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ABSTRACT 
 

Currently, safety analyses mostly rely on codes which solve both the neutronics and the 

thermal-hydraulics with assembly-wise nodes resolution as multiphysics heterogeneous 

transport solvers are still too time and memory expensive. The pin-by-pin homogenized codes 

can be seen as a bridge between the heterogeneous codes and the traditional nodal assembly-

wise calculations. In this work, the pin-by-pin simplified transport solver Tortin has been 

coupled with a sub-channel code COBRA-TF. The verification of the 3D solver of Tortin is 

presented at first, showing very good agreement in terms of axial and radial power profile with 

the Monte Carlo code SERPENT for a small minicore and with the state-of-the-art nodal code 

SIMULATE5 for a quarter core without feedback. Then the results of Tortin+COBRA-TF are 

compared with SIMULATE5 for one assembly problem with feedback. The axial profiles of 

power and moderator temperature show good agreement, while the fuel temperature differ by 

up to 40 K. This is caused mainly by different gap and fuel conductance parameters used in 

COBRA-TF and in SIMULATE5. 
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1. INTRODUCTION 
 

The development of higher resolution multiphysics codes is currently a very active research field. However, 

these simulations are too computationally expensive for most industrial applications. Instead, the assembly-

wise nodal codes are commonly used nowadays. The thermal-hydraulic modules of nodal codes usually 

solve 1D (axial) two-phase flow equations with additional terms to take into account cross flow between 

assemblies [1]. While these codes can predict the local power by pin power reconstruction methods, the 

calculated moderator and fuel temperatures are only assembly-wise.  

 

The pin-by-pin codes on the other hand can directly resolve the pin-wise power profile and, when coupled 

with a sub-channel thermal-hydraulic solver, they can directly predict the local safety parameters. This 

could be useful not only for transient calculations, but also for steady-state analysis of very heterogeneously 

loaded zones. 

 

We have recently developed the pin-by-pin simplified transport solver Tortin and coupled it with a 

microscopic depletion code [2]. The eigenvalue and pin power results showed very good agreement with 

heterogeneous codes for 2D quarter core problems. In this work, the solver of Tortin was extended for three 
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dimensions transport calculations and then coupled with the sub-channel thermal-hydraulic code COBRA-

TF [3].

The results of Tortin are verified by comparison with the state-of-the-art nodal code SIMULATE5 [4]. Its 

neutronic solver is coupled with a thermal-hydraulic assembly-wise parallel channel module. The 

comparison of the codes is done firstly for a 3D quarter core with imposed temperatures to quantify the 

discrepancy between neutronics models, and then for one assembly with the thermal-hydraulic feedback. 

To further verify the 3D model of Tortin, a comparison with the Monte Carlo code SERPENT [5] is shown 

for a small minicore with heavy reflector.

2. METHODOLOGY AND CODES DESCRIPTION

Tortin is a pin-by-pin homogenized code, able to solve diffusion and SP3 equations. It employs the finite 

difference method for the spatial discretization. The code has been previously verified for 2D quarter core 

problems [2,6] and the solver has been recently extended into three dimensions. All the results presented in 

the paper were obtained with the SP3 solver. 

COBRA-TF (CTF) is a thermal-hydraulic code, solving the mass, energy, and momentum equations for 

three fields – liquid film, liquid droplets, and vapour. This nine conservation equations model can be 

spatially discretized into 3D Cartesian or sub-channel coordinates. In this work, the inlet temperature and 

mass flow rate and the outlet pressure were used as the boundary conditions. The fuel temperature can be 

calculated by solving the heat conductance equation. However, some important phenomena are not 

modelled, as for example the fuel pellet changes during burnup and its effect on the fuel conductance. The 

gap conductance calculated by INTERPIN [7] was used in this work. Since only one gap conductance value 

can be provided per each rod, the value corresponding to the maximum power of the rod was used.

The coupling scheme of the neutronics, thermal-hydraulics, and depletion solvers is depicted in Figure 1. 

Firstly, COBRA-TF is provided with axial power profile for each rod (84 axial layers were used in this 

work). The moderator density and the fuel temperature are calculated for each pin-cell (the moderator 

density is averaged over the 4 sub-channels adjacent to the given pin-cell, as shown in Figure 2). The pin-

cell cross sections are interpolated for the given state parameters and they are passed into Tortin, which 

calculates the power distribution for COBRA-TF. Once the desired convergence on eigenvalue and the 

temperatures is reached, the calculation can continue with the next depletion step.

Figure 1.  Calculation scheme of Tortin.
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Figure 2. Principle of spatial coupling.

SIMULATE5 is a nodal code solving multi-group diffusion equation. It performs rehomogenization of the 

nodal cross sections based on flux obtained in 2D full core radial and 1D axial calculations with finer spatial 

resolution. The reflector cross sections are also rehomogenized. In this work, the 3D solver of SIMULATE5 

was run with 2x2 nodes/assembly. The pin power is reconstructed by combining SIMULATE5 fluxes with 

pin power form functions obtained from CASMO5.

The thermal-hydraulic module of SIMULATE5 [8] models each assembly with an active coolant channel 

and a number of parallel water channels with the same submesh level as is used in the neutronics module. 

It can optionally take the cross-flow into account. The total mixture mass, steam mass, mixture enthalpy, 

and mixture momentum balance equations are solved for each axial node and the 3D fuel temperatures are 

obtained by solving the radial heat conduction equation for the average fuel pin of each node. It can also 

model the sub-cooled boiling, which can be important in large reactors such as EPR.

Apart from solving the 1D conduction equation, SIMULATE-5 can also calculate the fuel temperature by 

assuming its quadratic profile within the pin, with coefficients of the quadratic fit precomputed by 

INTERPIN. INTERPIN can predict the fuel-cladding performance dependence on burnup and power and 

can also provide the gap conductance values. The temperatures predicted by both the methods (solving the 

heat conduction equation and using the INTERPIN values) were compared in this work.

The cross sections for both Tortin and SIMULATE5 were generated with the lattice code CASMO-5 [9]. 

The 2D method of characteristics calculations were performed in 35 groups and with the P3 scattering 

source. Both the nodal and the pin-cell homogenized cross sections were produced in 8 energy groups. The 

pin-by-pin codes need to employ an equivalence technique between the heterogeneous lattice code and the 

pin-homogenized solutions, as the pin-cell homogenized cross sections calculated by a lattice code cannot 

preserve the reaction rates. The superhomogenization method [10] is used in Tortin.

For the verification of Tortin against SERPENT, the cross sections were produced with SERPENT to 

exclude any discrepancies coming from different nuclear libraries and the lattice codes methods. These 

cross sections were also produced in 8 energy groups.

3. CASE DESCRIPTION

The calculations were done for UK EPR fuel design [11]. The assemblies are uranium with 2.1 – 4.2% 

enrichment and containing up to 20 gadolinium-doped fuel rods. They have 17x17 rods and 24 guide tubes 

(Figure 3). The core is surrounded by heavy reflector, composed of stainless steel with water holes. The 

reflector is filled inside the steel core barrel.
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Figure 3. Core loading pattern for EPR first cycle and one assembly layout [11].

4. RESULTS

4.1. 3D Quarter Core Problem without Feedback

As a first verification of the 3D solver of Tortin, its results for the EPR quarter core were compared with 

SIMULATE5. This comparison was done for HZP with imposed thermal-hydraulic conditions in both codes, 

to allow quantification of the neutronics discrepancies separately from the other effects. The axial power 

profile of SIMULATE5 and the discrepancy of Tortin is shown in Figure 4. There is about 0.8% difference 

in the nodes next to the reflectors, otherwise the power is very close. The axially integrated pin power 

discrepancy is shown in Figure 5 and is consistent with the previously published 2D results [2]. There is up 

to 3.5% discrepancy in the corner pins, caused probably by overprediction of the power by Tortin (similar 

behavior was observed when comparing Tortin against CASMO-5 2D results). Besides that, the discrepancy 

between the two codes is mostly within 2%, the power profile of SIMULATE5 within the nodes tends to 

be flatter than that of Tortin.
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Figure 4. Axial power discrepancy for EPR core between Tortin and SIMULATE5.

Figure 5. Radial pin power discrepancy for EPR core between Tortin and SIMULATE5.

4.2. 3D Minicore without Feedback

To further verify the accuracy of Tortin against a Monte Carlo solution, a small minicore calculation was 

done using SERPENT cross sections and the results were compared against SERPENT reference power 

distribution. The minicore is composed of 3 uranium assemblies in a row with a heavy reflector on the right 

side and with reflective boundary condition on the other sides. The axial reflectors consist of 5 cm of steel 

followed by 16 cm of water. The assemblies are 2 m high with 3 spacers of 4 cm each placed at 50, 100, 

and 150 cm. The left assembly has control rods inserted into half of the assembly.

EPJ Web of Conferences 247, 02034 (2021)
PHYSOR2020

https://doi.org/10.1051/epjconf/202124702034

 

5



The axial power profile as calculated by SERPENT and the errors of Tortin are shown in Figure 6. The 

errors are very small, within 0.5% around the spacers and with maximum of about 1.5% around the axial 

reflectors. The errors of the axially averaged radial pin powers are shown in Figure 7. They are also very 

small, with maximum of 1.3% in rods next to the radial reflector. The local power errors in one axial layer 

between 100 and 100.5 cm from the bottom, i.e. where the control rods and spacers are present, are shown 

in Figure 8. The statistical uncertainty of the reference values is below 0.4%. The errors of Tortin around 

the reflector are below 2% and the power in the controlled assembly is underpredicted in average by 1.4%.

Figure 6. Axial power profile calculated by SERPENT and power error of Tortin using SERPENT 
cross sections.

Figure 7. Axially averaged radial pin power error of Tortin using SERPENT cross sections and 
SERPENT reference values.
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Figure 8. Pin power errors in axial layer between 100 and 100.5 cm from the bottom.

4.3. One Assembly Problem with TH Feedback

Tortin coupled with COBRA-TF (referred to as Tortin in the following text) was run for one assembly at 

HFP and the temperatures and the axial power profile were compared with SIMULATE5 results (Figure 

9). The fuel temperature predicted by Tortin is higher than SIMULATE5 one by up to 40 K. This is probably 

caused by differences in the gap conductance, the fuel conductance, and the fuel heat capacity. The

moderator temperature of Tortin is slightly lower than that of SIMULATE5, by up to 0.8 K. This could be 

caused by different enthalpy definition or differences in the mapping between the neutronics and TH in the 

two codes. Nevertheless, the discrepancy is small and should not have a big effect on the other results. The 

axial power profile shape of both codes is similar, with about 0.4% difference in the maximum relative

power.

Since the uncertainties of the fuel and gap conductance and other related parameters are in general rather 

high [12], SIMULATE5 calculation was run also using the precomputed fuel temperature tables (provided 

by INTERPIN). The predicted maximum fuel temperature was 10 K lower, which caused about 0.3% 

difference in the maximum relative power.

Figure 9. Moderator temperature, fuel temperature, and power – axial profile.
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5. CONCLUSIONS

The pin-by-pin homogenized simplified transport solver Tortin was extended into three-dimensions. The 

comparison with the Monte Carlo code SERPENT shows very good agreement, with around 0.5% error 

around the spacer grids and less than 1.5% error around the axial reflectors. The comparison with the 

SIMULATE5 nodal solver for the 3D quarter core shows also very good agreement, with about 0.8% 

differences in the power around the axial reflectors.

Tortin was then coupled with the sub-channel code COBRA-TF. The first comparison with SIMULATE5 

shows good agreement in the moderator temperature and the axial power profile. However, there is up to 

40 K difference in the fuel temperature. That is probably mainly caused by differences in the gap 

conductivity and the fuel model implemented in the two codes.

In the future, the fuel performance code Falcon could be used to provide COBRA-TF with these data. Once 

this is implemented, the testing of the code will be continued by full-core comparisons against SIMULATE5 

and by validation with measurements.
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