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Abstract

This thesis describes the multi-channel coded-aperture photography, a modified
camera system that can extract an all-focus image of the scene along with a depth
estimate over the scene. The modification consists of inserting a set of patterned
color filters into the aperture of the camera lens. This work generalizes the previous
research on a single-channel coded aperture, by deploying distinct filters in the three
primary color channels, in order to cope better with the effect of a Bayer filter and
to exploit the correlation among the channels.

We derive the model and algorithms for the multi-channel coded aperture, com-
paring the simulated performance of the reconstruction algorithm against that of
the original single-channel coded aperture. We also demonstrate a physical proto-
type, discussing the challenges arising from the use of multiple filters. We provide
a comparison with the single-channel coded aperture in performance, and present
results on several scenes of cluttered objects at various depths.
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Chapter 1

Introduction

Traditionally, a camera system records the three-dimensional world in a two-dimensional

representation. Information is lost, inevitably, as the representation is more com-

pact than the space it seeks to capture. The axis that the camera discards is the

depth, the distance to the objects present in the scene. Furthermore, objects that

are not "in focus" are blurred, indicating reduction in resolution. Granted, the

latter effect is considered artistic, and is often necessary in providing perceptual

cues as to which objects are important in the scene. Nonetheless, if the entire

three-dimensional world is captured, the output of a conventional camera could be

simulated synthetically. Not only could we replicate the effects of a conventional

camera, but also an array of post-processing effects such as post-exposure focusing,
automatic scene segmentation, alternate viewpoint rendering would be possible.

Indeed, as cameras become more advanced and ubiquitous, there has also been

commensurate effort to gradually expand the range of information captured. To
date, several systems or methods have been proposed that can simultaneously cap-
ture an all-focus image of the scene and extract a depth map. Unfortunately, these
efforts are accompanied by certain tradeoffs. Many have relied on developing spe-
cialized optical hardware, which is expensive; others rely on pure post-processing

algorithms such as matting or stereo vision, which are yet to be perfected and only

yield coarse results.

More recent approaches rely on capturing a two-dimensional imagery of the scene
while attempting to encode as much depth information as possible. Then, some



post-processing framework is employed to "recover" either the three-dimensional

geometry of the scene, or the two-dimensional scene with a depth map. Nevertheless,
the same tradeoff between cost and effectiveness has applied [15].

1.1 Coded-Aperture Photography

Coded-aperture photography is one such class of approach that seeks to minimize

these tradeoffs. It is a simple modification to a conventional camera, achieved by

introducing a patterned occluder within the aperture of the camera lens. The pattern

controls how the scene is blurred, and is designed in a way that facilitates the

extraction of both depth and original scene from the blurred output;. A probablistic

model is employed to recover an estimate for the scene and the depth map. The

version developed by Levin at al[14] demonstrates the viability of coded-aperture

photography. However, it stipulates that the image output by the camera is a

single-channel two-dimensional signal, which masks the presence of multiple (R,G,B)

channels and also, perhaps more critically, the presence of the Bayer filter.

1.2 Contributions of This Work

In this work, we generalize the coded-aperture camera to discard several simplifying

assumptions. Primarily, instead of relying on a single code to filter all light entering

the camera, we seek to filter the three primary colors separately. We introduce the

presence of a Bayer filter to more realistically model the imaging process, and derive

the reconstruction algorithm for such multi-channel coded aperture. We study the

correlations among multiple channels to enhance the performance of the camera, and

discuss several numerical methods for recovering the scene. As before, the multi-

channel coded-aperture system yields an all-focus image and a layered depth map.

Lastly, we prototype a physical coded aperture and present results on several test

scenes, comparing the performance to that of the single-channel coded aperture.



Chapter 2

Related Work

2.1 Active versus Passive Methods

Although the most basic imaging devices, such as a pinhole camera, were conceived

as early as the 5th century B.C., extracting information from our surroundings and

manipulating it have been an active area of research recently, with the advent of

computational photography. There exists several optical systems and methods to

understand the three-dimensional world around us, and they can largely be divided

into active and passive techniques.

Active techniques utilize specialized illu-

mination sources in certain spectrum, and in-

volve specialized hardware systems to scan

the scenery actively. Laser range finder[3] or

LIDARs (Light Detection and Ranging) fall

in this category, and they extract depth in-

formation in the form of a point cloud, which

indicates the distance to objects at particu-
Figure 2-1: An example of point

lar angles as the sensor spins to cover the cloud generated by a LIDAR (Light
cloud generated by a LIDAR (Light

scenery. The resulting point cloud can be vi-
Detection and Ranging).

sualized as in Figure 2-1. Active techniques

have been successfully used in mapping terrains[12], cityscapes or other immediate

surrounding. However, they are costly and do not yield imagery of the scene without



additional hardware.

Passive techniques do not rely on sophiscated hardware, but instead perform

mathematical analysis of the captured image. Among these, monocular methods op-

erate on a single image signal captured at a given viewpoint. They tend to be purely

algorithmic and implemented entirely on software. One example is matting[6][16],

which seeks to find a very rudimentary background-foreground separation. Matting

is robust and efficient, but the binary depth map is limited, and does not address

blurs in the image. More recently, machine-learning methods that infer more sub-

stantial 3-D structure[23] using Markov Random Fields and supervised learning have

been published, but similar limitations on coarseness and blurred images remain.

The monocular method can be expanded to take multiple images from the same

viewpoint at different focus settings, which allows computation of depth through

analysis of the amount of defocus[5][8][10][21]. Because the defocus is a function of

depth, the depth at each pixel can be inferred. While the method is robust and

yields the desired information, namely an all-focus image and a depth map, it re-

quires the user to take multiple photographs, which scales linearly to the resolution

of the depth map.

The other major class of passive techniques is the set of binocular methods.

These analyze images taken at two or more viewpoints to infer occlusion and depth.

A detailed survey and analysis of these "stereo" algorithms are available[24]. In

the same spirit, Plenoptic cameras use microlens arrays that collect light rays arriv-

ing from different directions[2] [7] [17] [19], achieving the effect of multiple viewpoints,

though at the cost of sacrificing spatial resolution. The number of simulated view-

point corresponds to the factor of reduction in spatial resolution. In addition, the

microlens arrays must be manufactured and installed in the camera.

Lastly, it has been possible to achieve illusion of multiple focus in a monocular

method by introducing a non-conventional aperture[14][25]. These methods have

the advantage that only a single photograph is required, and that they do not

suffer reduction in the resolution of the photograph. In particular, we discuss [14]

in considerable detail in Section 2.2, as it lays foundation to our contributions in

subsequent chapters.



2.2 Single-Channel Coded-Aperture

The imaging process within a camera can be modeled in a simple framework that
allows us to capture the effect of incorporating a coded aperture, when the goal of
the camera is to recover both the scene itself and its depth. Levin et al[14] adopts the
thin-lens model for the image generation within a camera, assuming that the camera
captures a single two-dimensional image, for the sake of simplicity and elegance; in
reality, modern cameras typically output signals in three channels-red, green, blue.

2.2.1 Thin-Lens Model for Optics

A typical digital SLR camera with an accompanying lens sports multiple glass el-
ements with complex optical pathways, which are difficult to analyze altogether.
Also, the lens demonstrates an array of particular phenomena, such as chromatic
aberration, spherical aberration, diffraction. Rather than gripping with the full op-
tical model, we deal with the thin-lens model for optics, which vastly simplifies the
imaging process yet preserves the important parameters that affect the output. The

P,

tocal plane lens sensor

(a) Thin-lens model (b) Captured image

Figure 2-2: The thin-lens model.

thin-lens model is characterized by its focal distance, the object distance (depth),
and the aperture size. It admits a two-dimensional signal in a single channel (say,
grayscale). The light from the object enters the lens and converges toward the sen-
sor, with the convergence being perfect when the object is at the focal distance.
When the object distance differs, the light from the object fails to converge but
instead strikes the sensor in a wider area that corresponds to the shape of aperture,
which is the hole through which the light passes. The resulting images are blurred
as shown in Figure 2-2, assuming a circular aperture.

I I



The radius of the projection is in fact a function of the depth. Since a point

light source projects onto a well-defined pattern, the projection can be modeled as

a two-dimensional convolution. Let x be a 2D planar object at depth k, where the

depth is chosen from a finite set K, and let fk be the projection of a point light

source at depth k, which we shall refer to as the kernel. Then, the resulting image

y is,

Y =- (fk * x) + r , (2.1)

where r7 - N(O, a 2) is a two-dimensional signal of the same dimensions representing

pixel-wise independently generated zero-mean Gaussian noise with variance 2.

2.2.2 Image and Depth Recovery

Since the image generation is known, a simple probabilistic framework can be em-

ployed to recover the desired information. Given the output signal y and the depth

k, we recover the input image x to be the maximum-likelihood estimate. Also, given

the output signal y, we recover the depth k to be the maximum-likelihood estimate

as well:

X = argmaxPk(x; y),

k = argmaxkEKPk(Y).

Applying Bayes' Rule to the first and expanding the second over x, we obtain

x= argmaxxPk(y x)P(x), (2.2)

k = argmaxk K J Pk( x)P(x). (2.3)

Equations (2.2) and (2.3) require us to compute Pk(y x) and P(x). The first can be

inferred from the image generation process in Equation (2.1):

IIfk * x- yII2
P(ylx) (x exp - 2I 2  (2.4)

What remains is P(x), the prior on the input images. Levin et al selects the sparse

prior for natural images, which is discussed below.



2.2.3 Sparse Prior

Natural images tend to follow a particular distribution; they are not simply white

noise. They exhibit a statistical property that spatial derivatives on natural images

are sparse[20]. In other words, we assume that x is drawn from the following zero-

mean, heavy-tailed distribution:

P(x) oc fexp - c [(x(i,j) - x(i + 1,j))P + (x(i,j) - x(i,j + 1))P], (2.5)
2

where 0 < p < 1 and a is set to match the correct variance observed from data. The

assumption that the derivatives have heavy-tailed distribution is called the sparse

prior. However, to make the analysis tractable, we also consider the Gaussian form

in which p = 2:

P(x) c Jexp - [(x(i, j) - (i + 1, j))2 + (x(i, j) - x(i, j + 1))2]. (2.6)
i,j

These priors can be expressed in the frequency domain as well, via Parseval's Rela-

tion (See Equation (A.1) in appendix.) Let G' and G2 be the convolution matrices

in frequency domain corresponding to the two directional derivatives [1 -1] and

[1 -1 , and let uppercase characters represent the Fourier transforms of the low-

ercase variables, when applicable. Then,

P(X) oc exp XTO-1X, where I = diag (G'(v,w) 2 + 2 (v,w)112) -1

(2.7)
Equation (2.4) can be similarly rewritten:

IFk- x - Y |2P(YIX) oc exp- 2na X (2.8)

where Fk is the diagonal matrix with the Fourier transform of fk along its diagonal.

Now it is possible to solve Equations (2.2),(2.3) entirely in Fourier domain. The

fact that all probabilities are Gaussian vastly facilitates the ensuing optimizations,
which are convex.

While the Gaussian prior does lead to a convex optimization with closed-form



solutions, it is necessary to directly solve the sparse prior, which is a more realistic

model of natural images: while a Gaussian prior prefers to distribute derivatives

equally over the image, leading to gradual edges, the sparse prior forces the derivative

to fall over a smaller number of pixels. Thus, in order to solve Equation (2.5) when

p < 1, Levin et al employs an iterative process called Iteratively Re-Weighted Least

Squares (IRLS), which is a non-linear optimization technique. See Appendix B.2.

2.2.4 Filter Selection

Levin et al suggests how the filter fk should be selected as to maximize the likelihood

of accurate depth extraction. In essence, we would like the distributions of the

output Y to differ as much as possible as the scale k varies. In other words, we want

to maximize D(Pki (Y), Pk2 (Y)), where D is some measure of distance between two

distributions. Letting D be the Kullback-Leibler (KL) divergence, we obtain

DKL(Pki(Y), Pk2 ()) = J Pk (log Pk1 (Y) - log Pk2(Y))dy.

It can be shown that the above quantity equals

DKL(Pkl(Y),Pk2 (Y)) = -1+ E (ak1(vw) log k 1(v, W)
VW 0k(v, w) o k2 (VW)J

where ok, (v, w) = O2 + QIIFk (v, w)II2 I(v, w)-1

Then, one may search a subset of all possible filters--Levin et al focused on

binary filter that can be constructed on a single layer of cardboard--that minimizes

maxkl,k2 DKL(Pk (Y), Pk2 (Y)), meaning that the minimum distance between any

two scales is maximized.

2.2.5 Implementation

Once a filter is selected, a patterned occluder is created based on the negative of

the filter. The occluder is inserted into the camera lens, and the camera produces y

as in the aforementioned model. Table 2.1 gives the full post-processing algorithm

used by Levin at al, which then extracts the scene and depth estimate.



1: For each k E K,
2: Compute ' from y using IRLS and the sparse prior.
3: For each pixel location (i,j),
4: For each k E K,
5: Take a 60-by-60 window and compute the mean deconvolution error

at each scale, weighted by some learnt coefficents: Ak Ifk * X - y1 2 .
This serves as an estimate of Pk(y) near (i,j).

6: Pick the depth k that minimizes the above deconvolution error. Set
e(i, j) = k.

7: Regularize the depth map 0 using a graph-cut algorithm[4].
8: Output X where 2(i,j) = (i(i,j).

Table 2.1: The post-processing algorithm for Levin et al's single-channel coded-
aperture camera.
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Chapter 3

Mathematical Model

Levin et al[14] introduced the mathematical theory for the coded aperture and

demonstrated its viability in deblurring the observed image and inferring a depth

map. We extend the model and analysis in order to account for the existence of

multiple channels and the presence of Bayer filter, rederiving the necessary for-

mulae. These modifications in fact generalizes the previous model, and provides

important theoretical justification for the fabrication and implementation of multi-

channel coded-aperture.

3.1 Notations

3.1.1 Signal Representation

A camera system is in essence a signal processing unit, where the input signal

corresponding to the scenery undergoes certain transforms to generate an output

signal that we observe. These images we deal with have their native representations

as triples of discrete two-dimensional signals, each component corresponding to one

of red, green, blue channels, in that order. We denote the input signal as x =

{xR, xG, B}, and the output signal as y = {yR, yG, yB}. We shall generally use

R, G, B in superscript denote the respective channel as a component of a multi-

channel entity, with C in superscript as a variable to index them. Furthermore, for

each discrete two-dimensional signal in lower case, the upper-case version is reserved

for its discrete Fourier transform in two dimensions (e.g. XR).



Throughout our analysis, the signals must be treated as column vectors in order

to facilitate linear-algebraic manipulations and analyses. Therefore, we denote by

M(:) the column vector formed by concatenating all the columns of M in order,

where M is a two-dimensional signal. However, as we will shortly see, this conversion

scheme is not very convenient in dealing with masks such as Bayer filter, so we

address this issue by introducing another column-vector representation, denoted by

M. First, we presume that all two-dimensional signals have even widths and heights.

This enables us to partition M into equally-sized 2-by-2 blocks M1 , M2, M 3 , M4 ,

numbered from top to bottm, left to right:

M = [MI•A (3.1)

where MI,..., M 4 are matrices with dimensions that are half of those of M. Now

we flatten MI,..., M 4 into column vectors and concatenate them:

Ml1

M22M :=
M3
M4

When M is a triple of two-dimensional signals, having the form M = {MR, MG, MB},

then we further stipulate that,

G := . (3.2)

3.1.2 Other Notations

Other notations in this thesis closely adhere the well-known standard mathemati-

cal notations, with the possible exception of the following shorthands: .* denotes

component-wise multiplication; 91 and a2 denote the partial derivative operator

on discrete two-dimensional signals along the two dimensions, respectively (e.g.

01xR(i,j) = xR(i,j) - xR(i,j + 1).) Next, any single-variate function operating



on the real numbers or its subset, when applied to a vector or matrix, is interpreted

to work component-wise, unless existing conventions dictate otherwise. Finally,

diag (...) is the diagonal matrix with the operand along the diagonal, in case the

operand is a column vector or a comma-delimited sequence of square matrices; if the

operand is a square matrix, it returns its diagonal. An alternative form diagi (...)

with the operand as a function f(i) is equivalent to diag (f(1), f(2),...).

3.2 Color Filter Array

Most commercial digital cameras generate images in RGB format, composed of three

discrete two-dimensional signals representing scene intensity in red, green and blue.

However, most sensors deployed within the cameras do not record three values at

each pixel location, with the notable exception of Foveon X3 sensors'. In fact, the

sensor records one value at each pixel location, which captures the intensity in either

red, green, or blue light. The appropriate channel is determined by a preset pattern

called the Bayer pattern, as in Figure 3-1. The missing values at each location are

later interpolated from neighboring pixels, in a process known as demosaicking.

Figure 3-1: The Bayer pattern as used in Canon EOS 10D Mk II.

We can model the effect of Bayer filter as a component-wise multiplication ap-

1See http: //www. foveon. com.



plied to the full output image, where the matrices to be multiplied with are,

10 10

0000

1010

0000

SwG=

0 1 0 1 ...

1010

0101

1010

,B =

0 000 ...

0101

0000

0101
0"0 0

(3.3)

respectively, for red, green, blue channels. Since multiplication is equivalent to

convolution in the dual domain, the effect of Bayer filter in the Fourier domain is

to convolve with

1 1 QG '2 0 1 -1

R 1 G=G 1 B 12B
4 1 1 ' 4 0 -2 4 -1 1

(3.4)
where fR, QG, IQB are matrices of the same dimensions with up to four nonzero

entries found at the top-left corner of the four subsquares. Note that the column-

vector representation becomes useful, as the convolution of a two-dimensional signal

M with the above matrices can be rewritten as a multiplication:

In/4 In/4 In/4 In/4

QR*M= 1 In/4 In/4 In/4 In/4 M,
4 In/4 In/4 In/4 In/4

In/4 In/4 In/4 In/4

21/4 0 0 -214/ 4

1 0 21n/4 -2In/4 0
4 0 -2I,/4 21,/4 0

-212/4 0 0 2In/4

wR = 7



In/4 , In/4 -In/4 In/4

1B*M -In/4 n/4 In/4 -In/4 M.
4 In/4 -In/4 1n/4 In/4

- In/4 In/4 In/4 - In/4

We denote these coefficient matrices by OR, ,G , O,* respectively.

3.3 Revised Thin-Lens Model for Optics

The thin-lens model in Levin et al[14] adequately captures the necessary parameters

even with multiple channels, since the channels arise simply because the model

processes multiple wavelengths in parallel. However, our fully multi-channel mode

now affords us the ability to vary the kernels independently across the channels.

We denote the three kernels at depth k by fkR, fkG , fkB, respecitvely. Equation (3.5)

captures the image generation process using these kernels.

(3.5)y = wR. * (f R) + . * (fkG * XG) +wB. * (fkB *xB) + 77.

Alternatively, in the Fourier domain,

T= •(F~ )* XR a .XG) + *, XB.X) + ,

which we rewrite to

Y = AkX + 71, where Ak- R ,G ,B] diag FkGwhere AFk
FB

by treating the multi-channel signal as a column vector, as in Equation (3.2).

With this model, the original image may be recovered in the same fashion as in

the single-channel case, utilizing maximum-likelihood with some intelligent prior.

(3.6)



3.4 Prior for Multi-Channel Natural Images

The sparse prior is critical to the deconvolution in the single-channel case, as it tends

to generate images that are statistically likelier. A statistical model for multi-channel

natural images could similarly be incorporated into the multi-channel deconvolution,

in order to aid the process of deconvolution. In this thesis, we propose and test three

priors for multi-channel natural images: independent prior, independent prior with

change of basis, and dependent prior.

Unfortunately, none of these priors lend themselves to convenient conversion into

Fourier domain. For the purpose of analyzing the priors and expected reconstruction

errors in the subsequent chapters, we utilize the Gaussian prior on each channel

independently. We also table the comparison among the priors presented in this

section until the necessary numerical machinery for performing deconvolution with

them is developed in Chapter 5.

3.4.1 Independent Prior

The prior for a single-channel case from Levin et al[14] can be extended to a multi-

channel image simply by introducing the assumption that each channel is indepen-

dently generated: P(X) = P(XR)P(XG)P(XB). In turn, the distribution of each

channel follows the sparse prior, resulting in Equation (3.7)

P(X) oc exp (- {glxC(i)P + g2(i)p}, (3.7)
C,i

where gl, g2 are appropriate square matrices that generate first-order spatial deriva-

tives in either orientation. We term this distribution the independent prior. The

independent prior simplifies the analysis and testing, and lends itself to easy compar-

ison between an unconstrained multi-channel coded aperture and a single-channel

coded aperture.

3.4.2 Independent Prior with a Change of Basis

In reality, the RGB channels are highly correlated, with edges often co-occurring at

the same spatial location. Thus we seek alternative representations of RGB images



that can separate such dependencies. In fact, there does exist other color-space

representations such as YUV and CYMK, which are simply linear changes of basis.

They are each characterized by a p-by-3 matrix P, where each row corresponds to a

channel in the color space, and that particular channel equals the linear sum of RGB

channels, weighted by the entries in the row. Particularly, the YUV color space is

meant to capture perceptually independent channels, satisfying the underlying as-

sumption in the independent prior. Therefore, we can enforce the independent prior

on these alternate color-space representations, thereby addressing the dependencies

among RGB channels. Equation (3.8) details the resulting prior.

P(X) oc fJ exp (-2 {Ig'lx8(i) P+ Ig2?Pi (i) P,in n 2n
where xP1 = P(I, 1)zR + P(1, 2)xG + P(1, 3 )XB. (3.8)

This prior can also be considered to be an attempt to capture the dependencies

between RGB channels through several linear combinations. In practice, P does

not necessarily require full rank, as dependent rows serve as redundancy.

3.4.3 Dependent Prior

Lastly, we treat each spatial derivative as a three-dimensional column vector, where

each component corresponds to the value in one of the three channels, and impose

the sparse prior on the magnitude of the vector. Intuitively, this dependent prior

penalizes spatially separating edges in multiple channels.

P(X) c -exp - {(g-xR(i))2 + (gjTG(i))2 + (giJTB(i))2} . (3.9)

The dependent prior could be combined with the change of basis, as with the inde-

pendent prior, but its formula is omitted here for the sake of brevity.
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Chapter 4

Analysis of Model

The mathematical model set forth in Chapter 3 admits a thorough analysis in terms

of reconstruction, expected error and depth discrimination, using the Gaussian prior.

Our main objective is to derive the formula for reconstruction, and the criteria for

evaluating a set of filters {fkR, fG, f1k}. In this chapter, we derive those formulae

and compare the multi-channel model with its single-channel counterpart.

4.1 Modelling the Pipeline

In comparing the single-channel model with the multi-channel model, we adopt the

following terminology to distinguish the possible differences in the imaging process.

The naive process assumes that no Bayer pattern exists, and is compatible with

the conventional single-channle model. The joint process assumes that the result-

ing signal has passed the Bayer filter, and is compatible with the multi-channel

model. Finally, the sequential process assumes that the resulting signal has passed

the Bayer filter, but has been demosaicked with the weighted nearest-neighbor al-

gorithm, thereby rendering it compatible with the single-channel model. The moti-

vation for the sequential model is to enable direct comparison between the single-

channel and multi-channel deconvolution. While the original single-channel coded

aperture assumes the naive process, the image has in fact undergone the sequen-

tial process. Therefore, a fair comparison would be between the joint process with

multi-channel model, and the sequential process with single-channel model.
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Figure 4-1: Various models of the image-generation pipeline. Left: Naive process,
compatible with single-channel model. Center: Joint process, compatible with multi-
channel model. Right: Sequential process, compatible with single-channel model.

4.2 Reconstruction of Multi-Channel Image

The reconstruction problem is to estimate the input image x given an observation

y through the coded aperture {fk', fkG , fk} at a fixed depth k. As with the single-

channel case, the reconstruction problem admits a straightforward estimate through

a simple probabilistic framework. From Equation (3.6), the conditional probability

distribution for the output, given input, is

P(yjx) oc exp{-Ak - y2 r
2nor2

while the prior on the input, assuming the independent Gaussian prior to render

analysis feasible,

P(x) oc exp - + XG 1XG + X

exp -a (XT I X)} where V' = diag (T, T, I)).

Then, by Bayes' Rule, the joint probability distribution of the input and output is,

P(x, y) oc exp - 2h2  a n T2nI 2na 2n

The maximum-likelihood estimate of x follows:

IIAkX - Y 12 T 1
Xk = argmaxx exp - A 112 - T i (4.1)

2n 2 2n



= argminx jAkX - Y11 2+ 2aoT -X (4.2)
-- T - -T V 72 qf

argminxX A k AkX -2XTAY + aU2XT ' IX (4.3)

= (AT a2k l2j-1)-(A T). (4.4)

Deconvolving at depth k has now been reduced to a quadratic minimization problem

posed in Equation (4.3), which yields the solution in Equation (4.4).

4.2.1 Expected Reconstruction Error

The reconstruction of the input signal relies on a statistical estimate, which exhibits

bias and variance. The quality of the deconvolution process can thus be measured

||Xn - X112
by the squared error, namely Ek From Equation (4.4), it follows

immediately that

I|Xk - X11 2 I_ ((ATAk + al2V-)7--1AT Ak - I)X + ((ATAk + uaa2T--1 )- 1A?) 112

n n

Let 1 k - (A Ak + ax 2V-1 -1). By the independence of the two expressions

within the squared term, the expected squared error takes the form:

-- E

n n n

Incorporating the known priors for X and q, we obtain

S- X2 4audiag 1 k 2 ((AkFkA ).dag (, , ))

(4.5)

4.2.2 Effect of Multiple-Channel Model

The reconstruction error from Equation (4.5) cannot be directly compared to the

error from the single-channel model, simply because they operate on images with

different priors (and different numbers of filters), and also on different stages of the

pipeline; the single-channel model assumes that the image has not passed through

the Bayer filter. To enable a comparison, we isolate each difference and test it



independently using the two models.

Presence of Bayer Filter

To analyze the aspect of the new model that addresses the presence of Bayer filter, we

consider a multi-channel image from the independent Gaussian prior, blurred using a

single kernel f and masked with the Bayer pattern. For the multi-channel model, the

expected reconstruction error is given in Equation (4.5), where fR = ff = ff = f.
Meanwhile, for the single-channel model, we adopt the sequential process with the

same kernel.
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Figure 4-2: Expected reconstruction error from multi-channel deconvolution with a
single filter, versus simulated single-channel deconvolution of pre-demosaicked im-
age. Each point corresponds to a randomly sampled 15-by-15 symmetric binary
pattern.

When f is sampled many times from 15-by-15 symmetric binary patterns, the

joint deconvolution with Bayer filter consistently outperforms the sequential process

in which the image is pre-demosaicked, as seen in Figure 4-2.

Effect of Multiple Filters

The effect of multiple filters can be isolated by comparing the full multi-channel

model with a more constrained version in which fR = fk =_ fB. However, because

the independent Gaussian prior does not at all relate the channels, we impose that

the three channels are in fact equal. Therefore, even with the Bayer filter, the

output is fully observed in the sense that every blurred pixel is available. We mind



the readers that this assumption should exaggerate the benefit of the multi-channel

model.
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Figure 4-3: Expected reconstruction error from multi-channel deconvolution with
two filters, versus the better result from the two individual filters. Each point
corresponds to a pair of randomly sampled 15-by-15 symmetric binary pattern.

More formally, we sampled pairs of filters fl, f2, and first compute the expected

reconstruction error in the two cases where fk = fG = fB = fl and fR = fG =

ff = f2, respectively. These are equivalent to the single-channel case, since both

the images and filters are identical across the channels. When the better of the two

errors is compared to the expected reconstruction error in case f R = fB = fi and

fkf = f2 hold simultaneously, we see that combining filters improves performance

some of the time -see Figure 4-3. However, because filters are matched randomly

rather than ones that might be complementary, the observed rate of improvement

is underestimated.

We extend this experiment to n-tuples of filters fl, f2,... , f,, where we compare

the performance of the best individual filter, and the performance of the best pair

of filters. As n increases, the likelihood of finding a complementary filter, if such

filter exists, scales as well. We find that when n is large enough, the best pair

more consistently outperforms the best individiaul filter, as shown in the upward

movement of the datapoints in Figure 4-5, as n increases. The average gain of the

best pair over the best individual filter in the n-tuple is also shown in Figure 4-4.
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Figure 4-4: Avearge gain for the expected reconstruction error of the best-
performing pair of filters, over that of the best-performing individual filter in an
n-tuple. For each n, 100 sets were sampled.
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Figure 4-5: Comparison of expected reconstruction error for individual filters and for
pairs of filters. Each point corresponds to an n-tuple of filters, where the coordinates
correspond to the score of best individual filter and that of the best pair of filters.
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4.3 Depth Discrimination

We pose the depth discrimination problem in the manner of Levin et al[14]: given a

finite set K of possible depths and filters fkR, fk, fkB for all k E K, find the likeliest

depth k E K for an observed image y. Ideally, we seek the maximum-likelihood

estimate

k = argmaxkEKPk(y).

In practice, Pk(y) is difficult to solve analytically, as the non-linearity in the

prior compounds the existing complexity. One can marginalize the distribution over

x, and approximate it with Pk(yl|), which scales exponentially with the recon-

struction error. Accounting for the coefficients, we may instead solve for

k = argminkEKAkjIAkXVk _ V112.

4.3.1 Filter Selection Criterion

In order for the maximum-likelihood estimate to be as accurate as possible, we seek

to maximize the pairwise distances among the distributions {Pk(y) I k E K}. We

recall that X - N (o0, ), which gives rise to

Yk = AkX + r7 , N (o, A N(O, na21)

=N(O,n (Ak4 A AkkTa  + 2I)). (4.6)

The classic measure of distances between distributions is the Kullback-Leibler distance[ll]
in Appendix A.2. Theorem A.2.1 tells us that the expected depth discriminativeness
of a set of filters in the worst case is given by,

-1 Iek1- log k
2  

+ 
E k" *Ok 8•1

min 
1Ek2 

k

ki,k2 EK 2

where 8k, = n A(IVIAkT +'2) .



4.3.2 Depth Discriminativeness of Multiple Filters

We wish to compare the depth discriminativeness of multi-channel coded aperture

with that of its single-channel counterpart. Unlike the expected reconstruction error,

however, depth discriminativeness is difficult to analytically compute. Therefore,

the KL-divergence score can be used in lieu of the actual classification accuracy

achieved by the sets of filters. We assume that the three channels are identical, and

are observed through fR, fG, fB. The appropriate kernels at particular depths can

be estimated by downscaling the full-size kernels.

Presence of Bayer Filter

We repeat the analysis in Section 4.2.2 to isolate the effect of modelling the Bayer

pattern on accurately measuring the KL-divergence scores of filters. In reality, there

should not be any difference between the joint and sequential processes in terms

of the posterior for the output, since the weighted nearest-neighbor demosaicking

algorithm is reversible via applying the Bayer pattern again. It is worthwhile to

note, however, that the single-channel model in Levin et al[14] can be empirically

shown to overestimate the minimum KL-divergence of filters, as in Figure 4-6; the

overestimation is due to the assumption of a naive process, whereas in practice

the sequential process takes place. Of course, if the relation is monotonic, the

overestimate can still serve fully as a comparative metric. However, as the figure

indicates, the relation is noisy, and the best linear fit suffers from standard deviation

of roughly 70, where the median score was slightly over 660.

Effects of Multiple Filters

The benefits arising from the use of multiple filters rather than a single filter can be

similarly isolated by assuming that the channels are identical, and comparing the

performance of individual filters where fR = fG = fB against the performance of

pairs of filters where fR = fB.

There are two archetypical scenarios in which multiple filters should outperform

single filters. First, because our metric considers the lowest KL-divergence score,

filters that exhibit little depth discrimination between two particular scales can be

paired with complementary filters that perform well on those scales. Figure 4-8
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Figure 4-6: Minimum KL-distance estimate in the single-channel model, for both
naive and sequential processes, with the best-fit line.

illustrates two such filters g, h and their KL-divegence scores for adjacent scales. To
capture a more general trend, we randomly sampled n-tuples of symmetric binary
filters, and compared the best individual filter in the tuple in terms of the minimum
KL-divergence against the best pair, in which one filter masks R,B channels and
the other G. Once n is large enough, the best pair outperforms the best individual
filter, as shown in Figure 4-7.
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Figure 4-7: Avearge gain for the minimum pairwise KL divergence of the best-
performing pair of filters, over that of the best-performing individual filter in an
n-tuple. For each n, 100 sets were sampled.

The second scenario we consider is the strategic case in which one filter is a
pinhole. While the pinhole by itself delivers no depth discrimination whatsoever, it
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Figure 4-8: Example of complementary filters. Note that g has its minimum score

for scales (ks, k9), while h has its minimum score for scales (k3 , k4), and the two

filters complement each other in those two scales. As a result, the pair performs

satisfactorily on both scales.

aids in deconvolution and indirectly helps depth discrimination of its partner. We do

note that the present assumption on the channels being equal does accentuate this

property, and in practice, the channels are not identical. Figure 4-9 demonstrates

decent improvement in depth discrimination when filters are paired with a pinhole.

4.3.3 Summary

We find that the multi-channel model offers better performance in terms of recon-

struction error than does the single-channel model. Our analysis attributes this

independently to both the inclusion of Bayer pattern and the use of multiple filters.

Also, combining filters tends to raise the KL divergence score of the filters, giving

rise to the notion of "complementary" filters.
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Chapter 5

Numerical Techniques for

Deconvolution

The sparse priors introduced in Chapter 3 do not admit simple, analytic treat-

ments in the Fourier domain because of its non-linearity when p < 1. Instead,

the maximum-likelihood estimate of the input scene using the sparse prior must

be accompanied by an adequate numerical approximation techique. This chapter

explores and applies several numerical methods available.

The maximum-likelihood estimate solves

S
l w R. * (f kR * X) + w G . * (fkG * X) + WB . * (fB , X) - y112

ZX = argmin, 2a2 + log P(z).

(5.1)

We can express Equation (5.1) in a column-vector form:

xk = argmin x IDky  V112 + q(g T 7R , g T'xgi--) (5.2)

where Dk is the square matrix corresponding to the convolution and the application

of Bayer filter, and q(...) corresponds to the log of the prior given the derivatives

in the three channels. Table 5.1 summarizes the form of the corresponding q for the

three multi-channel priors. The methods discussed in this section solves Equation

(5.2) for the given prior in an iterative fashion, taking x0 as the initial solution and

generating Xl, 2, x3,... until convergence or the maximum number of iterations is



reached.

Independent prior
q(x,y,z) - xj 11 + y1j P + zjI 1

Independent prior
with a change-of- q(x, y, z) - R(l, 1)xj + R(1, 2)yj R(1, 3)zj |P
basis matrix R 1=1 j

Dependent prior
q(x, y, z) = x + y + z/ 2

Table 5.1: Objective functions for the three multi-channel priors.

5.1 Newton's Method

Newton's Method is a standard numerical method for solving a non-linear equation

via a second-order approximation. It evaluates the second-order Tayler expansion

of the objective function centered at the current value of xt, and solves the resulting

quadratic optimization for the new value xt+l. In closed form, the iterative step for

Equation (5.2) is, assuming the independent prior,

D TDk au2)K t+ ) DT +P(p - 2 ) ao.2 K xt, (5.3)

where K = diagc ((gi)Tdiag (|gE T tC Ip- 2) gi). The exact derivation of Equa-

tion (5.3) can be found in the appendix.

We find that Newton's Method fares poorly in practice because the underlying

assumption of second-order approximation does not hold; the objective function f

is locally concave due to the non-linear exponent p < 1, so gradient approach does

not minimize the solution. Figure 5.2 demonstrates Newton's Method in action.

5.2 Iteratively Re-Weighted Least Squares (IRLS)

Iteratively Re-Weighted Least Square (IRLS) is another approximation technique

that can be used to minimize the value of the objective function E f(Aix - Bi),



where x is a column vector and f is non-negative and maps zero to itself. Applying

IRLS to the objective in Equation (5.2) for the independent prior, we obtain

(DT(Dk + o2K) t+ = DTy, (5.4)

where K is as before. See the appendix for the exact derivation and details on IRLS.

Note that IRLS correctly converges to the local minimum for a simple scenario, as

in Figure 5.2.
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(a) Second-order approxima- (b) Newton's Method after 5 it-
tion. erations.

Figure 5-1: Application of Newton's Method on simple scenarios. Left: The second-
order approximation is locally accurate. Right: However, Newton's Method itera-
tively ascends the gradient in the incorrect direction, because the objective function
f is locally concave.

(a) Second-order
tion.

approxima- (b) IRLS after 5 iterations.

Figure 5-2: Application of IRLS on simple scenarios. Left: The second-order ap-
proximation is locally accurate. Right: IRLS approaches the local minimum in five
iterations.
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5.3 Gaussian Mixture Model (GMM)

The non-linear priors on the derivatives can be approximated roughly as a weighted

sum of zero-mean multi-variate Gaussians. In other words,

C

f (x, y, z) wiN((x, y, z); (0, vi)),
i=1

where wi is the weight and vi is the covariance matrix of the i-th Gaussian com-

ponent, i E {1, 2,... , c}. The weights and covariance matrices can be trained on

the prior by treating it as an observed distribution and clustering the observations.

Once the prior is expressed as a cluster of Gaussian components, the correct value of

each derivative can be treated as an observation generated from the cluster. Solving

for the image x then entails classifying each derivative in the image x into one of the

c clusters, using Expectation-Maximization (EM), which is a standard optimization

algorithm with well-documented behavior and convergence. Table 5.3 and 5.3 gives

the exact algorithm.

1: Initialize weights wl, w2,..., wc and covariance matrices vl, v2, . . . , V.
2: For each iteration,
3: Estimate: For each possible posterior observationi (x, y, z), compute the

Pi(x, y, z), the probability that (x, y, z) is generated from the i-th cluster.
This is equal to the normalized value of wiN((x, y, z); (0, vi)), with the
constraint that Ei Pi (x, y, z) = 1.

4: Maximize: Recompute wi, vi to maximize the posterior, i.e. wi oc

f Pi(x, y, z)f(x, y, z)dxdydz with E wi= 1, and vi is the variance of

(x, y, z) weighted by Pi(x, y, z)f(x, y, z).

Table 5.2: Expectation-Maximization for training the cluster weights and variances
corresponding to each multi-channel prior. This algorithm needs to run only once
for a given set of parameters.



1: Let xo = y.
2: Compute the set of spatial derivatives of xo in each channel. Denote them

by do, doG , dg , for the respective channel.
3: For each iteration t - 1, 2,...,
4: Estimate:
5: Compute xt by solving the maximum-likelihood equation on xt-1:

ATA + o-2K xt=ATY,

where K = (G1)Tdiag (-i Pi(dC)vi-2) G1, with the entries of the
diagonal matrix indexed by r.

6: Compute the spatial derivatives dR = {dI,d ,...}, dG
{d, d, .. }, dB = {d dB,...} of xt = {x, x , xG ,}.

7: Maximize:
8: For each derivative dC , update Pi(dC). This is the probability that

the derivative is generated by the i-th component, which is

wiN(dC; (0, v?))

Ej wiN(dC; (O, vj2))

Table 5.3: Expectation-Maximization for iteratively estimating non-linear multi-
channel priors.

5.4 Conjugate Gradient Method

All three numerical methods discussed thus far approximates the non-linear system

as a locally linear system with a self-adjoint matrix as the coefficient, which can

be solved directly via Gaussian elimination. Unfortunately, once the number of

pixels in the image exceeds 10,000, the analytic solution becomes computationally

expensive, so we instead employ the Conjugate Gradient method, given in Appendix

A.3.

5.5 Evaluation

5.5.1 Pixel Recovery in 1D Scenarios

We can examine and evaluate the behaviors of the existing numerical methods com-

bined with the multi-channel priors by executing them on small toy examples. Be-

cause they are general methods on recovering the input from blurred or partial im-



ages, we consider 1D images consisting of two channels (red and blue), with exactly

one pixel missing each channel, in order to facilitate visualization. The scenarios

are given in Figure 5.5.1.

0-0- ~i o---- -

o 0.5 -0 E) 0.5 Z 0.5 "E 0.5

-1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2
Pixel location Pixel location Pixel location Pixel location

(a) (b) (c) (d)

Figure 5-3: One-dimensional toy scenarios for evaluating numerical methods and
multi-channel priors. Each scenario features a 1D image in two channels with one
pixel missing in each channel.

For each scenario, we consider three priors defined previously, re-formulated

to apply to 1D two-channel images, with R being a randomly generated 5-by-2
-0.4326 1.1909

-1.6656 1.1892

matrix 0.1253 -0.0376 , while varying the numerical method, between IRLS

0.2877 0.3273

-1.1465 0.1746
and GMM. The appropriate numerical method is run for seven iterations, initialized

randomly, and the progression is plotted on a 2D plane, each axis representing the

value of one of the two missing pixels. The contour of the objective function is

also mapped to better represent the direction of update, with blue being the lowest.
Ideally, the prior should give local minima where likely, and the numerical methods

should converge to those local minima. The ideal solution for each of the scenario

is (0.5, 0.5), (0, 1), (0, 0), and { (0, 0), (0, 1) }, respectively.

The results, available in Figure 5-4, demonstrate that IRLS and GMM are com-
parable in their convergence rate, while the independent prior with change of basis
and the dependent prior seem to converge to more favorable local minima than
does the independent prior on R,G,B channels. Especially in the second and third
scenarios, the independent prior exhibits multiple local minima, includings ones in
which edges are misaligned.



GMM IRLS + indep. IRLS + indep.(R) IRLS + depen-
dent

Figure 5-4: Iterative reconstruction result on the scenarios in Figures 5.3(a) through
5.3(d), with GMM or IRLS, and various multi-channel priors. Each row corresponds
to a particular scenario, and each column corresponds to a reconstruction method.
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5.5.2 Demosaicking in 2D Scenarios

The numerical methods are further compared on small two-dimensional images that

have been masked by the Bayer pattern. In the multi-channel model, this setup is

equivalent to having fR, fG, fB all be pinhole. The masked image is deconvolved

with the three priors, using either IRLS or GMM. Each numerical method is run

for five iterations. See Figure 5-5 for the results. The results visually indicate that

the dependent prior outperforms the independent prior in aligning edges. In case of

the independent prior, misaligned edges can be discerned in form of color artifacts.

For the change of basis, the YUV color space was used.

Figure 5-5: Demosaicking results for various two-dimensional images, with GMM or

IRLS, and various multi-channel priors. Each row corresponds to a particular input

image, and each column corresponds to a reconstruction method.



5.5.3 Deblurring in 2D Scenarios

We further compare the numerical methods on small two-dimensional images blurred

by a single filter (fR = fG = fB). See Figure 5-6 for the results. We observe that

the YUV color space complements the numerical methods on monochromic images

than the RGB color space, and that dependent prior preserves sharp edges better

than independent prior. In most of cases, however, the multi-channel priors produce

satisfactory results visually.

While the groundtruth is available for these synthetic results, there is no single

consistent way of quantifying the quality of the deconvolution results. Common

metrics as the mean square error do not adequately capture it, because shifting

edges produces no visible artifacts to the image, but it is penalized heavily by

the mean square error. In fact, the mean square error prefers the Gaussian prior,
which smooths out the elevations in image intensity. Finding an appropriate metric

remains an open question.
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Figure 5-6: A two-dimensional image deblurred with multi-channel priors.
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Chapter 6

Physical Implementation

Physical implementation of our system requires the fabrication of coded aperture

in three primary channels to be incorporated into a camera lens. Subsequently,

the kernels for the three channels are to be observed and calibrated, after which

images taken with the lens can be fully reconstructed using the kernels. Rather

than creating a lens or even an aperture from the scratch, we simply create an

occluder that can selectively filter in different wavelengths, and insert it between

the lens elements of a standard prime lens, as did Levin et al [14].

The core issue is the accurate construction of a set of filters that can ideally

block the light rays in one or more primary colors entirely, while letting the other

colors pass through unattenuated. In practice, this ideal filtering is unattainable, as

the camera sensor itself does not separate lights in different channels perfectly. We

discuss the selection and composition of material for achieving the desired attenu-

ation as closely as possible mathematically, and the resulting spectral filtering we

have selected.

6.1 Filter Construction

6.1.1 Computing Attenuation

Given the set of filters fR, fO, fB, corresponding to the codes in three primary

channels, we would like to construct an aperture with the property that the relative

transmission obtained at location (x, y) is equal to fR(x, y) in case of red light,



fG(x, y) in case of green light, fB (x, y) in case of blue light. In reality, attenuation

can be controlled as a function of wavelengths, and the wavelengths of what is

perceived as red, green, blue in fact overlap. Figure 6-1 charts the spectral sensitivity

of a Canon CMOS sensor, with the overlaps clearly discernible.
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Figure 6-1: Spectral sensitivity of a Canon 10D CMOS sensor. Note the clear
overlap between neighboring channels.

For instance, if the object has a particular spectrum such that it reflects only

light at 500nm, it would register as equally green and blue. Since the attenuation

depends on the wavelengths alone, it is impossible to prevent the camera sensor from

registering the same value for both green and blue; whatever attenuation the filter

achieves, both green and blue pixel values will be attenuated equally. Therefore,

the actual reduction in red, green, blue pixel values will depend on the spectral

characteristics of the object being lit. Secondly, the reduction also depends on the

source of light, since different light sources have different spectrum,

More formally, let t be the spectral transmission characteristic of the filter as a

function of wavelengths; I be the spectrum of the light source; m be the reflectance of

the object; sR, sG, sB be the spectral sensitivity of the sensor in the three channels.

Then, the fraction of red light observable after the insertion of the filter is,

f l(A)m(A)sR(A)t(A)dA (6.1)
f l(A)m(A)t(A)dA

The reduction in green, blue pixel values can be computed similarly.



The quantity in Equation (6.1) is difficult to control or compute precisely, and is

not purely a function of the filter material. Hence, we assume that both the source

light and the object have the uniform spectrum. Most light sources, such as the

Sun, in fact tend to have a smooth spectrum in visible wavelengths. Also, since

the spectral characteristics are not available as continuous functions of wavelengths,
we discretize them to make use of available data. Then, the resulting formulae for

attenuation in the three channels are, represented as a triple,

{ Y~sRW(t~t(A) LA (\)t(A) ;(A)t () (6.2)

If fR, fG, fB are unrestrained binary filters, at a given spatial location, the de-

sired attenuation falls into one of 23 = 8 types: {0, 0, 1}, {0, 1, 0}, {1, 0, 0}, {1, 1, 0},
{1, 0, 1}, {0, 1, 1}, {1, 1, 1} and {0, 0,0}. The last two triples are readily attained

by air and any opaque layer, respectively, leaving six distinct spectral transmission

characteristics to be found. In our implementation, however, we determined that

two of the kernels, fR and fG, should be identical. This decision confers the benefit

of reducing the number of required nontrivial materials into 22 - 2 = 2, thereby

reducing the complexity in fabrication.

6.1.2 Filter Selection

We followed the same guidelines as Levin et al[14] in restricting the space of possible

filters, and limited our search to 15-by-15 binary patterns. Under other practical
considerations in filter fabrication, the kernel for red and green channels was chosen
to be pinhole. The kernel for blue channel was chosen from a large sampling of
kernels that maximized the expected depth discrimination. See Figure 6-2.

Using pinhole filters opens up another possible benefit. In practice, full red and
green channels are sufficient, even in presence of blurry blue channel, to generate
eye-pleasing, perceptually sharp images, because the human eyes excel at reading
contrasts in the luminosity channel, which is composed mainly of red and green.
Finally, as previously discussed, sharp channels should aid in deconvolution of the
blurred channels, and thereby improve the depth discrimination.



(a) Red channel (b) Green channel (c) Blue channel

Figure 6-2: Ideal kernels for each channel. Each kernel is a 15-by-15 discrete two-
dimensional signal, with binary values.

6.1.3 Maintaining White Balance

Another consideration is that the resulting image should have white balance that

is as close to the original as possible. This is complicated by the fact that different

kernels have different area, therefore admitting different amount of light under equal

conditions. The problem is exacerbated especially if one of the filters is pinhole.

The ratio between the areas of two filters chosen for the implementation is 1/42.

If the respective materials carry attenuation of {ai, a2, a3} and {bi, b2, b3 } per unit

area, the resulting pixel values will be proportional to {ai +42bl, a2 +42b 2, a3 +42b3}.

Therefore, the kernels with which the images are actually convolved are

fR = alfR + 42blf B,

fG = a2fG + 42b2fB,

fB = a3fR + 42b3fB.

The effective kernels will be weighted sum of the ideal kernels, and to retain the

distinctiveness of kernels and remain as close as possible to theoretical expectations,

we must achieve the following balance:

al >> 42bl, a2 >> 42b2, a3 << 42b3, a1 +42b 1 - a22 +42b 2 - a33+42b3.

(6.3)

Unfortunately, fabricating translucent material with the desired spectral char-

acteristic is difficult. Instead, we sampled an existing set of color gels, available in

sheets, with known spectral transmission characteristics1 , and chose colors that sat-

1The spectral transmission characteristics were generously provided by LEE filters,



isfied the condition in (6.3) in practice. Figure 6-3 shows the spectral transmission

characteristics of the color gels used in the implementation. In practice, color gels

were stacked to achieve the required gain in the ratio of transmission in different

channels. See Figures 6.4(e) through 6.4(g) for estimation of the kernels in the three

channels.
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Figure 6-3: Spectral tranmission characteristics of four color gels that are used in
filter fabrication.

6.1.4 Assembly

The final aperture assembly consisted of a vertical stack of materials with different
spectral transmission characteristics. A negative of the union of the two kernels was
cut out of black cardboard, and the stacked color gels for each kernel were taped on
the cardboard to provide the desired attenuation at the correct spatial location, as
in Figure 6-4. The aperture is then inserted into a standard Canon EF 50mm f/1.8
lens2 , and the lens is focused at 2.0m, after which the barrel is immobilized with
tape.

http: //www. leefilters. com.
2For instructions on disassembly of a Canon EF 50mm f/1.8 lens, see

http://www.ejarm. com/photo/ef508iidis/.

I



(a) The negative pat- (b) Completed aper- (c) Completed
tern in cardboard ture (front) ture (back)

aper- (d) Aperture inside
the barrel of a Canon
EF 50mm f/1.8 lens

(e) Expected kernel in red (f) Expected kernel in green (g) Expected kernel in blue
channel channel channel

Figure 6-4: Assembly of the multi-channel aperture into the camera lens, with the
expected kernels for each channel. Note that the filters overlap to a small extent.
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The cost of the modified lens is nominal, and is dominated by the cost of the

lens (under $90.) The color filters and the black cardboard can be obtained at a

fraction of a dollar per square feet.

6.2 Calibration

The coded aperture does not in practice achieve the correct blur with the ideal

kernels in Figure 6-2, due to various distortions, diffractions, and reflections in the

lens. The matter is further complicated by the fact that the color filters are not well-

behaved and produce reflections, become dirty, shift in place. Figure 6-5 illustrates

these distortions, especially the diffraction and scattering of light from the pinhole

filters in red, green, channel. Thus, we measure the effective kernels instead, and

carry out the subsequent computations with them. Well-controlled fabrication of

the filters result in kernels that are similar to the ideal ones.

Figure 6-5: Effective kernels observed from a pinhole light source (60cm away) at
multiple distances. Left: regular aperture at f/4.0. Center: single-channel aperture.
Right: multi-channel aperture. The last image was taken with longer exposure time
to show the colors more clearly.

Appendix C details the calibration process, including both the physical hardware

for taking measurements and the algorithms for inferring the kernels.
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Chapter 7

Depthmap Generation

The maximum-likelihood estimate of the depth of the image k = argmaxkPk(y)

suffers from two crucial drawbacks. The first is that the expression cannot be easily

evaluated, as it is the integral of the marginal distribution Pk(ylx) over x, which

is highly non-linear. The second is that the scene often includes multiple depths.

In order to address these problems, the original single-code aperture photography

estimates Pk(y) in small local windows, assigning a depth to each pixel[14]. In

place of Pk(y), the deconvolution error Ek = Ily - fk * xI22, weighted by some learnt

coefficients, is used. A graph-cut algorithm then regularizes the resulting depthmap.

In this chapter, we detail several approaches to determining the local depth, and

the process of regularization, in the multi-channel case.

7.1 Classification with Deconvolution Error

7.1.1 Unnormalized Error

In single-channel coded aperture, it is necessary to weight the convolution error by

coefficients Ak, because the smaller scales consistently generate lower deconvolution

error; in deconvolution process, they are penalized by the sparsity cost, but our

depth estimate does not take the sparsity of the output into account. In multi-

channel coded aperture with pinhole filters, however, smaller scale also generates

large deconvolution error, because the blurred channel is deblurred to match the

sharp channels. In certain cases, the unnormalized error Ek = ly - fk * x1 2 is



sufficient to discriminate between depths. In other words,

k = argminkEk.

7.1.2 Normalized Error

A more complex model involves normalization of the error terms by some constants:

AkEk. The constants are learned using logistic regression, maximizing the soft classi-

fication accuracy Zki expAkEkW(i) where El(i) refers to the deconvolution error
E, exp Al El (i)

at depth I for the i-th datapoint. In this case,

k = argminkAkEk.

7.1.3 Support Vector Machine (SVM)

The model with normalization can be further extended to a general k-dimensional

linear space by employing linear SVMs. A two-class linear classifier is trained using

E(i) = {E 1(i), E 2 (i), E 3 (i), .... } as datapoints to discriminate between every pair of

depths, and a multi-class classifier is built with the two-class linear classifiers.

7.2 Regularization

The initial depthmap generated by estimating the likeliest depth at each pixel is

noisy and rough, and must undergo a regularization process to produce reasonable

results. One particular cause is that the ringing produced at objects at wrong depth

tends to travel across interfaces between depths, hampering the deconvolution of

objects at the correct depth. Regularization based on pixel similarity can repair

this phenomenon.

More precisely, we iteratively apply Kolmogorov's implemntation for binary

mincut[4] on the depthmap for each depth, where the edges exist between adja-

cent pixels to capture the dissimilarity, and the synthetic source node connect to

pixels of the correct depth, and the target node connect to the remaining pixels.

See Table 7.1 for detail. Figure 7-1 shows the effect of regularization on a rough

depthmap.



1: Iterate several times:
2: For each depth k E K,
3: Construct graph G = (V, E) where V is the set of pixels along with

s, t. Here, we set E = Ep U E8 U Et where Ep is the edges between
adjacent pixels with weights corresponding to the dissimilarity, E, is
the edges between s and pixels currently classified as depth k, and
Et is the edges between t and the remaining pixels.

4: Execute min-cut algorithm on G, s, t. For pixels still connected to s,
relabel their depths as k.

5: For each pair of depth k1 , k2,
6: Construct grpah G = (V, E) as in the outer loop, while restricting

V to the set of pixels currently classified to kI or k2 , plus s, t. The
edge set E is constructed similarly, with Es, Et each containing
edges between s or t and pixels currently classified to kl or k2,
respectively.

7: Execute min-cut algorithm on G, s, t. For pixels still con-
nected to s, relabel their depths as kl. Relabel the depths of
remaining pixels in V as k2.

8: End iteration.

Table 7.1: Implementation of graphcut algorithm to regularize the initial depthmap.

Figure 7-1: Effect of regularization on depthmap. Top: The captured scene. Bottom
left: depthmap constructed from deconvolution error. Bottom right: regularized
depthmap.
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Chapter 8

Experimental Results

We evaluate the depth classification accuracy of single- and multi-channel coded

aperture on planar scenes of known depths. Two synthetic scenes are blurred with

the known kernels at 12 different depths, and two physical scenes are captured at

12 different depths by translating the position of the camera, using both single- and

multi-channel coded aperture:

* SYNTHETICi: A small digital image (aerial view of a building).

* SYNTHETIC2: A small digital image (busy street).

* BUILDING: A small planar, black-and-white printout.

* POSTERS: A collection of colorful magazine cutouts, with varying texture.

These planar scenes are primarily for evaluating the single- and multi-channel coded

aperture in depth discrimination. The synthetic datasets are further used to test

robustness against increasing level of noise in the blurred image.

Additionally, we demonstrate our system on the following staged scenes of clut-

tered objects, showing the deconvolution results and depth maps generated from

the captured images:

* PRINTS: An arrangement of large planar, black-and-white printouts placed on

a table at various depths.

* SHOES: An arrangement of small objects with varying amounts of texture.



* KITCHEN: An assortment of many small objects cluttered on a table, including

translucent and thinly shaped objects.

Table 8.1: Summary of test
aperture photography.

scenes prepared for single- and/or multi-channel coded

8.1 Kernel Calibration

The Canon EF 50mm f/1.8 lens fitted with the multi-channel coded aperture was

set to focus at 2.0m, and the effective kernels were measured at distances between

2.10m and 3.20m, with 10cm increment. The same calibration was performed also for

single-channel coded aperture, using the code in the blue channel from the former.

Figure 8-1 shows the kernels. The standard deviation for the convolution error on

the calibration images ranged from o- = 0.003 to a = 0.004. For deconvolution of

physical test scenes, the value of a = 0.004 was used.

1If the scene is captured at multiple depths, the dimensions from the closest distance are shown.

Dataset Width' Height1  Synthetic Planar
SYNTHETICI 250px 372px Y Y
SYNTHETIC2 378px 250px Y Y
BUILDING 362px 330px N Y
POSTERS 868px 846px N Y
PRINTS 1183px 935px N N
SHOES 1629px 767px N N

KITCHEN 1407px 774px N N



Figure 8-1: Effective kernels measured at distances between 2.10m and 3.20m, with

10cm increment. The displayed kernels have been scaled in intensity in order to show
the pattern more clearly, and are arranged into a 6-by-2 block per channel. Left:
kernels for the single-channel coded aperture. Right: kernels for the multi-channel
coded aperture, in red, green, blue channels, respectively.
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8.2 Robustness against Noise

The two synthetic scenes were blurred at each depth with either the single- or multi-

channel coded aperture, and Gaussian noise of a = 0.004, 0.007, 0.010 or 0.013 was

added. For each model and noise level, the 24 resulting scenes (= 2 datasets x 12

depths) were deblurred with all twelve kernels in the appropriate model.

8.2.1 Depth Classification in Presence of Noise

For each model and noise level, 4800 points were sampled from the deblurred images

to train a classifier based on normalized deconvolution error. Figure 8-2 shows the

classification accuracy when the classifiers were applied to the entire datasets: While

0
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ci,
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0.004 0.007 0.01 0.013 0.004 0.007 0,01 0.013
Noise level Noise level

Figure 8-2: Depth classification accuracy on two synthetic datasets at various noise

level. Left: results on SYNTHETIC1. Right: results on SYNTHETIC2.

both models perform satisfactorily, identifying the depth correctly at least 90% of

the time, the multi-channel model remains robust to noise and outperforms the

single-channel model on both datasets, at all noise level.

8.2.2 Quality of Deconvolution in Presence of Noise

Tables 8.2 and 8.3 show the deconvolution results on the synthetic datasets, at

various noise level and depth. The results from the multi-channel model are sharper

and clearer at all noise levels, thanks to the preservation of red and green channels.



Single-channel model Multi-channel model
a = 0.004 a = 0.007 a = 0.010 a = 0.004 a = 0.007 a = 0.010

Table 8.2: Results of deconvolution on SYNTHETIC1 at various noise level. 100-by-100 subsquare is shown.

Depth

2.20m

2.70m

3.20m
I



Single-channel model Multi-channel model
a = 0.004 a = 0.007 a = 0.010 a = 0.004 a = 0.007 a = 0.010

Table 8.3: Results of deconvolution on SYNTHETIC2 at various noise level. 100-by-100 subsquare is shown.

Depth

2.20m

2.70m

3.20m
I



8.3 Results on Physical Planar Scenes

8.3.1 Depth Classification

Each of the two physical datasets BUILDING and POSTERS consists of a single pla-

nar scene captured at 12 different depths. Figure 8-3 shows the result of training

and testing SVMs on the two datasets. Figure 8-4 shows the same result for depth

classification with normalized deconvolution error. The training set consisted of

900 regularly spaced points at each depth from both scenes, for a total of 21600

points (out of millions of possible vectors in each dataset.) Experimentally, SVMs

outperform depth classification by minimum normalized deconvolution error; also,

single-channel coded aperture eclipses multi-channel coded aperture in depth dis-

crimination, which runs counter to the results from synthetic datasets. We further

note that multi-channel coded aperture performs relatively better on the grayscale

dataset BUILDING than on the full color dataset POSTERS, as the lost of depth infor-

mation from red and green channel is less severely felt. The average error in depth

estimate for BUILDING was 6.1cm for single-channel coded aperture and 8.7cm for

multi-channel coded aperture, whereas POSTERS had 9.6cm and 13.5cm, respectively.
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Figure 8-3: Depth classification accuracy on two datasets for linear SVMs of varying
parameter. Left: results on dataset BUILDING. Right: results on dataset POSTERS.

The planar scenes include large textureless areas that provide no information

on local depth, accounting for the high classification errors. Figure 8-5 graphs the

depth classification accuracy when pixels with little local entropy, defined as the

standard deviation in intensity inside a 60-by-60 window, are discarded from the

test sets.
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Figure 8-4: Depth classification accuracy on two datasets for normalized deconvo-
lution error.
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Figure 8-5: Depth classification accuracy for pixels of high local entropy. Left:
results on dataset BUILDING. Right: results on dataset POSTERS.

8.3.2 Quality of Deconvolution

Table 8.4 displays the results of deconvolution on the planar datasets, assuming

the correct depth. 100-by-100 windows at three distinct depths are shown. In

deconvolution, the multi-channel coded aperture outperforms a typical non-pinhole

code, as the red and green channels are preserved and can produce reasonable image

even when the blue channel is blurred. We also note the reduction in contrast, due

to the reflections from the color filters.

__

-

-

-

-

-

~' "' ~~"n



2.2Gm

2.7Gm

3.2Gm

POSTERS

Table 8.4: Results of deconvolution of planar datasets, at the correct depths. For clarity, we display zoomed-in portions of
heavy texture for selected depths, for both single- and multi-channel deconvolution. The blue channel for multi-channel
deconvolution is specifically shown, since red and green channels are sharp to begin with.
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Figure 8-6: Depth and scene recovery on PRINTS,

8.4 Depthmap of Cluttered Scenes

Figures 8-6 through 8-8 show the depthmap generated from PRINTS, SHOES and

KITCHEN, which are nonplanar scenes of cluttered objects, roughly in the order of

complexity. Multi-channel coded aperture was used to capture a single image of the

scene in each case. See Appendix D for more descriptions, views and larger-sized

outputs. The results demonstrate that the multi-channel coded aperture success-

fully discriminates depths at the given granularity, even in presence of untextured,

translucent, or reflective objects. We note that the datasets were captured with nat-

ural lighting, as opposed to the calibration that occurred indoor, and that minimal

normalized deconvolution error was used to generate the initial depth estimate.

Initial Estimate
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Figure 8-7: Depth and scene recovery on SHOES.
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Figure 8-8: Depth and scene recovery on KITCHEN.



8.5 Applications

In Figure 8-9 we demonstrate how a sharp imagery of the scene with the correspond-

ing depthmap can be used in conjunction to generate synthetic results that simulate

re-focusing. In theory, the same post-processing algorithms discussed by Levin et

al[14], such as viewpoint translation, can be applied.

Figure 8-9: Demonstration of simulated re-focusing using the sharp image and
depthmap, generated from a single capture. Left: Scene refocused at 3.1m. Middle:
Scene refocused at 2.6m. Right: Scene refocused at 2.1m.



8.6 System Performance

The multi-channel coded aperture incurs a one-time cost of calibrating the kernels,

and learning the classifier for the deconvolution error. Per each image captured,

deconvolution at each depth k E K is performed. The deconvolution process scales

linearly with the granularity of depths, or the size of K, and also linearly with the

number of pixels in the image. Each deconvolution process scales linearly with the

number of iterations in IRLS and Conjugate Gradient method. Regularization takes

negligible time compared to deconvolution.

With the current set of parameters (4 iterations of IRLS, 50 iterations of Conju-

gate Gradient method, 12 depths), it takes roughly 0.0124 seconds per pixel, or 1.4

hours per megapixel on a single 2.4GHz machine. In practice, we parallelized the

process so that a 2-megapixel image could finish well within the hour.

8.7 Discussion

We have demonstrated the multi-channel coded aperture in practice and its recon-

struction and depth discrimination capability. The result is a sharp imagery of

scene, along with a regularized depthmap, which then can combined for various

post-processing algorithms.

There are several benefits throughout the depthmap-generation pipeline from

using a pinhole filter. First, the complexity and uncertainty in aperture fabrication

are reduced. Second, kernel calibration becomes easier since image registration can

be performed accurately with the sharp channels. (See Appendix C.) Third, the

resulting image is visually pleasant, even with the blue channel blurred. Fourth,
the sharp channel aids in the deconvolution of the blurred channel, and ultimately

in the depth discrimination. The synthetic datasets demonstrate the superiority of

multi-channel model at various noise levels.

On the other hand, the pinhole filter requires additional exposure time to com-

pensate for the small area. The attenuation from stacking color filters to achieve

the necessary gain across channels also adds to the exposure time. In practice, the
pinhole code requires a couple extra orders of magnitude in exposure time, almost
hundred-fold. For a static scene, this amounts to about 5 seconds. A wiser choice



of the filter set could foreseeably overcome this limitation and achieve reasonable

performance with subsecond exposure time. Secondly, the physical material for the

color filter should be carefully chosen, as in practice the internal reflections within

the lens due to color filters add noise and reduce dynamic range. The issue is evident

when the results from physical scenes are compared to those from synthetic scenes.

It remains to be seen how much of this can be attributed to the choice of physical

material.



Chapter 9

Conclusion and Future Work

This chapter summarizes the performance of multi-channel coded aperture, along

with its limitations and directions for future development.

9.1 Successes

In this thesis, the multi-channel coded-aperture photography, which captures the

scene that is blurred with particular kernels in each channel, was demonstrated

both in theory and in practice, generalizing the results of the single-channel coded-

aperture photography. The accompanying mathematics and algorithms for recov-

erying a sharp imgery of the scene along with a depthmap were also developed and

presented.

The generalization onto multiple filters enables a more diverse choice of filters,

and in particular, the use of the pinhole filter in conjunction with a nontrivial

code could naturally generate sharp images, while the blurred channels could be

reconstructed with help of the unblurred channels. The reconstructed images of the

scenes indicate much improved resolution over their single-channel counterparts,

thanks to the sharp red and green channels. On test scenes at distances ranging

from 2.10m to 3.20m, a span of 1.10m, we could accurately extract depth with an

average error around 0. lm prior- to regularization. The system is decently robust to

cluttered scenes, able to distinguish between items at adjacent depths.



9.2 Limitations

The version of multi-channel coded aperture suffers from the following limitations.

First, the pinhole filter requires much higher exposure than regular lens or coded

aperture with nontrivial filters. In practice, exposure larger than a second is im-

practical for dynamic scenes or portraits. Second, the color filter used in fabrication

of the coded aperture creates internal reflections within the lens, adding a layer of

noise and reducing dynamic range. Third, a more formal statistical study of corre-

lation among color channels will be necessary to suggest a more appropriate prior,

if possible. While intuitive and simplistic, the dependent prior may not capture

exactly the co-occurrent sparsity in the channels. Fourth, the runtime of the system

as a whole prohibits rapid development. Fifth, the range of depths distinguished

by the current version (with Canon EF 50mm f/1.8 lens) is limited to distances

between 2.10m and 3.20m, at 0.10m increment.

9.3 Future Work

The main focus of future work is bridging the gap between the results on synthetic

datasets and physical datasets. To replicate the success of multi-channel coded

aperture on synthetic datasets, we should aim to realize the model faithfully in

implementation, which hopefully can be achieved by better selection of material

and more precise control in the fabrication process. A study of spectral properties

of materials is necessary to properly eliminate or model the reflections and noise

from color gels.

At the same time, we would like to improve our overall methodology. First,

a more comprehensive set of filter combinations would be considered in order to

see if substituting the pinhole filter with a nontrivial filter would improve depth

discrimination and exposure time without sacrificing image detail.

Second, our current estimate of the likeliest depth using deconvolution error

could be examined more closely. An alternative approximation method may be

possible, or a detailed study of the deconvolution error could suggest a better class

of classifiers, or perhaps reveal non-linearity.

Next, a careful analysis of tradeoff between exposure time and reconstruction



error would help determine the ideal combination of filters. The criteria for fil-

ter selection should incorporate the exposure time or the complexity in physical

fabrication, which could be modelled into the existing framework.

On the side of implementation, conversion to a moving aperture that scales may

be possible to increase the range further, where the pre-computed kernels could be

inferred and stored with each image taken by the camera itself as metadata.

Lastly, the deconvolution process could benefit from the regularized depthmap,
as the assumption of locally planar scene breaks down at the interfaces between

depths. A joint or iterative solution would improve both the reconstruction error

and depth classification accuracy. A model for deconvolution of piecewise planar

scene would be introduced.
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Appendix A

Useful Theorems

A.1 Parseval's Relation

Parseval's Relation correlates the energy of a signal in both primal and Fourier

domains. Let x be a discrete signal with n components, and let X be its Fourier

transform. Then,

IIx |2 - IIXI 2

n
(A.1)

A.2 Kullback-Liebler Distance

The Kullback-Liebler Distance measures the dissimilarity between two distributions[11].

DKL(P, Q) = P(x) log P(X) dx.QJx (A.2)

One can show that the KL-divergence takes a particularly simple form when the

two distributions are both multi-variate normal distributions.

Theorem A.2.1. Let P, Q be two n-dimensional, zero-mean Gaussian distributions

with covariance TIp, TQ, respectively. Then,

DKL (P,Q)
- elog1P - 1 + TE 'p. *'Q 1

-Io g I 
Q



Proof.

DKL(P Q) J P(x)(log P(x) - log Q(x))dx

= Ex~p n lo-g(2) lo
2 2 2

[ log(2 ) log 1 p _ xT 1X

2 2 2

2 I- I x 2

2

- log - n + Y q p. * QIIF QI Cp.* q

The last line follows from that the component-wise product of a symmetric matrix

with its own inverse sums up to its dimension. The component-wise products can

be arranged and collected to form the diagonal elements, which by definition are all

l's. O

Corollary A.2.1. If P, Q additionally have independent components, that is, Pp, TQ

are diagonal, then the KL-divergence is given by,

'I Q ii) - og
DKL(P, Q) =

Proof. The proof follows from Theorem A.2.1 directly.

A.3 Conjugate Gradient Method

Conjugate Gradient Method gives an approximate solution to the equation of the

form Ax = b, where A is self-adjoint. Table A.1 details the algorithm.

There are two caveats in deploying the Conjugate Gradient method to achieve

multi-channel deconvolution. First, the Conjugate Gradient method is an approx-

-



1: Choose xo as the initial solution.
2: ro --- b - Axo.
3: Po -- ro.

4: For t = 1, 2, 3,...,
5: at lrtt112

pt 1Apt-1
6: rt - t- - atApt-1.

I1rt 112

8: xt = Xt-1 + atPt.

9: pt = rt + 3tPt-1-

Table A.1: Algorithm for the Conjugate Gradient method.

imation and sometimes fails to converge completely within reasonable time limit.

Second, if the filters are significantly different in the three channels, the solutions

in the three channels may converge at different rates. In practice, the Conjugate

Gradient seems to prefer to optimize the channel with the simpler kernel. Therefore,

when one or more filters are pinholes, we solve for those channels separately using

the single-channel independent prior, before solving for the remaining channels using

the multi-channel prior.
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Appendix B

Derivation of Numerical

Methods

We derive the update rule for solving Equation (5.2) for both Newton's Method and

Iteratively Re-Weighted Least Squares (IRLS), using the independent prior.

B.1 Newton's Method

Let f(x) be the objective function we wish to optimize, that is,

f(x) = 2Dk2  +2u2 ( jig xR1P + Gllg X P + lj B P

The second-order Tayler expansion of f(x) centered at xt is,

Ax THAx
f(xt + Ax) ~ý f(xt) + V f(xt)Ax + 2

where H is the Hessian for f(xt). Taking its derivative and setting it to zero, we get

V f(xt) + AXTH = 0,

or alternatively,

Vf(xt) + (xt+i -_yt)TH = 0.

(B.1)

(B.2)



We now compute Vf(xt). Differentiating f(xt) with respect to the j-th component

of xt, we get

S 2(Dki~~,t - Vi)Aij + pao2  ( J-sign (gl•ixt) g9j)
i i,l

Collecting this over all j, we obtain

(B.3)Vf(xt) = 2(Dkz - )TDk p 2 [z([g__lP-lsign (g~

The Hessian is obtained by differentiating Vf(xt) once more:

H = 2DTDk + p(p - 1)aU2K, (B.4)

where K = diagn (Er(i)Tdiag (gh p-2) gyi).

(B.3) into (B.2) and rearranging the terms yield,

Then, plugging in (B.4) and

HTxt+1 = H - V f(xt)T

== (2DTDk + p(p - 1)aca2K) Xt+l = (2DTDk + p(p - 1)aa 2K) -

- 2D (Dk•y - y) - poca 2

S(2D +Dk + p(p - 1)ao2K) xt+1 = (2DTDk + p(p - 1)aa2K) 2

S- i C  )]

==> (2DT Dk + p(p - 1)aa2K) zt+ = (2D Dk + p(p - 1)ao2 K)

- 2D T (Dk -- paoa2 KKit

- (2D TDk + p(p - 1)aa2K) xt+1 = 2D + p(p - 2)aa2Kxi

= (D T Dk P(P- 1) -t+) = TV + P(P - 2) aa2Kxi,

as desired.

TOgi1

(119 p-I lsign (9 gi0 1L ix 1 , C9



B.2 Iteratively Re-Weighted Least Squares

IRLS minimizes E f(Aix - Bi), where f is a function that crosses the origin, by

iteratively posing the problem as a least-square optimization. In fact, if f is just

the standard square function, IRLS simplifies to the standard least-square problem.

Given xt, the iterative step is to solve

Adiag(f'(Ai.x - Bi)
ATdiag- Bi (At+ -B) = 0,

for Xt+1. This ensures that, if convergent, xoo will be at a local optimum of the

objective function.

The deconvolution with independent prior minimizes -i,j,c g -,xCjp, in addi-

tion to (Dky - y)2. We can pose this problem as minimizing E f(g_~,x) where

f(x) = IxIP, with some linear parts. Then, IRLS iteratively solves

2DDk( - ) + (gi)Tdiagj g gi-c- =0,
i,c 3-

where f(x) = JxjP.

Evaluating the derivatives and simplifying the expressions yield,

(d g ( -o- p-'sign (g") . g

2D-D)k(E - ) + (gi)T diagj C g = 0,
i,C gjl- l

which is equivalent to Equation (5.4) after further cancellations in the main fraction.
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Appendix C

Calibration Setup

We present the physical apparatus and the accompanying parameters for calibrating

the kernels of the multi-channel coded aperture, along with the algorithm to estimate

the kernels.

C.1 Physical Apparatus

The physical setup consists of a horizontal rail with distance markers, a movable

carriage that slides along the rail, a RAW-capable camera, and a calibration pattern.

The calibration pattern, shown in Figure C.1, is a MATLAB-generated random

binary noise, with two distinct resolutions to ensure that the sharp image taken at

each depth will have resolution not to far from that of the camera. The pattern

is pasted onto a wall and the rail is immobilized on the ground, with its principle

axis orthogonal to the wall, as in Figure C.1. This setup allows accurate horizontal

displacement of the camera relative to the pattern.



Figure C-1: Calibration pattern. The pattern consists of random binary noise in
two scales.

(a) Front view (b) Left view

(c) Top view (d) Back view

Figure C-2: Physical apparatus for calibration. The apparatus includes a horizontal
rail with distance markers, a movable carriage constructed of plastic, a RAW-capable
camera.
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C.2 Camera Settings

All images obtained for calibration were taken with a Canon EOS-1D Mk II under

a single set of parameters to produce consistent images. Table C.1 summarizes

these parameters. Note that the native aperture size is kept at the maximal f/1.8,

as the insertion of the coded aperture prevents the existing blades from turning.

We estimate that the pinhole filter is closest to the smallest available aperture size,

f/22. Under desirable lighting conditions, exposure lengths as short as 4 seconds can

Table C.1: Settings for Canon EOS-1D Mk II.

generate reasonable outputs. In calibration, high signal-to-noise ratio is desirable

and the exposure was lengthened accordingly.

The output of the Canon EOS-1D Mk II is a proprietary format .CR2, which can

be cast into MATLAB-readable portable pixmap (.PPM) via a popular conversion

program dcraw, version 1.403. As provided, dcraw automatically demosaicks the

RAW image, but the source code is available I and can be easily tweaked to yield the

undemosaicked image. Table C.2 summarizes the flags invoked in the conversion.

Flag Function
-4 Generates 16-bit linear output
-w Uses the camera white balance
-h Generates half-sized image

Table C.2: Flags for dcraw RAW conversion. The given settings generate a linear,
Bayer-masked image as in the multi-channel model.

1See http://www. cybercom.net/ dcoffin/dcraw/, courtesy of Dave Coffin.
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Parameter Value
Aperture size f/1.8

ISO 100
Exposure 15 sec.

White balance White fluorescent light
Format RAW



C.3 Registration Procedure

Inferring the respective kernel at each depth requires not only the blurred image

Yk taken with the coded aperture, but also the sharp groundtruth. The simplest

approach to obtaining the groundtruth is to capture the same scene with an unmod-

ified lens with the appropriate focal distance. However, the task of capturing the

exactly same scene is infeasible: no two lens are optically identical, and swapping

the lens may perturb the camera setup. A more viable alternative is to capture the

sharp image once at a close distance, denoted by x., and interpolate groundtruth

at each subsequent depth.

Ideally, the images of the scene captured at various depths are related through

a scaling operation. In practice, mechanical uncertainties and instability in the

apparatus setup introduce translation, rotation, or perspective transform to some

extent, resulting in deviations up to several pixels. Therefore, the relation between

two groundtruth images is best modeled by a perspective transform.

The transform itself cannot be inferred from measuring the mechanical parame-

ters, which are difficult to measure or maintain. Rather, we seek the transform that

would best align the groundtruth x, with the blurred image Yk, through the pro-

cess of registration. Perceptually salient keypoints, such as corners of high-contrast

rectangles, are picked from both images. The keypoint pairs do not correspond

exactly, so we iteratively update the keypoints on the blurred image until the per-

spective transform that minimizes error is visually satisfactory. Once the correct

keypoints are recovered, one can solve for the perspective transform that minimizes

the sum of squared deviation, and apply the transform to x,, to obtain xk. Table

C.3 summarizes the algorithm.

We found experimentally that the intermediate-level loop needs to iterate about

three times to achieve subpixel accuracy, as long as the initial estimates ql,..., ql

are not too far off.

Another consideration is that because x, is observed through a Bayer filter, we

must first recover the full-channel version before applying the transformation T to

generate groundtruths at other depths. In practice, because the calibration pattern

is very noisy, using demosaicking to recover the full image is unreliable. Rather,

x, should be taken at much closer distance and be downsampled to bypass the
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1: Select and fix keypoints p, ... ,pl in x,.
2: For each depth k,
3: Visually select ql,... ,q in Yk that correspond to pl,...,pl. In other

words, the patch centered at qi in the blurred image Yk should contain
roughly the same portion of the scene as the patch centered at pi in the
groundtruth x,.

4: Iterate until alignment:
5: Compute a perspective transform T that minimizes T- I T(pi) - q i 2,

using the MATLAB command cp2tform.
6: For each point qi,
7: Compute a translation L such that L o T(pi) = qi.
8: Overlay L o T(xo) on Yk*
9: Compute the necessary translation R so that the two images align

visually. In other words, Lo T(x,) _ R(yk) near the keypoint qi.
Or, one can solve for R to minimize the squared error, if the two
images have the same white balance.

10: Update the value of qi to R(qi).
11: Compute a perspective transform T that minimizes |i IT(pi) - qi 12,

using the MATLAB command cp2tform.
12: Set Xk = T(x,).

Table C.3: Registration algorithm for aligning images captured at varying depths.

reconstruction procedure.
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C.4 Solving for Kernels

Once the groundtruth xk and the blurred image yk are available, the kernels fkR, f G, fB

can be computed to minimize the sum of squared error Iwc. * (yk - f * o) 2 for

C E {R, G, B}. Empirically, some regularization is required to prevent noise from

excessively affecting the kernel estimate, so we employ the quadratic programming

solver available in MATLAB. In other words, we minimize the sum of squared error

while respecting the constraint that the kernels are component-wise nonnegative.

See Table C.4 for the exact algorithm. Note that if the pixel values shift due to

unwanted reflections in the lens, the model should be modified accordingly.

For each depth k, and each channel C E {R, G, B},
For each pixel yk(i),

If wC(i) = 1,
Express the i-th component of yk - f * kC as Bi - Ai " f(:),
where Bi = yk(i) and Ai is the row vector corresponding to the
neighborhood of xk(i).

Else,
Set B0 to zero, and A4 to the all-zero row vector with the same
number of elements as f.

7: Define A to be the vertical concatenation of {A A2,...A .
8: Define B to be the vertical concatenation of {B 1, B 2,...-.
9: Minimize IIB - A . f(:)112 with the constraint that each compo-

nent of f(:) is nonnegative. The applicable MATLAB command for
this is quadprog(A'*A, -A'*B, [], [], [], [], zeros(numel(f),
1), [], []).

10: Set fC = f.

Table C.4: Quadratic Programming for inferring the kernels from the blurred scene
along with the groundtruth.
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Appendix D

Test Scenes

D.1 Synthetic Scenes

The two synthetic test scenes SYNTHETIC1 and SYNTHETIC2 are shown here, at full

resolution. The actual datasets consist of twelve images of the same scene blurred

with the kernels at all twelve scales, with Gaussian noise overlaid.

Figure D-1: SYNTHETIC1 test scene.
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Figure D-2: SYNTHETIC2 test scene.

D.2 Planar Scenes

The two planar test scenes BUILDING and POSTERS are shown here, captured with a
regular lens at 2.0m. The actual datasets consist of twelve images of the same scene

taken with the single- and multi-channel coded aperture (focused at 2.0m) taken at

distances ranging from 2.10m to 3.20m.
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Figure D-3: BUILDING test scene.

Figure D-4: POSTERS test scene.
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D.3 Cluttered Scenes

The three test scenes PRINTS, SHOES, KITCHEN are shown here, captured with a
regular lens at 2.0m from the front, and also at an alternate angle to reveal the
depths of the objects. The actual datasets consist of a single image taken with
the multi-channel coded aperture. We also show the depthmaps from the previous
chapters in higher resolution.

D.3.1 Views

Figure D-5: Views of PRINTS test scene.
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Figure D-6: Views of SHOES test scene.
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Figure D-7: Views of KITCHEN test scene.
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D.3.2 Depthmaps

Figure D-8: Depthmaps from PRINTS test scene. Top: initial estimate. Bottom:
regularized dept;hmap.



Figure D-9: Depthmaps from SHOES test scene. Top: initial estimate. Bottom:
regularized depthmap.
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Figure D-10: Depthmaps from KITCHEN test scene. Top: initial estimate. Bottom:
regularized depthmap.
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