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ABSTRACT
This work deals with the modeling of homogenized few-group cross sections by Artifi-
cial Neural Networks (ANN). A comprehensive sensitivity study on data normalization,
network architectures and training hyper-parameters specifically for Deep and Shallow
Feed Forward ANN is presented. The optimal models in terms of reduction in the library
size and training time are compared to multi-linear interpolation on a Cartesian grid. The
use case is provided by the OECD-NEA Burn-up Credit Criticality Benchmark [1]. The
Pytorch [2] machine learning framework is used.

KEYWORDS: Homogenized Cross Sections, Machine Learning, Artificial Neural Networks, Supervised
Learning

1 INTRODUCTION

Few-group cross sections come from transport calculations where the neutronic flux is computed
using a detailed discretization in energy and space. These are real valued scalar functions ob-
tained through an homogenization process over a d-dimensional rectangular domain, which can be
mapped to the unit hypercube X = [0, 1]d. Lattice calculation points deliver the few-group cross
section set Y = {σirg(x)→ R, x = (x1, . . . , xd) ∈ X} for each specialized isotope i, of the decay
chain used by the core solver, reaction type r and group g. Cross sections usually present smooth
profiles with possibly strong variations in localized regions and low order dependence among the
variables. The modeling goal consists in finding the approximations σ̂irg ' σ,∀σ ∈ Y .

The transport code APOLLO2.8 [3] was used to generate cross section data for the OECD-NEA
Burn-up Credit Criticality Benchmark, whose material and geometrical specifications are fully
available in [1]. It consists of a typical PWR fuel assembly composed of 17×17 UO2 fuel rods
with 4% w/o 235U enrichment and with 25 guide tubes. Spatial homogenization is performed over
the whole assembly with energy condensation to the thermal and to the fast groups (cutoff energy
at 0.625 eV). We analyze the cross sections that capture the majority of the macroscopic cross
section behavior (high ratio σirgCi/

∑
iCiσirg being Ci the concentration of the i-th isotope).

2 MODELING CHALLENGES AND STATE OF THE ART

Ordinary reactor studies for fuel cycle optimization, transient simulations and control analysis need
to resolve the multi-physics coupling with other codes where cross sections models are dealing with
ever growing volumes of data. Many industry applications approximate homogenized cross sec-
tions by a first order piece-wise polynomial interpolation, here called Multi-Linear (ML), usually
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adopting a Cartesian sampling rule for X [4]. In this schema data are simply stored to be fastly
interpolated on demand. However, the number of data points may grow exponentially with increas-
ing dimensions issuing the “Curse of Dimensionality” [5] being the library size |Y|×

∏d
i=1Xi with

Xi the coordinates in the i axis of the samples. Many points may be necessary to achieve accu-
rate reconstruction with target cross section relative errors laying between 1E− 1 and 1E− 2 [6].
Classical techniques such as higher order approximation spaces, projection into sub-libraries or
regression with global polynomials [5] have been used to address this problem, though incurring
sometimes in high localized errors or polynomial degrees [7]. Other works have focused instead on
a smarter sampling of X by Active Learning procedures that select the most informative points [8],
or by Sparse Grid rules that may impose nonetheless additional constrains on the functional space
used [6]. Effort has been put forward to face these interrelated challenges through methodologies
that try to avoid a priori assumptions on the approximator’s structure, while still finding a tailored
X for the emerging model [9].

ANN constitute an alternative to these methods, allowing to approximate functions without formu-
lating explicit relations among the variables. In regression problems they are sometimes referred
to as black-box universal approximators [10]. ANN have been applied in a broad range of nuclear
engineering problems such as core parameter prediction and control, fuel management optimiza-
tion, transient diagnosis and inventory estimation [11]. Yet, the design of an optimal ANN remains
a difficult iterative process due to the high amount of free parameters, the wide range in which
they can vary and the strong inter-dependence among them. Few works can be found in litterature
on cross section modeling by ANN. Good performances were obtained in [12] but using simple
architectures in 1-dimensional domains. We will focus on a sensitivity analysis for the main as-
pects of ANN modeling applied to cross sections, demonstrating its applicability to an industry
case and discussing its performance. Each cross section is approximated by an independent ANN,
postponing more complex network designs with several outputs for instance, for future studies.

3 ARTIFICIAL NEURAL NETWORKS

ANN are computing systems composed of processing elements called neurons that, connected to
each other, emulate their biological counterparts. In a Feed Forward ANN the information travels
forward through the layers, thus the name. They are called Shallow ANN with only one layer and
Deep ANN with more. The strength of the connections between neurons are called weights and
we consider only neurons that are fully connected between layers. Non-linear activation functions
f complete the output of the neurons from a given layer enabling the network to learn complex
patterns. A layer considers a linear combination in the form f(Wiz+bi) with the biases bi ∈ R and
the vector of weights Wi ∈ RNi) for Ni neurons of the layer i. For L layers the output of an ANN
is σ̂ = fL ◦ fL−1 ◦ · · · ◦ f 1(x), x ∈ X . The ANN parameters are determined by a training process
which is a supervised learning task, based on the minimization of a loss function L. A training set
provides the samples used in a forward pass to calculate σ̂, thus allowing to estimate the gradients
in order to minimizeL(σ, σ̂). The gradients modulated by the learning rate α are used to update the
weights and the biases in a computationally convenient back-propagation pass. The approximation
power of an ANN lays in the network capability to adapt without imposing prior task-specific rules
by a training process that may become computationally expensive. It is customary to divide the
training data into batches and an iteration on the whole training set completes an epoch.

Even for a classical Feed-Forward ANN the amount of free parameters to consider is rather large.
The design of the ANN requires to define the amount of hidden layers, neurons per layer, activation
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function, parameter’s initialization and possible regularization. Preprocessing of data is mandatory.
Training hyper-parameters must be chosen as well: learning rate, number of batches, loss function
with possible regularization, etc. This inter-dependent corpus of choices defines the sensitivity
studies to perform.

4 RESULTS

The Pytorch package was used [2], and our script is available online under MIT license [13]. The
model’s accuracy is set forth in terms of the mean average error ME =

∑M
i=1 abs(σ̂i− σi)/M , and

the mean average relative error MRE =
∑M

i=1 100abs(σ̂i/σi − 1)/M being M the size of the set.
The model’s relative error over all cross sections is TE =

∑|Y|
i=1 MREi/|Y|.

We consider the linearly independent variables: the Burnup (0 - 45 GWd/t), the Fuel Temperature
(500 - 1000 ◦C) and the Boron Concentration (300 - 800 ppm) sampled in a 170 × 16 × 16 grid
totalizing 43520 data points. The number of dimensions is thus d = 3 and the data set is divided in
a randomly sampled Train/Test split of 80/20 %. Train data are further divided in 5 randomly sam-
pled batches aiding the optimizer (Adam [2]) to exit local minima, and so 5 network adaptations
occur per epoch. Test data is reserved to check the generalization capability of the model.

NORMALIZATION AND TRAINING HYPER-PARAMETERS

Sensitivity analysis were performed by varying relevant model parameters independently. Follow-
ing literature recommendations we considered a Shallow ANN with number of neurons N = 20
and activation function f(x) = tanh(x) due to its good mapping capabilities, zero mean and
smooth output [11]. Test MRE at 1E5 epochs is presented in Tables 1, 3, 4 for the cross section
U235

f,2 and Σa,1 where the optimal parameters are highlighted in green. In each study the parameters
which are not varied remain in green. Data normalization has a strong effect in the gradient’s
absolutes values and thus in the overall training process. Different combinations for X and Y are
presented in Table 1. Without cross section normalization the optimizer is unable to converge with
errors of 100%. Normalizing by max(σ(x)) bounds cross section values to 1. X is already nor-
malized to the unit hypercube and errors are not decreased further when considering only for the
burnup

√
Bu. Using log(σ) and zero mean did not improve the results in a significant way. Nor-

malizing by the variance on the other hand, exhibits the best results. Different initializations of the
weights using Random, Normal, Uniform or Xavier-Uniform distributions (see [2]) were analyzed
with negligible impact in the MRE and L profiles. The loss functions considered are presented
in Table 4, and SmoothL1Loss is detailed in [2]. With respect to the MRE, the L1 loss function
showed the best results, as expected with respect to the MRE error. The activation function af-
fects the convergence during training and the evaluation cost of the ANN. Results with different
activation functions are reported in Table 3.

The learning rate α modulates the actualization of the weights influencing the convergence rate
and the optimizer’s possibility of escaping local minima. If it is too high the algorithm may not
converge and if it is too low it may do so too slowly. This behavior is confirmed: for α = 0.1
errors fluctuated up to 2 orders of magnitude around a MRE of 5E − 1 while for α = 0.00001
it converged smoothly but very slow. A value of α = 0.001 is chosen as a good compromise.
Different numbers of batches of 1, 5, 100 and 1000 were tested. A single batch exhibits relatively
slow convergence and slightly higher errors, whilst with 1000 batches stronger error fluctuations
with increase computational cost was observed. A value of 5 is chosen as good compromise.
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MRE
x ∈ X ∀σ ∈ Y U235

f,2 Σa,1

- σ/max(σ) 3E− 1 2E− 1√
Bu σ/max(σ) 2E− 1 2E− 1√
Bu σ −mean(σ)← log(σ)/max(log(σ)) 1E− 1 2E− 1√
Bu σ/var(σ)← σ −mean(σ) 2E− 2 3E− 2

Table 1: Data normalizations.

MRE
N U235

f,2 Σa,1

2 2E− 1 5E− 1
5 3E− 2 2E− 1
8 2E− 2 4E− 2
15 2E− 2 3E− 2
20 2E− 2 3E− 2
30 2E− 2 3E− 2

Table 2: Increasing N in Shallow ANN.

f(x)
MRE

U235
f,2 Σa,1

HardS (see [2]) 2E− 1 3E− 0
ReLu max(0, x) 2E− 2 1E− 1
Elu max(0, x) +min(0, ex − 1) 2E− 2 6E− 2
Sigmoid (1 + e−x)−1 2E− 2 6E− 2
Tanh (ex − e−x)(ex + e−x)−1 2E− 2 3E− 2

Table 3: Activation functions.

L(σ̂, σ)
MRE

U235
f,2 Σa,1

mean(abs(σ̂ − σ)) 2E− 2 3E− 2
SmoothL1Loss 2E− 2 5E− 2
mean((σ̂ − σ)2) 2E− 2 8E− 2
max(abs(σ̂ − σ)) 1E− 1 1E− 1

Table 4: Loss function.

ANN ARCHITECTURE

MRE errors for Shallow ANN with varying number of neurons are presented in Table 2 were
N = 8 suffices to reach the target accuracy. Actually, error profiles during training are quite
similar for N ≥ 8 at least up to 1E5 epochs. The amount of neurons defines the degrees of freedom
of the model thus shaping its approximation power, provided a proper training. Fewer neurons
imply a simpler parameter space to explore, faster training times and a resulting smaller library
size which is also faster to process. We identify a Shallow ANN with N = 8 as the smallest
network to analyze with the industry data set.

For a fully connected ANN with N neurons, L layers, I = 3 inputs and O = 1 outputs the
amount of parameters |ANN | = (L − 1)N2 + (I + L + O)N + O. We compare Shallow and
Deep architectures in the search of minimal error and convergence trends using a constant library
size. We first consider simple “rectangular” ANN of approximately constant number of parameters
layers L = 1, 2, 3, 4, 5 and neurons N = 50, 13, 9, 7, 6, respectively. The MRE errors for the U235

f2

are presented in Fig. 1.a where each layer is separated by “/” in the scheme. Errors decrease
monotonically up to 1E3 epochs. Then, fluctuations are noticed since the Adam optimizer explores
the parameter space to escape a possible local minimum. More than a single layer provides smaller
errors and faster convergence, specially for 2 or 3 layers. Test and training errors are similar since
cross sections tend to be smooth noise-free functions and training data abundant (with respect to
cross section variance) in this 80/20 split. In Fig. 1b we analyze other types of topologies suggested
from literature, without noticing further improvement in these settings. The other cross sections
show similar results. The 2-layer ANN 13/13 shows the best performance.
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(a) (b)

Figure 1: MRE for U235
f2 for ANN (a) constant number of neurons per layer (b) common
architectures with varying neurons per layer.

INDUSTRY DATA SET

We analyze the two ANN of interest on a smaller discretization of [35× 6× 6 = 1260] as it could
be used in industry for this range of variables. Only 3% of the data is used for training while the
rest is for testing. Cross section’s ME for the N = 8 ANN is presented in Fig. 2.a. Though
some separation between test and train error can now be noticed, the network was able to properly
generalize even for this significantly smaller data set. Multi-linear (ML) errors marked with a star
were in general achieved only after a relatively high amount of epochs. For arriving TE = 1E− 1
however, only 6E3 epochs were actually required. ME for the ANN N = 13/13 is shown in
Fig. 2.b for which a TE = 1E − 1 is reached at an even lower number of 7E2 epochs. For this
N = 13/13 ANN and smaller data set after 1E5 epochs over-fitting starts to occur and test errors
stagnate or even increases for some cross sections. Train errors on the contrary keep diminishing
even reaching ML for all cross section as the set is being memorized by the network. Different
regularization techniques are available for ANN that could be implemented to improve these result
such as dropout, batch normalization or a standard L2 regularization.

An error histogram for the ANN N = 13/13 discriminated by cross section is presented in Fig.
2.c at 7E2 epoch. It shows centered means, and low overall errors without tails. In Fig 2.d the
TE and the reduction, defined as 100(1 − |ANN |/|ML|) i.e., the ratio of parameters in the ANN
model with respect to mulit-linear, is presented for these cases. Errors are reported at 1E6 epochs
except for the N = 13/13 ANN with the industry data set which is at 2E4 epochs (early stop
criterion). All ANN errors are lower than 1E − 2 and a significant reduction of up to 99.7% is
obtained. In general, cross section can be considered smooth noiseless functions and if enough
train data is available (with respect to the degrees of freedom of the ANN) as is the case with the
80/20 split, train errors are quite representative of test error. ANN are regression approximations
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and approaching the accuracies of interpolating models can prove challenging as evidenced by the
large amount of epochs required or the over-fitting difficulties with a slightly bigger N = 13/13
ANN on a small data set. However other techniques, not explored in this work, allow to further
increase the accuracy by adding special ANN that explicitly model the residual of the train error
and to augment the reduction in the library size by eliminating weights and biases unimportant in
the network.

(a) N = 8 (single layer) in industry set. (b) N = 13/13 (two layers) in industry set.

(c)

Model TE 80/20 Industry

Multi-Linear
Test 1.2E− 3 1.9E− 2

Size 36096 1260

ANN (N = 8)
Train 4.7E− 2 3.9E− 2

Test 4.4E− 2 7.3E− 2

|ANN | 41

Reduction 99.8% 96.7%

ANN (N = 13/13)
Train 9.0E− 3 2.1E− 2

Test 8.5E− 3 6.0E− 2

|ANN | 222

Reduction 99.4% 82.3%

(d) N = 13/13 in industry set

Figure 2: (c) Error histogram discriminated by cross section. (d) Total error (TE) and
reduction for the 80/20 % and the Industry data set. Common legend for the cross sections.
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5 PERFORMANCE REMARKS

For the ANN considered in this work training and evaluation times are presented in Table 5. The
hardware used was a CPU of 24 cores of 2300 MHz and 126 GB of RAM with a GeForce GTX
1080, Python 2.7 and Cuda 10.1 [14]. Training times are given per epoch including a single
network adaptation (only one batch equal to the train set). The training time of an epoch ranges
from 1E− 3 to 1E− 1 depending on the availability of GPU acceleration.

As considered in this work 1E6 epochs and 5 batches a non-negligible calculation time of about
3h/ANN/σ may be required whereas for 7E2 epochs only a few seconds. An evaluation vector of
size 5E5 was considered and times are expressed per evaluation point. These were quite compatible
with industry requirements about 1E− 5 seconds especially if GPU acceleration is available.

N
GPU CPU

Training [s/epoch] Evaluation Training [s/epoch] Evaluation
80/20 Industry [s/point] 80/20 Industry [s/point]

8 2E− 3 2E− 3 1E− 9 7E− 3 1E− 3 2E− 8
50 2E− 3 2E− 3 2E− 9 2E− 2 2E− 3 3E− 7
200 3E− 3 2E− 3 4E− 9 1E− 1 5E− 3 1E− 6

13/13 3E− 3 3E− 3 8E− 10 2E− 2 3E− 3 1E− 7

Table 5: Training and evaluation times for a single ANN.

6 CONCLUSION

ANN were used to approximate few-group homogenized cross sections for a standard PWR UO2
fuel assembly using a randomly sampled Train/Test split of 80/20 % and a representative industry
case. Sensitivity studies were performed for the main aspects of ANN modeling: data normaliza-
tion, network architecture and training hyper-parameters. Results were compared to multi-linear
interpolation in a Cartesian grid, pointing out the capabilities of ANN to reduce the storage re-
quirements for the fitting coefficients.

About the preprocessing, considering the cross section’s variance and, to a limited extent, the
square root of the burnup showed the best results. Naturally an L1 loss function outperformed
others with respect to the mean absolute error. Changing the number of batches, parameter initial-
ization and activation function showed negligible changes in the error evolution. Values suggested
by the literature proved to be adequate, especially for the learning rate.

Provided a constant amount of degrees of freedom (library size), considering 2-3 layers improved
the error convergence rate with respect to a Shallow ANN. As evidenced by fluctuation in the
training error at a high amount of epochs, a few layers seem to provide a richer parameter space
for the optimizer. Architectures with different numbers of neurons per layer did not offer any
relevant advantage. With the 80/20 % split, where the train data has a size of ∼ 3.6E4, cross
sections train errors were systematically representative of test error.

Two ANN models of interest were retained for the industry data set: the first characterized by fast
convergence and low error, composed of two layers (N = 13/13), and the second one for maximal
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reduction of a single layer (N = 8). They were able to achieve an acceptable error 0.1% after short
training of 6E3 and 7E2 epochs for the ANN of N = 8 and N = 13/13 respectably. Nonetheless
the multi-linear errors were not reached for all cross section even after 1E6 epochs and the N =
13/13 showed over-fitting in this smaller industry data set. Evaluation times were quite compatible
with the expected industry standard though CPU training times could become prohibitively large,
specially for ANN counting more than a few neurons without GPU acceleration. For the two ANN
of interest with the two considered train set a significant reduction of up to 99.8% was obtained.
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