
Specification-Driven Design

by

Navel Salah el-Shafei

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

at the
Massachusetts Institute of Technology

August 1990

©Nayel S. el-Shafei 1990. All rights reserved.

Signature of Author
Department of Civil Entneering

Aumust 17, 1990
I-~ I / I /

Certified by

Certified by

Accepted by

Fred Moavenz adeh
Thesis Co-Supervisor

Gerald Jayv Sussman
Thesis Co-Supervisor

Ole S. Madsen
Chairman, Department Committee

Abstract

The thesis describes a system of computer programs that facilitates engineering design, by automating
part of the process of elaborating specifications into detailed parametric designs. It uses classic prob-
lem-solving techniques, such as static evaluation, type checking, pattern matching, and constraint
propagation. The system can help develop new designs; it can find violations of design rules in an ex-
isting design; and it can suggest modifications of an existing design to meet new requirements.

The system is a general tool that can be used in mechanical, structural, or electronic design. For ex-
ample, the system can be used in the structural design of reinforced-concrete halls. Given the specifi-
cations for a hall, it first finds the most appropriate main structural system, whose parametric model
is detailed and graphically displayed. The user may then impose additional constraints, which are
propagated throughout the design. Attempting to satisfy the additional constraints may cause the en-
tire design to be revised. Some of the constraints that could be applied, automatically, are those that
represent standards or codes, such as ASTM, NFPA, or design rules for electrical circuits.
The system elaborates design plans by matching a description of the desired function of the design
against a library of fragments, each indexed by the functions it can serve. A fragment is chosen and
is inserted into the design. Constraints, propagated from the elaborated plan are then used to either
further specify the fragment or to give reasons why it is not really applicable. An accepted fragment
may itself require elaboration, thus this process is recursive. Design fragments may have structural as
well as functional attributes. They may carry auxilliary information, not directly related to problem
solving, such as graphical representations. In its ordinary operation, my system constructs, examines
and discards many fragments. All of these fragments, along with their uses and limitations (discov-
ered by rejection), are entered into a case library for later use as starting points for designs.
The work illuminates fundamental ideas for Design Description Languages. Each design fragment
must be described in two ways: functional descriptions and structural descriptions. These must form
a coherent combination. Specifications, of either a structural or functional kind, may be expressed in
terms of constraints. Constraints are general in that they can be applied in synthesis, analysis, and for
design-rule checking. Constraint propagation may yield contradictions that require resolution. An-
other language is provided for the user to express conflict-resolution rules that may be brought to
bear on these situations.

The thesis offers the concept of harvesting for finessing the model of an evolving domain using the
feedback on previous cases. The system uses credit assignment for discarding pieces of knowledge
with low credibility. Using polymorphic generalization the system improves the causal model of the
domain. Then, dimensional analysis and stepwise regression analysis are used to build/modify quanti-
tative relationships in the model.

In the Name of God, The Most Beneficient, The Most Merciful

Acknowledgements

I would like to acknowledge the contributions to this work of the following people
and other entities, and offer them my profound gratitude:

Fred Moavenzadeh, my advisor, who prodded me when I was stuck, patiently urged
and pushed me toward the best I can do, and who has always been open-minded to-
ward new methodologies and techniques.

Gerry Sussman, co-advisor, colleague, friend, who has encouraged me to venture
into new horizons of computation, thought, and philosophy; and who is generally a
jolly fellow to be around; he cares about his students. He originally inspired many of
the good ideas in this dissertation.

Exposure to the insights of Marvin Minsky has influenced me greatly, and probably
will continue to do so.
I am very much indebted to Prof. Jerome Connor for his continuous encouragement,
Sandy Pentland and Tom Knight for their useful comments and criticism on various
versions of this dissertation.

Other members of the MIT Artificial Intelligence Laboratory who have taken inter-
est in my work and/or generally contributed to the comfortable and intellectually
stimulating ambience there, including Rick Lathrop, Richard Doyle, Alan Yuille,
and Patrick Winston. Pat Vargas, the troubleshooter of the MIT Center for Con-
struction Research and Engineering, whose friendship and dedication were the
source of comfort.

Numerous colleagues at Prime Computer, Inc.: Ed Wright who created a work envi-
ronment where it is fun to do challenging jobs; Joe Slikowski for the comments and
criticism, and enthusiasm for/on my work; Massood Zarrabian, Salahuddin Khan,
Vincent Chaillou, and Pete Pritchard.

Skip Hommel, of New York State, whose insight and zeal for automation was a great
motive for my work in design checking. Diane Rourke, also of NYS, was a great
help in testing out the system in all possible ways.
Charles Kemper, of Phillips - Consumer Electronics, whose ideas about design syn-
thesis were great inspiration for my work. Ralph Deakin of Rockwell - NAA pro-
vided useful comments.

Ron Wooldridge, of Syska & Hennessy, whose friendship and advice are valuable
support.

Dr. Ahmed Moharram, Jr., of the Arab Consulting Engineers, for his trust and en-
couragement that initiated me into the world of engineering design.
Samir Rizk, of Freyssinet Internationale, for his encouragement and trust that initi-
ated me into construction and project management.

Yehia el-Ezaby, my good friend.

My brother Mohammad, my sisters Taghreed and Lamya, their husbands Tareq and
Nasser, whose encouragement is fueling me forward.
Aunt Nahed Sabbour, my other mother and my first teacher. Uncle Mamdouh el-
Shafei, the good friend.

Salah eldin el-Shafei, and Ferial Sabbour, my parents, who have provided unflagging
and unbounded support, encouragement, opportunity, resources, understanding, and
just plain love for the last three decades. Thank you, Baba; Thank you, Mama.

Ali and Rhonda, my children and Mona, my wife, who have been my great inspira-
tion beyond words.

Table of Contents

1. Abstract 2

1. Acknowledgement 4

1. Introduction 12
1.1. Hypothesis 13
1.2. Purpose & Objectives 14
1.3. Scope of Work 15
1.4. Structure of the Thesis 15

2. Related Work 18
2.0.1. Design Automation & Constraint Models 18

2.1. Parametric Modeling: 18
2.1.1. Advantages of A Separate Functional Parametric modeler (FPM) 19
2.1.2. Hurdles in the way of Functional Parametric Modeling 20

2.2. Constraint Satisfaction Process 21
2.2.1. Algebraic Equation Solvers 21
2.2.2. Constraint Propagation 23
2.2.3. Local Propagation & Retraction 25

Constraint Propagation vs. Equation Solver 30
Improvements in the Constraint Propagation System: 30

2.2.4. Constraint Logic Programming (CLP) 31
Why Not Current Prolog for Parametric Modeling 32
CLP: Rationale for Introducing Constraints to Prolog 32

2.3. Neuronal Network Models 34
2.3.1. Case-Based Reasoning 34

Problems with Indexing 34
Non-indexing Approaches 35

2.3.2. Cognitive Models: 36
2.4. Truth Maintenance Systems 37
2.5. Design Methodology 38

2.5.1. Design Protocols 38
2.5.2. Hierarchical (Modular) Approach 39
2.5.3. Rule-based Approach to Design: 40

3. Methodology 42
3.1. Background: The Design Process 42
3.2. Human Approach 43
3.3. Description of the Design Utilities Framework 44
3.4. Harvesting Mechanism 45

3.4.1. Knowledge Modification: 45

3.4.2. The Need for Harvest 46
3.5. Methodology 46

3.5.1. (A). Design Synthesis 47
Initial selection of fragments 47

3.5.2. (B). Design Checking: 51
3.5.3. (C). Other Uses of the Architecture: 52

3.6. Knowledge Representation: Constraint Propagation 52
3.6.1. The Need for a Parametric Design 52
3.6.2. Why Constraint Propagation Representation 52
3.6.3. Representing Non-Algorithmic Knowledge 53
3.6.4. Knowledge Representation 54

Checking & Advisors: 55
3.6.5. Representation of Geometry & Graphics 57

Difference between Functional Constraints and
Geometric Constraints: 57
How to Handle These Differences 57
Objects and Constraints Needed 60

3.6.6. Solids 61
3.6.7. The Interface Language 62

4. Description of the Computer System 64
4.1. Terminology 64
4.2. Syntax 66
4.3. Knowledge Representation 67

4.3.1. Polymorphic Representation of Objects 67
4.3.2. Constraint Propagation 68
4.3.3. Checking & Case Building Representations 71

4.4. The Central Core 74
4.4.1. Constraint Propagation & the Roundtable 74
4.4.2. User Interface 76
4.4.3. Planner 77
4.4.4. Catalog 78
4.4.5. Checker 78

4.5. The Knowledge Bases 82
4.5.1. Objects 82
4.5.2. Polymorphic Specifications 82
4.5.3. Features (States) 83
4.5.4. Harvesting: 83

The Heuristic Pre-Processor (HPP) 83
The Dimensional Analysis Unit (DAU) 84
The Stepwise Regression Unit (SRU) 84

4.6. The Pre-/Post-Processors 84
4.7. The Advisors 85

4.8. The Case Library 86
4.8.1. Purpose of the case library 86
4.8.2. Agenda 86
4.8.3. Case 87

4.9. The Interactive Environment: 88
4.10. Modus Operandi: How the System Works, and

What We Get Out Of It 89
4.10.1. (A). Design Synthesis 89
4.10.2. (B). Design Checking 89
4.10.3. Other Uses 89

4.11. Implementation 90

5. Examples 91
5.1. Structural Design Synthesis of Reinforced Concrete Exhibition Halls 91

5.1.1. Motivation 91
5.1.2. Main Structural Systems 92
5.1.3. Structural Design & Engineering Stages 101
5.1.4. Selection of Main Structural Systems 102
5.1.5. Design of Sections 105
5.1.6. Knowledge representation 108
5.1.7. Different Uses 109

Examples of Other Questions that the System Can Answer 111
5.1.8. Limitations 113

5.2. Design Checking & Optimization (Correction) of Floor Plans 114
5.2.1. Implementation 116
5.2.2. Knowledge Representation 117
5.2.3. Results 120
5.2.4. Impact on the Checking Process 120
5.2.5. A Specification-driven Approach to Facilities Management 123

5.3. Other Applications to Complete the SDD Environment 125
5.3.1. Design of RF Connectors 125
5.3.2. Design of Wheel Assembly of Industrial Fans 126
5.3.3. Intelligent Fastening Joint Designer 126
5.3.4. Parametrized Design of an Office Partition 127
5.3.5. Synthesis of the Front Panel of a Car Stereo 128

6. Summary & Conclusion 131
6.1. Summary 131
6.2. Contribution of the Thesis 133

6.2.1. (I) An Architecture for Design Problem Solving 133
6.2.2. (II) User-Defined Conflict Resolution Rules 134
6.2.3. (III) Harvesting Mechanism for Adaptive Learning

in Evolving Domains 134

The Feedback & Credit Assignment Part 135
Harvesting & Generalization 136
Relationship Hypothesis Part 136

6.2.4. (IV) Constraint building environment: 137
6.3. Limitations 139
6.4. Conclusion 141
6.5. Future Work 142

7. References 144

Appendix A: Pi-Theorem 152

Appendix B: Example on Harvesting 154

Table of Figures

1. Introduction 12

2. Related Work 18
Figure (2.1): A constraint Network for C <- > F Conversion 24

Figure (2.2): Initial Network 27

Figure (2.3): Propagation Flow 27

Figure (2.4): Retracting a Cell with No Premises (A) 27

Figure (2.5): Propagation after Retraction A&B - > C = 15, C&E - > D = 1.6 28

Figure (2.6): Retracting a Premised Cell (C) 28

Figure (2.7): Propagation after Retraction with Premise 28

3. Methodology 42
Figure (3.1): Concurrent Engineering Lifecycle 42

Figure (3.2): System Architecture. 44

Figure (3.3): A. Insert Rectangle 59

Figure (3.4): B. Point (B) is moved. 59

Figure (3.5): C. Point (A) is moved. 59

Figure (3.6): D. Point (C) is relaxed. 59

4. Description of the Computer System 64
Figure (4.1): objects in the Hospital Design Checker 76

Figure (4.2): The Syntax of One Possible Sentence 76

Figure (4.3): CAD - Enkidu Interaction 78

Figure (4.4): Example of a Feature (State) Frame 83

Figure (4.5): Declaration of OMH-SC&NC Article 85

5. Examples 91
Figure (5.1): Stages of the Structural Engineeirng Lifecycle 94

Figure (5.2): Simple Beam & Column System 95

Figure (5.3): Continuous Beam & Column System 96

Figure (5.4): Girders & Columns System 97

Figure (5.5): Illustration of Portal Frame System 98

Figure (5.6): Illustrations of Various Trusses 99

(10)

Figure (5.7): Constraint Representation of a Portal Frame 100
Figure (5.8): A Simplified Version of the Selector 103
Figure (5.9): Instantiating a Parametric Model 104
Figure (5.10): Schematic Representation of Flexural Design of Section 106
Figure (5.11): Flexural Design Macro Constraint 106
Figure (5.12): Design Constraint of Compression Sections 107
Figure (5.13): The Design made by the System from Textual Input 111
Figure (5.14): The System Propagates the Change, Reaches New Design 112
Figure (5.15): The User Clicks upon a Dims. to Change 112
Figure (5.16): An Article of NYS-OMH Space Conditioning Code 115
Figure (5.17): The Same Article of NYS-OMH as a Constraint 116
Figure (5.18): Output of the Checker on a Floor Plan of a Hospital 121
Figure (5.19): Part of the Violation Report of Demonstrated Floor Plan 122
Figure (5.20): Front Panel of Car Stereo 128
Figure (5.21): Schematic Representation of a Front Panel 130

6. Summary & Conclusion 131
Figure (6.1): The Harvest Mechanism 135
Figure (6.2): Text Specification of Portal Frame Constraint 137
Figure (6.3): Schematic Editing 137
Figure (6.4): The Interactive Environment 138
Figure (6.5): Circularity in X * X = Y 139

Appendix A: Pi-Theorem 152

Appendix B: Example on Harvesting 154
Figure (B.1): A Part of A design Case of a highway 155

(11)

"The natural sciences are concerned with
how things are. ... Design, on the other
hand, is concerned with how things ought to
be, with devising artifacts to attain goals."
Later on, he says, "... in large part, the
proper study of mankind is the science of de-
sign, not only as the professional component
of a technical education but as a core disci-
pline for every librally educated man."

Herbert Simon, Sciences of the Artifi-
cial, 1969

Introduction

The past 150-200 yars have been years of incredible progress in technology. The
main criterion on which such an evaluation is based is productivity or efficiency in
the engineering process. By the turn of the century, the complex of machinery
started to test the talents of the most capable engineers. Now, to modify an item
such as a modern machine tool to suit the production of a new product may take the
production staff of a factory six months, and to design a new machine may take a
year or two. This time is somewhat longer than the ever-changing market for tool
machines will allow. In those two years, new concepts can appear, and the new ma-
chine may be hopelessly obsolete at the very moment of its birth. The example dem-
onstrates need for rationalizing the design process, and the automation of as much
as possible of its tasks.

Though the need for improving and rationalizing the design process was felt even be-
fore World War II, progress was impeded by two factors: (1) the absence of a reliable
means of representing abstract ideas; and (2) the widespread view that designing is a
form of art, not a technical activity. The emergence of computers and data process-
ing techniques helped to foster the adoption of systematic approaches to design
(Pahl & Beitz 88). Computers helped to automate several stages of the design pro-
cess, such as analysis and drafting. Other stages got scattered efforts of automation,
such as process planning. The more critical stages, namely conceptual design and
checking are still manually performed according to no practical guidelines. One rea-
son for the lack of rationalizing, and consequently automation, of design synthesis up
until now is the absence of any data processing tools capable of handling abstrac-
tions. New computational techniques introduced by artificial intelligence provides
us with an arsenal of tools for knowledge representation.
More important than the automation of one stage or another, is the development of
a unified automated systematic approach to the whole engineering lifecycle. Such
development needs the establishment of a cognitive model of the human designer.
Once the model is established, the computer implementation of it is a straightfor-

(12)

ward task. The development of a cognitive model of the designer is yet another area
where artificial intelligence approaches can greatly help.

Modern systematic ideas were pioneered by Erkens in the 1920s. He emphasizes an
algorithmic approach based on constant testing and evaluation, and also on the bal-
ancing of conflicting demands, a process that must be continued untill a network of
ideas -the design- emerges (Erkens 28).
In systematic respects, design is the optimization of given objectives within partly
conflicting constraints. Requirements change with time, so that a particular solution
can only be optimized in a particular set of circumstances (Pahl & Beitz 88).

In sytematic design, great emphasis is placed on the establishment of a function struc-
ture and combination of the sub-functions in order to arrive at different designs. In
addition to the function structure, the system needs to be defined as a blackbox with
all inputs and outputs (system boundary) determined (Davis 83). Once the outer
boundary and functionality of the system have been established, the most suitable
process to fulfill every sub-function is found. Then comes the embodiment (layout)
design that is form design of the component shapes and selection of materials, can
be started.
Every design must meet both task-specific and also general constraints, e.g., stan-
dards, that need to be kept in mind at all design stages.

1.1. Hypothesis
This thesis casts the engineering design process mainly as the propagation of a body
of specifications (constraints). The propagation of these constraints leads to a series
of conflicts between various, occasionally-competing points of view. The resolution
of these conflicts is the embodiment of the final design.
This view allows us to capture design as network of specifications, at some state of
conflict resolution, that propagated a certain set of values for the design parameters.
So, similar to traditional design approaches, we need to document our design both in
calculations and illustrative graphics. To be useful for other designers, the design,
moreover, has to include the alternatives that were available for the designer, and
the dead-ends he tried out. This is the way a design case is added to the memory (ex-
perience) of a designer.

The improvement of design productivity of an engineer is attributed to the growth of
his experience. Experience is perceived as a case library of all previous designs (cf.
above) he went through. On tackling a new design, the access to a similar previous
design case, with its specifications and final design, is a shortcut to a conflict-re-

(13)

solved, tried-out initial design. Having access to a similar previous design will
shorten the synthesis process required to conform to the new set of specifications.

This constraint-propagation view of the engineering lifecycle is used as a base for a
unified approach/framework of Specification-driven Design (SDD). This approach
allows us to represent the entire engineering process, with its various engineering
tasks from conceptual design to maintenance, in the same representation, namely as
a specification/constraint. The framework is described in detail in chapter three.

The framework of design utilities is used as a system architecture for a programming
environment. This environment is composed of a system/suite of computer pro-
grams. The system allows the user to declare, in a simple syntax, all the specifica-
tions that govern his designs.
In this environment, the framework was tested out in the various aspects of the de-
sign process in several real-life examples from various domains.

The experiments support the appropriateness of the framework, though they illumi-
nate some current limitations, which are discussed in chapter (6).

1.2. Purpose & Objectives
The primary purpose of this thesis is to develop a framework for automating the de-
sign process, with all its stages. This has been accomplished by establishing a meth-
odology reflecting the design processes followed by human designers. A system
architecture that supports the methodology is elaborated in the chapter on
Methodolgy. The system architectecture was developed into a system of computer
programs. The computer system represents the general problem-solving capabilities
of a novice engineer. Since the hypothesis is a general domain-independent one,
the system can be used in various domains by initiating it with domain knowledge,
previous designs, and/or cookbooks. Similar to human designers, the system should
take advantage of previous designs to reach better designs with less computational
resources.
The system perceives the design process as a propagation of bodies of constraints.
The propagation of these constraints leads to a series of conflicts between various,
occasionally-competing points of view. The resolution of these conflicts is the em-
bodiment of the final design.

Developing the thesis has the following objectives:
o Developing (rationalizing) a systematic approach to the traditional design

process that simulate the capabilities of human designers. To test the
workability of the approach, it helps to be automateable.

(14)

" Automating as much of the algorithmic design stages, to focus the effort of
the designer on critical decision-making, rather than mundane work.
Automation must allow the propagation of constraints in all directions.

o Taking advantage of previous designs known by the system to reach better
new designs with less computational resources.

" Modeling the decision process of designers, by enforcing bodies of standards
and allowing user-defined rules for conflict resolution.

1.3. Scope of Work:
The thesis deals with conventional design rather than innovative design. A conven-
tional design is an assembly of known components. A component is known if a para-
metric model can represent it functionally, geometrically and graphically.
Therefore, a conventional design is a parametric model that assembles parametric
components in predefined ways.

Innovative design, on the other hand, requires the synthesis of new components,
whose categories (parametric models) were not known before. This synthesis needs
more effort in elaborating the mainly-causal relationship between function and
shape. While the functional modeling (through pre-defined causalities) is central to
the thesis, the manipulation of the causal relationships is beyond the scope of this
work. Therefore, innovative design is not handled by this work, although the repre-
sentations used in the work allows the future extension of the scope to include inno-
vative design.

1.4. Structure of the Thesis
Chapter two discusses related works in the intersecting areas, demonstrating how
they relate to, compare to, or affect the work presented in this thesis.

Chapter three is an overview of the system that presents the methodology that was
used to examine the hypothesis. This chapter also discusses the methodology-com-
patible representations used in the system for the functional, geometric and graphi-
cal aspects of design. Both the abstract and the detailed representation of
functionality are described, along with the the control mechanism to switch between
them. Chapter three describes the two modes of use, synthesis and checking. Fi-
nally, the chapter describes the case library and how it gets built.

Chapter four offers a detailed description of the computer programs that represent
the system.

(15)

Chapter five offers some examples to demonstrate the capabilities of the system in
various applications. The first example is in the area of conceptual structural design
of Reinforced Concrete Exhibition Halls, and its relationship with dimensioning.
The example shows how the general system was made to fit the structural design pro-
cess through a customized knowledge representation. The second example is in the
area of checking of design of hospital floor plans for compliance to a body of stan-
dards. Brief descriptions of other examples explore the applicability of the system to
various aspects of the design process in different domains.

Chapter six is the summary and conclusion. It first describes the attributes of the sys-
tem compared to traditional approaches. Then the thesis contribution is offered.
The third section discusses the limitation of the system, and the future work needed
for further development. Finally the conclusion describes how the implemented sys-
tem fits the philosophy described in chapter one.
Chapter seven is a bibliography for related references.

(16)

It could be thought of as an acronym for "Engineering Knowledge-integrated Design
Utilities", but the name has a different reason. Epic of Gilgamesh is the oldest
known novel ever written by mankind (circa 3000 BC). It tells the story of
Gilgamesh, the second king of Uruk after Noah's Diluge. Gilgamesh was saddened
by the decision of God to reduce the life span of mankind from about 1000 years to
60 years; he thought that man is doomed because he still has the same ambitions in
a much shorter life, hampered with the same needs. He was roaming around the city
till he met with Enkidu, the man of the jungle. They exchanged stories. Enkidu's
view was that man should try to achieve as much of his ambitions as he can, without
paying attention to the general constraint on life span (Sandars 1972).
Enkidu's view is very similar to ours in approaching design automation problem.
Computer capabilities are very limited when compared to human mind, but that
should not dissuade us from trying to automate as much as we can of the design pro-
cess.

(17)

2. Related Work

This chapter discusses the areas that intersect with the scope of the thesis. In every
area, a brief discussion of the major works that are related to this thesis demon-
strates what has been done and shows how previous work relate to this thesis.
Finally the contribution of this thesis is discussed in the last section.

2.0.1.Design Automation & Constraint Models
So far, all Computer-Aided Design (CAD) systems in the market are just for com-
puter-aided drafting. A user has to do his design somewhere else, then come to the
CAD package to draw what he already designed, so he can communicate it with the
others. The current CAD systems have no knowledge about any domain. The same
system is used both for submarine design and for design of orthopedic implants. De-
sign changes are every-day business for engineers. It is becoming more and more
evident that engineers need systems that know about the artifacts they design. So
that when an ECO (Engineering Change Order) is made, the system can propagate
it through the whole design, or tell the user that the requested change is not feasible.
An ECO is better perceived as a constraint. A constraint is a relationship that can
be used in any direction. The capability to preserve the consistency of a design,
after imposing an additional change to it, requires two things:

1. Knowledge of the relationships that govern the artifact and its domain, in the
form of constraints. This knowledge is called a Parametric Model (PM).

2. Flexibility in using this knowledge, which is called Constraint Satisfaction
Process (CSP).

In the following sections we will discuss Parametric Modeling, and the mechanisms
for constraint management. Following that is a discussion of the cognitive models of
design and finally, design methodologies.

2.1. Parametric Modeling:
In designing engineering artifacts, we have to deal with at least three major represen-
tations of the artifact:

Functional Representation that describes the relationships between the
parameters that govern the functionality of the artifact. These parameters are
mostly non-geometric parameters, such as maximum temperature, allowable
stress, ... etc.

(18)

Chapter 2: Related Work

Geometric Representation that describes the geometric features, or shape, that
achieve the above-mentioned functionality in terms of basic geometric entities.
The function-shape relationship is quite a profound, domain-specific one.

Graphical Representation that describes the graphical implementation of the
above-mentioned basic geometric entities, using a specific CAD system.
Implementation is the design of the database in which the entities are saved.

To capture all three facets of knowledge about an artifact, a parametric model has to
be polymorphic. Furthermore, to allow for portability of designs across various
CAD systems, the graphical representation of a model needs to be separate from the
functional and geometric ones. To allow for later innovative design, a separation is
needed between the functional representation and the geometric one. Therefore, a
parametric model has to have the three separate representations.
Since all CAD systems are stationed in the drafting area, their migratory path toward
design automation, or Computer-Aided Engineering (CAE) , started at the lowest
level of parametrization, i.e., graphical representation, with some geometric parame-
trization mixed in. They lack any notion of functional represeatation. Sytems that
started alonghe parametrization road include, Pro Engineer , I.DEAS and Men-
tor Graphics . This start affected their selection of the constraint management
mechanisms.

2.1.1.Advantages of A Separate Functional Parametric modeler
(FPM)

* The capability to add parametrics to existing drawings:
O Makes use of the existing CAD drawings of current users, which is

a feature no geometric parametric modeler has. To adapt the
FPM to a drawing produced in a specific CAD format, all that is
needed is to redefine the graphical representation of the basic
geometric entities.

o All other parametric modelers need to start a drawing from
scratch, since they mix graphical representation with geometric
representation.

Electronic CAD systems were ahead of Mechanical CAD systems in moving toward design automation.
One reason is the simpler nature of electronic knowledge, and the finite set of basic components
compared to mechanical design.

2 These registered trade marks are as follow: Pro Engineer is the name of the CAD system offered by
Parametric Technologies Corp. (Waltham, MA). I.DEAS is the CAD system offered by Structural
Dynamics Research Corp. (Colombus, OH). Mentor Graphics, Inc. is located in Beaverton, OR.

(19)

* It can be used for both synthesizing new designs and checking the compliance
of existing designs to a body of standards.

* FPM allows hierarchical assembly through blackboxing:
° An FPM would allow the definition of an artifact as a blackbox. It

also allows nesting of artifacts (blackboxes) to represent an
assembly of artifacts. This capability is a vital one for assembly
modeling, which is one of the frontiers of design automation &
modeling. Conflicts in such assemblies are resolved on a
functional basis, rather than a chronological sequence of
construction, as it is the case in all Assembly modelers in the
industry. Construction recency, nevertheless, could be used as a
rule for conflict resolution.

2.1.2. Hurdles in the way of Functional Parametric Modeling
The major hurdle that dissuades researchers from tackling the functional aspect of
modeling is knowledge acquisition. To be able to design a fastening joint, for exam-
ple, it is necessary to encode at least the following sources of knowledge: the chap-
ter on fastening in Mark's Mechanical Engineering Handbook, chapters on fastening
in the ASTM, and other relevant standards. Despite the vast benefits to be reaped
from this common knowledge once it is captured, the cost of acquiring it is quite pro-
hibitive.
Solution:
No single developer should incur the cost of encoding general knowledge that is po-
tentially useful for many users. Therefore, a format has to be established for the en-
coded knowledge, such that a user can either encode what he needs, or he can get it
from someone else. To encourage a widespread knowldge encoding process, user-
friendly knowledge editors need to be developed. In such an editor, knowledge can
be encoded either schematically, graphically, or textually through a limited-vocabu-
lary natural language parser. In this thesis, a nucleus of a knowledge editor is dem-
onstrated.

So, while the industry is tackling design automation from bottom up, research is
under way in several places to investigate functional (parametric) modeling: the
most appropriate cognitive model to suit it, the relationship between shape and func-
tion, and design methodologies. These topics are the subjects of sections three
through six of this chapter.

Some companies offqr conceptual design systems, such as ICAD® (Cambridge,
MA) and WISDOM (Colombus, OH). The problem with these systems is the lack
of tools for incremental editing of knowledge. To introduce one of these systems to
a new domain requires several man-years worth of customization before it is ready.

(20)

Chapter 2: Related Work

The system presented in this thesis maintains the three separate representations.
The system is meant to be a Functional Parametric Modeler (FPM) if not also a Geo-
metric Parametric Modeler (GPM). While a FPM may partially work by itself, its
ultimate use assumes the existence of a GPM to regenerate the representative geom-
etry.

2.2. Constraint Satisfaction Process
The concept of constraints has a long, though intermittent, history in computer sci-
ence, going back to Ivan Sutherland's SKETCHPAD in 1962. Amazingly, paramet-
ric modeling of an engineering artifact (especially bridges) was the motivation for
the introduction of the concept. This section contains a brief description of a map of
activities in constraint satisfaction processes.
The design of an artifact is represented by a set of functional and geometric relation-
ships (constraints). One form of these relationships is algebraic equations. To illus-
trate the essence of constraints in parametric modeling, let us consider the formula
for translating temperatures from Celsius to Fahrenheit, and vice versa.

F = 1.8 * C + 32
There are several mechanisms for computing F given C, or C given F.
The constraint satisfaction process is the mechanism responsible for adding a con-
straint(s), to a set of constraints such that the new set of constraints is consistent with
each other.
In the following subsections we will discuss the major approaches in CSP from a
parametric modeling point of view.

2.2.1.Algebraic Equation Solvers
If all the relationships that describe an artifact are algebraic equations, then a suit-
able system for maintaining consistency of equations is an algebraic solver. In the
area of geometric parametrics, a considerable part of the relationships is made of al-
gebraic equations; the rest is inequalities and discrete parameters.
In the Centigrade-to-Fahrenheit conversion example, both the conversion equation
and an assignment equation (either F = < some value >, or C = < some value >)
will be entered into the simultaneous equation solver, which will solve the two pa-
rameters in two equations.
Algebraic solvers range from sophisticated symbolic solvers, such as MACSYMA
(Moses 7Q, to user-friendly, linited-capability, simultaneous equation solvers, such
as Maple and Mathematica .

3 Mathematica is a registered trade mark of Wolfram Research, Inc. (Champaign, IL).

(21)

Within the realm of algebraic constraints, CSP breaks down into three subproblems:

Satisfiability problem: to determine the existence of a solution to a CSP.

Counting problem: to determine the number of solutions.

Enumeration problem: to find all solutions.
The counting problem is a special case of the enumeration problem, and the
satisfiability problem is a special case of the counting problem.
Since many NP-complete problems, such as graph-coloring, are CSPs, the satisfiabil-
ity problem is seen to be NP-complete (Garey & Johnson, 79). Therefore, the
satisfiability, counting, and enumeration problems are expected to be solved in no
more than polynomial time. While various CSP methods add some additional clever-

ness beyond brute-force search, their worst case running time is still O(m")
(Mackworth 87).

Efforts, nevertheless, are exerted to improve the bounds for several CSPs. (Rivin &
Zabih 89), for example, reformulate a CSP as an integer linear programming prob-
lem. The reformulated problem can be solved via polynomial multiplication. If the
CSP has n variables whose domain size is m, and if the equivalent programming
problem involves M equations, then the number of solutions can be determined in

time O(nm 2M-n).

Pros:
" Simultaneous equation solvers are thrifty in utilizing

computational resources, compared to other approaches, e.g.,
constraint propagation. Of course, as more symbolic capabilities
are added to these systems, as in MACSYMA, the required
computational resources soar.

Cons:
o Algebraic solvers cannot handle inequalities or discrete

parameters. Both types of constraints are widely used in
engineering design. Indeed, this is one major limitation of all
parametric modelers currently existing.

o Lack of object-orientedness to map specific physical parameters in
the real world.
A solution to it is achieved through developing a data structure
around every algebraic parameter for non-algebraic
manipulations. This hybrid approach is needed for geometric
parametric modeling to maintain sound semantic mapping.

o The solution of a system of simultaneous equations uses a sparse
matrix, which does not render the approach portable to

(22)

Chapter 2: Related Work

massively-parallel computers. This inadequacy is due to the large
number of processes staying idle most of the time.

" Simultaneous equation solvers cannot tolerate either
over-constrained sets of equations or under-constrained ones.
For example, in the Centigrade-to-Fahrenheit example, if a user
says that F = 68, then the system will calculate the value of 20 for
C. If the same user, or another one, wants to impose a constraint
that C = 25, the system will not accept the new constraint since it
will make the system over-constrained.
On the other hand, if we have a system of 4 unknowns in 3
equations, the system will not be able to process the parameters
since the problem is under-constrained.

o At the introduction of any change of value to the model, the
equation solver has to evaluate the whole system of simultaneous
equations anew to calculate values for every variable. So, in a
complex model with thousands of entities, we are dealing with at
least a similar number of parameters. Every time a user changes
a parameter, all the other parameters have to be recalculated.
This is an expensive process regardless of the hardware platform.

These disadvantages are better understood when compared with other approaches,
especially Constraint Propagation (CP). Therefore, a comparison is made in the
next CP section.

2.2.2. Constraint Propagation
A constraint is a primitive operation such as adder, multiplier, gate, etc. Every oper-
ation consists of an operator and operands (called pins if we perceive the operator as
an electronic device with pins extending out of it). More complex relationships are
built in terms of these primitive constraints. calculation of values takes place by
propagating values through these primitive operators. One of the successful repre-
sentations of constraints is electronic schema.
To illustrate the essence of constraint propagation, let us, once again, consider the
formula for translating temperatures from Celsius to Fahrenheit, and vice versa.

F= 1.8*C + 32
There are several CP mechanisms for computing F given C, or C given F.
Figure (2.1) shows the schematic illustration of the constraint network that represent
the conversion equation.

(23)

C

(>-F- F

Fiqure (2.1): A constraint Network for C <-> F Conversion

When a user propagates a value, say 50 for F, it triggers the adder constraint that will
find that it has enough known pins to be fired. Adder computes the value 18 for the
upper left pin (A). Internal variable (pin) A is connected to the multiplier con-
straint which will get triggered by the newly-computed value of A. The firing of the
multiplier constraint computes the value of 10 for C.

Constraint propagation mechanisms allows for relationships other than algebraic
equations, such as:

o Inequalities, such as X < Y, and

o Discrete parameters, such as Z E {1,4.9,11.3,25}

It is amazing that the concept of constraints was developed at first to be applied in
geometric and graphical parametric modeling. The pioneer of the concept of con-
straints is Ivan Sutherland with his SKETCHPAD (Sutherland 63).

SKETCHPAD:
SKETCHPAD offered the capability of parametric modeling. It was capable of, for
example, being told what a bridge looked like, along with the structural properties of
its components. A load could be placed on the bridge and the bridge would deform
to satisfy all the constraints on it, according to the theory of elasticity, etc.4

The constraint satisfaction process in SKETCHPAD consists of two mechanisms. A
constraint propagation mechanism preceded by a planning mechanism that used a to-
pological sort to order the constraints.

A free variable in SKETCHPAD is one "which has so few constraints applied to it
that it can be re-evaluated to completely satisfy them." If the parameter is a scalar, it

4 It is amazing to see how many new concepts of computer science were introduced from the Civil
Engineering domain. Other new concepts include the first virtual memory FORTRAN compiler (as part
of the ICES project at MIT-Civil Engineering), and the concept of Finite Element by Zienkiwicz.

(24)

Chapter 2: Related Work

can have at most one constraint applied to it. That means that if the attached con-
straint is not satisfied, then the parameter can be changed without fear of invalidat-
ing some other constraint.
The ordering algorithm iteratively identifies all free parameters, eliminates them
and the constraints they are attached to. This may free up variables for the next iter-
ation. Iteration stops when there are no more free parameters; if there are no pa-
rameters left at all in the network then an ordering has been found, otherwise
relaxation must be applied. When free variables (parameters) are eliminated, they
are placed in a list in the order of elimination. This order is the ordering used in re-
verse for the propagation mechanism.

Considering SKETCHPAD's age, and its novelties, it is amazing how long it took the
engineering community to start following the SKETCHPAD path to develop para-
metric modelers. These parametric modelers started to trickle down only over the
last few vears.

ThingLab:
Alan Borning developed the ThingLab (Borning 81) that generalized the capabilities
of SKETCHPAD in a more streamlined (drastically different) implementation. It
was a generalized simulation laboratory based on constraints. Users sketched a de-
sign and named the created part(s), and their behaviors. Based on this information,
ThingLab performed a simulation. ThingLab had a powerful class system, based on
its implementation language SmallTalk, for representing hierarchically constructed
designs.

Similar to SKETCHPAD, ThingLab has two stages, planning, and propagation. Plan-
ning is quite different from that of SKETCHPAD. While planning in SKETCHPAD
starts from the furthermost parameter in the constraint network and works its way in-
ward in a global change-independent way, planning, in ThingLab, is a local process
that starts from the change and considers all the localities around it before starting
to outwardly sort parameters.

2.2.3. Local Propagation & Retraction
The work of Gerry Sussman & Guy Steele (Stallman & Sussman 77, Steele & Suss-
man 78, Steele 80) is the classical piece in the area of constraint propagation, which
positioned the area as an established computational technique.
Their work depends on a technique of lazy evaluation called "Local propagation."
Operations are performed only when a sufficient number of operands have known
values. For example, an ADDER operation needs two known operands, or pins, to
allow the calculation of the third; this is done by travesing linked data structures rep-
resenting the formula. When both F and C are unknown, the result becomes the for-
mula itself.

(25)

Sussman-Stallman-Steele works keep track of the flow of information during propa-
gation. Variables are either bound to a value or they are not. Each time an unbound
variable is bound to a value the premises, those variables on which the new value is
based, are recorded. If the value of a bound variable is to be changed, then it must
be unbound first. This 'unbinding' is called retraction. If a variable to be retracted is
a premise of some other variable's value then that variable is retracted too so that its
value can be recomputed. If a variable to be retracted is premised on some other
variables, then these must be accounted for as well.

Every primitive constraint has hand-coded rules defining the propagation of values
in all possible directions at that low level. Propagation in networks and macro con-
straints is handled by the system.
Values come either from the user, or from inside the system due to constraint trigger-
ing (i.e., rule firing). Each time a new value is computed for a variable cell, the rule
used for computation is recorded.
Dependency information is recorded twice, once within the premise cell and once
within the premised cell.
Steele achieves constraint satisfaction by first retracting old values, if any, then prop-
agating the new value.

The major limitation of this approach is circular dependency.

The work described in this dissertation is based on their work with major differences
in the areas of contradiction-triggering and handling, checking for circular dependen-
cies, and schematic synthesis of networks.

Example:

I. Let us start with the constraint network in figure (1), that says:
A*B =C
C*D=E

where A=2, B =3, E=24.

(26)

Chapter 2: Related Work

A=2
_•• C (unbound)

B=3 E = 24

D (unbound)
Figure (2.2): Initial Network.

II. The propagation mechanism will propagate (compute) the value of 6 for variable
(C). Once C has a value, then the right multiplier gets triggered, since a sufficient
number of its pins (2) got values. That will fire the rule that will compute the value
of 4 for variable D. as figure (2).

D= 4
Figure (2.3): Propagation Flow.

III. Suppose that we want to change (A). A is a variable with no premises. There-
fore it is retracted. With it also, all the variables that are premised on A will be re-
tracted. So C is retracted. Since D is premised on C, then it also gets retracted, as in
figure (3).

A (unbound)
C (unbound)

B = 3 E= 24

D (unbound)
Figure (2.4): Retracting a Cell with No Premises (A)

(27)

A

B E = 24

IV. Now the system can propagate the new value of A. C gets recomputed based on
A & B. Then D gets computed based on C and E, as in figure (4).

A=5
0 C = 15

B = 3 E = 24
------c

D= 1.6
Figlire (5,) Prnpngntinn qfter Rptrnrtinn A & R -> C = 15 C, & F -> T) = 1 6

V. Let us assume that the user wants to give a new value for a premised variable,
such as C. C and one of its premises, say B, needs to be retracted. Then D will be
also retracted since it is premised on C, as in figure (5).

A=5
0 - C (unbound)

B (unbound) E = 24

D (unbound)
Fiqure (2.6): Retracting a Premised Cell (C)

VI. Then the new value of C is propagated through the network, as shown in figure
(6).

A=5
C = 20

0-

B = 4 E = 24

D= 1.2
Figure (2.7): Propaqation after Retraction with Premise Z LABEL FIG

(28)

Chapter 2: Related Work

Magritte:
Gosling offers a way out of the circular dependency problem, faced in local propaga-
tion, through the dependence on an algebraic system (Gosling 84). Gosling's sys-
tem, Magritte, depends heavily upon the algebraic system in transforming any
circular dependency subnetwork into a primitive constraint. Magritte checks for pat-
terns of circular dependency before starting propogation. All detected loops un-
dergo a transformation process to reduce them into a new single primitive
constraint that replaces the loop. The transformation is made using a subsystem that
takes the constraints that comprise the circular dependency and feeds them into a si-
multaneous equation solver that symbolically solves the system of equations several
times, each time for one parameter. Each symbolic solution is used to specify the ef-
fect of applying the new synthesized constraint in one direction. This dependency on
simultaneous equation solvers may deprive the system of the following:

* Flexibility of inequalities, which is needed in tolerancing, e.g., nominal
diameter of the bolt (f) is less than the diameter of the nut (d), and

* Necessity of discrete parameters, e.g., calculated nominal diameter of a bolt has
to equal one of the existing nominal diameters available in inventory.

However, a similar mechanism was developed for detecting patterns of circular de-
pendencies, in macro constraints, and transforming them into newly-synthesized con-
straints. It is left to the user to decide whether to invoke that module or not for the
reasons discussed above.
Another important reason not to constantly use the circularity-checking module, and
to limit its application to within macro constraints, is the possible damaging of func-
tional mapping of a macro constraint if the circularity stretches across two compo-
nent macro-constraints. In such a case, the newly-synthesized constraint does not
map into a specific functionality.

Other CSP-Related Work:
Several papers were published at the Eleventh International Joint Conference on Ar-
tificial Intelligence, August 1989, on search aspects of constraints (Freuder 89), (de-
Kleer 89). Their major emphasis is on the set-theoritic issues of node consistency,
arc-consistency and path-consistency. The three issues are polymorphisms of the
problem of handling backtracking-ridden constraint networks. The solution, in
short, lies in a preprocessing phase that should immediately follow the network con-
struction phase and preceed the propagation phase.
Preprocessing may depend on local pattern matching (as we did in the system pre-
sented in this dessertation to detect circular dependencies).

(29)

Preprocessing of a constraint network is meant to reduce, or eliminate, futile back-
tracking, which wastes considerable computational resources. On the other hand,
the preprocessing phase itself, consumes considerable resources. Faced with this
trade-off, one tries to limit the use of preprocessing to the cases of hopelessly futile
backtracking, as in circular dependency.
Inequalities are a very important tool in engineering modeling. They can be used in
constraint propagation, but not with the algebraic solvers. (Grigorev & Vorobjov
88) offer an algorithm for solving systems of polynomial inequalities in subexponen-
tial time.

2.23.1 Constraint Propagation vs. Equation Solver
" At the introduction of any change of value to the model, the

equation solver has to evaluate the whole system of simultaneous
equations anew to calculate values for every variable. A
constraint propagator, on the other hand, recalculates only the
variables connected to the changed variable. So, in a complex
model with tens of thousands of entities, we are dealing with at
least a similar number of parameters. Everytime a user changes a
parameter, all the other parameters have to be recalculated. This
is an expensive process regardless of the hardware platform.

o Every constraint is represented as an object to which we can
attach any properties (owner, conditions, ...) and methods. Each
parameter in that constraint is also an object.

o The previous points hold in the case of sequential Von Neumann
paradigm (single-processor) computers, super or otherwise. In
moving into parallel architectures, the network nature of a
constraint propagation system maps directly into the Hyper Cube
architecture of almost all parallel computers. Compare that with
the sparse matrix that gets generated by any equation solver,
which leaves most processors idle most of the time.

2.23.2 Improvements in the Constraint Propagation System:
" Tolerates both over-constrained specification (contradictions),

and under-constrained specification (through either null values or
default ones).

O User-defined rules for contradiction handling.
O Accepts any data type for propagation (integers, reals, strings, ...)
o Graphical (iconic) schematic editor for construction of constraint

networks.
O Detection of circular dependencies, and demonstrating it through

the graphical editor.

(30)

Chapter 2: Related Work

2.2.4. Constraint Logic Programming (CLP):
Constraint Logic Programming (CLP) can be viewed from two perspectives: one re-
lated to mathematical logic and automated theorem proving, the other to the devel-
opment of programming languages based on logic. Within the mathematical logic
context, CLP represents an effort to establish a class of first-order theories which
preserve the basic (simple) computational properties of Horn-clause logic. From
the programming languages point of view, the purpose is to establish a class of logic
programming languages in which the variables can have values in a diverse set of do-
mains including trees, booleans, reals, rationals, list, etc. (Cohen 90).
Prolog is the most famous language in the family of logic programming languages.
Prolog allows the programmer to write statements of predicate calculus in Horn-
clause form. A Prolog statement is an implication whose antecedent is the conjuc-
tion of predicates and whose consequent is a single predicate form. A typical Prolog
statement is:

arrange(cons(X,L),tree(T1,X,T2)) :
partition (L,X, L1, L2), arrange(L1 ,T1), arrange(L2,T2).

This may be interpreted declaratively as the statement

VXVLVT 1VT2VL1VL2 (p(L,X,L1,L2) Aa(L1,T1) Aa(L 2,T2)) = a(c(X,L),t(T 1,X,T2))

However, Prolog provides an imperative interpretation, called unification. The term
before the ":-" is considered to be a procedure declaration, and the terms to the right
are statements of the procedure. Thus the statement above may be read, "Ifyou
need to call procedure arrange, then its first argument must be a cons and its second a
tree, and also you must execute three otherprocedure calls". Moreover, there may be
more than one "declaration" of a "procedure"; when a procedure must be executed,
its various declarations must be chosen among "non-deterministically". Non-deter-
minism is implemented using chronological backtracking to allow the use of stack
operations.

The spread of Prolog is due to the development of a target language which can be ef-
ficiently used in executing programs. Warren's Abstract Machine (WAM) is the de
facto lower-level code generated by current Prolog compilers (Warren 83). One of
its advantages is that it replaces unification, whenever possible, by simpler sequences
of tests and assignments. No well-accepted WAM model for CLP has been estab-
lished yet.

(31)

2.2.4.1 Why Not Current Prolog for Parametric Modeling
Current Prolog has the following limitations:

o Chronological backtracking is less efficient than
non-chronological, dependency-directed backtracking used in CP
mechanisms.

o Prolog, like constraint propagation mechanisms, has a
tree-parsing capability to be used in guiding deductive
mechanisms. Unfortunately, dependency information is kept
internal within Prolog, i.e., it is inaccessible by the users. This is a
limitation of Prolog when compared with CP.

o Prolog has no notion of various levels of merit for a variable (such
as Default, Parameter, Constant, and other user-defined merit
levels).

o The CUT (!) command defies any notion of tractability, and
makes dependency-directed backtracking quite awkward.

2.2.4.2 CLP: Rationale for Introducing Constraints to Prolog
Since unification could be viewed as a method of solving systems of equations involv-
ing trees, it could be generalized to new domains in which equations can be tested
for solvability. The following example demonstrates Prolog's need for constraint ca-
pabilities: in Prolog, the equality

1+X=3
results in a failure, since the operation + is considered as an unevaluated function
symbol, and the unification algorithm fails.

There are two major approaches to remedy the inference mechanism.
The first one is a meta-level interpretation allowing the description of interpreters for
the languages (such as Prolog & Lisp) using the languages themselves. The inter-
preter assumes that the program rules are stored as unit clauses:

clause (Head, Body).
each corresponds to a rule:

Head :- Body.
where Head is a literal and body is a list of literals. Unit clauses are stored as:

clause(Head,[]).

The interpreter for Prolog is:
solve([]). % Special case for empty agenda
solve([Goal I RestGoal]):- % In case of a full agenda:

solve(Goal), % Solve the first item of the agenda, and
solve(RestGoal). % Solve the remaining agenda.

(32)

Chapter 2: Related Work

solve(Goal):- % Special case for single-entry agenda:
clause(Goal,Body), % If there is a clause whose head is Goal, then
solve(Body). % Solve the body of clause.

In CLP languages, a rule is represented by:
clause(Head,Body,Constraints)

corresponding to a rule:
Head :- Body { Constraints}.

The modified procedure solve contains three parameters:
o 1. The list of goals to be processed,
o 2. The current set of constraints, and
o 3. The new set of constraints obtained by updating the previous set.

The meta-level interpreter for CLP, written in Prolog is:
soive([] ,,C).
solve([Goal I RestGoal], Previous_C,New_C):-

solve(Goal, Previous_C,Tem p_C),
solve(RestGoal,Temp_C,New_C).

solve (Goal, Previous_C,New_C):-
clause(Goal, Body,Current_C),
merge_constraints (Previous_C,Current_C,Temp_C),
solve(Body,Temp_C, New_C).

The second approach is based on Automata theory, such as the abstract machine sug-
gested by (Colmerauer 90) for Prolog III. The abstract machine resembles a push-
down automaton whose stack is updated whenever a program rule is applied.

Two major proposals are emerging within the logic programming community to ex-
tend Prolog into a CLP. These approaches alleviate the above-mentioned limitations
of Prolog, especially unification.
The first approach offered in (Jaffar & Lassez 87) provides a meta theory insuring
that the basic theoretical propositions of logic programming remain applicable in
the case of CLP, provided the domains being considered satisfy certain conditions.

The second approach, taken by Colmerauer (Colmerauer 90) in specifying Prolog
III, is to describe the meaning of programs by establishing the relationship between
rewriting rules representing the programs and the set of solutions obtained by apply-
ing these rules. In Prolog III the basic domain is that of infinite trees. A program

(33)

rule consists syntactically of a pair: rewriting rule {constraints } in which: (1) a rewrit-
ing rule specifies that a term can be rewritten into a (possibly empty) sequence of
terms, and (2) a constraint is a relation on terms.
In Colmerauer's Prolog III, backtracking is initiated when: (1) the current set of con-
straints is unsatisfiable, or (2) it is meaningless to apply an operation to the given op-
erands.

2.3. Neuronal Network Models
Experience plays an important role in design problem-solving. Previous designs are
utilized by engineers to synthesize a new design. In design problem solving, a goal is
posted, then it is recursively broken down into subgoals. For every (sub-)goal we try
to retrieve an analogous case from our memory that fosters or defeats that goal. The
process of finding analogs, to build or reason about a structure, is called Case-Based
Reasoning (CBR). A case retrieval system works according to a cognitive (neuro-
nal) model. In the following sections a brief discussion is offered for both case-
based reasoning and the various cognitive models.

2.3.1.Case-Based Reasoning
Case-Based Reasoning (CBR) is the category of techniques that takes advantage of
experience in problem-solving. To be able to find analogies between the cue, in
hand, and similar analogs in memory, every case retrieval mechanisms needs to have
a cognitive model of memory organization (Schank 82). CBR is central to the sys-
tem demonstrated in this dissertation, since it enables it to take advantage of its ex-
perience (previous design cases). Most of CBR mechanisms use search, as their case
retrieval mechanism, over a space of indexed cases.
Indexing is the addition of keywords to a case before saving it in memory. You have
to add as many indexes as possible to allow a search in whatever dimension. For ex-
ample, a story could be used as an analog in numerous contexts, therefore, you have
to be imaginative during pre-processing (indexing) of the case to anticipate all possi-
ble future uses.

23.1.1 Problems with Indexing

1. Preprocessing (indexing) of cases (before saving) is prohibitively expensive for
any application with a real-life size.

2. Our memory (space of cases) is too vast to be searched. Even with an intricate
system of indexes, the search is intractable. Heuristics were thought to
alleviate this problem.

3. Making judgements very rapidly is a characteristic of the human brain to which
man owes his survival. Experiments show that some decisions, such as

(34)

Chapter 2: Related Work

avoiding a speeding car, can take as low as 100 milliseconds (Feldman &
Ballard 82). A neuron can be compared, in signal processing, to a transistor or
a single bit of computer memory. Each neuron in a chain requires on the order
of a millisecond to (electro- chemically) respond to its input (Kuffler &
Nichols 76). That guided Feldman and Ballard to advance the hundred-step
rule, which argues that the longest chain of neurons - including sensory and
motor neurons - involves no more than 100 steps to tackle anyone of a wide
range of decisions.
No significant amount of searching, or trial and error, can be supported within
100 single-bit steps.
Thus search, and consequently indexing, is precluded as an explanation for
understanding natural language - where new words arrive every two hundred
milliseconds or so - and also as as an explanation for object identification,
situation assessment, emergency decision making, etc. (Waltz 89).

23.1.2 Non-indexing Approaches
Fortunately, there are proposed architectures that are consistent with these require-
ments for speed, such as the Society of Mind model (Minsky 86), and the connection-
ist models (Rumelhart & McClelland 86, Waltz & Feldman 88). The emerging
parallel hardware can implement such models efficiently (Hillis 85). These cogni-
tive models are discussed in the next section.
A major plausible approach to case retrieval is through constraint satisfaction, as pro-
posed by (Thagard & Holyoak 89) in their ARCS model. In that approach they iden-
tify three major kinds of constraints to govern how parts of two analogs can be
placed in correspondence with each other (ordered according to importance):

1. Semantic similarity: Numerous psychological experiments indicate that
retrieval of analogs by humans is very sensitive to the degree of semantic
overlap between the target analog that provides retrieval cues and the source
analog found in memory.

2. Structural consistency: There has to be a one-to-one mapping of (isomorphic)
structures that perform analogous functions.

3. Pragmatic centrality: The purpose of analogies in problem solving is to help
accomplish the goals of the problem. A case retrieval system, attuned to
increase the retrieval of analogs relevant to goal accomplishment, would
contribute more to problem-solving effectiveness than a retrieval system that
lacked sensitivity to goals. Attunement is accomplished mainly by taking
causality into consideration.

A major advantage of a constraint satisfaction approach is that it renders itself mod-
elable to parallel architectures that drastically speed up retrievals.

(35)

Another approach for speeding up how knowledge processing in memory is to com-
pile case retrievals into reflex arcs which has been the topic of two major classes of
approaches.
The first approach is represented by a number of machine learning efforts such as
the SOAR system that investigates chunking mechanisms for speeding up problem-
solving (Laird, Rosenbloom and Newell 86).
The second class of connectionist network modelers are aiming at the goal of train-
able systems for performing arbitrary input/output mappings in rapid time (Hinton,
Rumelhart and Williams 86). Both methods require relatively large numbers of
input variables for encoding goals, current situation, and context (together forming a
kind of problem space), and involve little or no chaining. No items are preselected
to serve as indexes (Waltz 89).

The major drawback of that parallel trend is that our high-level thinking is primarily
serial. So, it is difficult to use introspection - AI's main source of knowledge over
the years - to gain much information about such processes which are both rapid and
largely inaccessible to conciousness.

2.3.2. Cognitive Models:
As design automation moves toward developing more general robust systems, it is
becoming evident that the most powerful of the current generation of computers will
not be able to compete with the brains of designers in tackling decision-making.
The most eminent reason for this disparity is that the human brain works in a mas-
sively-parallel mode, while our traditional computers are not. Therefore the need
becomes more evident for massively-parallel approaches to the design problem
(Hillis 85). The human brain is made up of several billions of neurons, most of
which are made of a synapse (with capabilities similar to a transistor's) and a tiny
memory attached to it (Kuffler & Nichols 76) 5 . The challenge is in understanding
how our brains work as minds. In other words, what could be the organization of the
vast number of neurons in the human brain to perform the subtle cognitive faculties
that we have. Marvin Minsky offers his perception of such organization in his
model, the Society of Mind (Minsky 86). In the Society of Mind, Minsky offers the K-
line theory for how the same neuron can get involved in different organizations at dif-
ferent times to perform various tasks. Similar to Minsky's Society of Mind,
Jean-Pierre Changeaux offers his Neuronal Man model (Channgeaux 85).

5 Interest in neurological models, among computer scientists, goes back to John von Neumann, refer to his
lectures in (von Neumann 58).

(36)

Chapter 2: Related Work

The implementation of these theories was not possible till the development of the
Connection Machine (Hillis), the first massively-parallel computer. The Connection
Machine (CM) is a departure from the von Neumann paradigm of computation.6

The Connection Machine offers a large number, about 65000, of 1-bit arithmatic
logic unit (ALU), each of which has attached to it a local memory of about 128 bits.
To allow different communication paradigms between the processors, the CM uses
the HyperCube communication paradigm. Unfortunately, most CM applications
are geared towards machine vision. Nonetheless, there is some research in develop-
ing Finite Element analysis applications on it.
Vijay Saraswat (Saraswat 89) investigates a massively parallel implementation for
constraint propagation, where every cell can be presented by a processor. Such
strong semantics is very powerful and replaces the queue-based approach of the cur-
rent implementations.

2.4. Truth Maintenance Systems
A Truth Maintenance System (TMS) is used with a continuously-changing knowl-
edge base, to make sure that all the clauses inside the knowledge base are consistent
with each other. TMS is used to assist an inference engine. The inference engine
provides the TMS with queries about the consistency of its clauses. TMS, therefore
utilize constraint propagation in reasoning.
Having such a generic capability is quite appealing especially in the ever changing
world of parametric models of engineering artifacts. TMS has nodes to represent pa-
rameters, or literals. A node can have only one of three values (McAllester 78):

" in meaning that a fact is known to be true,
" out meaning that a fact is known to be false, and
" unknown meaning that a fact is not known to be true.

This is not sufficient for a day-to-day application in the world of engineering design.
In design, what is in from a structural engineering point of view, could be out from
an architectural point of view. Therefore TMS needs the following added capabili-
ties:

o Larger, user-defined domain of values.

6 John Von Neumann perceived his first computer as a Central Processing Unit (CPU), and attached a
large memory, and peripherals (von Neumann 58). In his design of the first generation of computers, he
faced a vast gap in price between the material for manufacturing the ALU (such as the expensive vacuum
tubes), and the material for manufacturing memories (such as the very cheap lead delay line). Therefore,
he tried to maximize the utilization of the expensive CPU at the expense of the cheap memory. Now both
the CPU and the memory are made of the same material, Silicon, but we still use the von Neumann
paradigm. So we ended up with a paradigm that maximized the utilization of about 3% of the silicon, at
the expense of the rest of that very same silicon.

(37)

o Conflict resolution that would allow for user-defined resolution
rules.

The same limitation applies to Assumption-based TMS (ATMS). Johan deKleer, in
(deKleer 89), compares ATMS and CSP, illiciting the analogies of trade-offs that
need to be made on both sides and in the propositional encoding.

2.5. Design Methodology
The area of design automation is one of the major applications for computers. It
started with application specific programs. Then as computers became more wide-
spread, the areas of potential applications grew up. Developers discovered that
there are a lot of techniques that work in more than one area, or in other words, that
so many problems can be reduced, at some level of abstraction, to a finite set of gen-
eral problems. This line of thought led to the tempting idea of the General Problem
Solver (GPS), where a system armed with a library of general tools can tackle almost
any problem. It took sometime to discover the severe limitation of such reduction-
ism.
For the past 30 years, specific engineering artifacts, such as bridges (of fixed design)
and speed transmission systems, were good applications of design automation. On
the other hand, some other areas of design, such as architectural design, proved too
formidable to be automated, because of the lack of understanding of how human de-
signers work. The need for better understanding of the design protocol motivated
many automation engineers to study the cognitive protocols that human designers
follow.

In this section, we will first look at cognitive design protocols, then hierarchical mod-
ular approaches, then the cognitive architectures for the design process, and finally
the area of rule-based approaches.

2.5.1. Design Protocols
A design protocol is a behavioral model that describes the way a designer creates his
design. Such a model is transformed into an algorithm, which gets fleshed out into a
computer program to examine the protocol and its resemblance to the human ap-
proach. A design protocol is very important in areas of design where it is difficult to
weed through alternatives in order to formulate an objective function. Since archi-
tectural design is an example of such an area, most of the researchers in the area of
design protocols are involved in architectural design. Architectural design is compli-
cated by two problems:

o The high inter-connectivity of all parameters. Since the job is
dividing one limited space to perform several functions under a
heavy load of constraints. This problem is the topic of what
architectural automation researchers call space grammar.

(38)

Chapter 2: Related Work

o Aesthetics, which is hard to quantify, is an important factor in the
architectural design process.

Charles Eastman (Eastman 68) was the pioneer of this approach, followed by Omer
Akin (Akin 88). They devised protocols (behavioral models) of architectural design
to describe the different ways architects traverse the design space alternatives.
These protocols could be used as domain-specific methodologies or search strate-
gies.
For example, a top-level protocol is a methodology to synthesize the design specifica-
tions into a conceptual design. On the other hand, a detailed, or the same, protocol
may tell you if a room is violating the specification (say, by being too small), and
what are the ranked remedies to be examined.
Eastman's work accentuates the issue that the conflict resolution mechanism in our
system should accept not only user-defined strength levels, but also domain-specific
design methodologies.

2.5.2. Hierarchical (Modular) Approach
In some other engineering domains, a design is more of an assembly of components.
Each component in itself is either an assembly or a basic component, whose design
is well understood and straightforward. Design synthesis, in such cases, is more of a
configuration problem where the major task is selcting the right components that sat-
isfy the imposed constraints. A good example for such areas is mechanical design.

Separating Functionality from Geometry:
Karl Ulrich (Ulrich 88) breaks the (conceptual innovative) design problem into 2
stages: generating a schematic (functional) description and then generating a physi-
cal (geometrical) description.
The approach is similar to the one followed in our system, though our system does
not tackle the area of innovative design in this version.

Top-down Hierarchy:
Ressler (Ressler 84) offers a top-down (hierarchical) methodology and an implemen-
tation for the design of operational amplifiers.
His approach has the following limitations:

o First, the user cannot introduce a change in the top-level specifications after
the whole design is made.

o Second, the design criteria are defined a priori. They have to be
user-defineable. Distilling alternatives, a priori, into a scalar value is too
infringing on the designer's freedom.

(39)

Richard Doyle (Doyle 88) follows a similar approach in his system, Jack. Jack uses
hierarchical planning in breaking a task/goal into blackboxes of sub-functionalities.
Causality is the major factor in fleshing out the components of a blackbox.

Assembly Modeling:
Assembly modeling is tightly-coupled with parametric modeling which was dis-

cussed at the beginning of this chapter. Nevertheless, research in the causality and
its impact on assemblies needs to be pointed out here for its relationship with the
topic of hierachical modeling. David Gossard and his team have been researching
parametric design of assemblies. For a good review of their work refer to (Kim &
Gossard 89).

Virtual Construction:
Pentland's concept of virtual construction could have been covered in the section on
algebraic solvers as well. Pentland offers an alternative approach to constraint prop-
agation, called virtual construction, perception of non-rigid motion (Pentland & Wil-
liams 89). In his approach, an artifact is represented by a set of equations describing
its vibration modes that gets solved by successive relaxation. Through this approach
"it is plausible to use sensory (tactile, visual) data to recover a nearly complete physical
model of an object, so that we can, for instance, predict its response to impinging
forces". The approach is a special-purpose algebraic solver. Therefore, all the limita-
tions of the use of algebraic solvers in design modeling, as described before, apply to
it. It is not clear how the system handles design aspects that are not based on
stress/strain relationships.

2.5.3. Rule-based Approach to Design:

Rule-based representation, because of its ease of use, is the most widespread para-
digm for modeling the design process. Before discussing this approach, a descrip-
tion of a couple of stereotypical applications is given, then a general discussion of
the approach ensues.

MaryLou Maher's HiRise system for the design of high rise buildings (of fixed rec-
tangular plan) is an example of AI in structural design. The system is written in vari-
ants of the OPS-5 & FRL programming shells for production systems. This
implementational issue restricts the representation used in the system to mainly pro-
duction rules. Constraint propagation, or any other truth preserving mechanism, is
needed for modeling the design process. Redeployment of the system using more
powerful, flexible tools will help accentuate the capabilities and features of the HiR-
ise system (Maher 88). Being a student of the same school of thought, Duvvuru
Sriram follows a similar implementational approach in design with more explicit em-
phasis on the role of blackboard mechanisms (Sriram 85). Blackboard mechanisms

(40)

Chapter 2: Related Work

allow for the representation of design through multiple agents, that represent various
aspects of design (Nii et al. 88). The blackboard manager is responsible for both
managing plans and resolving contradictions. Agents, in blackboard architectures,
play a role that combines both advisors and part of the knowledge base, in our sys-
tem.

J. Connor & E Chehayeb (Connor & Chehayeb 87) tend to tackle serious applica-
tions like the main structural systems for medium size buildings. They are not reduc-
tionists when it comes to scoping the problem. Similar to Maher's HiRise, they have
one limitation in their adherence to the rule-based approach, using the GEPSE sys-
tem, which hinders them from developing a robust system. Nevertheless, the Gypsie
system is comparable to the OPS-x family of rule-based programming shells, with
emphasis on engineering applications. Addition of truth-preserving capabilities to
Gypsie will make it a powerful engineering design tool.

Use of a rule-based model has its appeal in the following points:

" Simplicity: where engineers with minimal computer acquaintance can start
using the approach;

o Inexpensiveness, in terms of computational resources. "If-then" rules are easy
to implement, and do not take much of computational resources.

Nevertheless, the rule-based approach has the following limitations:
o It strictly enforces a one-way, top-down approach to design.

o Lack of truth-preserving capabilities.

o It is quite difficult to model all the cognitive faculties of the human designer
in the form of "if-then" production rules.

(41)

Methodology

To present the methodology of the work described in this thesis, this chapter starts
with background about the design process - then a section about the human ap-
proach to the process - then a framework, or system architecture, is developed for
modeling the human approach. Once the architecture is established, the methodol-
ogy describes how this architecture works. The last section deals with the represen-
tations that were required for the implementation of the methodology.

3.1. Background: The Design Process

The design process, as depicted in figure (3.1), starts
the engineer enters a loop of Analy-
sis and Dimensioning until a fully-
detailed version of the product is
reached. To communicate this de-
sign to other engineers, the design
gets drafted. Then, various entities
perform a multitude of design
checking procedures on the initial
design. If a modification is needed.
the design goes back to the Analy-
sis/Dimensioning loop, and so on.
After a satisfactory design is
reached, it is released for Construc-

with a conceptual design, then

LIUIt aiilllLil; LU 1 111ig. Va LIaII C

To reach the ultimate design of one
category of products, designers have
to learn from all the problems that may arise during checking, manufacturing, and
maintenance, so next design of a similar product will be a better design made in
shorter time [Design for Manufacturability (Boothroyde 84)].

While some stages of the design process, such as Analysis and Drafting, got a great
deal of automation, others got scattered efforts of automation, such as process plan-
ning, which is a part of the manufacturing block in figure (3.1). The more critical
stages, namely conceptual design & checking, let alone the integration of the whole
lifecycle, are still manually performed.
The development of an integrated environment that represent the real engineering
lifecycle is still the hope of engineers in various domains. It is called Simultaneous

(42)

Manufacturing/Constrn.

h !;+a~n

Engineering in the automotive industry and Concurrent Engineering in the aero-
space industry. So far, it amounts to common database accessed by different engi-
neering tasks.

3.2. Human Approach
If you ask a structural engineer to design a clinker silo, he will not start scribbling on
a calculation sheet right away.

1. He will first ask himself if he ever designed a clinker silo (or anything with
similar functionality) before.

2. If the answer is yes, he will grab the design case(s) from his experience and
modify it to fit the new specifications. By doing that, the engineer has saved
himself the effort of trying dead-ends, utilizing the short cuts that worked
before.

3. If he has not met a similar case, as it is the case for a novice engineer, he will
look for a design (cook) book on How to Design a Clinker Silo.
If such a book exists, he will follow the steps in it. The steps in the book will
certainly be more general and based on trial-and-error. The design will
generally take longer.

4. If neither a similar experience, nor a specific design cookbook is available,
there is no alternative but to synthesize a solution based on the specifications
he has in the textbooks (knowledge bases) and the standards/specs of the
project. The textbook will tell him about the functional description of a clinker
silo and its major functional components (silo, handling unit, and
temperature/ventilation control).

5. For every functional component of the project, the engineer will repeat steps 1
through 4, until he reaches a sub-component level that he knows how to design
(through experience or from a catalog).

6. Unlike analysis, in design we are overwhelmed with alternatives to the final set
of values. The weeding/selection is made by propagating the constraints
imposed by the various bodies of standards.

7. By the end of the design of the clinker silo, the engineer will save the whole
design case (including corrections & later revisions) in his experience and a
generic version of it into the catalog (cookbook).

(43)

Next time our structural engineer is asked to design a grain silo (not only a clinker
silo), he will be able to use, with modification, the silo unit of the clinker silo in the
design of grain silo.

3.3. Description of the Design Utilities Framework

A novice engineer coming out of school may not know how to specifically design
a lot of things, but he sure has the problem solving tools, and techniques that
he can use to design almost anything once he has the functional specification.

As time goes on, he goes through more projects, his experience grows, and
consequently, his performance improves.

Based on the human approach to design, as perceived in section (3.1), a framework
for design utilities was designed, as illustrated in figure (3.2).

iff C
IL • hea iIIWUI K WI UIcnL Ul IILb V

major components, which are dis-
cussed in more detail in the next sub-
section:

1. A central core of capabilities
that resemble the problem
solving capabilities of a novice
engineer.

2. A set of knowledge bases that
represent a specific domain.
The core uses the KBs for
functional description of new
objects and domains.

Case

Library

re-&Post
Processors

Figure (3-2): System Architecture.

3. A case library of complete designs. The core uses it as its experience. It
retrieves previous designs from it, and it saves new designs in it.

4. Advisors (bodies of standards & specifications) to be enforced upon a design.

5. Pre-processors, like Finite Element Analysis, and post-processors, like
numerical control programs for manufacturing the designed part.

(44)

ICase

Library

\VISORS

All we need to provide to a designer, is the central core of the environment, denoted
by the thick line in the middle of figure (3.2), since he can attach to it whatever
knowledge bases, case libraries, advisors, and pre-/post-processors, he needs..

3.4. Harvesting Mechanism
Harvesting is a technique to improve the model of an evolving domain (in the knowl-
edge base) using the feedback on previous cases. In other words, it uses case-based
reasoning, and feedback, to improve its model-based reasoning.
The mechanism has three stages:

[I] The first stage is the broadcasting of copies of the current Knowledge Base
(KB).

[II] The second stage is the modification of the local copy of the knowledge base
according to the feedback on the current case and on the previous cases.

[III] The third stage is the harvesting of all the previously-identical copies of the
knowledge base, after they have adapted themselves to the cases they
encountered. The same knowledge modification process of stage [II], that was
performed locally, is repeated on the old version of the KB using all the cases
encountered by all the copies of the KB, with priority in stepwise regression to
the relationships already proposed by the various copies.
Go to stage [I].

3.4.1. Knowledge Modification:

1. The system collects feedback on every design case after an appropriate period
of time (6 - 12 months).

2. The system uses credit assignment for accumulating credit (positive and
negative) along the reasoning path used in the design.

3. The system discards any piece of knowledge (causal constraint) that
accumulates a certain negative credibility threshold.

4. Using generalization across the polymorphic 1 representation of knowledge, the
system improves the causal model of the model, as described in (Pople 76).

By polymorphic representation means mainly causal and taxonomical representations. Other
representations could be added such as nosological (in case of heat transfer, or plate stress transfer).

(45)

5. Dimensional analysis is used to cluster all parameters that may influence the
design parameter under scrutiny in non-dimensional groups. Since a
dimensionally-correct equation is more probable to be semantically more
sound than an empirical formula (that does not preserve dimensional
correctness).

6. The system builds an array of all the occurrances (in the current case and all
other cases in the case library) of the parameters that constitute the
dimensionless groups. Then calculate the value of every dimensionless group
in every case.

7. The system uses the values of the dimensionless groups, formed in the previous
step, as occurrances of parameters in stepwise regression analysis to
build/modify a quantitative relationship with correlation factor above a
user-set threshold. The new relationship is added to the model.

Because of this adaptive capability of the system, knowledge base gets changed by
the end of the year to adapt itself to the feedback on the encountered cases. So, the
previously-identical copies of knowledge base will grow different after being re-
leased in different sites for a year, or so.

3.4.2. The Need for Harvest

1. To make sure that newly discovered relationships are not just perturbances due
to local circumstances.

2. Making the new knowledge gained at one site available for the other sites.

3. The result of generalizing the knowledge gains of various sites exceeds the
mere addition of the gains. Henry Kyburg makes a strong philosophical
argument, supported by formal logic and theory of probability, that "all
acceptable generalizations are analytic", and the importance of probability in
supporting generalizations (Kyburg 83 -part IV). So, generalization allows us
to broadcast a better model of the domain to all users.

3.5. Methodology
This section describes how the system works, and what we get out of it.

(46)

While the aforementioned system architecture should work in various design/engi-
neering tasks, it had to be tested it in two major modes of operation: Design Synthe-
sis and Design Checking.

3.5.1. (A). Design Synthesis
The user posts his specifications, which guides the system in selecting the most ap-
propriate main structural system, whose parametric model is detailed and graphi-
cally displayed. The user may impose additional constraints, which are propagated
through the design. The attempt to satisfy the additional constraints may cause the
entire design to be revised. The user can query the system about the way (reason-
ing) any parameter got calculated.

3.5.1.1 Initial selection of fragments
Dimorphism of our world models has been argued from the early sixties. Marvin
Minsky had the following statement in (Minsky 68):

"A man's model of the world has a distinctly bipartite structure: One
part is concerned with matters of mechanical, geometrical, physical
character, while the other is associated with things like goals, meanings,
social matters, and the like."

Whenever a functionality can be accomplished by more than one alternative, the sys-
tem uses two representations for every one of the major alternatives to design the ar-
tifact:

Abstract representation: It is a mostly-functional representation that may
include heuristic knowledge relevant to comparison of this alternative to other
alternatives. So, instead of using the exhaustive brute force approach of
fleshing out all alternatives to decide which one to be picked up, these
heuristics consist of pre-compiled knowledge of experts to rapidly guide the
system to a probably-right selection. Selection may turn, nevertheless, to be
inaccurate due to the peculiarities of the specific case.

Detailed representation: It is used after the initial selection of an alternative is
made. The detailed representation elaborate the processing of the various
aspects of the object (such as analysis and dimensioning).

Without this dimorphism, the system would have spent large resources to exhastively
elaborate the design using every alternative encountered, before making a selection.
The abstract (functional) representation is used to compare alternatives (using a se-
lector constraint network), to save the time of elaborating details of the various alter-
natives; such detailing is irrelevant at that level. After all, if details are of

(47)

importance in meeting the selection constraints, they will be considered at a later
step.
Once the initial selection is made the abstract representations are discarded, and re-
placed by the detailed representations.

"In abstractionism we have not a picture that can be closely
inspected and criticized, but a mirage that disappears when
closer inspection is attemptedL"

(Geach 83)

The Selection Algorithm:

1. Build the initial selector constraint network that include the abstract
representations of all alternatives.

2. Impose the user top-level (functionality) requirements upon the initial selector
network.

3. Propagate the functionality constraints to make a selection (as detailed in the
next chapter) of one alternative to satisfy the functionality, and save its name
in the variable *SELECTED-SYSTEM*.2

4. Sever the link between the *SELECTED-SYSTEM* variable and the selector
network. to avoid considering (propagation through) them at every small
change.

5. Connect the *SELECTED-SYSTEM* variable to a ONE-OF or-tree of the
names of the various alternatives. Since *SELECTED-SYSTEM* variable has
a value, it will be satisfying the one-of constraint.

6. Build the detailed-design selector constraint network that include the detailed
representations of all alternatives.

7. Impose the user top-level (functionality) requirements upon the
detailed-design selector network.

8. Connect the *SELECTED-SYSTEM* variable to the detailed-design selector
network, which will detail the design of the selected alternative.

2 Every abstract representation has a pointer to the detailed representation which is used for the rest of
the design process.

(48)

9. Propagate all constraints to assure the fullfilment of all functionality
constraints. If functionality was not met, the detailed-design selector will
reject the currently-selected alternative, and pick up another alternative that
satisfies the functionality. The newly-selected alternative will be assigned to
* SELECTIED-SYSTEM* variable.

The Design Synthesis Algorithm:

1. The user defines a functionality, for which a design will be synthesized. The
user also determines any specifications the new design needs to meet.

2. The system searches the catalog for a structure (macro constraint) that has the
given functionality as a name (using symbolp & macro-constraint-type-p) or as
a synonym (through a hash table of synonyms)3 . The catalog has a categorical
description for every artifact the system knows, whether it is a top-level artifact
or a component.

3A. If a catalog item is found, the system reads the list-of-instantiations that has
pointers to all the instantiations of that item in the case library.
The system notifies the user with the names of the cases that possibly are
analogous to the design problem at hand.
The system searches for the first case that includes the macro-constraint
(pointed at by one of the pointers in the list) as a top-level design rather than a
component of a larger design.

3A1. If no top-level instantiation was found, the system creates an instantiation of
the catalog item, without the use of the case library.

3A2. If a top-level instantiation was found, the system makes a copy of the whole
case (the macro constraint, and the the final status of the queues). For every
parameter, whose value in the new problem is known, the old value is
retracted.
The constraints that were found to be needed after the deployment of the old
design (and hence were listed as an attribute of the old case) are instantiated
and imposed upon the new copy of the macro constraint.

3 The hash table is not implemented yet. Instead, the system currently uses the synonym entry in the case
data structure in the case library.

(49)

3B. If no items in the catalog meet the required functionality, use the knowledge
bases (such as reference books, and cookbooks) to synthesize a catalog item
(macro- constraint-type, or several macros connected by a detailed-design
selector network) using the afore-mentioned selection algorithm.
Make an instantiation of the newly synthesized catalog item.

4. The known values of the parameters (of the new design problem) are
propagated.

5. For every article of the specifications, if the object (being designed) passes the
filter of that article, that means that the article is relevant. Every relevant
article of specs is unified (i.e., a copy of its constraint is created after replacing
the generic variables by the specific names of the parts to be constrained).
The specific (unified) constraint is imposed upon the macro constraint of the
object.

6. Resolve any contradictions in the new macro constraint.

7. Take any additional constraints from the user, propagate them, and resolve any
contradictions. The macro constraint, by now, represents the (stable) new
design.

8. The macro-constraint, the final status of queues, and a copy of the constraint
network representing the specifications imposed upon the design are saved in
a new design case in the case library.

9. Any further modifications in the design, during checking or manufacturing, are
added to the design as additional constraints. Now comes the issue of version
control.

9A. if the user wants the additional constraints in the same revision, they are
added to the same macro constraint.

9B. If the user considers the modifications as a revision to the original design,
they should be reflected in a new version. A copy of the whole case is made
and the modification constraints are added to it.

Whether it is a new revision or not, the additional constraints get propagated.

10. Modifications suggested after deployment (manufacturing) of the design, are
formulated as generic (i.e., yet to be unified) constraints whose listing is saved
in an attribute of the case.

(50)

3.5.2. (B). Design Checking:
The user can post any body of standards, as specifications, and then enforce them
upon a CAD file of a design. The system will flag out all the violations in the design.
The algorithm:

1. The design drawings are translated into a constraint representation using an
intelligent scanning capability, CAD package-specific object declarations,
and/or a translator.

2. The user specifies the bodies of standards against which the design is checked
for compliance. These standards are in a specification format.
The user also specifies whether the goal is just flagging the violations, or going
the extra step and trying to find a solution, i.e., a resolved (violation-free)
constraint network.

3A. If the purpose of checking the compliance of a design is just flagging out the
violations, the system takes every object in the design and checks its
compliance with all the relevant articles of the imposed standards. Every
violation is graphically flagged by a numbered icon on a separate sheet
(reserved for violations) of the graphical representation. The number inside
the icon refers to a detailed description of the violation to be found in a textual
violation report.

3B. If the purpose of checking the compliance of a design is also modifying the
design to conform to the standards, then all relevant articles of the standards
are determined for each object in the design. For every relevant article, the
generic constraint is unified (instantiated) to the specific name of the object.
The instantiation is hooked up to the macro constraint that represents the
object.
Then follow steps (6 through 8) of the design synthesis algorithm.

(51)

3.5.3. (C). Other Uses of the Architecture:

3. Hybridizing two designs into a new one: For example, we can use the main
structural system of design (A), with the Heating, Ventilation, Air
Conditioning (HVAC) of design (B) to create design (C).

4. You can make use of the case library (experience) of another
colleague/designer.

5. With cost estimate function, automatically translated into a constraint, the user
can use the system as an engineering spreadsheet to evaluate cost/specification
relationship.

3.6. Knowledge Representation: Constraint Propagation

3.6.1. The Need for a Parametric Design
Engineering design is a dynamic process that seldom follows a specific sequence.
Parametric design is the kind of design that allows for any additional constraint to be
imposed, anytime during the engineering process, upon any variable. That con-
straint is expected to trigger a change in that first variable. This change will propa-
gate all over the system, until the whole design is compatible with the
newly-introduced constraint.

3.6.2. Why Constraint Propagation Representation

1. Local propagation vs. simultaneous equations solver:
In a Simultaneous equations solver, if a change is made to a variable, say the diame-
ter of a door knob in the 45th floor of a skyscraper, to stay parameteric the system
has to redesign the whole skyscraper in all aspects, structurally, mechanically, electri-
cally, etc. While in Constraint propagation, the system only needs to recalculate the
parameters that are really affected by change.

2. The need to post any kind of relationship between parameters, such as equations,
inequalities, discrete variables, etc., is only doable in constraint format.

3. The need to accomodate under-constrained, and over-constrainted systems,
which cannot be tolerated by any algebraic system.

(52)

4. The need for a reasoning capability in the system, where every parameter knows
the following:

o How it got its value, if it has one,
o How to get a value, if it does not have one, and
o The other variables dependent on it.

Of course, constraint propagation has its own limitations that will be discussed in the
Limitations sections.
3.6.3. Representing Non-Algorithmic Knowledge:

Constraint propagation is a suitable representation for most algorithmic knowledge
of design. One major reason for the elegance of constraint propagation as a repre-
sentation is its adherence to mathematical logic. This elegance is achieved by keep-
ing primitive constraints to a minimum. These minimum primitive constraints are
the basic mathematical and logical operations. Any furthur capabilities could be
built as macro constraints on top of the primitive ones.
Non-algorithmic knowledge, such as the causal relationships, may be computation-
ally taxing if we want to preserve the minimalistic elegance of mathematical logic.
Nevertheless, by hardwiring few logically-redundant constraints, e.g., IF, as primitive
constraints instead of defining them as a well-founded formula of basic logic opera-
tors (in a constraint network), we can avoid the unneeded network parsing.

if x then y, i.e., x -* y ,
which could rephrased (in primitive constraints) as:

-xly

Taxonomical relationships, e.g. A-KIND-OF, on the other hand, are more subtle to
handle. To handle them, we not only4need to devise new constraints, but also need
to devise an inheritance mechanism.
we may represent attributes in the following fashion:

if X then Y, x - y
where y is an attribute statement of x

Then, if we say that A ako X
then the system invokes an instantiation of Y in terms of A.

4 The ultimate form of constraint propagation should be implemented in an object-oriented system, such
as the yet unreleased CLOS, or it should be implemented on top of an object-oriented database (Keene
89).

(53)

A direct consequence of such a capability, is learning some generalization rules (Mi-
chalski 84) to be embedded in the propagation mechanism, which is implemented
through the procedure run! in the computer program.

3.6.4. Knowledge Representation:
The following paragraphs describe the representations that was designed to allow
the implementation of the afore-mentioned methodology. Almost every object spec-
ified in (Steele 80) got modified heavily for handling procedures and methods.

Cell:
Every argument (parameter, variable, or constant) or constraint pin is represented
by a cell. Every cell has a repository where it keeps its value. In addition to value,
every cell has both merit and strength.

Repository:
It is a data structure that describes the place where a cell value is to be stored. Re-
pository itself does not hold a value. If two cells are equated, then their repositories
are merged.

Prim:
The structure PRIM is used for the graphical representation of a constraint. The
structure is saved in the association list of the GRAPHICS slot of the CON-
STRAINT structure under the locator GRAPHICS.

Oueue:
Is a stack of operations yet to be performed. The system has several queues for con-
trol of propagation. The whole propagation mechanism is based on performing vari-
ous operations on the entries of the various queues. Types of queues:
CONTRA-QUEUE, VANILLA-QUEUE, NOGOOD-QUEUE, PUNT-QUEUE.
An additional queue that was added for handling geometric conflicts is GEOMET-
RIC-CONTRA-QUEUE. This queue is not to be processed while geometric editing
is going on. For further discussion about geometric constraints, see p. 57

Constraint-type:
It is the description of a category of constraints, such as ADDER. The description
includes the various rules that represent the behavior of the constraint type in the
various direction, and for different uses, such as adding a new value, forgeting a
value or making a nogood list.

(54)

Constraint:
A relationship between parameters. It could be an equation, inequality, qualitative
condition, etc. It is an instantiation of the category of constraint-type.

Macro-constraint:
A constraint network wrapped in a blackbox, so the user can deal only with a limited
set of parameters (pins) governing the behavior of the blackbox. A macro constraint
could be used to represent a complex (part of a) mechanism.

Macro-constraint-type:
The stereotypical description of a macro constraint. So it can be used for the generic
description of a complex (part of a) mechanism.

Vector:
A macro constraint that include several copies of a smaller macro constraint at-
tached to each other in the same way. Vector is good for representing an artifact
with repetitive components, such as a multi-story building, where every floor can be
represented by a macro constraint, and the whole building is represented by a vector
of the FLOOR macro constraints.

3.6.4.1 Checking & Advisors:
An advisor is a body of specifications (standards) that is used in design. Standards
are collections of specifications that are frequently used in various designs. They are
organized, and enforced, by code-permitting authority, whether national, local, or
commercial. Standards are used during the engineering process in one of the follow-
ing ways:

* During design synthesis: an advisor may help in constraining the design space,
i.e., helping in selection of a design alternative

* During checking: an advisor shows the standards in a format to be compared
against the actual design. A discrepancy between the two is considered a
violation.

Every article of a standard is represented by a specification.
Chapter 5 of the National Fire Prevention Association Code 101 (NFPA 101.5) has
been implemented as one of the advisors.

(55)

Standard:
It is the body of standards, or code, such as NFPA 101. It can be enforced upon an
object, or a group of objects.
Enforcement is made by loading a body of standards, in their abstract (un-unified)
article format, into the design process. Everytime an object is saved, the standards
are automatically enforced upon it.
The user can use the same command, say ENFORCE, to enforce either an article of
code or a whole body of standards. Hence is the development of the virtual ARTI-
CLE-ROOT.
The user may turn off a group of articles, for whatever reasons. The system allows
this deactivation by listing the article numbers to be turned off, the name of user
who made the decision, and the time of the decision all in one list within an attribute
of the standard data structure.

Article:
This is an article of specifications, that the user can enforce upon an object. It is rep-
resented by a constraint network. It may break down into sub-articles. It include the
following attributes, among others:
antecedent: A logical statement that works as a filter of pertinence an object has to

pass before enforcing the real body of article constraint.

constraint: The real constraint network that represents the article of specification
written in constraint representation. It is a constraint network that gets unified
with every pertinent object, i.e., every object that passes the antecedent filter.
Unification takes place by replacing a keyword, OBJECT, by the unique name
of the object being checked before evaluating the constraint network.

Domain-independent parsers can be developed to translate the limited-vocabulary
verbiage of articles into the antecedent and the constraint portions. An Augmented
Transition Tree (ATN) parser has been tried in the New York State Space Condition-
ing Program for Life Safety.

Violation:
It is the flag that gets raised whenever the system discovers uncompliance of an ob-
ject to a body of specifications. Violations are flagged out for one of two purposes:

* reporting the incompliance
* enqueuing the violation for remedial action.

Structure (Artifact):
This object is created for inheritance purposes. It describes a major structure (arti-
fact). A structure is a topmost component of the project. Its inter-dependence with
the other structures of the project is minimal; an example for that is the Gymnasium
of an industrial plant. While the gym is a part of the plant, it is loosely related to the

(56)

other buildings in the plant. A structure is to be inherited by all the topmost domain-
specific objects.

Proiect:
A project may consist of several structures to collectively serve one functionality. In
this data structure, all the project-specific information is saved.

3.6.5. Representation of Geometry & Graphics:

This, by no way, is a full description of the data structure of the geometry/graphics
of a CAD system. This section contains a rudimentary investigation of the differ-
ence between functional constraints and geometric ones is given. Only the geomet-
ric/graphical objects that are central to the development of the system environment
are described.

3.6.5.1 Difference between Functional Constraints and Geometric Constraints:
In ordinary functional/geometric model, where every geometric detail is mapped
into a functionality, there should be no difference between functional constraints
and geometric ones. Nevertheless, it is expected that designers used to current Com-
puter Aided Drafting systems will be more interested in using systems similar to the
one presented in this dissertation because it builds on top of existing CAD systems.
This happens if functionality is assigned to a clump of geometric constraints, with no
clear breakdown of geometry to map into the functionality breakdown. In such a
case, the following differences will emerge:

O Far higher frequency of conflicts between geometric constraints

O Far higher number of initial premises, or degrees of freedom, in every
geometric conflict.

None of the examples, in chapter five, did run into such a problem because proper
functional mapping of all geometric details was used. Therefore, the following sug-
gested solutions were not needed in the current version of the system.

3.6.5.2 How to Handle These Differences:
One approach to the problem is to introduce a different kind of constraints to be ap-
plied to geometry and graphics. Geometric constraints need to have the following
features:

O lowest persistence (lower strength in the value system which forces the
conflict resolution mechanism to try a change in the geometric constraints
before the rest of network.)

(57)

o resolution of conflicts between geometric constraints should take
chronological precedence into consideration 5. It should not be, the only
criterion in conflict resolution.

O Most of the geometric constraints can be condensed into a primitive
constraint, either manually or by using an algebraic simultaneous equation
solver (Gosling 83).

Pros: The separation of geometric and functional constraints is an architecturally-
sound decision allowing the functional modeler to run on a separate processor.
Cons: Additional complexity.

Another line of thought is that we do not need another category of constraints to
work on nodes different from the one working on cells. We can can use the same
type constraint with one slight modification, delayed geometric conflict resolution.6

This could be done as follows:

o Whenever the user intends to geometrically edit a constrained body, the
system automatically halts the propagation mechanism for all (geometric?)
constraints.

o The user introduces a set of changes (constraints).
o These changes are literally executed, i.e., graphically-displayed, without

propagation. In other words, the changes will be carried out in the narrowest
graphical sense until the geometric editing is finished.

o When the geometric editing is finished (the user announces that), the system
resumes the propagation mechanism.

o An additional contradiction queue is assigned only to geometric constraints.
Conflicts are not to be dequeued from it while geometric editing is going on.

o By the time the system starts to dequeue the geometric-contra-queue,
conflicts may not exist anymore.

5 Chronological sequence is the only criterion used by the existing parametric solid modelers, as in
CADDS, Pro Engineer, etc. This is similar to Schank's Script (Schank 1983).

6 We owe the general idea of delayed geometric conflict resolution to discussions with Francois Leger of
Prime Netherlands about preservation of geometric consistency. Geometric consistency is of perennial
importance in the Design Automation Language (DAL) of the CALMA's DDM CAD system.
Interpretive DAL deals with geometry in two levels, Graphics and pointers. DAL allows for dynamic
scoping of pointers that will not transpire to graphics until the whole DAL macro is evaluated. So a step
within the DAL macro may violate the geometric consistency, but that does not matter since a later step
may re-establish the geometric consistency again. So by the time the whole macro is evaluated, only real
errors will be detected.

7 That raises the issue of distiguishing geometric constraints from functional constraints. The simplest way
is through nomenclature. Any geometric constraint type has to be preceeded by the prefix, "geom-."

(58)

Example:

A

D C
Figure (3.3): A. Insert Rectangle

Figure (3.5): C. Point (A) is

D C
Figure (3.4): B. Point (B) is

A

D C
Figure (3.6): D. Point (C) is

o The user enters geometric editing mode.
o The user creates a rectangle ABCD.
o The user moves point (B).
o The user moves point (A).
o The user exits the geometric editing mode.
o The system propagates all constraints and discovers

a contradiction between absissa of B and that of C.
o The user selects the absissa of C to be relaxed, as in figure (D).

(59)

AD

C
D C

3.6.53 Objects and Constraints Needed
We need to represent the elementary blocks for geometric modeling. The tradi-
tional approach is implementing the wide hierarchy of objects of node, line, polygon,
circle, arc, box, sphere, cone, etc. This approach was followed in the system pre-
sented in this dissertation. Nevertheless, before describing the approach, we need to
point to another approach, the polynomial representation.

Polynomial representation of objects:
Using a single representation, which is a polynomial series, we can represent any ob-
ject. A node will be represented by scalar values. A line will be a polynomial of the
first order. A spline curve could be a polynomial of the second order and so on.

Back to the traditional representation:
Coordinate (Cell):
The basic element in this representation is a (coordinate) value, which is repre-
sented by a cell. All geometric entities are constraints built in terms of these coordi-
nate cells.

Node:
It represents a point in the space by the three coordinates and a unique name (loca-
tor). The node structure is made for semantic reasons, since processing happens at
the level of individual coordinate values.

Line:
It represents a straight line in space. The attributes are intentionally redundant to
allow flexibility.

start-node, end-node: where you can enter either a point name or a list of
coordinates.

length, slope

type: CAD applications require several types of lines. Each line has its own
methods, e.g., SL1 is to envelope an area, SL2 is a solid line that you cannot
walk across or see through, etc.

Polygon:
It is similar to a vector macro constraint. Similar to vectors, number of structures
(lines or nodes in this case) is fixed. So versions of polygon could be: rectangle, tri-
angle, pentagon, etc.
Problem: Try to think of a polygon vector with variable number of vertices!

(60)

Polynomial representation might be a solution for the indeterminacy in the number
of nodes.

Curve:
Any conic curve can be presented by a macro-constraint, since its parameters are fi-
nite. The problem is in representing splines, where the user can define undefined
number of vertices through which the curve has to pass. A polynomial representa-
tion may be a solution; for every additional vertix, all that is needed for the represen-
tation to fit the curve is adding one or more terms to the polynomial.

angle:
It is a syntactic constraint between two lines, in the user language, that gets trans-
lated into a constraint between the slopes of the two lines.

Example:
The user types the following commands:

* Insert point A (0, 4, 7)
* Insert line L1 from point A with a

length of 8 at a horizontal slope.
* Insert line L2 from midpoint of L1

and perpendicular to L1 and with
length of 4.

* Insert line L3 from point A to end
of L2 at slope of 0.75 at length of 5.

The system will report a contradiction, since L3
connects point A and end of L2. The system can-
not satisfy both the length constraint and the
slope constraint.
The system will ask the user to move A, B or C.
In this case, the user selects C to be moved, which
will shorten L2 to 3 units of length.

C

L2 =4

A B
L1 =8

C

3 L2 =3

A B
L1 = 8

3.6.6. Solids:
A solid geometric model is the unambiguous and informationally complete mathe-
matical representation of the shape of a physical object in a form that a computer
can process. There are three principal types of solid models: wireframe, boundary
surface, and solid. We can say thatA is a model of B ifA can be used to answer ques-
tions about B. In solid modeling this means asking and answering questions about
an object's volumetric properties, such as weight and moment of inertia, and about

(61)

similarly appropriate topological properties, such as connectivity and containment
relationships (Mortenson 85).

There are two major representation schemes for solid models: Constructive Solid Ge-
ometry (CSG), and Boundary Representation (B-Rep).
In CSG, an object is described in terms of elementary shapes (half-spaces) or primi-
tives (bounded primitive solids). The solid is represented by a binary tree of set or
Boolean operations. The leaf nodes are solid primitive shapes sized and positioned
in space, and the branch nodes are the set operators of union, difference, and inter-
section. In the case of half spaces, a simple block can be represented as the intersec-
tion of six planar half-spaces.

In Boundary representation, a solid is represented in terms of its spatial boundary,
usually the enclosing surface with some convention to indicate on which side of the
surface the solid lies. A solid can be represented as a union of faces, bound by
edges, which are bound by vertices. Faces lie on surfaces, edges lie on curves, and
vertices are at edge end-points.

A solid modeling system, whatever the scheme it uses, has to maintain two principal
types of data describing a model -geometric data and topological data. Geometric
data consists of the basic shape-defining parameters, e.g., the coefficients of a bicu-
bic surface. Topological data include the connectivity relationships among geomet-
ric components.

One of the limitations of solid modelers is the way they handle topological informa-
tion. Whenever a solid is edited, the modeler backtrack (de-construct) the solid in
the exact reverse of the chronological order of construction. The problem with
chronological backtracking is that it triggers a lot of unneeded evaluation of steps
that happen to be made between the relevant steps. Dependency-directed back-
tracking, as the one used in this system, avoids this problem. Therefore, functional
constraints can be used for topological aspects of geometrical models. The current
system, nevertheless, does not handle solids but there is no reason for it not to be
able to handle it.

3.6.7. The Interface Language:
The Design Description Language used for the interface between the modules is
Specification, which is a Lisp-like language. Nevertheless, a limited-vocabulary
"Verb Noun modifiers" syntax of plain English (using an Augmented Transition Net-
work parser) is developed for various applications. The parser will translate the En-
glish description into the Lisp-like constraint language.

(62)

Examples of the verb-noun-modifier syntax, in the area of geometric modeling:
Insert point 4,5,8.32
Insert line from point F at slope of 1.2 for length of 9.45

Examples from other areas
Enforce article NFPA-101.5.3.2 on floor-3
Set turbine-A.discharge to 100.

(63)

4. Description of the Computer System

In this chapter, a description is given to the various parts of the system architecture
and the computer programs that represent it.

4.1. Terminology

Constraint:
A relationship between parameters that could be used in any direction. It could be
an equation, inequality, qualitative condition, etc. The following is a constraint: X
+ Y = Z.
Constraint type:
Constraint type is a general description of a constraint, such as ADDER, rather than
an instantiation of an adder, as the one given in the previous definition. It has rules -
one for propagation in each possible direction.
Rule:
A rule is the procedure, defined within the constraint type, to propagate (compute)
values in one specific direction. Every rule has triggers, which are a subset of the
pins (arguments) of the constraint type. A pin is triggered if it changes value. If all
triggers of a rule are triggered, then the rule gets fired, i.e., it performs the propaga-
tion (computation) procedure defined in it.
Macro Constraint:
A constraint network wrapped in a blackbox, so the user can deal only with a limited
set of parameters (pins) governing the behavior of that black box. A macro con-
straint could be used to represent parts of mechanisms.
Cell:
Every argument (parameter, variable or constant) and constraint pin is represented
by a cell. Every cell has its value kept in a repository. If two cells got equated, they
share the same repository. In addition to value, every cell has both merit and
strength among other attributes.

Merit:
If x is f(y), then y should have a higher merit than x. If z is assigned a value by the
user, then it has the highest merit.
Strength:
The values range in strength between unchangeable constant to default. The user
can assign his own strength values, such as Set-by-Mechanical-Engineer, Set-by-Elec-

(64)

Chapter 4: Description of Computer Programs

trical-Engineer, Set-by-Manufacturing-Engineer. These different strengths are to be
used in conflict resolution.
Node:
When two cells are equated, they share the same value repository and thus they form
a node.
Initial Premises:
The ultimate source(s) for a parameter to have a specific value. The reasoning chain
is traversed through a dependency-directed backtracking of the merits of parameters.
Contradiction:
It happens when two cells, with unequal repository values, are equated. They cannot
share a repository to form a node.
Conflict Resolution:
When a contradiction is detected, the system sets the initial premises of the oppo-
nents as culprits and submits them to a court. Judgement is based upon the strength
of values of the culprits.
Circular Dependency:
It happens when a cell belongs to the set of its initial premises.

(65)

4.2. Syntax
The system has an interpreter/compiler that uses LISP-like syntax.
The following are predefined features:

DEFPRIM
DEFCON

DISEQUATE
WHAT

WHY
WHY-ULTIMATELY

DISSOLVE
STATS
CHECK-CIRCULARITY
throws

SCHEMA
QUEUE-STATS
RESET-QUEUES

to define a primitive constraint type.
to define a macro constraint type.
to equate two cells.
to undo = =
queries the system for a value for a cell. If it finds a value it
reports it with a brief reasoning, otherwise it tells the user
the possible ways (parameter assignments) that will grant a
value to the queried cell.
It gives one-constraint-deep reasoning for a cell value.
It gives a detailed reasoning for a cell value back to the initial
premises.
to dissolve a cell's links to any other cell, or constraint.
Vital statistics about the different activities of the system.
It checks a macro constraint for circular dependency. It

the user into a schematic editor to edit the constraint network.
It invokes the schematic (mouse-sensitive) editor.
Gives status report about all queues.
It makes all queues empty. In other words, it indefinitely sto
ps propagation of current constraints at the current status.

Some of the primitive constraints that come with the system:

Basic arithmatic operations:
ADDER, MULTIPLIER, EXPONENT, LOG

Inequalities:
LESS, LESSER!, ?LESSER, MAXER, MINNER

Tlrigonometric Functions:

Set Operations (which are
COS, SIN, TAN

vital for discrete parametric modeling):
ONEOF,
FIRSTONEOF,
ASSUMPTION

(66)

Chapter 4: Description of Computer Programs

4.3. Knowledge Representation
The following paragraphs describe the data structures of the various objects neces-
sary to carry out the methodology presented in the previous chapter. Almost every
object specified in (Steele 80) got modified heavily for handling procedures and
methods. New attributes are described in detail. The attributes that have been de-
fined in (Steele 80) are mentioned, hereafter, without explanation though.
The section starts by establishing some axioms of representation, then it moves to de-
scribing the representation used for implementing the constraint propagation mecha-
nism. Finally, the objects used for checking and case-building are described.

4.3.1. Polymorphic Representation of Objects

Every object has to be described in three levels:

Functional level: which deals with design functionality issues.

Geometric level: which deals with the geometric representation of the
functionality, as described above.

Graphical level: which is the only level that is platform-dependent.

Every level of them is represented along three dimensions:

* Attributes: These are the passive entries that describe the object.

* Methods: which are the active procedures characteristic to the object.

* Tools to manipulate attributes and methods, and the object at large.

Therefore, for every object the following table has to exist, in one form or another.

Object/Attributes . Methods Tools
Functionality

Geometry
Graphics

(67)

4.3.2. Constraint Propagation
The following are the objects needed for implementing the constraint propagation
mechanism, as described in the previous section.

Cell:
Every argument (parameter, variable, or constant) or constraint pin is represented
by a cell. Every cell has a repository where it keeps its value. In addition to value,
every cell has both merit and strength. The data structure has the following attri-
butes:

id repository
owner name
contents state
rule equivs
link mark

Repositorv:
It is a data structure that describes the place where a cell value is to be stored. Re-
pository itself does not hold a value. If two cells are equated, then their repositories
are merged. It has the following attributes:

id cells
supplier nogoods
contra

Prim:
The structure PRIM is used for the graphical representation of a constraint. The
structure is saved in the association list of the GRAPHICS slot of the CON-
STRAINT structure under the locator GRAPHICS. It has the following attributes:

ID: A unique identifier.

ORDER: The hierarchical order of the constraint with respect to the topmost
(macro-) constraint being displayed. Order will be 0 if the schema of the
prim's constraint is the one intended to be displayed. The order will be 1 if the
prim's constraint is a device in the macro constraint being displayed. This
attribute is important to control the level of explosion in graphical display.

TYPE: It shows whether the prim is top-level or not.

NAME: It is automatically generated by the system. The system uses the name of the
constraint followed by "-prim".

X, Y: Coordinates of the center of prim. It gets generated everytime the prim is
displayed.

CON: The constraint represented by this prim.

(68)

Chapter 4: Description of Computer Programs

PIN-POINTS: A list of the vertices of symbol (prim) that represents the constaint.

HOTSPOT: It is the mouse-sensitive area associated with prim symbol in the schema.

ROTATION: The rotation angle, in degrees, measured from eastward axis. Rotation
is determined according to the relative position of a prim with resepect to the
other prims in the enclosing macro constraint.

Oueue:
Is a stack of operations yet to be performed. The system has several queues for con-
trol of propagation. The whole propagation mechanism is based on performing vari-
ous operations on the entries of the various queues. Types of queues:
CONTRA-QUEUE, VANILLA-QUEUE, NOGOOD-QUEUE, PUNT-QUEUE.
An additional queue that was added for handling geometric conflicts is GEOMET-
RIC-CONTRA-QUEUE. This queue is not to be processed while geometric editing
is going on. For further discussion about geometric constraints, see p. 57. The data
structure has the following attributes:

name entries
count

Rule:
A rule is a method that represents the use of the constraint type in a specific direc-
tion when triggered by new values of some pins to do something, such as calculating
a pin or more.

triggers outvar
code bits
ctype id-bit

Constraint-type:
It is the description of a category of constraints, such as ADDER. The description
includes the various rules that represent the behavior of the constraint type in vari-
ous directions, and for other uses such as adding a new value, forgetting a value, or
making a nogood list. The attributes of the constraint-type data structure are:

name vars
added-rules forget-rules
nogood-rules symbol
initfn

instantiations: It is a list of buckets of all the instantiations (constraints) that were
saved as part of design cases (as described in the case library section, p. 86).
So the list of instantiations starts as an empty list. Every time a case is being
saved, a pair-list bucket gets appended to the instantiations' list by an after
method of the object CASE. The bucket is a list of two items:

(69)

(a) the case's partname
(b) feedback keyword1, which is one of the following: unevaluated, successful,

failure.
In case of failure, an intricate mechanism for inductive learning (from

failures)
needs to be developed.

graphics: the prim used to graphically represent the constraint-type in any schema.

condensed-net: if this attribute is non-nil, that means that this constraint-type was
automatically synthesized to replace a device's 2 subnetwork that contained a
circular dependency loop. The replaced subnet is listed in this attribute.

Constraint:
A relationship between parameters. It could be an equation, inequality, qualitative
condition, etc. It is an instantiation of the category of constraint-type.

name owner
ctype values
info queued-rules
graphics: a pointer to the data structure that represent the graphical

representation of the constraint if it has a geometry.
causal?: A flag to be true be true if the constraint represents a causal

relationship.

Macro-constraint:
A constraint network wrapped in a blackbox, so the user can deal only with a limited
set of parameters (pins) governing the behavior of the blackbox. A macro constraint
could be used to represent a complex (part of a) mechanism. It has the following at-
tributes:

name owner
mctype values
graphics: a pointer to the data structure that represent the graphical

representation of the macro-constraint if it has a geometry.
causal?: A flag to be true be true if the macro-constraint represents a

causal relationship.

Macro-constraint-type:
The stereotypical description of a macro constraint. So it can be used for the generic
description of a complex (part of a) mechanism.

1 Not worked out yet, since it is left as a germ of inductive learning capability in the system.
2 A device is a constraint-type as opposed to real constraint.

(70)

Chapter 4: Description of Computer Programs

name pins
allvars creations
connector graphics
instantiations: a list of all instantiations (macro-constraints) in the case library.

Vector:
A macro constraint that include several copies of a smaller macro constraint at-
tached to each other in the same way. Vector is good for representing an artifact
with repetitive components, such as a multi-story building, where every floor can be
represented by a macro constraint, and the whole building is represented by a vector
of the FLOOR macro constraints.

4.3.3. Checking & Case Building Representations
The following iare the data structures needed for design checking and for building
design cases into the case library.
Standard:
It is the body of standards, or code, such as NFPA 101. It can be enforced upon an
object, or a group of objects, in either of two ways:

* Checking for violation, mildly (i.e., just flagging out), or

* Synthesis: It could be invoked in the background of the design process, such
that everytime a new object is created, all pertinent articles of the code are
imposed upon it for flagging active violations. These violations will force the
system to look for acceptable solutions for the design.

Enforcement is made by loading a body of standards, in their abstract (un-unified)
article format, into the design process. Everytime an object is saved, the standards
are automatically enforced upon it.
The Standard data structure has the following attributes:
name: The short name of the standards, that will be used as a prefix for all articles.

full-name, year: self explanatory

root-article: a virtual article whose children are all the topmost articles of the code,
such as chapters. It gets generated automatically. This feature allows the user
to treat articles and standards interchangeably.

constituents: A list of all the direct children of the root-article.

deactivation: The user may turn off a group of articles, for whatever reasons. The
system allows this deactivation by listing the article numbers to be turned off,
the name of user who made the decision, and the time of the decision - all in

(71)

one list within an attribute of the standard data structure. The default value of
this list is nil, the empty list.

The user can use the same command, say ENFORCE, to enforce either an article of
code or a whole body of standards. Hence is the development of the virtual ARTI-
CLE-ROOT.

Article:
This is an article of specifications, that the user can enforce upon an object. It is rep-
resented by a constraint network. It may break down into sub-articles.

name: The unique name for the article within the realm of the standards.

standard: The standard to which the article belongs.

title: The title of the article, if any.

parent: The parent article, if the article is a sub-article. An after-method will add
this article to the list of children of the parent article.

children: A list of child articles.

verbiage: The exact words of the specifications, whose constraint translation is
enforced upon object(s).

related-articles: A list of the related articles. The invocation of them depends on
the degree of strictness of enforcement.3

antecedent: A logical statement, that works as a filter of pertinence an object has to
pass before enforcing the real body of article constraint.

constraint: The real constraint network that represents the article of specification
written in constraint representation. It is a constraint network that gets unified
with every pertinent object, i.e., every object that passes the antecedent filter.
Unification takes place by replacing a keyword, OBJECT, by the unique name
of the object being checked before evaluating the constraint network.

Domain-independent parsers can be developed to translate the limited-vocabulary
verbiage of articles into the antecedent and the constraint portions. An Augmented
Transition Tree (ATN) parser has been tried in the New York State Space Condition-
ing Program for Life Safety.

Violation:
It is the flag that gets raised whenever the system discovers uncompliance of an ob-
ject to a body of specifications. Violations are flagged out for one of two purposes:

* reporting the incompliance

3 It is expected that the use of systems such as the one described here, will encourage the use of more
specific language, especially in endorsing related specifications, unlike the following common statement:

"The door will comply with the spirit of Chapters 3 through 28 of the ASTM-105."

(72)

Chapter 4: Description of Computer Programs

* enqueuing the violation for remedial action.

id: It is the unique identification for the system.

site: The object within which the violation was discovered. It might not be the
culprit, since the culprit could be a related object that got accessed through the
site object. Take the following article for example:

"For every patient room that has more than 2 beds, the door has
to be wider than 36 inches."

If this article is violated, then the violation-site will be room-238, while the
culprit is door-67A.

article: The article that was violated.

culprit: The specific object that triggered the violation. The determination of the
culprit needs an elaborate bookkeeping mechanism that is achieved by the
tree-parsing reasoning of the conflict resolution system.

description: A text string generated to fully describe the violation, i.e., id, site,
article, culprit, its current value and the required value for it.

Structure (Artifact):
This object is created for inheritance purposes. It describes a major structure (arti-
fact). A structure is a topmost component of the project. Its inter-dependence with
the other structures of the project is minimal; an example for that is the Gymnasium
of an industrial plant. While the gym is a part of the plant, it is loosely related to the
other buildings in the plant. A structure is to be inherited by all the topmost domain-
specific objects. It includes the following attributes:
name: a unique name for the structure within the case library.

library: The name of the case library that includes the structure in it.

graphical file: This is the file, or directory, that includes the graphical representation
of the structure.

and some attributes for the adaptive learning purposes.
mcon

Proiject:
A project may consist of several structures to collectively serve one functionality. In
this data structure, all the project-specific information is saved.

name: a unique name

structures: a list of all major structures (artifacts) that comprise the project. For
example, a hospital project may be comprised of the main hospital building,
the guard house, the power generation room, the fence, the checkpoint, ... etc.

(73)

case: The pathname of the case file (of the Case Library) in which the project is
represented.

designer: the name of a designer, or design firm for tracking purposes and for future
inductive learning capabilities of the system.

date: submission date of the design.

4.4. The Central Core
This is the group of generic problem solving capabilites denoted by the thick-line
shield in the center of figure (3-2). It is the group of domain-independent capabili-
ties, similar to the capabilities of a novice engineer. It consists of the following units:

4.4.1. Constraint Propagation & the Roundtable
The constraint propagation and roundtable mechanism is provided as part of the De-
sign Description Language. It is based on Steele's constraint system (Steele 80) with
major differences. The following paragraphs describe those major differences:

* The system utilizes an extended architecture whose elements are described in
the last section.

* Steele's Constraints have a weak, often-inconclusive conflict resolution
mechanism. The system has the capability of conflict resolution according to
user-defined rules. It handles conflicts between the various advisors.

* For a system to be used in any engineering application, it has to handle real
numbers and symbolic values. Steele's constraints can not handle either. This
system, on the other hand, handles both real numbers and symbolic
(alphanumeric) values.

* The system allows saving queue images. A queue image is a freeze shot of the
queues at a specific instance. You can halt the propagation at any point and
save the queue image. You can resume the propagation on another day or in
another process, whenever you want. This capability is quite useful in a case of
working with limited memory (specifically heap space). Such situation may
arise on a PC-based Lisp or on a workstation whose memory is exhausted in
other applications, e.g., CAD/CAM.

(74)

Chapter 4: Description of Computer Programs

* All constraint propagation systems suffer from circular dependency. The
system has a circular dependency checker, which searches for circularity within
a macro constraint. If it finds one, it reports its smallest manifestation 4 both
textually and schematically. If the discovered circularity fits one of the
paradigms the the system can handle, the system will ask for user authorization
to replace the loop by an instantiation of a pre-defined primitive constraint. If
the loop does not fit into one of the known paradigms, it will be reported to
the user and he is responsible for replacing it.

Limitiations of that solution:
1. The system should have an extended 5 solver that can replace any loop by a
primitive constraint synthesized on the fly.

2. For pragmatic reasons, the system searches within a macro constraint.
Circularity loops extending across more than one macro constraint, or outside
any macro constraints, will not be found. But this limitation is applied also to
our human logic, where every premise is supposedly syllogistism-free, while
circularity may exist across the premise boundaries. In constraint propagation,
circularity has a more pronounced shortcoming.

4 Extracting the minimal manifestation of a circular dependency in a constraint network is done by making
sure that no loop (closed sequence of cells) is a sub-sequence of another loop.

5 The system needs a solver that can handle all the kinds of primitive constraints, i.e., both algebraic
operators, and non-algebraic one (such as <, gate, one-of, etc.), and in the meanwhile can replaces loops
by primitive constraints synthesized on the fly. This capability is easier to be achieved for algebraic
constraints.

(75)

4.4.2. User Interface
The Design Description Language handles constraints, in an extended version of
Steele's Constraint syntax.
Domain-specific user interface extensions are developed outside the central core.
Natural language parsers, using Augmented Transition Trees (ATN), were developed
for various applications (Winston & Horn 88, Gazdar & Mellish 89), including the
design checking of hospitals described in Chapter five, p. 114. Figure (4.1) shows
part of the object declaration. Figure (4.2) shows one syntax of a statement.

[compile-tree object
(brnchs

(door rtn
(doors rtn
(window rtn
(room rtn
(exit rtn
(corridor rtn
(ward rtn
(wards rtn
(floor rtn
(cabinet rtn
(nurse-station rtn

Figure (4.1): objects in the Hospital Design Checker

Figure (4.2): The Syntax of one possible sentence.

(76)

'doors)
'doors)
'windows)
'rooms)
'exit)
'corridors)
'wards)
'wards)
'floors)
'cabinet)
'nurse-station)

[compile-tree attributes
(brnchs

(attribute attributes rtn
(cons attribute attributes))

(and attribute rtn (list attribute))
(attribute rtn (list attribute))))

Chapter 4: Description of Computer Programs

4.4.3. Planner:
This is where the system gets the functional description from the knowledge base.
The planner takes care of breaking it down into functional components and making
sure that every component gets fully designed before starting to handle the next com-
ponent.

For the time being, in the tradition of Case-Based Reasoning, the system builds its
models in a depth-first approach. Conflict resolution, on the other hand, proceeds
in a breadth-first fashion (Thagard & Holyoak 89).
No standalone planner is currently in place inside the presented environment, since
the propagation algorithm offers some rudimentary planning capabilities.

This system elaborates design plans by matching a description of the desired func-
tion of the design against a catalog of fragments, each indexed by the functions it
serves.
A fragment is chosen and is inserted into the design. Constraints, propagated from
the elaborated plan are then used to either further specify the fragment or to give
reasons why it is not really applicable. An accepted fragment may itself require elab-
oration, and so this process is recursive.
Design fragments may have structural as well as functional attributes. They may
carry auxilliary information, not directly related to problem solving, such as graphi-
cal representations.
In its ordinary operation, the system constructs, examines, and discards many frag-
ments. All of these fragments, along with their uses and limitations (discovered by
rejection), are entered into a case library to be used as starting points for designs.

(77)

4.4.4. Catalog
This is where the system keeps a generic description about every category of objects,
such as beam, column, portal frame, support, hinged-support, roller-support, adder,
amplifier of a car radio, etc.
Category is a synonym of constraint-type, described in page 54.
Every category has pointers to every instantiation saved in a design case.
Catalog files are designated the extension ".cat" for conventional distinction and
gathered under one subdirectory.

Every synthesis process starts with searching the catalog for an item (constraint-
type) that has the same, or synonymous, functionality.

4.4.5. Checker:
This is the module responsible for enforcing a body of specifications upon a design.
The user can enforce an article, with all its sub-articles, upon a design part.

CAD
Env i ronment

Enkidu
Enu i ronme rnt

Figure (4.3): CAD - Enkidu Interaction

(78)

MAD

Chapter 4: Description of Computer Programs

The Checker module consists of the following programs:

4.4.5.1 Knowledge Representation Editor
Every domain has its own knowledge representation. A knowledge representation
is a description of the world of the application, its objects, and the methods of inter-
actions between these objects. The system offers a tool for editing these representa-
tions.
The current implementation of the KR Editor is CAD package-specific, since it is
written to handle the objects and attributes of Prime MEDUSA only. It allows the
user to edit a network of objects and their attributes. The basic capabilities of the
KR Editor are:

* Add an object

* Add an attribute

* Add method

* Edit object

* Edit method

Every CAD package has one, or more files for the declaration of objects and their at-
tributes. The way methods are defined for these objects are quite different from one
package to another. The procedure to enact the changed files is quite laborious and
cumbersome.
The KR Editor relieves the user of worrying about these differences and it allows
him to graphically parse a network of objects to define the new world of the applica-
tion.
A smaller version of the KR Editor has been developed for CADDS 4X.
The final KR Editor should have the same interface on all the packages, using the
de facto standard X.11 Windows.

4.4.5.2 Translator
It is a CAD package-specific translator. It translates the information from the CAD
part database into system Specifications (Objects & Constraint network). Basically,
the program duplicates the geometric and non-geometric information on a drawing
into a format comprehensible by the system environment.

(79)

A translator has to be developed for every CAD package, until PDES6 standardizes
the exchange of data at all levels.

A FORTRAN translator has been developed between the system and Prime ME-
DUSA7. This Medusa translator fetches data out of the MEDUSA database, and
the MIDAS + database for non-geometric attributes. For more description refer to
Chapter Five (p. 114 .)

4.4.53 Gchecker
It is the file that declares the objects Standard, Article, Violation (as described in
p. 71), and the related methods and procedures.

The Concept of Unification
The antecedent (screen) and the constraint parts of an article are written in a ge-
neric specification (constraint) format. Everytime an article is imposed upon an ob-
ject, a copy of its constraint is made. In that copy, the variable &VARIABLE& is
replaced by the name of the object being checked. Then the copy is evaluated into a
constraint network to impose the constraint.

The major procedures, in the GCHECKER file, include:

VALIDATE-ARTICLE:
It is the top-level checking function that does two jobs:

o 1. if the article-antecedent is non nil, invoke the check-article
function.

o 2. invoke all children articles, if any.

CHECK-ARTICLE:
It is a function that checks the validity of article's constraint and reports a
violation if the constraint is not satisfied. This function does not care about the
article's filter (ante), since this is the job of VALIDATE-ARTICLE.

6 PDES stands for Product Data Exchange Standards. It is a standard initiative launched by the DoD for
the exchange of different levels of data. It has four levels of data exchange. The first deals with
geometric information between two applications. The second level adds non-geometric information to
the exchange. The third deals with non-transitive constraints. The fourth deals with full-fledged
constraint propagation (Harrelson & Silvistri 1988). So far, this system offers the only language
proposed for the fourth level.

7 A Computer-Aided Design (CAD) package for mechanical and AEC applications.

(80)

Chapter 4: Description of Computer Programs

REPORT-VIOLATION:
It does the following 2 jobs:

O It reports the violation id in a diamond on a separate error layer
on the drawing, and

o it also print a detailed description of the violation in the violations
report.

ENFORCE
This is a function to check the compliance of an

ENFORCE-STANDARD
This is a function to check the compliance of an
whole body of standard.

assembly, e.g., ward, to an article.

object, possibly an assembly, to a

4.4.5.4 Checker:
It is the domain-specific file that includes the additional objects, methods, and proce-
dures.
An example of a domain-specific extension is the AEC extension built as part of the
Code Orientation, Review, Enforcement, Commissioning and (CORECT) system
described in chapter Five (p. 114).

(81)

4.5. The Knowledge Bases

Knowledge bases are files of domain knowledge, kept in three forms: (1) objects, (2)
Specifications (need unification to become constraints) format, and (3) features.
This knowledge is used to synthesize constraint types and save them into the catalog.
For some domains, specifications may exist in a limited-vocabulary plain English
(natural language) if parsers were developed for the domains.
A specification could be used in major ways: one way is to check the conformance of
an existing design and the other way is to use the specification for design synthesis
(from scratch).

4.5.1. Objects
Objects in the knowledge base has, at least, the following types of relationships:

* Causal relationships

* Taxonomical relationships

* Quantitative relationships, such as equations, inequalities, etc.

* Any other relationships required for specific applications, such as nosological
relationships needed in heat transfer applications, and plate stress transfer
applications, e.g., the design asphalt roads.

Once the semantic nets that represent the knowledge of a domain are established,
one can apply to them some feedback-guided learning to improve the knowledge of
an evolving domain, similar to the harvest mechanism (el-Shafei 86).

4.5.2. Polymorphic Specifications
Specificational knowledge in any domain has to have sufficient information on the
three levels: functional level, geometric level, and graphic level, such that the system
can utilize them to synthesizing two representations for each alternative available:

* Abstract representation: which has the functional (causal) description of the
alternative.

* Detailed-design representation: which has the full description (functional,
geometric, and graphical) of the alternative.

Specifications gets unified, as described in p. 80, to become specific constraints.

(82)

Chapter 4: Description of Computer Programs

4.5.3. Features (States):
A feature is a group of geometric and functional constraints whose collective exist-
ance in an object is denoted by the name of one feature. Figure (4.4) shows an ex-
ample of a feature frame in the domain of design of roads.

State/Feature:
State-type
Class:
A-Kind-Of
Representative-Var:
Variable-Dimension:
Severity-Threshold:
Associated-symptoms:
Necessary-symptoms:
Contradicts-with
Maybe-caused-by

May-cause:
Maybe-related-to:

Longitudinal-crack-IC
symptom
Structural
Crack-C
LC
L
10 inches
nil
nil
nil
(or (and block-crack-BC (or water-percolation-WP

resilient-subgrade-RSG))
excessive-vertical-movement-of-underlayer-VDU L

surface-fatigure-SF)
Potholes-PTH
(Surface-Stiffness-SS Base-Elasticity-Modulus-EB
Subgrade-Modulus-ESG Freezing-Index-Fl
Equiv-thickness-HEQUIV Asphalt-Age-A
Ave-Annual-Daily-Traffic-AADT Surface-Heat-Ts
California-Bearing-Ratios-CBRs
Heat-Capacity-C Accumulated-Load-per-year-X

Figure (4.4): Example of a Feature (State) Frame

4.5.4. Harvesting:
The harvesting mechanism as described in chapter Three on Methodology is imple-
mented through the following modules: the Heuristic Pre-Processor (HPP), the Di-
mensional Analysis Unit (DAU), and the Stepwise Regression Analysis Unit
(SRAU).

4.5.4.1 The Heuristic Pre-Processor (HPP)
This module collects all the maybe-related-to parameters and piles them into heaps
according to some categorical classes. The rules of piling are provided by the user.

(83)

4.5.4.2 The Dimensional Analysis Unit (DAU)
This is the tool that takes every heap and creates dimensionally-homogeneous
groups. A group is a multiplication product of several parameters, each raised to
some exponential power. The parameters in every group belong to the same class,
e.g., temperature-class, stress-class, time-class, etc. DAU isolates the parameters
under consideration in one group with a unary power of exponentiation. Through di-
mensional analysis, we make sure that the resulting relationship is physically-mean-
ingful, and if there is a law or theory that may hold between these parameters, most
probably it is the induced relationship. The DAU utilizes a sort of K-lines (Minsky
86) to keep in memory the possible combinations of parameters that form
dimensionless group.
This mathematical tool is based on the formal P-theorem of dimensional analysis
(Taylor 74), as described in appendix A.

4.5.43 The Stepwise Regression Unit (SRU)
This is the unit that takes the dimensionally-homogeneous groups, generated by the
DAU, and build a relationship between them according to the occurance of these
groups in all cases throughout the case library. The relationship is built incremen-
tally, starting with the most statistically-influential groups until the relationship
reaches the required correlation. The reason for stopping right after reaching the
threshold correlation is because of the trade of between the added complexity of the
new term versus the increase in correlation. This leverage on the complexity of the
induced relationship was the reason of selecting the stepwise regression analysis, de-
spite its fall into disuse because of its iterative nature (Bridgman 33). Example of
the use of DAU and SRU is demonstrated in appendix A.

The harvesting capability is not fully integrated in this version of the system because
the mechanism so far exists in a non-constraint version.

4.6. The Pre-/Post-Processors
These are external programs to be called by the system, like the Finite Element pro-
cedures to be used for analysis, and shading program used to enhance the present-
ability of the final design. Since the system is written in Lisp, then foreign function
calls are possible to be embedded within lisp procedures.
For processors that are inherently uni-directional, iterative invocation from within
the declaration of primitive constraint can simulate the reverse operation. This is
how an FE processor can be embedded within the declaration of primitive constraint.

8 Dimensionally-homogeneous terms are terms that have the same dimensions. For ease of use, we build
all terms to be dimensionless.

(84)

Chapter 4: Description of Computer Programs

4.7. The Advisors
An advisor is a body of specifications (standards) that is used in design. Standards
are collections of specifications that are frequently used in various designs. They are
organized, and enforced, by code-permitting authority, whether national, local, or
commercial. Standards are used during the engineering process in one of the follow-
ing ways:

The system offers tools (procedures) for defining standards, defining articles (as
shown in figure 5), deactivating articles, etc.

Figure (4.5): Declaration of OMH-SC&NC Article.

(85)

,gen-article 'OMH-SC&NC 1
"Bedroom Requirements:"

"Skilled Nursing Facility (SNF)shall be provided a minimum of
125 square feet plus a 6 square foot closet in single bed-
rooms and 100 square feet plus a 6 square foot closet for
each patient in double bedrooms. No more than four will
occupy a bedroom but, there shall be a minimum of 66.6%
single & double bedrooms per ward."

'(and (room-p object)
(equal (room-type object) 'bedroom)
(equal (ward-type (room-ward object)) 'SNF))

'(and (cond3 result1
((= room-XX.capacity 1)
(and (< = 125 room-XX.area)

(< = 6 room-XX.closet-area)))
((= room-XX.capacity 2)
(and (< = 100 (* room-XX.area % room-XX.capacity))

(< = 6 (* room-XX.closet-area % room-XX.capacity)

(truth (< room-XX.capacity 5))):
;;66.6%

4.8. The Case Library
The case library is where every design case is saved as an object. In addition to a
pointer to the drawing file, the object should have the functionality of the product,
constraint propagation network that represent the design, name of the designer, the
reviewer, every modification/ correction, whether the design is constructed, or not
yet, and if constructed, how many times this design has been used in successful analo-
gies by the system.

Case description files are designated the extension ".lib" for conventional distinction.

4.8.1. Purpose of the case library

1. Version control: The case library can be perceived as a way to preserve a
frozen status of the latest stage the design reached before work stopped on it.
So, whenever a modification is needed to be added, the invocation of the case
will assure re-creating a replica of the design environment (space) with all its
constraints, dead ends, etc. The user can decide whether the modification
should be added to the same version, or the modification will constitute a new
version.

2. Case-based Learning: Design cases can be used for learning by analogy. as
described in the methodology of the design synthesis in the previous chapter.

4.8.2. Agenda
The agenda is a mechanism that keeps track of every case till it gets deployed into
operation. The agenda mechanism is responsible for collecting feedback on the de-
sign during the various stages of concurrent engineering. A feedback is a remark
that did not turn into an Engineering Change Orders (ECO's), such as,

o comments during checking,
o Difficulties during manufacturing,
o design-imputed problems in maintenance.

The feedback is condensed 9 into a keyword, or key phrase. The condensed feed-
back is inserted as the tail of the bucket that represent the case-part in the instantia-
tions list of the macro-constraint-type.

- 9 Not fully worked out yet, since it is left as a germ of inductive learning capability in the system.

(86)

Chapter 4: Description of Computer Programs

4.8.3. Case
A design case is a data structure to allow Case-Based Reasoning. The case has to in-
clude the following three components:

* The resolved constraint-network, which include the macro-constraint that
represent the artifact, in addition to all specifications imposed upon it.

* The final status of the queues right before deploying
(manufacturing/constructing) the artifact.

* All feedback gathered after the deployment of the artifact.

Every time a case is being saved, an after method, called add-the-instantiation, ap-
pends a pair-list bucket to the instantiations' list of the (macro-)constraint-type.
The bucket is a list of two items:

(a) the case's partname, which is also the name of the constraint that describes
the part.

(b) feedback keyword, which is one of the following: unevaluated, successful,
failure.
In case of failure, an intricate mechanism for inductive learning (from failures)
needs to be developed.

The case data structure has the following attributes:

name: a unique name of the case.

partname: the unique name of the part/assembly whose design is described
throughout the case. The same partname is used to define the
(macro-)constraint.

constraint-filepath: the file pathname of the constraint model description of the
case. It includes:
(a) the constraint network.
(b) queue image with all the nogood sets, unresolved contradictions (if any),
etc. Next time the network is loaded, it is loaded with the same circumstances
that concluded the design.

graphics-filepath: a pair list of the following:
(a) the name of the CAD package, e.g., CADDS4X-rev.5, or
AutoCAD-rev.10, to invoke the right Data Access Routines (DARs) to fetch
data from the CAD part databases;
(b) the file pathname of the graphical part/assembly that represents the case.

(87)

project: Name of the project (as described in) to which the part/assembly belongs.

functionality: keyword or phrase selected from finite lexicon.

specifications: A list of the specifications imposed upon the design, other than the
functionality.

queue-status: The status of queues by the end of the design.

feedback-specs: These are feedbacks (specifications) gathered after the deployment
of the artifact. It is a list of specifications that in case of selecting the design
case as an analog for a new design problem, this list of specifications needs to
be imposed upon the copy of the design case to avoid the problems of the old
case that necessitated the feedback.

maintenance-log: a list of pentaplets. Each pentaplet represents a problem by five
aspects:
1. list of pairs of symptoms and severity values: symptoms are compared against
the

frames of the relevant features/states.
2. date-of-reporting
3. diagnosis
4. remedial-action
5.feedback: it is a scalar value between -1 and + 1 to be collected later on.

4.9. The Interactive Environment:
An interactive environment was partially-developed to offer a user-friendly inter-
face. The user can iconically load different constraint libraries that represent the
specifications he wants to use. The user can also edit a constraint network either tex-
tually or schematically. The environment, shown in figure (6.4), allows the user to
do the following: 10

" Load different constraints catalogs (or specification libraries). Once a catalog
is loaded, every constraint-type is represented in the Catalog pane by a
mouse-sensitive icons. When the user wants to add a constraint to a
constraint network, in the constraint network pane, all he needs to do is to
click upon the constraint-type icon in the catalog pane.

O Instantiate a constraint-type, i.e., create a constraint of the class described by
the icon.

O Dissolve a constraint, i.e., disconnect it from all the surroundings.

o Connect two pins.

10 Not all of these capabilities have been fully developed.

(88)

Chapter 4: Description of Computer Programs

o Encapsulate a network into a macro constraint.

o Graphically simulate the propagation of values through a constraint network.

o Change the scale

o Graphically display the status of the system (queues and statistics).

o Switch to textual editing of the constraints.

4.10.Modus Operandi: How the System Works, and What
We Get Out Of It

While the afore-mentioned system architecture should work in any design/engineer-
ing task, it had to be tested in two major modes of operation:

4.10.1. (A). Design Synthesis
The user posts his specifications, which guides the system in selecting the most ap-
propriate alternative (through the initial selection network, described in the chapter
on Methodo logy), whose parametric model is detailed and graphically dis-
played. The user may impose additional constraints, which are propagated through
the design. The attempt to satisfy the additional constraints may cause the entire de-
sign to be revised. The user can query the system about the way (reasoning) any pa-
rameter got calculated.

The use of the system in design synthesis is demonstrated in the first example in the
chapter on Examples. The example deals with the design of reinforced concrete exhi-
bition halls.

4.10.2. (B). Design Checking
The user can post any body of standards, as specifications, and enforce them upon a
CAD file. The system will flag all the violations in the design.

The use of the system in design synthesis is demonstrated in the second example in
the chapter on Examples. The example checks the compliance of a floor plan with
two chapters of the code (NFPA and NYS-OMH Life Safety code).

4.10.3. Other Uses

(89)

(C). Hybridizing Tlo Designs into a New One.
For example, we can use the main structural system of design (A) with the Heating,

ventilation, Air Conditioning (HVAC) of design (B) to create design (C).

(D). You can make use of the case library (experience) of another colleague/de-
signer.

(E). With the cost estimate function automatically translated into a constraint, the
system can be used as an engineering spreadsheet to evaluate cost/specification rela-
tionship.

4.11. Implementation

Initially, the purpose of this thesis was design synthesis, but since code/specification
compliance is expected in every design, it was obvious that the work had to be done
within the framework of design automation.

Programs needed both to conduct the both design synthesis and checking were devel-
oped. These programs represent most of the system environment.
Working with a CAD vendor, Prime Computer was a chance to apply these ideas,
and test them against real-life problems of real CAD/CAM customers.

Systems were written in Common Lisp. Interfaces to the CAD packages whenever
needed, were written in FORTRAN & C.

The environment is a portable one, and that was proven by integrating it with several
CAD systems, including CADDS 4X, MEDUSA, and PrimeDesign.

Description of the applications are provided in the chapter on Examples.

(90)

5. Examples

5.1. Structural Design Synthesis of Reinforced Concrete
Exhibition Halls

This is an example for design synthesis of reinforced concrete exhibition halls. The
example is an application of the system to explore the relationship between dimen-
sioning, analysis, and conceptual design, as illustrated in figure (5-1).

5.1.1. Motivation
Conceptual design is the least understood stage of engineering design. Assuming
that the designer made the right selection in the conceptual design stage as the de-
sign process continues several parameters get changed from their initial values. One
would expect, after some changes, that at some point the designer will decide that
his conceptual design is no longer the most appropriate choice. This almost never
happens. What happens is some patching up of the design so it will (barely) meet the
specifications, rather than being the optimal design. The major reason for choosing
the patching route is the amount of effort involved in any fundamental (conceptual)
change. With the automation of the design process, worries about major changes
should be alleviated since computers help us override this taxing barrier.

" A good illustrating example is the area of structural design of exhibition halls.
In that domain, the selection of a main structural system is made between
several systems based on the outer dimensions and the architectural
requirement.

o After the system makes its selection, it goes onto fully designing, i.e.,
dimensiomng, the system.

o After the design is made, the user can say, for whatever reasons, that he
cannot accept the depth of the beam. He subsequently imposes a constraint.

o The system will try to satisfy the new constraint with the least possible
changes.

o The system finds that nothing short of a change of the main structural system
(conceptual design) will solve the problem.

o So, a new conceptual design is reached, and it gets completed into a full
system.

(91)

Chapter 5: Examples

Figure (5.1): Stages of the Structural Engineering Lifecycle

5.1.2. Main Structural Systems

The main strucutral system (MSS) is the skeleton that holds the general layout of the
structure in a way that meets the required functionality and that allows the transfer
of the various loads to the ground (through foundations, if it is above the ground).
Loads get transferred in three directions (x, y and z). Therefore a secondary MSS
may exist to transfer the load in one direction, x, to a primary MSS that transfers the
load in the perpendicular direction, y. The loads are transferred vertically to the
foundation through columns or vertical legs of structures. An MSS consists of all
these components, seconday MSS, primary MSS, and columns/legs. Sometimes the
functionality of two components are achieved by one subsystem, such as portal
frames which carry the load both in the y direction and the z direction. Other sys-
tems may carry the load in the three directions simultaneously, as in double-curved
shells.

(92)

Conceptual Layout & System Selection

Loading

Structural Analysis

Dimensioning

Construction

Facilities Management

Checking & Constraint enforcement

,, I

4

Theoretically, there are no limitations on span spacing between beams. The only
solid constraints in structural design are maximum allowable stresses and maximum
allowable deflection (strain) at the critical points. In the case of concrete structures
an additional constraint on the maximum allowable crack width is added.
Various main structural systems lead to various straining actions, which in turn lead
to different stresses and strains. For the same land plot, different main structural sys-
tems produce different stresses and strains.
Instead of trying elaborate structural analysis and design of all main structural sys-
tems to cover a piece of land, conventional wisdom provides us with some guidelines
for the initial selection of the appropriate main structural system. Unlike expert sys-
tems, initial selections are susceptible to change due to elaborate analysis or due to a
change of design input.

General Assumptions:

1. These are the assumed values for the general parameters:
Average floor thickness of 0.175 ms (7"),
Concrete density = 2.35 ton/m3

Dead Load Intensity = 1.0 * 1.0 * 0.175 * 2.35 = 0.4 ton/m2

* (2200/1600) = 0.56 psi
Live load intensity = 1.5 ton/m2 * 1.375 = 2.1 psi

2. According to the American Concrete Institute (ACI) 1981 standards (Winter
& Nilson 85, Thornton & Lew 83), the total design load should be calculated
as following:
Total load intensity = 1.4 D.L. + 1.7 L.L.

= 1.4 * 0.4 + 1.7 * 1.5 = 3.11 ton/m2 = 4.28 psi
= 616.32 psf

equiv-load = average-spacing * total load intensity
= 5 * 3.11 = 15.55 t/m

3. General assumptions are listed in the "Design of Sections" section (p. 5-105).

4. Relationships for the design (maximum) values of straining actions are given
for every main structural system (MSS). Using standard design of sections
constraints, these straining actions are used for dimensioning the instantiations
of any MSS.

Specifying and setting values for these limits is the job of the various national standards using various
theories for failure mechanics, such as Ultimate Strength approach, Working Stresses approach, etc.

(93)

Chapter 5: Examples

General Remarks:
A more precise approach to functional parametric modeling of structural systems
will be through the modeling of the Loading Diagram (LD) by a binomial series.
The Shearing Force Diagram (SFD) can be derived from the integration of the Load-
ing Diagram. The Bending Moment Distribution (BMD) could be reached by the in-
tegration of the SFD.

Deflection Line = fBMD = ffSFD = fff Loading Diagram

Limitation: To develop the model this way, constraints have to handle calculus first.

(94)

System of Simple Beams & Columns
The slab is carried directly by the simple beams, which transfer the load to the
columns. The slab, the simple beams and the columns make the main
structural system. To stay within the allowable stresses and strains,
conventional wisdom suggests the use of simple beams & columns when the
span is less than 5 meters, and spacing is less than 4.9 meters to ensure
slabbing action 2. The system is also suitable for pre-fabricated construction.

Figure (5.2): Simple Beam & Column System

Assumptions:
1. The slab load is assumed to be uniformly distributed along the span (L) of
the beam.

2. Every beam is assumed to be supported by a hinge support on one end and a
roller support on the other. This is a safe assumption. Monolithic casting of
concrete, in case of in-situ construction, will reduce the degrees of freedom at
supports, i.e., it possibly produces clamping (negatives moments that reduce
the critical positive bending moment at the mid-span.

Relationships:
w L2

Max. B.M. -
8

2 Load transfer in the shorter direction of a panel.

3 The introduction of negative moments at the ends of a beam will hang the same Bending Moment
Diagram from a negative datum rather than a zero datum. Consequently, the maximum positive bending
moment will be of smaller value. Maximum positive BM is the major factor in dimensioning the cross
section of the beam (concrete and reinforcing steel).

(95)

Bending Moment Diagram

ra_ýý-
Shearing Force Diagram

Chapter 5: Examples

wL
Max. SYF. - 2

System of Continuous Beams on Columns
The slab is carried by secondary beams, which are carried by continuous
beams. Continuous beams are supported by columns. The span of such a
system is preferred to be less than 8 meters. A system of contiuous beams and
columns takes advantage of the monolithic casting of concrete in developing
negative clamping moments to offset the positive bending moments produced
by loads. Lower design moments need less cross-sectional moment of inertia
to withstand it, i.e., smaller sections. Continuous structures usually need less
material and offer more space, which make them desirable. The price that has
to be paid is the large-scale in-situ casting of concrete to ensure monolithic
action, which sometimes becomes expensive and time-consuming.

Relationships:4

Figure (5.3): Continuous Beam & Column System

w L2
Max. +ive B.M. -] :where f = 10 for outer spans, 12 for inner spans.f
Max. S.F. = 0.6 w L

4 More relationships, of the same form, could have been added to express straining actions at the various
locations, but that was not needed for the demonstrative purposes of the approach.

(96)

-- -L __--____-_____

Bending Moment Diagram

-L Shearing Force Diagram

System of Girders on Columns
The slab is carried by cross girders (secondary beams), which are carried by the
main girders. The secondary beam could be defined as a simple beam or a
continuous beam, depending on the construction method. Treating cross
girders as simple beams is a safe approximation. It is conventional wisdom
that the span of beam and girder system should be less than 7. The system
does not depend on monolithic action. Therefore, it is appropriate for
pre-fabricated construction and flat slabs. It also is appropriate for heavy
distributed loads (dead and live).

MG
S2

XG

L

Bending Moment Diagram

XG G
S

S2

L

X G Shearing Force Diagram

MG: Main Girder
XG: Cross Girder

Figure (5.4): Girders & Columns System

Relationships:
Main girders are treated as simple beams with span of (L), with the
approximation of considering floor distributed loads transfered directly
through slabbing action, this skirts the problem of dealing with concentrated
loads (from the cross girders).
Cross girders are designed as simple beams with span of (S).

(97)

Chapter 5: Examples

System of Portal Frames
Portal frame is a structure in which the girder and the columns are made all
one piece, that looks like a "gate"; hence the name. Load is transferred from
the secondary MSS, which is either a slab or a slab supported by cross girders,
to the portal frame, the primary MSS. Portal frames depend on monolithic
action to develop clamping bending moments at the joints. Therefore, in-situ
construction is needed for this main structural system. Conventional wisdom
suggests that the span of a plain portal frame should be less than 12 meters.
The secondary roofing structure (slab & beams) is treated as a virtual slab.

Figure (5-5): Illustration of Portal Frame System

Relationships:
The following calculations are the rough first-order analysis of the simplified
case considered.

w L2
Max. +ive B.M. -

12
w L 2

Max. -ive B.M. -
16

wL
Max. S.F. =

2
See figure (7) for the constraint representation of these relationships.

(98)

System of Trusses
The following points demonstrate the structural need for trusses:

o 1. A long-span girder, supported from both ends, will develop high
bending moments in the middle of it.

0 2. To withstand high moments, a cross section has to have a high
moment of inertia. Depth of section is vital in determining the

bd 3
moment of inertia, I, of a section, e.g., I = 12 for a rectangular
section.

o 3. These positive bending moments produce flexural tensile
stresses in the lowermost fibers of its midspan, and flexural
compressive stresses in the topmost fibers of its midspan.

o 4. Concrete is a brittle material that withstands practically no
tension, reinforcing steel is introduced for this purpose.

° 5. Considering 3 & 4, large portions of concrete cross section are
inactive, and could be carved into voids instead

Various shapes of voids are introduced to form different kinds of trusses that
can span longer distances, such as 20 to 30 meters. Trusses have to be cast all
in one piece, but they can possibly be fabricated away from their columns.
Trusses are good for roofing an area that needs a lot of elevated duct work,
piping, or ventilation.

Figure (5-6): Illustrations of Various Trusses.

(99)

Vierendeel Truss

K Truss

Relationships:
Forces in the truss members are to be determined by a truss analysis.
Nevertheless, for the demonstrative purposes of the application, a Vierendeel

i r 1

Chapter 5: Examples

truss is being used. In that truss the member design force equals the vertical
reaction at the support.

System of Cylindrical Shells & Diaphragms
Cylindrical shells (vaults) are good for long spans (14-20 meters). To preserve
the delicate cross section from deformation or side sway, diaphragms are
introduced every 30 meters or so. The major disadvantage of cylindrical shells
is the expensive construction. Cylindrical shells could be either pre-fabricated,
or cast in-situ.

System of Double-curved shell:
The most efficient roofing structure is the egg, with no main and secondary
systems for load transfer. Only a thin shell that transfers the load in three
dimensions. Double-curved shells are the solution for spans of more than 30
meters. The problem is the expensive construction techniques needed for it.
Double-curved shells include spherical domes, Hyperbolic Paraboloid shells,
etc.
The system uses a spherical dome whenever it decides to use a double-curved
shell.

p

.I..

BlI

DEPTH SF R

Figure (5.7): Constraint Represent. of a Portal Frame

(100)

YYYY~ YIIYIIIY#IW#WIIIY~YIIIYII~Y~~

5.1.3. Structural Design & Engineering Stages
The following are the steps of structural design & engineering, as illustrated in fig-
ure (5.1).

* The initial (conceptual) design of structural systems is made according to some
heuristic rules (Helal 1980). System topography and dimensioning 5 of cross sections
are needed for assessing the loads on the structural system. System topology is the
selection of the main system and the selection of the secondary system.

* The loading combinations are used in the structural analysis. The structural
analysis provides us with the distribution of straining actions, such as Normal
forces, Shearing forces, and Bending moments, all over the system.

* Critical sections, with critical straining actions extracted from the analysis, are
used for the design of the exact dimensioning of the cross sections. Design
(dimensioning) of cross sections may reveal one of the following:

o No possible dimensioning could be made at a specific cross
section. This is because, in order to keep the stresses and strains
generated by the straining actions at that section within allowable
margins, the dimensioning will be impossible (i.e., unrealistic")
because of constructibility considerations, inertia differentials, etc.

o The exact dimensioning is far from the initial heuristic
dimensions. In this case, a second run of design has to be carried
out using the exact dimensions of the first run as the initial
dimensions for the second run.

* New specifications/constraints could be introduced to the system, which may
necessitate a change in one parameter. That change will propagate throughout
the system to reach the stable status again with a minimum7 amount of
changes, even if it requires a change in the main structural system selected in

5 Dimensioning of a cross section is the determination of both the (outer) dimensions of the reinforced
concrete section, and the amount and arrangement of reinforcing steel in the section such that the
stresses and strains in the sections are kept within the allowable limits.

6 Realistic dimensioning in itself is another field for heuristics. If the distribution of straining actions
along the element is violently varying, we cannot design a structural element with too much sudden
variations in the dimensions, or in the reinforcement to cope with force distribution. Instead, we design
the element to accomodate the maximum straining actions happening all over the element. Such safe
dimensioning is far from being parsimonious.

7 Minimum change is dictated by the design criteria (such as minimization of depth, maximization of
stresses, etc.), and the conflict resolution rules.

(101)

Chapter 5: Examples

the conceptual design stage. More description of propagation of changes is
offered in "Different Uses" section, p. 109.

* Problems that arise during construction should be used, later on, as corrective
feedback to the conceptual design stage for similar projects.

* Problems that arise during the lifecycle of the structure should be fedback to
both the construction stage and the conceptual design stage to be mitigated in
similar projects later on.

The transition from structural analysis to dimensioning is a tricky one, as explained
in the subsection on limitations, limitation 1 (p. 113).

5.1.4. Selection of Main Structural Systems
The selection process of a main structural system (MSS) is an example of the selec-
tion methodology outlined in chapter Three.
The system starts with an initial selection of an MSS. Initial selection is based on
conventional wisdom among designers (Helal 80, Winter & Nilson 83). This pre-
compiled knowledge is based on allowable stresses and strains of conventional load-
ings of plain structural systems. So, initial selection provides us with a good starting
point in design. Detailed analysis on the same plain systems using the same conven-
tional loadings will lead to the same results. Specific designs with different allow-
able stresses, strains, or loadings may lead to the dropping of the initially selected
system, in favor of another system.

(0) Selection Criteria
The system uses the following criteria in making its initial selection of a main struc-
tural system:

Span: Information in this criterion is based on conventional wisdom among
designers (Helal 80, Winter & Nilson 83). This pre-compiled knowledge is
based on allowable stresses and strains of conventional loadings of plain
structural systems.

Construction: Type of construction influence the selection of the main structural
system. The major two types of construction are in-situ casting and
pre-fabricated construction.

(102)

Figure (5-8): A Simplified Version of the Selector

Use: The purpose of the hall influence the selection of the MSS. Some purposes
need ductwork, others need elegant image, a third may need both. The default
use is ordinary use that has no special requirements.

(1) Initial Selection of Tokens:

* The selection criteria are composed into a constraint network, similar to the
simplified one shown in figure (8).

(103)

(defcon selector ()
;there is no advantage in packaging it into an mcon, so you can start from the

next line
(cond4 cc) (global selected-system)

(zand (<! (global span) 5)
(<! (global spacing) 4.9))

(global SIMPLE-BEAM-token)
(zor (<! (global span) 7)

(= (global construction) (global pre-fab-token)))
(global BEAM&GIRDER-token)
(zand (<! (global span) 8)

(zand (= (global construction) (global IN-SITU-TOKEN))
(<! (global spacing) 5.1)))

(global CONTINUOUS-BEAM-token)
(zand (<! (global span) 12)

(= (global construction) (global IN-SITU-TOKEN)))
(global FRAME-token)

;; the rest of the main structural systems

((selector xsl))

Chapter 5: Examples

Figure (5.9): Instantiating a Parametric Model

* Then the functional specifications, acquired through a pop-up window, are
propagated through this initial selection network.

* The propagation of specifications leads to the selection of (equating the global
variable *SELECTED-SYSTEM* to) a token that has the name of an MSS.

(II) Instantiating the Parametric Models:

* Instantiate the parametric models8 of the various alternatives.

* Graphically display only the instantiation of the selected MSS.

(III) Severing link to Initial Selection
Disequate the global variable SELECTED-SYSTEM with the initial selection net-
work, in preparation of propagating any functional specifications. Severing of the
link is made to avoid collision between specifications and heuristics, since heuristics'
role had expired.

8 Unfortunately, all alternatives have to be instantiated a priori, since the propagation mechanism, so far,
has no notion of delayed or conditionalpropagation. More discussion of the topic is found in the last
chapter on Limitations.

(104)

[(case4 c41) (global y) (global selected-system)
(global simple-beam-token)
((simple-beam sb4) (global span) % Rsb SFsb BMsb)
(global beam&girder-token)
((beam&girder bg4) (global span) % Rbg SFbg BMbg)
(global continuous-beam-token)
((continuous-beam cb4) (global span) % Rcb SFcb BMcb)
(global frame-token)
((frame fr4) (global span) % Rf SFf BMf)

;; the rest of the parametric models

(disequate selected-system (the result cc))

(IV) Propagation of Specifications:

* Functional specifications, given by the user, are propagated through the
parametric models of the various MSS's.

* Similarly, propagation is made for any later constraints imposed by the user, as
shown in the example use given in subsection on Different uses.

5.1.5. Design of Sections
For the dimensioning stage, the system also knows how to design RC sections in two
ways: under flexural moments, and under compression (Winter & Nilson 1985):

Design of Sections under Flexural Moment:
All the design equations are made using the Ultimate Strength Method and they are
derived from the ACI code 1983 (Winter & Nilson 1985, Ch.4).

2 Md
ppfyb (1- (0.59p fc))

where:
b: is the breadth of the section, in inches.
d: is the (active) depth of the cross section, in inches.
M: is the flexural moment working perpendicular to the section, lb.in
fc: 28-days Compression Strength of Concrete, psi.

(defaults to 2,500 t/m2 = 3,500 psi)
fy:Tensile strength of Steel, psi.

(defaults to 36,000 t/m2 = 50,000 psi)
po: Bending reduction factor, defaults to 0.9.

200
p: Minimum reinforcement ratio (= for flexural sections)fy

= 0.05 for compression sections such as columns
fsolum,, : reduction factor for tied columns, defaults to 0.7

The constraint representation of the procedure is demonstrated in figure (11),
while the schematic illustration of the same procedure is shown in figure (10).

(105)

Chapter 5: Examples

;; Flexural design of sections:
;; Units: b (m), d (m), M (ton.m)
evaluate-input
'(defcon design (b d M)

((exp expl) (* d 40)
((* multl)(* M 88000) ,

(* (* b 40)(* (!

; 1f

global fi)
(* (global ro)
(* (global fy)

(+1%
(* 0.59

0.5)))

m = 40 in
1 t.m = 88000 Ib.in

(* (global ro)
(* (global fy)

% (global

Figure (5.11): Flexural Design Macro Constraint.

Figure (5.10): Representation of Flexural Design of Section

(106)

GMTa~a aa~ii~

fc))))))))))

To dimension a section, called ddl, that has a breadth of 0.25 meters, and is subject
to bending moment of 100 ton.meter, we need to invoke the flexural design macro
constraint that will calculate the depth of the section and the tension steel reinforce-
ment.

((design ddl) 0.25 dxl le5)

Design of Sections under Comnression:
(Winter & Nilson 1985, Ch.6)
A tied column fails at the load Pn

Pn = 0.85 fcAc +fyAs
= Ac (0.85 fc + fy pcolumn)

;immutable because d shows up in both terms

The design load Pd is:
Pd = fs Pn

where:
fs : is the factor of safety

= 0.70 for tied members
0.75 for spirally reinforced members.

The constraint that represents the procedure is illustrated in figure (12).

Figure (5.12): Design Constraint of Compression Sections.Z LABEL FIG

Design of section under compression with eccentricity;

It is done through the simultaneous fulfillment of the two previous cases. These two
cases cover most of the general design cases of reinforced concrete sections.

(107)

'(defcon compression-design (b d N)
((* PDMULT) N (global fs-column)

((*PNMULT) ((* ml) b d)
((+ al) ((* m2) 0.85 (global fc))
((* m3) (global fy)

(global ro-column))))))

Chapter 5: Examples

5.1.6. Knowledge representation
In this section, we discuss the objects that were needed for the customization of the
system to be applied in the area of conceptual design of main structural systems of
R.C. exhibition halls.
Hall:
It is a macro constraint created to be a wrap around the instantiation of the macro
constraint that represents the selected main structural system. The conceptof a wrap-
around was needed so the functional specifications are applied only once to the struc-
ture at general, without worrying about what alternative MSS is selected at what
time.
The pins of the macro constraint are divided into three categories:

o Specification pins: width, depth, height, breadth, max-bay
" Variable pins: span, spacing
o Internal constraints: main-system, secondary-system.

Proiject:
It is the data structure that holds all the information needed to be known about a
project to ba saved as a case. The project data structure is affiliated to the HALL
macro constraint that represents the topmost specifications of the project, such as
outer dimensions, girder depths, column depth, etc. This affiliation is made to at-
tach book-keeping administrative information as shown in the attributes later on.
The object inherits the case data structure defined in chapter 4 on Implementation.
The following are the attributes of a Project:

name: unique name of the project

mcon: the HALL macro constraint that represents the project. Its default name is the
project name prefixed by "hall-".

elevation:name of the window pane where the elevation view will be displayed.

plan: name of the window pane where the plan view will be displayed.

mouse-line: name of the window pane where the mouse-sensitive messages will be
displayed.

dialog: name of the pop-up user interaction window.

icon-window: name of the window pane where icons representing the major system
functions are displayed.

scale: scale of the drawing, pixels/meter

structures: The top-level structures that comprise the project.

(108)

structure:
It is the data structure the represents the structure to be designed. It is affiliated to
the macro constraint of the selected MSS for some book-keeping purposes.
The data structure has the following attributes:

name: The unique name of the structure.

mcon: the macro constraint that represent the structure. Its default name is the
structure name prefixed by the type of the structural
PORTAL-FRAME-CCRE.

width: The (facade) width of the plot of land to be roofed, in meters.

depth: The other (secondary) dimension of the plot of land to be roofed, in meters.

height: The clear (internal) height of the bottom of the roof, in meters.

min-required-bay: The minimum span9 in the major (facade) dimension, in meters.

x0, yO, zO:The pixel coordinates of the upper left corner of the drawing.

5.1.7. Different Uses
Figures (13) through (14) demonstrate one possible way for using the system.

* First, the system query the user about the functional specifications of the hall,
through a pop-up window. Specifications include dimensions of the hall, the
use of the hall, and construction method.

* The system creates the selection constraint network, similar to the one in
figure (8). The network is used for selecting the appropriate main structural
system.

* The parametric model of the selected main structural system is instantiated
according to a detailed-design selector network similar to the one in figure (9).

* The propagation of the user's functional specifications through the parametric
model, leads to a detailed design, that gets graphically displayed as in figure
(13).

(109)

9 Span is the distance between to adjacent columns, centerline to centerline.

Chapter 5: Examples

* The user can make a modification to the design, either textually by typing in a
specification (constraint) to the constraint listener pane, or he can graphically
do that by clicking upon the icon that represents a parameter. Figure (15)
shows what happens when the user clicked upon one dimension, the
minimum-bay-width in this case. A pop-up window prompts the user to enter
the new value, the user in this case asks for column-free facade.
The system synthesizes a constraint (= = minimum-bay-width
project.width), that represent the modification, and propagates it.

* The propagation of a modification may trigger a conflict. The system was
designed such that all conflicts will be brought up to the attention of the user
so he can decide on the way to resolve it.

* After resolving any conflicts, and completing propagation, the graphical
representation of the new design is displayed, as in figure (14). That figure
shows that the modification to the functional specification prompted drastic
change in the design, that amounted to selecting a different main structural
system.

(110)

5.1.7.1 Examples of Other Questions that the System Can Answer

* Change the kind of reinforcing steel used. The system then uses the new
yielding stress of that steel all over the design. This approach is frequently
used by designers to take more flexural stresses in shallower beam depths.
Traditionally they have to either recalculate the whole design, or upgrade the
steel all over the structure to meet the critical stresses at few sections, which
means a lot of waste of materials.

* Change the maximum allowed width of a crack: In a water-tight design, say of
a tank, it is a frequently-discussed issue to question the maximum allowed
width of a crack, its rationale, and its impact upon the design. To scrutinize the
various views, the system allows the user to change the maximum allowed
width of a crack, and the system propagates it all over the design. The
propagation may trigger drastic changes in the design.

* Assign a cost function for every main structural system. The user can post
whatever function to represent anything, such as cost or time. Every time a
change is made in the design, the function gets recalculated automatically. Of
course, threshoulds, blows and whistles can be attached to monitor/control
these functions.

-L --T-- -

Figure (5.13): The design made by System, from Textual Input

(111)

Chapter 5: Examples

Figure (5.15): The User Clicks upon a Dims. to Change.

Figure (5.14): System Propagates the Change, Reaches New Design

(112)

5.1.8. Limitations

1. The current models do not allow for imposing concentrated loads and
moments at random locations.
A possible solution could be made by devising a list of straining actions (loads
& moments) that work on the structure. Then a different kind of constraint,
that takes into consideration load value, coordinates, and type of straining
action, needs to be devised. Such a constraint could be an empty one that only
has pins extending out of it, without a processing body. The constraint is made
just for clumping values together.
(defprim (concentrated-load P) (val direction x y z))

:where direction is the angle, in centigrades, measured clockwise, from
gravitational downward.

(defprim (concentrated-moment M) (value direction x y z))
:where direction is either 0 for clockwise, or 1 for counterclockwise.

2. Due to the infinite combinations of loads the sections with critical straining
actions may appear anywhere all over the structure. While we can make
reasonable guesses for critical sections in traditional loading cases, there is no
way to make such a guess for a generalized loading case.
A possible solution could be in saving a symbolic function, e.g., binomial series,
as the value for every kind of straining action for every structural element.
Then a differential constraint will take the fuction and give the maximum and
minimum locations. Another constraint should determine all straining actions
at a specific section.

3. This application does not give the user the freedom to select support types,
e.g., roller, hinge, fixed, etc. The system instead selects supports such that the
system will be statically determinate. The application had to be made like that
to avoid worrying about analysis of structurally indeterminate systems. Such
analysis should be made by one of the standard Finite Element Analysis
systems to which the application will be hooked up.

4. This application assumes the secondary structural system to consist always of
simple beams.
The solution is to repeat the steps for selecting the Main Structural System
(MSS), both initially and finally, for the selection of the Secondary Structural
System (SSS).
This solution was not implemented since it demonstrates no more capabilities
of the system, while it slows down the performance, especially on a machine
with limited memory.

(113)

Chapter 5: Examples

5.2. Design Checking & Optimization (Correction) of
Floor Plans10
This example demonstrates the application of the system to the are of checking the
compliance of a floor plan of a hospital to a body of standards. The standards in-
cluded chapter 5 of the National Fire Prevention Association (NFPA) code, and
New York State - Office of Mental Health's Life safety code.
Basically, what the system does is taking a floor plan (on a CAD file), and generating
both a copy of the same drawing with all the violations flagged out on it, and a de-
tailed violation report. Current work is being done to utilize the violations in sug-
gesting improvements (global solutions) for the initial design.
The formal name of the project is Code Orientation, Review, Enforcement, Com-
missioning, and Testing (CORECT).

5.2.0.1 Evolution:
" The design synthesis experiment, which demonstrated the inter-relationship

between dimensioning & conceptual design, showed the need to propagate
changes, i.e., to be parametric.

" Every change, made to the hall design, is perceived as an additional
specification.

" That led to the thought "what if we need to know the compatibility of a
specification, without enforcing it?" In other words, there was a need to have
a mild conflict that can be noticed and carry on checking other things.
° That brought up the idea of the checking stage in the engineering life cycle,

discussed in fig.(1).
o New York State expressed their need for automating the checking stage of

the lifecycle. especially for the National Fire Prevention Association code
(NFPA).

O It was a good chance to implement/test an additional module of the system
environment, that led to look, again at the engineering lifecycle and to try to
come up with one environment for design problem solving. The process
contributed positively to the design of the Engineering Knowledge-integrated
Design Utilities.

o After winning the national award, NYS code enforcement agencies said "It's
nice of the program to tell us about the violations; but wouldn't it be nicer if it
can suggest to us how to fix these violations?" Therefore Phase (II) of the
project was started to do that.

O So, design synthesis evolved into design checking, which in turn, evolved into
design synthesis again. That proves the concurrent engineering nature of the
whole domain of design.

10 This system was selected by the National Office of Government Technology, Washington, DC. as the
Innovative Solution of the Year 1989.

(114)

5.2.0.2 Input:
The chief engineer has to input the standards (code) to be enforced only once, in the
syntax of the system Specifications, in a text file, as shown in figure 5-16.
Everytime a design is submitted for approval, a CAD file of it is passed to the design
checker.

5.2.03 Output:
1. A copy of the input drawing, with all the violations flagged out, and
2. A detailed violations report that describe every violation flag in the drawing.

,gen-article 'OMH-SC&NC 1
"Bedroom Requirements:"

"Skilled Nursing Facility (SNF)shall be provided a minimum of 125
square feet plus a 6 square foot closet in single bedrooms and 100
square feet plus a 6 square foot closet for each patient in double
bedrooms. No more than four will occupy a bedroom but, there
shall be a minimum of 66.6% single & double bedrooms per ward."

'(and (room-p object)
(equal (room-type object) 'bedroom)
(equal (ward-type (room-ward object)) 'SNF))

'(and (cond ((= (room-capacity object) 1)
(= (room-area object) 125)
(= (room-closet-area object) 6))

((= (room-capacity object) 2)
(= (/ (room-area object) (room-capacity object)) 100)
(= (/ (room-closet-area object) (room-capacity object))

6)))
(< (room-capacity object) 4)

;;66.6%

Figure (5.16): An Article of NYS-OMH Space Conditioning Code

(115)

Chapter 5: Examples

5.2.1. Implementation
The system is written in system specifications, and Lisp. The interface to the CAD
package is written in Fortran. Checking is made through unification of the specifica-
tion with every suitable object in the part database of the CAD file, as described in
80. Suitability is determined through afilter predicate as shown in figure 5- 16.
Figure 5- 16 demonstrates an article (specification) of the code. The constraint is

a plain Lisp code, while Figure 5-17 demonstrates the same article declared as a
Constraint.

[gen-article 'OMH-SC&NC 1
"Bedroom Requirements:"

"Skilled Nursing Facility (SNF)shall be provided a minimum of 125
square feet plus a 6 square foot closet in single bedrooms and 100
square feet plus a 6 square foot closet for each patient in double
bedrooms. No more than four will occupy a bedroom but, there
shall be a minimum of 66.6% single & double bedrooms per ward."

'(and (room-p object)
(equal (room-type object) 'bedroom)
(equal (ward-type (room-ward object)) 'SNF))

'(and (cond3 resulti
((= room-XX.capacity 1)
(and (< = 125 room-XX.area)

(< = 6 room-XX.closet-area)))
((= room-XX.capacity 2)
(and (< = 100 (* room-XX.area % room-XX.capacity))

(< = 6 (* room-XX.closet-area % room-XX.capacity)

(truth (< room-XX.capacity 5))):
;;66.6%

Figure (5.17): The Same Article of NYS-OMH as a Constraint.

(116)

5.2.2. Knowledge Representation
The following is a description of the objects of the domain of AEC design of hospi-
tals.

Architectural-Closure:
This object is created merely for inheritance purposes.
arch-elements

Architectural-Element:
Yet another object created for inheritance purposes.

rating:
finish: It is a list of lists. Each of the inner lists has a finishing material and the

specification needed to quantify its contribution to the fire rating. The
cumulative fire rating of all inner lists is the value to be stored in the
abovementioned fire rating attribute of the element.

Building:
It inherits the object structure, in chapter 3, p. 56.
This conceptually is the largest object in this customization.

name existing?
type components

Floor:
id name
building
(type 'patient-floor) ;repititive/patient, non-patient, mechanical
(Components '()))

Bexit:11

Building exit.
name building
floors doors
corners

(117)

11 Some implementations of Lisp and C + + will not allow defining an object with the name exit.

Chapter 5: Examples

Ward:
id name
class (capacity 0)
floor
(type 'general) ;secure, administration, general/psychiatric, SNF
(number-of-bathrooms 0) fixtures
(components '())

Corridor:
It inherits ARCHITECTURAL-CLOSURE.

name id
width exits
smoke-barriers
height (rooms-opening-to-it '())
(doors-opening-into-it '()) windows
finishes (for wall, ceiling and floor)
ward corners

Door:
It inherits ARCHITECTURAL-ELEMENT.

id name
room corridor
rating swinging-direction
(self-closing? nil) (tight-fitting? nil)
glazing-type side-clearance
mid-coordinates closer
latch hinge
hinge-coordinates composition
type ;swing-, revolving-, turnsile-, balance-, ...
usage ;'room-, 'fire-stop-, 'exit-door
exit smoke-barrier
size

Room:
It inherits ARCHITECTURAL-CLOSURE.

name id
(capacity 0) area
type ;'patient-, day-, quiet-, program-, recreation-, visitors-, dining-room
(window '()) corridor
doors (closet-area 0)
furniture finishes

(118)

(attached-bathroom-fixtures nil)

Bathroom:
It inherits ROOM.

name id
area (number-of-showers 0)
(number-of-washing-basins 0) (number-of-toilets 0)
(number-of-lavatories 0)
(number-of-tubs 0) ward

Window:
It inherits ARCHITECTURAL-ELEMENT.

id room
area glazing-type

Fixture:
It inherits ARCHITECTURAL-ELEMENT.

id type
room coordinates

Wall:
It inherits ARCHITECTURAL-ELEMENT.

name
closure

Ceiling:
It inherits ARCHITECTURAL-ELEMENT.

name closure
height projection

Material:
The data structure for building material, e.g., finishing (painting, tiling, etc.). The
only attribute we care to know about, for the purpose of checking the compliance to
the NFPA code, are:

name flame-spread

(119)

ward (corners '())

Chapter 5: Examples

5.2.3. Results
The system developed in this section was used to check the compliance of hospital
floor plans to both chapter Five, titled egress, of the National Fire Prevention Associ-
ation (NFPA) code 101, and the New York State OMH Space Conditioning & New
Construction program (NYS-OMH-SC&NC). Figure (5.18), in the following page,
demonstrates a part of the output drawing generated by the system integrated with
Medusa CAD package as a result of imposing NYS-OMH-SC&NC. The input draw-
ing looked exactly the same, without the violation icons which are plotted on a sepa-
rate sheet.
Figure (5.19), in p. 122, demonstrates parts of the violation report generated when
checking the same design.

5.2.4. Impact on the Checking Process

1. The system allows the code permitting authorities to be more even-handed
with various designs, competing or not.

2. The system encourages the code permitting authorities to be more strict in
enforcing the standards. To avoid the heavy-handedness of the system, two
measures were added to it:

° The system allows the user to turn off any number of articles of
the code. The output, though, will show the article numbers in the
corner of the drawing.

o The user can set the equality threshold, such as 1% or 43%, after
which a violation is triggered.

3. The encoding process into the system encourages the code permitting
authorities to rewrite the standards in a more precise unequivocal language.

4. The system can be used in monitoring the performance of the various
designers, and to guide them in overriding their weaknesses.

5. Since the motivation of such a system is reaching better designs rather than
punishing designers, the system offers an interactive version of the standards,
which can be used by the designers to check their designs before submission to
the owner.

(120)

I

I

Figure (5.18): Output of Checker on a Floor Plan of Hospital

(121)

IL

Chapter 5: Examples

Reference 49:
ward class: PSYCHIATRIC type: LONG-TERM-CARE name: West
room type: BEDROOM number: br-3124
door id: 256

door is too narrow for Psych. ward. REQUIRED: 40.00 inches. ACTUAL: 36.00 inches.

Reference 52:
ward class: PSYCHIATRIC type: LONG-TERM-CARE name: West
room type: BEDROOM number: br:3203
Insufficient number of CLOSETS in room. REQUIRED: 3, ACTUAL: 0.

**** Article OMH-NC&SC 11: Line of Sight *******************************

Reference 114:
ward class: PSYCHIATRIC type: LONG-TERM-CARE name: West
room type: BEDROOM number: br-3085
door id: 256

Door is not visible from NURSES' STATION.

**** Article OMH-NC&SC 13: Seclusion Rooms ******************************

Reference 127:
ward class: PSYCHIATRIC type: ADMISSION name: B
room type: SECLUSION-ROOM number: 3012

Seclusion-room's door opens to corridor COR1.

Reference 143:
ward class: PSYCHIATRIC type: LONG-TERM-CARE name: West
room type: OFFICE number: 2157

Office is not adjacent to a bedroom, as required.

**** Article OMH-NC&SC 17: Latch Side Clearance of Doors ******* ************

Reference 185:
ward class: PSYCHIATRIC type: LONG-TERM-CARE name: West
room type: TOILET number: 3102
door id: 270

Door's latch side clearance is too narrow on pull side. REQUIRED: 18.0 inches, ACTUAL:
17.28

Figure (5.19): Part of Violation Report of Demonstrated Floor Plan

(122)

5.2.5. A Specification-driven Approach to Facilities Management

The example of checking floor plans demonstrates the suitability of the system for
the domain of facilities management. Similar to other domains, the validity of the
system in checking the compliance of existing AEC designs to standards is demon-
strated in the first phase of the project, and its validity in design synthesis is demon-
strated in the second phase which is currently experimental. Furthermore, the
system can be applied the following areas of facilities management:

5.2.5.1 Condition Survey of an Existing Facility

Condition Survey of an existing facility in preparation for rehabilitation. Causal
(functional) relationships, in the knowledge base, are vital for for establishing
a model-based reasoning capability that can guide surveyor to more precise,
efficient survey of the condition of the facility. Stacking of cases can lead to
finessing the causal model (el-Shafei 86).

5.2.5.2 Automatic Generation of Work Orders
Upon telling the system that employee X will move from room A to room B, the sys-
tem will generate all the required work orders to move his telephone line, termi-
nal/workstation, personal printer, personal fax, change the ethernet, update the local
area network and consequently modify the circuitry of that part of the floor, if
needed, to accomodate the change in power load. The same thing should happen to
the HVAC controls to accomodate the change in HVAC load.

5.2.53 Survivability System
An important facility, such as an airport, highway, power plant, etc., should have a
survivability system, that will enable the its management to perform under adversary
conditions.

The major goal of such a system is minimizing the time needed to bring the facility
back to functioning. To meet that goal, the system should integrate Geographic In-
formation System (GIS), Facilities management, Control system, Scheduling/Plan-
ning, and a decision support system. The system should allow the facility
survivability center to monitor on, almost, a real-time basis the status of all facilities
and capabilities around the facility, such as runways, hangars, residential quarters,
personnel, fire protection systems, Petroleum Oil Lubricants (POL) lines if we are
dealing with an air base. As a facility gets damaged, the system will suggest a possi-
ble way of fixing the damage given the available resources. The user can decide an
overriding solution though.
Information is to be input to the system through icons and menus. The system
should take care of preventive maintenance. If a facility is damaged, not only that

(123)

Chapter 5: Examples

the system will suggest which combination of personnel and machinery should fix it,
it will also assign a damage assessment team to survey the other facilities that might
have been affected because of adjacency (like POL lines), or structural inter-depen-
dence (like the sub-base of pavement).

5.2.5.4 Knowledge-Based Diagnostic System
The system can have a diagnostic system which will offer both diagnosis and reme-
dial action to every possible malfunction that may happen. No such system can ever
be fool-proof, because of the ever changing technology among others. Therefore,
the system has to be able to learn from the human maintenance engineer, using both
previous cases and failure scenarios/mechanisms.

(124)

5.3. Other Applications to Complete the SDD Environment

Over the last two years, several applications has been developed, that made the sys-
tem more robust and versatile. This versatility makes the system candidate to be a
Concurrent engineering environment. Concurrent engineering is an approach that
perceives the engineering of a domain as a continuum. In that continuum, every
stage of the engineering process influence the other stages, in all directions, i.e., in a
non-directional way. Therefore, the best representation for the problem is con-
straint propagation paradigm. So far concurrent engineering is more of a creed
rather than a real implementation. The system, presented in this dessertation, is a
serious trial to flesh out the creed.

In the rest of the section, several applications will be mentioned briefly, and how did
they contribute to the development of a more robust environment.

5.3.1. Design of RF Connectors
There are three distinct teams who work on the design of RF connectors: Electrical
analysts, electrical designers, and prototype modelers. Each of these teams has its
own language for desin:

Electrical analysts: they deal with mathematical models. Their work ends by the
development of a mathematical model.

Electrical designers: they take a mathematical model and flesh it out into a
geometry, according to their experience, and some standards. So, their
language is CAD systems.

Prototype modelers: they take a CAD file of an RF connector, and they develop
worst-case logic diagram models to test the new connector.

So, the three teams speak three different languages, mathematical equations, CAD,
and schematics. Indeed, constraints and backgrounds of each team are different. To
develop good designs, the three teams have to communicate simultaneously rather
than handling design sequentially, one team after another.
The solution was to perceive the product (RF connector) in a trimorphic representa-
tion: mathematical representation, CAD representation, and schematic representa-
tion. Every team can introduce a change, or a constraint in one language, the other
two representations (languages) get generated automatically. Such representation
was possible through a constraint modeling of the problem.

(125)

Chapter 5: Examples

5.3.2. Design of Wheel Assembly of Industrial Fans
The problem: the desimn-and-uote process for industrial fans. Industrial fans are
giant ventilation devices of a discharge in the order of 1 million cubic foot per min-
ute used in ventilating power plants, mines, etc. The manufacturer has 29 different
families of industrial fans. To participate in a bid, the manufacturer has to fairly de-
sign the needed fan according to the functional specifications to be able to give a re-
alistic quotation. This process is called design-and-quote. It is usual for the
manufacturer after he turns in the quotation to find out that a new change in the
functional specifications was made, and that design has to be made from scratch
again. It used to take about 2 months for the manufacturer to go through this pro-
cess. With the introduction of CAD systems the design-and-quote process was re-
duced down to 2 weeks, but that is not sufficient anymore with the fierce
competition, and the more demanding specifications.
Solution: The solution was made of two parts:
First part is a selector part, similar to a production rule-based expert system that se-
lects the appropriate family of fans to be used.
Second part was developing a parametric model for every family of fans. Once a
family of fans was selected, its parametric model is instantiated (dimensioned).
Whenever a change (constraint) is introduced to the system (textually, or graphi-
cally), it is propagated all over the design. The change may trigger just small changes
around the fan, or it may invoke a drastic change such as adapting different family of
fans. Engineering drawings are automatically generated by the end of design. Quo-
tation can be automatically generated as function of the parametric model.
The system was integrated with Computervision's CADDS 4X, so the user can in-
voke the designer application either as a stand-alone application, or from within
CADDS 4X.
Result: The solution reduced the design-and-quote process to less than 2 days.

5.3.3. Intelligent Fastening Joint Designer
Problem: One item on the highly publicized government procurement list, in 1988,
was the $5,000 bolt. The bolt was manufactured by a major contractor, that manufac-
tures a major gadget. The manufacturer clarified that a bolt may cost that much if it
was one-of-a-kind bolt. Both the government and the contractor have their rules
and inventories that should be followed. The problem is how to make sure that the
mechanical designer will follow these rules. Instead of using the inventory catalog,
a designer may opt to design a custom bolt for a specific task. The custom manufac-
turing of such a bolt may exceed $5000. More important is the cost of maintaining
this new class of bolts. It costs about $3,000 to maintain (refasten, grease, etc.) every
category of bolts per year, in everyone of the gadgets. So, in a product with 15000
bolts in it, if the designers use, say 1000 types of bolts, it will cost the owner about $3

(126)

million to refasten the bolts on every gadget every year. Of course the situation is
not that bad.

Solution: Since design of fastening joints (bolts, rivets, and welds) is not that com-
plex, automation of the whole process was suggested. An intelligent Fastening Joint
designer was developed on top of CADDS system.
Whenever a designer wants to fasten two, or more, parts together, all he needs to do
is to click upon a menu icon inside CADDS. CADDS will ask the user to digitize the
parts needed to be fastened.
CADDS passes the information to the our system that accesses the part database
and it extracts the kinematic and physical information about the parts. Conse-
quently the system decides the type of fastening (bolt, rivet, or weld), then it fully
analyzes, then designs the fastening joint according to all the rules of the company,
and using the inventories of the company.
The system updates the CADDS part database to reflect the new design. The whole
design process takes less than 3 minutss.

5.3.4. Parametrized Design of an Office Partition
Problem: Discrete parametric modeling of office partitions. A major manufacturer
of office furniture wanted to develop a system that takes the functional specifications
from customer, and the system should design a product made of the manufacturer's
standard components. A family of components may be represented by a parametric
model, but discrete domain for some of its parameters. In other words, not every
consistent set of values will constitute a solution.
Solution: The various families of office partitions were parametrically modeled.
Each components was also parametrically modeled. Unlike systems based on simul-
taneous equation solvers, the system allowed discrete parameters, which was vital
for this application. The application generates a bill of material (BoM), and an engi-
neering drawing ready for manufacturing.

(127)

Chapter 5: Examples

5.3.5. Synthesis of the Front Panel of a Car Stereo
The model was developed for Philips - Consumer Electronics (Eindhoven, Nether-
land).
Various automotive manufacturers use Philips' car stereos. The product has to com-
ply to the standards of the car manufacturer, to the standards of the market country,
and to the shopfloor capabilities at the manufacturing plant. Therefore, for every
model, several versions may exist. This adaptation process amounts to almost com-
plete redesign.
Philips needed to parametrically model the front panel of a car stereo so it can im-
pose a new constraint with minimal effort.
To do that, we used one chapter of the German DIN standards and one chapter of

Figure (5.20): Front Panel of Car Stereo - Courtesy of Philips

(128)

the European ECE code that deal with front panels of car radios.

The specifications deal with the geometric representation of some functionalities.
Therefore a functional model of the front panel had to be established.
Every front panel of the car stereo consists of four functional groups:

1. Amplifier Group

2. Tuning Group

3. Cassette Group

4. Display Group.

A functional/geometric parametric model is established for every model. Specifica-
tions are enforced upon this model.

(129)

Chapter 5: Examples

DISPLAY GERMAN? DISPLAY-LL-CORMER-X WIDTH

VOLUME-RADIUS DIAMETER

AMPL IF IER UMBER-OF-CO NTROLS

Figure (5.21): Schematic Representation of a Front Panel

(130)

DISPLAY-LR-
CORNER-X

SCREEN-
WIDTH

S CRE E N-LL-
CORNER-X

'There is no permanence.
Do we build a house to stand forever, do we
seal a contract to hold for all time?
Do brothers divide an inheritance to keep
for ever? Does the flood-time of rivers en-
dure?
It is only the nymph of the dragon-fly who
sheds her larva and sees the sun in his glory.
From the days of old there is no perma-
nence.'

Utnapishtim, the faraway
(Noah in Epic of Gilgamesh, circa
3500 BC)

Summary & Conclusion

This chapter first summarizes the system, presented throughout this dissertation,
then it compares its approach to traditional approaches to design. Then the contri-
bution of the thesis is offered. The third section discusses the limitations of the sys-
tem, and the future work needed for further development. Finally, the conclusion
describes how the implemented system fits the hypothesis described in chapter one.

6.1. Summary
This thesis casts the engineering design process mainly as the propagation of a body
of specifications (constraints). The propagation of these constraints leads to a series
of conflicts between various, occasionally-competing points of view. The resolution
of these conflicts is the embodiment of the final design.

To test this perception, a system was developed for design automation. The system
captures design as a network of specifications, at some state of conflict resolution,
that propagated a certain set of values for the design parameters. The system used a
mechanism for constraint local propagation. Similar to traditional design approaches,
the system documents a design both in calculations and illustrative graphics. To be
useful for other designers, the design, moreover, includes the alternatives that were
available for the designer, and the dead-ends he tried out. All these aspects of a de-
sign constitute a design case to be added to the memory (experience) of a designer.

The philosophy was translated into a system (environment) of computer programs.
The system covers the whole engineering process, starting from conceptual design,
through analysis, dimensioning, drafting, and checking to manufacturing and mainte-
nance. This environ- ment was applied to various stages of that engineering process
in several domains. The versatility of the applications contributed positively to the

(131)

Chapter 6: Summary & Conclusion

refinement of the implementation of the system. The various applications of the en-
vironment in different domains prove both the validity of the philosophy, and the ro-
bustness of the implementation. Applications, nonetheless, illuminated some
limitations of both the approach and the implementation. These limitations were
discussed at the beginning of this chapter.

The system uses two representations for each artifact, an abstract (mainly-func-
tional) representation, and a detailed representation. This dimorphism was sug-
gested by several researchers in cognitive modeling. On the other hand, to assure
portability and learning, modeling in the system is divided into three classes: func-
tional representation, geo- metric representation, and graphical representation.
The knowledge representation used in the system allows for the extension of the sys-
tem to handle innovative design through case-based learning and reasoning.

The system architecture proposed in this dissertation for design automation is an at-
tempt to rationalize the design process. In addition to the rationalization and the de-
velopment of clear algorithms for the major design tasks (utitlities), the system has
further advantages when compared with the traditional design programs, including
the following attributes:

* The system allows the user to impose constraints at any point of the design. A
manufacturing constraint, imposed late in the process, may propagate
backward to change the conceptual design selected earlier.

* A design made by this system includes, in addition to calculations and
illustrative graphics, the alternatives that were available for the designer, and
the dead-ends that were tried out.

* Because of the previous capability, the system can utilize previous designs to
develop better designs, with less computational resources.

* The system allows a design to be either under-constrained or over-constrained.
Over-constrained designs can be resolved by the conflict resolution mechanism
of the system. Under-constrained designs can be completed by mechanisms
for posting default and assumption values for unknown parameters. Default
and assumption values are of lower merits than the values propagated by the
user. Therefore, they succumb to values of higher merits in conflict resolution.

(132)

6.2. Contribution of the Thesis
There is one major contribution of the thesis. In the following paragraphs, a descrip-
tion of the various facets of that single contribution, namely the environment for
specification-driven design is given.

6.2.1. (1) An Architecture for Design Problem Solving
The major contribution of the thesis is the design of an environment for design utili-
ties. Most of the elements of this environment are developed (for concept proving
purposes).
The major features of this environment are the following:
Specification-driven Design:
The design process is perceived to be controlled by one type of information, which is
specification. A specification could be used in at least three major ways:

° To check the compliance of an existing design.
o To synthesize a new design from scratch based.
° To be manipulated by a specs builder that goes through a body of standards,

selects the articles relevant for the problem at hand, then creates a body of
specs.

Checking:
Checking is made through unification between a specification (constraint type) and
every legible object in the design (Kowalski 79). The result of the unification pro-
cess is the creation of an instantiation of the constraint pinned to the parameters (at-
tributes) relevant to that object.

Learning:
With the invention of CAD systems, instead of burying our designs in dark cold
vaults, we now bury them on magnetic tapes. Once a design is over, no use is made
of it in subsequent projects. This is not the case with human designers, where every
additional project adds to the experience, and hence to the performance, of the de-
signer. Abstractions of all previous designs are lurking in the back of the designer's
mind whenever he is faced with a new project. Through some analogy, the designer
decides the similarity between the requirements of an old design and those needed
for the current project.
The system architecture captures a complete design as a constraint propagation net-
work. This representation is used as an abstraction of the system ever lurking in the
back of the system's mind when encountering a new design project.

Synthesis:

(133)

Chapter 6: Summary & Conclusion

The same representation allows for generic design synthesis for non-electronic prod-
ucts, which are versatile and infinite. All you need to have is a body of specifications
of the required product and the existence of a mapping between functionality and ge-
ometry for that category of devices (After all, the scope of the thesis is traditional de-
sign rather than innovative design).

6.2.2. (11) User-Defined Conflict Resolution Rules
Unlike other constraint propagation programs, that have pre-defined scalar merit
values, this system allows the user to define whatever merit values he may need, and
the the behavior that reflects real-life environment. This capability allows the con-
struction of semantically-sound design environment that resembles the real environ-
ment.
The merits could be structural-engineer, architect, senior architect, owner, AS-
HRAE-standard, etc. Then the user can define how to prioritize these merits. The
conflict resolution rules could be plain scale of merits and it could be any behavior
modeled for the system to follow. Such merits will represent the real proponents of
every specification, such that at a time of conflict between specifications, the system
can follow the user's instructions to resolve the contradiction.

Every parameter in a constraint propagation system has, in addition to its value, a
merit level that will be used in conflict resolution in case of a contradiction.
In most of the classical CP systems (Steele 80, Gosling 84), the merit scale is made
of a finite set of pre-defined levels of merits, e.g., Steele & Gosling offer three-level
linear scale (in decreasing importance): Constant, Default, and Parameter. So if a
conflict is detected, the culprits are inspected for their merit values. The one with
the lowest merit will be overwritten. Merits in this system are not on a scalar range.
A merit may possess quite a complexl behavior that drives it differently against
other merits. When a conflict is detected, each of the merits of the initial premises
is compared against the other merits according to the defined behavior.

6.2.3. (111) Harvesting Mechanism for Adaptive Learning in
Evolving Domains:

Harvesting is a technique for improving the model of an evolving domain using the
feedback on previous cases. In other words, harvesting uses case-based reasoning,
and feedback, to improve its model-based reasoning capabilities.

(134)

1 The merit behavior can be as complex as a Lisp function can be.

An evolving domain is a one that is not governed by a well-established model (the-
ory). Instead, starting from one set of premises, several competing theories can lead
to various results. These theories are incomplete, in the sense that they cannot
cover the whole domain, and/or unreliable, in the sense that they not always lead to
the right answer.
An explicit artifact is an artifact whose shape is a direct function of its functionality.
Consequently, a single parametric model represents that explicit artifact. In other
words, the geometry of the artifact can be represented as terminal nodes in the cau-
sality network.
The design of explicit artifacts in evolving domains is a subject of a a great deal of
heuristics and empirical formulae, e.g., shear design of metal formed artifacts, design
of asphalt roads.

Figure (6.1): The Harvest Mechanism

The harvest mechanism has three parts: the feedback & credit assignment part for dis-
carding the unreliable pieces of knowledge, the harvesting part to collect knowledge
from different sites, and the hypothesis part for postulating new relationships in the
domain.

6.23.1 The Feedback & Credit Assignment Part
This is the part that collects feedback on every design case according to an agenda
mechanism in the case library. The system backpropagate credit all over the reason-
ing path used in reaching the design.
Through the feedback feature of the architecture, every design case is augmented by
a follow-up result, which is a credit value ranging from -1 to 1. The system uses the
reasoning capability to backpropagate the credit through the causality network using

(135)

FEEDBACK & CREDIT ASSIGNMENT

HARVEST & GENERALIZATION

HYPOTHESIS

Chapter 6: Summary & Conclusion

a credit assignment mechanism. This credit is assigned to the constraint that repre-
sents a causal relationship. As time goes on, the system accumulates credit on the
various causal links (constraints). The user can set a credibility threshold. The sys-
tem will not propagate through a causal constraint whose credibility is less than the
set threshold. Periodically, the system will report all the causal links (constraints)
that accumulated a sufficiently negative credit to the user so he can replace them or
fix them.

6.23.2 Harvesting & Generalization
This is the part that harvest (collects) the previously-identical copies of the knowl-
edge bases released to the various sites. The system runs a super generalization ses-
sion on them to improve the qualitative knowledge of the evolving domain.
Because of the adaptiveness of the system, the identical copies of the knowledge
base released to various users, or sites, will evolve in different directions according
to the circumstances and cases encountered in every site. To utilize this gain of
knowledge toward the finessing of a theory for the evolving domain, and to make
sure that the gained knowledge is not just local perturbance, all the previously-identi-
cal copies of the knowledge base, with all the cases encountered by each copy, are
gathered every year for a super generalization session.
Super Generalization Session applies several generalization techniques, as described
in (Michalski 84), to the causal and taxonomical knowledges.
The new version of the knowledge base with all the generalizations added, and all
the low-credibility links removed, is broadcast to all sites again.

6.233 Relationship Hypothesis Part:
This is the part that suggests new relationships (equations) between parameters to
modify the knowledge base of evolving domains.
Every parameter is connected through constraint networks to all related parameters.
In addition to the definite relationships represented by the constraint networks,
every parameter has a list of possible influences, i.e., other parameters that may have
influence on the parameter under consideration. Periodically, the system goes
through the values of the possible-influences parameters in the accumulated cases,
and it runs Stepwise Regression Analysis, in conjunction with DimensionalAnalysis to
develop new relationships with a significance level above a user-set level. The new
hypothesis (relationship) will not be translated into a constraint until it is approved
by the user. This capability makes the system continuously adaptive.

(136)

6.2.4. (IV) Constraint building environment:

1. The user can edit/construct a constraint (network) either textually or
schematically. Figure (2) shows the textual description of a macro-constraint
representing a simple Portal Frame. Figure (3) shows the schematic
representation of the same constraint. The user can build a constraint through
either way and the other representations will be generated automatically.

Currently, work is under way on making the third representation, which is
geometric display, another valid constraint specification tool. This step needs
extensive work with Constructive Solid Geometry (Boolean operations on
solids).

Figure (2): Text Specification of Portal Frame Constraint

Figure (3): Schematic Editing

(137)

'(defcon FRAME (span depth R SF BM)
((* MMULT) BM (global *equiv-load*)

(* (exp span 2.0) % 12.0))
((* RMULT) R (global *equiv-load*) (* span 0.5))
(* R SF 1.0)
((design fd) (global *breadth*) depth BM))

1411

4, 4

I CNSRINT ll El IIA1-==

Chapter 6: Summary & Conclusion

2. User can iconically load different constraint libraries that represent the
specifications he wants to use. A screen dump of the constraint construction
environment is shown in figure 4. A description of this environment is given
in Chapter Four on Programs description, p. 88.

Figure (4): The Interactive Environment

(138)

6.3. Limitations
This section discusses some of the obvious limitations of the implementation devel-
oped to flesh out the philosophy and methodology discussed in chapters One and
Two.

1. Memory intensive
Representing the whole design in a constraint network may prove to be prohibitively
expensive, especially in swap space. This problem gets exacerbated if the user wants
to apply large number of specifications (such as several chapters of the ASTM) dur-
ing design.
Defense: But you have to have all your design information active if you are perform-
ing the design (parametrically) by hand.
Solution: Subdivide the network into smaller networks, e.g., conceptual architectural
design, structural design, electrical design, mechanical design, etc.
Disadvantage: It limits the propagation of constraints across subnets, e.g., it will not
be possible for the system to discover that the only solution for the congested air con-
ditioning duct is to modify the structural depth of the beam under which the duct
goes, which requires a modification of the structural system/subnet.
Another Solution: Draw thicker walls around the macro constraints to curtail the
inter-queue traffic across macro constraints. Most of the traffic is for conflict resolu-
tion. Therefore, such a thicker wall could be made by adding a criterion for the con-
flict resolution mechanism that will make a cell, from a different macro constraint,
the least possible suspect. If there are cells belonging to more than one macro con-
straint, ranking will be done according to the ultimate (topmost) owner of the cell.

2. Circular Dependency
It is a formidable problem especially when we deal with heavily connected networks,
the result of a specification-rich domain. The simplest example for circular depen-
dency is: x2=y

Solution: Careful devising of networks
may alleviate the problem partially.
Disadvantage: Not always true. Cannot
be tolerated in a real design environmeni

Another Solution: Transform the subnet
that isolates the circular dependency into
a primitive constraint using an algebraic Figure (6.5): Circularity in X * X = Y
systems, like Macsyma, Maple, etc. (Gos-
ling 84).

(139)

Chapter 6: Summary & Conclusion

Advantages: For an equational system, the user will never be bugged by circularity
dependency.
Disadvantages:

o You may lose the functional mapping of a macro constraint if the circularity
stretches across two component macro constraints.

o An algebraic system cannot handle anything other than equations, which
leaves us with inequalities and discrete variables (oneof) that cannot be
handled.

3. Recursion:
No current implementation of constraint management systems can handle recursion.
The obstacles that hinder the development of a recursive constraint are:

o The unformidable problem of circular dependency.
° The need for incorporating an unlimited number of boundary conditions as

pins of the new constraint.
o The lack of a semantic model to represent a recursive constraint in reality,

compared to the traditional schematic representation of constraints.
Possible Solution: Considering the obstacles. all together, leads us to the direction of
developing a new class of constraints that will be checked for circular dependency
right after formation. In that new class, special mechanism needs to be devised to
continuously worry about the boundary conditions.

4. Differential Equations & Optimization:
Optimization and other applications of differential equations cannot be modeled
easily because of the constants of integration resulting in the inverse differentiation
(integration). Limiting the range of the numerical integration and using boundary
conditions can help solve this problem.

5. Adequacy of Constraint Propagation for Geometric Paramet-
ric Modeling:
Geometry is quite an expensive domain for the constraint propagation paradigm. It

is very expensive, if at all possible, to represent all the reasoning for every geometric
constraint. A better approach will be to separate the parametric representation of
the world into two parts:

o Functional Parametric Modeler that handles non-geometric parameters and
their relationship with the major geometric parameters.

(140)

o Geometric Parametric Modeler that handles the whole geometry based on
chronological precedence of constructing the geometry, called Constructive
Solid Geometry (Mortenson 85).

6.4. Conclusion

The system presented in this environment was developed to test the validity of the
philosophy of thethesis, as described in chapter one (Hypothesis). The use of the en-
vironment proved both the suitability and robustness of the concept and the modular
extensibility of the environment. The specification-driven view of the design process
turned out to be important in more aspects than initially thought. Frequently used
specifications, such as standards, can be offered in an interactive (enforceable) form,
in addition to the usual passive text format. Having an interactive version of stan-
dards proved to be very useful in both design synthesis and design checking. Such
standards need to be encoded only once, then every body can use it.

The system had to have a constraint management mechanism. The system had its
own implementation of the concept of local propagation of constraints. While local
propagation is the most suitable approach for constraint management in design auto-
mation, it has some formidable limitations, as discussed in the section on Limita-
tions. These limitations should not be a worry for long time, since the the concept of
constraint local propagation is inherently parallel. With the spread of massively par-
allel architectures, local propagation will be a very powerful tool.
Throughout the system, we tried to build the system to be completely independent
of both the concept of constraint management and the implementation of that con-
cept such that an alternative approach to constraint management can be adopted.

The environment is an attempt to develop a design automation environment that
can work on top of any Computer-Aided Design system. Therefore, different CAD
systems were used in the various applications.

(141)

Chapter 6: Summary & Conclusion

6.5. Future Work
The following are the features thought to make the system more representative of
the philosophy discussed in chapter One.

1. Pattern Matching in a Case Library - Parametrization of Macro
Constraints:
For example, constraint types need to accept variables for better representation and
better search, as shown in the following example:
A three-story building should be of the same type as four-story building. A variable
should represent the number of repetitive floors (devices).

2. Design as an optimization process:
Optimization is a problem with more than one design criterion. The multiple cri-
teria are applied in the form of an Objective function to establish the relative
weights of the various criteria, e.g., minimize the side sway of the frame.
A by-product of such representation is the introduction od Sensitivity analysis.
This work is dependent on the development of a class of constraints that can handle
calculus.

3. Harvesting
After a design is made, and is under construction, every problem that gets reported
back to the design office needs to backpropagate through the reasoning chain that
led to the fault in the first place. A negative credit needs to be assigned to every ring
in this chain. As time goes on, negative and positive credits accummulate through-
out the constraint network. Design synthesis should take this credit accummulation
issue into considration. In this case, we have to synthesize an innovative solution.
Here, the work of (Doyle 88), and (Urlich 88) could be of great relevance to the
problem.

4. Adapting Algebraic Transformation as a Partial Solution of Cir-
cular Dependency
Since the system has the capability of detecting circular dependency, it should not be
hard to develop a transformation module, similar to that described in (Gosling 84),
that will do the following:

O Take a circular subnet,
o Reduce it to the minimal manifestation of circularity,
O Transform the minimal circular subnet into a set of algebraic equations, if
possible.

(142)

O Develop a single primitive constraint that represent the set of circular
equations.

O Replace the subnet by the new primitive constraint.

5. Versioning & Engineering Change Orders:
Changes in engineering design are quite common. Controlling/organizing different
changes throughout a design is a formidable task. While constraint propagation fa-
cilitates the changes, a bookkeeping mechanism is needed to keep track of the vari-
ous revisions of the design. Such a mechanism has to be included in the top-level
propagation mechanism, in the function called run!.

6. Specification-driven Design & Primitive (Constructive Solid)
Geometry:
Work needs to be done to establish a constraint-based representation of constructive
solid geometric modeling. Constraints are better suited for this application than the
chronological backtracking schemes followed in all CSG modelers.

7. Utilization of Macro Constraints in Reasoning:
The reasoning mechanisms ignore the existance of the boundaries of the macro con-
straints. There is no difference in the system between a general cell in a constraint
network and a cell that is inside a macro constraints. This indistinction does not con-
form with the concept of macro constraints, and it overwhelm the user with suppress-
able details.

8. Use of Locally-Acquired Knowledge that gets Globally Refuted
in Harvesting:
What happens locally to an acquired piece of knowledge that was not adapted during
the harvesting super generalization session. Currently the system discards such an
assertion. More work needs to be devoted to the issue of assumption-based truth
maintenace systems since they may have a solution to it.

(143)

References

Abelson, Harold, Michael Eisenberg, Mathew Halfant, Jacob Katzenelson, Elisha
Sacks, Gerald Sussman, Jack Wisdom, Ken Yip, Intelligence in Scientific Com-
puting, Cambridge, MA: MIT - Al Lab, AI Memo 1094, November, 1988

Abelson, Harold, Gerald Sussman & Julie Sussman, Structure and Interpretation of
Computer Programs, New York, NY: McGraw-Hill, 1984

Adams, James L., Conceptual Blockbusting: A Guide to Better Ideas, Third Edition,
Reading, MA: Addison-Wesley, 1986

Aho, Alfred, Hopcroft, John and Ullman, Jeffrey, The Design and Analysis of Com-
puter Algorithms, Reading, MA: Addison-Wesley, 1974.

Akin, Omer, Expertise of the Architect, in Michael D. Rychener (ed.), "Expert Sys-
tems for Engineering Design", San Diego, CA: Academic Press, 1988.

Alexander, Christopher, Notes on the Synthesis of Form, Cambridge, MA: Harvard
University Press, 1964

Bridgman, P.W., DimensionalAnalysis. New Haven, C.: Yale University Press, 1931.

Boothroyde, A., Design for Manufacturability, University of Rhode Island, Industrial
Engineering TR-11, 1984.

Borning, A., The Programming Language Aspects of Thing-lab, a Constraint-Oriented
Simulation Laboratory, ACM TOPLAS 3, 4, Oct. 1981, pp. 252-387.

Changeaux, Jean-Pierre, Neuronal Man: The Biology of Mind, Oxford, UK: Oxford
Univ. Press, 1985.

Charniak, Eugene, Riesbeck, Christopher, McDermott, Drew, and Meehan, James,
Artificial Intelligence Programming, 2nd Ed., Hillsdale, N.J.: Lawrence Erlbaum
Associates, 1987.

Chomsky, Noam, Aspects of the Theory of Syntax, Cambridge, MA: MIT Press, 1965.

Cohen, Jacques, Constraint Logic Programming Languages, Commun A CM 33, 7,
July 1990, pp. 52-68.

Colmerauer, Alain, Introduction to Prolog III, Commun of the ACM 33, 7, July 1990,
pp. 69-90.

(144)

Chapter 7: Bibliography

Connor J. & E Chehayeb, GEPSE: A Rule Based Shell For Design of Buildings, MIT
Intelligent Engineering Systems Laboratory, IESL- 10, 1987

Davis, William S., Systems Analysis and Design: A Structured Approach. Reading,
MA: Addison Wesley, 1983.

DeJong, G., and Mooney, R., Explanation-Based Reasoning: An Alternative View, Ma-
chine Learning 1 (2), p. 145-176, April 1986.

Descartes, Rene, Discourse on Method, La Salle, IL: Open Court Classics, 1962.

Dixon, J.R., Design Engineering: Inventiveness, Analysis, and Decision Making. New
York, NY: McGraw-Hill, 1966.

Doyle, Jon, A Truth Maintenance System, Cambridge, MA: MIT-AI Lab, AI Memo
521, May 1977.

Doyle, Richard J., Hypothesizing Device Mechanisms: Opening the Black Box", Cam-
bridge, MA: MIT-AI Lab, AI-TR 1020, 1988.

Eastman, Charles M., Explorations of the Cognitive Processes in Design, Pittsburgh,
PA: CMU - Dept. of Computer Science, February, 1968.

el-Shafei, Nayel S., Quantitative Discovery and Qualitative Reasoning about Failure
Mechanisms in Pavement, Cambridge, MA: MIT, M.S. Thesis, 1986.

Erkens, A., Beitriige zur Konstruktionserziehung, Z. VDI1 72, 17-21, 1928.

Feldman, J., and Ballard, D., Connectionist Models and their Properties, Cognitive Sci-
ence, 6 (3), p. 205-254, 1982.

Flanagan, Owen J., Jr., The Science of the Mind, Cambridge, MA: MIT Press -A
Bradford Book, 1984.

Foley, J.D. and Van Dam, A., Fundamentals of Interactive Computer Graphics, Read-
ing, MA: Addison-Wesley, The Systems Programming Series, 1982.

Freeman-Benson, B.N., Maloney, J., Borning, A., An Incremental Constraint Solver,
Commun. ACM33, 1, pp. 54-63, January 1990.

Freuder, Eugene C., Partial Constraint Satisfaction, pp.278-283, Detroit, MI: Elev-
enth International Joint Conference on Artificial Intelligence, August 1989.

VDI is an acronym for Verein Deutsher Ingenieure.

(145)

Garey, Michael, & Johnson, David, Computers and Intractability, W.H. Freeman and
Company, 1979.

Gaylord, M & L Gaylord, Handbook of Structural Design, 7th Edition, New York:
McGraw-Hill, 1984.

Gazdar, Gerald, & Mellish, Chris, Natural Language Processing in Lisp: An introduc-
tion to Computational Linguistics, Reading, MA: Addison-Wesley, 1989.

Geach, Peter, Abstraction Reconsidered. In Ginet, Carl, & Shoemaker, Sidney,
(eds.), Knowledge and Mind - Philosophical Essays, Oxford, U.K.: Oxford Uni-
versity Press, 1983.

Gentner, D., Structure-Mapping: A Theoritical Framework ForAnalogy, Cog. Sci, 7, p.
155-170, 1983.

Gero, John S., & Coyne, Richard D., Developments in Expert Systems for Design
Synthesis, in Proc. of a Symposium on Expert Systems in Civil Engineering,
sponsored by ASCE-TCCP, Seattle, WA, p. 193-203, April 1986.

Gieck, Kurt, Engineering Formulas, 5th American Ed., New York: McGraw-Hill,
1986.

Gosling, James, Algebraic Constraints. Pittsburgh, PA: Carnegie-Mellon University,
Ph.D. Thesis 1983

Grigorev, D.Y., and Vorobjov, N.V., Solving Systems of Polynomial Inequalities in Sub-
exponential Time. J. Symbolic Comput. 5, 1988, pp. 37-64.

Hammond, Kristian J., Case-Based Planning: Viewing Planning as a Memory Task.
San Diego, CA: Academic Press, 1988.

Harrelson, William & Silvistri, Mark, "Constraints as Representation for the Third
and Fourth Levels of PDES", 1988.

Haugeland, John, Mind Design - Philosophy, Psychology, Artificial Intelligence,
Cambridge, MA: MIT Press -A Bradford Book, 1981.

Helal, Mohammed, Design of Reinforced Concrete Structures, 2nd Edition, Cairo,
Egypt: Cairo University Press, 1980.

Highway Research Board, Standard Nomenclature and Definitions for Pavement
Components and Deficiencies. Special Report 113, TRB, 1970.

Hillis, Danny, The Connection Machine. Cambridge, MA: MIT Press, 1986.

(146)

Chapter 7: Bibliography

Hofstadter, Douglas R., Goedel, Escher Bach: An Eternal Golden Braid. New York:
Vintage Books (A division of Random House), 1979.

Jaffar, J. & Lassez, J-L., Constraint Logic Programming. In Proceedings of the Four-
teenth ACM Symposium of the Principles of Programming Languages, Munich,
1987, pp. 111-119.

Keene, Sonya, Object-Oriented Programming in Common Lisp: A Programmer's
Guide to CLOS. Reading, MA: Addison-Wesley, 1989.

Kim, J.J. & Gossard, D.C.: Reasoning on the Location of Components forAssembly
Packaging. Proc. ASME Design Automation Conference, Montreal, Canada,
p.25 1-257, Sept.,1989

de Kleer, Johan and Brown, John Seely, A Qualitative Physics Based on Confluences.
In Bobrow, Daniel G. (ed.), Qualitative Reasoning about Physical Systems,
Cambridge, MA: MIT Press, p. 7-84, 1985.

de Kleer, Johan, A Comparison ofATMS and CSP Techniques, pp.290-296, Detroit,
MI: Eleventh International Joint Conference on Artificial Intelligence, August
1989

Knuth, Donald E., The Art of Computer Programming, Volume 3: Sorting and Search-
ing, Reading, MA: Addison-Wesley, 1973

Kowalski, Robert, Logic for Problem Solving. Amsterdam: North-Holland The
Computer Science Library, AI Series, 1979

Kuffler, Stephen W. and Nichols, John G., From Neuron to Brain: A CellularAp-
proach to the Function of the Nervous System. Sunderland, MA: Sinauer Associ-
ates, Inc., 1976.

Kuipers, Benjamin, Commonsense Reasoning about Causality: Deriving Behavior from
Structure. In Bobrow, Daniel G. (ed.), Qualitative Reasoning about Physical
Systems, Cambridge, MA: MIT Press, p. 169-204, 1985.

Kyburg, Henry E., Jr., Epistemology and Inference, Minneapolis, MN: University of
Minnesota Press, 1983.

Laird, J., P. Rosenbloom, & A. Newell, Chunking in SOAR: The Anatomy of General
Learning Mechanism, Machine Learning, 1 (1), p. 11-46, 1986.

Lathrop, Richard, & Temple, John, ARIADNE: Pattern-Directed Inference and Hier-
archical Abstraction in Protein Structure Recognition, Comm. of the ACM, No-
vember 1987.

(147)

Mackworth, Alan, Constraint Satisfaction. In Stuart Shapiro (ed.), Encyclopedia ofAr-
tificial Intelligence, New York: Wiley-Interscience, 1987.

Maher, MaryLou, Hi-Rise: An Expert System for Preliminary Structural Design. In
M.D. Rychener (ed.), Expert Systems for Engineering Design, San Diego, CA: Ac-
ademic Press, 1988.

Martin, Charles E., Indexing Using Complex Features. In proc. Case-Based Reasoning
Workshop, Sponsered by DARPA Information Science and Technology Office,
p.41-44, May 1989.

McAllester, David A., A Three-valued Truth Maintenance System. Cambridge, MA:
MIT-AI Lab, AI Memo 473, May 1978.

McDermott, Drew & Doyle, Jon, Non-Monotonic Logic, Cambridge, MA: MIT-AI
Lab, AI Memo 468b, July 1979.

Michalski, Ryszard, A Theory and Methodology for Inductive Learning. In Michal-
ski, R. et al. (eds.), Machine Learning: An Artificial Intelligence Approach,
Palo Alto, CA: Tioga Publishers, Kauffmann, 1984

Minsky, Marvin, Matter Mind, and Models. In Minsky, Marvin (ed.), Semantic Infor-
mation Processing, Cambridge, MA: MIT Press, p. 425-432, 1968, Heuristic
Value of Quasi-Separate Models.

Minsky, Marvin, The Society of Mind. New York, NY: Simon & Schuster, 1987.

Mitchell, T., Keller, R., & Kedar-Cabelli, S., Explanation-based Generalization: A
Unifying View, Machine Learning, 1: 47-80, 1986.

Moavenzadeh, Fred, & Brademeyer, Brian, A Stochastic Model for Pavement Perfor-
mance and Management. University of Michigan, Ann Arbor, MI, 1977.

Mortenson, Michael E., Geometric Modeling. New York: John Wiley & Sons, 1985.

Nii, H.P., Aiello, N. and Rice, J., Framework for Concurrent Problem Solving: A re-
port on CAGE and POLIGON, in Engelmore, Robert and Morgan, Tony,
Blackboard Systems, Reading, MA: Addison-Wesley, 1988.

Pahl, G. & W. Beitz, Engineering Design: A Systematic Approach, Berlin, Germany:
Springer-Verlag, 1988 (Ch.3: The Design Process & Ch.5: Conceptual Design).

Pentland, Alex & Johm Williams, Perception of Non-Rigid Motion: Inference of
Shape, Material and Force, pp.1565-1570, Detroit, MI: Eleventh International
Joint Conference on Artificial Intelligence, August 1989

(148)

Chapter 7: Bibliography

Pereira, Fernando C.N., & Shieber, Stuart M., Prolog and Natural-Language Analy-
sis, Stanford, CA: Center for the Study of Language and Information (CSLI),
Lecture Notes, 1987.

Pople, Harry, Jr., Heuristic Methods for Imposing Structure on Ill-Structured Problems:
The Structuring of Medical Diagnosis. In P. Szolovits (ed.), Artificial Intelligence
in Medicine, AAAS, 1979. The remedy presented by the paper is the idea of
synthesized links of generalization as the adhesive factor in polymorphism.

Potter, J.L. (ed.), The Massively Parallel Processor, Cambridge, MA: MIT Press
Scientifc Computation Series, 1985.

Ressler, Andrew Lewis, A Circuit Grammar for Operational Amplifier Design, Cam-
bridge, MA: MIT-AI Lab, AI-TR 807, 1984.

Rieger, Chuck & Grinberg, Milt, The Causal Representation and Simulation of Physi-
cal Mechanisms. Technical Report TR-495, University of Maryland, November
1976.

Rivin, Igor, and Zabih, Ramin,An AlgebraicApproach to Constraint Satisfaction
Problems, pp.284-289, Detroit, MI: Eleventh International Joint Conference on
Artificial Intelligence, August 1989.

Rumelhart, D., Hinton, G., and Williams, R., Learning Internal Representations by
Error Backpropagation, in Rumelhart, D., and McLelland, J., (eds.), Parallel
Distributed Processing, Cambridge, MA: MIT Press, p.318-362, 1986.

Rumelhart, D., and McLelland, J., (eds.), Parallel Distributed Processing, Cambridge,
MA: MIT Press, 1986.

Sacks, Elisha, Hierarchical Inequality Reasoning, Cambridge, MA: MIT-Lab for Com-
puter Science, LCS-TM 312,1987.

Sandars, N.K. (Translator), The Epic of Gilgamesh, New York, NY: Penguin Classics,
1972.

Sandler, Ben-Zion, Creative Machine Design: Design innovation and the right solu-
tions, New York, NY: The Solomon Press, 1985

Saraswat, Vijay, Concurrent Constraint Programming, Pittsburgh, PA: Ph.D. Thesis,
CMU, 1989.

Schank, Roger C., Dynamic Memory: A Theory of Learning in Computers and People,
Hillsdale, N.J.: Lawrence Erlbaum, 1982.

Simon, Herbert, The Sciences of the Artificial, Cambridge, MA: MIT Press, 1966.

(149)

Simon, Herbert, Models of Discovery, Boston, MA: Reidel Co.- Pallas Paperbacks,
1977.

Smillie, K.W.,An Introduction to Regression and Correlation. London, U.K.: Aca-
demic Press, 1966.

Sriram, Duvvuru, Knowledge-Based Approaches in Structural Design, Ph.D. Thesis,
Carnegie-Mellon University, Civil Engineering Department, 1985.

Stallman, Richard M., & Sussman, Gerald J., Forward Reasoning and Dependency-Di-
rected Backtracking in a System for Computer-aided Circuit Analysis, Artificial In-
telligence, 9: 135-196, 1977.

Steele, Guy L. Jr., & Sussman, Gerald J., Constraints, Tech. Rep. MIT-AI Memo 502,
Nov. 1978.

Steele, Guy L. Jr., The definition and Implementation of a Computer Programming
Language Based on Constraints, Cambridge, MA: MIT-AI Lab, Al-TR 595, 1980.

Steele, Guy L. Jr., Common LISP: The Language, 2nd Ed., Billerica, MA: Digital
Press, 1990.

Sussman, Gerald J., SLICES: At the Boundary between Analysis and Synthesis. AI
Memo 433, Cambridge, MA: MIT -AI Lab, July 1977

Sutherland, Ivan E., SKETCHPAD: A Man-Machine Graphical Communication Sys-
tem, Cambridge, MA: MIT - Lincoln Lab TR 296, January 1963

Taylor, E.S., DimensionalAnalysis for Engineers. Oxford, U.K.: Clarendon Press,
1974.

Thagard, Paul, & Holyoak, Keith J., Why Indexing is the Wrong Way to Think About
Analog Retrievals, In proc. Case-Based Reasoning Workshop, Sponsered by
DARPA-ISTO, p.4 1-44, May 1989.

Thornton, Charles H., and Lew, I. Paul, Concrete Design and Construction, in Freder-
ick Merritt (ed.), Standard Handbook for Civil Engineers, Third Ed., Section
Eight, New York, N.Y.: McGraw-Hill, 1983.

Ulrich, Karl, Computation & Pre-Parametric Design, Cambridge, MA: MIT-AI Lab,
AI-TR 1043, 1988.

Veth, Bart, An Integrated Data Description Language for Encoding Design Knowl-
edge, in P.J.W. ten Hagen & T. Tomiyama (eds.), Intelligent CAD Systems I:
Theoritical and Methodological Aspects, Berlin, Germany: Springer-Verlag,
EurographicSeminars, p. 295-313, 1987.

(150)

Chapter 7: Bibliography

von Neumann, John, The Computer and the Brain, New Haven, CT: Yale University
Press - Silliman Milestones in Science, 1958.

von Wright, Georg Henrik, On Causal Knowledge. In Ginet, Carl, & Shoemaker,
Sidney, (eds.), Knowledge and Mind -Philosophical Essays, Oxford, U.K.: Ox-
ford University Press, 1983.

Waltz, David L., Generating Semantic Descriptions from Drawings of Scenes with Shad-
ows. AI TR-271. Cambridge, MA: MIT - AI Lab, November 1972.

Waltz, David L., Is Indexing used for Retrieval?, In proc. Case-Based Reasoning Work-
shop, Sponsered by DARPA-ISTO, p.4 1-44, May 1989.

Warren, D.H.D., An Abstract Prolog Instruction Set. Tech. Note 309, SRI Interna-
tional, Menlo Park, CA, 1983.

Winston, Patrick H., Artificial Intelligence, 2nd Edition, Reading, MA: Addison-Wes-
ley, 1984.

Winston, Patrick H., & Horn, Berthold KP, LISP, 3rd Edition, Reading, MA: Addi-
son-Wesley, 1989.

Winter, George & A. Nilson, Design of Concrete Structures, New York: McGraw-
Hill, 1983.

Yip, Ken Man, A Computer Program that Autonomously Explores Dynamical Systems,
Cambridge, MA: MIT Ph.D. thesis, 1988.

(151)

Appendix A
H-Theorem

This appendix briefly illustrates the theoritical basis upon which the dimensional
analysis is built. Dimensional analysis forms dimensionally-homogeneous groups,
which are central to hypothesizing new quantitative relationships. These new quan-
titative relationships are a major component of the harvesting mechanism for improv-
ing the model of an evolving domains. The whole technique is based upon the
H-theorem (Bridgman 31).

If we have a complete1 equation p(a,8,y)=0 with (n) variables and (m) fundamental
dimensions, then its solution has the form:

F(nl,n2,...)=0
where the I's are the n-m products of the arguments a, /, ... etc. which are in the
fundamental units (Bridgman 31).
The typical fH has the form:

H = aafb yc...
where a, b, c, ... etc. are chosen such that P is dimensionless. Substituting the funda-
mental dimensions2 (units) (U1, U2, U3,...) for the variables a, P, y, ... , we get as ex-
ample:

a = U1 r' 2 Lt 3 ... Lmm
where al,... am are the dimensions (or the exponents) of the variable a in the funda-
mental units.

Thus, we get (m) equations, each with (n) terms, i.e., unknowns:
ala + b + y'c + ... = 0
a2a + 2b + y2c + ... = (1)

ama + Pmb + ymc + ... = 0

In general n will be greater than m. Thus there will be n-m independent sets of solu-
tions, i.e., there will be n-m independent dimensionless products and the arbitrary

1 A complete equation is an equation independent of the units used to measure its dimensions.
2 A possible set of fundamental dimensions may be composed of mass (M), length (L), and time (T).

(152)

function F will be a function of n-m variables. The above-mentioned equations can
be solved simultaneously by the use of any algebraic techniques.

A.1. Conditions

1. The theorem, which is the core of the dimensional analysis, is based upon the prin-
ciple of dimensional homogeneity. This principle restricts the possible candidate re-
lationships between the variables under consideration very effectively. It may be
considered a good way to limit the combinatorial explosion of the candidate relation-
ships.

2. The fundamental units (dimensions) should be independent. This condition could
be checked by getting a non-vanishing determinant of exponents. 3 Therefore, a
check of the determinant of exponents is very essential at the beginning of the analy-
sis. If we get a zero value for the determinant, we should revise our set of fundamen-
tal units before applying the theorem. If we cannot change the set fundamental
units, then we have to form the dimensionally-homogeneous groups manually.

A.2. Limitations of P-Theorem
<p(a, P, ...) = 0 is assumed to be the only relationship between the variables included
in it. Otherwise, the partial differentiation used in the derivation of the theorem
does not hold. Such assumption may hinder the approach from expressing the multi-
phased relationships. We can override this assumption by the use of binary variable
(0, 1) to help divide the domain of the problem into several sub-problems according
to its phases.

(153)

3 The determinant of exponents is formed from the last set of equations (1).

Appendix B
Example on Harvesting

The example is from the area of design of asphalt roads. It assumes the develop-
ment of longitudinal cracks in a stretch of a highway. Thermal and traffic impacts
are suspected to be the cause. The data for the example is taken from (el-Shafei 86).
This is an example for the use of quantitative discovery capability of the system in im-
proving the model of failure mechanisms in pavement. Quantitative discovery is the
collective name for the hypothesis capability using dimensional analysis and stepwise
regression analysis.

To demonstrate the hypothesis capability of the system, we assume that there is nei-
ther a sufficiently-similar case in teh case library, nor a relationship that predicts the
development of logitudinal cracks.
The system picks the relevant parameters from a large number of parameters. The
criterion for picking up the parameters is their existence in the CAUSED-BY and
MAYBE-RELATED-TO fields in the state frame in the knowledge base. The system
backward-chain through the semantic network till it reaches a fact or an input.

Input:
We use an exemplary case which has only one manifestation of distress, longitudinal
crack. For more details about the case, refer to the case file in figure (B.1).

The only symptom mentioned in the input case file is longitudinal cracking. There-
fore the state frame LONG-CRACK is triggered. The backward chaining through
the causal network triggers the other state frames including the computational
frames shown hereafter:

State: EQUIVALENT-THICKNESS
STATE-TYPE: COMPUTATIONAL
CLASS: STRUCTURAL
REPRESENTATIVE-VAR: H
VARIABLE-DIMENSIONS: M(1), L(O), T(-2)
VALUE: NIL
EQUALS: (+ (* SURFACE-STIFFNESS SURFACE-THICK)

(* BASE-ELAST-MOD. BASE-THICKNESS)
(* SUBGRADE-MOD. SG-EQUIV-THICK))

(154)

Case: Route-495, Milepost 125-130
Type-of-pavement: Flexible
AADT: 15,000 beh.per lane
%-trucks: 24
Ave-speed-mph: 49
lane-width-ft: 12
#-of-lanes: 3
shoulder-width-ft: 8
Pavement-thick-inch: 8
Base-thickness-inch: 15
CBR: 3.0
Temperature-variation:((summer 85) (fall 60) (winter 30) (spring 50))
Subgrade-texture: Gravel
Dry-density-pcf: 135
Corrected-CBR-%: (86 37 5)
Surface-stiffness-ksi: 120
Base-elast-mod-ksi: 20
Subgrade-mod-psi: 1500

Figure (B.1): A Part of A design Case of a highway

STATE-TYPE: COMPUTATIONAL
CLASS: ENVIRONMENTAL
REPRESENTATIVE-VAR: SH
VARIABLE-DIMENSIONS: M(0), L(2), T(0), DEG(1)
VALUE: NIL
EQUALS: (* AVE-ANN-TEMP #-LANES LANE-WIDTH 5280)

(155)

Symptoms

Longitudinal-crack

State: SURFACE-H EAT

Severity
6ft

State: ACCUM-LOAD
STATE-TYPE: COMPUTATIONAL
CLASS: TRAFFIC
REPRESENTATIVE-VAR: X
VARIABLE-DIMENSIONS: M(1), L(1), T(-2)
VALUE: NIL
EQUALS: (* AADT 2 EQUIV-AXLE-LOAD)

B.1. Hypothesizing:

* The Heuristic Pre-Processor (HPP) classify the input parameters into two
groups, a structural group and an environmental group. Still the groups may
contain irrelevant parameters.

The dimensional analysis unit forms, at least one, dimensionallyhomogeneous
group out of every heap classified by the HPP. Thus we get one environmental
(thermal) dimensionally-homogeneous group, and two
dimensionally-homogeneous structural groups, one of which has the
REPRESENTATIVE-VARIABLE of longitudinal-crack isolated and raised
to the unary power. This latter group will be in teh left-hand side of the
proposed relationship.

The stepwise regression analysis takes the values of the current case as an
instance to be added to the other instances in the case library. Assume that the
case library had 11 relevant cases before. Thus the stepwise regression
analyzer starts working on 12 cases. It builds the relationship gradually, in two
stages. It shows us that the thermal properties have the major impact upon the
development of longitudinal cracks. In the second degree of importance,
comes the structural properties.

(156)

Longitudinal Cracking due to Thermal & Traffic Impacts:

Variable \Unit -- > . m .1 t . de

H 1 0 -2 0 Equiv-Thickness (ksi.in)

A 0 0 1 0 Ashalt-Age (years)

S 1 -1 -2 0 Strength-of-Asphalt (ksi)

T 0 2 0 1 Surface-Heat (1000 deg. sq ft)

C 1 0 -2 -1 Sect-Heat-Capacity (ksi.mi/deg.)

X 1 1 -3 0 Accum-Load/vr (1000 ton/yr)

L 0 1 0 0 Accum-Length-of-Cracks (ft)

Number of arguments:
Dimensional analysis:
Number of fundamental units:
Polynomial Expansion:
Minimum enhancement:
Case title:
Number of dimensional groups:

Output:

Dimensional Group # 1 :

Dimensional Group # 2:

Dimensional Group # 3 :

7
yes
4
no
1 %
Longitudinal cracking due to thermal and traffic impacts
3

XI= H - 3 A S 2 T 1 C 1 XL

= The thermal impact term.

X2 = H-2A S1 CX Lo
= The strucutural term.

Y = H-1 AO S'I CXO L1

= The LHS including the parameter 'under consideratio
with a unary power of exponentiation.

(157)

The relationship;:

(1) Y= 122.166 + 0.0001X 1

Correlation = 0.820
(2) Y = 61.740 + 0.0001 Xi + 0.0001 X2

Correlation = 0.9397

(158)

H A S T C X L
15 2 120 -2 5.1 250 7
14 12 100 6 6.7 90 15
18 5 130 20 5.8 200 25
14 4 90 55 7.4 60 40
11 3 110 35 5.6 200 20
16 6 125 45 6.9 150 38
20 5 122 0 5.8 70 5
25 4 115 -5 6.2 80 0
10 9 102 22 6.5 350 45
12 7 95 33 7.1 380 55
16 6 140 53 7.2 200 30
12 3 190 57 7.5 290 58

