei + hWq)dqdOdq

(2.53)
Assume we integrate such that one polarization is always normal to the z axis, and the other

polarization lies in between the z and q axis. Therefore, e2 = sin2 2

W.(Sp)  P 3 q e2 1 Z zi-+f ) 12 2 3ftot - Wifmode(q)p(q)dq =c z(i-*f) 2 Swqqin3 O(Ef - Ei + hWq)dqdOd8

(2.54)

The result is

2 3
ot 3h 4c (i-- )12(Ei- Ef)3  (2.55)

WsP) o e 2n I z(i-+f) 2W3 (2.56)= wil (2.56)

In the Mid-IR the total spontaneous emission rate at 5 ,m is often on the order of Tr-f r 20

ns.

2.3.3 Stimulated Emission

In the case of stimulated emission, on the other hand, we compute the emission rate into a specific

mode. For most laser cavities, there are usually one or two low loss modes where emitted photons

can exist long enough for the stimulated emission rate to increase. This feedback loop between



emitted photons generating more photons is the basic concept behind a laser.

W irq 2 Wqm eq2m z(i-f) 126(Ef - E, + wq) (2.57)

However, due to relations with uncertainty, the energy level is not exactly discrete, but rather

distributed over a range of energies. So often the delta function is replaced with a normalized

lineshape function g(E)dE = -g(v)dE. Therefore,

Wf = / rqm2wm' 21z(If'26(Ef - E, + wq) hg(v)dE (2.58)

w8, = q2 wqm, e2 z(if) 2g(v) (2.59)

Expressing the number of photons in the mode using the field strength

Cmq,crhWqa
I = cm, (2.60)

nV

Therefore, we can rewrite the expression as

X21
W.if = g( )  (2.61)if - 87hwn2 ant

The linewidth of the Lorentzian linewidth is determined from lifetime broadening [13]. However,

there is a factor of 3 that is missing from equation (2.63), which accounts for the fact that

for intersubband transitions, unlike atomic medium, all the dipole moments are aligned [14].

Therefore, we have

3A21
W. = 81rhw2t1 g(/) (2.62)

3A21 Av/2r (263)
if = 8rhwn 2t9t (v - vo)2 + Av/2)2

1 1 2
2rAv = Aw = -- + - + (2.64)

The linewidth factor can be understood by remembering that a finite exponential decay in time

domain, when fourier transformed, yields a Lorentzian in frequency domain, whose width is

determined by the decay. Where T2* represents the pure dephasing rate and ri and 7f are state



lifetimes. For a more complete derivation of linewidth broadening due to coherent collection of

classical oscillators see Siegman [13]. This linewidth broadening, as we will see when computing

intersubband gain is critical and can be measured from the linewidth of spontaneous emission,

which in the Mid-IR is • 25 meV.

2.3.4 Intersubband Gain

Due to stimulated emission, photons emitted into a cavity mode, increase the intensity of that

mode leading to gain or amplification. To calculate the gain, we compute the number of extra

photons generated along the axis of the cavity. The power flux (W/m 2) of a wave in medium is

related to the time average poytning vector.

1
P = (E x H) = -EoneEo (2.65)

We assume our waveguide has transverse dimensions of w and L. Therefore, the photon flux

normal to the direction of propagation is

1 1
1Ž= coneE0 o wL (2.66)2 Aw

Therefore, the photon flux over a length dy along the direction of propagation is therefore

d1 = W(2t)n 2wdy - W(2t)•1wdy (2.67)

Where n 2, and nl are the sheet densities of electrons in level 2 and 1. We also note that the

stimulated emission and absorption rates are equal. We define G as the increase in number of

photons divided by the total number of photons present. [15]

d@/dy = W(1t ) Aw 3A2I tiww
G = dPd- Wt21 ) ( - n1 ) n 2 - r 1)9(v)

S2IwL 8~(n2 87wn2tspont Iw

3A2  1
C = -(n 2 - nl)g(v)

8n 2t spont L

G = 31 e2  (if)2 f 2 -n1)g()
2n coh V



For simplicity, we have assumed a low population density, such that we can assume that the final

states of the electrons are free and available. We can also express the peak gain when v = vo

G( v) - e2z(i-f) 2wf (n2 - n1) 2G(v = L)= (2.68)
2n L - n) 2 (269)

G(v = vo) = (2.69)nfoc L AE

Where AE is the linewidth measured from spontaneous emission. However, the key factor is

that the gain of a system is positive only when n 2 > nl, or when one has a population inversion.

2.3.5 Nonradiative Scattering and Transitions

In quantum cascade lasers, population inversion is achieved by engineering the scattering rates

and subband lifetimes. These subband and electronic populations are primarily controlled by

nonradiative scattering mechanisms. There are a variety of nonradiative scattering mechanisms

that are present in controlling electron transport including e-e scattering, acoustic phonon,

electron impurity etc. For more detailed deviation and computational implementation for each

of these scattering mechanisms see reference [16]. The mechanism that we will focus on primarily

is polar longitudinal optical phonon scattering. This mechanism has a flat energy dispersion and

for InGaAs is . 34 meV. When subband levels are resonant with a LO phonon, the nonradiative

scattering mechanism occurs on the order of 0.2 ps, which provides the main depopulation

mechanism for various double phonon QCL designs. To compute the scattering rate due to LO

phonon scattering we must again use Fermi's Golden Rule, with Hint is assumed to be [17]

H = C [ajei3.r + ate-3.r (2.70)
=0 hwLoe 2 ( 1 1 (2.71)

2V /32 E"o EDC

As was the case for optical tr'ansitions, we can quantize the phonon motion, which assumes a

certain phonon number, which are affected by the raising and lowering operators in equation

(2.70)

Wif = I(iJH f)26(E - Ei + hwO) (2.72)



ULO

Figure 2-2: Diagram of LO phonon scattering between two parabolic subbands.

Ii) = Iki, np)

If) = Ikf, mm )

Iki)

(2.73)

(2.74)

(2.75)
1 ik()-r= (v)(V)- e I F(z)

Therefore the matrix element of Fermi's Golden Rule for just the case of emission or absorption

is

= C2 (m +

= C2 (mf

= C 2 (m

fd ru (r) 1eik •r F,* (z)e-ip.ru(r) 1 eikT )[J r -f k v,-S r
1

2

1
2•

F,(z)]I

d3 re -ikJ2rI F* (z)e-i3 "r eik F)' rIF(z)]

[ F*(z)-izzFi(z)dz] 2

The integration over the k ensures transverse momentum conservation.

27 hwLoe 2

h 2V )00 EDC
+ 1

2 2/

1 x
O'[ + P,2

I(i|Hlf) 12

WLOi- f

(Utiv, (r i(r))



[JF*(z)e-iazzFf(z)dz] 26k',k(,16(Ef - E ± rh)

In order to compute the total scattering rate out of ki we must sum over all possible allowed

final states kf and allowed (,3_, 0z). For simplicity let us look at the integration over fz since it

does not have any restrictions in terms of energy and momentum.

B4f (P0) = Jdfz F1*(z)e-izF(z)dzJ Fi(zi)eiz' F(z')dz (2.76)

= JF(z)F(z)dzJ F(z')Ff(z')dz dJ z 1 p .e-iz(z-z') (2.77)

Fortunately, we can use a fourier transform pair to evaluate the integral Oz on the right.

Bi--.f(Oz) = fr*(z)Fi(z)dz Fi(z')Fr*(z')dz'e- id±lz- z 'I 1 (2.78)

In order to integrate over the final states with allowed 3±, we can combine the conditions for

energy and momentum conservation into

3p = k, + k2 - 2kikf cos 0 (2.79)
2 2m*(Afi T hWLO)k = kh + (2.80)

A•, = Ef(k = 0) - E2 (k = 0) (2.81)

Therefore, to satisfy energy and momentum conservation, we can integrate over 0, which is the

angle between vectors ki and kf.

wLO(k )  27r hWLoe2 1 1 1 1 )f 2
Wrok = h 2V 0oo EDC 2 + + dOUB-_.f (3) (2.82)

h 0 2V C DC 22

To account for phonon statistics we can assume Bose Einstein distribution functions that are in

equilibrium with the lattice temperature. We have also included figure 2-3 to show the effects

of detuning the subband separation given fixed wavefunctions.

m= (2.83)
e= -1



Effect of Energy Detuning on LO phonon scattering time - 300K, <z> = 2.49 nm

E,-E1 (eV)

Figure 2-3: Effect of Detuning between subbands versus scattering time

2.4 Resonant Tunneling

So far transport of electrons has assumed a coherent process where electrons due to specific

scattering mechanisms can scatter from one subband to another. However, it has been shown that

this coherent process of transport, at least between modules, may not be entirely accurate. In

quantum cascade lasers describing the transport between modules is often treated using resonant

tunneling [18]. Experimentally this is shown through the strong dependence of injection barrier

thickness to current density. For coherent transport when two levels align, the wavefunction

assumes a spatially delocalized state across the barrier and thus has some large spatial overlap

with subbands in the next module. Therefore the injection barrier would have little affect on the

total current passing through the barrier. Furthermore, dephasing due to transport accross a

barrier is critical for QCL performance. Modeling of dephasing can most easily be done through

Density Matrix Formalism.

2.4.1 Density Matrix Formalism

For an arbitrary electron wavefunction

10) = EcnIq|) (2.84)

38

1



Where 0, are the basis states of the Hamiltonian. If one were to compute the expectation value

of an operator then

(0|o|4) = EC cmcn (•mlO|l ) = ••C~CnOmn (2.85)
m n m n

Let us define the density operator p and density matrix P,,m

p = |I)()| = • c•c2cmj•m)(On (2.86)
m n

Pnm = (¢mIP•ln) ccm (2.87)

Pnm = (mlIPk1n) = (cncm) (2.88)

Therefore, for a single particle we can express the wavefunction in this density matrix formalism.

However, for our purpose the density matrix through averaging many different single density ma-

trices can represent an ensemble average, which allows us to model large collections of electrons

at once assuming some mean behavior, which is the true strength of this formalism. Therefore,

the expression for the expectation can be written as

(0) = E P*mOmn = E PmnOmn (2.89)
mn m n

Furthermore, the density matrix is Hermitian

Pnm = (OmlP10n)* = (c*cm)* = cmCn = Pmn (2.90)

By taking the time derivative of the density operator we arrive at the time evolution of the

density matrix.

ih = iha ( + ihlp) (2.91)

apih-L = H1'i)(|1 - I)(1IH = [p, H] (2.92)

For clarity, let us only consider a situation where we only have two basis states. Furthermore,

we have assumed our Htot = H + Hre,., where Hrei, includes phenomenological relaxation

processes such as dephasing or population lifetimes, that are difficult to write out explicitly in



terms of a Hamiltonian.

a P11 P12 ( P11 P12 H11 H12  0p

at P21 P22 P21 P22 H2 1 H22  Ot relax

For the case relevant for resonant tunneling, assume initially we have two isolated quantum wells

with a very thick barrier. The initial basis states would naturally be |11) and I02), which are

localized states inside the well. Assume the Hamiltonian for a single well is Ho then the coupling

between the two wells can be viewed as a perturbation AV, so the H = Ho + AV. Therefore,

(H 0|H|1) (02 1H10 2) 2 El ( AV1) 01 2) El -A 0 /2

( (21H|H 1) (021H0 2) (2 1) EV -Ao/2 El

The eigenfunctions of this matrix now form delocalized states that are symmetric and antisym-

metric which are separated in energy by their anticrossing strength A0. However, with QCL's

two states can be brought into resonance through an applied electric field. Therefore assuming

fixed anticrossing strength, we allow detuning, such that the diagonal elements of the matrix

can differ.

H = -Ao/2 E2

Furthermore, it becomes clear that if an electron is originally in one of these localized basis

states, that it is not a eigenfunction of the Hamiltonian and will undergo oscillations between

the two basis states, thus allowing tunneling across the barrier. Density matrix formalism also

allows the ability to add in ensemble parameters, such as population lifetimes and dephasing

phenomenologically.
P22 P12

at relax P21 _ P22

For simplicity, we assume a infinite periodic lattice. We define a lifetime 7 as the lifetime of P22

where an electron relaxes from 2 into 1. We also define T1I as the dephasing relaxation time due

to loss of coherence between the two wavefunctions. If current is directly injected into level 2,

then the steady state current density J = ~.2 If we solve equation (2.92) for p22 under the

condition that P22 + P11 = 1 assuming a constant population, we can express the current in a



form similar to the one provided by Karzarinov and Sirus [6].

qNP22 QN( ) 2

J - 2 (q,)2 2 (2.93)
h2 1 + I + ) 7711

This expression can be simplified for the case where the two energy levels are resonant.

Jmax qN 1I (2.94)2 1+ _ ) rTr

We can estimate 711 from homogeneous broadening of the linewidth similar to equation (2.64).

1 1 2
- - + - (2.95)

1 1
Aw = - - (2.96)

T2 71

For a linewidth on the order of 25-50 meV this corresponds to a dephasing rate a 100 fs. It

should be noted that the measured emission linewidth is the transition within a well, where as

the linewidth in question is the transport across a barrier, which one would expect to be broader;

however, this is an unknown parameter in the system.

The resonant tunneling model provides a a figure of metric when designing optimal de-

vice performance of a QCL. Following from [18], the optimal strong coupling regime, where

I•'A2 2T7-l > 1, is preferred such that
qN

Jmo = (2.97)

We see that the current is limited not by the tunneling rate, but by the lifetime r, which means

more electrons are available for gain. Therefore in designing QCL's careful attention must be

paid to the various anticrossing between levels to determine the injector coupling strength.

2.5 Rate Equations for QCL

After deriving optical and nonradiative scattering mechanisms, we can use rate equations to

determine what parameters are important for population inversion. As is done with many laser

systems we reduce the QCL down to a simple three level system [14] [19]. Through detailed
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Figure 2-4: Diagram of Three Level system, assuming non unity injection efficiency

balance, we can write down the rate equations for the 3-D subband populations n3 and n 2. We

can even keep track of the number of photons in a specific lasing cavity by including terms such

as spontaneous and stimulated emission and absorption.

dn3  I n3 (n 2 - n 3)mV n 3-- + (2.98)dt eV Tsp t T3

dn 2 _ (rq- 1)I n3  (n3 - n2)mV n 2  n 3S +  +  (2.99)
dt eV p Tst 7T2  732

dm n3F (n3 - n2)FmV m
- - + (2.100)dt Tsp Tst Tp

We assumed that current I is directly injected into level 3, V is the volume of the active region,

rq injection efficiency, T7 is the photon lifetime, F is the confinement factor.

1
= Vg(am + ) (2.101)

VNmod
V o= (2.102)

1 1 1 1
- = -- + + - (2.103)
73  732  73 1  Tesc

42



Where Vtot is the total cavity volume, and the n3 = n 3 /L,, and n2 = 2DIL,,. Now assume

steady state conditions.

l7I n 3  (n2 - n 3)mV n3 (2.104)
+ -- (2.104)

eV Tp 7Tt 73

(n- 1)I n3 (n3 - n 2)mV n2 n3 (2.105)
=+ (2.105)eV 7sp t T2 T32

n3r (n3 - n2)rmV m
S(2.106)

Tap TSt Tp

For simplicity, we assume that 8,, > 7Tt and there are a large number of photons in the active

region such that mV > 1. From equation (2.106)

7t 1
n3 - n2 = (2.107)

7, FV

For conditions above threshold, equation (2.107) demonstrates that the population inversion or

gain clamps above threshold. We can solve equations (2.105) and (2.104) for the photon number

(m) which is proportional to Light Intensity (L) assuming the fixed population inversion.

r7pr(073(1 - 72/7 32) - (1 - n7)72) (P Pth) (2.108)
m =(P - Pa) (2.108)72 + T3(1 - 72/T32)

7Tt 1Pth = (2.109)TpVF 7-r3 (1 - 72/7 32) - (1 - )72(2.109)

L = hwVpm (2.110)
Tm

Tm = (2.111)
amVg

Where P = . Finally expressing equation (2.108) in terms of L, we can express the slope

efficiency d or the amount of output power versus current.

dL = hwVp 7TF(7 3pr (1 - T2 /7 32 ) - (1 - r)7 2) (2.112)
dl eV7m 72 + 73(1 - 72 /T732)

dL hWNmod am (q7i3(1 - T2 /7 32) - (1 - 19)T 2)
dl e am + aw 72 + 73(1 - 72/T32)

(2.114)

These results will be useful for deriving expression for evaluating wall plug efficiency.



2.5.1 Wall Plug Efficiency

Quantum cascade lasers have a distinctive advantage of being able to engineer the scattering

mechanisms between levels by tailoring their energy separations as well as their wavefunctions.

From equation (2.114), it is clear that the scattering times T32 , 73, 72 are very important for high

efficiency. For determining all the factors relevant for wall plug efficiency, Jerome Faist derives

an expression for fundamental wall plug efficiency r)wp [20].

(I - lth)dL/dl
S= (IV- (2.115)

IV

Where V is the voltage to bias the device, I is the current, Ith is the threshold current. We can

relate the parameters V for a specific device wavelength as

=V + Ai. Nmod (2.116)qo
Where Aij is the voltage defect to bring the various levels into alignment beyond the necessary

energy alignment separation between the upper and lower lasing state. Traditionally, depending

on design this can vary from 70 meV for the injectorless to 120 meV for the traditional miniband

designs. The voltage defect is due to the need for extra levels to provide depopulation. Using

rate equation solutions, Faist simplified the wall plug efficiency down to a concise expression

2wp,max = 732 -7327 73-72 1 [ -1] (2.117)
3=+ / - T2 1 + Aj/ (

ST73(1 - 72/732)
Ttrans

m*W3T17Ii 1
*= h Iz-fI (2.119)

Jmax= nqo (2.120)
Ttrans

It becomes very clear that the parameters that need to be optimized are v/g*»T > 1. Some of

these parameters such as 7I1 are controlled by the growth and quality of the interfaces, which

affect the linewidth. However, most of the other parameters in terms of lifetimes and voltage

defects are parameters that are dependent on the design. Therefore, for this thesis we will further

explore various injectorless designs for reducing Aij.



Chapter 3

Simulations

Monte Carlo simulations were conducted for evaluating and studying various designs. Various

simulation tools have been developed to study and model electron transport in quantum cascade

structures. Most simulations for QCL's involve a semiclassical approach which is essentially a

rate equation approach, where electrons in different subbands scatter into and out of different

levels. A Monte Carlo approach is often taken to simulate ensemble electron behavior. These

simulations were done on two designs to evaluate the performance of using these simulations for

predicting the performance of new designs

3.1 Monte Carlo

A common method for simulating electron transport in semiconductor devices is a Monte Carlo

simulation. By following the Boltzman Transport Equations [17], electrons are assumed to be

discrete particles with known momentum and energy. Electrons once inside a material can be

subject to a variety of scattering mechanism such as optical phonon scattering, interface scatter-

ing, impurity scattering etc. Each of these scattering mechanisms is assumed to be instantaneous

and obey transverse momentum and energy conservation. The choice of scattering event is de-

termined by the probability of each scattering mechanism. Allowing random events to choose

the scattering event is where the simulation gets its name. The results of the simulation can

yield information about final steady state populations, gain, electron temperatures, scattering

rates, and current. The code used was developed by Hans Callebaut initially for simulating

terahertz QCL. It was then modified slightly to take into account nonparabolicity for solving



mid-IR QCL structures.

Figure 3-1: Flow Chart for Monte Carlo Simulation

3.1.1 Free Flight

After computing the band structure, the Monte Carlo simulation must determine for each indi-

vidual electron the time between scattering events. The probability distributions are determined

by the relative strengths of the scattering rates computed using Fermi's Golden Rule. Further-

more, each electron themselves is modeled with a specific k1 and subband (i).

t(k±, t) = ( (3.1)
m m(k ,-t)

Where m is the scattering mechanism and F is the total scattering rate. For simplicity, we
assume Pi(k±, t) = Fo [17]. Electrons in the system are assumed to undergo free flight until
a scattering mechanism is chosen. If we define ncf as the number of electrons which have not
undergone a collision since time t=O, then assuming a scattering rate of 0o,

dntf = -roncf 
(3.2)dt

n ef (t) -e -rot (3.3)
ncf (0)



Equation (3.3) defines the probability that an electron has not scattered until time t. Therefore

since F0o is the number of electrons scattering per second, we know that the the number of

electrons that scatter in time interval dt is Fodt. The probability that an electron undergoes

its first scattering between t and dt is the multiplication of the probability it has not scattered

until time t and the probability of scattering in time interval dt.

P(t)dt = Foe-rotdt (3.4)

For computational reasons, we would like to map the probability distribution P(t) onto a uniform

probability distribution P(r)

P(r)

orc
dr = P(t)dt

dr = poe-rotdt

dr = Foe-rotdt

(3.5)
(3.6)

(3.7)

Where solving equation (3.7) is a simple map between a uniform probability distribution (re)

and a time duration for free flight (t,).

1
t= = - n(1 - r,)

F0 :
(3.8)

This assumption is of course assumes a constant scattering rate; however, this can be artificially

introduced into the Monte Carlo simulation by introducing a fictitious self-scattering event.

self(k-, t) = Fo - Fr(kl, t) (3.9)

This self scattering event, if chosen, does not change an electrons energy or momentum.

3.1.2 Choosing a Scattering Mechanism

Every particle due to its energy and momentum has its own unique probability of scattering. The

process for choosing which scattering mechanism an electron undergoes and the corresponding



change in energy and momentum are chosen according to

l-1 1 1 1_m=1 r;(k,t) < r2 < (3.10)
Fo - Fo

1

L.=1 T(k 1 ,t) < r3 < E k (3.11)

Where r2 and r3 are random numbers chosen from a uniform probability distribution. r2 selects

the scattering mechanism and r 3 given the scattering mechanism chosen selects the appropriate

subbands that the electrons will scatter into. For a more complete and in depth description over

implementation of the various scattering mechanisms such as e-e and e-imp, refer to [16]. After

choosing an appropriate subband, the final subband may not be within the QCL module. In

this case periodic boundary conditions are imposed in a similar fashion done by Iotti and Rossi

[21]. In the simulations, traditionally 3 QCL modules are simulated at a time, but electrons are

only tracked in the center module. Electrons that scatter to adjacent modules are reinjected

back into the center module with the appropriate momentum and energy. Using this approach,

values such as current density can be computed simply as the flux of electrons passing into the

next module.

3.1.3 Shooting Method

For computing the electronic wavefunctions, the shooting method was implemented to solve

for the appropriate eigenfunctions and eigenvalues [22]. The shooting method first discretizes

equation (2.22) and (2.23)

¢[z + az] 2(az)X 2 1 1 ¢[z- z][z + Az] -= [ [V(z) - E] + 1 + 1 1 z) - Az]
m*[z + Az/2] [V(h2  m* [z + Az/2] m*[z - Az/2] ) - m*[z - Az/2]

(3.12)
In order to write the effective mass in terms of more familiar parameters such as band gap and

band edge effective mass

E - V(z)
m(E, z) = m*(z) 1 + EV(z) (3.13)

48



We can also show that the form of equation (3.12) satisfies the appropriate boundary conditions

at the interface. Let Az -+ 0, in equation (3.12).

,[z + Az] 1 1 '[z- Az] (314)- ++ I[z] [ - AZ (3.14)
m*[E,z + Az/2] + Az/2] m* [E, z -Az/2] m*[E, z - z/2z - Az/2]

lim 1 [z + Az] - [z] 1 [z] - [z - Az] (3.15)
hm (3.15)Az-0 ; m* [E, z + Az/2] Az m*[E, z - Az/2]

1 /0+f(z) 1 0 (-(z) (3.16)m*(E, z) +  Oz m*(E, z)- z

Therefore, equation (3.12) provides a difference equation given two initial data points for com-

puting the rest of the wavefunction. Obviously, this will yield wavefunction solutions for any ar-

bitrary energy value. Therefore, to solve for the correct solutions, the shooting method looks for

solutions that fit the appropriate boundary conditions for bounded wavefunctions (00oo) = 0.

Unfortunately, to computationally deal with oo,we place our quantum well structure inside a

larger infinite square potential. Therefore, eigenfunctions of the system will be solutions that go

to zero at the boundaries of the square potential.

3.1.4 Material Parameters

As we will address later, QCL structures in order to achieve better confinement are composed

of strained material systems, which are not lattice matched to the substrate. Unfortunately,

parameters for strained ternary material systems are not well known including band offsets and

effective masses. In order to estimate various material parameters, we used an interpolation

scheme with bowing parameters from binary compounds [23].

P(al-,b,) = (1 - x)Pa + xPb - x(1 - x)Bab (3.17)

Where P is the property of interest, a and b are the different materials, B is the bowing parameter,

x is percentage of material b. The Energy gap in table 3.1 follows the empirical varshni form

aT 2

E,(T) = Eg(T = 0) - (3.18)
T+P



Table 3.1: Table of Material Parameters

GaAs InAs AlAs

al(A)(T = 300K) 5.65325 6.0583 5.6611
m~(r) 0.067 0.026 0.15

Er(T = 0)(eV) 1.519 0.417 3.099
a(r)(meV/K) 0.5405 0.276 0.885

O(r)(K) 204 93 530
A,o(eV) 0.341 0.39 0.28

VBO (eV) -0.80 -0.59 -1.33

Table 3.2: Bowing Parameters for InGaAs, InAlAs

For our expression for the effective mass in equation (3.13), we need the effective mass and the

energy gap for the materials used, which in our case is InGaAs and InAlAs.

1
Eavg (r) = E + 3 Aso (3.19)

From interpolation, we have included some of the common material systems used in both

injectorless and miniband designs. Where in terms of the energy interpolation, we have adopted

Table 3.3: Various InGaAs Material Parameters after Interpolation
atc(A) m*(F) Ev avg9()(eV) E,, (eV) Cite

In(x)Ga(1-x)As T=300K T=300K
x = 0.600 5.8963 0.0402 0.8548 -6.7621 [2],[24],[25]
x = 0.660 5.9206 0.0379 0.7978 -6.7476 [26]
x = 0.670 5.9246 0.0375 0.7888 -6.7452 [3]
x = 0.678 5.9279 0.0372 0.8903 -6.7433 [27],[28]

InGaAs InAlAs
ac (A) (T = 300K) - -

m*(F) 0.0091 0.049
Egr(T = 0)(eV) 0.477 0.70
a(P)(meV/K) - -

l(P)(K) - -
Aso(eV) 0.15 0.15

VBO (eV) -0.38 -0.64



Table 3.4: Various InA1As Material Parameters after Interpolation
ail(A) m (F) E'av9g(F)(eV) EJ , (eV) Cite

In(x)Al(1-x)As T=300K T=300K
x = 0.300 5.7803 0.1025 2.2412 -6.8379
x = 0.346 5.7985 0.0960 2.1073 -6.8259 [26]
x = 0.362 5.8049 0.0938 2.0615 -6.8218 [3]
x = 0.365 5.8061 0.0934 2.0529 -6.8210 [2], [27],[28]
x = 0.440 5.8359 0.0834 1.8435 -6.8018 [24],[25]

a more complex bowing parameter that is strain dependent [29]

Aa
E(x) = xE(AC) + (1 - x)E(BC) + 3x(1 - x)[-ai(AC) + ai(BC)]- (3.20)

ao

where Aa = ao(AC) - ao(BC) The last critical parameter for simulation is the Conduction Band

Offset (CBO). There does not exist a systematic way to predict conduction band alignments for

various material including strain. The most commonly used theory is from model solid theory

[29]. Model Solid Theory assumes two aspects: one is an accurate band structure which can be

solved using a variety of methods such as psuedopotentials, etc. The other aspects is defining

an absolute energy scale with which to compare various energy alignments between different

materials. Model solid theory addresses this by relating the average electrostatic potential

to the vacuum level. A common reference point is accomplished by modeling the solid as a

superposition of neutral atoms. The energy values in table 3.3 and 3.4 are interpolated using

equation (3.20).

Including the deformation potentials further allows us to take into account strain induced

effects for changing various band edges.

AEc = ac(Exx + Cy, + Czz) (3.21)

AEv,avg = av(cx + yy + zz) (3.22)

Where a, and a, are the conduction and valence band deformation potentials, also we define

the strain in the xx and yy directions as the transverse directions perpendicular to the growth

direction zz. For the QCLs of interest we assume our substrate material is InP (001). The strain



induced in the InGaAs and InA1As layers is caused by the lattice constant difference from InP.

azz = asub

ayy = asub

azz = ao 1 - D0o( asb -1

o001 = 2C12

(3.23)

(3.24)

(3.25)

(3.26)

Where we have assumed that InP has a lattice constant of 5.8697 A. We define the strain

therefore as

eg = i - 1, i s (xx, yy, zz) (3.27)

For common Mid-IR materials, we have already computed the various interpolated parameters

for barrier and well materials.

alc(A) C12/C1 ac(eV) a,(eV) a AEc AE,

In(x)Al(1-x)As T=300K

x = 0.300 5.7803 0.4530 -5.1780 -2.0290 0.01693 -0.08765 -0.03435

x = 0.346 5.7985 0.4575 -5.1294 -1.9614 0.01332 -0.06831 -0.02612

x = 0.362 5.8049 0.4591 -5.1139 -1.9379 0.01208 -0.06177 -0.02341

x = 0.365 5.8061 0.4594 -5.1111 -1.9335 0.01185 -0.06056 -0.02291

x = 0.440 5.8359 0.4671 -5.0486 -1.8232 0.00618 -0.03119 -0.01126

alc(A) C12/Cll ac(eV) a,(eV) n AEc AE,

In(x)Ga(1-x)As T=300K

x = 0.600 5.8963 0.5039 -6.5424 -1.0640 -0.00447 0.02926 0.00476

x = 0.660 5.9206 0.5090 -6.3763 -1.0544 -0.00844 0.05381 0.00890

x = 0.670 5.9246 0.5099 -6.3468 -1.0528 -0.00909 0.05768 0.00957

x = 0.678 5.9279 0.5106 -6.3228 -1.0515 -0.00961 0.06073 0.01010

So for a variety of material compositions used in Mid -IR QCL Lasers, the estimated conduction

band offset is shown in table 3.5 as compared to model solid theory results from other groups.

E -b = Eabs + AEv + Eg(r) + AEc (3.28)



Table 3.5: Various Conduction Band Offsets - Quoted
from Model Solid Theory

values from papers, Calculated values

Table 3.6: Simulation Parameters [3]

rn E, (eV)

Ino.67oGao. 33oAs 0.04022 0.572
Jn 0.36 2A10.638As 0.09337 2.0061

AEc (eV) 0.78

The values computed here should be taken as a starting point for our simulations and band

structures due to the large amount of uncertainty because of the effects of strain. Hopefully

these parameters can be refined through various measurements.

3.2 Monte Carlo Simulations Results

Two structures were simulated with the Monte Carlo code. The first was the Injectorless Struc-

ture from [2]; the second was the miniband structure from Razeghi with the highest wall plug

efficiency so far [3]. These two structures were chosen mainly due validate the effectiveness of

Monte Carlo simulations for predicative value.

3.2.1 07-606 MIT LL - Razeghi Design

Figure 3-3 shows the Monte Carlo simulation results at 300 K in comparison with measured

IV curves from devices grown and fabricated by Lincoln Labs. Unfortunately, only a few se-

lected data points were considered valid for electron transport. In the Monte Carlo simulations

scattering and transport are determined by the form factors due to the wavefunctions. Unfor-

tunately, this means the simulation is very sensitive to anticrossings. States that delocalize and

Material AEc (Calculated) AEc (Quoted)

Ino.6ooGao.4ooAs/Ino. 365Alo.635As [2] 0.722 0.690
Ino.6ooGao.4ooAs/Ino. 44oAlo.56oAs [24][25] 0.61917 0.620
Ino.66oGao.34oAs/Ino.s 46Alo.654As [26] 0.76204 0.825
Ino.67oGa 0.33oAs/Ino.362Alo.63sAs [3] 0.74189 0.800
Ino.678Gao.322As/Ino.365Alo.635As [27][28] 0.73969 0.730
Ino.67oGa a.400oAs/Ino.3 ooAlo.700ooAs 0.82812 -



Number of nodes in x grid = 1000

Distance in Angstroms 4

Figure 3-2: Two Module Bandstructure of Miniband QCL structure from Razeghi 4.7 1am [3]

extend across an entire module results in overestimated currents causing large current spikes in
the simulated IV. Over all the simulated IV curve agrees with experiment about the turn on
voltage, but differs for the series resistance. Overall, it appears that the Monte Carlo simulation
is overestimating the current, which may be a sign that coherent transport might not be entirely
valid for transport simulations. However, there is a possibility that parasitic voltage drops might
be the cause for the discrepancy between the two curves. Figure 3,4 shows the simulated IV
including all bias points. The presented IV curve in figure 3-3 is manually filtered to remove
these spurious bias points where anticrossings occur. The spurious anticrossings can be removed
by looking at the anticrossings strengths between two states. The general rule of thumb has
been to eliminate anticrossing points if the strength of the anticrossing between two states is less
than 1 or 2 meV. For the miniband design, there are a large number of states and anticrossings
that occur in the miniband. For this design, the issues of anticrossing are primarily between
levels (1) to (9) anticrossing with levels (11) and (12). Figure 3-5 shows one such example of
how a state can be spatially delocalized and actually span an entire module.

Furthermore, all the simulations yield a definitive negative differential resistance (NDR)
mode, where after the peak designed current point, the current starts to fall off as the levels move
out of alignment. However experimentally, parasitic channels or tunneling into the continuum,
which are not included in our simulations, usually prevent the observation of NDR. Besides IV,

LU
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Figure 3-3: Monte Carlo simulated IV versus experimental IV

another parameter we can extract is the gain at various bias points.However, similar to the IV

curve specific points must be chosen to attempt to eliminate spurious solutions. The gain versus

current density curve in Figure 3-6 is computed given the steady state populations of the system

using equation 2.69. From this curve we can estimate the Gain versus Current slope as well

as peak gain current at 06000A/cm 2, with a slope of 2.5 ,kA/2, without taking into account

modal overlap. These gain calculations assume a linewidth of 25 meV.

Figure 3-7 shows the subband populations settling in time. All the electrons are initially

assumed to be evenly distributed among the subbands. The simulation for the peak gain does

show a clear population inversion; however, it is obvious that it is difficult to interpret the

mechanisms controlling scattering into and out of 12 different bands.
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Figure 3-4: Raw simulated IV curve
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Figure 3-6: Gain versus Current Density for MIT 606 Series
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3.2.2 Injectorless 6.7 um

Number of nodes in x grid - 1000

Distance in Angstroms

Figure 3-8: Band Diagram of Two Phonon Injectorless Design [2]

Due to the complexity of tracking 12 subbands, a simpler design was chosen for simulation.

The injectorless design seemed like a promising candidate, not only for its possibility of higher

WPE, but also for its simplicity. Only 5 levels play a major role in transport with 3 parasitic

channels. With fewer levels the chances of a spurious anticrossing are reduced and electron

transport can be tracked more readily.

Table 3.7: Simulation Parameters Injectorless 6.7 pm [2]

m* E, (eV)
Ino.6ooGa 0 .4ooAs 0.04022 0.7780
In0 .365Alo.6asAs 0.09338 1.969

AEc (eV) 0.690

In Figure 3-8 levels (1),(2),(3) are the standard LO phonon depopulation levels separated

by - 34 meV. Levels (4) and (5) are also designed to be one LO phonon apart to serve as a

dual mechanism for transport across the barrier. Electrons that tunnel from 2-5' then should

very quickly relax down into level (4). Levels (6),(7),(8) are assumed to be possible parasitic

scattering channels; however, the anticrossings into these levels are usually < 1 meV. As with



most of these simulation parameters, we have adjusted them to better match cited papers for

energy separations and emission wavelength. In figure 3-9 we show the simulated IV curves from

IV versus T - assuming 60 modules - 8 levels, 9*10 l cm-3 doping, Voffset=2.75

0

Figure 3-9: Monte Carlo Simulated IV versus Temperature compared to Experimental Data

the Monte Carlo simulations versus temperature. A sample from the WSI [2] was measured by

Qi Qin for the temperature and output response, which is overlayed with the simulated IV in

figure 3-9. For the purpose of better matching, we assumed a fixed voltage offset of 2.75 V, which

we believe could be due to a possible parasitic voltage drop. Furthermore, no documentation

seems to exist for the exact doping of the structure, we assumed a doping from [2]; however, it

is possible that the doping might have been slightly higher or lower. The IV curves given here

have also been selectively filtered for spurious anticrossings.

Due to the reduced number of levels, more simulations could be run within a reasonable time,

allowing us to simulate the structure versus temperature. With the inclusion of the voltage offset,

the simulated IV curves appear to agree pretty well with the experimentally measured ones in

terms of temperature behavior. Furthermore, from the population inversions and gain, we can

extract the gain-current relation. If we define a level for the waveguide loss, we can then define

a threshold current by the intersection of the gain versus current and the fixed waveguide loss.

An unique feature of the injectorless design has been its ability to report some of the low-

est threshold current densities at 77K. This low current threshold implies that once a small

amount of current begins to flow, it almost immediately achieves lasing, which is indeed the



case from our simulations in figure 3-10. In fact one can see in figure 3-11 that the threshold

current density increases exponentially as the temperature is increased from 77K up to 300K.

Gain versus J for various temperatures, LW = 0.025 eV

Current Density (A/cm2)

Figure 3-10: Injectorless Gain versus Current Density for various temperatures

Jth - Experimental* vs MC sim
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Figure 3-11: Current Density Threshold for Injectorless Design

With our defined waveguide loss, we can see that the simulated threshold current density and

the experimentally measured current densities agree pretty well. This suggests that for these

simplier structures Monte Carlo Simulations may be more accurate and useful for optimizing

these designs. Returning to the original question of what causes this exponential increase in

threshold current density, we can track the upper and lower lasing subband levels across various

temperatures and bias. Figure 3-12 provides a useful example of how Monte Carlo simulations
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can provide information about how the populations are affected by temperature. It appears that

levels (6),(7),(8) do not contribute a significant amount to electron transport at threshold and

at low temperature. Furthermore, it becomes more clear that the decrease in gain with respect

to temperature is due to a fast rise in (3) compared to level (4). This might signal that thermal

backfilling might be something to seriously consider in the performance of injectorless devices

at higher temperatures. This can be achieved through changing the thickness of the injector

barrier to help facilitate resonant tunneling into the next module. These design points will be

of importance in influencing some of our own injectorless structures.



Chapter 4

Experimental Setup

In order to measure and characterize QCL devices a measuring and testing platform had to be

constructed. The main attributes required a temperature controlled measuring platform as well

as an automatic computer controlled software. We also required pulsed and continuous wave

(CW) Light-Current-Voltage (LIV) measurements. Unfortunately, for Quantum Cascade Lasers

the current and voltages are much higher than normal laser diode drivers.

Figure 4-1: Experimental Setup



4.1 Electronics

Figure 4-1 shows the basic configuration for our setup. In order to bias our devices we purchased

an Avtech 1011-b pulse generator which can provide pulse widths between 100ns - 111s with 10

% duty cycle and current pulses upto 2-4 A with use of a transformer. Furthermore, we also

purchased a ThermoFisher Nicolet 8700 FTIR spectrometer for measuring laser spectra and

electro-luminescence. The FTIR is equipped with a Liquid Nitrogen cooled Mercury-Cadmium-

Telleride Detector. Most of the electronics for measuring and biasing the device were available

commercially. However, a custom vacuum chamber, Thermoelectric Cooler stage, as well as,

software were still required.

4.2 MATLAB GPIB software

To automate the data collection process we chose the General Purpose Interface Board (GPIB)

standard on most electronic devices. This is a standard protocol to interface with most pieces of

scientific equipment. Traditionally, most implementations are done using LabView software due

to its ease with graphically programming; however, we found it easier to implement the device

control through the instrument control toolbox in MATLAB. This was mostly due to the easy

integration of plotting and math functions as well as their easy to use GUI software GUIDE for

constructing custom interfaces. Moreover, MATLAB provides a more conventional programming

environment than LabView, which makes software maintenance easier. Figures 4-2 and 4-3

are examples of the interface screen. The only device that did not have GPIB control was the

TE Cooler Temperature controller, which had its own serial port commands. The MATLAB

interface includes control over all components including setting the PID controller and settings

on the TEC cooler. This allows one to perform temperature dependent measurements on devices.

4.3 Vacuum Chamber - TEC Cooler

In order to test the temperature performance of our devices, a Thermoelectric cooling stage had

to be implemented. A Thermoelectric Cooler from Ferrotec was purchased due to compatibility

with a serial port controlled PID temperature controller. A custom rack also was constructed



Figure 4-2: MATLAB GPIB Initialize Devices

Figure 4-3: MATLAB GPIB pulsed LIV Screen
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to house the temperature controller and DV voltage power supply for the TEC. The operating

temperature ranges for this TE cooler were designed to go from -40 to 100 Celsius. Due to

issues of ice and condensation, the TEC cooler stage had to be housed in a Vacuum Chamber

that could be pumped down to remove any water vapor. The entire Vacuum Chamber Setup

consisted of a QCL mount, Vacuum Chamber, and TE Cooler stage.

4.3.1 QCL Mount

Temperature Sensor

5 SMA Bulkhead
Connectors

Figure 4-4: QCL Mount

The copper mount for this device included 5 Bulkhead SMA connectors, designed for even-

tually parallel testing of QCL devices. Furthermore, the TE cooler stage requires the need for

a Temperature Sensor for its feedback PID Controller. A Platinum Resistance Temperature

Detector (Pt RTD) from Omega was purchased which was precalibrated with the PID feedback

controller. The sensor had to be thermal epoxied onto a metal plate, which was then screwed

onto the front of the mount. To ensure good thermal contact with the QCL and with the TEC

stage, indium foil was used.
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4.3.2 Vacuum Chamber

The Vacuum chamber as seen from figure 4-5 is a standard cylindrical chamber with O-Ring

groves to provide air tight sealing upon compression. The vacuum chamber was designed with

3 modular side wall flanges that can be customized if necessary and a window flange. The

window material chosen was a Zinc Selenide window flat from ISP optics. ZnSe was chosen due

to its transparency in the visible as well as its resistance to humidity. The ZnSe window has a

transparency of ;• 95 % accross 3-12 pm. The three other side flanges include a electronics output

hole designed for connecting the TE cooler and temperature sensor. For improved pulsed shape

performance, we also used 5 bulkhead hermetically sealed mounts with custom SMA coaxial

cables for connecting to our QCL Mount. The final flange was a vacuum valve for sealing and

opening the chamber during its pump down process. Internally, there is an electronics buffer

board for providing a point of contact between the temperature sensor on the Mount and the

electronics port with the TEC cooler.

Figure 4-6 shows a better view of the ZnSe window. Furthermore, the bottom of the VAC

chamber has a large area pin fin heat sink purchased from Cool Innovations. In addition, to

improve the heat sinking efficiency of the bottom side, 4 standard CPU fans were attached and

powered by a wall plug power supply. The heat sinking on the bottom side was necessary since

the TE cooler purchased provides a temperature differential between its hot and cold side given

a specific heat load. The TE Cooler purchased from Ferrotec provides AT = 70 assuming no

heat load. Therefore, in order to obtain the lowest temperature performance the heat sink helps

dissipate excess heat to maintain room temperature on the hot side.

4.3.3 Thermoelectric Cooler and Temperature Controller

For our Thermoelectric cooler, we utilized a 2 stage TE cooler purchased from Ferrotec, which

has a reported AT ; 70 for no load. This has yielded for us in our Vacuum Chamber a lowest

temperature of -43 deg C, after a time of 36 minutes, with a pressure of 8.4e-5 mbar. In order

to achieve good thermal contact between the TE stage and the hot and cold plate, a variety of

methods were explored. This included both attempts with indium foil and Artic Silver 5 High-

Density, Polysynthetic silver thermal compound for mounting and compressing the TE cooler

stage. For the large heatsink on the backside, Adhesive Interface pads using aluminum oxide



pads were needed for large surface thermal contact. Through a variety of methods, thermal

grease seemed to provide the best performance. The indium foil, was not as good at filling

airgaps between the top ceramic contact of the TE cooler as compared to the thermal grease.

However, the indium foil was still used between the QCL mount and the hotplate for disassembly

reasons.

Iw Cold Plate
I TE Cooler
S Hot Plate

Heat Sink
5E3 Fan

A. -

Figure 4-7: TEC Cooler Setup
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Chapter 5

Designs

5.0.4 MIT 07-674 - Injectorless 1

Number of nodes in x grid - 1000

1.6

1.4

1.2

1

0.8

0.6

0.4

0 5 10 15 20 25 30 35 40 45
Distance in Angstroms

Figure 5-1: Band Diagram of MIT 674 Injectorless Design - Two Modules - Layer Thickness (A)
21/21/51/14/37/17/29/32. Layers start with a well and bold layers are doped 9 x 1016cm - 3 .
Material Composition: Ino.66Gao.34As/ Ino.30Alo.70As. Designed Bias is 158 kV/cm.

Here we present our first lesign for a modified injectorless design. The basic structure is
similar to previous injectorless designs with the modification of simplifying it further to 4 wells.
This was done to reduce any parasitic subbands and to further reduce passive layers into the
active region that could contribute to optical loss. The upper lasing level is level (4) and the
lower lasing level is (3). As seen from table 5.1, the energy spacing between levels (3),(2),(1) are
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Table 5.1: Energy Spacing
A E (meV) 1 2 3 4

2 33.69
3 67.31 33.62
4 349.75 316.05 282.43
5 383.53 349.84 316.22 33.79

Table 5.2: LO phonon sc
rT (ps) (300K) 1

2 0.24

:attering times.
2 3

m
Tlifetimes = E 1/7i

4 Tlifetime
0.24

3 1.62 0.23 0,20
4 22.89 6.46 3.53 2.08
5 26.14 10.84 7.04 0.18 0.17

Table 5.3:
(z) (nm) I 1

Dipole Moment
S 2 3

2 112.4(
3 0.01
4 0.0•
5 0.01

7 2.67
5 0.34 1.03
1 0.22 0.85

Table 5.4: Simulation Parameters

Ino.66Ga 0.34As j
Ino.30Alo.70As

AEc (eV)

F 2.67

m

0.039
0.100

E, (eV)
0.625

S2.222

4 1

I
I

0.89

I~_~---

·· · · ·

) I |
1

r



Table 5.5: Anticrossings Strengths
A0 (meV) @ Bias (kV/cm) Jm,(kA/cm2)

2-5" 5.61 158 19.19
1-4" 4.94 158 2.62

chosen to be one LO phonon apart, which at 300 K corresponds to lifetimes for level (3) of =

0.20 ps. This corresponds to a voltage defect of 67.31 meV. The levels (5) and (4) are also one

LO phonon apart for parallel, depopulation out of the module. Furthermore, with our design

we wanted to further increase the upper state lifetime by attempting a slightly more diagonal

transition which is evident from the reduced dipole moment 1.03 nm, but the longer upperstate

lifetime of 2.08 ps. This diagonal transition has added benefits for overall upperstate lifetime

due to reduced tunneling into the continuum.

To achieve the diagnolity as well as the LO phonon resonance of (5) and (4), we designed

levels (5) and (4) to anticross slightly to pull the wavefunction further over to the left as well

as maintain the energy separation across biases. The added benefit of this diagnolity is the

increased coupling between states from the previous modules for resonant tunneling.

To assess the strength of afiticrossing, we simulate three modules and compute the minimum

energy separation between states. Using the naming convention where the left module is X",

center module as X, and right module as X', we show the anticrossing strengths in figure 5-2

and the computed current density using equation (2.94). Another concern with the design was

parasitic channels that could allow electrons to be lost to the continuum. Figure 5-3 and table

5.6 focus on the anticrossing into a high level bound state. Using the expression for Jmax we can

also estimate the amount of time it takes to resonantly tunnel given an anticrossing strength.

We assumed a worse case scenario of 1 ps lifetime for level 8, due to the strong coupling spatial

overlaps with states in that well. We attempted to keep these parasitic channels below 0.5 meV,

which generates resonant tunneling on the order of 10's to 100's of picoseconds, which is much

longer than the normal scattering processes inside the QCL module. To control these parasitic

channels we had to thicken the injection barrier slightly to 32 A.
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Figure 5-2: Anticrossings Strengths
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Table 5.6: Parasitic Anticrossings Strengths - Tlifetime = 1ps, T1 = 100fs
SA 0 (meV) @ Bias (kV/cm) Ieff (PS)

1'-8" 0.14 164 444.08
2'-8" 0.23 156 165.80
3'-8" 0.10 148 868.49
4-8" 0.34 169 76.96
5 -8" 0.33 154 81.57
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5.0.5 MIT LL Injectorless 2

We also designed a slightly modified structure based upon the same 4 well system, except at

a longer wavelength of 4.8 pm and with states (3),(2),(1) designed to be spaced apart slightly

larger than one LO phonon. We have also included all the necessary design files. There were

some slight issues with parasitic channels of level (8). This is because since we went to a longer

wavelength, level (8) now becomes closer to resonance at the design bias. This has caused the

anticrossing strengths for this design to be slightly higher than previously.

8

S7

6
5

- 4*

- 3*

-2
-1

Figure 5-4: Band Diagram of MIT LL Injectorless Design 2 - Two Modules - Layer Thickness (A)
32/24/19/55/13/41/15/32. Layers start with a well and bold layers are doped 2 x 1017cm- 3 .

Material Composition: Ino.65Gao.3 As/ Ino.30A10o.70As. Designed Bias is 148 kV/cm.

Table 5.7: Energy Spacing
AE (meV) 1 2 3 4

2 37.64
3 72.53 34.89
4 330.2 292.5 257.6
5 365.2 327.5 292.6 35.02



Table 5.8: LO phonon scattering times. Tlifetimes = Z 1/Ti
7 (ps) (300K) 1 2 3 4 lifetme

2 0.30 0.30
3 2.10 0.30 0.26
4 20.3 6.87 3.04 1.91
5 19.3 10.87 6.89 0.22 0.21

Table 5.9: Dipole Moment
(z) (nm) 1 2 3 4

2 2.41
3 0.05 2.44
4 0.01 0.25 1.15
5 0.06 0.10 0.94 2.91

Table 5.10: Simulation Parameters

m E, (eV)
Ino. 66Gao.34As 0.040 0.660
Ino.30Alo.70As 0.100 2.222

AEc (eV) 0.89
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Figure 5-5: Parasitic Anticrossing Strengths

Table 5.11: Anticrossings Strengths
Ao (meV) @ Bias (kV/cm) Jmax(kA/cm 2 )

2-5' 4.44 138 32.762
1-4' 4.75 140 6.702

Table 5.12: Parasitic Anticrossings Strengths - 7if etime = lps, T1I = 100fs

1[ Ao (meV) @ Bias (kV/cm) reff(ps)
1'-8" 0.13 149.9 514.713

2'-8" 0.45 142.4 44.79

3'-8" 0.27 133.4 120.86
4 -8" 0.25 154.2 140.64
5 -8" 0.30 140.2 98.28



5.1 Strain-Balancing

With a shorter active region, a larger voltage bias must be applied to generate the appropriate

electric field strength. This requires a large degree of electron confinement; normally this is

accomplished through strained structures, which change the conduction band offsets due to

deformation potentials. In our designs, for the shorter wavelength, we opted for a 1.5 percent

strain barrier with an estimated conduction band offset of about 0.89 eV upon discussion with

Joe Donnelly and our collaborators at Lincoln Labs, which is close to out estimate from Model

Solid Theory.

When thin layers of material are grown on a substrate, the epitaxial layer's lattice constant

matches the in plane substrate lattice constant. This either compresses or expands the in plane

lattice constant, which due to Poisson's ratio, imparts also a change in the perpendicular lattice

constant. As this epitaxial layer grows thicker and thicker, eventually far away from the interface

the material will naturally relax back to its unstrained form. When this relaxation occurs, this

relaxation causes various defects all which decrease the quality of the interface. This is a critical

issue especially for Quantum Cascade Lasers, where electron transport through barriers and

linewidth of laser emission are all dependent on the interface quality. However, these defects do

not occur immediately and in fact are controlled by the height of the epitaxially grown structure,

which is defined as the critical layer thickness by Blakeslee, and Matthews.

b (1-vcos2 a) ( h + (5.1)
S27rf (1 + v) cos A b

where A = angle between the slip direction and that direction in the fill plane which is

perpendicular to the line of intersection of the slip plane and the interface, v is the Poisson ratio,

b is the strength of the dislocations, f is twice the maximum value of the strain Emax = 1/2f.

This critical layer thickness is typically on the order of 100's of A, after which one would expect

to see misfit dislocations along the interface. However, typically QCL structures are often 1-2 pm

thick. Therefore, in order to grow arbitrary thicknesses of strained layers, one must use strain

balancing. By balancing the strain between alternating compressive and tensile strained layers,

the overall strain of the system is balanced and one can grow high quality strain interfaces.

These highly strained structures are crucial for shorter wavelength QCL structures since as

the energy separation increases, the upper state level gets closer and closer to the top of the



conduction barrier, leading to shorter upper state lifetimes as electrons more easily escape into

the continuum.

The condition for determining whether a structure is strain balanced can be quantified in

a variety of methods: thickness weighted method, zero-stress method, etc [30]. These methods

attempt to balance the stored elastic energy due to compression and tension. However even with

complex methods, most QCL structures achieve strain balancing using the simple Thickness

Weighted Method.

tl• 1 + t2 62 = 0 (5.2)

ao - ai
i = ai (5.3)

where a0o is the substrate lattice constant, and ai is the lattice constant of the epitaxial layers,

assuming, epitaxial layers are grown on a substrate with a different lattice constant.

5.2 Growth and Fabrication

The structure was grown and fabricated by MIT Lincoln Labs using a Metal-organic vapour

phase epitaxy (MOVPE) reactor or Metal-organic Chemical Vapour Deposition (MOCVD), a

standard method for growing epitaxial layers of compound semiconductors for laser diodes,

solar cells, etc. In table 5.13 we have included the various layers that are grown for a full

QCL structure. Besides the active region, various cladding layers are introduced. The InGaAs

waveguide layers provide a larger index of refraction contrast with the InP than the Active region

with the InP. The effect of this is to create a more uniform mode shape over the active region

and confine the mode. This confinement helps reduces waveguide losses due to absorption with

the contact metal layers. The InP cladding layer is therefore very important for separating the

mode away from the metal. The waveguide used is standard for most QCL layers. Simulations

for waveguide loss to verify the low loss and confinement factors were done by Ben Williams.

After growth of these wafers, MIT Lincoln Labs also fabricated these lasers into laser ridges

with various widths of 4 pm 8pm,14pm, 20pm. Standard micro-fabrication techniques were used

as well as Inductive-Coupled-Plasma (ICP) dry-etching and chemical wet-etching were done to



generate the ridge profile.

Table 5.13: Growth Sheet .
Layer Material Thickness(A)

1 n-InP plasmon (9x1018 ) 7500

2 n-InP cladding (1x10 17 ) 30000

3 n-InGaAs waveguide (3x10 16) 3300

4 45 stage Active Region + Buffer 10119

5 n-InGaAs waveguide (3x1016 ) 3300

6 n-InP cladding (4x101 8) 30000

m TiiAu Contact

Si02
idding
Region
s Waveguide
bstrate

Figure 5-6: Processed Ridge Structures

5.3 Wall Plug Efficiency Metric

We estimated the efficiency of these devices assuming various parameters for waveguide loss,

peak and threshold current densities, and nonradiative scattering lifetimes. Using a modified

expression we can write the wall plug efficiency in terms of five main metrics. The injectorless

design potentially can improve upon each of these five metrics through its simplified design.

1. Voltage Efficiency rv - This expression is primarily optimized by minimizing the voltage

defect A, which is the major strength of the injectorless design by nature since removing

the miniband changes A from a 130 meV down to 70 meV.



2. Optical Efficiency rlopt - since the mirror losses are fixed given a cavity length, the aim is

create the lowest loss waveguide. One route is through improved fabrication to generate

low loss waveguides. Another is through removing passive and possibly absorbing layers.

This is the primarily motivation for using a 4 well structure in our designs. Furthermore,

by reducing the number of wells, we also reduce the number of states for electrons which

may help reduce absorption from bound states within the QCL module.

3. Current Efficiency rij - the injectorless also addresses this issue through its commonly

reported low threshold current densities. Measurements indicate that the injectorless de-

signs in general at low temperature can maintain a large dynamic range, which further

maximizes the current efficiency.

4. Internal Efficiency rli - by going for a more diagonal design, we are hoping to further

maximize this efficiency, due to increased T3 2 and a3 . Also our design assumes a conduction

barrier offset of 0.89 eV, which should hopefully further reduce any thermionic emission or

tunneling into the continuum from the upper state, which is critical for obtaining a higher

internal efficiency.

5. Modal Uniformity riv - This describes the modal uniformity across the active region, which

for the InGaAs waveguide cladding is estimated as 95 % from [31].

wP = ( I'wl)(aM m fw) (J - Jth)1i7ih7 (5.4)

?TWP = 7v r opt • r• 7i "77u (5.5)

q -r 2/732) - (1 - rinj)T2) (5.6)
T2i = (5.6)72+ - 72 132)



Table 5.14: Wall Plug Efficiency Metric
MIT Injectorless 1 MIT Injectorless 2

Width (cm) 0.0004 0.0004
Length (cm) 0.3 0.3
N, 45 45
Waveguide Loss a,(cm- 1) 1
Mirror Loss aM(cm- 1) 2.27 2.27
Voltage Defect A 0.0673 0.0725
Photon Energy (eV) 0.282 (4.39 pm) 0.257 (4.82 pm)
Jth (A/cm 2) 700 - 700
JMAX (A/cm 2 ) 3000 " 3000
Tlinj 0.80 0.80
T2 (ps) 0.20 0.26
T3 2 (ps) 3.53 3.04
73 (ps) 2.08 1.91

2v - voltage efficiency 0.80 0.78

rlopt - optical efficiency 0.69 0.69

r/j - current efficiency 0.77 0.77
riT - internal efficiency 0.71 0.67

rl - modal uniformity 0.95 -0.95

rwp - WPE 28.9 % 26.4 %



Chapter 6

Measurements

All measurements were done on samples grown and fabricated by MIT Lincoln Labs. In order

to verify their growth process, they grew published designs from Razeghi [3] for benchmarking

their growth process. In addition, they grew our designed Injectorless Structure with high strain.

The results from the Razeghi structures have been included to verify our experimental setup

and illustrate the experimental techniques used.

6.1 MIT-LL-Razeghi Design

Because our measurements were done in collaboration with MIT Lincoln Labs, we have included

the measurements focused on determining the spectral properties of these lasers.

6.1.1 Electro-luminescence (EL)

For the Razeghi Devices grown, we measured EL on a series of non-lasing broad area devices.

These structures were wet-etched and without any side wall coverage; however, they did not lase

for some reason. The ridge widths were 45 pm and devices were cleaved to between 1 mm to 2

mm in order to allow us to bias these devices fully. Fortunately, because these devices did not

lase, the measurements should provide a better estimate of the true linewidth assuming no gain

narrowing.

Figures 6-1 and 6-2 show the comparison between the linewidths of two identical structures

except for a change in doping. We notice that there is indeed some increase in the linewidth,
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Figure 6-1: 599 EL Spectrum - Doping 1 x 1017cm3 , FWHM = 23 meV
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Vbi =10.310Vbias A =4.837 (gim) FWHM = 0.7271im (0.037 eV

Figure 6-2: 605 EL Spectrum - Doping 2 x 1017cm3 , FWHM = 37 meV
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which may be due to doping; however, since the broad area structure was designed to be a laser

there may still be some gain narrowing. In the 605 sample the linewidth varied from 0.37 meV to

0.33 with higher biases, but the gain narrowing due to lasing would generate gain narrowing of

a much larger magnitude. Initially these broad area structures were fabricated and did not lase.

However, the same active region was reprocessed into thin laser ridges with side wall coverage

and lasing was then observed.

Furthermore, we fit the EL spectra with Gaussian fits, which seems to indicate that the

broadening mechanisms are inhomogeneous line width broadening. We also confirmed that

our growth and material parameters agreed with Razeghi due to close agreement between our

emission wavelength and the reported designed emission wavelength from literature.

These EL measurements are also the origin of the linewidth used in our MC simulations. For

our new designs we will also focus back again on obtaining EL in order to get a sense of the

quality of the interfaces and the effect of pursuing a more diagonal transitions.

6.1.2 Spectrum

We also measured the pulsed spectrum at 300K at a variety of biases. Figure 6-3 shows the

variations in the pulsed spectrum, which are due to a variety of transient effects. For contrast,

we show the CW spectrum taken at 77K in figure 6-4, to show how the lasing spectra collapses

down to one mode. These measured CW spectra will prove useful for measuring waveguide losses

in these lasers.
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Figure 6-3: 605 Lasing Spectra - Doping 2 x 1017 cm3
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Figure 6-4: 606 CW Lasing Spectra - Doping 3 x 1017cm3
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6.1.3 Hakki-Paoli

A key parameter for wall-plug efficiency is waveguide loss. Ideally, reducing the waveguide loss

should help improve the slope efficiency. A common method for determining both gain and

waveguide loss in semiconductor measurement is the Hakki Paoli method [32] [33]. As a laser's

gain gets closer to threshold, Fabry Perot Fringes appear in the spectrum due to Amplified Spon-

taneous Emission (ASE). These fringes however can only be seen below threshold and provide

information about the quality of the Fabry Perot Cavity and resonator. Traditionally, using

spectral information about the contrast of the Fabry Perot Fringes, one could make inferences

about the gain in the cavity and the waveguide loss as a laser reaches closer to threshold. How-

ever, due to some initial attempts, we found this method was not entirely reliable for the QCL's

measured since the traditionally Hakki Paoli Method relies on only the contrast ratio, which is

hard to accurately discern from spectral information and it assumes a fixed line shape function

for each mode, that is difficult to fit due to shifts in index and temperature. It is also difficult

to plot gain versus wavenumber using this method due to the variation from mode to mode in

the spectra. Therefore, an alternative version of Hakki Paoli was developed [34] [35] [36]. In brief,

this method through looking at the Fourier Transform of the spectral information allows one

to quantify the quality of the Fabry Perot Cavity and as well quantify the gain due to current

inside the cavity.

It has been shown that for a specific wavelength and a dielectric slab with two interfaces the

transmission spectra is:

I(3) = (R1 RR)1 + b2 - 2bcos(47rnL P) (6.1)

R = (n- )l)2  (6.2)

b = Re- la- g(O)]L  (6.3)

Where 3 = 1/A, L is the length of the cavity, a - g(/) is the net gain and is wavelength

dependent. However, it becomes obvious that in terms of P the transmission function is periodic

since it is only relevant in the cosine term. However, we can also write this expression in terms

of a Fourier Series expansion. Unfortunately, this is difficult to do directly, so we have to derive

the transmission function in another common form. Let us assume we have a dielectric material,



and a normal incident beam on the dielectric slab. The reflected electric field coefficient is

R= ( 1)2 (6.4)

Assuming we now have an incident beam on a dielectric slab, this slab will create a resonator

since light transmitted by the first interface will be reflected by the second interface and so on.

We can therefore explicitly write out the strength of the electric field after all of those bounces.

Et = Eo1 - eikL - R + (6.5)

EoVf1-7ReikL Vi1-RRei2 kL + (6.6)

Eo V-'--ReikL/ -Rei 2kL + Rei2kL ... (6.7)

Where k describes the phase accumulated through traveling through a cavity of length L. We

can include loss and net gain by assuming that our k is imaginary. Let us define a net loss term

as

k = ko + ia/2 (6.8)

a= Owaveguide - g(p) (6.9)

Where g(O) is the net gain, assuming we might have an amplifying material. Therefore we can

rewrite our expression as

Et = EoV/l- e- LeikoL/ -i - R + (6.10)

Eov/l -- Re- L LeikoLvrl- RRe-2aL ei2kOL + (6.11)

Eo -Re - LeikoL -- RR - 2aL ei2koL Re- 2a L ei2 koL + '- (6.12)

Let us also define a parameter b = Re- 2a L

Et = Eo 1 beikoL Z (bei2kOL)m (6.13)
m=O



Then in order to compute the actual intensity of the transmitted light we need to compute

S= EE; = i (- R)b E E (bei2koL)
p=0 m=O

(bei2koL) m (6.14)

After working through the expression, term by term we can simplify the double sum

S -i2koL)P bei2koL m  = -~ b 2 e2komL

p= m=O 0 -o M b 2

It (1 - R)2 b bme2komL

Io R 1-b2 m=-bo
M=%-00-O

(6.15)

(6.16)

Where k0o =2 = 27rn/, and our loss term is actually frequency dependent. Figure 6-5 shows

both the periodicity as well as the amplified spontaneous emission present in the transmission

function with respect to frequency.

It (1- R)2

=0 R
b[b]

1- b[3]2 (b[O])ImI e
47rrnmL

If we assume gain is proportional to current, we see that the fringe shape and contrast improves

'i

Figure 6-5: Amplified Spontaneous Emission Spectra for various biases - bias is increasing from

bottom to top

Furthermore, we can take the fourier transform of 6.17 which forms a

(6.17)

as losses are reduced.



delta function comb.

FT[I(3)] = (1 -RR)2 I... FT 1 -b[3]2 (b[/3])me4n•mL] + FT [1 -[]2 (b[P3)m+1e47n3(m+1)L

(6.19)

We can simplify the expression using knowledge about fourier transforms where we define the

fourier transform of variables of 3 --+ -

FT 1 -b[0]2 (b[/])m * 6(y - 47rn(m)L)

Wm(7) = FT 1 - b[/]2 (b[Ri])m

(6.20)

(6.21)

This is significant since we derived the situation assuming we have the transmission spectra

we W5 w4  w3 W2 W,

W2L

OM,

oa0 W90 0 m oo 6 -

Increasing
Current Bias

.. a .

Figure 6-6: Fourier Transform of ASE - Interferogram of raw data

from a device; however, as is commonly with fourier transform spectroscopy we get the spectra

by taking the fourier transform of the interferogram. In figure 6-6 we see the Fourier Transform

of the spectra, where it is indeed a periodic delta function train. From a physical perspective,

each of the peaks represents light undergoing a round-trip in the cavity, therefore as the bias

and gain is increased, we see that the number of round-trips that the light can under go starts

to increase, which is evident by the number of distinct peaks from the interferogram.

.. .. a;. . . ..... ... ,.. .. ...



The periodically spaced delta functions in the Interferogram have also been convolved with

the precursor function which we define as W('y). Therefore, if we have the Interferogram and

assuming the bandwidth of our gain function is narrow with respect to the spacing of the delta

functions, from Wm(7) and Wm+ (7), we can solve for b(3)

b[f] = IFT[Wm+(7)] b[]2 (b[])m+'] / b[] (b[ ])ml  (6.22)
IFT[Wm(-7)] 1 1 - b[p]2 1 - b[012

So experimentally, we can compute the b versus wavenumber. which now we need to correlate

back to the loss and gain.

b[fP] = Re-[lw,,-G(P)]L (6.23)

b[P, I] = Re- ()IIL (6.24)
g - G() = In ] (6.25)

aw - g(P3)I = - In (6.26)

Where I is the current. We assume for most of these devices that the gain increases linearly with

current, which appears valid for the Mid-IR. Therefore if we assume zero gain at no bias, then

all the loss is due to the waveguide. Figure 6-7 shows the resulting left hand side of equation

6.26, which by plotting the gain versus current we can obtain a waveguide loss by computing

the y intercept as seen in Figure 6-8 By computing the intercept we computed a waveguide loss

of 1.2307 1/cm, which is close to expected losses from simulation. Experiments were also done

on 606 device with 3 x 1017cmn doping, which was 2.2 1/cm. This is reasonable since one would

expect the waveguide loss to go up slightly with increased doping. The gain per current density

was 7.4 cm/kA.
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There were some initial issues experimentally with this experiment. First, we initially tried

to do this in a pulsed mode operation, but were never able to obtain clear fringes. This was

mainly due to washed out features from our devices due to transient effects and also reduced

power in pulsed mode. Only by running the devices in CW and at 77K, were we able to drive

enough power through these devices safely. Furthermore, issues with the Winston cone for

collection caused some strange artifacts and collection of higher order modes, which skewed our

data collection. Therefore, the devices measured had to be relatively narrow to avoid generating

ASE from higher order modes. Furthermore, some higher level data processing was done to filter

out noise on the interferegram caused by blackbody and spectral information not relevant to our

device operation regime. The filter window used and the results are shown in Figure 6-9 and

6-10, which can be compared to figure 6-6 to see the improvement of the inteferrogram after

data processing.
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6.2 MIT-LL Injectorless 1

The MIT Injectorless 1 structure was grown and fabricated into laser ridges for the purposes of

measuring EL or spectrum emission. Unfortunately, there seems to be a lot of device to device

variation in the fabrication. The device was initially wet-etched, but the bonding pads did not

make good contact with the ridge of the device. Therefore, the device was re-fabricated using

ICP-dry etched ridges, which showed some nominal conduction. Unfortunately, even amongst

this batch of devices there was device to device variation. Figures 6-11 and 6-12 show the

differences between different bars from the same wafer. It is believed the later which shows much

larger current is mainly due to a fabrication induced parasitic current channel. Most devices

appear to drive very little current. The current density in figure 6-11 is an order of magnitude

smaller than for normal QCL device operation. For both devices, some type of emission was

observed; however, the emission wavelength occurs at 1.562 Pm, which corresponds roughly to

the band gap of the InGaAs. Upon further discussion with our collaborators at Lincoln Labs,

it appears that due to the high fields across these structure, the InGaAs waveguide layers are

perhaps reversed biased avalanche emitted. The spectrum in figure 6-13 holds true for all the

bars tested at low temperature.
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6.3 MIT-LL Injectorless 2

After the initial attempt at growing MIT-LL Injectorless 1, MIT-LL Injectorless 2 was grown.

Due to the low conductivity from MIT-LL Injectorless 1, two samples were grown: 08-696c5 with

4 x 1017cm- 3 doping and 08-697c5 with 2 x 1017 cm- 3 . Furthermore, the samples were abbreviated

test structures just to verify the IV. Instead of 45 modules, only a 20 module structure was grown

with InGaAs waveguide layers but only a thin InP cladding layer. This was done to conserve

resources and time to verify reasonable conduction through these devices. Upon discussions

and communications with Christine Wang, the structure's Aluminum and Gallium compositions

were apparently off by 2-3 % and the total QCL period length is 4 % longer than designed.

This was due to structures grown without xray feedback. Therefore, the IV curves measured at

300K and 77K, in terms of turn on voltages may be slightly off from designed values for this

abbreviated structures. Measurements were done at 77K primarily to see if any features due

to changes in conductivity from resonant tunneling could be observed. Unfortunately, the IV

curves are relatively smooth. The turn on voltages are a little off since the designed peak bias

should correspond to 6.8380 V. This hopefully can be attributed to the variations in the growth

material parameters. Unfortunately, as of yet, we have no solid explanation about the change

in IV between doping. Normally, the IV should scale proportionally with doping; however, that

is not the case in figures 6-14 and 6-15. One possibility is a fabrication error for the device

causing leakage. It is also possible that oxygen traps caused by the high barrier strain might

cause some nonlinear effects with respect to the amount of doping. Unfortunately, until a full

laser structure is grown with InP cladding, it will not be known whether or not this structure

and material system works.
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Chapter 7

Conclusion

In this thesis, we have covered all the theory behind Mid-IR QCL lasers. Furthermore, we have

explored Monte Carlo simulations for the purpose of simulating Mid-IR QCL devices through

inclusion of nonparabolicity. These simulations provided some insights into the internal workings

of the QCL and provided some rough agreement with experimentally measured IV's.

Furthermore, we designed an injectorless structure for purposes of obtaining higher wall plug

efficiency due to reduced voltage defect. This utilized a new simplified 4 well structure and a

novel highly strained material system that has not been explored before. We have also done

experimental work on building an experimental setup for testing and measuring these devices.

This includes a custom Vacuum chamber, Thermoelectric Controlled temperature stage, and

all GPIB software for measurement automation. Furthermore, we demonstrated experimental

techniques of measuring waveguide loss through Fourier Transformed Hakki-Paoli measurements.

All of which has been crucial for extracting various parameters about device performance.

Finally, we measured some basic test structure for our designs and are currently waiting on

full laser structures to be grown and tested. The IV curves for the current batch of devices

appears promising in that the devices have reasonable turn on voltages and conduction.

As for future work, continuing work is being done on both the simulation, experimental,

and design side. As for simulation, further work is being done on exploring a hybrid density

matrix and monte carlo simulation to model resonant tunneling across the injection barrier in a

QCL structure. This will hopefully provide less noisy IV curves and provide a phenomenological

parameter for controlling conduction from module to module. Modifications have already been

made to the simulations to included a phenomenological stimulated emission parameter that



couples two states with a fixed scattering rate. This hopefully will allow us to estimate the

amount of power and photon density required to cause a specific population inversion. Thus

this can manually enforce known conditions of gain clamping into our simulations. As for exper-

imental work, further measurement strategies are being explored to provide further insight into

the internal workings of the QCL. Transmission experiments through an active waveguide using

a broad band IR source should hopefully allow us to probe the electron subband populations

and gain of the device at various bias points. This coupled with our monte carlo simulations

should prove quite interesting for our injectorless structures. Due to the simplicity of the 4

well structure, we would expect interpretation and data to be much cleaner due to the reduced

number of bound states. As for designs and materials, Christine Wang is currently undergoing

modifications to MOCVD reactor to provide better flow control of her Gallium and Aluminum

sources for growing sharper interfaces at these high strains and consequently high growth rates.

We are also exploring 5 well structures for future designs in order to further reduce parasitic

channels as well as lower strained composition structures for debugging purposes if these high

strained structures continue to provide unusual device characteristics.

Overall, in terms of wall plug efficiency, the injectorless design ig an unexplored option for

achieving better performance. Hopefully, through a more systematic study with our collaborators

at Lincoln Labs we can achieve higher wall plug efficiency.
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