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Abstract

Motivated by problems in distributed computing, this thesis presents the first non
trivial polynomial time approximation algorithms for an important class of machine
scheduling problems. We study the family of preemptive minimum makespan schedul
ing problems where jobs have stochastic processing requirements and provide the first
approximation algorithms for these problems when machines have unrelated speeds.
We show a series of algorithms that apply given increasingly general classes of prece
dence constraints on jobs. Letting nand m be, respectively, the number of jobs
and machines in an instance, when jobs need an exponentially distributed amount of
processing, we give:

• An O(log log min {m, n} )-approximation algorithm when jobs are independent;
• An 0 (log(n + m) log log min {m, n} )-approximation algorithm when precedence

constraints form disjoint chains; and,
• An O(log n log(n + m) log log min {m, n} )-approximation algorithm when prece

dence constraints form a directed forest.

Very simple modifications allow our algorithms to apply to more general distributions,
at the cost of slightly worse approximation ratios. Our O(log log n )-approximation
algorithm for independent jobs holds when we allow restarting instead of preemption.
Here jobs may switch machines, but lose all previous processing if they do so.

We also consider problems in the framework of scheduling under uncertainty [13].
This model considers jobs that require unit processing on machines with identical
speeds. However, after processing a job to completion, a machine has an (unrelated)
probability of failing and leaving the job uncompleted. This difficulty is offset by
allowing multiple machines to process a job simultaneously. We prove that this model
is equivalent to a slightly modified version of the family of problems described above
and provide approximation algorithms for analogous problems with identical ratios.

Thesis Supervisor: David R. Karger
Title: Professor
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Chapter 1

Introduction

This thesis presents the first nontrivial approximation algorithms for a set of problems

in machine scheduling. A classic and well-studied area of combinatorial optimization,

machine scheduling encompasses a class of problems in which a set of jobs J are to

be processed by a set of machines M. Solutions are given by schedules that describe

precisely how the jobs should be processed. The goal is to optimize the value of

the schedule according to some objective function, while maintaining feasibility with

respect to a set of constraints on jobs and machines. Together, an objective function

and a set of constraints define a problem in this space.

Interest in the subject stems in part from its broad applicability to real-world

problems, including those found in manufacturing and large-scale computation. As

a concrete example, consider a factory that manufactures textiles. Various looms

may support the production of certain articles. Their work must be planned so that

various contracts, perhaps with different deadlines, are fulfilled. Given a sufficiently

large number of looms and articles, manual planning becomes unwieldy and heuris-

tic approaches offer no guarantee of efficiency. Machine scheduling instead offers a

rigorous model and has, in fact, been used to handle actual loom scheduling [17].

Motivated by distributed computing, we study a family of preemptive minimum

makespan stochastic scheduling problems on unrelated machines. Here, each job j E J

requires an amount of processing (equivalently, work) that is set randomly according

to a probability distribution provided as input. Each machine i E M has a speed



vi,j with which it processes job j. The goal is to schedule jobs on machines so as to

minimize the expected time by which all jobs complete. Each job can be processed

by only one machine at a time and each machine can process only a single job at a

time. However, preemption means that jobs may be moved to different machines at

any time (without losing prior processing). The amount of work that a job requires

is not revealed until it completes (that is, receives sufficient processing); this is at the

core of the problem's difficulty.

This setting maps well to distributed computing on commodity hardware, a prac-

tice whose growing popularity may be seen in the success of Google's MapReduce [4].

Preemption is more reasonable when considering computational jobs. Also, allow-

ing unrelated machines supports the modeling of heterogeneous machines, like the

workstations of volunteers used by projects such as Seti@Home [1].

Consistent with this motivation, we consider problems with precedence constraints.

In addition to jobs and machines, these problems take a directed acyclic graph (dag)

G on jobs as input. A job j may not be processed until all its predecessors in G have

completed. Many sophisticated distributed computations structure their subproblems

in this way.

We also extend our algorithms to the model of multiprocessor scheduling under

uncertainty, introduced by Malewicz [13]. Also motivated by distributed computing,

this model considers only jobs requiring unit work, but allows multiple machines to

process a single job at once. However, each machine i has probability qi,j of failing

to complete job j after processing it for a single timestep.

1.1 Results and previous work

The machine scheduling literature is vast, and covering even a portion of it in depth

could easily double the length of this thesis. Instead, we present here our new results

in the context of previous work on related problems. For a broad overview of the

field, we refer the interested reader to surveys by Karger et. al. [6] and Pinedo [16].

When the amount of processing a job needs is exponentially distributed and there



are no precedence constraints, we show an O(log log min {m, n})-approximation al-

gorithm (here, and throughout this thesis, m refers to the number of machines and

n to the number of jobs). That is, the expected length of a schedule produced by

our algorithm is at most O(log log min {m, n}) times as long as the expected length

of the best possible schedule. We know of no previous non-trivial algorithms for this

problem. For the special case of uniform machines, Weiss and Pinedo [19] show a

polynomial time optimal algorithm. In the uniform machine model, machine speeds

may be decomposed as vi,j = si, so that some machines may be faster than others

but if so, must then be faster on all jobs. Here, the optimal algorithm is to assign

faster machines to jobs that are expected to need more processing. This algorithm

is known as LEPT, for longest expected processing time, and is very well studied

in the stochastic scheduling literature. However, LEPT does not easily generalize to

unrelated machines. In this setting, a machine may be faster on one job and slower

on another, so there is no clear order (e.g, by speed) by which to rank machines.

Indeed, our algorithms and proof techniques have a very different flavor then those

used by Weiss and Pinedo [19]. The latter cast their scheduling problem as a Markov

decision process, defining the process state to be the set of uncompleted jobs. In

this case, a decision occurs when a job completes and an action is an assignment of

machines to jobs. Analysis shows that scheduling according to LEPT at each decision

minimizes the expected time until all jobs have completed. Our construction is much

closer to that found in deterministic scheduling problems. We schedule jobs in mul-

tiple rounds according to the polynomial time optimal algorithm for (deterministic)

preemptive minimum makespan scheduling on unrelated machines given by Lawler

and Labetoulle [8]. This algorithm takes as input the fixed amount of processing

that a job requires, and it is our choice of these amounts in each round that ensures

our approximation ratio. Our proofs also apply when processing requirements have

arbitrary, non-exponential distributions, although with slightly worse approximation

ratios that depend on the distributions. We are also able to extend our O(log log n)-

approximation algorithm to apply when restarting is allowed instead of preemption.

In this case, jobs may be moved to different machines at any time, but they lose all



processing when they do.

When the precedence dag G is composed of disjoint chains and preemption is al-

lowed, we demonstrate an O(log(n + m) log log min {m, n})-approximation algorithm

(for exponentially distributed job processing, with related bounds for arbitrary distri-

butions). As this class of precedence constraints includes independent jobs as a special

case, we again know of no previous algorithms. Even when restricted to uniform or

identical machines, previous work on problems allowing disjoint chain constraints is

fraught with fragile algorithms that work only in special cases. For example, Pa-

padimitriou and Tsitsiklis [15] consider only identical machines and job processing

distributed exponentially, sharing a common rate parameter. This is generalized to

allow uniform machines by Liu and Sanlaville [12], but the restriction on processing

distributions remains. Both works show polynomial time optimal algorithms for these

special cases, but it is not clear whether any algorithms are known when processing

requirements are not distributed identically, even when considering approximation

algorithms for identical machines. The analysis in these works is like that of Weiss

and Pinedo [19], but more involved and not particularly relevant to our algorithms.

As in the independent jobs case, we base our algorithm for the stochastic prob-

lem with chain precedence constraints on its deterministic analog. In this case, we

use techniques from the O log(n+m) -approximation algorithm for preemptive mini-

mum makespan scheduling of jobs with chain-like precedence constraints on unrelated

machines shown by Shmoys et al. [18]1. Again, the fixed amounts of processing that

we give as input to this algorithm for each job and the way in which we manipulate

the resulting deterministic schedule are key to proving our approximation ratio. We

also use a chain decomposition from Kumar et. al. [7] to extend our algorithm to an

O(log n log(n + m) log log min {m, n})-approximation algorithm when the precedence

constraints in G form a directed forest.

For the model of scheduling under uncertainty, we show approximation algo-

rithms with ratios that match the results above. This contrasts positively with

'This paper actually presents an algorithm for the non-preemptive case, but it can be trivially
modified to apply when preemption is allowed.



Problem Approximation ratio shown in thesis Previous results for SUU

EXP-I, SUU-I O(log log min {m, n}) O(log n)

EXP-I (restarting) O(log log n)

EXP-C, SUU-C O(log(n + mn) log log min {m, n}) 0 log m log nlogog(M)

EXP-T, SUU-T O(log n log(n + m) log log min {m, n}) 0 log m log 2 lolog(n+)

Table 1.1: A summary of our results. EXP refers to jobs with exponentially distributed
processing requirements, and SUU to scheduling under uncertainty. The designators I,
C, and T refer to the presence of precedence constraints: independent (none); disjoint
chains; and, a directed forest, respectively (see Section 2.1 for a full explanation of
this notation). Previous results for SUU are given by Lin and Rajaraman [11].

the first approximation algorithms for the problem shown by Lin and Rajaraman

[11]. They provide an O(log n)-approximation algorithm when jobs are indepen-

dent, an O log m log n log(+) -approximation algorithm when precedence con-

straints form disjoint chains, and an O (log m log 2 n log(nm) -approximation algo-

rithm when they form a directed forest. We approach the problems in this model

in two stages. First, we show an equivalence between scheduling under uncertainty

and a variant of stochastic scheduling. Next, we construct O(1)-approximation algo-

rithms for the deterministic analogs of these (variant) problems. These algorithms

fit our previous analysis, which in turn yields our result: approximation algorithms

for scheduling under uncertainty. It is instructive to contrast the second stage here

with our approach to stochastic scheduling. In the latter, approximation algorithms

for the deterministic problems have already been shown in previous work. For the

former, we designed novel algorithms. Our techniques here are similar to some used

by Lin and Rajaraman [11], primarily in the details of our LP-rounding.

The research in this thesis is based on preliminary work appearing in Crutchfield

et. al. [3]. Our presentation focuses much more on results for stochastic scheduling

and presents results for scheduling under uncertainty in this framework. Thus, our

exposition is quite different. A summary of our results is presented in Table 1.



1.2 Thesis organization

The remainder of the thesis is organized as follows. In Chapter 2, we formalize our

notation and give necessary definitions and preliminaries. In Chapter 3, we present

approximation algorithms for stochastic scheduling problems with independent jobs.

In Chapter 4, we show approximation algorithms for stochastic scheduling problems

with precedence constraints between jobs. In Chapter 5, we show an equivalence be-

tween scheduling under uncertainty and stochastic scheduling and provide algorithms

for this new setting. We conclude in Chapter 6. Certain proofs, which may be more

technical or distract from the flow of our presentation, are found in Appendix A.



Chapter 2

Preliminaries

This chapter reviews the definitions and notation that will be used throughout the

remainder of the thesis. In Section 2.1, we discuss scheduling problems in the context

of Graham's notation and then introduce a revised naming scheme. In Section 2.2, we

cover instances of scheduling problems, giving notation and explaining our conven-

tions. In Section 2.3, we do the same for schedules, formally defining how machines

are assigned to process jobs. Finally, in Section 2.4, we discuss scheduling algorithms,

the study of which forms the bulk of later chapters.

2.1 Problems

As described in Chapter 1, a machine scheduling problem is defined by a set of con-

straints on jobs and machines together with an objective function. The goal of a

problem, given an instance, is to produce a schedule, compatible with the constraints,

that optimizes the objective function. In this section, we focus on problem definition

and notation. Because of the huge number of possible combinations of constraints and

objective functions, problems are typically written according to Graham's notation.

This notation takes the form of a 1 1 y, with a describing constraints on machines,

p constraints on jobs, and y the objective function.

In this thesis, we study problems of the form R I 3 I E[Cm,,]. R indicates that

the problem considers unrelated machines, where each machine may have a different,



arbitrary speed at which it processes each job. For a machine i and job j, we write

this speed as vi,j. This is the most general class of machines. The two other common

classes are identical and uniform, written P and Q. In the former, all machines

share a single speed and in the latter, each machine has the same speed for all jobs.

Cmax refers to the maximum completion time of any job, so E[Cmax] represents the

objective function of minimizing the expected makespan (equivalently, length) of the

schedule. In our case, this expectation is over the joint probability distribution on job

processing requirements as well as any randomness used to construct the schedule.

There are many more objective functions than machine classes; one common example

is to minimize the weighted sum of job completion times, written E wjC,.

The diversity of the problems we consider is found in 0, their constraints on jobs.

All our problems feature either preemption or restarting. The former allows a job

to be switched from one machine to another at any time (or to be idled and not

run on any machine) without penalty, and is written as pmtn. The latter allows the

same movement, but at the cost of losing all previous processing at each switch, and

is written as rstrt. Because restarting does not play a significant role in the rest of

our analysis, we postpone its discussion until Section 3.2. Returning to preemption,

the simplest problem we encounter is R pmtn Cmax, for which a polynomial

time optimal algorithm is known [8]. The absence of any mention of precedence

constraints means that jobs are independent, with no such constraints among them.

When precedence constraints are present, prec is added to /. We restrict ourselves

to cases where constraints form disjoint chains or directed forests, written chains and

forest. Likewise, the no mention of job processing implies that the processing required

by a job j, written pj, is an arbitrary fixed value provided as input. A problem with

unit jobs would instead have pyj = 1 E 3.

We consider three different types of processing distributions. The first, already

seen, is deterministic (equivalently, fixed) amounts of processing. The next is stochas-

tic, where the amount of processing that a job needs is set randomly according to a

probability distribution provided as input. If a job j requires processing distributed

according to distribution Dj, we add Dj to /. We assume that the mean and median



of these distributions are known and write them as pj and 6j, respectively. We focus

on exponentially distributed processing, in which case we add Aj to 3 (here Aj is the

rate parameter that uniquely defines an exponential distribution). Finally, we con-

sider problems where all that is known about the amount of processing needed by a

job is that it lies in a bounded range. We add range to / in this case, and assume that

Pij [pjmin, Pjmax] Except for the deterministic case, the actual amount of processing

needed by a job remains hidden until it completes.

For scheduling under uncertainty, the only difference between problems is the class

of precedence graphs allowed. All share the following characteristics: jobs require

unit processing and machines have identical unit speed. However, after a machine i

processes a job j for a single timestep, there is some (unrelated) probability qi,j that

it will fail and the job will not be completed. Multiple machines are also allowed

to process a single job at the same time. Machines are allowed to switch between

jobs only at integral times. Thus, machines repeatedly process jobs until they either

complete or fail. The objective function for these problems remains the same as for

those above: to minimize the expected time until all jobs complete.

We do not represent scheduling under uncertainty problems using Graham's no-

tation. Instead, we refer to the family of problems as SUU and append a designator

when referring to a concrete problem with specific precedence constraints. For in-

dependent jobs, we write SUU-1, for disjoint chains SUU-C, and for directed forests,

SUU-T (for tree).

2.1.1 Revised notation

Unfortunately, many of the problems we consider have very unwieldy representations

when written in Graham's notation. For the problem of bounded job processing with

chain precedence constraints, we must write R I pmtn, chains, range I E[Cma]. This

impacts readability and wastes space, as R and E[Cm,] appear in the representation

of almost every problem we consider. We solve this issue by adopting a new notation

similar to that used above to describe SUU.

Throughout the rest of this thesis, we write scheduling problems in sans serif



font as X-Y. Here X encodes how job processing is distributed and Y indicates which

precedence constraints are present. When we discuss the family of problems sharing

similar processing distribution, we write X alone. We consider four classes of pro-

cessing distributions and three classes of precedence constraints. When the amounts

of required processing are deterministic, we take X as FIXED. When they are from

an unknown distribution on a bounded range, we use RANGE; when they are expo-

nentially distributed, we write EXP; and for arbitrary distributions, we use DISTR.

Turning to precedence constraints, when jobs are independent we write Y as I, when

constraints form disjoint chains we write C, and when they form a directed forest, we

write T (for tree, to avoid confusion with the F in FIXED). All problems written in

this way assume preemption is allowed, and when we consider restarting instead we

note it explicitly.

In this new style, R I pmtn, chains, range I E[Cmax] becomes RANGE-C. In con-

trast to Graham's notation, this scheme captures the key characteristics of the prob-

lem without becoming cumbersome.

2.2 Instances

Given a fixed scheduling problem P, we use I to designate a problem instance. As the

problems we consider are closely related, the instances we consider share a similar

structure. We find it convenient to write an instance as I = (J, M, G), where J

describes the set of jobs, M the set of machines, and G the precedence graph. When

precedence constraints form disjoint chains, we sometimes write {Ck} for G and when

jobs are independent, we omit it. As is convention, we refer to the number of jobs in

an instance as n, and the number of machines as m. We often refer to a job as "job

j E J", and a machine as "machine i E M". When job jl is an ancestor of job j2 in

G, we write ji -< i2.

To aid readability, we sometimes replace J, M, and G with a set of variables

sufficient to define them. For example, consider an instance I = (J, M) of EXP-I.

An equivalent representation is I = ({Aj }, {vij }), where Aj gives the rate parameter



of each exponential distribution and vi,j gives the speed of each machine on each

job. An instance I = ({pj}, {vij,}) of FIXED-I differs only by replacing Aj with

the explicit amount of processing pj. This representation is particularly useful when

considering two instances that are somehow related. For example, we can easily

write two instances I, I' of FIXED-I with rescaled processing requirements as I =

({pj}, {vi,j}) and I' = ({2pj}, {vi,j}).

This notation extends easily to scheduling under uncertainty, where we write an

instance as I = (J, {qij }, G). Here qi,j gives the probability that machine i fails to

complete job j after processing it for a single timestep. Note that this is a slight

departure from the original notation of Malewicz [13], where pi,j represents the prob-

ability that machine i successfully completes job j (this conflicts with the standard

use of pj as the processing that a job requires).

2.3 Schedules

A schedule, which we denote by E, describes how machines should process jobs. Fix

an instance I of some scheduling problem P. We represent a schedule for this instance

as a union of machine assignments

A single assignment (i, j, t, z) instructs machine i to process job j from time t to

time t + x; we refer to x as the duration of the assignment. All schedules must obey

the constraints of P. Thus, if I includes a precedence graph G, then for any jobs jl

and j2 such that ji -< j2, each assignment to j2 cannot start until all assignments

to jl have finished. Similarly, with the exception of scheduling under uncertainty,

a schedule may not allow any job to be processed by more than one machine at a

time. Conversely, for scheduling under uncertainty all assignment durations must be

integral. The final requirement is that a schedule complete all jobs. Formally, this is



achieved when

Vj, • xvj Ž Pj

This definition posses some interesting subtleties for problems in EXP and DISTR

where pj may not be known until after some portion of the schedule has executed. The

same is true for SUU, with the caveat that the summation is only over assignments

that successfully complete. This issue is given a full treatment in Section 2.4.

Our analysis will often use the following two properties of a schedule. The length

of a schedule is simply the earliest time by which all jobs have completed. The load

of a machine is the amount of time during which it is assigned to process any job (we

say a machine is idle when it is not processing any job), and the load of a schedule is

the maximum load of any machine. We define these terms formally as

len(E) = max t+x
(i,j,t,X)EC

load(E) = max j x
(i,j,t,X)Cli=i'

Given this definition of length, we can easily define the composition of two sched-

ules El and E2 by delaying all assignments in one schedule by the length of the other.

If we would like E = El -E2, we may construct it as

E2 = U (i,j, t + len( 1) ),x)
(ij,t,x) E E2

E = El1UE'2

We can also rescale the length of a schedule E (and the processing it assigns all

jobs) by a factor of c by taking

E'= U (i, j, ct, cx)
(i~j,t,X)Er,



2.4 Scheduling algorithms

The results shown in this thesis are scheduling algorithms, which we use A to repre-

sent. Given an instance I of a scheduling problem P, a scheduling algorithm A for

P takes I as input and produces a feasible schedule E. That is, E = A(I), and we

will use A(I) in the place of E. We adopt the convention of writing AAp to make it

clear that A is an algorithm is for P . To be concise, we abbreviate our problems with

the first letter of the class of job processing and the type of precedence constraints

involved. For example, we write an algorithm for DISTR-C as ADC.

Of the scheduling problems we will encounter, many of those with fixed job pro-

cessing requirements have existing scheduling algorithms. For example, consider the

following linear program given by Lawler and Labetoulle [8, Section 2], defined on an

instance I of FIXED-I.

(LP1) mint

s.t. E vijxJ >_ py Vj E J (2.1)
iEM

ExiJ t VjEJ (2.2)
jeJ

Zx,, < t Vi M (2.3)
jcJ

xij > 0 Vi e M, j J . (2.4)

Let (t*, {xi }) represent an optimal solution to (LP1), notation that we adopt

throughout the thesis. Here x*j gives the duration (as defined in Section 2.3) for

which machine i should process job j and t* gives a bound on the time required for

assignments with these durations to execute. Equation (2.1) ensures that each job

receives sufficient processing to complete, while Equations (2.2) and (2.3) ensure that

there is enough time for each job to receive (and machine to execute) the assigned

processing. Since all feasible schedules must satisfy these constraints, any schedule

E for I will obey t* < len(E). To complete the analysis, Lawler and Labetoulle [8,

Section 3] show a polynomial time procedure for constructing a schedule of length



t* from {x*j }. Combining (LP1) and this procedure in sequence yields an optimal

algorithm, AFI, for FIXED-I that runs in polynomial time.

As alluded to in Section 2.3, there is a fundamental difference between schedules

for deterministic problems and those for stochastic problems. In the former, schedules

can be fully computed before they are executed. Deterministic behavior ensures that

the act of machines processing jobs changes nothing. This is not the case when the

problem is stochastic. Here, as a schedule executes, information about the amount

of processing jobs require is revealed. Jobs may complete and even if they do not,

the distributions on the amount of processing they need, conditioned on the amount

they have already received, may change.

In this context, we consider dynamic scheduling algorithms. That is, we give

our algorithms the power to pause arbitrarily during the execution of a schedule and

compute new assignments. Essentially, we allow schedules to be constructed on the

fly. Because the algorithms we present run in polynomial time, the number of pauses

is also no more than polynomial. We follow the convention [16, Chapter 9] that

an algorithm running in this way is aware of job completions. We assume that an

algorithm is paused immediately after each job completes (although it may decide to

immediately restart its current schedule).

2.4.1 Approximation and optimal algorithms

As described, the output of the algorithms we present are schedules, and our ob-

jective is, uniformly, to minimize their expected length. Unfortunately, we are un-

able to reach this precise goal. Instead, we provide polynomial time approximation

algorithms. Let OPTp be an optimal scheduling algorithm for a fixed scheduling

problem P with objective function E[Cmax]. By optimal, we mean that for any in-

stance I, and for any algorithm AAp, E[len(OPTp(I))] • E[len(Ap(I))]. Then, we

call an algorithm A'p an a-approximation algorithm for P if, for all instances I,

E[len(A',(I))] 5 aE[len(OPTp(I))]. Here a is the approximation ratio achieved by

A. Because all the algorithms we present run in time polynomial in the size of their in-

put, from this point forward we take approximation algorithm as short for polynomial



time approximation algorithm.

The constraints we place on OPT, are much lighter than those on the approx-

imation algorithms we construct. To begin with, we allow it unbounded time and

space to compute and an unlimited number of pauses. In this context, we could view

the problem as some kind of Markov decision process, but this does not facilitate our

analysis (and also becomes more complex when job processing distributions are not

memoryless). Instead, we give OPT, even more power; we allow it knowledge of pro-

cessing needs at the beginning of its computation. These amounts are still distributed

stochastically, but OPTp knows what they are immediately, whereas our algorithms

only discover them once jobs complete. Our approximation ratios hold against this

more powerful OPTp and thus clearly do so against any weaker sense of optimality.





Chapter 3

Stochastic Scheduling of

Independent Jobs

This chapter covers our approximation algorithms for EXP-I and DISTR-I, where job

processing requirements are distributed stochastically and jobs are independent. We

begin in Section 3.1 by constructing an O(log log min {m, n})-approximation algo-

rithm for EXP-I. In Section 3.2, we show that this algorithm can be modified to apply

when restarting is allowed instead of preemption. In Section 3.3, we extend these

algorithms to work in the DISTR setting, with a slight increase in approximation

ratio.

3.1 Algorithms for EXP-I

The main result of this section is an O(log log min {m, n}})-approximation algorithm

for EXP-1. We take a two-step approach. First, we show an O(log maxj 2P ) -
Pimin )

approximation algorithm for RANGE-I, where the amount of processing needed by a

job is bounded. To take advantage of this result we address the head and tail of the

job processing distributions. That is, we show how to assume that for each job j,

pj [i, 2 In minm,}], while only increasing the expected makespan of schedules by

a constant factor. As the bounds of this range differ by a factor of O(log min {m, n}),

applying our algorithm for RANGE-I yields an O(log log min {m, n})-approximation



algorithm for EXP-I.

We now show an algorithm, ARI, for scheduling an instance I = ({pjmin, Pjmax}, ,M)

of RANGE-I. ARn runs in R = [log maxj 23 m- 1 rounds. In each round it executes
Pimin I

the schedule generated by the optimal, polynomial time algorithm AFI for FIXED-

I presented in Section 2.4. Instances of FIXED-I have jobs with fixed amounts of

required processing, so in round r we set this value to be pý = 2rpJmin for each job j.

A job j that has completed by the beginning of round r has its required processing set

to pj = 0. The schedule executed by ARI(I) in round r is thus AFI (({pr} , M)). We

confirm that ARI(I) completes all jobs as follows. By our choice of R, in the last round
log maxj 2 P3rax

a job j has either completed or has its processing set as 2 P3min Pjmin ! Pjmax"

Thus, all jobs complete by the end of the final round. The following lemma gives a

bound on the length of each round.

Lemma 3.1 Let I be an instance of RANGE-I. Then the length of any round r of

ARI is no more than 2len(OPTRI(I)).

PROOF. By construction, the length of the rth round of ARI is equal to the length

of the schedule produced by AFI for ({p' } , M). We claim that for all rounds r and

all jobs j, p <• 2pj, where pj is the actual (hidden) processing needed by job j. If

this is the case, we can upper bound the length of round r in terms of scheduling jobs

requiring such processing as

len(AFI (({p} , M))) len(AFI(({2p1 },M)))

We further claim that

len(AF(({2pj} , M))) < 2len(OPTRI(I))

This can be seen as follows. OPTRI(I) completes all jobs and thus each job j

receives at least pj processing in this schedule. Repeating it twice gives each job at

least 2pj processing, and thus completes all jobs in an instance ({2pj}, M) of FIXED-

I. Because AFI is optimal, the length of the schedule produced by AFI (({2pi} , M))



must thus be no longer than 2len(OPTRI(I)).

Taking these two bounds together, proving our claim that pj <_ 2pj completes

the lemma. We give a proof by contradiction. Assume that for some r > 1 and j,

p > 2pj (the first round has p = Pmin < Pj). Then pj > pj, so job j must have

completed by the end of round r - 1. However, all jobs completed by the start of

round r have pj = 0, contradicting our assumption. [

ARI(I) runs R = [log maxj 2P - 1 rounds and by Lemma 3.1 each round hasimin
length at most 2len(OPTRI(I)). Thus, ARI is an O(R)-approximation algorithm for

RANGE, which is stated in the following lemma.

Lemma 3.2 ARI is an (log maxj 2J ma x -approximation algorithm for RANGE-I.
Pimin )

Given the nature of the approximation ratio in Lemma 3.2, we would like to reduce

the gap between Pjmin and Pjmax to the extent possible. We thus turn now to handling

jobs that require an amount of processing that is either small or large. We begin by

handling small jobs, which we take to mean requiring processing pj < E[Exp(Aj)] =

1.2 The next lemma shows that the processing that a job requires may be assumed

to be at least this value at very little cost. If this assumption is violated (e.g., a job

completes before it is supposed to), we simply idle any machines that are assigned to

it in the future.

Lemma 3.3 Let I = I' = (J, M) be two identical instances of EXP-I. For I', modify

the probability distributions on job processing so that if a job j requires processing

p < 2 it is increased to p n2 Then E[1en(OPTEI (F'))] 2E[len(OPTEI(I))]

PROOF. Our analysis of I' proceeds as follows. We partition the jobs in J into two

subsets. Those with pj > -2, we place in L. The remainder (which are small) are

placed in L. 1 We consider processing these two subsets of jobs separately and show

that, in expectation, the time spent processing the jobs in L dominates. This remains

true even when the jobs in L have their required processing increased in I'. Then

1We are showing a possible algorithm for OPTEI, and so may assume knowledge of these values.



because the jobs in L have their processing distributed identically in I and I', we are

able to bound the expected length of OPTEI(I') in terms of that of OPTEI(I).

Take L and L to be defined as above and let L* represent the jobs in L with their

processing requirements adjusted. We define the instances IL = (L, M) , I = (L, M),

and I. = (L*, M) of EXP-I to easily express processing these subsets separately. We

observe that for all j, Pr [P3 > i = 1/2 and thus L is a uniform random subset of

J. So, by the law of total expectation we have that

E[len(OPTEI(I'))] = -E[len(OPTEI(I')) L] (3.1)
L

S2n E[len(OPTEI(IL)) I L]

L

+Z E E[len(OPTE(IL .)) L] (3.2)

L

2- E E[len(OPTEI(7L))I L] (3.3)
L

= 2E[len(OPTEI(I'L))] (3.4)

< 2E[len(OPTEI(I))] (3.5)

This sequence is derived as follows. Equation (3.2) holds because it is legal to

schedule by dividing jobs into two subsets and processing them separately (and so

upper bounds an optimal algorithm). The key to the proof is Equation (3.3). Here,

we note that there is a one-to-one correspondence between each value of L* in the

second term and each value of L in the first. Since each job j E L has pj = L, and

each job j E L has pj > [, we conclude that

E [len(OPTEI(I*)) I L] < •ZE[len(OPTEI(IL)) I L]
L L

Because the jobs in L c J have identical processing distributions in both I and

I', Equations (3.4) and (3.5) complete the proof. Ol

Lemma 3.3 shows that we can impose a lower bound on the amount of processing

required by a job at a very low cost. The obvious next step is to combine Lemmas 3.2



and 3.3 to produce a scheduling algorithm that can handle processing distributions

with no lower bound (e.g., pj E [0, pjmax]). The next lemma does just that.

Lemma 3.4 I = ({I, M) be an instance of EXP-I, and let I'= n2 Pmx M)

be an instance of RANGE-I. Let the algorithm A'EI (for EXP-I) schedule according

ARI(I'). Then A'EI will complete all jobs j such that pj < pjmax, and its expected

length will obey E[len(A'EI(I))] < O(maxj log(2pjmaxAj)E[len(OPTEI(I))]).

PROOF. The proof of this lemma is very similar to those of Lemmas 3.1 and 3.2.

As in the proof of Lemma 3.2, any job j uncompleted at the start of the final round

receives at least Pjmax processing, so any job no longer than this will be completed

by A'EI. Lemma 3.1 also holds with the exception of the first round. This exception

arises from the possibility that some jobs may only require processing pj < pjmin -I-n

violating lower bound assumed by ARI. Thus, the expected length of A'EI(I) for all

rounds besides the first is

O (max log ( 2
m x) E[len( OPTEI (I))]) = (max log(2pjmaxA j)E[len( OP TE ())])

( Pjmin 3

To bound the expected length of the first round, wherein all jobs have their re-

quired processing fixed as p= -= n--, we simply apply Lemma 3.3. We conclude that

the expected length of the first round of A'EI is at most 2E[len(OPTEI(I))], and that

the expected length of A'EI remains O(maxj log(2pjmaxAj)E[len(OPTEI (I))]). El

Lemma 3.4 shows that our algorithm ARI for bounded amounts of job processing

also applies when these amounts are exponentially distributed, as long as we ignore

large jobs requiring pj > Pjmax processing. Thus, to provide an approximation algo-

rithm for EXP-I, we need to construct a scheduling algorithm that can also handle

large jobs. We show how to achieve this in the following lemma.

Lemma 3.5 Let I = {J, M} be an instance of EXP-I. Let AEI be a polynomial time

algorithm for EXP-1 that completes only jobs j E J, which satisfy pj < 21nmin{n,m} and

obeys E[len(AEI(I))] < aE[len(OPTEI(I))]. Then there is an (a+O(1))-approximation

algorithm for EXP-I.



PROOF. We begin by executing AEI(I), which completes all jobs with pj 2In min{n,m}

with an expected makespan of aE[len(OPTEI(I))]. We then prove the lemma by pro-

viding a schedule that can complete all the remaining long jobs and has an expected

makespan of only O(E[len(OPTEI(I))]). Here we give such a schedule for the case

when n < m. When m < n, the problem becomes more involved and so we leave the

consideration of this case to Appendix A.

When n < m, we will schedule jobs one at a time (in arbitrary order), assigning

each job to the machine on which it is processed the fastest. It is easy to see that

if any jobs remain uncompleted after executing AEI(I), then the expected makespan

of this schedule is O(nE[len(OPTEI(I))]) . However, the probability that any job

requires processing p I > Ž 21"m (that is, that any long jobs exist) is by the

union bound at most -. If there are no such jobs, then the expected makespan of the

schedule is zero. Thus, by conditional expectation, the expected makespan of this

schedule is O(E[len(OPTEI(I))]). El

If we take Pjmx = 21nmin{n,m} Lemma 3.4 shows that ARI completes all jobs with

length bounded by this value, and has an expected makespan bounded by

O (max log(2pjmax Aj)E[len(OPTEI(I))] = O(log log min {m, n} E[len(OPTE(I))])

Applying Lemma 3.5 then yields an O(log log min {m, n})-approximation algorithm

for EXP-I, which we restate in the theorem below.

Theorem 3.6 There is an O(log log min {m, n})-approximation algorithm for EXP-I.

3.2 Restarting instead of preemption

In this section we show how to modify our previous algorithms to yield an O(log log n)-

approximation algorithm for EXP-I when restarting is allowed instead of preemption.

Recall from Section 2.1 that under restarting, whenever a job switches machines its



processing is reset to zero. To complete all jobs, a schedule E must then satisfy

Vj C J 3(i,j,It,Ix) E s.t. xvij >_pj

Restarting is a more realistic restriction than preemption because of the penalty

it enforces on job movement. It is also a middle ground. Because our algorithms

from Section 3.1 rely on composing schedules constructed independently, none of

our techniques would apply in the non-preemptive case, where each job must run

uninterrupted on one machine until completion. Instead we take the middle ground,

requiring a job to receive all necessary processing from a single machine, but allowing

earlier abortive attempts.

We begin by modifying our algorithm for RANGE-I to work with restarting. We do

this by having it schedule according to the 2-approximation algorithm for R I Cmax

(in which each job must run uninterrupted on exactly one machine), shown by Lenstra

et. al. [10], instead of the optimal algorithm for FIXED-I (R I pmtn I Cmax) described

in Section 2.4. The next lemma shows that this modification does not affect our

approximation ratio.

Lemma 3.7 There is an O(log maxi2Jrmax) for RANGE-I when restarting is allowed
Pimin

instead of preemption.

PROOF. Let A'FI be the 2-approximation algorithm for R ICm Cx shown by Lenstra

et. al. [10] and I be an instance of RANGE-I with restarting. We follow the con-

struction of ARI from Section 3.1, scheduling multiple rounds with fixed processing

requirements that double each round. However, we schedule each round according to

A'FI(({p( }, M)) instead of AFI(({p} , M)). We assume that jobs will be switched

every round, and so reset the processing of all uncompleted jobs at the end of a round

to zero.

We claim that when applied to I, each round of this new algorithm takes time

at most 4len(OPTRI(I)) (note that in throughout section we take OPT to imply

restarting rather than preemption), and that all jobs complete by the final round.



The first claim follows directly from the analysis in Lemma 3.1, substituting A'FI for

AFI and restarting for preemption. The constant here increases from 2 to 4 because

A'FI is a 2-approximation, whereas AFI is optimal. The second claim is true because

each job that is uncompleted by the start of the final round receives at least Pjmax

processing in that round. Thus, all jobs will complete by the end of the final round

even though their processing is reset each round.

A'FI is non-preemptive and, thus, during the round in which a job j completed, it

must have received sufficient processing from a single machine without interruption.

This ensures that the completion condition from the beginning of the section is met.

We turn this result into an O(log log n)-approximation algorithm for EXP-I with

restarting by following the analysis in Section 3.1. First we apply Lemma 3.3, showing

that for an instance I of EXP-I, the algorithm given by Lemma 3.7 completes all jobs

having pj < 2n with an expected makespan of O(loglogn -E[len(OPTEI(I))])

Any jobs that remain uncompleted are then run with one-at-a-time scheduling, again

adding a factor of only O(E[len(OPTEI(I))]) to our expected makespan. Crucially,

neither the proof of Lemma 3.3 nor one-at-a-time scheduling relies on EXP-I being

preemptive. Thus, we can apply them without change, yielding the following theorem.

Theorem 3.8 There is an O(log log n)-approximation algorithm for EXP-I when restart-

ing is allowed instead of preemption.

Unfortunately, the analysis of our O(log log m)-approximation algorithm for EXP-I

does depend on allowing preemption. In particular, it relies on executing multiple in-

dependent schedules and applying the resulting cumulative processing to jobs. Thus,

we are unable to generalize this result to apply with restarting instead of preemption.

3.3 Generalizing to DISTR

In EXP-I, all jobs have their required processing distributed exponentially. However,

our approximation algorithms have used only a few basic facts about the exponential



distribution and are easily adapted to arbitrary distributions (although our approxi-

mation ratios suffer). In this section, we give approximation algorithms for problems

in DISTR. Recall from Section 2.1 that for problems in this class, the processing

needed by a job j is set according to an arbitrary probability distribution 1Dj with

mean pj and median 6j.

There are two places where previous analysis relied explicitly on the distribution

of processing amounts. First, the median of the distribution was frequently used

as a "lower bound" on the amount of processing required by a job. For the expo-

nential distribution, this value is V and it appears very frequently throughout the

previous two sections. It should be changed to 6j for DISTR; the analysis itself is un-

changed beyond this substitution. As an example, consider the following restatement

of Lemma 3.3.

Lemma 3.9 Let II1 = 2 = ({ j} , M) be two identical instances of DISTR-I. For I2,

modify the probability distributions on job processing such that if a job j is assigned an

amount of processing pj < 6j, it is increased to pj = 6j. Then E[len(OPTDI(I2))] <

2E[len( OPTDI(I ))].

Second, the tail of the exponential distribution is used in Lemma 3.5 to ensure that

after allocating 2 In minn,m} to a job, it completes with probability at least 1- min {n2,m2}

For DISTR this upper bound should be changed. For each job j, let bj be the minimum

value such that Pr [pj > by] < max{1/n 2,1/m 2}. Then bj should replace uses of
2 In min{n,m. Again, the analysis remains the same after this replacement. By Markov's

Aj

Inequality, bj is at most 2npj, but tighter upper bounds may be possible depending

on the {Dj } provided. The following lemma restates Lemma 3.5 using bj.

Lemma 3.10 Let I = (J, M) be an instance of DISTR-I. Let ADI be a polynomial

time algorithm for DISTR-I such that E[len(ADI(I))] < aE[len(OPTDI(I))], that com-

pletes only jobs j E J which satisfy pj < by. Then there is an (a+O(1))-approximation

algorithm for DISTR-I.

We now state our approximation algorithms for DISTR-I. This algorithm may be

constructed as in the previous sections, with the modifications explained above.



Theorem 3.11 There is an O (maxj log -)-approximation algorithm for DISTR-I.

Let bj be the minimum value such that Pr [pj > bj] 5 1/n2 . Then our approxi-

mation algorithm for DISTR-I can be extended to an O (maxj log -approximation

algorithm when restarting is allowed instead of preemption, as shown in Section 3.2.



Chapter 4

Stochastic Scheduling of Jobs with

Precedence Constraints

This chapter covers our approximation algorithms for EXP and DISTR when there

are precedence constraints between jobs. We begin in Section 4.1, where we show an

O(log(n + m) log log min {m, n})-approximation algorithm for EXP-C. In Section 4.2,

we generalize this result to an O(log n log(n + m) log log min {m, n})-approximation

algorithm for EXP-T. Finally, in Section 4.3, we show that these results apply in

the DISTR setting with a slight increase in approximation ratio (as in Section 3.3).

None of the algorithms in this chapter apply when restarts are allowed instead of

preemption.

4.1 Algorithms for EXP-C

Unfortunately, our results in Chapter 3 do not hold for EXP-C, the variant of EXP with

precedence constraints composed of disjoint chains. The failure occurs in Lemma 3.2,

which does not hold when RANGE-I is generalized to RANGE-C. At issue is the lemma's

assumption that all jobs are eligible for processing from the start of the algorithm.

This is not true for instances of RANGE-C, where jobs are eligible only after their

predecessors complete.

Because these algorithms do not apply beyond EXP-I, in this section we take a



different tack. We are eventually able to show an O(log(n + m) log log min {m, n})-

approximation algorithm for EXP-C, and using a chain decomposition developed by

Kumar et. al. [7], an O(log n log(n + m) log log min {m, n})-approximation algorithm

for EXP-T. Following the approach of Shmoys et. al. [18] and Lin and Rajaraman [11],

we begin by relaxing EXP-C to allow pseudoschedules.

In a pseudoschedule for an instance I = (J, M, G) of EXP-C, a machine may pro-

cess two jobs il, j2 E J simultaneously if they are independent of each other (that

is, neither jl -- j2 nor j2 - 1 jl). The congestion of a pseudoschedule is then the

maximum number of jobs that any machine ever simultaneously processes (a pseu-

doschedule with congestion one is thus a schedule). Pseudoschedules are otherwise

identical to schedules; in particular, they must still obey precedence constraints. The

length and load of a pseudoschedule are defined identically to those of a schedule

(these definitions were presented in Section 2.3). We write pseudoschedules with E,

and when we consider a pseudoschedule as opposed to a strict schedule, we mention

this explicitly.

This relaxation allows us to treat the jobs lying on each chain separately, which

will prove crucial to our analysis. We will show a "pseudoscheduling" algorithm for

FIXED-C, and then prove that it produces pseudoschedules of length O(OPTEc(I))

when job lengths are set as pj = l2. Then, we will adapt this algorithm to apply

to EXP-C. This technique is similar to our analysis in Section 3.1, but much more

involved. Finally, we will reduce the congestion of the pseudoschedules produced to

one, yielding the desired approximation algorithm for EXP-C.

Consider the following linear program for an instance I = (J, M, {Ck}) of FIXED-

C, which is essentially a restatement of one presented by Shmoys et. al. [18, Section

4.3].

(LP2) mint

s.t. :zi,jvi, 2 p Vj jE J (4.1)
iEM

iM,,j < dj Vj EJ (4.2)
iEM



E dJ < t VgE {1,2,...,k} (4.3)
jEC9

zi,j < t ViEM (4.4)
jEJ

•,j > 0 Vi E M, j J (4.5)

Here xij gives the amount of time that machine i should spend processing job j,

and dj gives the length of the window during which j should be processed. Equa-

tion (4.1) ensures that all jobs receive sufficient processing. Equations (4.2) and (4.3)

ensure that there is enough time to execute all assignments while still obeying prece-

dence constraints. Finally, Equation (4.4) bounds the load of the machines. We

let (d, x*j,t*) be an optimal solution to the linear program. Let -. be the partial

order on jobs defined by {Ck}, and define an arbitrary total order on the machines

i E M. We define the time at which machine i should start to process job j as

start(i, j) = Ej, d, + i',<i x,j. The pseudoschedule produced by our algorithm is

then given by

AFC(I) = U {(i, j , start(i, j), start(i, j) + xij))
i,j

By construction, in this pseudoschedule, a job j is processed only during a window

of length d . Further, this window starts after all of j's predecessors in G have

completed, and ends before any of j's successors have received any processing. This

guarantees that no machine will process two jobs lying along the same chain at the

same time. Each machine i processes for a total of j Ix* time so machine loads are

bounded.

To simplify later analysis, we convert AFC to allocate assignments of discrete

duration. Let f = mini,j ' We round x j down to the nearest multiple of f and

then double it (hence all assignments are integral multiples of f). By our choice of f,

maxj -i •L p < p. This implies that our rounding reduced the processing of each job

at most by half, so that doubling ensures that all jobs receive sufficient processing.

Note that this procedure at most doubles t*.

We now move from FIXED-C to EXP-C. We begin by showing an upper bound on



the length of AFc(I) in terms of the length of the optimal pseudoschedule OPTEc(I')

for a closely related instance I' of EXP-C.

Lemma 4.1 Let I = ({pj }, M, G) be an instance of FIXED-C, and I' = ({Aj I, M, G)

be an instance of EXP-C, such that for each job j, pj = . Then len(AFc(I)) 5

O(E[len(OPTEC (I'))).

PROOF. The value of t* (before rounding) is shown to be a lower bound on

E[len(OPTFc(I'))] by Shmoys et. al. [18], and thus len(AFc(I)) < O(len(OPTFc(I))).

To complete the proof, we show that for an instance of EXP-C, setting the minimum

processing pj required by a job j to be L2 only increases the expected length of the

optimal pseudoschedule by a constant factor. That is, we show that Lemma 3.3 still

holds for EXP-C with pseudoschedules. Precedence constraints complicate proving

this claim, so we present the remainder of this proof in Appendix A. O

Our next step is to transform AFC into a pseudoscheduling algorithm for EXP-C.

Thus, we need to handle jobs that require processing pj > . We will construct a

schedule for each chain C, independently, and then show good bounds on the length

and load of the pseudoschedule that executes all of them simultaneously1 . We will

find it helpful to look at the projection of AFC onto certain jobs. Given an instance

I, we will write A(I)IQ to refer to the projection of A(I) onto the jobs Q c J (that

is, to ignore all assignments to jobs not in Q).

The intuition underlying the algorithm we present is as follows. For a single chain,

if we consider only jobs that are short enough (e.g., have dj small compared to t*),

then we can schedule them by repeatedly executing AFc(I)k{j} until j completes. By

standard Chernoff bound arguments, the time it takes for all short jobs along a chain

C, to complete in this scheme will be O(t*) with high probability. The core of the

problem is then jobs that are long with respect to t*. Here we show how to schedule

these jobs with the algorithm for independent jobs shown in Section 3.1.

'Because we are creating a pseudoschedule, we can consider jobs on different chains independently
of each other.



We now describe a schedule AEc(I), which processes the jobs in chain Cg. For

each job j E Cg, we check whether dj _ £good = log(+m). If so, we call j good.

•EC processes good jobs by repeatedly executing AFC(I)kj} until j completes. If

dy > fgood, we then we say j is bad. When AEC(I) encounters a bad job, it inserts a

blank of length £good into its schedule. That is, it delays the processing of j's successor

in C, (if it exists) by fgood timesteps. Of course, bad jobs must be processed somehow.

We describe how this is done below.

Our pseudoscheduling algorithm AEC executes all Ag in parallel. Every fgood

timesteps, we pause AEC(I) (and thus all AEC(I)). At each pause, we check every

AgEC(I) and see if it is currently blanked on a bad job. Let B C J be the set of such

jobs. AEc(I) then schedules these jobs according to the scheduling algorithm for

independent jobs shown in Theorem 3.6 and unpauses the AEc(I). This technique is

feasible because all jobs in B are from distinct chains and so are independent of each

other. This completes our description of AEC-

Our next step should clearly be to transform AEC from a pseudoschedule into a

schedule. To do this, we will need bounds on both the length and load of AEc(I) (the

reason for this second requirement becomes apparent once we present Lemma 4.4).

For ease of analysis, we break these quantities into two parts: that which accrues

during the good part of AEC, when it is processing good jobs, and that which accrues

in the bad part of AEC, when it is processing bad jobs. Because we pause every fgood

timesteps during the good part of AEc(I) to handle bad jobs, it makes sense to bound

the length of the good portion first. We use the following technical lemma to prove

our bounds; its proof appears in Appendix A.

Lemma 4.2 For each j C {1, 2,..., n}, let yj be a positive integer drawn from the

geometric distribution Pr [yj = k] = (1/ 2 )k (where k is a positive integer), and let bj 2

1 be a weight associated with each j. Let W and 1 be chosen such that W/ log r 2 bj

for all j, W > Ej 2bj, and log r < W. Then Ejj byy <_ O(cW) with probability at

least 1 - 1/Ac, for any positive constant c.

We can use Lemma 4.2 to obtain a high probability bound on both the length



and load of the bad portion of AEc(I). Recall that (d, Ix, t*) represents an optimal

solution to (LP2). Let W = t*, r~ = n + m, and yj be the number of times AFC(I)I{j}

is repeated before job j completes. If we set bj according to dj = len(AFC(I)I{j}),

the lemma implies that with high probability the good portion of AEC(I) has length

O(E[len(OPTEc(I))]). If we instead fix i and set bj = x*, then applying Lemmas 4.1

and 4.2 with a union bound over machines shows that the load of the good portion

is O(E[len(OPTEc(I))]), again with high probability.

We now turn to the bad portion of AEC(I). We concern ourselves only with

its length. Given the results in the previous paragraph, the number of times AEC(I)

pauses is bounded by O(log(n + m)) with high probability, because with this probabil-

ity the length of the good portion is bounded by O(E[len(OPTEc(I))]), and we pause

every ed = (ei(PTEcI))] timesteps as it executes. By Theorem 3.6 the expected

time required to handle each pause is O(log log min {n, m} E[len(OPTEc(I))]). Thus,

we see that with high probability, the total length of this portion is bounded by

O(log(n + m) log log min {n, m} E[len(OPTEI(I))]) as well. We restate these results

in the lemma below.

Lemma 4.3 With probability at least 1 - , both the load and length of the good

portion of AEC(I) are bounded by O(E[len(OPTEc(I))]). The length of the bad portion

of AEC(I) is bounded by O(log(n + m) log log min {n, m} E[len(OPTEc(I))]) with the

same probability.

To convert AEC(I) to a schedule, we need to eliminate the congestion in the good

part of the pseudoschedule (since the bad part of AEC(I) is a schedule, we do not

need to modify it).2 Recall that the congestion of a pseudoschedule is defined as the

maximum number of jobs any machine is assigned to process simultaneously. Thus,

to produce a feasible schedule, we must reduce the congestion of AEC(I) to one.

This ensures that each machine is processing only a single job at a time. We take

a first step towards eliminating congestion by applying the random delay technique

2We note, ironically, that what we previously considered to be the good portion of our pseu-
doschedule is now problematic.



developed by Leighton et. al. [9] (and later used by Shmoys et. al. [18]), described in

the lemma below.

Lemma 4.4 Let I = (J, M, {Ck}) be an instance of EXP-C, and E be a pseudosched-

ule for I that satisfies load (E) = poly(n + m). Let the pseudoschedule E' idle each

chain Ck E G for a random integral time chosen from [0, load (E)], and then schedule

according to E. Then the congestion of E' is Q lolg(n+) ) with probability at least9 (I \loglog(n+m)-) with probability at least

1 - 1/n.

Note that to use Lemma 4.4, AEc(I) must have load that is polynomial in (n+m).

We claim that this can be assumed and provide a proof in Appendix A.

Claim 4.5 The pseudoschedule AEC(I) may be treated as though its load is polyno-

mial in (n + m).

We apply Lemma 4.4 to the good portion of AEC(I). With high probability, we

may take the congestion of the result to be O log(nm). Because of the bound we

showed in Lemma 4.3 on the load of this part of AEc(I), applying Lemma 4.4 does

not (asymptotically) increase its length.

At this point, all that remains is to remove the last bit of congestion left by

Lemma 4.4. We do this by rescaling time when processing good jobs. Recall that

the good portion of AEC(I) consists of repeatedly executing projections of AFC (I).

Because AFC(I) was modified to allocate assignment durations as integral multiples

of f = mini,j ~ all machines will be processing the same set of jobs throughout

an interval of this length. Thus, if we slow down time by a factor of 0 ( log(n+m)
log log(n+m)

there will be enough time in a single interval for each machine to serially process all

jobs it was assigned. With high probability, rescaling time in this way eliminates all

congestion from AEc(I) and yields a schedule.

The length of the good portion of the newly "schedulized" AEC(I) increases by

a factor of 0 log(n+m) but (by Lemma 4.3) is still dominated by that of the

bad portion. Finally, to show our result in expectation we revert to one-at-a-time

scheduling if any of the events we require fail to take place. Since this occurs with



probability O(1/n), it adds only O(E[len(OPTEc(I))]) to our expected makespan.

We now state the section's main theorem.

Theorem 4.6 There is an O(log(n + m) log log min {m, n})-approximation algorithm

for EXP-C.

Unfortunately, this approximation algorithm does not extend to the case in which

restarting is allowed instead of preemption. Specifically, in the good portion of

AEC(I), we depend on the the cumulative processing of the repeated (and delayed)

projections of AFC(I). Thus we are unable to restart jobs when these "sub-schedules"

complete.

4.2 Algorithms for EXP-T

In this section, we extend the approximation algorithm shown in Theorem 4.6 to

apply to EXP-T, where precedence constraints form a directed forest. We achieve

this by using a chain decomposition, which allows us to use this algorithm essentially

unmodified for instances of EXP-T. However, we do pay an O(log n) penalty in the

resulting approximation ratio.

Given an instance I = (J, M, G) of EXP-T, a chain decomposition as defined by

Kumar et. al. [7] is a partition of jobs into disjoint subsets (called blocks) so that each

block, along with the subgraph of G it induces, forms a valid instance of EXP-C. That

is, the precedence constraints between the jobs in any block must form vertex-disjoint

chains. These blocks also support an ordering that is consistent with G. Thus, if job

jl precedes job j2, and the two are placed in distinct blocks, jl will be in the earlier

block.

Given an instance I of EXP-T and a chain decomposition of I into w blocks, we

consider blocks in topological order, scheduling each one according to the algorithm

given in Theorem 4.6. Clearly, this yields an O(w log(n + m) log log min {m, n})-

approximation algorithm for EXP-T. This algorithm also does not extend to the case

where restarting is allowed instead of preemption, as it uses Theorem 4.6 as a sub-

routine. We use the following lemma shown by Kumar et. al. [7] to upper bound



the number of blocks in the chain decomposition of any directed forest. Theorem 4.8

follows immediately.

Lemma 4.7 Every dag G whose underlying undirected graph is a forest has a (poly-

nomial time computable) chain decomposition into O(log n) blocks.

Theorem 4.8 There is an O(log n log(n + m) log log min {m, n})-approximation al-

gorithm for EXP-T.

4.3 Generalizing to DISTR

The same arguments made in Section 3.3 to show that EXP-I generalizes to DISTR-I

apply to both EXP-C and EXP-T generalizing to DISTR-C and DISTR-T (respectively).

Thus, when the processing that a job j requires is set according to an arbitrary

probability distribution Dj with mean pj and median 6j, and bj is defined as the

minimum value such that Pr [pj > bj] < max {1/n 2, 1/m 2}, we have the following

theorem.

Theorem 4.9 There is an 0 log (n + m) maxj log ) -approximation algorithm for

DISTR-C. There is an, O (log n log(n + m) maxj log -) approximation algorithm for

DISTR- T.





Chapter 5

Scheduling Under Uncertainty

This chapter presents approximation algorithms for problems in SUU, where jobs

require unit processing and machines probabilistically fail. In Section 5.1, we show

an equivalence between problems in SUU and those in a variant of EXP, EXP*, and

then develop O(1)-approximation algorithms for analogous deterministic problems in

FIXED*. These fit with our techniques from Chapters 3 and 4 and yield approximation

algorithms for problems EXP* with ratios matching those achieved for EXP.

Following this outline, in Section 5.2 we show an O(1)-approximation algorithm

for FIXED*-I, which yields an O(log log min {m, n})-approximation algorithm for SUU-

I. In Section 5.3 we show an O(1)-approximation algorithm for FIXED*-C. This yields

both an O(log(n + m) log log min {m, n}1)-approximation algorithm for SUU-C and an

O(log n log(n + m) log log min {m, n})-approximation algorithm for SUU-T.

5.1 Transforming SUU to EXP*

The overall goal of this chapter is to construct approximation algorithms for SUU. It

will be convenient for us to rely, to the extent possible, on the techniques developed

in Chapters 3 and 4. We begin by reducing from problems in SUU to problems in (a

variant of) EXP. It will be instructive to review the key similarities and differences

between SUU and EXP. This will help us understand intuitively why such a reduction

is possible.



Recall from Section 2.1 that the problems in SUU all consider unit jobs and ma-

chines with identical speed, allowing preemption but requiring integral assignment

duration, while problems in EXP have the amount of processing required by a job

exponentially distributed and machine speeds unrelated. Both sets of problems share

the objective of minimizing expected schedule length. Beyond these superficial dif-

ferences, SUU differs in two key ways from typical machine scheduling problems in

general, including EXP in particular. First, after processing a job j for a unit timestep,

a machine i may fail to complete it with some independent, unrelated probability qi,j.

Second, SUU allows multiprocessing, so a job may be processed by multiple machines

simultaneously.

With the above in mind we modify EXP, moving it closer to SUU. To this end

we introduce two new problem constraints. First, let int represent the require-

ment that machines must process jobs for integral duration. Next, let mp (for

multi-processing) represent a relaxation allowing multiple machines to process a sin-

gle job simultaneously. Adding these constraints to EXP, we write the result as

R I pmtn, int, mp, pj - Exp(Aj) I E[Cmax] according to Graham's notation. Hence-

forth, we will refer to this class of problems as EXP*, although we note that this

is a slight abuse of our notation if we consider mp to be a constraint on machines.

We represent the analogous family of problems with fixed processing requirements by

FIXED*.

Using the Principle of Deferred Decisions [14], we now argue that an instance

I = (J, {qi,j}, G) of SUU is equivalent to an instance I' = ({Aj = 1}, {-Inqij}, G)

of EXP*, for any precedence graph G.

Lemma 5.1 Let Y be an arbitrary class of precedence constraints and I = (J, {qij} , G)

and I' = ({Aj = 1}, {- In qij} , G) be instances of SUU-Y and EXP*-Y. Then any al-

gorithm AE*Y for EXP*-Y can be used to schedule both I and I' and furthermore,

E[len(AE*y(I))] = E[len(AE*y(I'))].

PROOF. We view the processing of a job in I as a sequence of coin flips. From this

perspective, when machine i processes job j for a single timestep, it flips a coin with



bias qi,j, and completes j if it heads. Using the Principle of Deferred Decisions, for

each job j and machine i, we flip these coins in advance, before the schedule for I

begins executing. We then reveal them as necessary when machines process jobs. If

we have revealed a set of coins S for job j, each with bias qij for some i G M. Then

the probability that all coins are tails (and j does not complete) is 1 - ,s qi,j.

We consider the act of revealing a coin with bias qi,j to require - In qi,j processing.

Thus, if we let Xj be the amount of processing required before heads is revealed for

job j, then for any set of coins revealed S, Pr [Xj < - Es In q,j] = 1 - e- Es Inq,j

Thus, Xj is exponentially distributed with A = 1 for all j E J. Because EXP* allows

multiprocessing and schedules only in integral durations, we see that I and I' are

simply two different views of the same problem instance. Finally, we note that our

analysis is independent of precedence constraints (because jobs become eligible in the

same way in EXP* and SUU), so this result holds for arbitrary precedence graphs.

Given this equivalence between instances of problems in SUU and EXP*, we will

show that SUU and EXP* are equivalent with regards to approximation algorithms.

This allows us to construct approximation algorithms for EXP* and have them apply

to SUU, and we build on this technique in later sections.

Theorem 5.2 There is a (polynomial time) reduction from a-approximation algo-

rithms for problems EXP* to a-approximation algorithms for problems SUU.

PROOF. Let I and I' be two equivalent instances of SUU-Y and EXP*-Y as defined

in Lemma 5.1. Take AE*Y to be an a-approximation for EXP*-Y. By the same lemma,

we have that E[len(AE*y(I))] = E[len(AE*y(I'))]. This also applies to optimal al-

gorithms, implying that OPTsy(I) cannot be larger than OPTE* y(I'). Combining

these results, we see that

E[len(AE*(I))] E[len(AE*y(I'))] <
E[len(OPTsy(I))] - E[len(OPTE* y(')) -

47



Thus .AE*Y is an a-approximation algorithm for SUU-Y.

As mentioned at the outset of this chapter, we take advantage of Theorem 5.2

by applying the techniques of Chapters 3 and 4 to EXP*. Specifically, for our earlier

results to apply to EXP*, we need only replace algorithms for FIXED with ones for

FIXED*. This is because our change to requiring integer assignment durations and

allowing multiprocessing does not effect the parts of our algorithms that handle the

stochastic nature of job processing requirements. We codify this idea in the claim

below; it may be verified by inspection.

Claim 5.3 An O(a)-approximation algorithm for EXP-I, which operates according

to the framework shown in Section 3.1, and an O(1)-approximation algorithm for

FIXED*-I are sufficient to show an O(a)-approximation algorithm for EXP*-I. By The-

orem 5.2, this in turn yields an O(a)-approximation algorithm for SUU-I as well. An

analogous result holds for EXP-C when the O(1)-approximation algorithm for FIXED*-

C is allowed to produce a pseudoschedule.

5.2 Algorithms for SUU-I

In this section, we construct an O(1)-approximation algorithm for FIXED*-I. As de-

fined in Section 5.1, this problem concerns jobs requiring fixed amounts of work and

integral assignment durations that may be multiprocessed. By Claim 5.3 and The-

orem 3.6, such a result shows an O(log log min {m, n})-approximation algorithm for

SUU-I.
Multiprocessing is relatively easy to accommodate, so we first present a straight-

forward optimal algorithm when it is allowed. This initial algorithm may generate

schedules whose assignments have non-integral duration. Then as is standard, we

demonstrate a rounding procedure that produces integral assignments. Finally, we

prove that our rounding only increases the lengths of schedules by a constant factor

and conclude that we have shown an O(1)-approximation algorithm for FIXED*-I.



Consider the following linear program, defined on an instance I = ({pj }, {vij}) of

FIXED*-I. It is identical to (LP1), save for the removal of Equation (2.2). We delete

this inequality because in this setting a job may receive processing from multiple

machines at the same time, and so a feasible schedule for I need not obey it.

(LP3) min t

s.t. Ivi,jxij > p Vj E J (5.1)
iEM

I:x,j < t ViEM (5.2)
jeJ

xij > 0 i E M, j J . (5.3)

As in (LP1), we let (xij, t*) represent an optimal solution to the linear program,

with x* giving the duration for which machine i should process job j and t* a bound

on the length of the schedule. Equation (5.1), like Equation (2.1), ensures that every

job receives sufficient processing. Equation (5.2), like Equation (2.3), guarantees

that all machines have enough time to complete their assignments. Clearly, t* <

OPTF.I(I). If we define an arbitrary order on jobs and define start(i, j) = E•<j xi*

as the time that machine i should start to process job j, then given integral {xj }
we can easily create a schedule E for I as

E = U (i, j, start(i, j), start(i, j) + xij)
i,j

Note that this schedule does nothing to prevent multiple machines from processing

a job j simultaneously (as opposed to AFI for FIXED-I, which does). We now show

how to round the {x j } to integers while only increasing the makespan of the schedule

by a constant factor. We begin our argument by slowing down some of the machines.

Lemma 5.4 Let v = min {vi,j,pj}. Then we can replace Equation (5.1) with

-iKEMV1i,Jx j Ž p Vj E J (5.4)



PROOF. If machine i processes job j at all, then (if {xij } are integral) it will process

it for at least one timestep, so *,j will be at least one. In this case, when vij > Pj, the

job j receives more processing than it requires. We ignore this "surplus" processing by

setting v(, = min {vi,j pj}, without affecting the length or feasibility of the resulting

schedule. O

Next, we round down all speeds to the nearest power of two, so that v,,j = 2 k for

some k. This is safe to do because it can only make our schedule longer. We assume

that minij v,j = 2, which can easily be achieved by scaling up both machine speeds

and job processing needs. Thus k will range from 1 to maxj [log pjJ.

We consider the total processing that each group of machines sharing a rounded

speed performs on a job j. For each j and integer k, we define this value to be

dj,k = Z: v=k *j. Then for all j E J

Pj • Vfxi, < 2 dk2k (5.5)
iEM k

Now we show that a schedule of length [2t*] can be generated from {dj,k } alone,

using maximum network flow. This approach (computing a scheduling from group

assignments using network flow) is also used by Lin and Rajaraman [11, Section 4],

but our construction is more general, and will achieve a better approximation ratio.

Lemma 5.5 Let I = (J, M, G) be an instance of FIXED*-I. Given ({dj,k} t*), it is

possible to construct a schedule E, such that len(E) < [2t*], which completes all jobs

in J.

PROOF.

The network flow instance we describe is an augmented bipartite graph. On the

left, we have a vertex Uj,k, for each job j and speed 2
k . On the right, we have vertex

wi for each machine i. We add an edge with infinite capacity between Uj,k and wi

when v,j = 2 k; for each pair i, j there is exactly one such k for which this is true. We

refer to this edge as (j, i). 1 Later, we take the flow across edge (j, i) to represent the

'By adding this edge, we signify that it is possible for machine i to process job j with speed 2
k .
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Figure 5-1: An example network flow instance from Lemma 5.5 with two
jobs, two machines, and two rounded speeds. The rounded speeds here are
{v = 2, 2 = 4, = 2, 2 = 2}. There is no outgoing edge from l1,2 because
no machine processes ji with speed 4 (thus, d*,2 should be zero).

duration with which machine i should process job j.

We augment our graph by adding a source node s and an edge (s, Uj,k) to each

Uj,k. As we are interpreting flow as duration of processing, we give each of these edges

capacity 2d),k (recall that we rounded speeds down to the nearest power of two, so

we must double the length of assignments). This ensures that each job receives the

correct amount of processing from machines with each rounded speed. We also add

a sink node z and an edge (wi, z) from each wi to z. We set the capacity of these

edges to be uniformly [2t*] and thus no machine will have a load larger than this.

An example is presented in Figure 5.1.

We compute a maximum flow on this graph and take the flow across edge (j, i)

to represent the duration for which machine i should process job j. Thus, saturating

all (s, Uj,k) edges is sufficient to yield a feasible schedule (because this gives each job

2dj,k processing on machines i with v, j = 2k as required). We prove that this is the

case by showing that the minimum cut (and hence the maximum flow) is equal to

2 Ek -j dj,k, which forces the saturation we seek.

Consider a minimum cut of this graph where the vertices have been partitioned

into two disjoint sets X 1, X 2 such that s E X1 and w E X 2. If there exists any edge

f2t-ý
)



(j, i) with one vertex in X 1 and one vertex in X 2 , then the cut has infinite value.

Thus either X1 = {s} or X2 = {z}, in which case the value of the minimum cut is

clearly 2 Ek l]j d,k < 2t*. By duality, this is also the value of the maximum flow.

Finally, we construct our schedule from the set of assignments { xj = flow((j, i)) },
as we did with the assignments given by (LP3).

Ford-Fulkerson's theorem [2, 5] states that an integral max flow exists whenever

capacities are integral. In the network constructed above, all edges have integral

capacity, save, possibly, those for edges (s, Uj,k) to which we assigned capacity d*,k. 2

Thus if all {di,k } are integral, then the assignments in E will be, too. We now show

that rounding dk to L3dkj maintains feasibility.

Lemma 5.6 Applying Lemma 5.5 with ({ [3d,k] } , 3t*) yields a feasible schedule.

PROOF. The arguments made in the proof of Lemma 5.5 imply that for the network

flow instance constructed with these parameters, a maximum flow saturates all edges

outgoing from the source s. This means that each job j will be processed for [3d,k]

time by machines i with speed vi, = 2
k . What we must show is that this much

processing completes all jobs. More formally, we claim

Vj E J, [L3d,k 2k >kpj
iEM k

Consider an arbitrary job j. Because v'j < pj for all i, the maximum value of k

having nonzero dj,k is [logpjJ]. Thus we have that

SL3d;,kj 2k > Z 3d;,k2k- 2k

k k k<logpj

S3pj E pi
k=O

> 3 p j-2p = p
2This is why we used [2t*1 instead of simply 2t*.



Intuitively, this tells us that rounding the group assignments {(d, k } down to in-

tegers can cause a job j to lose at most 2pj processing. Giving an assignment where

each job j is processed as though it has length 3pj then guarantees that j will receive

pj processing after being rounded down.

D

We can now state the section's main theorem.

Theorem 5.7 There is a O(log log min {m, n})-approximation algorithm for SUU-I.

PROOF. For an instance I of FIXED*-I, we have described a polynomial time al-

gorithm, which produces a feasible schedule of length [6t*] < 7t* = O(OPTF*I(I)),

and is thus an O(1)-approximation algorithm for FIXED*-I. The theorem then follows

from Claim 5.3 and Theorem 3.6.

D

5.3 Algorithms for SUU-{C, T}

In this section we show an O(1)-approximation algorithm for FIXED*-C (integral dura-

tion assignments, multiprocessing, chain precedence constraints) when pseudosched-

ules are allowed. We follow the outline of Section 5.2, applying results from Chapter 4

to show an O(log(n + m) log log min {m, n})-approximation algorithm for SUU-C and

an O(log n log(n + m) log log min {m, n})-approximation algorithm for SUU-T.

We begin by presenting a linear program for an instance I = ({pj}, {vi,j , {Ck})

of FIXED*-C, which produces an optimal pseudoschedule with assignments that vi-

olate our integrality constraint. Then we perform a rounding that yields integral

assignments while increasing the length of the schedule by only a constant factor.

The linear program is very similar to (LP2) from Section 4.1.

(LP4) mint



s.t. E xijvi,j p Vj E J (5.6)
iEM

xij < dj Vj C J (5.7)

Scd t Vg {1,2,...,k} (5.8)
jECg

E Xij _ t Vi EM (5.9)
jEJ

dj 1 V E J (5.10)

x,, 0 Vi E M, j C J (5.11)

Equations (5.6) and (5.9) are identical to Equations (4.1) and (4.4), and ensure

that sufficient processing for jobs and bounded load for machines. Equations (5.7)

and (5.8) reprise Equations (4.2) and (4.3), and ensure that there is enough time

to execute all assignments. Note that Equation (5.7) removes the summation over

i E M from Equation (4.2), thereby allowing multiprocessing. Equation (5.10) has

been added to force every job to be processed for at least one timestep.

Again we let (ij, d, t*) represent an optimal solution to (LP3), and note that

t* < OPTF*c(I). Define start(j) = Ej,,j dj to be the start of the window during

which job j will be processed. Then, as in Section 5.2, we can generate a feasible

pseudoschedule E from an integral solution to (LP4) as

E = U(i, j, start(j), start(j) + xz*j)
i,j

Thus, we would like to show a rounding procedure that results in a pseudoschedule

with integral assignment durations and makespan O(t*). We follow the rounding

shown in Section 5.2, with one modification. In Lemma 5.5, we set the edge capacity

for each edge (uj,k, wi) to be [6dj*, rather than infinite. The same arguments made in

Lemma 5.6 show that this modification does not change the maximum flow or prevent

jobs from receiving sufficient processing. The time to process any chain Cg increases to

at most cj,,c 6dj* , which is upper bounded by EjECg 7dj < 7t* = O(OPTF.c(I)).

This construction yields the main result of the section.



Theorem 5.8 There is an O(log(n + m) log log min {m, n})-approximation algorithm

for SUU-C, and an O(log n log(n + m) log log min {m, n})-approximation algorithm

for SUU-T.

PROOF. We have shown an O(1)-approximation algorithm for FIXED*-C when pseu-

doschedules are allowed. Applying Claim 5.3 and Theorem 4.6 yields the algorithm

for SUU-C. Applying Lemma 4.7 to this algorithm produces the algorithm for SUU-T.

D





Chapter 6

Conclusion

In previous chapters, we presented a series of polylogarithmic approximation algo-

rithms for a diverse family of stochastic scheduling problems. We summarize our

results in terms of two key contributions. First, in Chapters 3 and 4 we showed the

first non-trivial approximation algorithms for the EXP (exponentially distributed job

processing) family of preemptive minimum makespan scheduling problems. These

included an O(log log min {m, n})-approximation algorithm for EXP-I, shown in Sec-

tion 3.1; an O(log(n + m) log log min {m, n})-approximation algorithm for EXP-C,

shown in Section 4.1; and an O(log n log(n + m) log log min {m, n})-approximation

algorithm for EXP-T, shown in Section 4.2. In Sections 3.3 and 4.3, we demonstrated

how simple changes to our analysis allowed the algorithms above to apply to problems

in DISTR (arbitrarily distributed job processing) with a small increase in approxima-

tion ratio. In Section 3.2, we gave matching approximation algorithms for EXP-I and

DISTR-I when restarting is allowed instead of preemption.

Second, in Chapter 5 we extended our techniques to cover problems in SUU (where

jobs require unit processing and machines probabilistically fail). In Section 5.1, we

showed a reduction from problems in SUU to problems in EXP*, a variant of EXP.

Then, in Sections 5.2 and 5.3, we constructed O(1)-approximation algorithms for

problems in FIXED*, the fixed processing analog of EXP*. Coupled with analysis

from Chapters 3 and 4, this allowed us to show approximation algorithms for SUU-I,

SUU-C, and SUU-T with ratios matching those for EXP-I, EXP-C, and EXP-T.



There are two clear avenues for extending our work. Improved approximations

algorithms with better ratios might be possible for the problems we have explored.

We do not know of any lower bounds on achievable approximation ratios for these

problems and, indeed, are not convinced that our bounds are tight. Also, an im-

provement in our algorithm for EXP-I would immediately yield improvements to our

algorithms for EXP-C and EXP-T, where it is used as a subroutine. However, it does

not seem likely that our current techniques will easily yield further improvements as

they depend on the approximation algorithm shown for RANGE-I, where the optimal

algorithms we consider have a very large advantage.

We have also not presented any approximation algorithms for precedence graphs

more general than directed forests. This is the second logical place to consider fur-

ther work. Unfortunately, the picture here is less rosy. Any more general stochastic

scheduling result would likely also yield an approximation algorithm for the deter-

ministic case. No such approximation algorithms are currently known, which leads

us to believe that generalizing our algorithms to wider classes of precedence graphs

will pose more difficulty than finding, for example, an O(1)-approximation algorithm

for EXP-I.
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Appendix A

Proofs

This appendix presents all necessary proofs that were not shown in the main body of

the thesis.

A.1 Proof of Lemma 3.5

Lemma 3.5 Let I = {J, M} be an instance of EXP-I. Let AEI be a polyno-

mial time algorithm for EXP-1 that completes only jobs j E J, which satisfy pj <
21nmin{n,m} and obeys E[len(AEI(I))] 5 aE[len(OPTEI(I))]. Then there is an (a +

O(1)) -approximation algorithm for EXP-I.

PROOF.

We finish the proof of the lemma given in Section 3.1 by showing how to construct

a schedule to handle jobs with length pj > 2in, given that m < n. Our schedule will

have expected makespan O(E[len(OPTEI(I))]), and thus be sufficient to complete the

proof.

We begin by considering the schedule Eti = AFI 2( , M)). Our schedul-

ing algorithm will repeatedly execute Etail. As we do this, jobs will complete and we

will be able to execute Etail in less time (by ignoring assignments to completed jobs).

We can derive a tight bound on how much time will be saved from analysis by Lawler

and Labetoulle [8, Section 3], who show that for FIXED-I, a set of assignments {x',j}

can be turned into a feasible schedule E' such that



len(E') = max max xij, max :Xi
iEM jEJ ieM

Recall that the projection of a schedule onto a set of jobs J' C J, written Ejy,

ignores assignments in E to jobs not in J'. Let Jq C J be the set of jobs that

remain uncompleted at the start of the qth repetition of Ztail, and {x, } be the set

of assignment durations in tail. Then on its qth repetition, ta'il can be executed in

length

len(Etailliq) = max {max E max
jEJ, iEM

Let L = len(Etail) = len(Etailj). Then once len(Etailljq) 5 lnmL, we can scale

all assignments by a factor of i'm. This rescaled schedule then has length L, and

executing it will complete all jobs j with pj < . At this point, we can schedule re-

maining jobs with one-at-a-time scheduling, at a cost of O(E[len(OPTEI(I))]). Thus,

if we let qmax be the smallest q such that len(Etaiiyq) •5 jnmL, then we can bound the

length of our algorithm, Atail, as

qmax

len(Atail(I)) • L + E len(Etail•jq)
k=1

Where the initial L cost comes from our execution of the rescaled schedule. Thus, we

can complete the proof by showing that

EL + E len(Etaillj, < O(E[len(OPTEI(I))])
k=1

We approach this problem as follows. Let X, be a random variable taking as its

value the smallest number of repetitions such that len tail Jx,< leI<tail) If we let

Pmax = log n n - log ln m + 1 be the number of times len (tuaiijq) must halve before

we can switch to one-at-a-time scheduling, then we can express the expected length



of Atail as

Pmax L

E[len(Atail(I))] < E[L] + E E[(Xp - X 1 ) 2(A.1)
p=l

= E[L] + E[(X, Xi - p) E (A.2)
i=p

Pmax len(OPTEI(1

= E[L] + E[(Xp - Xi-p)] en 2II (A.3)
p=l

Here, Equation (A.1) holds because i is an upper bound on the length of

all repetitions of Etail after Xp, 1. Equation (A.2) holds because L is independent

of {Xp}; that is, the length of the schedule does not effect how quickly it shrinks.

Finally, because all jobs remaining at the first execution of Etail satisfied pj > 2 1n

and AFI is optimal,

L = len(Ettail) = len AF 2 , M < len(OPTEi(I)) ,

which yields Equation (A.3).We will show that for all p, E[(X, - X,_1)] = 0(1).

Combining this assertion with Equation (A.3) shows that the expected length of our

schedule obeys E[len(Ataii(I))] < O(E[len(OPTEI(I))]). As stated at the outset of

the proof, this is sufficient to prove the lemma.

Consider an arbitrary repetition q of Etail. Let h' = maxieM Ejcj x*j be the

maximum load (across remaining jobs) of any machine, and hq = maxj~y, icM xz*

be the maximum time during which any job is processed. We will show that with

probability at least 1, the larger of these values will drop by a factor of two after

a single repetition of Etail. Thus, with probability at least !, we will have that

max h +2 , h } < max{ , h q}. Since len(EtailJq) = max{h , hq}, this yields

with probability at least 1/4, len(Etaiijq+2) _< len(Etailiq). Since we took q to be

arbitrary, we can take q = X,1, thus showing that for all p, E[(Xp - Xp-1)] = 0(1).

In the analysis below, we assume that m > 4. If this is not the case, we can create

four "virtual" machines by slowing time by a factor of four, and assigning a different



virtual machine at every fourth instant, only increasing the above expectation by a

constant factor.

Assume h' > h . Call a job j E Jq long if -ieM x* > h2 . By our bound on

hQ , the number of bad jobs is at most 4m. Because the exponential distribution is

memoryless and each job j receives 2 processing according to Etail, the probability

that a job does not complete after a single repetition is at most -. Thus, the

expected number of long jobs remaining after one repetition of Etail is at most 2. By

assumption, m > 4, so Markov's Inequality yields that the probability any long jobs
remain is at most 1. It is easy to confirm that min h - > , so that eliminating

2 J 2 - 2

all jobs halves h .

Now consider the remaining case, when h q > hq. As above, the probability that

any job survives a repetition of Etail is < -. Thus, in expectation, the load of each

machine decreases by this factor after one repetition. By Markov's Inequality, the

probability that a single machine's load does not drop by a factor of at least I is at

most -L. Taking a union bound over all machines, the probability that any machine

does not halve its load is at most 2-, by assumption less than .

A.2 Proof of Lemma 4.1

Lemma 3.5 Let I = ({pj }, M, G) be an instance of FIXED-C, and I' = ({A( }, M, G)

be an instance of EXP-C, such that for each job j, pj = -. Then len(AFc(I)) •

O(E[len( OPTEc(I'))]).

PROOF. Let II = 12= J, M, {Ck}} be two identical instances of EXP-C. For 12,

modify the probability distributions on job processing such that if a job j is assigned

an amount of processing pj < L-2, it is increased to pj = xL-n. We finish the proof of

the lemma given in Section 4.1 by showing that when pseudoschedules are allowed,

E[len(OPTEc(I2))] 5 2E[len(OPTEc(I1))].

We would like to follow the proof of Lemma 3.3, but the addition of precedence con-



straints invalidates Equation (3.2). This is because dividing jobs into subsets and pro-

cessing them separately may violate these constraints. Thus, we show how to modify

the proof of Lemma 3.3 to address this problem. Recall that in Lemma 3.3, jobs with

pj > -2 are placed in the set L, and the remainder (which pose a problem because

they are too short) are placed in L. L* then represents the jobs in L with their lengths

increased to The instances I = (L, M) , I= (L, M), and I. = (L*, M) of

EXP-I were then defined and scheduled separately. We modify these instances in

the following straightforward way: let IL = (L, M, z((Ck))) , I = (L, M, z(Ck)),

and IL. = (*, M, z({Ck})). Here z() shortcuts the jobs in each chain that are not

present, as it does not make sense to consider the original chains after jobs have been

partitioned.

We show now that Equation (3.2) holds for these redefined instances. Let EL be

an optimal pseudoschedule for IL and E*. for IL.. We construct a pseudoschedule -j

for I' as follows. For each chain C,, consider the jobs it contains in topological order.

Schedule each such job j according to EL" -. *b. As defined, Ej allocates sufficient

processing to all jobs, and has length and load bounded by the sum of those of EL

and E-*. Thus, Equation (3.2) holds.

The proof of the lemma thus follows from the remainder of the proof for Lemma 3.3.

We note that relaxing to pseudoschedules is crucial, because it allows us to consider

the the partition of jobs separately for each chains.

A.3 Proof of Lemma 4.2

Note that this proof is essentially verbatim from Crutchfield et. al. [3].

Lemma 4.2 For each j E {1, 2,..., n}, let yj be a positive integer drawn from

the geometric distribution Pr [yj = k] = (1/ 2 )k (where k is a positive integer), and

let bj > 1 be a weight associated with each j. Let W and 77 be chosen such that

W/logy _ bj for all j, W > Ej 2bj, and log 7 < W. Then Ej bjyj O(cW) with

probability at least 1 - 1/Ac , for any positive constant c.



PROOF. First, we round all the by up to the next power of 2, grouping them by

value. We let Zk be the set of j such that by obeys

w/(2k log ,) < bj < W/(2 k- 1 log T)

for each k E {1, 2,..., [log(W/log ) 1}. We observe that

j k l jEZk

and thus our goal is first to bound ECjZk Yj near its expectation.

To bound ZjEZ.k Yj, we view each yj as the length of a sequence of fair-coin flips

that terminates when flipping the first "head." Thus, their sum exceeds some value

qk (to be assigned later) when qk fair-coin flips do not yield IZkj heads. Let Qk

be the sum of qk Bernoulli random variables with expectation 1/2 (i.e., Qk is the

number of "heads" in a size-qk set of fair-coin flips). Then we have Pr [Qk < I Zk

Pr [jEZk• j > qk]

We will bound Pr [3k s.t. Qk < 4Zkll < r-c by taking a union bound over all k.

Note, however, that k ranges over roughly log W values and W is not a function of

a Ir, so we need a stronger bound than Pr [Qk < IZkl] _< -c. Instead, we set qk such

that Pr [Qk < IZk ] < r-c2-k. Then taking a union bound over all k gives probability

at most
log(W/ log 7r) 00

3 <-c2-k < ,-c 2-k -c
k=1 k=l

that there exists a k such that EjEZk Yj > qk. Thus if we set qk = e(c(IZkl +log q+k))

and apply a Chernoff bound for Pr [Qk < 1Zk ], we achieve the desired probability

bound.

Thus, with probability at least 1 - 1/7rc, we are left with

Zby < W e(c(IZk + log r + k))
j k



0C W Zklog r+ k
= O c)+ O cWZ

< Oc b) +0 cW 1+k
i k=1

= O(cW)

where the third line of the derivation follows from the restriction that W > >j 2bj.

A.4 Proof of Claim 4.5

Claim 4.5 The pseudoschedule AEc(I) may be treated as though its load is polyno-

mial in (n + m).

PROOF. Lemma 4.4 applies only to pseudoschedules with bounded load. Here, we

would like to apply it to the good portion of AEC(I). Letting (xij,dd, t*) be an

optimal solution to (LP2), we have from Lemma 4.3 that load (AEc(I)) = O(t*) =

O(E[len(OPTEc(I))]). We ignore the case when this is not true, as we revert to one

at a time scheduling there. Thus, if t* > nm, we adopt the following procedure,

originally given by Lin and Rajaraman [11].

Round down x.! to the nearest multiple of tI. Call this value xi•. We construct

A4FC(I) from these revised assignments and, viewing them as integers in the range

{0, 1,..., O(nm)}, apply Lemma 4.4. However, each job j is now missing x* - x,j <

t processing from machine i. Thus, whenever we execute AFC(I)I{j} while processing

good jobs, we add back in I processing for j on each machine i. During this special

additional processing, we allow only one machine to be active at a time (and thus

do not impact the congestion of AEc(I)). Each time we execute AFc(I)Ij} (for any

j) we pay a total cost of L in length. Since every such execution completes j withn

probability 1, the total cost paid by all jobs in expectation is only 2t*. Thus, we

have successfully applied Lemma 4.4 while increasing the expected makespan of our

schedule by only O(E[len(OPTEc(I))]), which is negligible in our later analysis. O




