
.M: A Memory Manager for

by

Andrew Edward Ayers

B. S., Electrical Engineering and Computer Science

University of Colorado, Boulder (1984)

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1988

0 Andrew Edward Ayers, 1988

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

S;instiirp nf Aiithnr

Department of Electrical Engjering and Computer Science
November 18, 1987

ci
Certified by

6' Stephen A. Ward
Associate Professor

Thesis Supervisor

Accepted by4.~,
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

MAC&SACHUSETTS INSTITUTE
OF TECHNOLOGY

M AR 2 2 1988

UBRAIES

I _

~"""'"""'-- c~----

M: A Memory Manager for L
by

Andrew Edward Ayers

Submitted to the Department of Electrical Engineering and Computer Science
on November 17, 1987, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

.M is a memory system for the £ processor which integrates object-oriented virtual
memory and ephemeral garbage collection. The garbage collection and virtual memory
subsystems of M were carefully designed to cooperate so as to avoid performance degrada-
tions that can occur when garbage collection is built on top of a traditional paged memory
systems. Objects in . live in one of two namespaces: local memory, which corresponds
to main memory in a traditional virtual memory system, or permanent memory, which
corresponds to secondary memory. The virtual memory side of 4 swaps objects into the
local memory on demand. All new (and hopefully temporary) objects are created in local
memory as well. The ephemeral mark/sweep garbage collector scans just local memory,
reclaiming unreachable local chunks, without having to look at permanent chunks. This
avoids thrashing the virtual memory side of X. 4 and £ have been implemented on a re-
microcoded Texas Instruments Explorer I LISP machine. Benchmarks run on this emulation
have shown that M is able to reclaim temporary objects quickly and efficiently.

Thesis Supervisor: Stephen A. Ward

Associate Professor

Acknowledgments

First and foremost, I would like to thank Steve Ward, my advisor, for giving me the in-
spiration for and the chance to work on L in general and . in particular. Thanks also
to the people who are or have been working on the L project: Chris Terman, who got
me interested in C, Lamott Oren, for the early version of the EU emulation, Ken Bice, for
putting up with an early version of M, and Rick Saenz, for his work on the £ compiler.
Thanks to John Pezaris, who built the two-processor to system, John Wolfe, and Ricardo
Jenez. A special thanks to Milan Singh, who has managed to put up with working closely
with me on Z for the past year. Thanks to Sharon Chang and Mike Matchett for proving
that a user community is not necessarily a bad thing. Thanks too to Sharon Thomas.

I would not have made it this far without the support and encouragement of Jim and
Susan Avery, who convinced me to go to graduate school, Ben Balsley for giving me the
chance to gain some professional maturity and travel a little, and Sally Wang, Ed Dowski,
and Dave Tetenbaum, who showed me that being a graduate student wasn't all that bad.
Thanks also to Prof. William May, who insisted that I apply for, and the National Science
Foundation for generously granting, fellowship support.

Finally, I would like to thank my parents, family, and friends. I'm not sure that this
thesis will make it any clearer to them exactly what it is I have been doing the past few
years, but they are partially to blame for its existence.

This material is based upon work supported under a National Science Foundation Grad-
uate Fellowship. Any opinions, findings, conclusions, or recommendations expressed in this
publication are those of the author and do not necessarily reflect the views of the National
Science Foundation.

This research was supported in part by the Defense Advanced Research Projects Agency
and was monitored by the Office of Naval Research under contract numbers N00014-83-K-
0125 and N00014-84-K-0099.

Contents

1 Introduction

1.1 The £ Project

1.2 Overview

2 M and Z

2.1 Memory Models

2.1.1 Flat Address Space Model

2.1.2 Object-Oriented Model

2.2 The Z Memory

2.2.1 Chunk Size

2.2.2 Building Objects Out of Chunks

2.3 The C Processor

2.3.1 Execution Unit

2.3.2 State Management Unit

2.4 The - M Interface

3 The Foundations of M

3.1 Virtual M emory

3.1.1 Locality .

3.1.2 W orking Sets

3.2 Garbage Collection

3.2.1 Traditional Methods

3.2.2 Ephemeral Garbage Collectors

3.3 Interaction between Virtual Memory and Garbage Collection

3.3.1 Compacting Garbage Collectors

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

3.3.2

3.3.3

3.3.4

3.4 Object

3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

Simple Compaction ...

Dynamic Compaction ..

The Object Hierarchy and

Oriented Virtual Memories

TI Explorer Memory . . .

OOZE

LOOM

Berkeley Smalltalk

Summary

thie Me

. . .

... 33

... 35

mory Hierarchy 35

. 36

. 36

. 37

. 38

.. 40

.. 4 1

4 The 4 Memory

4.1 Hierarchies in 4

4.2 Chunks, Revisited . . .

4.3 Virtual Memory in M .

4.3.1 Importation . . .

4.3.2 Pointer Updating

4.3.3 Exportation . . .

4.4 Garbage Collection in 4

4.4.1 Details of 4 Gar

4.4.2 Garbage Collectic

4.5 An Example

4.6 Special Features ...

4.6.1 Local Memory Cc

4.6.2 Support for Multi

.age Collection

n Issues . . .

herency .

iprocessing

4.7 Summary

5 An Implementation of L

5.1 The £ Processor Emulation

5.1.1 Emulation History.....

5.1.2 System Level Details

5.2 Chunks in o

5.2.1 Chunk Mappings and ID For

5.2.2 Elt and SetElt........

. .

.......................

.......................

m ats .

.......................

5.3 Garbage Collection

5.3.1 M arking

5.3.2 First Sweep

5.3.3 Second Sweep

5.3.4 Chunk Allocation and Importation

5.4 The EU and SMU

5.4.1 The EU .

5.4.2 The SMU

5.5 Some Results

5.5.1 The Benchmarks

5.5.2 Overall Results

5.5.3 Effectiveness of Ephemeral Collection

5.5.4 Hit Ratio, Importation and the Usefulness of Limbo

5.5.5 Cost of Temporary Storage

5.5.6 Summary of Benchmark Results

6 Future Work

6.1 Prediction of the Working Set . . .

6.2 Multiple Processors and Memories

6.3 Management of Permanent Memory

6.4 Purely Relative Namespaces

6.5 Metacaching

6.6 New Emulations

7 Conclusions

.............

.............

... ,.......

........... o.

.

: : : : : : : : :

List of Figures

2-1 A C HUNK ...

2-2 ARRAY INDEXING IN A CHUNK TREE

2-3 CONTROL STACK BUILT OUT OF CHUNKS

3-1

3-2

3-3

3-4

MARK/SWEEP ALGORITHM

REFERENCE COUNTING ALGORITHM ..

SEGREGATED OBJECT TREE

BAKER REAL TIME GC ALGORITHM .

A LOCAL CHUNK

TRIVIAL IMPORTATION

CHEAP IMPORTATION.............

FULL IMPORTATION

LIMBOIZATION

EXAMPLE PROGRAM

EU INSTRUCTIONS FOR THE PROGRAM .

INITIAL SETUP OF MEMORY

MEMORY AFTER IMPORTING STATE AND

MEMORY

MEMORY

MEMORY

MEMORY

MEMORY

CODE CHUNKS

STATE AFTER THREE INSTRUCTIONS

JUST BEFORE GARBAGE COLLECTION

AFTER FIRST GARBAGE COLLECTION.

AFTER COMPLETION OF FIRST RUN .

AFTER CHEAP IMPORTATION

5-1 Elt AND SetElt IN M

5-2 simple-elt AND simple-setelt

. 28

. 29

. 30

. 34

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

. 45

. 46

. 47

. 48

. 49

. 53

. 54

....... 54

. 55

. 56

. 57

. 57

. 58

. 59

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

5-11

5-12

5-13

M ARK PHASE

FIRST SWEEP PHASE

SECOND SWEEP PHASE

FIRST THROUGH SIXTH ORDER HILBERT CURVES

HILBERT CURVE PROGRAM

TYPICAL BENCHMARK CURVE

FRACTION OF RUN TIME SPENT IN GARBAGE COLLECTION . .

NUMBER OF PERMANENT CHUNKS ALLOCATED DURING Hilbert

H IT R ATIO .

DISTRIBUTION OF IMPORTATION FAULTS

LOOPS FOR MEASURING COST OF TEMPORARY CHUNKS

. . . . 71

72

. . . . 77

... . 78

... . 79

. . . . 80

. . . . 81

. . . . 82

. . . . 83

84

List of Tables

2.1 SOME EU INSTRUCTIONS 21

4.1 POSSIBLE L STORAGE HIERARCHY 43

5.1 Lo EU INSTRUCTION CLASSES 74

1 Introduction

1.1 The L Project

Research in functional languages, logic languages, and object-oriented languages has led

to the evolution of computational models which traditionally designed computers do not

implement efficiently. Spurred by the desire for high-performance implementations of these

models, computer architects have begun investigating many non-traditional architectures:

PROLOG inference machines, data-flow machines, LISP machines, and multiprocessors of

all different shapes and sizes. One such non-traditional architecture, £, is currently under

development by the Real-Time Systems Group at the Laboratory for Computer Science.

Modern programming languages include many features that deviate from the tradi-

tional programming model: SCHEME [Rees86] has first-class procedures and continuations;

COMMON LISP [Steele84] has catch and throw, which allow non-local exits; MULTI-

LISP [Halstead84] provides futures to allow users to exploit parallelism in functional pro-

grams; SMALLTALK [Goldberg83] has an object-based, message-passing view of processing.

Because these languages include features that are not easily implemented on a traditional

computer, high-performance implementations, if they exist at all, are found primarily on

special-purpose workstations (e.g. LISP machines).

The goal of the Z project is to look for alternative machine architectures that can support

new language features, like those listed above, more naturally than traditional computers

do, without giving up the ability to efficiently execute programs written in traditional

languages. Our current proposal for an L machine involves two primary architectural

features: an object-oriented memory system, and an inherent ability to exploit fine-grain

parallelism. This thesis describes the design and implementation of .M, a prototype for the

memory system.

1.2 Overview

This thesis is divided into 7 chapters. Chapter 2 explores the differences between . and

more traditional memory systems and presents the interface between M and £. Chapter 3

examines the founding principles behind ., and Chapter 4 discusses the design of M.

Chapter 5 presents the details of an implementation of C and . on Texas Instruments

Explorer LISP machines, together with some preliminary performance data. Chapter 6

examines future areas of investigation. Finally, Chapter 7 presents some conclusions drawn

from this work.

j M and l

The non-traditional nature of the £ processor is most evident in its object-oriented memory

system. This chapter first examines the difference between an object-oriented memory and

a traditional memory. It then takes a general look at the C processor, and concludes with

a formalization of the interface between .M and Z.

2.1 Memory Models

The memory model of a processor is defined by the interface between the processor

and its memory system. This interface is characterized by two sets: a set of operations

and a set of objects. The following sections describe the processor/memory interfaces of the

traditional memory model and the object-oriented memory model in terms of the respective

sets of objects and operations.

2.1.1 Flat Address Space Model

From the viewpoint of the processor in a traditional (von-Neumann) computer architec-

ture, memory is organized as a large array of equally accessible words. During the execution

of code, the processor reads from the memory array by producing addresses and writes to

the memory array by producing addresses and data. There is nothing present in this model

that distinguishes addresses from data; addresses are simply bit strings. The processor can

thus meaningfully modify an address to obtain another address. For example, consider the

program counter (PC) and stack pointer (SP) registers found in many processors. After an

instruction fetch the PC (an address) is incremented (an arithmetic operation) so that the

new PC contents are the address of the next instruction. Stack pushes and pops use the

SP in a similar fashion. Processors can create addresses from arbitrary pieces of data by

using register indirect addressing modes. The traditional processor/memory interface is

built upon two operations and two objects:

Operations:

(Write address value): stores value at address.

(Read address): retrieves the value previously stored at address.

Objects:

address: an arbitrary fixed-length bit-string

value: an arbitrary fixed-length bit-string

Both processor and memory are free to take measures (caching, for example) to improve

performance so long as the interface is not compromised. We will use the term flat address

space to describe the memory model characterized by the operations above.

In reality, there are a few other important operations present in a flat address space

memory system because of exceptional conditions and protection schemes. For example,

the response of a Write operation might be a "non-existent memory" error, a "writing to

read only storage" error, or a protection violation error. These operations mainly serve to

detect malfunctioning programs or to prevent hostile programs from accessing protected

information.

The flat address space model has many virtues. It is very simple to implement. Ad-

dresses can be operated upon by the processor's ALU and can be stored in the same registers

as data. This simplicity and uniformity leads naturally to good performance. The address-

ing modes available to the processor allow for convenient and efficient implementation of

many common operations. For example, local variables and arguments to a procedure can

be accessed by adding an offset to the stack frame pointer to produce a new address and

subroutine calls and returns can be handled by using register indirect addressing. On the

memory side, locality of reference in the address stream can be exploited by using caches

and virtual memory systems to improve response time. Flat address space machines are

good at supporting programming in languages like FORTRAN, where much of the memory

allocation is either done statically, by a compiler, or dynamically, via a stack; both give

good locality of reference. This leads to good memory system performance and hence good

program performance.

In more dynamic programming models, the efficiency of less structured dynamic allo-

cation and deallocation becomes extremely important. Stacks are optimum for a block-

structured, single thread of control model of computation, but more general control models

need more flexibility, and must use heap allocation. On a processor with a flat address

space and a typical paging system, efficient garbage collection is a serious problem. The

garbage collection process accesses memory with little locality of reference, causing the

paging system to thrash, reducing performance drastically.

The fundamental problem in implementing a dynamic system on a flat address space is

that there are two conflicting carriers of locality: the pages, visible to the virtual memory

system, and the objects, visible to the garbage collector. One solution, discussed further in

chapter 3, is to carefully design the garbage collector so that it works well with a traditionally

designed virtual memory (this is the solution adopted by LISP machines). M, on the

other hand, attempts to solve this problem by integrating the virtual memory and garbage

collection systems: in M the only carrier of locality is the object. This leads naturally to

an object-oriented model of memory.

2.1.2 Object-Oriented Model

An alternative to a flat address space is to create a processor/memory interface in which

addresses appear as atomic objects to the processor. This can be thought of as a strongly

typed version of the flat address space interface - addresses are now typed objects, and

the set of operations that the processor can perform on addresses is limited. In this model,

addresses can be used in read and write operations, but cannot be modified by the processor.

Since the processor cannot modify addresses, the memory system can interpret addresses

more freely. In particular, addresses can now refer to objects of possibly varying size (hence

the object-oriented model). The underlying representation of memory is still likely to be a

flat address space, but by restricting the processor-memory interface, the memory can now

hide the low-level implementation details.

Objects typically have some internal structure which must be accessible to the processor.

Each object is composed of some number (zero or more) of elements, some of which can

take on addresses as values. As part of the interface, the memory needs to provide element-

read and element-write operations. Since the low-level details of storage are hidden from

the processor, the memory also needs to provide a new-object operation. Thus, an object-

oriented memory/processor interface is characterized as follows:

Operations:

(Elt object-ptr field): reads the field element of object.

(SetElt object-ptr field value): establishes value as the value of the field element of

object.

(NewObj type): creates a new object based upon type. Returns the address of the

new object.

Objects:

object-ptr: an immutable pointer to a block of storage.

field: a numeric offset into the body of an object.

type: an object or scalar that describes a kind of object

There are several schemes that can be used to guarantee the immutability of address ob-

jects. For example, the memory system can associate a tag with each element in an object

indicating whether or not it is an address. This tag can be checked by processor hardware

to prevent any proscribed operations on address objects. As with the flat address space

model, it is possible to have malformed operations - (Elt 0 7) for example. The address

tag can be used to detect some of these errors (in this case hardware can tell that 0 is a

scalar and not an address).

In a typical object-oriented memory system, Elt and SetElt require address translations

similar to those performed by a virtual memory system of a flat address space processor.

The address of an object is typically used to produce an index to a mapping table, which

provides the actual address of the object. With special purpose hardware, Elt and SetElt

should therefore be about as fast as Read and Write. However, none of the object-oriented

memories described in this thesis use special object addressing hardware; for these systems,

Elt and SetElt suffer from additional levels of indirection in the critical read and write

paths, and are somewhat slower than Read and Write. This slowdown is an artifact of

implementation and not an inherent property of object-oriented memories.

Object-oriented memory systems have some distinct advantages. The level of indirection

in object access gives the memory management system the freedom to dynamically relocate

0
1
2
3
4
5
6
7

type

data fields
reference bits

FIGURE 2-1: A CHUNK

objects in order to enhance performance. The memory system can perform grouping of

objects into larger objects that can be treated as cohesive units by lower levels of the

storage hierarchy. Object addresses can be cached: successive Elts or SetElts on the same

object do not all need to suffer the full address translation penalty. Object-oriented memory

systems can perform garbage collection on their own without the need for processor support

or intervention, if object references are made easily identifiable (by either their location in

an object, or by tag bits). Because of the unforgeability of object pointers, object-oriented

systems can form the substrate for secure capability-based information sharing [Fabry74].

2.2 The L Memory

The £ memory system is object-oriented and fits roughly into the framework described

above. Memory in L is divided into individually accessible, identically sized objects called

chunks, composed of a few hundred bits of storage. Each chunk (see figure 2-1) is subdivided

into nine visible slots, each of which is at least large enough to hold a chunk identifier (ID);

each slot has a one bit tag (the reference or ref bit) indicating whether that particular

slot holds a chunk ID or scalar data. One of the visible slots of each chunk is reserved for

holding type information, which provides a framework for interpreting the contents of the

other slots of the chunk. The other eight visible slots hold data - either chunk IDs or scalar

values. Chunks also contain some hidden attribute bits and invisible slots whose use will

be described later.

As befits addresses in an object-oriented memory system, chunk IDs do not inherently

imply anything about where the corresponding storage is located. IDs are not pointers in the

strict sense, but a low-level abstract data type. The processor can only perform a restricted

set of operations on IDs: dereferencing (the Elt and SetElt operations), comparison (are

these IDs the same?), destruction, and change of properties (Lock, Unlock). The processor

cannot create IDs or modify existing IDs. The integrity of chunk IDs is guaranteed below

the machine instruction level by the existence of the ref bit. The interpretation of IDs is

left strictly up to the memory management system.

2.2.1 Chunk Size

The nine slot chunk (eight data slots and one type slot) was chosen as a compromise

between several conflicting desires. Having the number of data slots be a power of two is

useful in creating easy-to-access chunk structures. For example, arrays in £ are mapped

onto trees of chunks. The access path to a given element of the array can be extracted from

the binary representation of the index by masks and shifts, if the branching factor of the tree

is a power of two. Figure 2-2 sketches an array accessing operation based upon this idea. If

each chunk carries type information, run-time type checks can often be performed without

explicitly passing type information. Typed chunks are also convenient for inspectors and

debuggers. Thus, a chunk with 2N + 1 visible slots seems useful.

Small chunks, with fewer slots, would impose too many levels of indirection when used

in implementing medium or large sized objects. Since instruction streams must be packaged

into sequences of chunks, small chunks would require frequent inter-chunk jump instructions,

which would be inefficient. The amount of overhead required for chunk-based memory

management (the invisible slots and hidden bits) is independent of chunk size, so using

smaller chunks would increase the percentage of memory space devoted to this overhead.

To provide support for the exploitation of fine-grain parallelism, we also want chunks to be

large enough to encapsulate the state of a thread of control.

Large chunks would suffer from internal fragmentation when implementing small objects.

Most objects in object-oriented systems are fairly small. Mean object size is 70 bytes in the

SOAR implementation of SMALLTALK-80 [Ungar84], and 100 bytes in the Explorer LISP

system [Courts87. 1 Besides being a waste of memory space, internal fragmentation reduces

1When measuring object size, the median is probably more meaningful than the mean, since there tend
to be a small number of enormous objects, like bitmaps, that distort the mean.

array

array index = 1725

= 3. 83 + 2.82 + 7.8 + 5

metaname = (3 2 7 5)

FIGURE 2-2: ARRAY INDEXING IN A CHUNK TREE

the useful object density in memory, leading to reduced efficiency in the object management

system, since empty slots in useful objects take up space that could be occupied by other

useful objects. Thus, it is important to have a good match between chunk size and object

size.

2.2.2 Building Objects Out of Chunks

Chunks provide a uniform substrate for the implementation of objects in Z. In partic-

ular, STATE chunks represent active and suspended processor states. A collection of STATE

chunks (or simply STATEs) describes a set of control threads, each of which contains all of

the information needed to resume its execution. All other data objects are also built out of

various chunk structures: arrays, environments, code streams, lists, etc. Most objects built

from chunks are created from a template. The template, which is typically stored as part

of the type information, provides a framework for interpreting the object.

To access elements of multi-chunk objects, we frequently need to specify a sequence of

fields to use in successive Elt operations. For example, figure 2-2 shows one way to produce

the sequence of field names needed to perform an array reference if the array is mapped

onto an 8-way branching tree of chunks. The sequence of Elt instructions required is:

- 'L

(Elt (Elt (Elt (Elt root-chunk 3) 2) 7) 5)

where root-chunk is a pointer to the top chunk in the array tree. As a shorthand for this

sequence of Elt operations, we concatenate the field names (or numbers) into a list. Such a

list of field names, (3 2 7 5) in this example, is called a metaname.

The Elt and SetElt operations can be generalized into MetanameFetch and Metaname-

Store, which take metanames as operands. The sequence of Elts above becomes:

(MetanameFetch root-chunk (3 2 7 5)).

A MetanameStore operation is composed of a sequence of Elts followed by a SetElt. To write

a new value V into the 1 7 2 5 th element of the array in figure 2-2, we need to perform the

following sequence of operations:

(SetElt (Elt (Elt (Elt root-chunk 3) 2) 7) 5 V).

This is written in terms of MetanameStore as

(MetanameStore root-chunk (3 2 7 5) V).

Because of the difference in the number of Elts, metanames play a slightly different role in

the MetanameFetch and MetanameStore operations.

As noted before, all objects in Z are built from chunks. Figure 2-3 shows an £ imple-

mentation of a control stack for a block structured language, with one STATE chunk per

"stack frame." In this example, each STATE contains four pointers: a pointer (C) to the code

associated with that state, a pointer (P) to a subordinate state (a subroutine), a dynamic

link (D), and a static link (S). Control resides in the lowest STATE. When it has finished

its computation, it will awaken its successor STATE by using its dynamic link. Non-local

variables are accessed through MetanameFetch and MetanameStore operations, where the

metanames are constructed so as to follow the static links.

2.3 The L Processor

The C processor can be logically divided into three portions, each concerned with a

different fragment of the processing task: the execution unit, the state management unit,

and the memory management unit (.M). This section provides some general information

about the execution and state management units.

P: code pointer

C: subroutine pointer

S: static link

D: dynamic link

FIGURE 2-3: CONTROL STACK BUILT OUT OF CHUNKS

2.3.1 Execution Unit

The execution unit EU of the £ processor is a simple finite-state machine that accepts

the ID of a STATE as input, reads an instruction out of the STATE, and causes the operation

specified in the instruction to be performed. The operations range from performing arith-

metic on values in the STATE to creating a new runnable STATE. The execution unit of the

£ processor has no explicit internal state save for the single ID of the currently executing

STATE; all machine state is explicitly stored in STATE chunks. The execution unit is thus

only responsible for the actual execution of instructions.

Part of the state information stored in a STATE chunk is a pointer to a chunk full of

EU instructions, called a code chunk, and a slot (the microstate) that records, among other

things, which slot of the code chunk contains the next instruction to execute. The code

chunk and microstate thus specify the control state of the STATE chunk. Conceptually, the

EU can fetch instructions from the code chunk by the following sequence of operations:

(MetanameFetch (MetanameFetch state (1)) state (MetanameFetch state (0)).

Here state is the ID of the current state chunk, and we have followed the convention that

the microstate is kept in slot 0 of the STATE, and a pointer to the code chunk is kept in

slot 1.

Table 2.1 lists some EU instructions. This table is by no means complete, but provides

some examples of the kinds of instructions the EU can execute. These instructions are based

upon Metaname operations. For example, the EU instruction

Instruction Description
(move (ms) (md)) move
(movei val (md)) move immediate
(add (ms) (md)) arithmetic operation
(xor (ms) (md)) logical operation
(jump offset) intra-code-chunk jump
(jump chunk offset) inter-code-chunk jump
(jgt chunk offset) conditional jump
(call (m)) inter-state control transfer
(return (m)) inter-state control transfer
(activate (m)) create new runnable state
(lock (ms) (ad)) gain exclusive access
(test (m)) set condition codes
(alloc (m)) allocate a new chunk

(m): operand metaname
(ms): source operand metaname
(md): destination operand metaname
chunk: chunk ID
off set: instruction number
val: immediate value

Table 2.1: SOME EU INSTRUCTIONS

(move (3 2) (3 3))

is equivalent to

(MetanameStore state (3 3) (MetanameFetch state (3 2))).

All metanames in EU instructions have a default root chunk - the current STATE chunk.

2.3.2 State Management Unit

The Z processor's state management unit (SMU) keeps track of STATEs. The SMU re-

members which STATEs are runnable via a set of prerequisites associated with each STATE.

These prerequisites indicate either that the STATE is runnable or that the STATE is po-

tentially runnable after some set of events (for example, unlocking of a shared resource,

importation of a shared object by M, or arrival of a hardware interrupt). Instructions pro-

cessed by the execution unit can cause modifications in the prerequisites of the executing

STATE or other STATEs. For example, the activate instruction is actually a message from

the EU to the SMU which informs the SMU that there is a new runnable STATE.

The execution unit executes instructions from its current STATE until either the current

STATE becomes non-runnable or exhausts its processing quantum. STATEs can become non-

runnable for a variety of reasons - they may complete their processing task, be blocked

by access to a locked shared resource, or cause a fault or exception. Exceptions are raised

by type violations (taking the Elt of a non-chunk ID, for example) or by object faults (the

object-oriented equivalent to page faults) while attempting an Elt. When the current STATE

becomes non-runnable, the SMU passes the execution unit the ID of a new runnable STATE,

and execution commences in this new STATE.

Since all state information is explicitly represented in chunks, context switches are

straightforward. The state of a process does not include the state of the memory man-

agement unit, which is independent. Thus context switches conceptually involve changing

just one pointer - the ID kept in the EU. Of course, the EU is free to cache the contents of

chunks so long as it does not violate the memory interface, so actual context switches may

involve flushing and reloading these chunk caches.

2.4 The L - M Interface

The interface between an £ processor and the .M system is basically the same as the one

described for an object-oriented memory system in section 2.1.2. The interface has been

extended somewhat to allow the processor to specify chains of accesses by using metanames.

In addition, the interface has been extended to include operations that will help £ support

synchronization of multiple threads of control. These operations are based upon chunk

attributes (some of the hidden bits mentioned above) that are modifiable only in certain

controlled ways. Mutual exclusion is accomplished by the Lock and Unlock operations.

The details of the £ processor/memory interface are summarized below:

Operations:

(MetanameFetch chunk-id metaname): read the value described by the metaname mn

starting from initial chunk chunk-id.

(MetanameStore chunk-id metaname value): write a value to the chunk slot described

by metaname and chunk-id.

Lock(chunk-id): set the lock attribute in the chunk pointed to by chunk-id.

Unlock(chunk-id): clear the lock attribute.

NewChunk(type): allocate a new chunk with type type, and return its ID.

Objects:

metaname: a sequence of field indices.

chunk-id: an immutable chunk address object.

type: a scalar or the ID of a type object.

The Lock operation takes a chunk as an operand. It sets the lock attribute of the chunk

and returns a key as a result. Future accesses to that chunk will be blocked unless the

accessor has used the key. The key can be freely copied and distributed. Eventually, a

STATE holding a key will Unlock the chunk, at which time all keys revert to normal IDs, and

all STATEs blocked previously are restarted.

L] The Foundations of M

One of the goals of the memory system is to provide the processor with the illusion of

near-infinite capacity at reasonable speeds. Since the actual capacity of the memory system

is finite, the memory system must manage its limited resources carefully. Two important

memory management tools are virtual memory, the management of interesting and unin-

teresting objects or locations, and garbage collection, the management of accessible and

inaccessible objects or locations. The memory system is also responsible for providing the

processor (and hence the programmer) with a clean and correct memory model, whether a

flat address space or an object-oriented model.

., an object-oriented memory system, is designed to fulfill the above goals of perfor-

mance and correctness. This chapter provides a look at the foundations of M: concepts

from virtual memory, ephemeral garbage collection, and object-oriented storage.

3.1 Virtual Memory

Modern machines can address large amounts of memory, but only a few locations at a

time. Execution of a typical instruction may require 2 or 3 memory operations. Thus, over

the span of a few instructions, the processor can only refer to a small number of distinct

addresses. Virtual memory techniques rely upon the ability of the memory system to predict

the addresses of future memory accesses based upon the addresses of past accesses.

A virtual memory system usually has two types of memory resource at its disposal: a

fast, medium-sized primary memory, and a slow, large secondary memory. By mapping

the set of addresses expected to be accessed into the primary memory, the virtual memory

system can simulate a memory as large as the secondary memory with a speed close to that

of the primary memory. The actual apparent memory speed depends upon the fraction of

the time a memory request can be satisfied from primary memory. This fraction is known

as a hit ratio.

3.1.1 Locality

In most circumstances, the address stream produced by the processor is far from random.

The short-term address density distribution is highly non-uniform. The tendency of accesses

to be clustered together is usually described in terms of two characteristics of the address

stream: spatial locality and temporal locality [Smith82].

Spatial locality, or locality of reference, refers to the tendency of addresses in an address

stream to be clustered in small ranges. In a flat address space system, where numeric

operations on addresses have meaning, locality of reference implies that the distribution

of addresses is concentrated around a small number of locations. The unit of locality in

most virtual memory flat address space systems is a page, made up of some number of

consecutive virtual memory locations. In an object-oriented system, locality of reference

can be measured by the spread in the number of levels of indirection between objects. Given

an initially reachable set of objects, accesses will tend to be concentrated on those objects,

and objects referred to by those objects, etc. In an object-oriented system, objects are the

unit of locality.

Temporal locality refers to the fact that the "hot spots" of memory access change rel-

atively slowly with respect to the number of accesses. In other words, addresses used for

current accesses are likely to be used again in the near future, or, from an object-oriented

viewpoint, the objects currently being accessed are likely to be accessed again in the future.

Temporal locality allows the virtual memory system to extrapolate likely addresses of future

memory accesses from a sequence of past addresses.

3.1.2 Working Sets

The set of pagesI specified by an address stream constitute the working set of the process

that the address stream is associated with. The pages in the working set are the ones that

should occupy primary memory, since they are likely to be the target of accesses by the

processor. In flat address architectures, a set of page tables is used to record which pages

'The discussion of virtual memory concepts that follows will describe flat address space systems, and
hence use the term page to describe the carrier of locality, but the ideas presented are equally applicable to
objects and object-oriented systems.

are actually present in the primary memory. Object-oriented memories use various schemes

(described further in section 3.4) for recording the same information.

Because of temporal locality, the working set changes over time. Reads or Writes to

addresses not paged in cause page faults; at this time the memory system must update the

working set to include the new page. If the primary memory is not full, handling a page

fault is simple: the page in question is simply copied in from the secondary memory, and the

page table is updated. If the primary memory is full, then some kind of page replacement

algorithm must run to decide which pages should be returned to the secondary memory to

create space in the primary memory. The goal of the replacement algorithm is to determine

which page or pages currently in primary memory can be removed with the smallest impact

on performance. This is typically done by keeping track of the access history of each page.

Temporal locality dictates that the best page to replace is the one least recently accessed,

and this forms the basis for the LRU page replacement algorithm. There are many other

page replacement algorithms - FIFO, random, and clock, to name a few [Baer80].

Page replacement algorithms need to keep a small amount of extra information about

each page; this information can be bundled up with the page itself. For example, each

page has a dirty bit, indicating whether or not the contents of the page have changed. A

page's dirty bit is set when a Write operation is performed to an address on that page.

Page replacement algorithms typically prefer to pick clean pages for replacement, since the

contents of a clean page do not have to be written back to secondary memory before the

primary memory allocated to the page can be reused.

3.2 Garbage Collection

The goal of virtual memory is to populate the primary store with objects that the pro-

cessor might access. The goal of garbage collection is to populate memory with objects that

the processor can access (or conversely, to reclaim storage that is inaccessible so that it can

be used over). Proper garbage collection requires that the collector prove that an object

is inaccessible before reclaiming the space used by the object (or else the object-oriented

storage abstraction will break down). Garbage collection can be painfully expensive, espe-

cially in the large address spaces provided by virtual memory. Steele [Steele75] indicates

that large LISP programs can spend as much as 40% of their execution time in garbage

collection.

Garbage collection is only necessary in languages that allow for dynamic object allo-

cation (the primary example being LISP). Static programming models have no need for

garbage collection, because there is no way for a location initially addressable to become

unaddressable. Virtual memory thus suffices as the sole memory management policy for

static languages. In more dynamic models, objects eventually become inaccessible, because

pointers to objects get destroyed. Garbage collection is the process of discovering and re-

claiming these dead objects. As we will discuss in detail in section 3.3, garbage collection

and virtual memory interact very strongly in implementations of dynamic programming

languages. First, however, we will launch into a discussion of the techniques of garbage

collection.

3.2.1 Traditional Methods

Common to all object-oriented systems (whether at the language level, or lower) is the

notion of an object's accessibility. An object is accessible if a pointer to that object resides

in some other accessible object. This recursive definition bottoms out because a certain

root set of objects are accessible by default. To simplify matters, we can imagine that all

the root set objects are pointed to by a single object, the root object, which may or may not

actually exist. An object is thus accessible if the object is reachable from the root object

through some sequence of pointer dereferences.

Mark/Sweep GC

By starting at the root object, traversing the graph of accessible objects, and coloring (or

marking) each as we pass through, we can visit all accessible objects. This simple process is

called a mark. The mark traces out a tree of objects (whose root is the root object), since

we use coloring to keep from following cycles in the object graph. After a mark has been

performed, we can then examine all objects in existence (a sweep). Those that are unmarked

are inaccessible, and hence garbage. These two simple passes make up Mark/Sweep garbage

collection. A simple LISP description of this algorithm, in which the control stack is used

to keep track of the state of the mark, is given in Figure 3-1. By defining a stack-valued

variable to hold the mark state, the mark procedure can be made iterative.

The traversal of the object graph may require a block of temporary storage about as

(defun mark (root)
(set-mark-bit-in root)

(do-field (f root)
(and (pointer? (elt root f))

(unmarked? (elt root f))

(mark (elt root f)))))

(defun sweep ()
(do-all-objects (obj)

(when (unmarked? obj) (reclaim obj))))

FIGURE 3-1: MARK/SWEEP ALGORITHM

large as the number of objects (or, in a recursive implementation, stack space large enough

to hold about as many stack frames as there are objects). 2 This is because each object can

typically contain many object references. For example, a chunk can contain 9 other chunk

IDs. As we initially visit objects, the number of objects on the mark stack can grow quickly.

Eventually, most of the object references in an object will be to objects that are already

marked, and the mark stack will stop growing.

The mark/sweep algorithm makes no intrusions on the processor model; it depends only

upon the existence of the object graph. Mark/sweep garbage collection is typically done in

"batch mode," run when the storage system runs low on space. To implement mark/sweep

garbage collection, each object must be able to accommodate a mark bit.

Reference Counting

As an alternative, we can try to keep track of the copying of pointers to objects by

associating a count of the number of pointers to a given object with that object. Every time

a pointer is copied, the pointer is dereferenced, and the object at the other end has its count

incremented. Before a pointer is destroyed, it is dereferenced, and the object at the other

end has its reference count decremented. When the reference count of an object reaches

zero, the object is inaccessible, and its storage can be reclaimed. Reclamation involves

first decrementing the reference count of any objects referred to by the newly deceased

object (which, if it reduces any of their respective reference counts to zero, can lead to

recursive freeing). Then the storage used by the deceased object can be reused. A simple

2There are some elaborate marking algorithms that hide the mark stack in the object graph by reversing
pointers, and use only a small amount of extra storage. See [Cohen81] for details.

(defun setelt-with-ref-count (new-thing in-obj in-field)
;; first, see if we are destroying a pointer
(when (pointer? (elt in-obj in-field))

(decrement-ref-count-of (elt in-obj in-field)))
;; now, see if we are creating an extra copy of a pointer
(when (pointer? new-thing)

(increment-ref-count-of new-thing))
;; actually install value
(setelt new-thing in-obj in-field))

(defun decrement-ref-count-of (object)
;; we may have already reclaimed this object
(and (not-reclaimed object)

(zerop (decf (ref-count-of object)))
(do-fields (f object)

(when (pointer? (elt object f))
(decrement-ref-count-of (elt object f))))

(reclaim object)))

FIGURE 3-2: REFERENCE COUNTING ALGORITHM

implementation of reference counting is given figure 3-2.

As opposed to the non-intrusive nature of mark/sweep garbage collection, reference

counting requires a "hook" into a basic operation - SetElt. As with the mark, the decre-

ment reference count procedure can be made iterative if the set of objects that need their

reference counts decreased is kept in a single variable instead of in the control stack. Ref-

erence counting cannot reclaim circular structures like the doubly-linked control-stack of

figure 2-3, because even if the entire stack itself is not pointed to from the outside, the inter-

stack references give each chunk a non-zero reference count. In contrast to mark/sweep,

reference counting is a reasonably incremental garbage collection method - objects are

freed as soon as possible instead of accumulating until space runs low. To implement ref-

erence counting, each object must now be able to accommodate a count field several bits

wide.

3.2.2 Ephemeral Garbage Collectors

As with virtual memory, which keeps track of which pages are likely to become un-

interesting in the near future, there are garbage collection methods which keep track of

which objects are likely to become garbage in the near future: ephemeral or volatility-baaed

garbage collectors [Liberman83].

Key:

O old object
o new-object

Exceptions:

03

02

FIGURE 3-3: SEGREGATED OBJECT TREE

Intuition, heuristics, and statistical studies of dynamic programs have shown that the

objects most likely to become garbage are newly allocated objects. In addition, new objects

are much more likely to point to old objects than old objects are to point to new ones.3

Thus, new objects occupy, for the most part, the upper portions of the object tree that

would be traced out by a mark. There are a few exceptions, that is, a few new objects in

the lower portions of the tree, which are pointed to by old objects. Pointers from old to

new objects are called backwards pointers, since they point in the opposite direction from

the majority of pointers. As long as there aren't many backwards pointers, their existence

can be noted in a special exception (or entry) table.4 Figure 3-3 illustrates a hypothetical

object tree with two classes of objects, old and new, and an associated exception table.

Because the new objects occupy the upper portions of the object tree, we can perform a

limited-depth mark which will be assured of marking most of the new objects. By consulting

the exeception table, the new objects that are low in the tree can be marked as well. A

limited-breadth sweep over the new object area can then confidently reclaim any unmarked

new objects as garbage. Because of the segregation of objects, we can collect new objects

without having to traverse the entire object tree. The proof of garbage collector correctness

here relies on a volatility assertion: no old object refers to a new object except as noted in

the exception table.

The example given above has only two volatility levels, but the idea of segregated storage

can easily be extended to multiple levels. In this case, as we progress down the object tree,

we pass through zones (or generations) of increasingly more stable (less likely to become

aThis observation comes from LISP, where the basic object creating function is cons. Cons cells start out
with initial contents, which must necessarily be at least as old as the cell itself. Pointers from old to new
objects are created by mutation functions like rplaca or rplacd.

'This table can be distributed among special backwards pointer objects, as is done by the TGC on the
TI Explorer (see section 3.4.1).

garbage) objects. The objects at the top of the tree are temporary, and the objects at the

bottom are static storage. Objects in between are of intermediate volatility. To collect

objects on a given level, we can set the mark depth and sweep width to a given generation.

As an new object survives successive garbage collection cycles the garbage collection

system can begin to suspect that the object may be more permanent than its age would

indicate. Aging is the process of updating the volatility gradations in storage. As objects

mature, they can be promoted or moved to levels of more stable storage. A related issue

is where new objects should be created. Most objects should be created on the highest

volatility level, but there are some occasions (compilation, for example) where the objects

being created are known to be static. This knowledge can be used to save the aging system

the work of promoting the objects in question from temporary storage out to static storage.

An implementation of an ephemeral gc algorithm requires a storage check similar to that

done in reference counting. When the processor stores an object reference (to object A, for

example) inside of another object (B), it must check to see if B is older than A, and if so (a

volatility fault), place a note of that fact in the appropriate exception table. The volatility

of objects can be stored in the objects themselves, but it is usually more convenient to keep

different generations of objects in different regions of memory, so that the volatility of an

object is deducible from a pointer to that object.

3.3 Interaction between Virtual Memory and Garbage Collection

Garbage collection causes additional memory cycles without advancing the states of any

ongoing computations. Unless an implementation is careful in arranging the pattern of

these additional cycles, they can cause problems for the virtual memory system. Memory

accesses initiated by the garbage collector may cause object faults, displacing objects from

the working sets built up by the current processes. These objects will then have to be

faulted back into the primary memory when the processes access them later. This type of

interaction between the garbage collector and the virtual memory system is called thrashing,

and it can greatly reduce the efficiency of the memory system.

Consider an example of mark/sweep garbage collection, running on top of a paged virtual

memory system. A single process, A, is running on the machine, and issues a request for a

new object. The allocation system discovers that there is not enough room, and so initiates

garbage collection to free up space. At this point, the primary memory is populated with

pages from the working set of A. The mark then begins traversing the object tree. There is

little guarantee that the objects of interest to the mark initially (those near the root object)

will be paged in, so the mark will cause many page faults. During the mark phase, every

accessible object must be in primary memory at some time or another. Each object will

be accessed as many times as there are pointers to that object (see the implementation of

mark in Figure 3-1) because of the need to check the state of the mark bit. These accesses

may occur in various orders depending upon the exact nature of the object graph traversal

(i.e. depth first or breadth first) and have little of the temporal or spatial locality that the

virtual memory system is depending upon. The memory system thrashes. The sweep phase

is more regular, since objects are accessed in a fixed order, presumably in order of increasing

address (since, in reality, we are mapping objects onto a flat address space). At the end of

a mark/sweep cycle, the set of objects in primary memory will bear little resemblance to

A's working set, and A will have to fault its working set back in.

Reference counting has a less violent effect on the working set of the ongoing process,

since a typical SetElt operation will result in only a few extra memory cycles. However,

destroying the last reference to a large subtree of objects (thereby causing lots of recursive

freeing) will cause thrashing of the sort seen under the mark phase of mark/sweep, since

the recursive freeing will access every object in the subtree.

3.3.1 Compacting Garbage Collectors

Implementations of object-oriented systems that are built on top of page-oriented virtual

memories can suffer from more problems than just thrashing. These problems stem from

the fact that a paged, object-oriented system has two possibly conflicting carriers of locality:

objects and pages. There is no guarantee that objects on the same page refer to each other.

Suppose that we start with a clean page and allocate a set of objects onto that page.

After a while, some of the objects on the page will have become garbage, and the space they

were using will be allocated to other objects. If we repeat this gc/allocation cycle a few

times, the page becomes populated with objects from various generations (and empty holes)

that may have nothing in common with each other (that is, they reside in non-intersecting

working sets). Thus, the fraction of the page that is devoted to objects in any one working

set decreases over time - the working set becomes spread over a larger and larger base

set of pages. Since the primary memory stays a constant size over the same time period,

the number of objects in the working set that can be in primary memory at the same time

decreases. 5 The decrease in interesting object density causes a rise in page faults, slowing

down the memory system.

3.3.2 Simple Compaction

One method of combating this spread of the working set is to garbage collect with

compaction. The principal algorithm used is the semispace algorithm [Fenichel69]. The

semispace algorithm divides memory up into two halves, oldspace and newspace. Initially,

all objects reside in oldspace. When oldspace becomes full, scavenging begins putting objects

into newspace. Scavenging begins by copying the root object from oldspace to newspace.

The oldspace copy of the root is replaced by a forwarding pointer which points to the

newspace copy. A scavenging pointer is set at the base of this new root object, which is

presumably full of pointers to objects in oldspace, and a free space pointer is set to just

past the root object. A scavenging step consists of examining the field pointed to by the

scavenging pointer. If the field contains a pointer, then this pointer's oldspace attribute is

checked. If it points to oldspace, then the object pointed to is copied to newspace (unless it

is a forwarding pointer), at the location indicated by the free space pointer. The scavenging

pointer is then advanced one location, and the free space pointer is advanced past the end

of the object just copied. After some number of scavenges, the scavenging pointer will have

progressed through all the fields of the of the root object. At this point it will fall off the end

of the root object onto the start of the first copied object. The semispace method thus relies

upon the mapping of objects on an underlying flat address space to keep track of objects

that still need to be scavenged. Eventually, the scavenging pointer will catch the free space

pointer. At this point, no more references to oldspace will exist in accessible objects, the

roles of oldspace and newspace are flipped, and the accessible objects are packed end-to-end

in the pages of newspace.

This algorithm can be run in batch mode as described above, but its typical use is in

the Baker real time algorithm [Baker78, which performs garbage collection incrementally.

In this case, new object allocation and object accesses (Elts and SetElts) are going on at

"See, for example, [White80].

(defun new-object (size)
(let ((new-object-id new-object-pointer))

(incf new-object-pointer size)
(do-some-scavenging)

new-object-id))

(defun transport (object)

(let ((newobject (copy-object-to-newspace object)))

(setf (forward-value object) newobject)
newobject))

(defun elt-for-baker-gc (object field)
(let ((thing (elt object field)))

(if (oldspace? thing)
(then

(if (forwarded? thing)
(then ;; pointer snap

(setelt object field (forward-value thing))
(forward-value thing))

(else ;; pointer update

(let ((newthing (transport thing)))
(setelt object field newthing)

newthing))))
(else thing))))

(defun setelt-for-baker-gc (object field value)
(if (oldspace? value)

(then (if (forwarded? value)
(then (setelt object field (forward-value value)))
(else (setelt object field (transport value)))))

(else (setelt object field value))))

FIGURE 3-4: BAKER REAL TIME GC ALGORITHM

the same time as scavenging. New objects are allocated in newspace at the location of a

new object pointer.6 Elts and SetElts require transporter tests to insure that no oldspace

pointers are returned or stored in newspace. A pidgin LISP implementation of this algorithm

is given in Figure 3-4. By scavenging a few objects each time an object is allocated, the rate

of reclamation (as determined by scavenging) can automatically track the rate of allocation.

The Baker algorithm requires an extra attribute bit in each pointer, so that the for-

warding pointers can be distinguished from normal object pointers. Otherwise, the storage

requirements are similar to those of the semispace algorithm. By installing an intelligent

object scavenger, we can adapt this algorithm to handle objects of various sizes and com-

6The implementation in 3-4 assumes new objects are created empty. A minor modification is required if,
as in the case of a LISP cons cell, objects are created with initial contents.

positions - the scavenger can examine objects on an individual basis to determine where

pointers might be stored. This increases the scavenging efficiency on objects like arrays of

integers, which will not contain many pointers.

3.3.3 Dynamic Compaction

The above methods may help with the problem of external fragmentation, and make it

easy to allocate free space, even in the presence of variable-sized objects, but they do not

completely solve the problem of the spread of the working set. The semispace algorithms

traverse the static object tree, and pay no heed to the dynamic patterns of object access.

Thus, compacting garbage collectors can increase the fraction of accessible objects on a

page, but may not necessarily increase the fraction of objects on a page belonging to a

given working set.

There are several methods that can be used to help achieve dynamic compaction: scav-

enging resident pages of objects preferentially, allocating new objects onto the same page as

the objects they refer to, etc. For Baker's incremental garbage collector, White [White80]

notes that the principal villain in the degradation of the interesting object density is the

scavenger, since it is busy copying accessible (but not necessarily interesting) objects to

newspace, where they take up room alongside interesting objects brought together by the

transporter. A simple strategy in this case is simply to delay the start of scavenging until

the (estimated) working set has been transferred to newspace by calls to the transporter

from Elt and SetElt. This provides for dynamic grouping of objects onto pages, and com-

pacts the working set into a small number of pages, even in cases where the working set is

made up of large numbers of short-lived objects.

3.3.4 The Object Hierarchy and the Memory Hierarchy

If we step back at this point and examine the distribution of objects created by ephemeral

garbage collection, and the distribution of memory in a virtual memory system, there seems

to be a very natural correspondence. At the "high" ends of both systems are frequently

accessed, dynamic objects; as we move downwards the objects become less interesting and

less dynamic. This correspondence is not too surprising, since ephemeral garbage collection

and virtual memory are both based upon exploiting properties of non-uniform distributions

(object lifetimes or object accesses, respectively). Thus, it seems reasonable that virtual

memory and garbage collection could be integrated so that these two hierarchies become

more unified. This idea will be explored in more detail in section 4.1.

3.4 Object Oriented Virtual Memories

The last of the three sources of inspiration for M are the object-oriented virtual mem-

ory systems. This section presents four examples. The first is the object-oriented virtual

memory system used on the TI Explorer LISP machine. The other three examples are mem-

ories designed for various implementations of SMALLTALK, an object-oriented programming

system. The first two SMALLTALK systems differ from page-based object-oriented virtual

memory systems, like the Explorer system, in that their virtual memory systems deal di-

rectly with objects and not pages. Both SMALLTALK and LISP, unlike Z, have variable-sized

objects. This leads to some additional levels of complexity in the memory system which M

does not have to worry about.

3.4.1 TI Explorer Memory

The temporal garbage collector (TGC) implemented in Release 3 of the TI Explorer

LISP system is an ephemeral, dynamically compacting, real-time semispace garbage col-

lector [Courts87]. TGC keeps track of backwards pointers by creating special backwards

pointer objects; these special objects are clustered together so that they can be efficiently

scavenged. 7 TGC uses 4 volatility levels, numbered from zero (the most volatile) to three

(most static). In level three there are actually three different classes of backwards pointer

objects - those that point to level zero, those that point to level one, and those that point

to level two (similarly, level one has one class and level two has two). Thus to flip level zero

storage, TGC needs to scavenge all of level zero's oldspace, level one's level zero backwards

pointer objects, level two's level zero backwards pointer objects, and level three's level zero

backwards pointer objects. Unused backwards pointer objects can be reclaimed during a

flip of the corresponding generation.

Compaction is provided by three mechanisms. The first is due to the traversal of the

static object graph by the scavenger. Scavenging is done approximately depth-first (by using

7In contrast, the Symbolics 3600 page-oriented object memory [Moon84] handles volatility exceptions by
keeping track of which pages contain backwards pointers.

a scavenge stack) which leads to better performance than the breadth first approach of the

Baker scavenger. The second compaction technique is an inhibition of the scavenger until

a certain amount of newspace has been allocated to new objects or objects moved by the

transporter in the course of program execution. This keeps the interesting object density

in newspace high. The final mechanism, training, involves keeping track of the activity of

each object. This is done by creating a set of activity levels for each generation. When an

object is created, or is transported due to program action, it is placed in the highest activity

level. When an object is transported by the scavenger, it is moved down one activity level.

Objects in less active levels of a generation only need to be brought into memory when that

generation is going to be flipped. Training and scavenger action thus weed out accessible

but uninteresting objects, increasing the interesting object density on the pages that make

up the most active level of a generation.

3.4.2 OOZE

OOZE (Object-Oriented Zoned Environment) is an object-oriented virtual memory for

the SMALLTALK-74 and SMALLTALK-76 systems [Kaehler81]. OOZE, implemented in

microcode on the Xerox Alto, manages a two-level memory hierarchy using 48K of primary

memory and 1M of disk memory. The primary memory is divided into an 8K Resident

Object Table (ROT) and 40K of object space.

The ROT keeps track of which objects are currently in primary memory. Object pointers

in OOZE contain the disk address of the associated object. To dereference a pointer, a

hashing function is applied to the pointer to obtain an entry index into the ROT which is

used to obtain an resident object description. This description is compared to the original

pointer, with three possible outcomes:

* Match: If the pointer part of the resident object description matches the initial pointer,

then the address part of the description holds the memory address of the object. The

Elt or SetElt can then proceed, using the memory image of the object.

* Fault: if the resident object description is invalid, then the object in question is not in

primary memory, and an object fault is invoked to bring the object in, and that entry

of the ROT is filled with a description of the object and its location in memory.

* Mismatch: if the resident object description is in use, but the pointer part does not

match, then the hash table lookup has collided. In this case, a rehash function is

applied to the original pointer and the lookup is retried at another ROT location.

Eventually, all accesses end in a fault or a match. Since the disk address of the object is

encoded in the object pointer, the fault routine need only be passed the pointer to obtain

the object.

OOZE divides the set of SMALLTALK objects into pseudoclasses, which are objects of a

given SMALLTALK class that all have the same length. Part of the object pointer specifies

the pseudoclass of an object. The pseudoclass number is used to index a pseudoclass map

which contains the base disk address for the pseudoclass, the actual class of the object,

and the length of objects in that pseudoclass. Given the base address, object length, and

the instance number (the other bits of the object pointer), the disk address of the object is

determined.

OOZE performs garbage collection by reference counting and memory management by

the clock algorithm. When an object fault occurs, OOZE scans free memory space for a block

of the proper size. If one is found, the object is copied in and and entry is made in the ROT.

If no free block large enough is found, OOZE purges some objects from primary memory

and invalidates the corresponding entries in the ROT. During purging, the fragmentation

of primary memory is checked, and if it exceeds some threshold, then a compaction phase

is run. The fault can then be handled. Since pointers specify disk addresses, objects can be

freely moved about in primary memory so long as the ROT is suitably updated; this makes

compaction simpler.

As mentioned in chapter 2, some object-oriented memories incur performance degrada-

tions (with respect to flat address space memories) because of the extra levels of indirection

in the Elt and SetElt operations. In the case of OOZE, an object pointer dereference involves

hashing followed by table lookup. The OOZE system caches the addresses of frequently ac-

cessed objects (the current method, the receiver, and the top of the stack), and is careful

about managing collisions in the ROT to try and remove some of the delay from this critical

path.

3.4.3 LOOM

LOOM (Large Object-Oriented Memory), the successor to OOZE, was designed for the

SMALLTALK-80 system [Kaehler83]. OOZE had demonstrated that swapping objects was

viable, but the OOZE address space was too small. LOOM solves this problem by creating

a dual namespace: each object id (called an Oop) in LOOM can have has two possibly

valid representations, known as the short and long Oops respectively. Short Oops refer to

objects that are swapped in. A short Oop is a direct index into the resident object table (as

opposed to pointers being hash keys in OOZE) which specifies the object's base address.

Objects that are in main memory can only contain short Oops. In order for one of these

objects to refer to an object on secondary storage, one of two mechanisms was used. Objects

in secondary storage can be represented in main memory either as a leaf or a lambda. Leaves

are small objects in main memory (hence having a short Oop) that contain the long Oop

of the real object and a delta reference count. Lambdas are a reserved short Oop. Leaf

pointers can be freely copied or destroyed, but any access to a lambda (or a dereference

through a leaf) causes an object fault. In an object fault, the secondary storage copy of the

containing object is consulted to recover the appropriate long Oop. This long Oop is then

hashed on to produce a short Oop (if the faulting object is a leaf, then the short Oop and

ROT entry are already known). This short Oop is used to index into the ROT, and, if the

resulting ROT entry is unused, the body of the object is copied into main memory, and the

appropriate information is placed into the ROT. Hash collisions are resolved by rehashing

until an unused ROT entry is found. Besides the object base address, ROT entries contain

a short Oop reference count (which keeps track of how many copies of the short Oop exist),

a dirty bit, and an untouched bit.

When an object is copied into main memory, its long Oops are turned into short Oops.

This is handled in one of three ways. If objects referred to are already in main memory,

then the long Oops are replaced by the proper short Oops. If the objects are not in main

memory, then the long Oops are replaced by either short Oops of leaves or the special

lambda short Oop. Creation of leaves and lambdas does not require examination of the

object in question, and so does not cause further object faults. The decision as to whether

to create a leaf or use a lambda is steered by a bit associated with each pointer in the

secondary memory copy; this bit records whether the pointer in question was a lambda

just before the last time the object was swapped out of main memory. When an object is

swapped back in, its pointers are restored to the configuration they had when the object

was swapped out. Thus, pointers representing infrequent access patterns are likely to be

lambdas, and pointers in more frequent access patterns will be leaves. Faults on leaves are

cheaper than faults on lambdas, because faulting in a lambda requires that the secondary

memory images of both the containing object and the referred-to object be consulted.

The converse operation to object faulting is object purging. LOOM can free up space in

main memory by turning full objects into leaves. When it is known that no more references

to the leaf exist (because the leaf has a zero short Oop reference count) then the leaf can

be destroyed, and the ROT entry reclaimed. Note that this does not imply that the object

itself is garbage, because there may be copies of its long Oop. Like OOZE, LOOM reclaims

garbage by reference counting. Thus, the short Oop reference count and dual namespace

serve to implement a kind of ephemeral garbage collection - objects in main memory can

be reclaimed without examining objects on secondary memory. The LOOM system does not

completely follow the ephemeral model, because new objects are given space in secondary

storage upon creation. Inspired by LOOM, .M (as we will see in chapter 4) uses similar dual

namespaces to implement a more complete ephemeral garbage collection.

3.4.4 Berkeley Smalltalk

As a final example of an object-oriented memory, we take a brief look at Generation

Scavenging [Ungar84]. Generation Scavenging is an implementation of a volatility-based

batch-mode semispace garbage collector on a Sun workstation running Unix.

Generation Scavenging keeps track of two generations of objects: old and new. Main

memory is divided up into four regions:

1. NewSpace: a set of wired pagess where new objects are created.

2. PastSurvivorSpace: a set of wired pages where new objects that have survived a few

scavenges are kept.

3. FutureSurvivorSpace: an area of equal size to PastSurvivorSpace which will play the

role of newspace during the scavenge.

4. oldspace: a set of normal (swappable) pages where more static objects are kept.

Scavenging is done when NewSpace becomes reasonably full. Beginning with a set of root ob-

jects, objects are transported from NewSpace and PastSurvivorSpace to FutureSurvivorSpace.

aThe implementation of Generation Scavenging described in [Ungar84] could not wire pages, but the
operational assumption was that these pages would be wired.

At the finish of the scavenge, both NewSpace and PastSurvivorSpace are empty; NewSpace

is simply reused, and the two survivor spaces swap roles.

As objects survive scavenges, they become candidates for tenuring, or promotion to the

older generation of objects. This generation is not garbage collected while the system is

in operation, but is collected offline, with reorganization that attempts to perform useful

compaction. SetElts of new object pointers into objects in oldspace cause an appropriate

entry in an exception table (called the remembered set).

3.4.5 Summary

The object-oriented memories discussed above deal with the interaction of virtual mem-

ory and garbage collection in one of three ways. TGC tries to pack interesting objects onto

pages so that the interesting object density is kept high. Generation Scavenging creates

a special class of storage which is exempt from paging. By employing ephemeral tech-

niques, this special storage can then be garbage collected without referring to swappable

objects. Both TGC and Generation Scavenging are built on top of traditional paging sys-

tems. LOOM and OOZE use an object-oriented virtual memory; for these systems, the

virtual memory and garbage collection systems are carefully designed to cooperate. As we

will see in chapter 4, .M is based upon this same idea.

F The M Memory

Given the terminology of the previous chapter, . can be classified as an object-oriented

virtual memory with an ephemeral mark/sweep garbage collector. In other words, the sole

units of locality in . are objects (in this case, chunks); these objects are segregated accord-

ing to their age; and inaccessible objects are discovered and reclaimed by a mark/sweep

garbage collector. Unlike the systems described in chapter 3, M includes some features that

are intended to provide support for a multiple processors, multiple memory managers, and

multiple threads of control. These features will be discussed in section 4.6.

4.1 Hierarchies in .M

As mentioned in section 3.3, there is a close correspondence between the hierarchies

used by virtual memory and ephemeral garbage collection. In the M system, these two

hierarchies are fused into a unified storage hierarchy under which both virtual memory and

garbage collection operate.

The memory space directly managed by . is divided into two sections: local and perma-

nent memory. Local memory is analogous to the primary memory in a traditional virtual

memory. Chunks in local memory are directly accessible to the execution unit. Local

memory is the home of all new chunks and those chunks with high volatility.

Permanent memory, the next level deeper, has some similarities to secondary memory

but is also shared among a number of different 4 units. As befits a virtual memory system,

this logical hierarchy corresponds to a physical hierarchy; chunks close to the processor are

stored in high-speed semiconductor memory, while chunks further from the processor are

located on secondary storage devices like disks. Chunks in permanent memory are more

stable than chunks in local memory. Table 4.1 gives a summary of the two levels of memory

managed by M, as well as possible extensions in both directions. The size of each level

level number Storage Level Size (in chunks) Volatility Medium
0 processor registers 10 high on-chip memory
1 local memory 10000 high RAM
2 permanent memory 10000000 moderate mixed RAM/Disk
3 external memory 10000000000 low Disk

Table 4.1: POSSIBLE £ STORAGE HIERARCHY

is just an estimate; what is important is that the number of chunks at each level is much

greater than that of the previous level.

Each of the memory levels of table 4.1 presents a different challenge to the system

designer. . does not manage all of the memory levels of £; it only manages local memory

and some aspects of permanent memory. Chapter 6 will present some preliminary ideas for

the structure of a permanent memory manager.

4.2 .Chunks, Revisited

Since chunks are the basic unit of locality in M, the virtual memory system must deal

with them directly. In the current system, every chunk falls into one of three classes:

* local temporary: chunks representing temporary objects. They are found only in local

memory. Local temporary chunks can contain pointers to all classes of chunks.

* local permanent: chunks, found only in local memory, that represent permanent chunks

currently swapped into local memory. Like local temporary chunks, local permanent

chunks can contain pointers to all classes of chunks.

* permanent: chunks in permanent memory. Permanent chunks can only contain point-

ers to other permanent chunks.

The restrictions on what pointers can be kept in permanent chunks are necessary because

A. does not use exception tables to record pointers from permanent to local chunks. To

store a local pointer in a permanent chunk, the permanent chunk must be imported into

local storage as a local permanent chunk. Backwards pointers are allowed to exist in local

storage. These pointers are detected and dealt with during garbage collection.

Every chunk begins life as a local temporary. As it survives garbage collection cycles,

it ages. At a certain age threshold, the chunk is promoted. Promotion involves upgrading

the local temporary chunk to a local permanent chunk, and allocation of a corresponding

permanent chunk. At this point, the chunk is no longer subject to garbage collection (by M),

and it now can be swapped out if it becomes uninteresting.

The hidden slots (see section 2.2) of a chunk provide a place for the virtual memory and

garbage collection to keep information. In a local chunk, there are four hidden slots (see

figure 4-1). The ref bit slot holds the reference bits for the other slots, and the attribute

bits of the chunk. There are currently ten attributes, occupying 13 bits. These attributes

record various pieces of information, and are of interest to various subsystems of Z. In the

following list, the principal user of the attribute is listed after the attribute description.

* mark: a bit used by the garbage collector during the mark phase (gc).

* allocated: a bit set if the chunk is not on a free list (gc).

* read-only: a bit set if it writing into the chunk should cause an exception (execution

model).

* dirty: a bit set if the chunk contents have been modified (gc,vm).

* volatility: a bit field encoding the volatility of the chunk.

* age: a bit field that records the number of garbage collection cycles the chunk has

survived (gc,vm).

* cache: a bit that is set when the chunk in question is actually kept in the processor

chunk cache (vm).

* lock: a bit that indicates that both Elts and SetElts using this chunk should cause

exceptions (synchronization).

* forward: a bit indicating that the chunk is actually an invisible forwarding pointer;

the real chunk ID is then found in the forward-pointer slot (synchronization).

* export: a bit set when other memory managers have requested ownership of the

chunk (load balancing).

The other three hidden slots of a local chunk are the permanent name slot, the link slot,

and the forward slot. The permanent name slot is used in local permanent chunks to record

0
1
2
3
4
5
6
7

type
attributes

permanent id
link

forward
cache

FIGURE 4-1: A LOCAL CHUNK

the associated permanent chunk's ID. It is invalid if the chunk is local temporary. The link

slot is used by the garbage collector in marking and maintaining free lists. The forward

slot is used to implement invisible forwarding pointers needed in our implementation of the

Lock and Unlock synchronization primitives.

Permanent chunks have a similar set of hidden slots and the same attributes (the cache

attribute is not used). There are four hidden slots in a permanent chunk. The link and

forward slots serve the same purposes as their local chunk counterparts. The other two

slots are the local name slot, which records the local ID that the chunk had the last time

it was swapped into a local memory (or the current ID if the chunk is currently swapped

in), and the owner slot, which records the identity of the local memory that the chunk is

swapped into (and is set to zero if no local memory has the chunk swapped in).

In the following sections, we will use special ID tags to identify chunks. Local chunks will

be identified by the letter L followed by a number, and permanent chunks will be identified

by the letter P and a number. Thus LO is a local chunk, and P12345 is a permanent chunk.

4.3 Virtual Memory in M

The virtual memory part of M is based upon three operations: importation, exportation,

and pointer updating. Importation is the process of swapping a permanent chunk into the

local memory to satisfy an object fault. Exportation is just the opposite - swapping

local permanent chunks back out to permanent memory. Pointer updating is a method for

estimating which of the swappable local permanent chunks actually fall in the working set.

export

forward

lock

mark

allocated
read-only

dirty

volatility
age

I
Before: chunk Li initially con- After: LO contains the equivalent
tains the permanent chunk ID PO. local ID Li, obtained from the lo-
PO is owned by this memory sys- cal name slot of P0.
tem.

FIGURE 4-2: TRIVIAL IMPORTATION

Each of these is explained in more detail below.

4.3.1 Importation

When a Metaname-Fetch or Metaname-Store operation attempts to dereference the ID of

a permanent chunk, an object or importation fault takes place. The steps in handling an

importation fault are:

1. ownership check: M first checks to see which memory manager owns the permanent

chunk. There are three possibilities here. Either no manager owns the chunk, M

owns the chunk, or some other manager owns the chunk. If the chunk is owned by

another manager, then the importation is blocked, and 4 must negotiate with that

manager to resolve the situation. If M owns the chunk, then there is already a copy

of that chunk in local memory. In this case, the importation is trivial: 4 consults

the local name slot of the permanent chunk to discover the proper local ID to return

(see figure 4-2). If there is no owner, then M acquires ownership of the chunk and

proceeds to the next step.

2. cheap importation check: after acquiring ownership, M looks to see if the permanent

chunk has a valid local copy. This may be possible if the permanent chunk was

OIst

Limbo list Limbo list

limbo list Im

UO
Before: chunk PO, unowned, After: LO has been re-allocated,
contains a record of a former lo- and Li points to it.
cal equivalent, chunk ID LO. LO is
on the limbo list. Li points to PO.

FIGURE 4-3: CHEAP IMPORTATION

previously imported, and then was partially exported (limboized) because it seemed

to have fallen out of the working set. Limboization removes the ownership but keeps

the local ID in the permanent chunk and the permanent ID in the local chunk. If

these IDs are consistent (that is, if the local ID of the permanent chunk is the local

chunk ID), the local chunk can be removed from limbo in a cheap importation that

does not involve copying the chunk contents (see figure 4-3. If cheap importation is

not possible, the importation continues with the next step.

3. local chunk allocation: given that neither blocking, trivial importation, or cheap im-

portation has happened, the importation fault handler next makes a request for a

new local chunk. This allocation request can trigger garbage collection, if the num-

ber of free local chunks is running low. In this case, the importation will be retried

after garbage collection finishes. If all has gone smoothly up to this. point, then M

has both ownership of a permanent chunk, and a new, empty local chunk. Next, the

contents of the visible fields of the permanent chunk are copied directly into the local

chunk. Some of the attributes (read-only, forward, lock, volatility) are inherited

from the permanent chunk, and the others are initialized to the correct values. The

permanent and local IDs are stored in the local and permanent chunks, respectively,

bo list

free list

Before: chunk P0 is unowned After: LO has been allocated as
and has no record of a former lo- the local equivalent to PO, and Li
cal equivalent. LO is on the free points to it.
list. Li points to PO.

FIGURE 4-4: FULL IMPORTATION

and the importation completes. This full importation is illustrated in figure 4-4.

Limboization of chunks adds a lot of complexity to M. Section 5.5.4 discusses whether

or not the additional complexity, both here and in the sweep phase of garbage collection, is

justified by the potential speed advantages of cheap importation.

4.3.2 Pointer Updating

When a chunk is imported, it is full of permanent chunk IDs. If one of these IDs is used

in an Elt or SetElt, the corresponding chunk will be imported. At this point, two valid IDs

exist for the chunk: the original, permanent ID, and the newly created local permanent ID.

Pointer updating is the process of replacing the permanent ID with the local permanent ID

in the original chunk. This both prevents importation faults (which would be handled via

trivial importation) on future uses of the chunk ID, and provides M with a simple way to

estimate the working set.

The information about which chunks are included in the working set is recorded as

follows. Local temporary chunks are always in the working set. Local permanent chunks

are in the working set if they are accessible by a chain of local IDs. Permanent chunks are

never in the working set. Thus, the act of pointer updating after an importation serves to

=Fn

to next limbo chunk

0

0

Before: chunk LO and chunk PO
are a local-permanent pair. LO
was not marked by the garbage
collector.

FIGURE 4-5:

After: LO has been put onto the
limbo list. PO is unowned but still
remembers its association with
LO. LO and PO have identical data
fields.

LIMBOIZATION

place the imported chunk into the working set. Pointer updating is undone by the garbage

collector.

4.3.3 Exportation

The converse of importation is exportation, the removal of accessible objects from local

storage. Exportation is actually done during the sweep phase of garbage collection. The

mark phase of garbage collection marks all local permanent chunks that are considered to

be in the working set. An unmarked local permanent chunk is therefore considered to be

out of the working set.

At this point, the first phase of exportation, limboization, takes place. If the chunk was

dirty, the contents of the local permanent chunk are written back to permanent storage.

The ownership of the permanent chunk is released, but the permanent chunk retains the

local ID, and the local chunk retains the permanent ID. The local chunk is then put on a

special limbo list, threaded through the link slot, and its allocation bit is cleared. Figure 4-5

illustrates this process.

After limboization, one of two things can happen to the local permanent chunk: it can

either be reallocated as new storage, or reclaimed by cheap importation. Reallocation of

limbo list

the local chunk completes the exportation process: the old local and permanent IDs are

erased. Any future references to the permanent chunk will have to be handled by a full

importation. If the local chunk is reclaimed by cheap importation, it is restored to regular

local permanent status, and there is no need to copy the data fields from permanent to

local memory.

4.4 Garbage Collection in M

4 has a simpler task of garbage collection than the object-oriented memory systems

of section 3.4. Since chunks are the unit of locality, and chunks are all the same size,

M does not have to worry about compacting objects onto pages. While a compacting

garbage collector is vital in a paged object-oriented system, compaction is not an issue for

M. Because Z implements control stacks from chunks, M must provide for extremely cheap

temporary storage. Finally, M is intended for high performance, and so cannot afford to

become too complicated. The important factors in selecting a garbage collection algorithm

for A are therefore simplicity of implementation, the cost of temporary storage, and overall

performance.

The requirement of cheap temporary storage is met by ephemeral garbage collection.

Non-ephemeral methods would have difficulty coping with the rapid allocation and deallo-

cation rates of temporary chunks. Although most existing implementations of ephemeral

garbage collection are based upon semispace collectors, ephemeral techniques are compatible

with other methods of garbage collection.

Semispace methods were not used in . for several reasons. The first reason is that they

waste space. The classical semispace algorithm can only use 50% of its address space for

objects. The local memory of M is mapped directly to physical memory, so a loss of 50% is

a serious drawback. The second reason is that the primary value of the semispace methods

comes in a paged virtual memory environment. A swaps objects, not pages. To achieve

compaction, the semispace methods copy live objects. A straightforward implementation of

a non-copying algorithm may be more efficient when paging and compaction are not issues.

The non-compacting garbage collection methods fall into two classes - variants of

mark/sweep and reference counting. Since reference counting cannot reclaim circular struc-

tures, and such structures (like our doubly-linked control stack) will be commonplace in

,. The A garbage collector is based upon the mark/sweep algorithm. This algorithm is

intrinsically simple, is compatible with ephemeral garbage collection, and can potentially

be run in parallel with execution (via an adaptation of the Djikstra-Lamport on-the-fly

mark/sweep method [Dijkstra78]).

4.4.1 Details of .M Garbage Collection

Garbage collection in M is triggered by the local chunk allocator when the total number

of chunks on the free list and limbo list falls below a certain threshold. Since garbage

collection does not require any extra space, this threshold can be zero.

Garbage collection is done by a modified mark/sweep algorithm that contains three

phases. The first phase is a limited-depth mark, starting from a root object, following only

local IDs. This marks all local chunks reachable from the root object via local pointers.

Because no volatility checks are performed during execution, and this first mark phase

follows only local pointers, it is possible for some reachable local chunks to be bypassed.

These are chunks that would normally have been marked through the exception tables.

This mark is performed using no additional storage by using the link slot to hold the mark

stack.'

To mark these chunks properly, M performs a volatility-checking sweep. This sweep

examines all unmarked local permanent chunks to see if they point to unmarked local

temporary chunks. Whenever one of these backwards pointers is found, an auxiliary mark

is started from the pointer. The local temporary object pointed to is then promoted to

local permanent. After this second phase, all accessible local temporary chunks have been

marked, and all interesting local permanent chunks have been marked.

The third phase of garbage collection resembles a traditional sweep. Unmarked local

temporary chunks are threaded onto a free list through the link slot. The allocation bit is

used here to keep from putting a chunk on the free list if it was already there before gc

started. Marked local temporary chunks are aged, and those that exceed the age threshold

are promoted. Marked local permanent chunks have all of their pointer updates undone -

that is, all of the local permanent IDs in the chunk are replaced with equivalent permanent

IDs. Unmarked local permanent chunks are limboized.

'This is possible because the mark will touch only accessible objects, and the link slot is only normally
used by inaccessible objects.

4.4.2 Garbage Collection Issues

There are a few subtle issues here which were glossed over in the preceding section.

The volatility-checking sweep does not detect all backwards pointers, but only those that

exist in unmarked chunks. These chunks are considered to be out of the working set. It is

therefore unlikely that their contents will become garbage in the near future merely because

the attention of the processor will be directed somewhere else. A would like to export these

uninteresting chunks; but exportation of a chunk is only possible if the chunk contents are

expressible in terms of permanent IDs and scalars. Thus, the local temporary chunks pointed

to by this local permanent chunk are promoted. In effect, 4 decides that the temporary

objects at the ends of the detected backwards pointers are not very temporary any more.

M only carries this promotion out to one level; that is, only the chunk referred to by the

backwards pointer is promoted. If this promoted chunk itself contains local temporary IDs,

then the promotion creates more backwards pointers. The original version of 4 recursively

promoted, removing all backwards pointers, but this strategy proved to be too aggressive.

K's decision that chunks at the end of detected backwards pointers are no longer temporary

is not always a good one, and recursive promotions only compounds the effects of a bad

decision. Restricting promotions to one level reduces the amount of unnecessary promotion

without greatly increasing the amount of time it takes to legitimately promote large struc-

tures. For example, in a treed array, the number of promotions can increase by a factor of

8 each garbage collection pass. M's aging policy also helps to ease the difficulty of turning

a large temporary structure into a permanent structure.

Backwards pointers can exist in marked chunks for as long as is necessary. The ag-

ing mechanism will eventually promote the temporary object at the end of the backwards

pointer, and the backwards pointer will then no longer be backwards.

The actions of the second sweep are straightforward, except for the replacement of local

names by permanent names in local permanent chunks (also known as pname updating).

Pname updating is a crude mechanism for breaking up local accessibility, so that the next

garbage collection pass can put as many local permanent chunks on limbo as possible.

Without some kind of local name replacement, it would be possible for local memory to fill

with a locally accessible network of local permanent chunks, none of which were garbage;

at this point, 4 would not be able to limboize anything, and would be unable to free up

any local storage. Thus, . replaces all local permanent IDs in local permanent chunks.

procedure push-end (list : Inode; newitem : integer);
begin
while list'.cdr <> nil do
list :- list.cdr;
list".cdr :- new(lnode);
list'.cdr'.car :- new.item;
list'.cdr".cdr :- nil
end;

FIGURE 4-6: EXAMPLE PROGRAM

Those local permanent chunks which were truly in the working set will have their local IDs

resurrected by trivial importations. Those that were not will be limboizable at the next

garbage collection cycle. Because of this one cycle delay in the effect of pname updating,

it is possible that the garbage collector may require more than one cycle to free up storage

(this is very unlikely, however). Section 6.1 will discuss ways in which the working set can

be better estimated, so that local permanent chunks in the working set are not subjected

to this cycle of pname updating followed by trivial importation.

4.5 An Example

This section presents an example of the workings of M. To keep the example tractable,

we have reduced the local memory size to five chunks, LO - L4. To simplify some of the

accompanying figures, we use two different notations for chunk IDs. Explicit pointers (drawn

as arrows originating in a slot of a chunk, and terminating at another chunk) are used for

most IDs. The association between permanent chunks and local chunks is denoted by placing

the chunk ID tag in the proper slot. To help distinguish between scalars and pointers, slots

containing pointers have their reference bits checked.

The example program, written in pidgin PASCAL (see figure 4-6), is one that adds a

new element onto the end of a non-empty list. Here we have created a Inode object which

contains two fields called car and cdr. In this example, a Inode will be represented as a

chunk. The car will be stored in slot 0 and the cdr in slot 1. The special pointer nil

will be represented as a scalar value 0. This is not the most space-efficient chunk-based

implementation of lists, but it will do for this example. In this case the initial list will be

(0 1 2 3) and we will use this routine to add new elements 4 and 5.

label-O (test (3 1))

(jnr label-i)
(move (3 1) (3))
(jump label-O)

label-i (alloc (3 1))
(move (4) (3 1 0))
(movei 0 (3 1 1))

;examine list's cdr
;jump if nil (not a reference)
; else list :- list^.cdr
; and loop back

;make new lnode

; and set its fields
; cdr is nil

FIGURE 4-7: EU INSTRUCTIONS FOR THE PROGRAM

State

Figure 4-8 : INITIAL SETUP OF MEMORY

The initial state of the local and permanent memories is shown in figure 4-8. Local

memory is empty; all the local chunks are threaded onto the free list through their link slots.

The information required to execute push-end has been stored into chunks in permanent

memory. In particular, PO is a runnable STATE representing the first call to push-end;

arguments for this call have been placed inside PO. Slot 3 of PO points to the first Inode

(P2) of the list, and slot 4 contains the value to be inserted in the list, 4. As in the control

stack example from chapter 2, slot 1 of PO points to a code chunk (Pl) and slot 0 contains

the microstate (the detailed structure of the microstate, which contains the condition code,

state status and instruction offset bits, is not shown in the figures). P6 is the STATE chunk for

the second call to push-end. Figure 4-7 lists the EU instructions that implement push-end.

The code chunk P1 holds the machine language equivalents of these instructions.

Execution begins when the SMU passes the ID PO to the EU. The EU prepares for fetching

tkt.

FIGURE 4-9: MEMORY AFTER IMPORTING STATE AND CODE CHUNKS

the first instruction by trying to read the microstate and code chunk pointer from PO. PO is

a permanent chunk, so the MetanameFetch used to get the microstate causes an importation

fault. Since local memory is empty, chunk PO is imported fully: chunk LO is popped off the

free list to serve as the local permanent copy, the fields of PO are copied into L, and the

EU updates its STATE pointer from PO to LO. After the importation is handled, the faulting

MetanameFetch completes. The EU is then able to fetch the code pointer from LO without

any importation fault. By this point, the EU is able to fetch the correct instruction out of

the code chunk; in doing this, the code chunk needs to be fully imported. The corresponding

state of memory is shown in figure 4-9. Note that the second importation fault has updated

the ID of the code chunk, so that future instruction fetches will not suffer importation faults.

The first machine instruction in push-end is (test (3 1)). This instructs the EU to

fetch the object that has metaname (3 1) with respect to the STATE, and (among other

things) examine the reference bit. If the reference bit is set, then the r condition code bit

is set in the microstate. Execution of this instruction causes another importation fault,

bringing chunk P2 into the local memory as L2. Since the first lnode of the list has P3 as its

cdr, the EU sets the r (reference) condition code bit. The next instruction, jnr, examines

the r bit and jumps when it is clear; this time it is set, so the EU does not jump, but goes on

to update the value of list, arriving at the state shown in figure 4-10. Note that chunk L2

is no longer locally accessible, and is thus a candidate to be put onto the limbo list, since

State

Limbo list

Free list

FIGURE 4-10: MEMORY STATE AFTER THREE INSTRUCTIONS

it is a local permanent chunk.

The next two Inodes are traversed in the same fashion, both causing importation faults.

After the third (move (3 1) (3)) instruction has faulted in P4, there are no more free

chunks; local memory is completely allocated. In this example, the garbage collector runs

just after the instruction that allocates the last free chunk. Because execution of an instruc-

tion can cause multiple importation faults (as the first instruction did), a somewhat more

sophisticated mechanism is needed to handle or prevent the case where the garbage collector

needs to run in the middle of an instruction. Figure 4-11 shows the state of memory just

before invoking the garbage collector.

The root object in this example is the STATE pointer of the EU. The mark phase thus

starts at chunk LO, and, following local IDs only, marks chunks Li and L4. These chunks

have no local IDs, so the mark phase finishes. The first sweep phase then examines all

of the local chunks. Since there are no backwards pointers, the first sweep phase does

nothing. The second sweep phase notices that chunks L2 and L3 are unmarked and local

permanent, so they are put on the limbo list. Since neither chunk was dirty, the data in

those chunks does not need to be written back out. The second sweep also replaces local

IDs with permanent IDs in the other three local chunks, and clears the mark bits of all the

chunks. Garbage collection is then finished, and has freed up two chunks. The memory

state at this point is shown in figure 4-12.

6

FIGURE 4-11: MEMORY JUST BEFORE GARBAGE COLLECTION

State

E3~t

Figure 4-12 : MEMORY AFTER FIRST GARBAGE COLLECTION

57

9

~9 rr~aN

FIGURE 4-13: MEMORY AFTER COMPLETION OF FIRST RUN

The next instruction fetch causes an importation fault on the code chunk because the

sweep replaced L1 with P1 in LO (the EU's STATE pointer is immune to this kind of replace-

ment). This time, the importation is trivial, since the code chunk is already local (this is

an example of an unintelligent pname update followed by a trivial importation). The next

instruction tests the cdr field of P4 (trivially imported as L4), and finds a pointer. The EU

then reaches the move instruction, which needs to import P5. This is a full importation, like

the ones before, except that the local chunk (L2) is allocated off of the limbo list instead of

the free list. (The general strategy used by M is to preferentially allocate from the free list

to give chunks on the limbo list more time during which they can be cheaply imported. In

this case, the free list is empty, so allocation is done from the limbo list.)

After testing the cdr of L2 and finding a scalar, the EU branches to the code at label-i.

It then must create a new Inode, which it does by asking M for a new local chunk. L3 is

allocated from the limbo list for this purpose. Once again there are no more free chunks,

and garbage collection runs. This time, only chunk L4 is not reachable via local IDs;

all the other local chunks are marked. The first sweep does not detect that L2, a local

permanent chunk, points to L3, a local temporary (a backwards pointer) because L2 has

been marked. Auxiliary marking phases are only necessary when unmarked local permanent

chunks contain backwards pointers. The second sweep ages L3, replaces local permanent

IDs with equivalent local permanent IDs, and puts L4 onto the limbo list.

FIGURE 4-14: MEMORY AFTER CHEAP IMPORTATION

The next few instructions cause a series of trivial importations, but the program is able

to complete without further chunk allocations or garbage collections. The state of memory

at the completion of the first call to push-end is shown in figure 4-13.

The SMU then passes the ID of the STATE chunk for the second call, P6. The microstate

access causes this chunk to be imported, and this uses up the last free chunk, L4. Garbage

collection runs again. This time, L2 goes unmarked; the first sweep therefore detects a back-

wards pointer between L2 and L3. To handle this, L3 is promoted; during this promotion,

P7 is allocated to serve as the permanent copy. Then an auxiliary mark is started from L3,

but L3 contains no pointers, so only L3 gets marked. The second sweep puts the unmarked

local permanent chunks onto the limbo list (L3 is not limboized because it is marked). Note

that the old STATE chunk LO was dirty; limboization causes its contents to be copied back

out to PO. The fetch of the first instruction then proceeds: the microstate is read out of L4,

and then the EU attempts to dereference through the code chunk ID, P1. The importation

fault that happens here is handled through cheap importation, since there is a valid copy

(Li) of P1 in the local memory, on the limbo list. The state of memory at this point is

shown in figure 4-14. Cheaply imported chunks are not removed from the limbo list due to

the cost of a random deletion from a singly linked list; instead, the allocated bit of L1 is

flipped to indicate that it is actually in use.

The first instruction of this second program faults in the first Inode of the list. The

only free chunks at this point are those on the limbo list. Local chunk LO is allocated by the

full importation of the first Inode. When . is asked to import the second 1node, it must

skip over chunk L1 since it was been cheaply imported, and so M allocates L2 instead; Li

is freed from the limbo list at this point. Thus, cheaply imported chunks are freed from

the limbo list as it is traversed during allocation (see section 5.3.4). Because the limbo list

is threaded through the link slot and may contain a mixture of free and allocated chunks,

a special limbo list cleanup step is necessary if M tries to garbage collect when there are

chunks on the limbo list (remember that the mark phase uses the link slot to hide the mark

stack). In this example, the garbage collector does not run until there are no free chunks,

so the limbo list cleanup is not needed. This second call finishes in a fashion similar to the

first, and does not illustrate any more of the interesting aspects of M.

This example has attempted to give a feeling for the operation of M. Because the local

memory was so small, M was forced to perform many of importations and limboizations.

In a larger local memory, the entire list would be imported by the first call to push-end,

and the second call would not have to import any of the list chunks.

4.6 Special Features

M includes support for both multiple threads of control and sharing of a permanent

memory by multiple local memories. The multiprocessing aspects of Z will be the subject

of much future research, so details presented here are somewhat preliminary.

4.6.1 Local Memory Coherency

There are two features of M which are intended to help support multiple local memories

share a permanent memory. The first of these is the owner field of a permanent chunk,

which records which local memory has imported that chunk. A local memory attempting

to import a permanent chunk must first acquire ownership of that chunk. If it is unowned,

this step is simple. If another local memory owns the chunk in question, some kind of

negotiation must go on between the two to resolve the situation.

M uses the export bit of a local chunk to indicate that some other local memory has

requested ownership. Under a simple demand-exporting convention, such a chunk would

be exported at first opportunity, where the various local memories interested in the chunk

could fight on an equal basis for ownership. Note that only local permanent chunks are

candidates for demand exportation, because other memory systems cannot know anything

about the local temporary chunks.

4.6.2 Support for Multiprocessing

One of the goals of Z is to provide low-level support for the exploitation of fine-grain

parallelism. Our plan is to use the Lock and Unlock primitives to synchronize execution of

interacting threads of control. We are not yet settled upon an implementation of Lock or

Unlock, but the proposed implementations require some assistance from X. This section

will not go into much depth on the actual details of these implementations, but will simply

attempt to present the issues relevant to M.

Locking by Copying: One proposal for Lock involves copying the contents of the chunk in

question to a newly allocated chunk (whose ID will be uniquely held by the lock-er, at least

initially). Unlocking is done by copying the contents back to the original chunk, and putting

a forwarding pointer in the forward slot of the new chunk. In this implementation, the

garbage collection scheme of M can be modified slightly to detect and remove unnecessary

forwarding pointers, so that the chunks allocated in locking can be reclaimed as garbage

after an Unlock.

Locking by Key Counting: This alternative implementation of Lock uses a generation

count in both the chunk and the local ID to implement locks in the local memory. When a

chunk is locked, its key generation count is incremented and copied into a key generation

subfield of a local chunk ID. Because the key generation count will have to fit into some

small number of bits, it needs to be refreshed. The garbage collection algorithm of M can

be modified to discover and deactivate obsolete keys, so that the key counts are refreshed

after each garbage collection.

4.7 Summary

Before providing any more detail about the M system, it is perhaps useful to briefly

review the objectives of M and the strategies devised to fulfill those objectives. The 4

memory system was designed with the following guidelines and goals in mind:

Goals:

1. The average chunk access time should be as small as possible.

2. There should be as many chunks as possible.

Guidelines:

1. Chunks are the carriers of locality.

2. Most chunks will only be used temporarily.

3. Chunks are all the same size.

4. The chunk network will contain many cycles of pointers.

Goal 1 leads to direct mapping of local chunks onto memory, since a level of indirection (ID

to address translation) will slow down chunk accesses. Goals 1, and 2, and guideline 1 lead

to the dual namespace virtual memory system. Goal 2 and guideline 2 lead to ephemeral

garbage collection. Guidelines 3 and 4 and the direct mapping of local chunks indicate the

need for a non-compacting, space efficient garbage collector that can reclaim cyclic objects

- the mark/sweep method.

W An Implementation of £

This chapter opens with the details of a microcode emulation of £ on a Texas Instruments

Explorer I LISP machine. This emulation models many of the features of the EU, SMU, and

A systems. The second part of this chapter presents the results of some experiments done

with the emulator: the cost of temporary storage, the usefulness of the limbo list, and the

effectiveness of ephemeral garbage collection.

5.1 The L Processor Emulation

The £ processor is, as of this writing, still very much in the design stage. The proceeding

chapters have intentionally glossed over most of the details of the EU and SMU, in part

because the subject of this thesis is .4, not £, but primarily because these other portions of

the Z architecture are much less well defined. The £ processor emulation described in this

chapter is built on a fairly complete implementation of A and a preliminary implementation

of the EU and SMU.

The term emulation is traditionally used to describe a low-level simulation of one pro-

cessor by another [Baer80O]. Emulators are typically implemented at the microprogram level,

so that the emulating machine can directly execute binary sources of programs written for

the emulated machine. One common use of emulation is to implement compatibility be-

tween various members of a processor family. Anther use of emulation, more germane to

this thesis, is to provide an instrumentable implementation of a machine that does not yet

exist. Because emulation is done at low level, the emulator is usually reasonably fast and

can support software development. The resulting programs, when run on the emulator,

can provide important performance information which can be fed back into architectural

decisions. Used in this way, emulation is a powerful tool for the computer architect.

There are a number of machines that could be called general purpose emulation engines.

The Nanodata QM- 1, Cal Data 100, and Burroughs 1700 all lack a native instruction set.

Inevitably, emulations written on these general purpose machines suffer from a poor fit

between the macro instruction language and the available hardware, leading to slower than

real time performance,' but this does not usually compromise the benefits of emulation.

The Explorer I processor [TI84], although principally used as a LISP execution engine,

has features that make it a reasonably good general purpose emulation engine. The most

important of these are a large (16K word) writable control store and a large number (over

1K) of scratchpad registers. The Explorer processor has 32 bit data paths throughout. Be-

sides the writable control store, internal memories include a 64 word M memory, 1K word

A memory, 1K word stack cache, 64 word microprogram control stack, and assorted special-

purpose registers. Another useful feature of the Explorer I processor is the general purpose

byte-field extraction and deposition operations. These instructions are able to manipulate

fields from 1 to 32 bits wide. As we will see in section 5.2.1, the emulator needs to per-

form many bit and byte operations. The Explorer I processor is based upon the CADR

processor [Knight79], and is built around the NuBus [Ward80], both developed at MIT.

5.1.1 Emulation History

The £ processor was originally the subject of a 100 instruction per second COMMON

LISP simulation [Blair86]. Next came an emulator, written in Explorer microcode, which

implemented the EU and some of the features of the SMU. 2 At about the same time, M began

evolving as a set of COMMON LISP functions callable from the emulator. This setup was

good for K's development but ran too slowly for much serious language development. The

implementation of M was then moved to microcode, and the EU and SMU implementations

were redone. This first full emulator, like its predecessor, shared microcode space with the

LISP system of a normal Explorer.

The most recent development is a port of the emulator to a specially modified Explorer

system (built by John Pezaris) that can contain multiple processors. In its current incar-

nation, this system runs with two processors (one running a normal Explorer LISP system

and serving as host, and the other running only the £ emulation) and emulates a single £

1For example, Marsland and Demco [Marsland78] present a study in which the QM- 1 emulated a PDP-
11/10 with a 50% performance degradation.

2 Work on this initial version was done by LaMott Oren.

processor.3 The emulator code in use on the multiprocessor system and the single processor

system are similar, but the multiprocessor system is simpler in many ways. The remainder

of this section describes the details of this multiprocessor emulation, which we call Co.

5.1.2 System Level Details

The eo system is built around a 16 slot NuBus chassis. The standard machine config-

uration contains two Explorer I processors, two 8 Mbyte memory boards, two I/O boards,

one network board, and one disk controller. The LISP system uses one memory and one I/O

board, and controls the disk and network. The £ processor uses a memory board and an

I/O board. Interprocessor communication in this system is done exclusively via the NuBus.

Each processor also has a local bus connecting it to its memory board.

The Z and LISP processors communicate via a 3-level message-passing protocol. 4 . The

lowest level of this protocol is used simply to load the correct microcode onto the C pro-

cessor; the next level is used for simple diagnostics. The highest level is a shared-memory

implementation of a message-passing system.

The £ processor's memory board is divided up into 4 regions: two message queues,

local memory space, and permanent memory space. The LISP processor's message queue

is located on the £ processor's memory board for simplicity's sake (the LISP processor's

memory board is under the control of its virtual memory system). The LISP processor

configures the exact layout of the Z memory board when booting the £ processor.

The emulation is interfaced to the user through a LISP control program. This program

is essentially a read compile emulate extract print loop. An expression is typed by the

user, and read in by the program. This expression is passed to a cross-compiler, written in

LISP, which produces £ machine code packed into code chunks in the permanent memory

of the £ processor. The control program then remotely invokes the emulator on the £

processor, passing it the ID of the STATE to begin execution from. The emulator runs until

it reaches the end of the code (or is stopped by a non-proceedable exception), at which time

it passes a status code back to the control program. The control program then extracts the

value produced by the emulation from the STATE chunk, and prints it out (or else prints

an error message). The high-level programming language is similar to SCHEME. Details of

'Chapter 6 will describe our plans for using this machine with multiple Z processor emulations.
4Much of the development work on this message system was done with Milan Singh.

this system are described in the £ Reference Manual [L87].

The emulator, implemented by approximately 2000 lines of Explorer microcode, is bro-

ken up into several modules:

* bootstrapping: startup of the £ processor

* message passing: communication with the LISP processor

* diagnostics: error reporting and debugging support

* control: initiation and completion of the emulation, instruction fetch and decode, state

management

* instruction execution: details of instructions

* operand access: dereferencing metanames, importation fault handlers

* garbage collection: details of gc

* exception handling: what to do if things go wrong

* accounting: collection of performance data

Of these modules, only operand access, garbage collection, and exception handling contain

important pieces of M.

5.2 Chunks in £o

Chunks in the Co system are mapped onto the flat address space memory provided by

the NuBus. This section presents details of chunk representation in Co and implementations

of the basic memory operations Elt and SetElt.

5.2.1 Chunk Mappings and ID Formats

Local chunks are mapped directly into memory; that is, a local chunk ID is the NuBus

address of the first slot of the chunk (neglecting tag bits). Values in Zo are 33 bits -

32 data field bits and the reference bit. Since the NuBus supports 32 bit words, we split the

reference bits of each slot off and keep them in the word holding the attribute bits. Each

local chunk occupies a block of 16 words. Words 0 - 8 hold the data fields for slots 0 -

8. Word 9 holds the reference bits for the other slots (including the hidden slots) and the

attribute bits. Word 10 is the permanent ID slot, word 11 is the link slot, and word 12 is

the forward slot. The last three words are unused. Because the reference bits are packed

together into a single word, testing and modification of these bits requires heavy use of bit

test, extraction and deposition operations. Most of the required bit operations can be done

with a single Explorer microinstruction.

Permanent chunks are laid out similarly, but are not necessarily directly mapped into

memory. Thus to go from a permanent chunk ID to an address, the emulator calls a special

translation routine. Currently, this routine simply returns the unmodified ID (i.e. permanent

chunks are directly mapped); future implementations of £ will use this translation routine

to provide virtual permanent chunk management (see section 6.3).

Because the NuBus addresses are byte addresses, and chunks are 64 bytes long, the low 6

bits of a given chunk ID are a constant (zero, in this case). Thus, these bits can be used

as tag bits. Currently, there is only one tag bit, which differentiates between a permanent

and local ID. There are 26 bits left over for the pointer portion of the ID, so the 0o system

can have up to 226 = 64 M different chunk IDs.

The emulator needs to perform three principal operations on IDs: calculation of an

address, given an ID and a slot number; comparison of IDs; and testing the tag bit of an

ID. The ID format describe above allows these three operations to be performed efficiently.

A slot address is composed by multiplying the slot number by four (to adjust for byte

addressing on the NuBus) and depositing the result in the low 6 bits of the ID. This can

be done in a single microinstruction. Testing IDs for equivalence requires one instruction if

the IDs are of the same type (both local or both permanent). Testing the attributes of an

ID takes one instruction. The to pointer format thus leads to efficient implementations of

common pointer operations.

The host LISP processor accesses a chunk by directly reading or writing the memory

location in question. Because the £ memory is not in the LISP physical memory map, these

operations look like I/O operations to the LISP processor, and so are "untyped". This is

an improvement over the single processor system, which expended considerable effort in

cooperating with the tagging conventions of the LISP machine.

(defun elt (chunk slot)
(cond ((local? chunk)

(simple-elt chunk slot))
((permanent? chunk)
(simple-elt (import chunk) slot))

(t (error "bad id"))))

(defun setelt (chunk slot value)

(cond ((local? chunk)
(simple-setelt chunk slot value))

((permanent? chunk)

(simple-setelt (import chunk) slot value))
(t (error "bad id"))))

(defun local? (bits)
(and (= 1 (reference-bit bits))

(= 1 (local-tag-bit bits))))

(defun permanent? (bits)
(and (1 (reference-bit bits))

(= 0 (local-tag-bit bits))

FIGURE 5-1: Elt AND SetElt IN M

5.2.2 Elt and SetElt

Operand accesses in Z machine instructions are specified in terms of MetanameFetch and

MetanameStore. As described in chapter 2, the compound memory operations Metaname-

Fetch and MetanameStore are built out of the simpler Elt and SetElt operations. Because

the EU is only allowed to dereference through local chunks, Elt and SetElt must check the

type of the chunk ID they have been passed, and invoke importation if necessary. Figure 5-1

gives an idea of how this can be done by examining the tag bits in each ID.

In this formulation, simple-elt and simple-setelt are primitive routines that deal

directly with the low-level implementation of local chunks. To hold 33 bit values, these

routines use two registers for each value. The first register holds the data bits, and the

second holds the reference bit in its Isb. Figure 5-2 shows simple-elt and simple-setelt;

the angle brackets in the argument lists denote the breakup of the 33 bit values.

The code in figure 5-2 is still somewhat simplified, because there are other excep-

tions that can arise. Chunk attributes must be checked during both simple-elt and

simple-setelt operations to detect locked, forwarded, and read-only chunks, so both of

these routines must read the reference bits of the chunk.

(defun make-address (data slot)

(dpb (* 4 slot) (byte 6 0) data))

(defun simple-elt (<i-data i-ref> <s-data s-ref>)

(if (= 0 (i-ref)) (error "bad id"))

(if (or (<= 0 s-data 8)
(= 1 s-ref))

(error "bad slot number"))

(read (make-address i-data s-data)))

(defun simple-setelt (<i-data i-ref> <s-data s-ref> <v-data v-ref>)
(if (= 0 (i-ref)) (error "bad id"))

(if (or (<= 0 s-data 8)
(= 1 s-ref))

(error "bad slot number"))

(write (make-address i-data s-data) v-data)

(set-ref-bit i-data s-data v-ref)
(set-dirty-bit i-data s-data))

FIGURE 5-2: simple-elt AND simple-setelt

Another complication that affects this code is pointer updating. Recall from chapter 4

that importation provides an equivalent local ID for some permanent ID. After an impor-

tation, pointer updating is supposed to replace the old permanent ID with the new local ID

so that future accesses will use the local ID. But Elt is passed a "disembodied ID" as an

argument; Elt (and hence import) have no idea where the ID has come from.

M contains a system which is able to properly update these disembodied IDs in most

cases.s A small (one ID) cache remembers the last permanent ID fetched in an Elt operation

and the location (chunk and slot) that the ID was fetched from. After finding a local ID,

but before returning, import compares the ID it was passed against this remembered ID.

If they match, then an update can occur; import writes the local ID into the remembered

location. The update cache is then invalidated. The update cache is also invalidated by

SetElt if the write done by SetElt is to the remembered location.

A one ID update cache is not large enough to correctly handle all name updates. In Co,

a large fraction of Elts occur as part of a metaname operation, where an ID fetched in step

i is dereferenced in step i + 1. In this case, a one ID cache is sufficient to catch most of the

updates.

"Not updating an ID does not compromise the storage abstraction, but will lead to unnecessary trivial
importations and poor estimations of the working set.

(defun mark (root)
(when (local? root)

(set-mark-bit-in root)
(let ((mark-stack (list root))

((current-chunk))
(loop

(setq current-chunk (pop mark-stack))
(do-slots (s current-chunk)

(when (and (pointer? s)
(local? s)
(unmarked? s))

(set-mark-bit-in s)
(push a mark-stack))

(if (null mark-stack) (return))))))))

FIGURE 5-3: MARK PHASE

The code for simple-elt and simple-setelt in figure 5-2 also performs range checks

on the slot number. If, as shown in the figure, the range of IDs is restricted to the data

and type slots of the chunk, then the hidden slots are truly hidden; they are completely

inaccessible to £ programs. This is fine for local memory, which is managed at a low level,

but we might wish to write high level £ programs to manage outer levels of the storage

hierarchy. One way of handling this would be to create a supervisor mode in which the

hidden slots became visible, and carefully code the supervisor routines so that the storage

abstraction is never violated.

5.3 Garbage Collection

The garbage collection emulator module is the heart of the A system. It is broken up

into several submodules - mark, first sweep, second sweep, importation, and allocation.

5.3.1 Marking

Marking proceeds basically as outlined in figure 3-1, except that only local pointers are

followed. Because marking does not cause object swapping, there is no inherent reason

to choose either breadth or depth first marking; M marks depth-first. The mark stack is

distributed through the link slots of chunks. This leads to a precondition on marking: no

markable chunk can be using its link slot before marking begins. Figure 5-3 gives a LISP

implementation of K's marking procedure.

(defun sweep-1 ()
(do-all-chunks (c)

(when (and (unmarked? c)
(local-permanent? c)
(dirty? c))

(do-slots (s c)
(when (and (pointer? s)

(local-temporary? a))
(promote s))
(if (unmarked? s)

(mark s)))))))

FIGURE 5-4: FIRST SWEEP PHASE

Because the reference bits for the entire chunk are clustered into a single word, the

pointer? test in figure 5-3 does not require reading the slot contents. On the other hand,

the local? test does require fetching the slot contents (a pointer) so that its tag bit can

be examined, and the unmarked? test requires fetching and dereferencing the pointer.

5.3.2 First Sweep

After marking completes, the garbage collector begins the first sweep pass. In this pass

each local chunk is examined to see if it contains a backwards pointer that needs to be

used in an auxiliary mark. Because local temporary chunks must be pointed to by local

pointers, backwards pointers that reside in marked local permanent chunks have already

been marked through in the mark phase. Thus the first sweep phase need only consider

unmarked local permanent chunks. Code for this phase is presented in figure 5-4.

The three tests in the outer when clause can all be done with information from the

attribute slot of the chunk. The test local-temporary? requires dereferencing a chunk

ID and reading the attribute bits. The inner when clause detects backwards pointers that

need to be marked from to preserve local temporary chunks. The routine promote changes

the status of a chunk from local temporary to local permanent. As a side effect of promote,

the original local ID is replaced with a permanent ID.

At the end of the first sweep we can make two assertions. First, all unmarked local

temporary chunks are truly garbage, and can be reclaimed. Second, all unmarked local

permanent chunks contain no local temporary IDs, and so can be limboized.

(defun sweep-2 ()
(do-all-chunks (c)

(cond ((and (unmarked? c)
(local-temporary? c))

(push-on-free-list c))
((unmarked? c)

(if (dirty? c)
(write-out c))

(push-on-limbo-list c))
((local-temporary? c)
(if (> (incf (age c)) threshold)

(promote c)))

(t (replace-ids-in c)))))

FIGURE 5-5: SECOND SWEEP PHASE

5.3.3 Second Sweep

The second sweep (see figure 5-5) re-examines each local chunk. Unmarked local tem-

poraries have all their reference bits cleared (to destroy any possible dangling pointers)

and are threaded onto the free list. Unmarked local permanent chunks are limboized -

if the chunk is dirty, then the associated permanent chunk is updated with an appropri-

ate (permanent-ID only) version of the new contents; then the local permanent chunk is

threaded onto the limbo list. Marked local permanent chunks are subjected to ID replace-

ment: all their local permanent IDs are replaced with equivalent permanent IDs (recall the

discussion in section 4.4.2). Marked local temporary chunks are aged, and promoted if over

the age threshold.

It is possible to merge the two sweeps into a single sweep. The only danger in not

performing the auxiliary marks triggered by the first sweep is that after the mark phase

there are some unmarked local temporary chunks that are not garbage. A unified sweep

would need to provisionally reclaim unmarked local temporary chunks. Limboization could

then be responsible for identifying those local temporary chunks that would have been

marked by an auxiliary mark in the two-sweep scheme. At the end of a unified sweep a free

list cleanup could then remove the non-garbage chunks from the free list. A unified sweep is

probably more efficient than two sweeps because the number of backwards pointers is usually

quite small. However, the current system uses two sweeps because the implementation is

simpler.

5.3.4 Chunk Allocation and Importation

The final submodule of the garbage collection side of the 4 system deals with chunk al-

location and importation. Importation has already been discussed in detail in section 4.3.1,

but there are a few subtle points to cheap importation. Allocation from the free list is

fairly straightforward, but allocation from the limbo list is more complex, because of cheap

importation. This section thus concentrates on cheap importation.

When a chunk is limboized, the local and permanent chunks still remember each other

(see figure 4-5). Limboization of a chunk in a local memory releases the ownership of the

corresponding permanent chunk. The owner field of a permanent chunk is actually split into

two fields - one for the current owner, and one for the former owner. When a permanent

chunk is imported into a local memory, that memory is made the current owner of the

chunk. Limboization copies the identity of the current owner to the former owner field,

and erases the current owner field. If the local copy is allocated for another purpose before

the chunk in question is cheaply imported, then the former owner field is erased, and the

associative links are destroyed. If the chunk is to be cheaply imported instead, then 4

checks the to make sure that either the owner id's match, or the former owner id matches

and the association is valid. Operations on the owner field of permanent chunks must be

done in an atomic manner because there can possibly be many local memories sharing a

permanent memory.

Because cheap importation can steal chunks off of the limbo list, allocation of free chunks

from the limbo list is more complicated. It is expensive to guarantee that the limbo list only

contains free chunks, because of the cost of deleting a random element from a singly linked

list. Cheap importation therefore simply sets the allocated bit in each chunk it reclaims.

When allocating chunks from the limbo list, 4 skips over chunks that have already been

allocated by cheap importation. Cheaply imported chunks are the only non-garbage local

chunks which keep important information in their link slot. The mark phase of garbage

collection uses the link slot, so before garbage collection can begin, all cheaply imported

chunks must be removed from the limbo list. This is called a limbo list cleanup. The

current system does not garbage collect until local memory is full, so it does not have to

worry about cleaning up the limbo list.

Table 5.1: Co EU INSTRUCTION CLASSES

5.4 The EU and SMU

As mentioned at the start of this chapter, the Co emulator also implements the EU and

SMU. This section presents some of the details of those systems. It is important to note

that the EU presented here is somewhat outdated, and the SMU used by Co lacks many

important features.

5.4.1 The EU

The EU in the Co system can execute about 55 different instructions, grouped into 11

classes (see table 5.1). Most of these instructions are in a one or two-operand format. Ldb,

dpb, and some of the data-structure instructions are three-operand instructions. Simple

instructions are encoded into 16 bits: 6 bits for an opcode and 5 bits each for source and

destination operands. The 5 bit operand field can directly encode all length one metanames

and most length two metanames. Longer metanames are encoded in an extra 16 bits

immediately following the instruction.

Co's EU has a built-in exception handler. No instruction is allowed to perform observable

side effects until it is guaranteed to complete without taking an exception. If an instruction

does cause an exception, the EU simply resets itself, aborting the instruction. The exception

is then handled and (assuming the exception is proceedable) execution resumes with the

instruction that caused the exception. This can result in a considerable waste of internal

state: a three operand instruction with each operand specified by a length four metaname.

This instruction can cause up to eleven importation faults (one on the STATE chunk, one

on the CODE chunk, and nine on the operand accesses). If this instruction is begun when

data movement move and movei
arithmetic and logical add, and, etc.

tests to affect condition codes
conditionals create boolean values from cc's

bit manipulation Idb, dpb, rotates, shifts
chunk allocation alloc

inter-state control call, return, and activate
intra-state control jumps and conditional branches

exceptions traps of various kinds
data structure support for lists, structures, and arrays

i/o NuBus operations, chunk-bit

there are fewer than eleven free chunks, it may abort after importing ten chunks (note that

allocation of a chunk is not a side effect).

Raw emulation speed on simple instructions (with short metanames) is about 0.2 Mips,

or 5 ps per instruction. Instruction fetch and decode takes about 1 ps, and operand accessing

takes the rest of the time. The Explorer microcode cycle time is 286 ns with a two-level

pipeline; so 5 ps corresponds to roughly 35 microinstructions, but many of the cycles are

taken up by wait states for memory operations. The compiler produces code with very long

metanames (which cause many memory cycles per instruction), so compiled code runs at

only about 50 Kips.

5.4.2 The sMU

The SMU's job is to keep track of runnable states. In Co, runnable states are pointed

to by task chunks, and all task chunks are kept in a doubly-linked ring. A register in

the Explorer processor, M-TASK, points to the task chunk corresponding to the currently

executing state. M-TASK is also used as the root ID in the mark phase of garbage collection.

The emulator runs a fixed number of instructions from the states pointed to by a task chunk

before moving on to another runnable state. Certain instructions, activate, deactivate,

and suspend, remove or add task chunks. Calls and returns do not affect the task ring

but instead swap state IDs inside of a task.

5.5 Some Results

The benchmark data presented here is not intended to demonstrate realistic speed char-

acteristics of either . or Z. There are several sources of inaccuracy. First, the execution

times in the emulator do not accurately reflect the performance that would be possible in a

custom Z system. Second, the compiler used in this benchmark produces very low-quality

code. In particular, the activation record size generated by this compiler is several times

larger than necessary. Because these activation records are built from chunks, the dynamic

fraction of allocation instructions is approximately 14%. This forces M to do a lot more

work than it should, and hence makes M look slow. Third, the EU speed of this system is

unrealistically slow, meaning that the mean percentage of time spent executing instructions

is too high (this makes M look better than it is). Finally, Hilbert and the other bench-

marks are very small programs that do not really test the virtual memory aspects of M

with much rigor. Larger and more realistic benchmarks are in the works, but depend on

some ongoing compiler development.

The benchmark information is not without value, however. The benchmark programs

do provide good examples of the ephemeral garbage collection aspects of M, and they give

achievable (but not very remarkable) points on the performance curve. The benchmark

data indicates that at least some of the design decisions and assumptions behind M are

borne out in practice. Even so, it would be misleading to extrapolate very far from such a

small and biased set of data points.

5.5.1 The Benchmarks

The data presented in this section was collected by running three different benchmark

programs. During these benchmarks, the emulator maintained about 20 event counters, a

timer (real time) for each of the garbage collection phases, and a timer for the total run

time. Each test was run from a "cold-start" configuration, with all STATE, code, and data

chunks initially located in permanent memory (as in the example in chapter 4). The only

parameter that varied in this study was the size of the local memory: it ran from 250 to

10000 chunks in 74 steps.

Hilbert

The Hilbert benchmark was designed to test the ability of M to cope with large numbers

of ephemeral activation records. Hilbert contains four mutually recursive functions that

together draw Hilbert curves (figure 5-6 shows the first through sixth order curves). The

high-level Z code for Hilbert is given in figure 5-7. The benchmark program drew the first

through seventh order Hilbert curves in succession.

Starburst

The second benchmark, Starburst, draws several star-like patterns on the screen.

Starburst is iterative, not recursive, and so does not have as large of a working set as

Hilbert.

FIGURE 5-6: FIRST THROUGH SIXTH ORDER HILBERT CURVES

Tree

Hilbert and Starburst only allocate chunks to create new activation records. Since

the two programs run in strict lifo order, these activation records become garbage quickly.

The Tree benchmark is intended to measure the cost of slightly longer term storage. Tree

inserts and deletes nodes from binary tree, so it deals with a data structure that persists

longer than a typical activation record.

5.5.2 Overall Results

The benchmarks confirm some general impressions of how M works. For a given bench-

mark, the performance statistics all show roughly matching "knees" located at some value

of the local memory size. (see, for example, figure 5-8). We can interpret this value as

an estimate of the working set size of the benchmark. Local memories larger than this

working set size all have comparable statistics. Smaller local memories cause A to work

much harder.

The time required to garbage collect follows the same pattern (see figure 5-9). For

sufficiently large local memories, garbage collection requires around 3% of the total run

(define (Hilbert (order %integer%))

(block

(define h %integer% 512)

(define x %integer% 0)

(define y %integer% 0)

(define xO %integer% (truncate h 2))
(define yO %integer% xO)
(define (plot)

(block(draw-line xO yO (- x xO) (- y yO))

(setq xO x)

(setq yO y)))

(define (a (i %integer%))

(if (> i 0) (block (d (1- i)) (setq x (-
(a (1- i)) (setq y (-
(a (1- i)) (setq x (+

x h)) (plot)
y h)) (plot)
x h)) (plot)

(b (i- i)))))

(define (b (i %integer%))
(if (> i 0)

(define (c (i

(if (> i 0)

(define (d (i

(if (> i 0)

(block (c (1-

(b (1-
(b (1-
(a (1-

%integer%))
(block (b (1-

(c (1-
(c (1-
(d (1-

%integer%))
(block (a (1-

(d (1-
(d (1-
(c (1-

i)) (setq
i)) (setq
i)) (setq

i)))))

i)) (setq
i)) (setq
i)) (setq
i)))))

i)) (setq
i)) (setq
i)) (eetq
i)))))

y h))
x h))
y h))

x h))

y h))
x h))

y h))

x h))
y h))

(plot)
(plot)
(plot)

(plot)
(plot)
(plot)

(plot)
(plot)
(plot)

(dotimes (i order)
(setq h (truncate h 2))
(setq xO (+ xO (truncate h 2)))
(setq yO (+ yO (truncate h 2))))

(setq x xO)

(setq y yO)

(a order)))

FIGURE 5-7: HILBERT CURVE PROGRAM

28000

24999

1200B
C

~ 29999

000

U.

000o 16999
(8
JJ

o 12999
C

~ 8999
U.

4999

0 I I I I i I I I I I
9 2000 4000 5000 8000 19000

Local Mneory Size (chunks)

FIGURE 5-8: TYPICAL BENCHMARK CURVE

time. For very small local memories, garbage collection time can be as much as 25% of the

run time, depending upon the benchmark. In this latter case it is not really fair to charge

all of this time to the garbage collector, since very small local memories force M to do a

lot of virtual memory work in the garbage collection cycles (recall that limboization and

working set estimation both happen during garbage collection). In the limit of small local

memories, M thrashes just like traditional virtual memories do, because the working set

does not fit into the local memory.

The above results lead to the question of just how big the local memory should be.

This question is similar to the question of how big a physical memory is needed in a virtual

memory system. The answer is simply that the memory size should be such that the cost

savings in adding more memory is exactly offset by the cost of that memory. Of course,

this depends critically upon how cost is measured. In the benchmarks presented here, there

is no advantage to having a local memory of more than about 2K chunks, but as we have

noted, these benchmarks are tiny programs. A "workstation" type £ machine would need

a much larger local memory, perhaps 128K chunks.

It is tempting to look at the performance of M running these tiny benchmarks in very

small local memories as indicative of how large programs would behave with reasonable

amounts of local memory. In other words, for a given benchmark, we can divide the local

memory size by the estimated working set size and get a parameter p that measures the fit

30.0039.99

29.00

10.00

0.00

- Tree

9 2000 488000 500 8000 188880000

Local HeMory Size (chunks)

FIGURE 5-9: FRACTION OF RUN TIME SPENT IN GARBAGE COLLECTION

of the benchmark to the local memory. If p > 1 then we are in a "large memory" regime; in

this regime overall performance is not limited by the memory system, and the performance

curves should be independent of p. When p P 1 or less, we are in a "small memory" regime;

here performance depends on p. A p-based generalization is probably not a very good one,

because the behavior of large programs is much more complex than small ones, but it does

give a rough idea of what could happen.

5.5.3 Effectiveness of Ephemeral Collection

Hilbert allocates roughly 15 million chunks during its run, all of which eventually

become garbage. Figure 5-10 illustrates the number of permanent chunks allocated during

Hilbert. Even with a local memory as small as 250 chunks, only about 0.5% of temporary

chunks survive and get promoted to permanent status. For larger local memories this

percentage falls off to 0.02%. Thus, M is able to collect a large fraction of the garbage

created by Hilbert in the local memory. The other benchmarks show similar results.

Small local memories (p s 1) force . to make a decision about the permanancy of a chunk

too soon, and so 4 guesses incorrectly more often. For large local memories, M is able to

wait somewhat longer and is able to guess more accurately.

cu, 69999 -
MU
.

C
0

cn

LU 49999 -0

a)CUC
w 29999 -
C
0
L
S,

a.

I i I I I I I I
0 2000 4900 6000 8000 10090

Local Memory Size (chunks)

FIGURE 5-10: NUMBER OF PERMANENT CHUNKS ALLOCATED DURING Hilbert

5.5.4 Hit Ratio. Importation and the Usefulness of Limbo

We can define the hit ratio in M as the fraction of Elts and SetElts which do not take an

importation fault. Since all metaname operations start at the STATE chunk kept in the EU,

and this ID is explicitly made local during the instruction fetch, no metanames can suffer

faults on their first link (but subsequent links can cause importation faults). Because .

is not responsible for this, we amend the above definition of the hit ratio: the primary hit

ratio is the fraction of Elt and SetElt operations that do not take an importation fault and

are not simply passed the STATE as an ID. This version of the hit ratio will measure how

well . can keep local memory filled with interesting chunks. As the data from Hilbert

shows in figure 5-11, the primary hit ratio (solid line) varies from 96.5% to 98.5% as the

local memory size grows.

Because importation faults can be handled in three different ways, depending upon

circumstances, we can also define other hit ratios; for example, the secondary hit ratio

is simply the primary hit ratio plus the fraction of Elts and SetElts that cause a trivial

importation. The secondary hit ratio, also shown on figure 5-11 (dotted line), varies from

98.5% for a small local memory to 99.9% for a large local memory.6

Figure 5-12 shows the distribution of importation fault handling among trivial, cheap,

6The primary hit ratio levels off at 98.5% because there are a few cases of name updating that the one
ID update cache does not detect. One of these occurs in the calling sequence used by the Lo compiler.

" 60000

40000

20000

o

100.00-

C
0)U
L
0)
,R

0 98.00-

,

96.99 I I I I I I I I
9 2090 4000 6000 8000 10000

Local Mneory Size (chunks)

FIGURE 5-11: HIT RATIO

and full importations. Note that cheap and full importation faults are much rarer than

trivial importations. Cheap and full importations never happen in more than about 10%

of importation faults; typical percentages are much lower. The maximum number of cheap

and full importations comes when the local memory size is small. One question raised in

chapter 3 was whether the cost of maintaining the limbo list is worth the potential gains

of cheap importation. The answer to this question, based upon the benchmark data, is a

qualified no.

The disadvantages of maintaining a limbo list and allowing cheap importation are that

it greatly complicates garbage collection, importation, and chunk allocation (these compli-

cations occur mainly in the form of additional cases that each module must consider, and so

do not directly impact the performance of the other, more frequently used cases, like trivial

importation). The main advantage of cheap importation is that it saves us from having to

copy the contents of a chunk from permanent to local memory. Because cheap importations

are relatively rare, and the checks for when cheap importation is permitted are about as

costly as copying a chunk's worth of data from one place to another, cheap importation

does not provide any benefits to the current system.

The qualifications to this conclusion are twofold. First, cheap importations rise dramati-

cally as the local memory size is made smaller (p ;z 1).The second qualification concerns the

cost of full importation. The current M system does not model all the aspects of permanent

+

100.80-

L

0 60.B

C .0

4-)
L

2 80.00-U

L

002

L
0

c 40.08-

C~ 20.00-c

L
02

0.BB

- Trivial
- Cheap

- Full

a 2000 4000 6000se 8000 188

Local Memory Size (chunks)

FIGURE 5-12: DISTRIBUTION OF IMPORTATION FAULTS

memory. We have preliminary plans (discussed further in chapter 6) for a virtual permanent

memory; under such a model permanent chunk access would be much more expensive than

it is now. Thus, cheap importation may be valuable in the future.

5.5.5 Cost of Temporary Storage

On a flat address space architecture, stacks are an optimum structure for implementing

block-structured languages. In £ this stack must be built out of chunks. Because stack

storage is used only temporarily, simulation of a control stack with chunks causes large

amounts of chunk allocation and deallocation. These operations are potentially much slower

than stack pushes and pops, and could substantially limit the performance of Z.

There are several possible solutions. One is to have the compiler detect when an activa-

tion record is no longer needed and explicitly deallocate it, perhaps returning it to a special

activation record pool. This solution is complicated by multichunk activation records; it

is possible that the number of instructions needed to explicitly deallocate a multi-chunk

structure could take longer than the garbage collector takes to reclaim the same structure.

We thus rely on the garbage collector to efficiently reclaim activation records.

A separate experiment was run on the Zo system to measure the cost of temporary

storage. This experiment compared the execution time of the two loops shown in figure 5-

13. The code on the right allocates a chunk each time around the loop, and then destroys

-

(movei 500000 (2)) (movei 500000 (2))
loop-0 (movei 0 (3)) loop-1 (alloc (3))

(movei 0 (3)) (movei 0 (3))
(inc -1 (2)) (inc -1 (2))
(jgt loop-0) (jgt loop-i)

FIGURE 5-13: LOOPS FOR MEASURING COST OF TEMPORARY CHUNKS

the reference to it. The code on the left executes the same number of instructions with the

same instruction sizes but does not allocate any chunks. The run times of the loops should

be similar except for the time needed to execute the alloc instruction. By subtracting

the run times for these two loops, we can therefore estimate the cost of using a chunk

temporarily.

The experiment was run for both 200,000 and 500,000 loop cycles. The difference in run

times divided out to about 13.5 ps per cycle, implying that the cost of allocating and then

implicitly deallocating a chunk on the emulator is 13.5 ps. This is about the same amount

of time that it would take to run the two instructions that would be needed to allocate and

deallocate the chunk. Thus, on this emulator at least, it is just as time-efficient to let the

garbage collector discover and reclaim an inaccessible chunk as it is to try and explicitly

return the chunk to the free list via some type of deallocation instruction.

5.5.6 Summary of Benchmark Results

The benchmark results presented in the preceding sections were intended to demonstrate

the following points about M:

* The performance of M depends on many factors. The most important of these are

the local memory size and the working set sizes of the programs. Small values of p,

the ratio of estimated working set size to local memory size, force M to adopt a more

virtual memory-like aspect.

* The garbage collection algorithm used by M does not appear to cause a performance

bottleneck unless p is very small. The performance degradation that occurs for small

p is a manifestation of the limitations of a virtual memory system, and not an integral

problem with the garbage collector.

* Ephemeral garbage collection in M works well. Its effectiveness declines somewhat as

p does, because small local memories force M into making premature decisions about

the temporality of chunks.

* Temporary storage is inexpensive. The garbage collector requires about as much time

to reclaim a temporary chunk as the EU would require to run an instruction to reclaim

the chunk.

[61 Future Work

M is rather preliminary in many ways. Because the £ architecture is not yet well-defined,

future developments may require extensive modification or redesign for M. This section

explores some of the possible directions that work on M and related systems could take.

6.1 Prediction of the Working Set

As mentioned in section 4.4.2, the way that M estimates the working set is rather

primitive. The combination of replacement of local permanent IDs by equivalent permanent

IDs during the second sweep and trivial importations effectively implements a simple variant

of the working set page replacement algorithm [Baer80]. Just before a garbage collection,

the local permanent chunks that are locally accessible are exactly those that either were

dereferenced through in the processing phase preceding the garbage collection or are pointed

to by temporary chunks. Just after a garbage collection, no local permanent chunk is locally

accessible from another.

We can do away with pname updating and subsequent trivial importation by correctly

tracking which local permanent chunks are in the working set. One way to do this is to

include a visited bit in each chunk. This bit is cleared by the sweep and then set if the

chunk is used in an Elt or SetElt operation. When we examine memory just before garbage

collection, all visited chunks are also locally accessible (thanks to importation), but some

locally accessible chunks have not been visited. These latter chunks are out of the working

set estimate, and should be exportable. The difficulty here is that in order to export a

chunk, all local IDs referring to that chunk must be replaced. This requires checking all the

local IDs in a visited local permanent chunk to see if they point to non-visited chunks, and

updating them if they do. All IDs in non-visited local permanent chunks would be updated

as well.

If we drop the requirement that all non-visited local permanent chunks be exportable,

then the above method is simplified; we now only need to update IDs in non-visited local

permanent chunks. This allows some of the current non-visited chunks to be exported after

two garbage collections: the first to replace IDs and make these chunks locally inaccessible,

and the second to actually limboize them.

The decision about whether or not M needs an improved working set estimate cannot

be made without realistic statistics about M's performance. Our emulation does not collect

the necessary information to extrapolate the real-time performance of M, and our language

technology does not provide the ability to test 4 on realistic benchmark programs. Both

of these barriers will hopefully be removed in the near future.

6.2 Multiple Processors and Memories

Our current model for Z includes provisions for many processors and many memory

banks. A does include some preliminary features intended to support multiple processors

and other memories. There are many different ways that a system like this can be organized.

A single local memory can support multiple EUs. The synchronization between EUs can

be done with the lock primitive. The number of EUs that can operate from a single local

memory will be primarily determined by the bandwidth requirements that the memory is

able to meet. A slow local memory may only be able to support a few EUs.

Multiple local memories can share a permanent memory. Synchronization among local

memories can be accomplished by the ownership protocols for permanent chunks. Our

ownership mechanism does not currently allow for shared access to permanent chunks.

There are many problems that need to be examined in a multiprocessing system -

interprocessor communication, distribution of work among processors, garbage collection

of shared memory areas, to name a few. We hope that the £ processor emulations will

allow us to conduct reasonable experiments to measure the effects of different architectural

decisions.

6.3 Management of Permanent Memory

As mentioned in chapter 3, M manages just one (well, maybe one and a half) levels of the

£ memory hierarchy. This section presents some preliminary ideas towards the structure

of the manager for the next lower (more permanent) level of memory.

A permanent memory will be shared by some number of local memories. Because of this

it will have to implement some of its activities in atomic fashion (for example, test of and

modifications to the owner field of permanent chunks). Permanent chunks will probably

be organized somewhat differently than local chunks (in the current system, they are very

similar) because the additional information used by M will only need to be kept for the small

fraction of permanent chunks actually owned by one local memory or another. Chunks may

be a good unit for memory management when the memory implementation is RAM, but

mass storage devices like disks do not efficiently deal with individual transfers of this small

an amount of storage. Because a permanent memory will interface to mass storage devices,

there needs to be some way to cluster chunks together into cohesive units that can be

transferred to and from the disks.

Garbage collection in permanent memory will hopefully be relatively infrequent. If M

does a good job, only a small fraction of the objects created in the permanent memory will

become garbage. Even so, it is probably a good idea for this next level of memory to itself

include an ephemeral level, because the number of chunks in permanent memory is much

larger, and any garbage collection process that had to examine all the reachable objects

would be very slow. Because there are advantages in clustering related objects, and a wide

virtual address space, semispace methods may be more appropriate than the methods used

by M in the local memory, even though the fraction of live objects will be high.

6.4 Purely Relative Namespaces

Computer architects have shown a remarkable ability to underestimate the need for

address space. Whenever an address space crisis looms on the horizon, architects tack on

a few more bits of address and consider the problem solved, since each extra bit doubles

the address space. Still, it is tempting to consider a machine architecture that has an

effectively infinite address space, so that it never has to be redesigned to accommodate

longer addresses.

We feel that metanames are a valid mechanism for building effectively infinite address

spaces. A metaname is a kind of operational address for an object, and each stage of the

metaname specifies local knowledge of addressability but not any global knowledge. As an

example, consider an ant that is able to traverse chunk pointers. Given some arbitrary

mesh of chunks and a metaname, the ant is able to traverse a path through the mesh. At

each chunk, the ant need only know the first element of the metaname to decide where to

go. No restriction is placed upon the size of the mesh.

Given a mesh of some size, it is clear that the number of different pointers required is

equal to the number of nodes in the mesh. Since pointers must be finite-length, this does

restrict the size of the mesh. This restriction can be circumvented by breaking a large mesh

up into some number of domain8, each containing a finite number of local nodes. A pointer

that crosses a domain is forced to do so through a domain interface. This interface provides

a translation between the ids in one domain and the ids in another.

The creation of domains simply pushes the problem of address space up one level. In-

stead of an unbounded number of mesh nodes, we now must deal with an unbounded number

of domains. Because domain identifiers are invisible to the low-level storage abstraction,

they do not have to be designed to fit into a fixed-length location. The interface between

local and permanent memories in .M is in some ways similar to a domain interface. In par-

ticular, permanent chunk IDs may be in reality much longer than local chunk IDs. What the

local memory sees as permanent chunk IDs could be in reality just indexes into the domain

interface table.

6.5 Metacaching

EU instructions with long metanames can take a long time to execute. For example,

the instruction

(move (2 5 7 4) (2 5 0 3))

requires 7 Elts and 1 SetElt. Because the first two links of the source and destination

operand metanames are identical, a literal execution of this instruction will do more work

than is absolutely necessary. Metacaching provides a way of associating metanames with

chunk IDs so that the memory system can speed up the dereferencing of metanames.

Assume that we have an empty metacache and we execute the above instruction. During

the source phase we fully dereference the source metaname. After each Elt, a record is made

in the metacache of a metaname and a terminal ID. At the end of the source phase, the

metacache holds a set of four associations:

(2) -- A

(2 5) -- B

(2 5 7) -- C

(2 5 4 7) -- D

Here we have used A, B, C, and D to denote the chunk IDs encountered during dereferencing.

When we enter the destination phase, we note that we have a partial match between the

first two elements of the destination metaname and one of the metacache entries. Instead

of fully dereferencing (2 5 0 3) we can reach the same end point by dereferencing (0 3)

starting from root chunk B.

There is one subtle point to metacaching which makes it difficult. It is possible to

have many valid metanames that terminate in the same ID. A MetanameStore may affect

many metacache entries. The metacache must therefore keep track of the interdependencies

between metanames. One way of doing this is presented in [Singh87]. In this scheme, a

MetanameStore invalidates a set of metacache entries which includes the entries directly

affected and some other metanames that really did not need to be invalidated. These extra

invalidations are due to the encoding of the dependencies.

Another source of complication arises when the root chunk is changed. In a function

call, the root chunk gets changed to a nearby chunk (that is, one reachable from the root

by some metaname). In this case it may be possible to retain some of the metacache entries

by suitably revising the metanames. If the new root chunk is not a nearby chunk, then all

the metacache entries must be invalidated. This makes metacaches (in their present form)

rather unattractive if the processor switches contexts frequently.

A metacache will work well if there is a lot of commonality among metanames, the

metacache is able to keep tight control over the dependency tracking, and the metacache is

not thrashed too badly by context switches. We have some sketchy plans of incorporating

a metacache simulation in the emulator to test out the feasibility of metacaching.

6.6 New Emulations

The C architecture emulations will be undergoing many improvements in the near fu-

ture. The first change will be the adaptation of the emulator to Explorer II processors. This

will hopefully speed up emulation by a factor of three to five. The second change will be the

development of a new EU instruction set. Our experiences with the current instruction set

(and doubts about the usefulness of metacaching) have led us to consider an instruction set

in which the processor is restricted to using short metanames in a majority of instructions.

Because of the reduced number of memory accesses, this new instruction set will emulate

more quickly. The final major change will be the exploration of a multiple-emulator multi-

processor; we will be able to run some limited number (perhaps as many as 6) C processor

emulations concurrently.

[Conclusions

As computing models change, underlying machine structures must change if they are to

efficiently simulate those models. This can be thought of as a kind of conceptual eigenprob-

lem - for a given computational model, there are certain machine architectures which lend

themselves more naturally to efficient implementations of that model. Because of Turing

equivalence, many reasonably sophisticated architectures will be able to simulate a particu-

lar model, but some subset of all such architectures will be able to do it better than others.

The , architecture project is an attempt to create a more natural machine architecture

for computational models based upon objects, first-class functions, and inherent low-level

concurrency.

This thesis has presented the design and implementation of a memory system, M, usable

by the L architecture, that is based upon a simple object model - all objects are created

from fixed-sized chunks. The constraints on M are the chunk basis, some known and

intuitive properties of L's computational model (temporary storage, locality of reference),

and some desirable properties for memory (large numbers of chunks, quick access to chunks,

cheap temporary storage). A shares some of these constraints with and draws inspiration

from previously implemented object-oriented memory systems.

The main features of M are its dual namespace (local and permanent memories) and

its integration of virtual memory and garbage collection techniques to manage the local

memory. The division of memory into these two spaces allows temporary objects to be

garbage collected without requiring examination of the larger body of permanent objects;

the integration of this garbage collection with the virtual memory system minimizes the

disruption of the working set by the garbage collector.

M's weaknesses lie in several areas. First, the algorithms used by M may be too complex.

For reasonable performance, M will need to be at least partially implemented at a very low

level; there is not much room for complexity in such an implementation. A can be simplified

somewhat (perhaps without seriously degrading performance) by the elimination of the

limbo list and cheap importation. Second, the mark/sweep garbage collection techniques

used by A may not be the most efficient. A semispace method may actually work better

if there is a consistently large fraction of garbage in the local memory, because semispace

methods only need to examine non-garbage objects. Third, M is not very sophisticated when

it comes to estimating the working set. It is not clear whether this is a serious limitation or

not. Finally, M associates a rather large bundle of overhead storage with each local chunk,

and thus wastes local memory. Since many of the extra fields are not used by some chunks

(e.g. local temporary chunks do not need the associated permanent chunk field), it may be

possible to keep the extra information required by M in special, space-efficient tables.

As for strengths, 4 appears to do a good job of handling ephemeral garbage. A large

percentage of garbage chunks are reclaimed in local memory, and the reclamation process is

reasonably efficient. Temporary storage can be recovered by the garbage collector about as

quickly as it could be explicitly freed by the programmer. A maintains a reasonable local

ID hit ratio, indicating that the virtual memory aspects work fairly well. Access to local

chunks does not require any searching, hashing, or special-purpose hardware. A supports

special operations like locking and caching chunks.

J. Baer, Computer Systems Architecture, Computer Science Press, Rockville,
MD, 1980, 355 - 357.

H. Baker, List Processing in Real Time on a Serial Computer, Communica-
tions of the A CM 21, 4, April 1978, 280 - 294.

M. R. Blair, A Simulator for the L Architecture In Common Lisp, B. S. The-
sis, Deparment of Electrical Engineering and Computer Science, Mas-
sachusetts Insitute of Technology, May 1986.

[Cohen81] J. Cohen, Garbage Collection of Linked Data Structures, ACM Computing
Surveys 19, 9, September 1981, 341 - 367.

[Courts87] B. Courts, Obtaining Locality of Reference in a Garbage-Collecting Memory
Management System, paper submitted to the Communications of the ACM.

[Dijkstra78]

[Fabry74]

[Fenichel69]

[Goldberg83]

[Halstead84]

[Kaehler81]

[Kaehler83]

E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. Steffens,
On-the-fly Garbage Collection: An Exercise in Cooperation, Communica-
tions of the ACM 21, 11, 966 - 975.

R. Fabry, Capability-based Addressing, Communications of the ACM 17, 7,
July 1974, 403-412.

R. Fenichel and J. Yochelson, A Lisp Garbage Collector for Virtual-Memory
Computer Systems, Communications of the ACM 14, 8, November 1969,
611 - 612.

A. Goldberg and D. Robson, Smalltalk-80: The Language and its Implemen-
tation, Addison-Wesley, Reading, Mass., 1983.

R. Halstead, Implementation of Multilisp: Lisp on a Multiprocessor, ACM
Sympoeium on LISP and Functional Programming, Austin, Texas, August
1984, 293 - 298.

T. Kaehler, Virtual Memory for an Object-Oriented Language, Byte, vol. 6,
no. 8, August 1981, 378 - 387.

T. Kaehler and G. Krasner, LOOM - Large Object-Oriented Memory for
Smalltalk-80 Systems, in Smalltalk-80: Bits of History, Words of Advice, G.
Krasner (editor), Addison Wesley, Reading, MA, 1983, 251 - 271.

Bibliography

[Baer80]

[Baker78]

[Blair86

[Knight79] T. Knight, D. Moon, J. Holloway, and G. Steele, CADR, A. I. Memo 528,
MIT-AI Lab, Boston, MA, May 1979.

[L87] A. Ayers, R. Saens, M. Singh, and S. Ward, L Reference Manual, unpub-
lished memo of the MIT Laboratory for Computer Science.

[Liberman83] H. Lieberman and C. Hewitt, A Real-Time Garbage Collector Based on the
Lifetimes of Objects, Communications of the ACM 26, 6, 419 - 429.

[Marsland78] T. A. Marsland and J. C. Demco, A Case Study of Computer Emulation,
INFOR, vol. 16, no. 2, June, 1978, 112 - 131.

[Moon84] D. A. Moon, Garbage Collection in a Large Lisp System, Proc. 1984 ACM
Symposium on Lisp and Functional Programming, August, 1984, 235 - 246.

[Rees86] J. Rees and W. Clinger, Eds., Reviseds Report on the Algorithmic Language
Scheme, A. I. Memo 848a, MIT-AI Lab, Boston, MA, September 1986.

[Singh87] M. Singh, A CMOS VLSI Implementation of the L Metacache, final report
for the class 6.371 (at MIT), Spring 1987.

[Smith82] A. Smith, Cache Memories, ACM Computing Surveys, vol. 14, no. 3, Septem-
ber 1982, 473 - 530.

[Steele75] G. L. Steele, Multiprocessing Compactifying Garbage Collection, Commu-
nications of the ACM 18, 9, 495 - 508.

[Steele84] G. L. Steele, Common LISP: The Language, Digital Press, Bedford,
MA, 1984.

[Terman85] C. Terman and S. Ward, L Project Proposal, private communication.

[TI84] EXPLORER Processor Specification, TI Proprietary Document, Copyright
1984, TI Part Number 2236414, November 6, 1984.

[Ungar84] D. Ungar, Generation Scavenging: A Non-Disruptive High Performance
Storage Reclamation Algorithm, A CM Software Eng. Notes / SIGPLAN No-
tices, Software Engineering Symposium on Practical Software Development
Environments, Pittsburgh, PA, April 1984.

[Ward80] S. Ward and C. Terman, An Approach to Personal Computing, Proc. Spring
COMPCON, San Francisco, February 1980.

[White80] Jon L. White, Address/Memory Management for a Gigantic LISP Envi-
ronment or, GC Considered Harmful, Conference Record of the 1980 LISP
Conference, Stanford, CA, 1980, 119 - 127.

