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ABSTRACT

Simultaneous transport of heat and mass with phase change is of
practical importance in applications such as the design of
energy-efficient buildings.

An analytical model for the simultaneous transport of heat and
mass with phase change in a porous slab subject to temperature
and vapor-concentration differentials is developed. Closed-form
solutions for temperature and concentration profiles are obtained
by linearizing the governing differential equation in the
two-phase zone. Those are matched to the imposed boundary
conditions yielding complete solutions for two regimes; that
where the liquid is mobile and the limiting case of pendular
condensate. The analytical results are obtained for the cases of
steady-state condensation, and quasi-steady transients associated
with step changes in the boundary-conditions. The analytical
solution compares favorably with the numerical results.

Liquid diffusion in fiberglass insulation was studied
experimentally. The medium-properties which control
liquid-diffusion in fibrous media are found to be fiber-radius,
directional fiber-density, macroscopic void-fraction, tortuosity
factor, orientation of the medium with respect to gravity, and
the spatial-distribution of the void-fraction. The experimental
results are found to agree satisfactorily with the model
predictions.

Moisture migration and condensation in a typical
wall-construction is investigated. It is found that the
condensation rate depends on the climatic conditions,
air-infiltration rates, and the location of the vapor-barrier, as
well as the thermal and diffusive properties of the materials
used in the wall-construction. Worst case scenarios indicate
that in improperly designed wall structures moisture condensed
during the cold-season may not evaporate completely during the
warm-season. This will result in irreversible damage to the
building shell.
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Thesis Committee Members: Professor W. M. Rohsenow
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Professor S. Backer
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Latin

C Vapor concentration

C* Saturation vapor concentration

D Diffusivity

F Cumulative frequency distribution

f Frequency density distribution

2
Fo' Fourier Number = D L /tvw

2
Fo'' Fourier Number = D L /t

1w

2Fo* Fourier Number = DlLT /t
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91 Function defined in eq. [5.4.14]
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h Thickness of a layer in the fiberglass insulation

hfg Latent heat of condensation

hfs Latent heat of solidification
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k Thermal conductivity
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13
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-14-



L Width of the condensation-region
w

Le Lewis number

M Ratio of vapor-diffusivity to liquid-diffusivity = D /D

ni/N Directional fiber density

N Total number of fibers of unit length per unit volume

P Pressure

Pe Peclet number

(q/A) Heat flux per unit area

r Radial Coordinate

rd Hydraulic radius

rf Fiber radius

r Equivalent suction-radius

r* Equivalent diffusion-radius

S Term defined in eq. [5.3.2.20]

t Time

T Temperature

T* Temperature in the Condensation-region

u Velocity

u. Boundary condition variable, eq. [2.5.15]
1

U Velocity

(W/A) Condensation rate per unit area

x Length-scale in condensation-region

z Length-scale in the slab

Greek

a Liquid diffusivity

-15-



a Ratio of two liquid-fluxes, eq. [2.4.42]

3 T/T

y hfg/RTr

V Contact angle

E YVoid fraction

E. Directional void fraction

ET Macroscopic void fraction

Non-dimensional distance

( Non-dimensional distance

Dimensionless temperature

0 Liquid-content

8 Critical liquid-content

.A Latent heat transport coefficient

P Viscosity

v Kinematic viscosity

p Density

Pe Electric resistivity

a Surface tension

Ti  Tortuousity factor

T Correction factor, eq. [2.5.14]

F Condensation rate per unit volume

A Ratio of two condensation rates, eq. [4.4.2]

'p Stream function

£2 Kossovitch number, eq. [2.3.12]

SA variable, eq. [2.3.20]

-16-



Subscripts

c Cold

h Hot

f Fluid

g Gas

1 Liquid

s Steady-state

t Transient

v Vapor

0 Variable associated with L0

1 Variable associated with L

Superscripts

Variable evaluated in the condensation-region

Mean value

Variable associated with the condensation-region

-17-



The Libraries
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Institute Archives and Special Collections
Room 14N-118
(617) 253-5688

There is no text material missing here.
Pages have been incorrectly numbered.

(P/3,:



CHAPTER 1

INTRODUCTION

In the last decade much attention has been focused on the

inevitable decrease in the supply of cheap energy. It has,

therefore, become imperative to take measures to reduce energy

consumption without declines in the standard of living. In the

past ten years many energy conservation schemes have been put

into effect and significant savings have materialized. The

building industry has been the latest newcomer to the area of

energy-conservation. Buildings, especially residential buildings

are constructed without any strong commitments to

energy-efficiency. About one-third of the energy consumption in

this country is used for sapce-heating. A small decrease in

every building's energy consumption results in a significant

decrease in the national oil-consumption.

Energy loss through the building-shell takes place through

different mechanisms. The major mechanisms are air-infiltration

and conduction through the walls. With the sources of heat-loss
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known, the remedies seem to be clear. Added insulation decreases

heat transfer through the walls, and a tighter building

construction should decrease the air-infiltration paths.

However, in existing structures the infiltration paths cannot be

easily discovered, and even when discovered cannot be easily

obstructed. On the other hand, insulation may be added to the

building-shell at minimal cost. In the next generation of

building structures, both infiltration and conduction problem may

be overcome by such novel designs as earth-sheltered buildings.

However, these novel designs must, before all else, overcome the

psychological barriers in order to penterate the market place.

This may not turn out to be any easy task, barring an explosive

increase in the price of oil. The future trend in the

construction of the enegy-efficient buildings seems to lie in

product development and improvements in construction workmanship.

One of the major problems associated with energy-efficient

buildings is vapor-condensation in the building-shell.

This increases with increasing levels of humidity. Therefore,

with the air-infiltration paths obstructed, the level of humidity

in the building may increase to undesireable levels.

Furthermore, in well insulated structures, a significant portion

of the overall temperature drop occurs across the insulation. It

will be shown that this increases the possibility of condensation

in the insulation. Thus, in a well insulated and tight building

the possibility of condensation in the building-shell is much

more pronounced than in conventional buildings.

The condensation of vapor in building-shells is a

multi-dimensional problem [1,2]. Its existence is undesireable

primarily for three reasons:

- Condensation of moisture in building walls and its

subsequent freezing constitutes a deteriorating factor in the

materials' strength and service-life.

-20-



- Presence of moisture promotes certain chemical reactions

which enhance the deterioration of building materials. Decay of

wood, corrosion of metals (e.g. pipes, concrete reinforcements,

etc.), and efflorescence on the masonary are examples of the

harmful chemcial reactions promoted by the presence of condensed

moisture [4,5].

-Studies of seasonal fuel utilization efficiency of

residential heating systems reveal that excess capacity is a

source of inefficiency [6,7,8]. Optimal sizing of appliances

requires a better knowledge of heat loss characteristics of the

building structure. There are two factors associated with the

heat losses from building-shells as a result of

vapor-condensation:

(i) The thermal conductivity of the building materials

increases with increasing moisture-content. It is

most likely that condensation occurs in the

insulation, which is the most thermally-resistive

element of a wall structure. The decrease in the

thermal resistance of the insulation translates

into higher rates of energy loss.

(ii) In most instances the water-vapor inside the

building has been formed by the addition of heat to

liquid-water. The high enthalpic vapor leaves the

building and condenses within the wall strucutre,

eventually releasing its enthalpy of phase-change

to the outside ambient. As the level of

vapor-concentration in the building is maintained

above a certain level, energy must be consumed to

convert liquid into water-vapor. This energy

consumption is associated with condensation of

vapor in the wall structure. It will be shown in

this work, that the amount of energy lost in the

-21-



form of latent heat is of the same order of

magnitude as the heat-loss by conduction through

the wall.

Moisture is transported through the building shell by two

mechanisms: air-infiltration and moisture-diffusion.

Air-infiltration occurs in response to a pressure difference

across the building walls. It has been observed that under

adverse conditions condensation due to air-infiltration is many

times larger than the amount of condensation caused by moisture

diffusion [10]. Natural convection in porous materials has been

investigated by some authors [11-15]. Attention is mainly

focused on closed-form solutions with various boundary

conditions. Burns et al. have investigated the effect of

air-infiltration on natural convection heat transfer [15]. They

model air leakage in the strucutre as discrete mass injections

and removal at different positions on the boundary of natural

convection cell. This investigation reveals that leakage due to

cracks is capable of enhancing free convection, and hence, the

total heat transfer across the wall. The effect of outside

air-pressure and neighboring body effects on air-infiltration is

studied in [16]. The results show that depending on the

particular two body configuration a neighboring building can have

a favorable or adverse effect on the infiltration rates.

Relatively little information can be found in the literature

regarding actual pressure-difference across the walls of

buildings and their leakage characteristics. References [17-21]

discuss different aspects of the problem. Model studies using

bluff bodies in wind tunnels are reported in [22-24]. The effect

of air-infiltration on moisture-transport and condensation in

porous insulation is included in the model developed by Ogniewicz

and Tien [25]. Their steady-state model incorporates the effect

of infiltration through the dependence of the solution on the

Peclet number. This study will be discussed in greater length

later. Overall, much work needs to be done in this area in order

to completely formulate and quantify the effects of infiltration

-22-



on heat losses through building-shells.

Moisture diffusion under non-isothermal conditions is

controlled by the simultaneous flow of heat and water-vapor.

Luikov [26] has extensively investigated the theory of

simultaneous heat and mass transfer in capillary-porous

materials. The general approach is to relate the flux of heat

and mass to the coupled interaction of heat nad mass potentials.

The phenomenon of coupled diffusion in capillary-porous materials

is controlled by a system of three differential equations, where

the three dependent variables are mass content, temperature and

pressure [27]. The form of the system of equations is simplified

by applying Onsager's reciprocal relations [28]. The solution of

the system of equations depends on nine interaction coefficents.

However, due to the symmetry of the equations and according to

Onsager's relationship, only six interaction coefficients have to

be measured empirically and related to the properties of the

capillary-porous body.

The theory of simultaneous heat and mass diffusion is

extensively applied to the science of soil-mechanics [29-37]. In

the study of mositure and heat diffusion in soils, the pressure

field may be considered to be uniform and ,hence, the system is

reduced to two differential equations in terms of temperature and

moisture-content fields [38]. The symmteric interaction

coefficents have experimentally been found to be identical, in

accordance with Onsager's postulate [29]. A fundamental

contribution to the study of mositure and heat transfer in soils

is made by Edlefsen and Anderson through a thermodynamic study of

soil moisture [39]. Different approaches to the solution of the

set of equations, with varying degrees of complexity, are

reported in the literature [40-43]. Heat and mass transfer in

capillary-porous bodies with evaporation/condensation [44-47],

and thawing/freezing [48-52] have also been investigated. Heat

and mass transfer in concrete has been the subject of exhaustive

research. References [53,54] give an excellent report of the
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theory and experimental evidence. Other studies of the subject

can be found in [55-59].

Most studies in heat and mass transfer focus on hygroscopic

liquid-contents. As the equations describing the phenomenon are

complex, the solutions obtained are valid for a very restricted

class of problems. Furthermore, as moisture-removal is a very

energy-intensive technology, most studies are performed for

drying-processes [60-62].

Water-vapor condensation within porous wall-insulations has

been observed particularly when the temperature difference across

the wall is large and the environment humid [63,64].

Vapor-barriers are theoretically capable of inhibiting the

migration of vapor. However, cracks and holes, caused by faulty

installation and aging, decrease the effectiveness of the

barriers significantly. It has been obseved that for a .036%

ratio of total hole area to barrier area the diffusive resistance

of aluminium-sheet and PVC-foil decrease by 92% and 80%,

respectively [65].

Internal condensation in structures has been investigated

mostly by experimental observations. Wilson has experimentally

studied the migration of moisture toward the inside of buildings

in summer, and its subsequent condensation in the insulation

[66]. Permyakov and Telegerion have qualitatively studied the

main factors governing the moisture-state of buildings for

different construction schemes and choice of materials [67].

These studies fail to provide any definite conclusions.

There have been few quantitative investigations of

condensation in building structures [68-71]. Vos has studied

condensation in roofs extensively. His model is one of the few

that consider the mobility of the condensate in the medium. He

hypothesizes a simple form of diffusivity for hygroscopic

liquid-contents. His analytical results agree well with the
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experimental findings.

Ogniewicz and Tien [25] have studied a steady-state one

dimensional formulation of condensation in porous insulation.

Their analytical model is one of the better formulations

avialable in the literature. Their formulation has one serious

draw-back, in the sense that it does not consider the diffusion

of the condensate in the medium. In this work, the solution of

the resulting equations is obtained numerically. Hence, the

results cannot be generalized and only serve to show the

parametric dependence of the width and location of the

condensation region and the condensation rate on such parameters

as the Peclet number and Biot number.

This work has three definitive objectives:

1- To develop a complete and comprehensive analytical model

for simultaneous transport of vapor, liquid, and heat in

one-dimensional porous media.

2- As the majority of building insulation used in this

country is of fiberglass, to conduct a study of

liquid-diffusion in the fiberglass insulation.

3- Study heat and mass transport in composite walls, and

investigate the implications of the results to

building-design.

This study is divided into eight chapters. Chapters 2-4 are

devoted to the analytical study of simultaneous heat and mass

transport in a porous slab. Case studies and illustrative

examples are presented in some sections to underline the critical

conclusions. The case studies are chosen so as to represent

realistic and encounterable situations. Chapters 5 and 6 explain

-25-



the experimental investigation and modelling of liquid-diffusion

in fibrous media. Chapter 7 is the synthesis of the analytical

results with the experimental observations. Condensation

associated with two different climatic conditions in a composite

slab similar to a typical wall strucutre is investigated in

chapter 7.

-26-



CHAPTER 2

HEAT AND MASS TRANSFER WITH PHASE CHANGE IN A POROUS SLAB:

SPATIALLY - STEADY SOLUTIONS

2.1 INTRODUCTION

The simultaneous transport of heat and mass in porous media

is an important phenomenon in many natural and industrial

processes. A brief literature survey of the analytical and

experimental works in this area was given in chapter 1. In this

and the next chapter simultaneous transport of heat and mass with

phase change in a porous slab is studied. In this chapter the

spatially-steady solutions are investigated, whereas in chapter 3

the spatially-unsteady solutions are derived. In chapter 4 the

special case of a porous slab with an impermeable boundary is

discussed. The approach of this work departs from the tradition

of starting with the Luikov equations. The relevant conservation

equations are derived from the first principles. However, as the

Luikov equations occupy a prominent position in the literature,
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they are briefly discussed here. In general the flux of each

species is contrtolled by the gradient of all existing

potentials. The formulation of the process is complicated by the

coupling between the fluxes and the driving potentials. The

coupling is further increased when phase change occurs in the

medium. This coupling involves the transformation of one

transported species into another (e.g. vapor to liquid and vice

versa), and the energy released from this process which couples

into the the energy equation. A formulation based on the

thermodynamics of irreversible processes has received

considerable attention in the recent years. Although this

formulation is systematic and the resulting equations are

symmetric, the solution of the complete set of equations is not

available. However, in this section the phenomenon of

simultaneous heat and mass transport is studied from an alternate

approach. The results obtained by this approach are simpler than

the equations based on the thermodynamics of irreversible

processes. However, they do retain all the important physical

parameters. In this section, a description of the formulation

based on the thermodynamics of irreversible processes , and the

formulation used in this study will be given. The extensive

discussion of the formulation and the solution methodology is

given in section 2.2.

The formulation of simultaneous transport of species based

on the thermodynamics of irreversible processes is due to Onsager

[28]. However, the popularity of the approach is due to Luikov

and his Russain co-workers [26,27]. Onsager stated a law which

cannot be deduced from the classical laws of thermodynamics. His

postulate is discussed here. Consider a set of driving

potentials P. , i=l,..n, and a set of fluxes J., i=l,..n, where1 1
each flux is associated with a conjugate potential, such as heat

and temperature. Then in a system of potentials the rate of

entropy generation is:
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b=Crp, P [2.1.1]

where Ji and P. are conjugate pairs. The flux of each species is

controlled by the gradient of all potentials :

J. - L.. P..1 13 j [2.1.2]

The L.. term is the conductivity of flux i with respect to the

potential gradient j. Equation [2.1.2] can be written in vector

form:

[J] = [L] [P]

where

[2.1.3]

[J] = Vector of fluxes = [J1 ,...,Jn]

[L] = Matrix of conductivities

[P] = Vector of Potential gradients = [ 1..** .,Pn

Onsager's postulate states that once the flux-potential conjugate

pairs are identified such that eq. [2.1.1] is satisfied, the

matrix of conductivities, [L], is symmetric:

L.. = L..1j j1 [2.1.4]

In simultaneous heat and mass transfer the following

conjugate pair of fluxes and potential gradients are identified:
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Potential FLUX

Pressure Mass Flux

Temperature Heat Flux

Vapor-concentration Vapor Flux

Liquid- Potential Liquid Flux

The system of equations with the above conjugate pairs has become

known as the Luikov equations [27].

The transport equations of the form:

J. = -L.. P.

are phenomenological in nature and require a suitable definition

of the conductivity term, L... In many situations, some of the
13

conductivity terms are negligible. Hence, the system of

equations [2.1.3] is greatly simplified. Nevertheless, the

physical character of the remaining conductivities must be

investigated and established.

In this study the equations describing heat and mass

transfer are not written in the form of Luikov equations.

Rather, the equations are developed from the basic principles.

They are then modified to incorporate additional effects. In

this manner, the discussion of the significance of the driving

potentials and the coupling terms can be more illuminating. The

flux- potential gradient relations used in this study are

analogous to the phenomenological statements of eq. [2.1.1]. The

difference between this approach and the Luikov formulation lies

in the manner of presentation. Whereas in the Luikov formulation

all equations are put forward at once, in this study the
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equations are developed and studied in such a manner as to reduce

the coupling between them.

Although, the transport equations of most species are of the

form of eq. [2.1.2], historically, they have been referrred to as

laws. They are defined in the following:

LAW EQUATION

Fourier (q/A) = - kVT [2.1.5(a)]

D'Arcy u = -k VP [2.1.5(b)]

Fick J = -D VC [2.1.5(c)]
v v

The above terms are all defined in the nomenclature. Fourier's

Law relates the flow of heat to the gradients in the temperature

field. Vapor diffuses in response to the gradient of

vapor-concentration. This is known as the Fick's law. D'Arcy's

law relates the flux of a fluid in a porous medium saturated with

the fluid to the gradients in the pressure field. D'Arcy's law

can be extended to include flow in unsaturated porous media under

surface tension forces by the introduction of a term equivalent

to pressure, namely liquid potential. Furthermore, as liquid

potential is a function of liquid-content, D'Arcy's law can be

written as:

J1 = -D1 (0) V [2.1.6]

where D1 would be a properly defined liquid-diffusivity. The

case under study is fully discussed in the next section. The
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nature of the species' fluxes, phase change, and the coupling

between the equations are discusses there. A solution

methodology based on different regimes of liquid diffusivity is

presented.
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2.2 PROBLEM STATEMENT AND SOLUTION METHODOLOGY

Consider a porous medium which is permeable to the flow of

heat, vapor and liquid. The medium seperates two reservoirs,

each characterized by a value of temperature and vapor

concentration. When the vapor concentration and/or temperature

of the two reservoirs are unequal, a flux of vapor and/or heat is

set up in the direction antiparallel to the potential gradient.

Depending on relative values of the reservoir temperatures to the

dew-point of the diffusing vapor, the vapor could undergo phase

change and condense into liquid form over some region of the

porous medium. It is also possible for the vapor to freeze. The

analysis of this chapter is focused on the formation of liquid

condensate. In section 2.8, the model will be extended to include

the possibility of frost formation.

In Fig. 2.2.1 a situation where both liquid and solid

condensate are formed in a porous slab is depicted. The two

reservoirs are identified by (ThCh), and (TcCc) where

Th = Temperature of the hot reservoir

T = Temperature of the cold reservoir
C

C = Vapor concentration of the hot reservoir

C = Vapor concentration of the cold reservoir,
c
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and

T > Th c

Ch > Cc

A value of saturation vapor-concentration corresponds to

every value of temperature, and is denoted by C . Relative

humidity is defined as:

hh = Ch/C (T=Th) h 1

hc = Cc/C (T=Tc) c 1

Heat flows from the "hot" reservoir to the "cold" one

according to the Fourier's law. Vapor migration from the hot

reservoir to the cold one is defined by Fick's law. At some

point in the medium the diffusing vapor reaches its dew point and

condenses. Heat released by condensation is conducted out of the

condensation-region at steady state. The temperature at which

the vapor condenses in the porous medium may be different from

its dew-point due to the surface tension effects at the surface

of the capillaries. This point is elaborated in the next

section. Given that neither of the two reservoirs have a

relative humidity value of 100%, the region of condensation is

sandwiched between two dry regions.

As condensation occurs liquid drops are formed in the

medium, and the fraction of medium voidage occupied by the
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condensate increases with time. At some point the condensate

begins to flow in response to the gradient in liquid-content

potential. The liquid-flux is defined by the following

phenomenological transport equation:

J = -D ( 8 ) V ,

where Jl = Liquid-flux vector

0 = Liquid Content = Volume of liquid/Void volume

D1 (0) = Liquid diffusivity

The functionmal dependence of liquid diffusivity, D1 (0), on

liquid content depends on the geometry and structure of the

porous medium. However, a certain typical behavior of liquid

diffusivity for media with large values of void-fraction can be

expected. At low values of liquid-content, such as in early

stages of condensation, the liquid is dispersed in the medium and

is held by surface tension forces at the nucleation sites in a

pendular state. With a large fraction of the medium consisting

of void-space the liquid drops are distant from eachother and do

not coalesce to form a continuous liquid volume. In this state

the isolated drops do not exhibit the tendency to diffuse.

Beyond a critical value of the liquid-content, the liquid ceases

to be disjoint drops and forms a continuous volume. At this

stage liquid becomes responsive to gradients in liquid-content

and migrates from the regions of higher liquid content to the

drier regions. The movement of the liquid towards the drier

regions and its subsequent evaportion at the borders of the wet
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zone causes drastic departure from the case where the liquid is

stationary. With regards to the behavior of condensate three

regimes can be clearly identified: (a) the early period of

quasi-steady increase of liquid content with no liquid motion,

(b) unsteady diffusion of liquid towards the drier regions, (c)

steady state liquid-content profile, where all condensed vapor

leaves the two edges of the wet zone.

Liquid-flux can also be established in response to

temperature gradient. The surface tension of most liquids

decreases with increasing temperatures. Hence, a slug of liquid

held in a porous medium, subject to a temperature gradient, by

capillary forces feels a net force in the direction of positive

temperature gradient, i.e. towards the colder side. This force

propels the liquid slug towards the colder side. This mode of

liquid transport is not discussed in this manuscript.

Experimental observations indicate that the increase in surface

tension forces, in a typical insulation arrangement, is much

smaller than the variations in hydraulic conductivities of the

medium. This is explained in more detail in Chapter 5.

The condensation of vapor can be considered to be

simultaneously, a vapor sink, heat source, and liquid source.

Hence, the energy equation, vapor diffusion equation, and liquid

diffusion equation are all coupled through the condensation rate.

The temperature values at the two sides of the

condensation-region and the width of the condensation-region

depend on the values of temperature and humidity of the two

reservoirs. As the phenomenon under study is complex, the

following solution methodology is proposed: Consider the

wet-zone to be a domain of arbitrary length, L I and temperatures

TO , and T1 . By construction the humidity levels h 0 and hI are

both 100%. The energy equation, vapor diffusion equation, and

liquid content equation are solved simultaneously in the

condensation-domain. The temperature and vapor-concentration

profiles in the dry region are also obtained with the arbitrary
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boundary condition of temperature at the condensation-zone edges.

The three solutions are then matched to generate the unknown

temperatures and the width of the condensation-zone. In this

manner, the effects of coupling between the dry and wet zones is

reduced. Heat and vapor transfer in the condensation-zone can be

studied independently of the mobility level of the condensate.

The effects of the liquid mobility are incoporated into the

matching process.
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2.3 HEAT AND VAPOR TRANSFER IN THE CONDENSATION REGION

Consider a porous medium of finite width, Lw , with boundary

temperatures of TO and T1, Fig 2.3.1. With TO > T1, heat flows

from the hot reservoir to the cold reservoir. The relative

humidity at the two boundaries are 100%, and corresponding to To
and T1 the vapor concentration at the boundaries are C 0 and C 1
Vapor flows against the gradient of vapor-concentration from x=0

to x=Lw . The vapor is at saturation concentration at the x=O

edge. Hence, as it travels through points of lower temperature

condenses into liquid form. With condensation occuring throughout

the region the vapor is at saturation concentration every where.

The energy released by condensation is conducted out of the

medium at x=LW

Consider a differential element of thickness x in the

medium. The net heat-flux conducted out of the element is:

(q/A)conduction = -k(d2T/dx2) Ax [2.3.1]

Let W. denote the rate of energy production per unit volume

inside the element. At steady-state the total heat-flux

conducted out of the element equals the energy generated iniside
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-k(d 2T/dx 2 ) = W

Consider the same differential element again.

Fick's Law the vapor-flux is given by

J = -D (dC /dx)
V v

According to

(2.3.31

where

D = Vapor diffusivity.
v

Then, the net vapor-flux diffusing into the element equals

Vapor-flux in = D (d 2 C*/dx 2 ) AX r2.3.4]v
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At steady state the net vapor-flux into the element condenses

into liquid. Let the condensation rate per unit volume be

denoted by F, then:

D (d 2 C /dx 2 ) = [2.3.5]

The energy released by the condensation process is:

0
q=released P hfg

hfg

[2.3.6]

= latentheat of condensation

The heat source term in eq. [2.3.2] equals the heat released by

condensation. Hence, eq. [2.3.2] may be written as:

k(d2T/dx 2 ) + Fh = 0
fg [2.3.7]
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Equations [2.3.5] and [2.3.7] are coupled through the

condensation term. The two equations are collapsed into one by

eliminating the condensation rate term:

d 2T h D
--- +
dx 2 k

d2 C
- 0

dx 2

Let the mean temeprature and concentration, and the temperature

and concentration difference of the wet-zone be defined as

Tr ' = (TO+T1 ) / 2 .

AT' = T0 -T 1

C' = (C + C )/2r 0 1

C' = C - C 1 r2.3.9]

The independant varaible, x, and the dependant variables T and C

are non-dimensionalized as:
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q' = (T-Tr ')/ AT'

= (C-Cr )/AC'

[2.3.10]

Introducing

yields:

the above non-dimensional varaibles into eq.

[2.3.11]

The non-dimensional groups that appear in the above are:

I'= AT'/Tr

Le [Lewis Number] = a/D V

0' [Kossovitch Number] = (hfg C'/pc pTr )fg pr [2.3.12]
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The Kossovitch number scales latent heat to sensible heat, and

the Lewis number is the ratio of thermal diffusivity to vapor

diffusivity.

Equation [2.3.11] has two dependant variables: temperature

and vapor saturation-concetration. In general, the vapor

saturation-concentration in a porous medium is a function of

temperature and the pore-size. The effect of pore-size on the

depression of saturation pressure is investigated in [72]. For

pore-sizes of order of angstrom the suppresion of the vapor

pressure is considerable. As the typical medium under study does

Not have such small pore-sizes, the vapor saturation

concentration can be considered to be a unique function of

temperature. Hence, eq. [2.3.11] is, in effect, a differential

equation in dimensionless temperature only.

The functional dependence of saturation vapor-concentration

on temperature is obtained through the Clausius-Clapeyron

relationship. The Clausius-Clapeyron relation is derived from

the Maxwell relations and links three quantities for two phases

in equilibrium: the gradient of pressure with temperature, the

latent heat, and the volumetric expansion corresponding to change

of phase:

T(dP/dT) = (h -hf)/(vg -v) [2.3.13]

In the cases under study:
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v >> f .
gf

Recognizing that:

C = 1 / vg

eq. [2.3.13] can be written as:

dP h C*

dT T2
[2.3.14]

A further assumption, relating pressure to temperature is

required to transform eq.[2.3.14] into a unique functional

relationship between vapor-concentration and temperature. This

is provided by approximating the vapor as a perfect gas. It,

then, obeys the perfect gas law:

P = C R T [2.3.15]
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Differentiating the above with respect to temperature and

subsituting into eq. [2.3.141 yields:

dC h C* C*

dT R T2  T

which to a good approximation is:

dC hfg C
-

dT

[2.3.16]

[2.3.17]
R T 2

The above can be integrated with some reference value

C' r = C*(T=T ')r r

to yield:
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h
exp I

RT '
r

T
r

[2.3.18]

' = h fg/(R Tr'),

then, with the definitions

C /C r

[2.3.19]

of eq. [2.3.12]:

= exp(QD )

Y'2 0
[2.3.20]

1 + p' 7 '

Substituting the above into

differential equation in q':

eq. [2.3.11] yields the energy
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f2 (" -2 d2 71
i + (1+p' 7')exp[ fD i

Le dr 2

F - 2

(1+'' expH[ P 0
Le d J

[2.3.21]

with the boundary conditions of:

V' = 1/2

n' =-1/2

@ = 0

@ 7= 1 [2.3.22]

Equation [2.3.21] is a non-linear second order differential

equation in n'. It can be solved numerically. However, the

numerical solution of the above is of limited usefulness, for the

parametric dependence of 7'(1) is not easily discernible.

An approximate solution is obtained by linearizing eq.

[2.3.21]. In absence of condensation in the medium, the

temperature distribution would be linear:

7' = 0.5 - 7x [2.3.23]
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Equation [2.3.23] is linearized about the above. Let

W' = 0.5 - x +E

such that

E2 << 1 , [2.3.24]

The boundary conditions [2.3.25] are chosen such that the

boundary conditions [2.3.22] are satisfied:

E (7=0) = c(x=1) = 0 [2.3.25]

Equation [2.3.24] is introduced into eq. [2.3.21]. The terms of

order 62 and higher powers are neglected. The following linear

differential equation in E is obtained:
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S+ f2'
dE

di
+ -

Le
[2.3.26]

The above is solved in conjunction with

[2.3.25]

boundary conditions

to yield:

E = 0.5 - 0.5
exp(A' ) - 1]

exp(A') - 1
[2.3.27]

2 ' 2 o'

Le + Y' £'
[2.3.28]

exp( '.)

exp(.') -
+1 [2.3.29]

d2 '2

dF2

where

Then,

' = 0.5 1 -x -
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The above is an approximate solution of q'(i). It must be noted

here that q'(K) is in terms of parameters as of yet unrestircted:

AT', T ', and L . The term A' depends on the values of T ' andr w r
AT'; the length scale is reduced by L .

q'(F) has a very simple form and is a function of only one

paramter. The term A' has an important physical significance

which is discussed in the following. Heat released by the

condensation process in the medium is equal to the excess of

outflow of heat-flux at x=1 over the inflow of heat-flux at =0

= -k(dT/dx)l 1
+ k(dT/dx) [2.3.30]

Using eq. [2.3.29] the above can be written as:

= 0.5(A' k AT') [2.3.31]

Heat-flux conducted across the medium in absence of condensation

is

(q/A)cond = k AT' [2.3.32]
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Therefore, the ratio of heat released by condensation to heat

conducted across the medium is A'/2 . This term represents the

effect of heat released by condensation on the temperature

profile. The heat-flux, for a given set of boundary

temperatures, with condensation is A'/2 times larger than the

heat-flux, for the same values of boundary temperatures, with no

vapor condensation present. The term A' is called the latent

heat transport coefficient. The reduced temperature profile for

different values of the latent heat transport coefficient is

plotted in Fig. 2.3.2. As the plot indicates the reduced

temperature varies from 0.5 to -0.5, and is convex downwards.

The effect of increased condensation rate, i.e. increasing A', is

translated into increase in the convexity of the profile. The

heat-flux generated by the condensation of vapor leaves the

medium at i=1. Hence, as A' increases the gradient of the

?q'-profile at 7=1 increases. The linear variation of temperature

with position is characterized by a zero value of A', i.e.

conduction in absence of condensation. It can be easily shown

that 7j'(Y) , eq. [2.3.29], reduces to a linear profile as A'--PO.

As mentioned earlier eq. [2.3.24] can be solved exactly by

numerical means. The numerical procedure for obtaining the

solution is based on an iterative scheme. Equation [2.3.24] can

be rearranged into the followiong form:

,n+l

_ f( ",n, (d '/dR)n; p',y',Le,P')
d3

[2.3.33]

where n is the iteration number. The scheme consists of
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discretrizing the x-scale into a finite number of points. Then,

eq. [2.3.33] can be written as a matrix eqaution:

[A].[q 'n+l] = [B] [2.3.34]

Matrix [A] is the tridiagonal matrix corresponding to the

discretization of dq/dX term. The vector [q' n+1] consists of

the values of n' at the discret location. Martrix [B] contains

the values of function f, of eq. [2.3.33], evaluated at the

discrete points. The iteration scheme consists of successive

solution of eq. [2.3.34]. At each stage the old values of r' are

used to generate matrix [B].' Then, the new value of (['] is

obtained by solving eq. [2.3.34]. The matrix equation is solved

by the standard procedure of LU-decomposition of matrix [A],

accompanied with a forward/backward solver. Equation [2.3.34] is

solved iteratively until [n'] converges to its final value. The

major probelm with the method of successive iteration resides in

the slow convergence and oscillations of [W'].

The perturbation solution, eq.[2.3.29], is compared with the

numerical solution for two different situations. Clearly as A'

increases, the agreement between the numerical solution and the

approximate solution decreases. Figures 2.3.3 and 2.3.4

demonstrate the comparison of the numerical solution with the

perturbation solution for i' values of 2.04 and 4.12,

respectively. Both plots are generated using the same reference

temperature of 550 0R. In Fig. 2.3.3 the temperature difference

is 400 R and in Fig. 2.3.4, 800 R. The agreement between the

numerical solution and the perturbation solution for the case of

A' = 2.04 is astonishingly good, Fig. 2.3.3. In Fig. 2.3.4 the
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values of A' is doubled, yet the agreement between the two

results remains exceedingly good. Hence, the perturbation

solution can be used as a very close and accurate approximation

to q' (7).

The condensation rate per unit volume,

from eq. [.2.3.7]:

k(d 2 T/dx2) +h fg

, can be obtained

= 0.

rL2
F w

D C'v r

[2.3.35]

Then, using eq. [2.3.29], the non-dimensional condensation rate

is :

Le / ' tA2

•' 2

exp( A' x)

exp(A') - 1
[2.3.36]
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This explains the strong influence of temperature-drop across the

domain on the condensation rate intensity.

Equation [2.3.36] can be integrated over the length of the

condesing-zone to yield the condensation rate per unit area,

(i/ A)T:

(w/A)T = dx

0

[2.3.37]

(w/A)T Lw Le /' A'

D C' 1' 2v r

[2.3.38]

Again, as before, the condensation rate per unit area has a very

simple formulation and depends linearly on the latent heat

transport coefficient, A'. Using eq. [2.3.28], the term (Le P'

V1/22') may be written as:

Le P' A'

£' 2

Yr2 •t2 Le

Le + £2' Y'
[2.3.39]
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The reduced condensation rate has a parametric dependence on the

latent heat transport coefficient, A'. The paramteric dependence

of (F f'/Le /') on A' is explored in Fig. 2.3.5. The figure

indicates that the condensation rate increases as the vapor

approaches the colder edge. This increase is very dramatic for

larger values of .'. Fig. 2.3.5 is to some extent not very

clear. In this figure (F 2'/Le P') is plotted against Y. At low

values of i, the profiles of (T~2'/Le 3') crossover eachother.

This is unphysical, for one would expect larger condensation

rate intensities at all locations for increasing values of A'.

This inconsistency is due to the aggregation of (f2'/Le P') term

with F. The (f'/Le P') term is a function of A', and cannot be

lumped together with F. The profile of '' for the two situations

discussed in Fig. 2.3.3 and 2.3.4 are plotted in Fig. 2.3.6. The

plots correspond to the temperature profiles characterized by a

mean temperature value of 5500 R, and a AT of 40 and 800 R,

resepectively. The values of P' and f2' corresponding to these

two cases are denoted on the figure. The reduced condensation

rate per unit volume, F, is plotted against reduced length, x.

It may be observed that at low values of 7, the difference in the

condensation rates corresponding to the two cases is not

discernible. However, at 7=1, the ratio of condensation rate

with A' = 4.12, is about eight times larger than the condensation

rate with A' = 2.014. This large difference corresponds to a

mere doubling of the temperature drop across the wet-zone. The

reason for this abrupt increase may be explored by studying the

dependence of A' on P' from eq. [ 2.3.28]. Equation [2.3.28]

indicates that A' is linearly proportional to P'. Hence, the

condensation rate per unit volume is proportional to the third

power of the temperature difference:

F , A P2 ^3 3
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The above indicates that for the same value of mean temperature,

a doubling of the temperature drop, i.e. doubling P', causes a

four-fold increase in the total volume of condensate.
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2.4 LIQUID DIFFUSION IN THE CONDENSATION REGION

In the previous section the flow of heat and vapor in the

condensation-region was studied. The non-dimensional rate of

vapor condensation intensity, F, was shown to be:

-Le 2  exp(A'i•)
F __ _ 1-_ _

S2' 2 exp(AI' ) - 1

where

2

- FL
F= _ ~w

D C'
v r

In this section the diffusion of the condensate in the porous

medium will be studied.

Consider a porous medium of width Lw, sandwiched by two dry

regions. Vapor condenses in the medium at a condensation rate

per unit volume of F(x). Liquid transport in the porous medium

is controlled by the gradient of liquid-content,o :
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J = -D 1()(el0/ x) [2.4.1]

where D1 is a phenomenologically defined liquid diffusivity, and

is a function of liquid-content. Continuity of liquid may be

written as:

S D (0 r(x)
t 3)x P

[2.4.2]

where

P = the density of the condensate

E = void-fraction of the medium

The above is non-dimensionalized into the following form:

__ aJD1 (o) ae 1 (x) L
_0 __ 1 ( 0 )  + w [2.4.3][---- + 2.4.3]
3Fo''" LDm J D m1 P
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where

Fo' = D t/L2lm w

Dim = some mean value of liquid diffusivity.

Solution of eq. [2.4.3] requires a definition of the functional

dependence of liquid diffusivity on liquid-content. This

dependence is a function of the geometry and structure of the

medium. Considerable affort has been devoted to the formulation

of a universal form of liquid diffusivity [72]). However, no

universally accepted form of D1 (0) exists. Nevertheless, certain

assumptions regarding liquid diffusivity in a porous medium may

be made. In many types of porous media liquid diffusivity

remains negligibly small until a critical value of liquid-content

is reached. For liquid-contents less than the critical value,

liquid is in a pendular state and does not exhibit the tendency

to diffuse. Hence, for liquid-contents less than the critical

value the non-dimensional boundary equations associated with eq.

[2.4.3] are:

30/3F = 0 @ x = 0 VFo"'

30/ 0- = 0 @ x = 1 VFo''

8= 0 @ Fo"'' = 0 1- [2.4.4]
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For values of liquid-content in excess of the critical value,

liquid diffusion takes place. The flux of the diffusing liquid

is proportional to the excess of liquid-content over the critical

liquid-content. The solution of the transient problem

corresponding to the evolution of liquid-content during

condensation can be only solved numerically. However, the case

of unsteady diffusion may be solved analytically with a uniform

initial liquid-content distribution. It must be recognized that

the unsteady solution obtained by the following initial

conditions does not relate to the evolution of liquid-content

during condensation. Nevertheless, as the steady-state solution

is independant of initial conditions, the steady-state results

describe the liquid-content profile after a sufficiently long

period of condensation. Under this situtation, the

non-dimensional boundary equations associated with eq. [2.4.3]

are:

8= 0 @ 7 = 0 Fo ' 'c

08= 8 @ 7= FO''c

0 = 0 @ Fo'' = 0 x" 2.4.5c

In order to analyze the phenomenon of liquid diffusion

efficiently and take advantage of the possible simplifications

two cases are studied:

Case(l): Condensate with no mobility D -)*0

Case(2): Condensate with finite mobility D1 f 0.



2.4.1 Immobile Condensate

During the early stages of condensation the condensate is in

pendular state, and very little, if any liquid motion takes place

(for a more detailed description of the phenomenon see chapters 5

and 6). Under these circumstances, the condensate may be

considered to be immobile.

Let the liquid diffusivity be independant of liquid content,

D1=Dlm. Then if :

r(x) L2 2
w >>

D P E 32
1

(2.4.6]

the diffusion term in eq.[2.4.3] can be ignored. As

(2 

0

0 o(1)
Y72

[2.4.8]

then,
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r(x) L2
DI << w [2.4.9]

Using eqs. [2.3.38] and [2.3.39], the above requirement can be

written as:

D Le p'
D- - <<
D o'

V

C'
r

Pc

A' 1.

2 exp(A') - 1
[2.4.10]

The above inequality establishes the upper value of liquid

diffusivity, below which the effects of liquid diffusion can be

ignored. With the inequality [2.4.10] satisfied, the liquid

continuity equation becomes:

2
_F(x) LwdFo w

dFo' Di p
[2.4.11]

Substituting for F(T) from eq. [2.3.39] results in :
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dO C' r Le /p' A2 exp( A')

dFo'' PE 2 exp(A') - 1
[2.4.12]

Fo' = D t/L 2
IM w

M = D /D1

The rate of increase of liquid content, for small values of

liquid diffusivity is independant of the magnitude of liquid

diffusivity. This is clear in the above equation as the D1 terms

in Fo'' and M cancel out. This ambiguity is removed by the

introduction of a new Fourier number based on vapor diffusivity:

Fo' = M Fo"' = D t/v w

Upon integration eq. [2.4.12] becomes:

C' r Le 1' 2
0'(T, Fo') [ r L2

P E •' 2

exp(A'x)

exp(A') -1
Fo' [2.4.13]
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In studying the above equation, the form of the condensation-rate

intensity, eq. [2.3.36], may be recalled. It will be then noted

that the liquid-content profile is proportional to the

condensation rate. Indeed, the above liquid-content profile

result could have been easily derived by considering the

following simple argument: In absence of liquid diffusion the

rate of condensate accumulation is proportional to the

condensation rate. The constant of proportionality would have to

translate the volume of condensed-vapor to the volume of

liquid-condensate. It, then would have to be the ratio of

vapor-density to liquid-density. Furthermore, liquid-content

increases linearly with time for all locations. Therefore, eq.

[2.4.13] could have been easily obtained. The liquid-content

distribution normalized by the medium void-fraction is plotted in

Fig. 2.4.1 for two values of A'. It may be recalled that these

two cases correspond to a mean temperature value of 5500 R and

temperature drops of 40 and 800R. Fig. 2.4.1 is in essence the

same as Fig. 2.3.6, except for a change of scale on the ordinate.

Clearly, the liquid-content at the colder-edge, 3=1, is higher

than at "=0.

It has been mentioned that liquid-content rises montonically

until it reaches a critical-value. Above this value liquid

diffusion begins and the liquid-content undergoes a transeint

change. The time-scale corresponding to the onset of liquid

diffusion may be calculated from eq. [2.4.13]. In Fig. 2.4.2 a

plot of the ratio of critical Fourier number to the critical

liquid-content as a function of the latent heat transport

coefficient, A', for water is presented. As the value of

liquid-content is largest at 7=1, eq. [2.4.13] is evaluated at

this location. The results is plotted in Fig. 2.4.2 for

different values of mean temperature T r. The plot indicates that

the ratio (Fo' /c c) decreases with increasing values of latent

heat transport coefficient, A'. Hence, for a given value of

critical liquid-content and medium void-fraction the time

required to reach the onset of liquid diffusion decreases with
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increasing values of A'. For the range of temperature that are

encountered in the application of these results, the variations

in the mean temperature, Tr, have negligible effects on the

(Fo' /E oc) profile. This is shown in Fig. 2.4.2 by plotting the

profile for two values of mean temperature, 5100 R and 5700 R. As

the values of temperature are measured on the absolute scale, the

variations on the relative scale, e.g. Celsius, must be

significant to cause a noticeable effect.

2.4.2 Mobile Condensate

In this case the condensate is considered to have a finite

and nonzero value of liquid diffusivity. Furthermore, the value

of liquid diffusivity is such that the inequality [2.4.10] is not

satisfied. Then, none of the terms in the continuity equation

can be ignored:

Fo''

2
I 0- F(T ) L2

ST• Dlm 3 Dlm PD

The above equation is accompanied by the following boundary

conditions:
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@ = 0

@~ =

@ Fo'' = 0

Equation [2.4.4] is linear in

to be the sum of two behaviors :

. Therefore 0 can be considered

0(F, Fo'') = Os (3) + 0t(',Fo'') [2.4.14]

The 0s term is the steady-state liquid-content distribution and

is not a function of time. The 0t term is the time dependant

portion of the solution, and is a function of both time and

space. The overall behavior of 0 is obtained by the addition of

the steady solution with the transient one. Introducing eq.

[2.4.14] into eq. [2.4.4] results into two sets of equations.

The first set deals with the steady-state solution:

D
x L lm D +

r(x) L2W 0

Dlm P

[2.4.15]
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The value of liquid diffusivity for liquid-contents less than the

Sc is zero. Hence, the liquid content at all locations is at

least equal to ac . Any liquid in excess of this value is subject

to diffusion. Hence,

s (0) = 8s

0 (1) = 6 [2.4.16]

The second set of equations deals with the unsteady behavior of
8.

[2.4.17]
S D1(O) Ft o t

L D lm Fo"

6 (=0O,Fo' ') =

t (x=1,Fo' ') = 0

0 (3,o) = - 6 (")
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The system of eqs.[2.4.15] and [2.4.17] is incomplete, for it

requires a definition of D1 (0). In section 2.4.1 the possible

behavior of liquid diffusivity was discussed. It is assumed, in

this section, that the initial value of liquid content is larger

than the critical value, 0 ,. Then the liquid diffusivity is

non-zero. Let it be some constant value, D1. For the case of

constant liquid diffusivity eq. [2.4.15] can be written as:

20 F(x)
d2s w+ 0
dxi D1 P

[2.4.19]

Integrating the above twice yields:

S r(x) 2
O s(i dK d" + cl + c 20 D1 p E1

[2.4.20]

Applying the boundary conditions [2.4.16] yields

c2 = 0

9F(x) L2
cl = f. +w dF di [2.4.21]

-74-



i'(0) = 0.5 - I +E

and

exp(A'Y) - 1
S=0.5 Y

exp (A') - 1

The term in the curly brackets in eq. [2.4.24] is equal to E(T).

The term E(T), may be recalled, represents the effect of heat

released by condensation on the temperature distribution. It is

the difference between the linear temperature profile,

corresponding to the case of pure conduction, and the temperature

distribution with the effect of condensation present. The

liquid-content at steady state is proportional to the same

difference, E (i). The constant of proportionality consists of

two types of terms. One type depends on the values of

temperature at the condensation-zone region: P',n', C' r The

other type of terms are the properties of condensate and medium :
M,p, E, and Le.

The steady-state liquid-content distribution is plotted

against reduced length for different values of A' in Fig. 2.4.3.

The liquid-content plot is offset by 0c. The liquid-content

distribution is a strong function of the latent heat transport

coefficient, A'. The temperature gradient, and consequentially

the saturation vapor-concetration, become steeper with increasing
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() L [(x) L2
s( )= -  d_ dd + Y d, d Y

o0 D1PEo DI

The condensation rate per unit volume,

[2.3.39]; the integrand in eq.[2.4.22]

[2.4.22]

F(Y), is given in eq.

becomes:

r(7) L2 C'w r= M r
DIP PE (' 2 exp A' - 1

[2.4.23]

Performing the integration of eq. [2.4.22], a very simple result

is obtained:

0 (7) = OS c

C' Le /'r

P~ n '

expA'3 -1

exp ,' -1
[2.4.24]

Recall that
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T. As the condensation rate per unit volume is proportional to

the second derivative of saturation-concentration, both the

condensation rate intensity and the steady-state liquid-content

profiles vary more sharply as the vapor approaches the colder

side. Hence, the point of maximum liquid-content lies closer to

the colder-boundary.

The time dependent portion of liquid-content is described by

eq. [2.4.17]. For a constant value of liquid-diffusivity, it may

be written as:

[2.4.25]

The above can be solved by the method of seperation of variables.

Let:

Ot = OX [2.4.26]

Then, eq.[2.4.25] becomes:

X"  &' 2
- -a

x 9 n
[2.4.27]
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The above consists of two equations which are solved to yield:

X = C1 sin(an ) + c2 cos(an ) (2.4.28]

= c3 exp [-an. Fo'' [2.4.29]

Applying the boundary conditions:

0t(O , Fo'') = %t(1,Fo'') = 0

yields, the eigen-values equation:

a2 = nn [2.4.30]

Then,
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Fo'') =Cn exp -a n  Fo'']

n
sin(an F)

The coefficients

condition:

c are determinedn by applying the initial

et(,o0) = -0 (3)
t s

[2.4.32]

Using eq. [2.4.23] for 8 s(Y) results in:

sin(a x) n -

C'r Le p' n
2 PE ' 'sin (an t)

2 p 6n

expA' - 1-
ep -d

exp' - 1A

[2.4.33]

Performing the integration yields:

M C' Le p'

2 p En'

IA' 1 + (- 1 )n
n(

1)(-1)

A
1+

(nr)
(exp A' - 1)
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(-1) n - 1

exp A' - 1
[2.4.34]

The unsteady term 0 t( 3, Fo'') is defined by eq. [2.4.31] and

[2.4.34]. It decays exponentially with reduced time, Fo''.

The overall behavior of liquid-content, for a nonzero value

of liquid diffusivity, is:

8(7, Fo") =  s() + Ot(T, Fo")

n7 Fo''>> 1

[2.4.35]

[2.4.36]

liquid content reaches its steady-state value. In physical

parameters, the time scale above which the steady-state solution

can be assumed to hold is related to liquid diffusivity as:
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t >> L w/Dl [2.4.37]

The liquid-flux at any location is :

J = -DI (3 0/3x) [2.4.38]

Recall that liquid-content consists of a transient and a steady
component, then:

Ji = -D1 ( t/ x/) - D1 (dB s / dx) [2.4.39]

Using eq.[2.4.23] and [2.4.31]

I' exp A '"

exp.A' - 1
[2.4.40]

and
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_Ot M C'r Le c' nexp -an Fo' ' ancos(an )

P 2' n" n n4
n

[2.4.41]

where c ' is defined by the above and eq. [2.4.34]. Then
percentage of condensate that leaves the medium, at steady-state,

at 7=0 is:

d

1  dx x=O

0fi(x) 
dx

0"

[2.4.42]

From eq. [2.4.42]

a =

and [2.3.41] :

exp A' - 1 - A'

A' (expA' - 1)
[2.4.43]

A plot of this parameter as a function of A' is presented in Fig.

2.4.4. Clearly, were F(x) a constant the liquid-fluxes JO and J1
would be equal. In general, the condensation rate increases with

distance. However, the increase is more dramatic for large

values of latent heat transport coefficient. The portion of the

condensate that leaves at the cold-edge increases with increasing

A!. This is equivalent to the decrease in a with increasing A'.
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Using eqs. [2.4.42] and [2.3.38] the liquid-flux leaving the

boundary of the condesation-region at =0O may be written in the

following non-dimensional form:

JO L Le p'

D C' f'
v r

exp A' - 1 - A'

2(expA' - 1)
[2.4.44]

Similarly, the liquid-flux leaving the condensation-region at R=1

is:

(A'-1)expA' + 1

2(expA' - 1)

[2.4.45]

Equations [2.4.441 and [2.4.45] are plotted in Fig. 2.4.5.

Aggregating the (W'/Le p') term with the (J L w/D C' ) whilew v r

investigating the dependence of the latter on A' is not

rigorously correct, for (0'/Le W') is a function of A'. However,

for indicative purposes the terms (J0 Lw 2'/D C' Le p') and
w v r

(J Lw fO'/D C' Le P') are plotted versus A' in Fig. 2.4.5.
Lw v r

The results indicate that as the latent heat transport

coefficient increases, the two liquid-fluxes increase at unequal

rates. The liquid-flux J0 increases at a decreasing pace,

whereas the J1 term increases at an increasing pace. The

difference in the behavior of the two indicates that as the

condensation rate increases a larger portion of the condensate

leaves the condensation-region at the x=1 boundary. This is
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consistent with the previous findings as discussed in reference

to Fig. 2.4.4.
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heat transport coefficient.
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transport coefficient.
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2.5 HEAT AND MASS TRANSFER WITH CONDENSATION IN A POROUS SLAB

CASE I: IMMOBILE CONDENSATE

In section 2.3 the temperature profile in the

condensation-zone was obtained. In section 2.4 the phenomenon of

liquid diffusion in porous media was studied. It was there shown

that for immobile condensates the rate of increase of

liquid-content, in non-dimensional form, is of the following

form:

do C'r Le /' A ' 2 exp A'T
dFo' -P ' 2 exp-' - 1
dro' pe •0' 2 expA' - 1

[2.4.12]

At this stage a new Fourier number based on the total length of

the slab is defined:

Fo* = Fo' (LT/L )2
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Then eq. [2.4.12] may be written as:

d oLLT 2 CIr Le p' ' exp A'x.
_ [2.4.12(b)]

dFo* Lw  PE' 2 exp A' - 1

The right hand side of the above equation contains two types of

constants. One type depends on the properties of the medium and

the condensate: M, p, . The other type depends on the values of

temperature at the two boundaries of the condensation-zone: A.,0',

P, C'r. These latter numbers are functions of the mean

temperature in the condensation-zone, T'r, and the temperature

drop across the condensation-zone: AT'. The length scale is

non-dimensionalized by the width of the condensation-region, L .
W

The reduced temperature distribution of section 2.3, and the

results of sectin 2.4 were obtained by treating T', AT', and Lw

as floating parameters. In this section the length-scale Lw, the

location of the condensation-region in the slab, and the boundary

temperatures are obtained by matching the temperature and

vapor-concentration profiles in the condensation-region with

those of the adjacent dry regions.

Recall the original problem, Fig. 2.5.1. A porous slab

seperates two reservoirs with different temperatures and

vapor-concentrations. The relative humidity of both reservoirs

is less than 100%. Vapor migrates from the reservoir of high

vapor-concentration to the reservoir with lower

vapor-concentration. The diffusing vapor condenses into liquid

in some region of the porous slab, sandwiched between two dry

regions. The temperature and vapor-concentration profiles in the

dry regions can be easily shown to be linear. Let the total

length of the slab be LT, and the length scale in the slab be

-91-



denoted by z. The x-scale is used for the condensation-zone.

Hence,

z = L0

z = L

LO-L
1

Corresponds to

Corresponds to

Corresponds to

x= 0

LY= 1

L.W"

The process of matching the temperature and concentration

profiles at the boundaries of the condensation-region and the

adjacent dry regions consists of imposing conditions of equality

of temperature, vapor-concentration, vapor-flux and heat-flux.

At 5=0 ,corresponding to 7=LO , continuity of heat-flux and

vapor-flux can be written as:

Th - T dT

L0 dz L0

and,
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Ch - C 0  dC

L0 dz L0

(2.5.2]

The continuity of the fluxes at 7=1, corresponding to z=L1, is:

T -T dT1 c L 1

LT - L1 dz

C - C dC
1 c L

LT - L1 dz

[2.5.3]

[2.5.4]

In the condensation-region the vapor and liquid co-exist in

equilibirium. Clearly, then, vapor is at saturation

concentration throughout the condensation-region. This is

indicated by the asterisk in the C* term. Also the temperature

in the condensation-region is identified by the asterisk.

Four unknowns are associated with equations [2.5.1] through

[2.5.4]. The unknows are: T, T1, LO, and L1. Hence, there are

sufficient number of equations to solve for the four unknowns.
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Let the temperature be non-dimensionalized with reference to

a new mean temperature and temperature-drop:

Th + Tc
I

AT = Thh

T - Tr

AT
[2.5.5(a)]

The reference temperature T is the mean temperature of the slab,r
and AT is the temperature drop across the slab. With the above

definitions the reduced temperature varies from 0.5 to -0.5

across the slab:

S= 0.5

r1= -0.5

@ =0

@ z = 1.
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Associated with the definitions of Tr and AT, a new set of

non-dimensional parameters are defined:

= AT/T

S= hf Cr/ pCp Tr

S= hfg/R Tr [2.5.5(b)]

The terms defined in eq. [2.5.5] have conjugates defined with

respect to the mean temperature and temperature drop across the

condensation-zone. The ones defined for the condensation-zone

are differentiated from the above by carrying a prime

superscrpit. The primed-quantites (e.g. q'.A',etc.) can be

transformed into unprimed quantities easily, once AT' and T'
r

are given in terms of AT and Tr.

Equations [2.5.1] through [2.5.4] are non-linear and

coupled. In order to solve for the unknowns the equations must

be solved simultaneously. As the schemes for solution of systems

of coupled nonlinear equations are not necessarily convergent,

the four equations are manipulated in order to reduce the

coupling between them. Consider eq. [2.5.2]:

C - C dC= - dC [2.5.2]
LO dz L0
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As C* is a unique function of temperature, the above can be

written as:

hh Ch -C 0 _ dC dT

L0 dT dz L0

[2.5.6]

Eliminating the L0 term between the above and eq.[2.5.1] yields:

hh C h -C 0 dC

Th - T0 dT TO

[2.5.7]

Equation [2.5.7] is an implicit equation in terms of TO.
Similarly, an implicit equation for T1 can be obtained by

eliminating the length-scale between eqs. [2.5.3] and [2.5.41:

C - h C dC
S c c T

T -T dT T
1 c

[2.5.8]

The saturation vapor-concentration is a unique function of
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temperature. Using the Clausius-Clapeyron relation and the

perfect gas approximations for vapor, the following relations

were obtained in section 2.3:

C = C exp
r+ 1

[2.5.9]

dC C hfg

dT R T2
(2.5.10]

Using the above approximations, eqs. [2.5.7] and [2.5.8] become,

respectively:

hh exp[ h] - exp[DgO]

h 0

-2
= Y?(1+P%) exp[ @0 ] [2.5.11]

and,
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exp[ ) 1] - h c exnr (P -2
= p(1+p,1) exp[ I11] 2.5.12]

1 7. - 77

The two equations are implicit functions of the

and 1 1.

two unknowns, i0
There is no length-scale coupling between them. The

equations can be further simplified by

approximation:

the following

(1 +77•3) - 1

Then eq. [2.5.11] becomes:

1 - hh exp [YTh [ qh - 17 ]] - 0] = 0 [2.5.13]

and eq.[2.5.12] becomes:

r
1 - hc expr,3 c [9C  cc I c - I1] + ' q[ - q ].c 1 = 0 [2.5.14]
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where Th and T are correction factors, and are approximately

equal to one. Equations [2.5.13] and [2.5.14] are both of the

form:

1 - hi exp(ui) + ui = 0
1 1 1

c = 7

i=c,h [2.5.15]

< 0- 71

Uh = 7h
> 0 [2.5.161

A plot of eq. [2.5.15] , for T.=1, is given in Fig. 2.5.2.
1

For a given value of humidity the equation has two u-roots: one

positive and one negative. The positive values of u correspond

to 70 and the negative values correspond to 71. When the cold

side humidity, he, is put into eq. [2.5.15] the negative root

must be used, and when hh is used the correct root to use is the

positive one. Hence, given the humidity levels at the hot-side

and cold-side, the roots of eq. [2.5.15] can be obtained (either

graphically or numerically), to generate the values of q0 and 71
from eq. [2.15.16].
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Once the values of 70 and 71 are known, the values of T',

and T' can be generated:

r

AT' = (qO - q l ) AT

[2.5. 17]T'r 0 1) AT + Tr

With values of AT' and T'r known, the paramters that define the

solution of section 2.3, e.g. A', f', etc., can be readily

calculated.

The four original boundary conditions, eq. [2.5.1]-[2.5.4]

were combined to generate two equations, eqs. [2.5.7] and

[2.5.8]. The two equations were then solved to generate n0 and

As the four original equations were independant, and that

only two of the unknowns are solved for, any two of the original

four may be used to solve for the length-scales. Consider the

following equations which imply continuity of heat-flux at the

boundaries:

h - ' dq

L0O dz L0

[2.5.18]
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qc - L = d-
1 - L dz - 1

[2.5.19]

By applying the chain rule to the right-hand side of the two

equations, the following is obtained:

Irh -0 dli d3 d7'

L0 dl d di 7=0

i 1 - c dl di d T'"

1 - L 1 d' dZ dT '=1

[2.5.20]

[2.5.21]

The temperature distribution in the condensation-zone has already

been obtained in section 2.3. The gradient of reduced

temperature in the condensation-zone is:

d '1 1 r A' expA'Y
d -' 1 +

d" 2 expA' - 1
[2.5.22]
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The dF/di term is the correction factor that must be applied to

the length-scale in the condensation-zone, i.e. x-scale, to

transform it to the z-scale. It is:

(di/di) = L1 - L [2.5.23]

The term (d 7'/dr) transforms the differential variations of q' to

variations in q :

(d77/d ' ) = (AT'/AT) [2.5.24]

Equations [2.5.20] and [2.5.21] are solved simultaneously to

generate the length-scales. The length scales are:

SAT 1 F A'
2 T'_+ exp +

AT' expA' - 1

AT
2. +

AT'

[2.5.251
A' exp A'

2 +
expA' - 1

-102-

L1



and,

1 +
expA' - 1

L [2.5.26]
0L AT A' + A'expA' - 1

2 + 2 +
AT' exp A' - 1

The length-scale in the condensation-region is reduced by the

(dF/dR) factor:

dz 1
[2.5.27]

d 1 AT' A' + A'expA'
1 + --- - 2+

2 L T exp A' - 1

With the results obtained in this section, the case of heat

and mass transfer with condensation in a porous slab with

immobile condensate is completely solved. The case of immobile

condensate corresponds to the early stages of condensation.

Hence, the obtained solution applies only to the early stages of

condensation. The period for which this solution is valid

depends on the value of critical liquid-content, which is a

property of the medium. Once the value of critical

liquid-content is established, eq. [2.4.13(b)] or Fig. 2.4.2 may

be used to calculate the length of the period over which the

condensate is immobile and the results of this section apply.

The temperature and the vapor-concentration distributions in the

condensation-region have been obtained in section 2.3. The rate
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of condensate accumulation F(Y) was derived in section 2.5.

Those results were obtained in terms of three undefined

parameters : T, T1, and Lw . The length-scales and the

temperature values at the boundaries of the condensation-region

were obtained in this section. Hence, the solution is completed.

The analytical results obtained in this and other sections.

was in part due to use of Clausius-Clapeyron relation, and the

perfect gas law in approximating the behavior of the vapor. The

closed form solution of E(T) was obtained by linearizing the

energy equation. Furthermore, in the process of manipulating the

boundary conditions, certain approximations were made. In order

to assess the total effect of the approximations an illustrative

example is solved.

ILLUSTRATIVE EXAMPLE:

In this example the analytical results are compared with the

numerical solution for a specific slab with defined boundary

conditions. In the numerical solution of the energy equation and

the boundary equations the values of saturation

vapor-concentration were obtained directly from the steam-tables.

The energy equation was solved by an iterative scheme. The

bounday equations were solved by the method of flase-locii.

Consider a porous slab of 1-ft thickness. The properties of

the slab are similar to those of fiberglass insulation board:

p = .0763 lbm/Ft3

c = .24 BTU/lbm-*FP
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k = .016 BTU/hr-ft-*F

D = 0.8 ft 2/hr
v

D = 0.
1

The values of temperature and humidity on the hot and cold sides

are:

Th = 90.*F

Tc = 25.OF

hh

h
C

= 90%

= 90%

The boundary values are chosen such that a large portion of the

slab consists of the condensation-region. Hence, the shape of

the temperature profile would be more clear.

The location of the condensation-region, and the temperature

distribution in the slab are calculated both numerically and

analytically, and are shown in Fig. 2.5.3. The analytical

soltuion is shown by circles, and the numerical results are

indicated by squares. The analytical solution is very close to

the numerical solution. There is some error in defining the

location and width of the condensation-zone, but he agreement on

the temperature distribution in the condensation-zone is

extremely good. Overall the errors are negligibly small.
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2.6 HEAT AND MASS TRANSFER WITH CONDENSATION IN A POROUS SLAB

CASE II : MOBILE CONDENSATE

The phenomenon of liquid diffusion in the presence of a

liquid source in a porous slab was studied in section 2.4. These

results along with those of section 2.3 were used in section 2.5

to study heat and mass transfer during condensation in a porous

slab for immobile condensate. In this section the phenomenon of

heat and mass transfer with mobile condensate will be studied.

The synthesis of the results in this and the previous section

will bracket the phenomenon of condensation in a porous slab

completely.

Consider Fig. 2.6.1. As before, the temperatures Th and T ,
and relative humidity values hh, he are imposed on the boundaries

of the slab. Condensation occurs in some region of the porous

slab. The temperature field inside the condensation-region was

obtained, in section 2.3, to be

=' ~F1 expA'Y - 1
2 L expA' - 1
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According to the arguements of section 2.4, during condensation

the following chain of events takes place. At the early stages

of condensation the liquid is in a pendular state and does not

exhibit any tendency to diffuse. During this period the

liquid-content in the condensation-region increases linearly with

time. The results of section 2.5 apply for this period of

condensation. As the level of liquid-content increases beyond

the critical value, the liquid begins to diffuse in response to

the existing liquid-content gradients. Then, the liquid-content

distribution undergoes a transient change until it reaches a

steady-state profile. The transient and steady-state liquid

content distributions are given in section 2.4 in terms of the

condensation rate. The condensation rate is obtained from

solution of the temperature and concentration profiles inside the

slab. In this section the temperature and concentration profiles

of the condensation-region are matched with those of the adjacent

dry regions. Four otherwise unknown parameters emerge from this

matching: the width and location of the condensation-region, and

the values of temperature on the boundaries of the

condensation-region, TO, and T1.

As the liquid-content in the medium increases beyond the

critical value, the liquid-content distribution and the location

of the condensing front undergoes a transient change. The

solution of this transient behavior is not readily available in

terms of simple and closed form functions. The transient

behavior may be obtained by treating the phenomenon

quasi-steadily, and obtaining the solution over a finite discrete

time-steps. This is not reported in this work. The extension

of the steady-state solution to obtain the transient behavior is

not trivial.

The focus of this section is on the formulation of the

phenomenon after the liquid-content distribution and the location

of the condensation-region have reached their steady-state

values. The steady-state liquid-content distribution is given by
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eq. [2.4.23]:

C' Le ' 1 [ expA' - 1

s PE ' 2 expA' - 1

At steady-state the mass of condensed-vapor is equal to the

amount of liquid evaporated at the boundaries, and there is no

net accumulation of condensate in the medium. A fraction of the

condensate leaves the condensation-region at the boundary x=O,

and the remainder leaves at i=1. The fraction of condensate that

leaves at 1=0 is given by eq. [2.4.43]:

expA' - 1 - A'

A'(expA' - 1)

The condensate that leaves the boundaries of the

condensation-region evaporates into the adjacent dry-regions.

The process of evaporation absorbs a certain amount of heat that

must be supplied by conduction. The width, location and boundary

temperatures of the condensation-region are determined by the

conditions of continuity of heat and vapor-flux across the

boundaries of the condensation-region and the adjacent dry

regions. The constraint of steady-state liquid-content profile

appears in the form of liquid-flux leaving the boundaries at 7=0,

and x=1.

Consider Fig. 2.6.1. As before, the z-scale and x-scale are
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used to denote the length scale in the slab and in the

condensation-region, respectively. At z=Lothe following heat and

mass balances may be written:

T - T dT
h 0-k = -k -d

L0 dz L0
+ Jo hfg [2.6.1]

C - C dC
-D = -
v LO dz L0

Jo [2.6.2]

where JO is the liquid-flux which leaves the condensation-region.

Equation [2.6.1] states that the heat-flux entering the slab at

z=0 equals to the sum of heat-flux absorbed by the evaporation of

the diffusing liquid, JO, and the heat-flux conducted into the

condensation-region. Equation [2.6.2] states that the amount of

vapor that diffuses into the condensation-region equals the sum

of vapor-flux entering the slab at z=Loand the vapor-flux created

by the evaporation of the diffusing liquid-flux, JO.

Heat and mass balance at z=L 1 yields:
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T -T dT
-k 1 J1 h = - k - 2.6.3]

L -L 1 fg dz LT 1

and

C - C dC
D L -D v + Jl [2.6.4]

LT L1 dz L 1

Equation[2.6.3] states that the heat-flux conducted out of the

condensation-zone, i.e. at x=1, provides for the evaporation of

the liquid-flux, J1, with the remainder fo the heat-flux leaving

the boundary at 7=1. Vapor-flux leaving the slab at 7=1, equals

the sum of the vapor-flux diffusing out of the

condensation-region, and the vapor-flux created by the

evaporation of the liquid-flux, J1, eq. [2.6.4].

Equations [2.6.1]-[2.6.4] are the boundary conditions

necessary to solve for TO, T1, LO, L1. However, these equations

are highly nonlinear, especially due to the existence of the JO
and J1 terms. Brute force solution of coupled nonlinear

equations often results in failure and frustration as the

iteration schemes may not converge. Hence, similar to the study

of section 2.5, these equations are manipulated such that the

number of coupled terms is decreased. Furthermore, introduction

of physical insights simplifies the equations and reveals simple

relations which may be otherwise cloaked under cumbersome terms.
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Under steady-state conditions, the condensate migrates

towards the boundaries of the condensation-region and evaporates.

Hence, as there is no net accumulation of condensate, the

vapor-flux entering the slab must equal the vapor-flux leaving

it:

C 1 C Ch - C 0
D c = D

T L1 0L

[2.6.5]

By the same token, since there is no net mass change in the

porous slab, there is no assocaited energy change. Therefore,

the heat-flux entering the prous slab must equal to the heat-flux

leaving the slab:

Th - T0 T - T
k = k

LO LT - L1

[2.6.6]

In order to reduce the coupling between the boundary equation,

the length-scales in eq. [2.6.5] and [2.6.6] may be eliminated to

yield:
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T - T T - Th 0 1 c* ,

Ch  C 0 C 1 -Cc

Non-dimensionalizing the above results in

c - 171

hh exp[h ] - exp[ D0]

he exp[ (c] - exp[ D1]

[2.6.7]

[2.6.8]

The above equation defines the relation:

f(7 ,0' 1; hh , he, Th , Tc ) = 0 [2.6.9]

where a vlaue of q0 corresponds to each value of q1. The

relative humidities hh and he appear as the explicit parameters

in the solution, whereas the temperatures Th and T appear

implicitly in V and P.

Equations [2.6.1] and [2.6.3] may be combined to yield the

total rate of condensation per unit area:
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Th - T
- k

dT
+ k

dz L
[2.6.10]

T - T
J h. =k 1 c

I fgg LT - L1

dT
+ k

dz L1

[2.6.11]

(W/A)T = Jo + J1

then, using
eq. [2.6.11

eq. [2.6.6], and
i gives:

the addition of eq. [2.6.10] with

(W/A)T = -k(dT /dz)L + k(dT /dz)4 [2.6.12]

Using the results of section 2.3

chain-rule to eq. [2.6.12]

on q(x) , and applying

yields:
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A' k AT d i dr
(W/A)T •

zfg i I

which is identical

[2.3.41]:

to the results previously obtained,

D C'
(W/A), = r

Liquid-flux JO which evaporates

JO = a (W/A)T

Using eq. [2.4.43]:

exp A'

A' (exp A'

Le 3'

2'at z=L

at z=L0

- 1 - A'

- 1)

results in
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J h0 fg _

k AT

dl dX expA' - 1

dr' dF

- A'

2(exp A' - 1)
[2.6.14]

Similarly,

dcl dr A'XexpA' - exp A'

2 (exp A'

+ 1

- 1)
[2.6.15]

where as before:

and

1

1 0

Equation [2.6.9] is one implicit equation which relates q0
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and q1. Once one other equation of the form:

f 2
(

0 ,' 91; hh,hc,ThTc)= 0 [2.6.16]

is identified, the two can be solved, in theory, to generate 7 0
and 71 . As we would like f2 to be independant of the length

scales, the choice of startegies in manipulating the boundary

equations is limited. The equations with the same length-scale

must be paired together: [2.6.1] with [2.6.2], and [2.6.3] with

[2.6.4]. Then the length scale is eliminated between each pair.

This will generate two new equations.

Consider eqs. [2.6.1] and [2.6.2]. The length-scale is

eliminated by dividing the two equations onto eachother:

C - Ch 0O
T - TOh 0

dC
J + D

dz L0

dT
J hg -k dz L
0 fg dz L0

Using the Clausius-Clapeyron relation, and the ideal gas law,

eq.[2.6.17] becomes:
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hh exp [ t h ] - exp[ 0 0]

7h - 0

o. 5YD [1

Le

- 1 ( 1

-2
+ex (1+70) exp[

exp A' - 1

expA' - 1

1+ / '7.1

p0 o

[2.6.18]

i=, h, c, 0 , 1

same argument eqs. [2.6 .2] and [2.6.3] may be combined to

h exD rD 1 - exp [ 1

7) c -7)

0.5 Yý 11
A' expA' 1

expA' - 1i
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Le X 'exp X
0F expA' - 1

[2.6.19]

In eq. [2.6.18] ?1 , and in eq. [2.6.19] q 0 appear implicitly

in A'. Hence these two equations are implicit in terms of and

30' and 91. There are now three implicit equations involving ?0
and 91: eqs. [2.6.8], [2.6.18], and [2.6.19]. Of these any two

are independant and can be used in a successive iteration scheme

to solve for 90 and 91. The last part of this section is devoted

to a brief discussion on the proper choice of the equations as it

relates to the convergence of the iterative schemes.

Once the values of Y0 and 91 are known, the length scales

can be obtained from the boundary equations. Consider eq.

[2.6.1]:

T - T dTh 0k = -k
L0 dz L

+ Jo hfg

and eq. [2.6.14]

J h dq d'T

k AT d'7 dY

expA' - 1 - A'

2(expA' - 1)
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Equations [2.6.1] is non-dimensionalized into the following form:

h - 1 d11 dT A' J0 h
S= - 1 ++ fg [2.6.20]

L- 2 d7' d ( expA' -1) k A T

Combining the above with eq. [2.6.14] yields the following simple

result:

Sh- 10

L0

d'1 dx
[2.6.21]

Similarly, eq.[26.13] and eq.[2.6.15] are combined to yield:

11 - 1- d7 d!
1 d d
1 - L1 d7' d

[2.6.22]

The above result was expected beacause it indicates that the

heat-flux entering the slab is equal to the heat-flux leaving it:
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0h - O 1- 1 c

L o - L0 1

Recognizing

(dz/dx) =LT -01 0

and

(d'?/d 1') = (AT'/AT)

rh = 0.5

1 = -0.5
c

Then,

-123-



--h -0O
L = [2.6.23]
0 T

AT

and,

AT

+ (nh - Y0 )

•1 AT [2.6.24]
AT

AT+ 1 -(7 - 7)

With 70 and 71 known, the above two equations yield the values of

L0 and L1'

The solution of systems of nonlinear equations is a topic of

current research. There are no general prescriptions, and each

case must be studied individually. In the solution of systems of

nonlinear equations extra care must be taken to ensure the

convergence of the iteration scheme. When the two equations to

be solved iteratively are chosen, each is identified to accept

one of the unknowns as an input and supply the other unknown as

the output. The equations must be arra ed such that the output

would correspond to the zero of the function. The method of

false-locii [73] offers an efficient method for obtaining the

zero of an implicit function. The output of one equation is then

supplied to the other equation as the input. Following this

approach successively the two unknowns could converge to the

roots of the two equations. One necessary condition for

convergence is the form of the equations. Each equation may be
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written in a variety of forms, however, it is necessary that the

derivative of the function with respect to the unknown variable

be less than one [73]. The other necessary condition for

convergence is to start the iteration sufficiently close to the

final values. This condition offers an insurmountable obstacle

in many cases, and many initial values must be tried before the

final solution is obtained. However, in the problem under study

the inital values of 0, and 7 1 may be supplied by the solution

of the immobile condensate problem, section 2.5. The values of r7
and 91 are obtained by the simultaneous solution of two of the

three equations: [2.6.8], [2.6.18], and [2.6.19]. The three

equations are non-linear and implicit in n0 and ?1. Equation

[2.6.8] was used to calculate n0 for a given value of q•"

Equation [2.6.19] accepted 70 as the input and would calculate

ý. The successive iteration of these two equations converges to

the final soltuion within ten to fifteen iterations.

In summary, the problem of heat and mass tranfer with phase

change for mobile condensates was studied in this section. The

equations describing the temperature profile, location and width

of the condensation-region are obtained. In order to demonstrate

the solution technic develop ed in this chapter, an illustrative

example is presented.

ILLUSTRATIVE EXAMPLE

In this example the steady-state position, and the

temperature and concentration profiles of the condensation-region

in a porous slab are obtained. The boundary conditions are:
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= 90. 0 F

T = 25.OF

hh

h
C

= 90%

= 90%

The properties of the slab are given in the illustrative example

of section 2.5. The two eqs. [2.6.8] and [2.6.9] are solved

simultaneously to generate the values of 7 0 and q1 . The solution

of the two equations consists of a successive iteration scheme,

where the output of one equation is used as the input to the

other. It may be recalled that one condition for the convergence

of the iterative scheme is to start the iteration with values

which are sufficiently close to the final answers. The values of

q0 and i1 obtained from the solution of the problem for the case

of non-diffusive condensate, section 2.5, are used as the initial

guesses. The iteration scheme converges to the following values

of q0 and 1jl

^, = .3997

= -.4856
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Equations [2.6.23] and [2.3.24] are used to generate the

length-scales:

L= .1

L1  .986

The latent heat transport coefficient,, , has a numerical value

of 2.52. The temperature profile inside the condensing-region is

generated using this value of A'. The above information is

presented in Fig. 2.6.2.

The discontinuities in the temperature profile at the

boundaries is indicative of the amount of energy absorbed by the

evaporation of the liquid-fluxes, J0 and J1. The location of the

condensation-region obtained for the above boundary conditions

for the case of immobile condensates is also shown and compared

with these results in Fig. 2.6.3. The comparison of the two

results indicates that liquid-diffusion leads to the enlargement

of the condensation-region. For the case of diffusive

condensate, the heat-flux into the slab at T=0 is larger than the

heat-flux associated with the non-diffusive condensate. The same

relation holds for the heat-flux leaving the slab at z=1.
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2.6.1 Schematic Profile of the Matched Reduced-Temperature Profile for
the Case of Diffusive Condensate
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2.7 EFFECTS OF HEAT AND VAPOR CONVECTION ON CONDENSATION IN A

POROUS SLAB

The study of heat and mass transfer of the previous sections

was performed by considering only the diffusional mode of heat

and vapor transport. In this section the effects of convective

transport will be discussed.

Mass and heat convection are associated with the bulk flow

of a species that has the capacity to store and transmit heat and

mass. The carrier species obeys the phenomenological transport

realtions, in the sense that the flux of the species is

proportional to the gradient of its conjugate potential. In the

case of heat and mass tranport in a porous medium, the carrier is

a gas, most probably air. The air-flux is associated with the

pressure gradient across the slab:

U = -D VP [2.7.1]

D'Arcy's Law has historically been used to define the laminar

flow of fluids in porous media. For a one-dimensional flow:
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k* dP

S dx
[2.7.2]

where

k* = permeability of the porous medium

Y = fluid viscosity.

The medium permeability, k , depends on the internal geometry and

structure of the medium. For a porous slab of known width LT,
and pressure boundary values PO at -=0, and P1 at T=1, eq.

[2.7.2] may be written as:

k*
U=

Po - P

LT
[2.7.3]

The above indicates that once the pressure values of the two

reservoirs, Fig. 2.2.1, and the medium permeability are known,

the infiltration velocity, u, can be directly calculated. In the

following the effects of convection on heat and vapor-flux

continuity in the condensation-region is discussed first. Then,

the energy and continuity equations for the dry-zones are
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developped. Third, the boundary equations necessary to match the

solutions of the condensation-region with those of the dry

regions are given. In the last section, the effect of convection

on the condensation rate and liquid diffusion is discussed.

The heat-flux per unit area convected out of a differential

element of the medium with thickness Ax is:

(q/A)concony = p c u (dT/dx) Ax

P = density of the infiltrating species

c = specific heat capacity of the infiltrating
P species

The product Pc indicates the capacity of the carrier species,
P

in this case air, to store heat. The above convection term is

introduced into the energy equation of the condensiong-region,

eq. [2.3.7], to yield
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k(d T/dx2) - pc u (dT/dx) + F hfg = 0 [2.7.5]

Vapor-flux per unit area convected out of the differential

element is:

(W/A)in = -u(dC/dx) Ax [2.7.6]

Combining the above with the vapor-continuity equation in the

condensation-region, eq. [2.3.5] yields:

D (d2C*/dx 2 ) - u(dC*/dx) = Fv [2.7.7]

Note that in the above the vapor-concentration is at saturation

levels, and is denoted by C . Equations [2.7.5] and [2.7.7] can

be combined by eliminating the condensation rate F(x). The

resulting equation is non-dimensionalized into the following

form:
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d2r1' d 77 ' 1'
- Pe +

dx 2  dx Le 3'

where

d2C* dC*
d--- 2 - PeLe --= 0 [2.7.8]

2 dxdx dr

Pe (Peclet Number) = (pcp u L w/k)

Peclet number indicates the ratio of heat transported by

convection to heat transferred by conduction. The other

non-dimensional groups and variables which appear in eq. [2.7.8]

are all defined in eqs. [2.3.10] and [2.3.12]. The saturation

vapor-concentration is a unique function of temperature. The

Clausius-Clapeyron relation, eq.[2.3.14], and the perfet gas law,

eq. [2.3.15] are used to define the functional dependence of

saturation vapor-concetration on temperature. Introducing the

above into eq. [2.7.8] results in a non-linear differential

equation in reduced-temperature,

dy' -2
1 + (1+7r' #') exp[ P ]

Le

2

dx2

--2 dr/'
-Pe 1 + f' y' (1+r7' /') exp[ D ]

dx

F '2 ' --2

Le J-2
(1+r1'/'') exp[ D]Le j

d2r'

dX2
- 0. [2.7.9]
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where as before:

1 + p/3' '

The above is associated with the following boundary conditions:

= 0.5 @ x = 0

@ x = 1 [2.7.101

The solution to eq. [2.7.9] may be derived by linearisation

technics. Eq. [2.7.9] must be linearized around the solution to

the energy equation without the condensation term :

(d?'/d" ) - Pe(dq'/dR) = 0 [2.7.11]

The effect of convection on the temperature-distribution would be

to cause an increase in the concavity of the temperature profile
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obtained in section 2.3. This translates into an increase in the

condensation rate.

The energy equation in the dry regions is identical to eq.

[2.7.5] without the heat source term:

k(d2T/dz 2 ) - pc u (dT/dz) = 0P [2.7.12]

The vapor-concentration in the dry region is less than the

saturation concentration; otherwise condensation would occur.

The vapor- continuity equation in the dry region resembles eq.

[2.7.7] with the condensation rate equal to zero:

Dv(d 2C/dx 2 ) - u(dC/dx) = 0 [2.7.13]

Equations [2.7.12] and [2.7.13] are associated with the following

boundary conditons:

-For the region adjacent to the "hot" reservoir
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C = h C hh h

C = C 0

& T = Th

& T = T

-For the region adjacent to the "cold" reservoir:

C = h C
c c

& T = T @ z = LT

& T = T1
@z = L1 [2.7.14]

The solution to the energy equation in the

condensation-region as obtained from eq. [2.7.9] would be in

terms of the values of temperature at x=O, and x=l, and the width

of the condensation-region. To solve for the three unknowns, the

temperature and concentration profiles of the condensation-region

must be matched with the temperature and concentration profiles

of the two dry regions. For the condition of zero

liquid-diffusivity, the continuity of heat and vapor may be

written as:

dT

dz LO

dT

dz LO
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dC

dz LO

dT

dz L1

dC

dz L1

dC

dz LO

dT

dz L

dC

dz L1

[2.7.15]

For the case of non-zero liquid diffusivity, the boundary

equations are modified to reflect the presence of evaporating

liquid-fluxes at the boundaries of the condensation-region:

dT dT
dz L+ -dz L
dz L0 dz L0

dC

dz LO

dC

dz LO

J h
S0 fg

k T

Jo
D

v
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and

dT

dz L1

dC

dz L1

dT

dz L

dC

dz L

J h

k AT

J

D
V

[2.7.16]

With either of the two sets of equations, eq. [2.7.15] or

[2.7.16], the temperature profile as well as the width of the

condensation-region may be determined. Once, the temperature

distribution is obtained, eq. [2.3.5] may be used to calculate

the condensation-rate. Although the solution to the above

systems of equation is not obtained here, an order of magnitude

study casts light on the relative importance of convection on the

condensation rate. In eq. [2.7.9] the coefficient multiplying

the Pe(d?' /dx) is very similar to the coefficient multiplying the

(d2T'/dx2 ) term. The only difference between the two lies in the

absence of Lewis number in the-first coefficient. For values of

Lewis number of order 1, the two coefficients are identical. The

water vapor has a Lewis number of about 1 in air. With Peclet

number equal to zero:

(d 2 /' /dx 2 ) (O (1,2
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and

2
(d r' /dx) (A 2)

Hence, it can be argued that the convection effects are

negligible if:

Pe << A'

Typically the latent heat transport coefficient is of order 1 (it

varies from 0.5 to 5). Therefore, for the convection effects to

be negligible:

Pe << 0(1)

For

Pe - A'
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the condensation rate is caused by equal contributions from vapor

diffusion and vapor convection. It may be recalled ,from Fig.

2.3.5, that the condensation rate, in absence of convection is a

a strong function of the latent heat transport coefficient.

Therefore, the condensation rate would increase significantly

with increasing values of Peclet number. An increase in the

condensation rate, perhaps as much as twice if Pe , A', would

lead to shorter time-periods for the liquid-content to build up

to the critical value, above which the condenate begins to

diffuse. The steady-state liquid-content distribution will also

be a strong function of the Peclet number. The peak value and

the mean of the liquid-content distribution increase with Peclet

number.
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2.8 HEAT AND MASS TRANSFER IN A POROUS SLAB

ASSOCIATED WITH THE FORMATION OF SOLID-CONDENSATE

In the previous sections the phenomenon of heat and mass

transfer associated with the formation of liquid-condensate has

been considered. In this section the results of the previous

sections are used to modify the analytical model to incorporate

the formation of solid-condensate.

Under suitable conditions, vapor in a porous slab can

condense into two forms of condensate: liquid and/or solid phase.

Fig. 2.8.1 depicts a situation where both solid and

liquid-condensate are present. As indicated the region of

liquid-condensate lies closer to the warmer side of the slab, and

the region of solid-condensate lies closer to the colder side.

It is, of course, possible for the condensation-region to

comprise only of solid, or liquid condensate.

The heat released as a consequence of phase change is

proportional to the latent heat of phase change. The latent heat

of solidification associated with vapor to solid phase change is

numerically different from the latent heat of vaporization,

associated with vapor to liquid transition. It was shown in

section 2.3 that the parameter that scales the effect of heat

released by condensation is the latent heat transport

coefficient, A'. Therefore, the two subregions associated with

the liquid and solid-condensate are characterized by different

values of the latent heat transport coefficient.
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Solid-condensate may be generally assumed to be immobile,

whereas the liquid-condensate is capable of diffusion under

certain conditions. The diffusion of liquid takes place towards

the dry region and the solid-condensate zone, Fig. 2.8.1. The

diffusing liquid evaporates at the boundary between the dry

region and the condensation-region, z=L 0 . On the other hand, the

liquid which migrates towards the solid-condensate zone

solidifies at the boundary z=L . Therefore, at the

frost/liquid boundary heat is released, whereas at the dry/liquid

boundary heat is absorbed.

The condensation of vapor into solid and liquid form cannot

be treated by a single formulation, for the diffusive behavior of

the condensates, as well as their thermodynamic properties are

different. Hence, the condensation-region is broken into two,

corresponding to each type of condensate. The analysis of the

previous sections applies to each condensation-subregion and its

adjacent dry-region. The solid-condensate may be assumed to be

immobile; once the values of liquid-content in the medium exceed

the critical value, the liquid-condensate diffuses in response to

gradients in the liquid-content distribution. The temperature and

concentration profiles of the two sections are matched at the the

boundary z=Lm to generate the temperature and concentration

profile of the whole region. In this section the boundary

equations necessary to perform the matching of profiles is

developed, and the solution methodology is discussed.

During the early stages of condensation in a porous medium,

liquid diffusivity is approximately zero. During this period no

liquid diffusion out of the liquid-condensate zone takes place.

Hence, the condensation-region consists of two zones where only

vapor and heat-fluxes cross the regions' boundaries. The

solution to this problem can be easily affected by considering

the following partitioning of the condensation-region. Consider

Fig. 2.8.2. In this figure the slab with the condensation zones

is indicated. The liquid-condensate zone and its adjacent dry
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region are seperated by an imaginary boundary from the

solid-condensate zone and its adjacent boundary. The temperature

at this imaginary boundary is equal to the freezing temperature

of the condensate. Let the liquid-condensate zone and its

adjacent dry-region be named as domain-I ,and the

solid-condensate zone and its neighboring dry region as

domain-II. Let the total length of the domains be L , and

L . The values of the length scales is not known and are partTII
of the solution.

The temperature and concentration profiles in both domains

may be obtained by the tools of the previous sections, with the

length scales and the values of temperature at the boundaries of

the condensation-region remaining undefined.

The heat-flux continuity across the boundary z=Lm , may be

written as:

dT dT
- = dz. j [2.8.1]

dz I dz II

Taking advantage of the non-dimensionalization of the previous

sections, the above may be written as:
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dx
AT' ----

dz

d i'1

dx
= AT'

+ A'I expA' I

expA' - 1I

dq'

dK"

1

2II
E l

A'
+exp

exp 'T
[2.8.4]

Then, the following relation between the length scales of the two

domains may be obtained:

1+ II1 +

AT'
II

I AT'

expA' -
II

1 +
A'I expA'

expA' - 1

The above with the constraint:
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II
dz

where

d T-'

diII
[2.8.2]

II

d 1'1

dF

and

[2.8.3]

[2.8.5]

2
2

dr
dr"

--



dZ" dZ"
d"- + -d-" I

dTI dX II
- 1 [2.8.6]

is sufficient to define the length-scales.

For the case where liquid diffusion is present, the solution

is slightly more complex. In domain-I a portion of the

condensate diffuses out of the condensation-region in form of

liquid and evaporates at its boundary with the adjacent dry

region. The continuity of mass and heat at this boundary is

analogous to the case discussed in section 2.6. With JO denoting

liquid-flux at z=LO, eq. [2.4.4.5], the boundary equations are:

C - C dC
D = -D

S L v dz L
- Jo [2.8.7]

T - T dT
k -k

L0 dz LO
+ Jo hfg0 fg

At the boundary of the solid-condensate with the dry region, the

vapor and heat-flux continuity are:

-147-

and,

[2.8.8]



C C dC
1 cdz

LT - L 1 dz L 1

T -T dT1 c -

LT-L 1 dz L1

[2.8.10]

The liquid-flux leaving the liquid-condensate subregion and

entering the solid-codensate subregion freezes at the boundary of

the two subregions. The solidification process is accompanied by

release of energy which must be conducted out through the

solid-condensate region. With J1 denoting the liquid-flux

leaving the wet zone and entering the solid zone, at z=Lm , the

boundary equations are:

dT-k-k-I + J h
dz L- 1 fs

m

dT
-k

dz L+m

[2.8.11]

and,
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dC dC
-D = -D 2.8.12

v dz L- v dz L+
m m

where

hfs = Latent heat of solidification

Equations [2.8.7]-[2.8.12] constitute a set of nonlinear

coupled equations. They are sufficient to define all the unknown

parameters. However, the solution of such a large number of

coupled equations is not a trivial task. The solution of the

above is not carried out in this work, and hence, is not

reported.

For liquid-contents less than the critical values, where no

liquid diffusion takes place, the condensation-region may be

treated as a uniform domain. By treating the region as uniform,

the solutions of section 2.5 may be used directly at the cost of

losing some accuracy in the final results. The source of error

lies in the difference between the latent heat of vaporization

and the latent heat of solidification. This difference is

insignificant in many instances. For example, the values of

latent heat of vaporization and solidification for water is 1070

BTU/lbm, and 1220 BTU/lbm, respectively. The error incurred in

treating the condensation-region as a uniform domain is discussed

in the illustrative example of this section.

Under certain conditions the condensation-region may consist

solely of solid-condensate. This situation is identical to the

case of liquid-condensate with zero mobility, section 2.5. The

only difference between the two lies in the proper choice of the
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thermodynamic properties. Clearly, there are no upper bounds on

the ice-content in the slab, except for, perhaps, the ones

assocaited with the mechanical strength of the medium.

In this section, the phenomenon of heat and mass transport

associated with the formation of solid-condensate was studied. The form
and solid-condensate. The different regimes of

liquid-diffusivity and their effects on the process of

condensation was also investigated. In the remainder of this

section an illustrative example involving the results of this

section is presented.

ILLUSTRATIVE EXAMPLE

Consider a porous slab with the same properties as discussed

in the illustrative example of section 2.5. The slab boundary

conditions are chosen such that both solid and liquid condensate

are formed in the medium. The boundary values are:

T = 90.0 F
H

T = -20. 0 F

h = 90%H

h = 90%
C
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The temperature profile and the location of the

condensation-region are obtained for the case of none diffusive

liquid-condensate. The solution is obtained by partitioning the

condensation-region into two zones at the point where the

temperature equals 32.OF, the freezing temperature for water.

The temperature profile and location of the condensation-region

in each domain is obtained using the results of section 2.5. The

following boundary values are associated with domain-I:

TH, I

TC,I

H,I

hc,I

= 90. OF

= 32. OF

= 90%

= 100%

Using the solution methodology of section 2.5, the following

results are found:

,I = .212

LO,I

I

= .3741

= 1.67
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AT' = 38.3 OFI

With the following boundary values, the solution for the

solid-condensate region, domain-II, is obtained:

TH, II

TC, II

hH, II

hC ,II

= 32.OF

= -20. OF

= 100%

= 90%

The results are:

1, 11

1,II

TII

II

= -.341

= .8766

= 1.099

= 41.570 F
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The temperature and concentration profiles of the two

domains are matched using eqs. [2.8.1]-[2.8.6]. The values of

the length-scale multipliers are calculated to be:

dY
= 0.355

di II

dT

= 0.645
d9 II

The above results indicate that the reduced length scale in

domain-I is decreased by a factor of 0.645, and that of domain-II

is reduced by a factor of 0.355. The matched reduced temperature

profile is presented in Fig. 2.8.3. It consists of two different

profiles matched at z=L .m

It has been suggested in this section that for the case of

immobile liquid-condensate, the entire condensation-region may be

approximated as one homogeneous condensation-region. This

treatment would assume that the differences in the thermodynamic

properties of the two condensates may be ignored. The results of

section 2.5 were applied directly to the boundary conditions of

this example. The thermodynamic properties of the

solid-condensate were assumed to be identical to that of the

liquid-condensate. The results of this approach is shown of Fig.

2.8.3. The solutions obtained by the two different technics are

not very different, indicating that the difference between the

latent heats of vaporization and solidification is negligible.

Hence, the condensation-region may be treated as a homogeneous
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domain, and the results of section 2.5 may be applied directly to

cases where both solid and liquid condensate are present.
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CHAPTER 3

HEAT AND MASS TRANSPORT WITH PHASE CHANGE IN A POROUS SLAB-

SPATIALLY - UNSTEADY SOLUTIONS

3.1 INTRODUCTION

In the previous chapter the phenomenon of heat and mass

transfer during condensation was studied. In that analysis the

study was focused on condensation in the porous media for two

regimes of liquid-content: low values of liquid-content which

implied zero liquid diffusivity, and moderate liquid-contents

where liquid diffusion was present. In this chapter the

phenomenon of drying in a porous slab for the two regimes of

liquid-content will be studied. The study assumes the existence

of a nonzero liquid-content distribution in the medium. The
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initial liquid-content distribution may be assumed to be related

to the liquid-content distribution at the end of a condensing

period. The wet region is assumed to be bounded by two dry

regions. This assumption is not critical to the results of this

study. At the beginning of the drying process, time equals zero,

the values of temperature and humidity at the boundaries of the

slab are changed to new values. The new values are inconsistent

with the existence of the condensation-zone. These new

boundaries might require a larger, smaller, or no

condensation-region. Hence, the width and location of the

condensation-region will have to change in order to accomodate

the new boundary values. The purpose of the study in this

chapter is to analyze the transient behavior of the

condensation-region's boundaries and liquid-content. The final

location of the condensation-region can be obtained by performing

the analysis of chapter 2 with the new boundary values.

Consider Fig. 3.1. The wet region is indicated to be

located from z=L 0 to z=L 1 . The intial liquid-content

distribution is considered to be an input. Let us assume that

the origin of liquid in the medium is related to a period of

condensation in the slab. Let the tranisent be initialized by a

step increase in the value of temperature at the boundary z=LT of

the slab. Naturally, any combination of the four boundary

values: Th , Tc , hh , he may be changed. The behavior of the

system would be different depending on the magnitude and

direction of change in any of the four boundary conditions. In

order to preserve continuity of notation and present aconcise

discussion, the increase in only one boundary value is considered

in this chapter. This is not a restrictive assumption and may be

withdrawn once the new notation of temperature and concentration

is completed. With the above assumption, the hot and cold

reservoir exchange their significance. The temperature at z=LT

is now denoted as TH, and the temperature at z=0, is TC. The

relative humidity values are now hH and hC, correspondiong to TH
and TC . In short the 'hot' reservoir now lies to the right of
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the slab, and the 'cold' reservoir lies to the left of the slab.

With the new boundary values, heat and vapor diffuse into

the slab in a manner analogous to diffusion in a semi-infinite

plane. There are three transient time-scales associated with the

change in the boundary conditions. One time-scale corresponds to

the storage of heat, another to storage of vapor, and the third

to the storage(depletion) of liquid. It will be later shown that

the transients corresponding to storage of heat and vapor take

place at a rate significantly faster than the one assocaited with

depletion of liquid. For this reason, the temperature and

vapor-concentration transients are considered to constitute the

first transient, and the liquid-content transient to be the

second transient.

During the first transient the temperature and the

vapor-concetration of the medium increase. During the second

transient the condensate at the boundaries of the wet zone

evaporates in response to the addition of heat and removal of

vapor. The behavior of temperature and vapor-concentration

profiles during the first transient are depicted in Fig. 3.2 and

3.3. During this transient some liquid evaporation occurs. As it

will be shown later that the first transient is much smaller than

the second transient any changes in the location of the wet zone

are ignored. Fig. 3.2 and 3.3 indicate that the temeperature and

vapor concentration in the condensation-region increase until

such a state is reached where evaporation at the wet zone's

boundaries becomes the dominant mode of heat and mass transfer.

The increase in the vapor-concentration in condensation-region is

supplied by two sources. These sources are diffusion from the

the slab boundaries and internal evaporation. The density ratio

of vapor to liquid for most fluids is very small. Hence, the

amount of liquid required to satisfy the changes in the

vapor-concentration is very small. It is assumed that the amount

of liquid required to provide for the changes in

vapor-concentration in the wet-zone is an insignificant amount in
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comparison with the amount of liquid present in the medium. As it

is argued that that the time constant assocaited with liquid

depletion is dominant, the movement of the boundaries of the

condensation-region may be approximated by a series of

quasi-steady steps. At each step a certain amount of liquid

evaporates at the fronts and the fronts change their positions.

During this time-step the values of temperature,

vapor-concentration, and liquid-content of the wet-zone undergo

change. The changes in the temperature and vapor-concentration

and liquid-cotent are, according to the assumption to be proved

later, may be considered to be instantaneous in comparison to the

duration of the time-step.

It is necessary to point out that evaporation takes place

primarily at the boundaries of the wet-zone and a fraction of

that vapor condenses into liquid phase inside the wet zone,

simultaneously. At the end of the first transient a certain

temperature profile is established in the medium. Corresponding

to this temperature profile, a vapor saturation-concentration is

established. The condensation rate has been shown to be

proportional to the second spatial derivative of the vapor

saturation-concetration, C . As indicated in Fig. 3.2, the

C -profile has a positive second derivative, indicating the

vapor-flux into an element, in the direction of positive x, is

larger than the vapor-flux leaving the element. The difference

condenses into liquid phase.

The above discussions on condensation imply that for

quasi-steady changes the temperature profile, and consequentially

the vapor-concetration-profile, corresponds to the solution of

the energy equation with a nonlinear heat source distribution.

The soltuion to this equation has been obtained in section 2.3.

It was there shown that in the condensation-region the reduced

temperature, A' , is of the following form:
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1 expA'x - 1
77' = -1 x

2 expA' - 1

where A' is the latent heat transport coefficient and equals:

2 Y' 2 ' ',

Le + 2' Y'

The value of A' depends on the values of temperature at the

boundaries of the condensation-region, T and T1 . These two

values change at each time-step. The location and width of the

condensation-region are also time-dependant.

As mentioned earlier, the analysis assumes a liquid-content

distribution in the wet zone. As condensation occurs in the wet

zone, simultaneously with frontal evaporation, the values of

liquid-content in the medium, and consequentially liquid-fluxes,

become a critical parameter in the study. It may be recalled

that liquid diffusion for liquid-content values less than the

critical value is zero. With the values of liquid-content in the

medium less than the critical value, condensation in the wet-zone

translates into a linear increase of liquid-content with time.

If the values of liquid-content are at or near the critical

value, condensation in the wet-zone leads to the establishment of

liquid-fluxes which migrate towards the dry regions and evaporate

at the boundaries of the wet-zone. This causes a decrease in the

rate of movement of the boundaries.
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Hence, the drying phenomenon needs to be studied for two

cases of initial liquid-content:

Case I- Liquid-content values consistently less than the

critical value throughout the drying process.

Case II- Liquid-content values at and above the critical

level and liquid diffusion present.

In the next sections heat and mass continuity equations for

the two cases will be obtained.
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3.2 SPATIALLY-UNSTEADY HEAT AND MASS TRANSFER WITH PHASE CHANGE

CASE I: IMMOBILE CONDENSATE

In this section the phenomenon of drying in a porous slab is

considered. The inital liquid-content is assumed to be limited

to a section of the slab which is referred to as the wet-zone.

As the relative humidity of both sides of the slab is less than

100% the wet-zone is bounded by two dry regions. The liquid in

the wet-zone is assumed to be in pendular state and does not

exhibit any tendency to diffuse. However, as condensation occurs

in the wet-zone during frontal evaporation, the values of

liquid-content increases with time. For non-diffusive

condensates, liquid-content is found to increase linearly with

time, eq. [2.4.13]:

C' L Le r' A'2  expA2'x
0(3,Fo*) = exp i'1 Fo* + 9 (x,O)

where all the terms in the above 2 exp defined' - 1

where all the terms in the above equation are defined in section
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2.4. In order to insure that liquid diffusion can be ignored

throughout the transient period, it is required that the values

of liquid-content in the medium never exceed the critical value

of liquid-content during the transient. This imposes a

constraint on the duration of transient:

C' r Le /3' expA'x

PE O' 2 expA' - 1

[3.2.1]

wherel](x,0)Imax indicates the maximum value of initial

liquid-content value. For Fourier numbers less than Fo maxmax'
liquid diffusion is ignored during the transient movement of the

the wet-zones' boundaries. However, if the duration of the

transient exceeds Fo max' then liquid begins to diffuse and the

liquid-content undergoes a transient behavior. This transient

behavior is discussed in section 2.4. The solution developped in

this section does not allow for any liquid diffusion and the

transient in the liquid-content profile. The analysis for the

case of diffusive condensate is discussed in section 3.3.

Consider the drying of a wet slab as depicted in Fig. 3.1.

The z-scale denotes the length-scale in the slab, whereas the

x-scale corresponds to the length-scale in the wet-zone. It may

be noted that the positive x-direction corresponds to the

negative z-direction. The choice of the x-scale is made so that

the results of section 2.3 on the temperature-profile in the

wet-zone be readily used. The boundary at z=L 1 is assumed to

have a temperature T1 lower than TH. Mass balance at this

boundary involves the diffusion of vapor into the wet-zone,
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generation of vapor by the evaporation of liquid at the boundary

and the diffusion of vapor from the slab boundary. The mass

balance may be written as:

CH - C 1 dC
D - D -
SLT - L dz LT 11

dL
= pEO(z=Ll,t) [3.2.2]

dt.

The above indicates that the vapor supplied by evaporation at the

front equals to the difference between vapor diffusing into the

wet-zone and the vapor arriving into the slab. It must be noted

that the term dL1 /dt is negative, i.e. the front is receding, and

hence, the terms in eq. [3.2.2] have the correct signs.

Heat-flux entering at the slab boundary minus the heat-

conducted into the wet-zone is absorbed by the evaporation of

liquid at the front. The evaporation of liquid at the front

causes the motion of the front:

TH - T dTH 1k - k -
LT - L1 dz L1

dL1
= hfg p~6(Z=L1 ,t) [3.2.3]

dt

The term T indicates the value of temperature inside the

wet-zone. In equations [2.3.2] and [2.3.3] the term O(z=L 1)

corresponds to the instantaneous value of liquid-content at the
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It is determined from eq. [2.4.13].

Similar to eqs. [2.3.2] and [2.3.3], heat and mass balance

at the z=L 0 boundary may be written as:

C 0 - C dC
S CD -D ---
L v dz L0

0 0

dL
= pfE (z=Lo,t) [3.2.4]

dt

dT
k

dzk ----

T -T dL0 C 0- k = h fgp (z=LO,t) [3.2.5]
L dt

0

In the above the terms O(z=L O ) is determined by eq. [2.4.13].

The four boundary equations [3.2.2]-[3.2.5] and the time

dependant liquid-content equation [3.2.1] constitute a system of

five nonlinear coupled equations. Solution of this set as

presented is quite difficult. In order to facilitate the

solution process the five equations are manipulated to reduce

their coupling.

The rate of change of the length-scales in the boundary

equations are eliminated to yield a pair of implicit equations in

TO and T1 . Eliminating the dL1 /dt term in eqs. [3.2.2] and
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[3.2.3] yields:

D h C - C T -T Dv hfg dC
v fg H 1 H 1 v

k LT - L1 L 1 k dTTr 1 T

dT
+ 1 -

dz L

[3.2.5]

The above equation in the non-dimensional form is:

9H -1 +

1 - L1 Lep/

1 + ----- (1+91) exp[ ~1
Le

hH exp[ DH] - exp[ 01 ]

1 - L

dx

d"

d'7 d7'

d T' dT

It may be recalled that:

d 9' 1 [
S- 1 +

dx 2

A' exp A'" 1

exp.A' - 1
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d =/dR = L1 -L

and

d ' AT'

d'l' AT

Then eq. [3.2.6] may be written as:

H - 111 + Le hHexp[dH] - exp[ D1]Le #

1

2

y -2 1-L AT'
1+ (1+3 ý 1)exp[ ]  - 1+

Le L1-L0 AT expA' - 1

[3.2.7]

Equation [3.2.7] is an implicit equation involving q0 and T1l

11 appears explicitly, whereas qr0 appears implicitly in the

AT'/AT and A' terms.

Similarly eqs. [3.24] and [3.2.5] may be manipulated to

yield:
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0 -C + Le exp [ D0] - hCexp[ C'] =

1 F O -2 L0  AT ' A' exp A'

2 1+Le (L-L 0  AT exp '-

[3.2.8]

Equations [3.2.7] and [3.2.8] are two implicit equations in n 0
and 1 . Both equations are dependant on the values of L0 and

L1. The effect of the presence of these terms on the solution

scheme will be discussed later.

The four independant boundary equations have been

manipulated to yield the two equations [3.2.7] and [3.2.8].

There is enough information in the original four equations to

generate the necessary equations to predict the rate of movement

of the two boundaries. The dC /dz term in eq. [2.3.2] may be

written as:

dC* dC* dT

dz dT dz

Substituting this value into eq. [3.2.2] and introducing the

equivalent of dT*/dz term from eq. [3.2.3] yields
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PcS(z=L 1 , t)

DV 1 1
D h

+ V g
k

dCdT

dT (LTLl)

dC

H dT T1

The above may be written in the following non-dimensional

9 (=L 1 IT)(z'=LI ,t )

- 2
d(l - L1 )

dt

exp[ 0 1] - hHexp[

1+
Le

1 ][9H 1- q1 ]

-2
)exp[ (

[3.2.10]

where

- * r
t = Fo .

pE
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(TH-T 1 ) [3.2.9]

form:

0H ]1

( 1+•71

(l+/P)exp[



As mentioned in section 2.1, the movement of the fronts may

be considered as a quasi-steady process. The crux of the

arguement on the quasi-steady treatment of the issue was to

establish that the time-scale for the movement of the boundary,

i.e. change in liquid-content, is much larger than the ones

associated with change in values of temperature and

vapor-concetration. The time-scale corresponding to changes in

temperature and vapor-concentration are of the order of and

D , respectively. The time scale associated with the boundary

movement is obtained from eq. [3.2.11] and is

2
PELTTB.M. [D 3.2.12]

v r

The above indicates that the time scale is of the order of the

ratio of the density of condensate to the vapor. For reasonable

values of properties, the time-scale for boundary-movement is

much larger than the time-scale associated with variations in

temperature and vapor-concentration.

The scheme for the solution of equations obtained in this

section is as follows. The situation is initiated by the inital

location of the wet-zone and the liquid-content profile.

Equations [3.27] and [3.2.8] are then solved simultaneously to

generate the values of i90 and q1. Then equation [2.4.13] is used

to calculate the new values of liquid-content at the boundaries.

The rate of movement of the boundaries is given by eq. [3.2.10]

and [3.2.12]. With the values of q0 and T 1 , and

O(L0 ,t),and O(L1,t) known, a step in reduced-time is taken and

the new locations of the fronts are obtained. The new location

values are then fed into eq. [3.2.7] and [3.2.8] to generate the
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Equations [3.2.10] indicates the movement of the z=L1 front. As

the boundary approaches its final position the rate of change of

the length-scale goes to zero. The final positiona of the

boundary corresponds to the solution of eq. [3.2.10] with the

right hand side of equation equal to zero. This is identical to

the condition obtained in section 2.5, for obtaining the value of

0. Hence, eq. [3.2.10] converges to the steady solution.

Equations [3.2.4] and [3.2.5] are manipulated similary to to

yield:

0(z=Lot)
dt

-2

exp[ 0 ] - hCexpl CH] - (1+ 90)exp[0 ]•1[0 - 1C]

YF -2
1 + (1+ M 0 )exp[ (D0]

Le

[3.2.11]

Equations [3.2.10] and [3.2.12] relate the movement of the

wet-zone boundaries to the values of temperature and

liquid-content at the boundaries. Each of the two equations

depends explicitly on only the value of reduced temperature

corresponding to that boundary. Hence, the four equations which

were extremely coupled are now reduced to forms were the coupling

terms are not as ubiquituous as before.
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new values of 00, and 01. Time-stepping continues until the

boundaries reach their final location. This solution scheme is

used in the illustrative example, section 3.4.
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3.3 SPATIALLY-UNSTEADY HEAT AND MASS TRANSFER WITH PHASE CHANGE

CASE II : MOBILE CONDENSATE

In section 3.2 the simultaneous transfer of heat and mass during

frontal evaporation for non-diffusive condensates was discussed.

In this section heat and mass trasfer during frontal evaporation

for the case of diffusing-condensate is considered. In general,

liquid diffusivity in porous media is negligibly small for

small values of liquid-content. As the values of liquid-content

in the region exceed a critical value, the liquid diffusion in

response to the spatial gradients of liquid-content begins. The

analysis of this section corresponds to the case where the

liquid-content in the medium is at such levels that liquid

diffusion may not be ignored.

Consider Figure 3.3. The liquid-content distribution in the

wet-zone is assumed to be at a steady-state value. The

steady-state liquid-content distribution corresponding to

situations where liquid-diffusion is present is discussed in

section 2.4. According to the results of that section the

steady-state liquid-content distribution is given by eq.

[2.4.23]:

C' Le p' [ expA'Y - 1
8 (x) = M expA

ss pe a ' 2 exp A' - 1
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It may be recalled that liquid diffusion takes place once

liquid-content exceeds a critical value, Oc . Below this critical

value liquid diffusion is absent. Hence, the steady-state

liquid-content distribution for diffusing condensate consists of

two parts: a base value of 0 at all locations, and an additionalc
liquid-content distribution superimposed on top of the base

value. At steady-state the liquid-flux leaving the

condensation-region equals the total amount of condensed vapor.

The diffusing liquid flows to the boundaries of the

condensation-region and evaporates. The liquid-flux leaving the

condensation-region at "O is denoted by JO0  J0 is a fraction of

the total amount of vapor condensed in the condensation-region:

J = a (W/A)T
Jo

where

exp A' - 1 - A'
[2.4.43]

The total amount of condensate per unit time is:

A' k AT d 7 1.
(W/A)

2 hfg dq' L - L0
fg1 0

[2.6.13]
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Combining the above two equations yields:

Jo h AT' 1.

k AT AT L1 - L

exp A' - 1 - A'

2 ( expA' - 1 )
[3.3.1]

The liquid-flux leaving the boundary of the condensation-region

at 1=1 is:

J, = (1 -a ) (W/A)T,

which may be written as:

J1h AT' 1.

k AT AT L1-L

(A' - 1) exp A' +1

2( exp A' - 1)

It has already been established that during frontal

evaporation, condensation occurs in the condensation-region. The

condensation rate is shown to be proportional to the second

spatial gradient of vapor saturation-concentration. At

steady-state there is no condensate accumulation in the wet-zone,

and the liquid-content distribution is always at the steady-state
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value given by eq.[2.4.23]. At the boundary of the wet-zone and

its adjacent dry regions no liquid-content gradient should exist,

for an infinite liquid-flux would have to set up in response to a

discontinuity in the liquid-content distribution. However, as

liquid diffusivity for liquid-contents less than c is zero, allc
liquid-contents less than 0c do not qualify as diffusible species

and may remain stationary. The liquid-content at the boundaries

never exceed 0 . On the other hand, as liquid diffusion takes

place across the boundary, the value of liquid-content at the

boundary is always at 0.

Consider the boundary z=L 1 . The mass balance at the

boundary is:

CH - C 1 dC dL 1
D = -D .-. - + J = PE8 [3.3.3]v LT - L1 v dz 0 c dt

Equation [3.3.3] indicates that the vapor-flux entering the slab

plus the vapor-flux generated by the recession of the wet-zone

front and the diffusing liquid-flux, JO, is diffused into the

wet-zone. It may be recalled that our notation corresponds to an

arbitrary assignment of a positive value to the difference

C C-C 1. This, of course, may turn out to be negative. The

effect of the JO term may be taken to represent an increase in

the amount of vapor that must be diffused away from the front.

This leads to a decrease in the rate of recession of the front.

Energy balance at the z=L 1 boundary yields:
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T - T dTH 1k - k
LT - L1 dz L1

- J0 h fg

dL
= -hfg pE - [3.3.4]

fg c dt

The above equation states that the heat-flux necessary to

evaporate the liquid-flux JO and cause the movement of the

boundary equals the heat-flux supplied at the boundary z=1,

minus the heat-flux conducted into the wet-zone. The presence of

the JO term in eq. [3.3.4] translates into a heat sink which

decreases the heat supplied to the front for evaporation, and

causes a decline in the rate of boundary movement.

Similar arguements may be made in the devlopment of heat and

mass transfer continuity equations at the z=L0 boundary. Vapor

continuity at the z=L0 boundary yields:

C 0 - CC dC
D - D --,
v L v dz L0

0 0

- J 1
dL0

c dt

Heat-flux balance at the same boundary yields:
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dT T - T
k ---- -k - Jhfg

dz L fg

dL

= h pE .dt [3.3.6]
fg c dt

Equations [3.3.3]-[3.3.6] comprise a set of coupled

equations. In order to obtain less coupled forms of these

equations, they are manipulated in a manner analogous to section

3.2.

Equations §3.3.3] and [3.3.4] are combined to eliminate the

dL1/dt term. The liquid-flux terms cancel out indicating that

the effect of liquid diffusion and evaporation at the boundaries

is intimately coupled to the movement of the boundaries. The

resulting equation in non-dimensional form is:

1(H 1- Le+ [hHexp[ H ] - exp[ 1 ] =

1 (1+? 1-)exp 1] 1-L AT' '

2 Le L1-LO AT expA' - 1

[3.3.7]

Similarly, eqs.[3.3.5] and [3.3.6] may be combined to yield:

0 c + Le I hHexp[ e H] - exp[ i] =
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1 -T 0 AT' A'expA'
--- 1 + (1+3q0 )exp[q) 0 ] -----T +

2 Le L1-L 0 AT expA' - 1

[3.3.8]

Equations [3.3.7] and [3.3.8] may be considered as two

implicit equations in qO and n1, with parametric dependence on LO
and L1 . For a given set of length-scales there exists at least

one pair of q0 and q1 which satisfy the above equations. The

solution may contain more than one pair of roots, yet only one

would be physically meaningful, i.e. lies between -.5 and .5.

In order to calculate the rate of movement of the z=L 1

boundary , eqs. [3.3.3] and [3.3.4] may be combined to yield the

following non-dimensional equation:

dL0

c ddt

exp[ 00 ] - hCexp[ @C] - (1+1P 0 ) exp[ o C][ 0 - 17C]

Q2Y
1 + (1+0770)exp[ D O]

Le

J L
-2 1 0- 2

D Cv r
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where

C
t = Fo*. r

PE

The liquid-flux term, Jo,is given in eq.[3.3.1].

Similarly, eqs.[3.35] and [3.36] may be combined to yield:

.- 2
d(l-L 1 )

dt

-2
expp[ 1] - hHexp[ 'HI + (1+A?1) Y 3exp[ 11][H - 111

- Y -2
1+ (1+ +1)exp[ C 1 ]

Le

2 Jo (1 - L1)
-2 v D

v r

[3.3.10]

The liquid-flux term, J1, is given in eq. [3.32]

Equations [3.3.9] and [3.3.10] are two coupled nonlinear

differential equations. Comments on the procedure for their

solution will be given at the end of this section.
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The effect of liquid diffusion on the rate of movement of

the boundaries may be analyzed by comparing he results of this

section with those of section 3.2. The implicit equations

relating 7O to q1 with parametric dependence on L0 and L1 are

identical to both cases. This implies that for a given set of

length-scales the temperature values at the boundaries are the

same, irregardless of the presence and magnitude of liquid

diffusion. The rate of movement of the boundaries without liquid

diffusion are given in eqs. [3.2.10] and [3.2.12]. Equations

[3.3.9] and [3.3.10] apply for the situations where liquid

diffusion is present. The comparison of the two pairs of

equations reveals that the two pairs are identical except that

eqs.[3.3.9] and [3.3.10] each have an extra term representing the

existence of the liquid-fluxes. The presence of liquid diffusion

causes primarily a decrease in the rate of movement of the

boundaries. The system of equations consisting of eqs.

[3.3.7]-[3.3.10] describe the transient behavior of frontal

drying. They must be solved at each time-step. Eqs. [3.3.7] and

[3.3.8] may be treated as two simultaneous equations in q0 and

nl with parametric dependence on the length-scales. The two

equations [3.3.9] and [3.3.10] define the rate of movement of the

condesing-region boundaries. They are two nonlinear coupled

differential equations. The scheme in solving these equations is

to use the values of L0 and L1 , along with the values of n0 and

41 to calculate the dL/dt terms at every time-step. The errors

introduced in this scheme are of the order of At. This solution

scheme is used in solving the illustrative example of section

3.4.
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3.4 ILLUSTRATIVE EXAMPLE

In this section an illustrative example reagrding the

solution techniques developed for frontal evaporation in a porous

slab is presented.

Consider a porous slab whose properties are given in the

illustrative example of section 2.5. The initial liquid-content

distribution for both diffusive and non-diffusive condensate is

shown in Fig. 3.4. The liquid-content distribution is associated

with a 4000-hour long period of condensation in the slab with the

following boundary values:

T h = 90.OF

T = 25. *Fc

hh = 90%

h = 90%c

The location of the condensation-region assocaited with the above

boundaries is:
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L0 = .3507

L1 = .8857

At time equals to zero the boundary values are changed to

the following values:

Th .- 60OF

T -8 800F
c

h = 80%h

h = 85%
c

As mentioned in section 3.1 the notation is changed such that

now:

T = 90. OF

TC = 60.°F

After the initial transients wh

vapor-concentration have underg

condensation-region begin to mo

boundaries depends on the prese

diffusion. The results of sect

Corresponds to z=l

Corresponds to z=0

ere values of temperature and

one changes, the boundaries of the

ve. The rate of movement of the

nce or absence of liquid

ion 3.2 apply to the situation
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where liquid diffusion is absent, whereas the results of section

3.3 apply to the situation with liquid diffusion present. The

behavior of the fronts is studied for both cases.

For the case of non-diffusing condensate, value of

liquid-content at the fronts is determined by eq. [2.4.13(b)],

which states that the liquid-content in the wet-zone increases

linearly with time. The reduced temperature-distribution at

Fo*=1000 is shown in Fig. 3.5. The discontinuities of the

temperature-gradients at the boundaires of the wet-zone with the

dry regions are indicative of the heat-flux absorbed by the

frontal evaporation.

For the case of diffusive condensate, the

liquid-content in the profile is assumed to be given by eq.

[2.4.23]. Fig. 3.4 shows this profile for an assumed initial

condition where the mass of liquid is identical to the case of

D1=0. The reduced temperature distribution at a subsequent

period of Fo*=1000 is shown in Fig. 3.6. As in 3.5 the

discontinuities in the temperature-gradients correspond to the

heat-flux absorbed by the evaporation of the diffusing liquid and

the amount corresponding to critical liquid-content at the front.

The differences between Fig. 3.5, and Fig. 3.6 are very small

implying that at the onset of drying the effects of

liquid-diffusion is negligible. However, these small effects add

up in time to cause a noticeable effect on the duration of

drying.

The movement of the boundaries of the wet-zone for both

cases of liquid-diffusivity is obtained by time-stepping. The

results appear in Fig. 3.7. The boundary movements for both

diffusive and non-diffusive condensates begin at approximately

the same rates. Vapor condenses in the wet-zone in both cases.

For non-diffusive condensate, the condensate remains iommobile at

the site of condensation. On the other hand, the diffusive

condensate migrates towards the boundary. Hence, the rate of
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movement of the boundary for diffusive-condensate is less than

the one for non-diffusive condensate. This behavior is clearly

exhibited in Fig. 3.7.
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Fig. 3.3 Schematic of the Transient behavior of the Concentration
Profile after a step change in CH
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CHAPTER 4

HEAT AND MASS TRANSFER WITH PHASE CHANGE

IN A COMPOSITE WALL

4.1 INTRODUCTION

In general, insulated building structures consist of various

layers, with each layer serving a purpose, be it resistance to

heat and/or vapor-flux, load support, or mere cosmetics. The

structure usually consists of an insulating slab, surrounded on

both sides by layers of boards and sidings. The layers have

various values of thermal-conductivity and vapor-permeability.

Furthermore, heat and mass transfer from the surrounding ambient

is controlled by natural or forced convection heat and mass

transfer coefficients. Heat and mass transfer with phase change

in a composite wall is effected by the characteristics of each

and every layer. In this chapter the analysis of the previous

chapters is extended to the study of composite walls.

In a composite wall, each layer is characterized by a value
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of thermal-conductivity and vapor-diffusivity. As the values of

the thermal and diffusive resistances of the layers and the

outside boundary layers are unequal, the temperature and

concentration drop across the layers are unequal. The layers

with the largest resistance cause the largest drop, and vice

versa. The temperature and vapor-concentration profiles across

the wall may be calculated by neglecting the possibility of

existence of a condensation-region. This assumptions leads to

linear temperature and concentration profiles in each layer.

Also, the vapor saturation-concentration profile associated with

the temperature profile may be obtained. Condensation occurs in

the layer(s) where the vapor-concentration exceeds the vapor

saturation-concentration. The extent of condensation-region is

determined by the balance of heat and vapor fluxes, as discussed

in chapters 2 and 3.

Clearly, condensation may occur in any layer of the

composite wall. However, there are certain characteristics that

render the insulating layer a preferred layer for the occurence

of condensation. These conditions are discussed in section 4.2.

In the same section the analysis of the previous chapters is

modified to incorporate the presence of the wall and ambient

boundary layers on condensation in the insulation slab.

Vapor-barriers have been traditionally used to inhibit the

flow of vapor into the wall structure. The vapor-barriers are

made out of sheets of materials which are impermeable to vapor

and liquid flow, and are usually situated next to the insulation.

The presence of vapor-barriers effects the temperature and

concentration profiles, as well as the condensation rate in the

wall. Heat and mass transfer in a porous slab with an

impermeable boundary is studied in sections 4.3, 4.4, and 4.5. A

quantitative discussion on the implications of different

locations of the vapor-barrier in the composite wall is given in

section 4.6.
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4.2 GENERALIZED BOUNDARY EQUATIONS ASSOCAITED WITH HEAT AND MASS

TRANFER IN A COMPOSITE WALL

A wall structure typically consists of an insulating layer

and various other sidings. The sidings are characterized by

different values of thermal-resistance and vapor-diffusivity.

The two sides of the structure are exposed to ambient conditions

(In this chapter the term ambient replaces the term reservoir

used in chapters 2 and 3). Wind current or natural convection in

the ambient effect the flow of heat nad vapor through the

structure. In this section these effects are modelled and

incorporated into the previous results.

In a composite wall, condensation may occur in any layer.

Nevertheless, the probability of occurence of condensation in the

insulation is larger than in any other layer. The insulation has

the smallest thermal-conductivity in the structure. This implies

that the largest temperature-drop takes place across the

insulation. The vapor saturation-concentration profile

associated with the temperature profile drops steeply across the

insulation, too. On the other hand, the open pore insulations

have high values of vapor-diffusivity. This translates to a

small vapor-concentration gradient in the insulation. Vapor

condenses whenever its concentration reaches the saturation

value. Hence, a rapidly declining saturation-concentration

profile is likely to crossover a slowly declining

vapor-concentration profile, and lead to condensation.

In chapters 2 and 3 the simultaneous transport of heat and
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mass with phase change for a single porous slab was studied. In

that study the values of temperature and relative-humidity on the

two boundaries of the slab were specified. However, in a

composite structure the porous slab is surrounded by various

layers, each with a different value of thermal-conductivity and

vapor-diffusivity. Therefore, the temperature and

vapor-concentration values at the insulation boundaries become

functions of the overall heat and mass transfer through the

strucuture. On the warm side, the values of temperature and

vapor-concentration on the insulation's boundary are lower than

the ones in the warm ambient. On the cold-side, they are larger

than the ones in the cold ambient. As the vapor-concentration

cannot exceed the saturation levels, it is possible to envisage

situations where the diffusive and thermal properties of the

layers on the colder edge are such that the condensation-region

in the insulation extends into the adjacent layers. In order to

define the insulation's boundary values, the resistances to flow

of heat and vapor on the two side of the insulation must be

identified.

Heat-flux per unit area of a layer with thickness xi, and

thermal conductivity k. is:
1

(4/A)i = ki (ATi/Axi) [4.2.1]

where AT. = Temperature drop across the ith-layer
1

The above may be written as:
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(q/A)i =ATi/R i1 1 1

The term R. denotes
1

of the medium:

the resistance to heat flow and is a property

R. = Axi/ki
1 1 1

Vapor-flux per unit area of

vapor-diffusivity Di

(W/A).i1

is:

a layer with thickness x. and
1

= D. (AC /Ax. )1 i i (4.2.4]

AC. = Vapor-concentration
1

drop across the ith-layer

Equation

[4.2.2]:

[4.2.4] may

(W/A)

be written in a form analogous

i = ACi/R
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to eq.
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where R . denotes the resistance to the flow of vapor. Each

layer in the wall is characterized by a value of R and R .

Heat and vapor tranfer at the outer boundaries of the wall

area affected by the air-flow patterns. The outer boundaries may

be subject to natural-convection patterns or forced

air-convection. Convective heat-flux is characterized by the

heat transfer coefficient:

(q/A)
h = [4.2.6]

AT

where AT is the temperature difference between the outer layer

and the ambient temperature. Similarly, convective mass transfer

is characterized by a mass transfer coefficient:

(W/A)
hD =

aC
[4.2.7]

The heat and mass tranfer coefficients are functions of air-flow

field and air properties. As the convection of heat and mass are

similar in nature, the heat and mass transfer coefficients are

related to eachother. The equivalence of the two coefficients is

represented by the Colburn analogy:
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Sh = Nu (Sc/Pr)

where

Sh [Sherwood Number] = hDL/D

Nu [Nusselt Number] = hL/k

Sc [Schmidt Number] = V/D

Pr [Prandtl Number] = v/a [4.2.8(a)]

Equation [4.2.8] may be simplified into the following form:

2/3
h Pr

hD c
p

[4.2.8(b)]

The above indicates the relation between mass transfer

and heat transfer coefficients. Hence, the thermal and diffusive

resistances associated with the convective transport mechanisms

are:

R = 1/h

and
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R = 1/hD [4.2.9]

Consider Fig. 4.2.1. This is a schematic of a typical wall

structure. The insulation is bounded on both sides by layers of

sidings. The outside ambient conditions are given as Tho hho
T and hc. Heat and vapor flow through the structure from

left to right. Assume that vapor condenses in some region of the

insulation. In accordance with the notation of the previous

chapters, the condensation-region is shown to be bounded by two

dry region of length L0 and LT-L1 . The temperature and relative

humidity of the two insulation boundaries are denoted by

subscripts h and c. The thermal and diffusive resistances

associated with each layer are shown in Fig. 4.2.1. The thermal

and diffusive resistances as defined by eqs. [4.2.3],[4.2.5],

[4.2.6], and [4.2.7] apply to the situations where no

condensation takes place. Hence, such definitions of resistance

are associated only with the dry regions of the insulation.

These resistances are:

RcO = Lo/kins

R cO = LO/Dins

Rel = (LT-Ll)/kin
s

R = (LT-L )/D [4.2.10]
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The total thermal and diffusive resistances from the ambient

to the boundary of the condensation-region are obtained by the

addition of resistance of all layers. Hence, heat-flux per unit

area into the wall is:

T - T
(q/A)i = hR + Rin 7t t

1

and heat-flux per uniLt area out of the wall is:

T -T
(4/A)ou t  co

Ri+ Rc
4

[4.2.10]

[4.2.11]

Similarly, the vapor-fluxes per unit area into and out of the

wall are:

C - C
ho O

(W/A)in 3 s *
R i + R cO

[4.2.12]

and
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C -C
(W/A)out 6 • [4.2.13]

ER i + R cl
4

It may be recalled that the results of chapters 2 and 3 were

obtained by matching the gradients of temperature and

vapor-concentration in the condensation-region with those of the

dry regions, eqs. [2.6.1]-[2.6.4], [3.2.3]-r3.2.5], and

[3.3.3]-[3.3.61. In these set of boundary equations the heat and

vapor fluxes in and out of the the condensation-region were

defined by the values of temperature and vapor-concentration at

the boundaries of the slab. However, these values are not

readily available anymore, for their values depend on the thermal

and diffusive properties of the ensemble of the layers.

Therefore, eqs. [4.2.10]-[4.2.13] must be used as the equations

defining heat and vapor fluxes into the condensation-region. The

matching of the temperature and concentration profiles between

the wet-zone and the adjacent dry ones must be carried out using

eqs. [4.2.10]-[4.2.13]. These modifed boundary equations are

referred to as generalized boundary equations. Unfortunately,

due to the nature of the generalized boundary equation, the

algebraic manipulations conducted in sections 2.5, 2.6, 3.2 amd

3.3 cannot be affected. Hence, the elegant and simple results of

the previous chapters cannot be derived.

Nevertheless, in order to use the results of chapters 2 and

3, the values of Th Tc, hh and he may be obtained in another

manner. The presence of the sidings must be handled in a manner

different from the one which leads to the generalized boundary

equations. Considering the case of spatially-steady

condensation, for both diffusive and non-diffusive types of

condensate, the insulation's temperature and concentration

boundary values may be estimated by assuming a linear temperature

and concentration drop across every layer, i.e. ignoring the
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presence of condensation in the domain. These estimates may be

used to obtain the location, and the boundary temperature values

of the condensation-region. This new information may be then

used to obtain better estimates of Th, Tc , hh , and he by using

the concept of "voltage dividers'. The concept of "voltage

divider" is a term used in the study of electrical circuits, and

relates the potential drop across a resistance, which is located

in series with a group of resistances, to the total potential

drop across the network. Hence, the temperature drop across the

dry regions of the insulation are:

Th - T

Tho - T

T - T1 c

T - T
1 co

3
LR. + Rco

RcO
[4.2.14]

6

R. + Rcl

R 1cl
[4.2.15]

The vapor-concentration drops may be obtained similarly.

By successive iteration the values of Th Tc, hh and he
converge to their final values, and the case of spatially-steady

condensation in a composite wall is solved.

A similar iteration scheme may be introduced for the

spatially-unsteady cases. In this situation, the insulation's
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boundary values are obtained at each time-step by successive

iteration. This results in the increase of the computational

load. However, as the actual boundary-values do not vary much at

each time-step, the number of iterations required turn out to be

relatively small.
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4.3 HEAT AND MASS TRANSFER WITH PHASE CHANGE IN A

POROUS SLAB WITH AN IMPEREMEABLE BOUNDARY

In many wall structures vapor-barriers are used to decrease

the possibility of condensation in the insulation. It will be

later shown in chapter 7 that the optimum positioning of the

vapor-barrier vis-a-vis the vapor-concentration gradient depends

on the climatic conditions. The vapor-barrier may be positioned

in oder to stop vapor-flux in cold-season, yet it may have

detrimental effects during the warm-season when the vapor-flux

changes direction due to the excess of ambient

vapor-concentration over the vapor saturation-concentration

corresponding to the temperature of the vapor-barrier. In this

section, the effect of an impermeable barrier on the cold side of

a porous slab will be studied.

Consider Fig. 4.2. This is a schematic of a porous slab

subject to temperature and vapor-concentration gradient.The

boundary z=LT is considered to be impermeable to both vapor and

liquid-fluxes. Let us consider the case where the effects of

condensation on temperature profile is negligible, such that

there is a linear temperature-drop across the slab. The vapor

saturation-concentration, C , corresponding to the temperature

profile is indicated in Fig. 4.2. With the z=LT boundary

impermeable to vapor-flux, vapor migrates into the porous slab

until one of the following three happens: first, if the

vapor-concentration on the hot-side is less than the

saturation-concentration corresponding to the temperature at the

cold-edge, the porous slab will have a uniform

vapor-concentration equal to that of the hot-side. In this case
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condensation does not occur in the medium. With C > C , twoh c
possible modes of condensation is possible: regional or planar.

Regional condensation refers to the situation where the following

equality hold for some length-scale LO:

Ch - C 0 dC
= - [4.3.1]

L0  dz L0

If a value of L0 exists such that the above equation is

satisfied, the condensation-region extends from z=L 0 to the

vapor-barrier. This case resembles the situation discussed in

chapter 2. For given values of LT, Th, and Tc , eq. [4.3.1]

imposes a lower limit on the level of humidity at the hot-side.

The threshold value of Ch is obtained by evaluating eq. [4.3.1]

at the largest possible value of LO , i.e. LT:

dC

C min C * - L [4.3.2]
dz LT

The threshold value is shown in Fig. 2.3.1. For values of Ch
such that :

C < C < C
c h hmin
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condensation occurs only at the plane of z=LT. This mode of

condensation is referred to as planar-condensation.

The different modes of condensation in a porous slab with an

impermeable boundary may be compared with the case of permeable

boundary. In the case where both sides of the slab are

permeable, condensation occurs only for Ch > Ch min No

planar-condensation occurs in this case because the vapor

diffuses out of the slab at z=LT. However, with an impermeable

boundary the vapor diffuses into the slab, and since there is no

outflow, the level of concentration in the medium increases with

time. Eventually, the value of concentration at the cold-edge

reaches the saturation value. As the vapor-concentration cannot

exceed its saturation values, the diffusing vapor condenses into

liquid.

The presence of an impermeable boundary has two siginificant

effects. First, condensation occurs at hot-side humidity values

lower than if there were no vapor-barriers. Second, the

impermeable boundary causes an increase in the condensation-rate

intensity. In order to evaluate the effects of the impermeable

boundary on heat and mass transfer in a porous slab, the two

possible modes of condensation are studied seperately in the next

two sections
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4.4 CONDENSATION IN A POROUS SLAB WITH AN IMPERMEABLE BOUNDARY

CASE I: REGIONAL CONDENSATION

The effects of placing an impermeable boundary on the

cold-edge of a porous slab, subjected to temperature and

concentration gradients were studied in the previous section. It

was shown there that for Ch > Ch min' a condensation-region is

established. The condensation-region is bounded by the

impermeable boundary and extends into the porous slab. The

location of the condensation-region in the slab is determined by

the continuity of vapor and heat fluxes at the boundary of the

wet-zone.

The case under study in this section is a special case of

the general problems studied in chapters 2 and 3. The presence

of the impermeable boundary imposes two new conditions. First,

the relative humidity at the cold-edge, he, equals one. Second,

liquid-flux at the cold-edge is zero. The first conditions

translates into the condition that the condensation-region

extends to the cold-edge of the slab. The second condition

implies that for mobile condensates, the liquid-content profile

has a zero-gradient at z=LT, and that at steady-state all the

condensate leaves the condensation-region from the z=L 0 boundary.

These new conditions modify the results of chapter 2. The

objective of this section is not to rederive the previous results

with different boundary-conditions, for the modification of those
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results is straight-forward.

The significant effect of the impermeable boundary is the

increase in the condensation rate per unit area. In order to

assess the increase of the condensation rate, consider a

condensation region of width Lw . With no vapor-barriers, the

condensation-rate per unit area in the domain is equal to the

difference between the vapor-flux into the domain and the

vapor-flux out of the domain:

Lw * *

LW dC dC
frcdx = - D + D [4.4.1]

Sdx 0 v dx L0 T

With the boundary at x=L impermeable to vapor, the vapor-flux

into the domain condenses into liquid form. Therfore, the ratio

of condensation-rate per unit area with an impermeable boundary

to the one with a permeable boundary is:

[4.4.2]

(dC*/dx)Lo

(dC*/dx)
0

Using the non-dimensional notation of the previous chapters, and

the temperature profile results of section 2.3, the above may be

written as:
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1
A

1 - s

where

1+0.5p' 2 exp' -l+A'expA '  -. 5'' -.5'

+exp + exp
1-0.5p' expA' -1+A' 1-.5'+ 1+.5 '

[4.4.3]

A plot of A versus the latent heat transport coefficient,A', is

given in Fig. 4.3. The plot is generated for a mean temperature

value of 510. OR. The results indicate that the increase in

condensation-rate per unit area is significant at small values of

X, which corresponds to small values of P'. As the value of A'

increases, at fixed T'r, the vapor-flux at the cold-edge becomes

negligible and A approaches 1. In most practical cases the

latent heat transport coefficent has a value in the range of 0.5

to 5. Hence, the effect of an impermeable boundary is to

increase the condensation rate by a factor of 2 to 4. It must be

noted that the effect of the impermeable boundary as demonstrated

by the ratio A is a lower bound. In absence of the impermeable

boundary, the condensation-region is bounded by two dry regions.

With the placement of the barrier, the width of the

condensation-region is extended to the cold-edge. The vapor-flux

leaving the condensation-region ,in the case of no barrier, is

larger than the flux that would have left if there were no

vapor-barriers and the cold-side humidity were equal to one.

Hence, the ratio of condensation rates defined by eq. [4.4.3] is

a lower bound.
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The presence of layers in the wall other than the insulation

may be incorporated into the results of this section by the

iteration scheme discussed in section 4.2.

The significant increase in the condensation-rate per unit

area which is attributeable to the placement of a vapor-barrier

implies that incorrectly positioned vapor-barriers may cause

severe condensation problems.
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4.5 CONDENSATION IN A POROUS SLAB WITH AN IMPERMEABLE BOUNDARY

CASE II: PLANAR CONDENSATION

Planar-condensation in a porous slab refers to the situation

where vapor condensation takes place only at the impermeable

boundary. In section 4.3, it was shown that for

planar-condensation the condition on the hot-side

vapor-concentration is:

< Ch < C

dC*

dz LT

The condensation-rate per unit volume is define as a pulse

function at the z=LT edge. The condensation rate per unit area

equals to the vapor-flux at the cold-edge:

Lw
SC h - C c

(W/A)T F=  x dx = -D h c
o LT

[4.5.2]
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Theoretically, condensation takes place over an infinitesimal

thickness. However, in reality condensation takes place over a

finite, nevertheless very small, width at the cold-edge boundary.

During the early period of condensation, when the condensate is

immobile, liquid-content increases linearly with time. As the

liquid-content exceeds the critical value, c , liquid begins to

diffuse into the porous slab. At the boundary of the

infinitesimally small condensation-region, the diffusing liquid

evaporates. The difference between the condensation rate, and

the evaporated liquid-flux goes into the advance of the wet-zone

boundary into the porous slab. Inside the wet-zone liquid and

vapor co-exist in equilibirium . Therefore, the temperature

profile in the wet-zone is described by the results of section

2.3.

The condensation rate per unit area is related to the

liquid-flux which evaporates at the wet-zone boundary, JO, and

the movement of the boundary:

Lw

F(x) L_ 2  dL/ dx = J - pEG [4.5.2]

p0 Pc dt[4.5.2]

All the terms in the above have been previously defined. The

dLO/dt term is negative indicating that the boundary is moving

into the slab, i.e. length L0 is decreasing.

Continuity of mass at the moving boundary may be written as

the balance between the vapor-flux entering the slab, the

vapor-flux entering the wet-zone, the vapor-flux generated by the

evaporation of the diffusing liquid, and the increase in the
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width of the wet-zone:

Ch -C 0D +v
dC dL

=- - pEO [4.5.3]
dz c dt

Jo

Similarly, the heat balance may be written as:

Th-T 0  dT
k . .+ k - J h

L dz 0 fg
0

dL
pcO hf dt [4.5.4]

c fg dt

The steady-state location of the wet-front is reached when the

dLO/dt term vanishes. Equations [4.5.3] and [4.5.4] without the

dLo/dt terms are identical to the boundary equation obtained for

mobile condensates in section 2.6. The only difference is that

in this case all of the condensed vapor leaves the z=L0
boundary, i.e. a=1. Therefore, the steady-state location of the

front may be obtained by the results of section 2.6.

The presence of an impermeable boundary on a porous slab,

causes condensation to occur for a wider range of hot-side

humidity values, than if the barrier were not there. The

steady-state condensation rate and the location of the

condensation-region are determined by the results of section 2.6.

The presence of other layers in the wall may be incorporated into

these results by the iteration scheme discussed in section 4.2.
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4.6 VAPOR-BARRIERS IN A COMPOSITE WALL

In the previos sections the effects of an impermeable

barrier on one side of a porous slab were identified. The

inclusion of a vapor-barrier on one side of a porous slab was

found to have two important consequences. First, condensation

occurs for a wider range of boundary-conditions. Second, as the

vapor-barrier arrests the flow of vapor out of the insulation,

the condensation rate is increased. In this section a more

qualitative study of the effects of vapor-barriers in composite

walls is undertaken.

The optimum location of the vapor-barrier in a building wall

depends on the climatic conditions as well as the materials used

in the wall construction. In this section the importance of

climatic conditions is studied. The role played by the other

wall layers is the subject of study of chapter 7.

The vapor-barriers are used to inhibit the flow of vapor

into the insulation. Yet, the direction of vapor-flux is not the
same throughout the four seasons. Therefore, the location of the

barrier with respect to the insulation is not a unique choice.

Consider the following possibilities: A building may or may not

be heated during the cold-season, and it may or may not be

air-conditioned during the warm-season. In each case the wall

might or might not have a vapor-barrier. Furthermore, the

vapor-barrier could be on the side closer to the inside, or on

the side closer to the outside. In total there are twelve
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possibilities. It is not the intention of this work to

investigate all possibilities completely. Yet a few are chosen

to investigate the effects of climatic conditions, and the

location of the vapor barrier on such issues as the intensity of

condensation, and the possibility of dry-out during the

next season. In the following examples, it is assumed that the

vapor-barrier is completely impermeable to vapor and liquid flow.

Consider the case of a building with winter heating and no

summer air-conditioning, Figs. 4.4-4.6. With the vapor-barrier

on the inner-side, Fig. 4.4, the vapor-flux across the insulation

is zero during the cold-season. Hence, no vapor-condensation

occurs during the cold-season. Furthermore, as the building is

not air-conditioned during the summer, it may be assumed that the

building is approximately at the same temperature as outside.

The relative humidity throughout the wall is uniform and most

likely to be less than 100%. Therefore, the possibility of

condensation during the warm-season does not exist. With

vapor-barriers on the outer-side of the building, Fig. 4.5, the

insulation is not protected against condensation during the

cold-season. As the vapor-concentration on the warm side is

larger than the saturation-concentration corresponding to the

temperature on the cold-side, the vapor condenses in the

insulation. As already discussed in the previous sections, the

condensation-region may extend to the vapor-barriers, or be

restricited to the plane of the vapor-barrier. The condensation

rate is largest next to the vapor-barrier. As the building is

not air-conditioned during the summer, the wall temperature is

uniform and equal to the ambient's temperature. The driving

potential for the evaporation of the condensate is the difference

between the saturation concentration at the wet-zone boundary and

the inside vapor-concentration. The process of evaporation

requires a heat input which must be supplied from both the inside

and outside. This requires a decrease in the temperature at the

condensation-region's boundary, as shown in Fig. 4.5. The dip in
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the temperature leads to a lower value of saturation-concetration

at the wet-zone front, reducing the driving mass transfer

potential. Hence, with no summer air-conditioning, the amount of

condensate evaporating towards the inner-side of the building is

modest. Let this case be compared with the situation where no

vapor-barrier is present, Fig.4.6. In this case the building is

capable of experiencing vapor-exchange with both the inside and

outside. During the cold season the condensation region does not

necessarily extend to the outer-edge. This is becasue the

relative humidity on the cold-edge is not any more restricited by

the vapor-barrier to equal one. The condensation-rate per unit

area, is, also, less than the case where the vapor-barrier was

present. During the warm-season, the absence of vapor-barriers

allows evaporation to the outer-side of the building to proceed.

The discussion on the effect of evaporation on the

temperature-profile, as presented for the case with vapor-barrier

on the outer-side, applies to this situation as well. However,

in this case the evaporation-rate will be more than the previous

case because the condensate can evaporate to both inside and

outside . In sum, the presence of a vapor-barrier on the

outer-side results in a decrease in the rate of evaporation of

the condensed vapor.

The situations where the building is air-conditioned during

the warm-season is shown in Figs. 4.7-4.8. Fig. 4.7 is a

schematic of the case where the vapor-barrier is located on the

inner-side. As before, the location of the vapor-barrier on the

inner-side inhibits the flow of vapor and its subsequent

condensation in the insulation during the cold-season. However,

the vapor-barrier does not inhibit the flow of vapor into the

insulation during the warm season. The inside of the building is

air-conditioned which implies that the temperature of the

vapor-barrier is less than that of the outside. As the

saturation-concentration increases rapidly with increasing

temperature, a concentration-gradient is set up across the

insulation which leads to condensation. The condensate would
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have to evaporate during the cold-season, when the outside

vapor-concentration is less than that of the inside.

Figure. 4.8 corresponds to the situation where the

vapor-barrier is located on the outer-side of the insulation. In

this setup vapor migrates into the insulation and condenses

during the cold-season. As the building is air-conditioned, the

condensate evaporates into the building during the warm-season

and the insulation dries up.
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CHAPTER 5

LIQUID DIFFUSION IN FIBROUS INSULATION: MODEL

5.1 INTRODUCTION

In the study of simultaneous heat and mas transport with

phase change in a porous slab, liquid-diffusion plays a prominent

role. In the previous chapters liquid-diffusivity was defined

phenomenologically. In this and the next chapter

liquid-diffusion in unsaturated fibrous media is investigated.

Liquid-diffusion in porous media has been the subject of study

for many decades. The emphasis of the research in this area has

been on geological flows with applications to hydrology and

resource extraction. Liquid-diffusion in fibrous media

constitutes a special case of flow in porous media. In contrast

to most geological media, fibrous insulation has large values of

void-fraction and pore sizes. The study of liquid-diffusion in

fibrous media has not received much attention in the scientific
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community. The properties of the medium are discussed in the

next section. It will be shown that the medium is anisotropic

and highly inhomogeneous. The model starts with a simple

homogeneous geometric model. Parameters that control

suction-potential, viscous-drag, and liquid-diffusion in a

homogeneous fibrous-medium are identified. The effects of the

inhomogeneities in the medium are then incorporated into the

model. The model predictions are compared with the experimental

results in chapter 6. Although the model is defined for an

ordered arrangement of fibers, the agreement between the model

and the experimental results are found to be satisfactory. The

study reveals the attributes of the fiberglass insulation which

play an important role in liquid-diffusion through the fibrous

medium.



5.2 GEOMETRIC MODEL OF THE MEDIUM

Liquid diffusion in porous media is a strong function of the

structure of the medium. The medium under study consists of

fiberglass filaments held together by a phenolic binder. The

filaments do not have a uniform diameter and their lengths vary

from millimeters to centimeters. The filaments crossover

eachother at irregular intervals. The bats of fiberglass are

manufactured from many layers piled on top of eachother. The

three orthogonal axes in the cartesian coordinates are identified

as across, along, and through the layers, Fig. 5.1(a). A

microscopic study of the insulation reveals that the majority of

the filaments run across and along the layers and a very small

percentage go from one layer to the other. The spatial

distribution of the filaments and the binder in the medium is not

uniform, causing the insulation to be highly inhomogeneous. Two

types of insulation are under study. They have void-fraction

values of 95-99%, with an average fiber radius of 3.56xl0-6

meters.

In sum, the fiberglass insulation is an inhomogeneous

assemblage of fiberglass filaments and phenolic binder. It is

characterized by an anisotropic fiber-density and a non-uniform

void-fraction distribution.

The medium under study is not amenable to simple and

straightforward modelling. The parameters that describe the
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geometry and structure of the medium must be identified.

However, the sole identification of the parameters is not

sufficient, for methods to estimate their values must be

developed too. In study of the compelx medium, statistical

estimators are used to estimate the parameters. The choice of the

estimators is not unique. However, all estimators must be chosen

such that they be consistent with eachother and the physical

reality of the medium.

The main constituent of the insulation is the fiber

filament. The fiber filaments have a well-spread radius

distribution. The average value of this distribution is

approximately known to be 3.56Xl0 -6 meters [74]. This value is

used as the estimator for the fiber-radius.

In order to account for the anisotropic fiber-density, a

directional fiber-density parameter is introduced and denoted by

n./N. The directional fiber-density is the ratio of the number1
of fibers of unit length along direction i to the total number of

fibers of unit length in a unit volume. The subscript i

corresponds to the direction index, i=1,2,3. It is readily

recognised that for a given set of three orthogonal directions, a

set of three directional fiber densities exist. However, the

fibers in the medium are neither lined up along the three

orthogonal directions, nor are of uniform length. The study of

the medium under a microscope reveals that there are definitely

more fibers along the batt than across it: the number of fibers

through the layers is less than the other two directions. Hence,

the directional fiber-density is a good estimator of the

anisotropic distribution of fibers in the medium.

The medium is also highly inhomogeneous. The inhomogeneity

is parameterized by a non-uniform void-fraction frequency

distribution. Experimentation and observation indicate that void

fraction changes occur mostly from one layer to the other. It is

proposed that the layer be considered as the basic element, and
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assumed to have a uniform void-fraction. The medium consists of

many layers, each with a different void-fraction. The average of

the layers' void-fraction equals the bulk void-fraction. The

overall behavior of the medium is determiend by the proper

aggregation of all layers.

The phenolic binder in the medium appears as the surface

coating of the fibers and, at times, in realtively large masses.

In as so far as the binder appears as the filaments' coating, its

effect can be modelled as a slight increase in the fiber-radius.

The fiber-radius is not known exactly, and is estimated by its

mean value. Therefore, the coating will at most cause a slight

variation in the fiber-radius estimator. This variation is

ignored in this study. Large volumes of the binder are observed

to appear at infrequent intervals and random locations. The size

of these volumes is at least two or three orders of magnitude

larger than the volume of a typical filament. The large binder

volumes cause local blockage of the medium at random locations.

The inclusion of this phenomenon would impose a severe constraint

on modelling, for the model would have to incorporate variations

both at the microscopic and macroscopic levels. As the

microscopic geometry and structure of the medium is of interest,

the presence of large volumes of the phenolic binder is ignored.

The fibers, in a layer, are modelled to be arranged in an

ordered rectangular array. If N denotes the total number of

fibers of unit length in a unit volume, then

E= 1 - N7r f [5.2.1]
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The filaments are distributed unequally along the three

othrogonal axes. The three axes are numbered 1, 2, and 3 for

along, across, and through the layers, respectively. The number

of filaments in the direction i is denoted by ni; hence:

3 n.

N
[5.2.2]

where

ni/N = The directional fiber-density.
1

Directional void fraction, Ei, is defined as the

void-fraction based on the number of filaments parallel to

direction i:

6 = i
( 11 - ) (5.2.3]= -1 . -'-

With the filaments arranged in a square array, the half-distance

between two adjacent filaments, in direction i, is:
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r oi = r [5.2.4]
4(1 - E)
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5.3 LIQUID DIFFUSION IN HOMOGENEOUS FIBROUS MEDIA

In the study of liquid diffusion in unsaturated fibrous

media we are interested in identifying the mechanics of fluid

flow, and the medium properties that affect the flow. To this

end the study is broken into three sections. These are the study

of capillay forces which propel the flow, viscous forces that

retard the flow, and the synthesis of the viscous and capillay

forces to develop a model on liquid diffusion. The nature of

capillary and viscous forces depend on the geometry and

structural arrangements of the medium. In section 5.2 the medium

was modelled as an ordered matrix of fibers arranged in a sqaure

array. In this section the fluid mechanics of flow through a

homogeneous fibrous medium will be studied. The effect of the

inhomogeneity of the medium on the model will be discussed in the

next section.

5.3.1 Suction Potential

Surface tension forces in a fibrous medium act at the

menisci formed by the placement of fibers relative to eachother.

When a fixed amount of liquid is introduced into the medium,

minesci are formed at certain locations. These locations are

referred to as suction sites in this manuscript. The surface

tension forces at these suction-sites are not necessarily equal

and the imbalance causes the liquid to move in a certain
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direction. As the fluid moves some new suction-sites become

activated, and some of the already-wet ones dry up. Movement of

the liquid ceases only when the configuration of active

suction-sites is such that the net force on the liquid mass is

zero. In the case where the medium is exposed to an infintely

large liquid reservoir, liquid is drawn into the medium until the

medium is fully saturated, provided that the medium is

hydrophylic, i.e. the contact angle of a meniscus is less than 900.

As has been mentioned earlier, the shape and size of the

menisici is determined by the relative positioning of the fibers.

Some illustrative possibilites are demonstrated in Fig. 5.2. The

stable configuration of a fixed volume of liquid corresponds to

the one whose surface energy is less than all other possible

configurations. This is the reason for the spherical shape of

liquid drops, for a sphere has the smallest ratio of surface area

to volume. The liquid in case (i) has a smaller surface than

the one is case (ii). The liquid mass in case (ii) moves towards

the fiber-crossing until its configuration resembles that of

case(i). Hence, in Fig. 5.2 case(i) is a stable configuration,

whereas case (ii) is not.

The configurations shown in Fig. 5.2 are but a handful of

possibilites. It is clear that no simple and unique formulation

relating the shape of the meniscus to the geometric properties of

the medium can be presented. Therefore, a phenomenological

approach to the modelling is followed.

The strength of the suction sites is inversely proportional

to a characteristic length scale which is called the

suction-radius, rs. The geometric parameter that relates the

medium to the suction-radius is the separation distance between

the fibers. Consider an array of fibers as shown in

Fig. 5.1(b). The liquid is in contact with four fibers wetting

one-fourth of the perimeter of each filament. The surface forces

acting at the interface of fibers and liquid create a pressure
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drop across the interface. The force on each fiber is:

1
F = --- [2 rf cosY]

4
[5.3.1.1]

where Y is the contact angle between the liquid and the fibers,

and is a chemcial property of the fiber/liquid ensemble. The

total force in direct~ion i is:

F = 2nr r cosY
1 f [ 5.3.1.2]

The pressure drop across the liquid interface acts on the area

designated in Fig. 5.1(b). This area is

2

A. =
1-.

1

[5.3.1.3]

Hence,
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AP. =
1

2 acosY (1 - Ei)

rf
[5.3.1.4]

The strength of the suction sites is inversely proportional to

the suction-radius. Defining a suction radius r as:
s

2 a cos F
r =
s AP [5.3.1.5]

Such that, the suction-radius in a round tube is equal to the

tube radius; Equation [5.3.1.4] can be combined with

eq.[5.3.1.5] to yield:

r
rsi = [5.3.1.6]

The above equation relates the suction-radius in the i-th

direction to the fiber-radius and the directional void-fraction.
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5.3.2 Viscous Drag

The flow of liquid in porous media is retarded by the

viscous forces. In this section the phenomenon of viscous drag

in fibrous media is studied and modelled.

Visous drag is caused by the no-slip condition at the

surface of fibers. In developing a model that would predict the

viscous drag in fibrous media the flow may be modelled as flow

through a pipe, i.e. the Hagen Pouiseuille flow,:

4
Sr d  dP

Q = *
8 Y dx

E5.3.2.11

In the above, rd is the equivalent hydraulic radius of the

medium. The model should be able to relate the hydraulic radius

to the properties of the medium. A definition for the hydraulic

radius of an anisotropic fibrous medium is obtained by analyzing

the flow as flow over an ensemble of cylinders. In the remainder

of this section flow past a matrix of cylinders is studied and

the flow-rate/pressure-drop relationship is obtained.

The fibrous medium has been modelled as a three dimensional

matrix of fibers arranged in an ordered square array. The number
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of fibers in the three orthogonal directions are unequal and

characterized by the directional fiber-density parameter, ni/N.
In the solution of the flow-field in any specific direction i the

following is proposed: Assume that the flow is equivalent to the

linear super-position of two flows: flow along a bank of

cylinders and flow across a bank of cylinders. With the above

assumption the flow field in the medium is obtained by once

solving the Navier-Stokes equations with only the fibers that are

parallel to the the flow, and once with all the fibers that are

perpendicular to the flow. The two solutions are then linearly

super-imposed and the flow-rate/pressure-drop relationship is

generated.

There is one major reservation about the superposition

assumption. In the flow of liquid over an array where both along

and across fibers are present the flow field is effected by the

simultaneous presence of the fibers in the three directions. The

superposition solution does not account for the pressure drop

across the fiber crossings and the distortions that the

fiber-crossings and fiber "knots" introduce into the flow field.

In order to account for the presence of fiber crossings solid

spheres may be introduced at the points where the fibers

intersect. The radius of the spheres would be a multiple of the

fiber radius, with the multiple larger than one and less than

ten. However, it is reasonable to assume that due to the large

values of the void-fraction, which translates into large

fiber-separation distances, the effect of the spheres is

negligible on the pressure-drop.

The pressure drop across an ordered three-dimensional array

of fibers is the weighted sum of the pressure drop due to flow

along, and across the fibers. Consider the viscous flow of a
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fluid along a one-dimensional array of cylinders all with radius

rf. This corresponds to the 3-D array, where all the fibers that

do not lie parallel to the flow are removed. For viscous flow

the Navier-Stokes equation reduces to:

d2 u 1 dP
[5.3.2.2]

dr 2  dz

with the no-slip boundary condition at the solid surfaces. In

order to solve the above a symmetric cell is chosen such that the

whole flow field is generated by reflecting the cell over its

sides. The symmetric property of the cell implies that the

condition of zero velocity gradient must be satisified at the

cell's boundaries. In Fig. 5.1(c) a triangular cell which can

generate the flow-field is shown. Sparrow [75] used the

triangular cell and solved equation [5.3.2.2] with the

boundary-condition of zero velocity at the filament surface and

zero velocity gradient at the remainder of cell's boundaries.

For void-fraction values larger than 90%, he has obtained:

S4 1 ln+ln2 -3 + 1 2
u [i 6k 4 64

1 dP 2 4
f iP dz 4

[5.3.2.3]
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where i is the non-dimensionalized fiber-seperation distance:

[5.3.2.4]

4 (1 - c )

Now consider the viscous flow of a liquid perpendicular to a

bank of tubes. The Navier-Stokes equations for viscous flow and

continuity expressed in cylindrical coordinates are:

S[2r 2 rv2
= v

rr r
[5.3.2.5]

v 2 v Vrr r+2 - 1 [5.3.2.6]

r2 r2
1 3P

r 0
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1 avy
+ =

r 0o
[5.3.2.7]

The stream function, ',

v
r

is defined as:

r 80
[5.3.2.8]

and,

v = - [5.3.2.9]

Then equations [5.3.2.5]-[5.3.2.7]

[5.3.2.10]

v r
+ r

r

become:

V4 -= 0
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To obtain the boundary conditions necessary to solve the above,
consider a cylinder to be moving with velocity U, perpendicular

to its axis in a fluid cell of radius r . Then at r=r :

u =u

yr =- ucosr

v = -usino [5.3.2.11]

and at r = r

v =0
r

+
br

1

r

SVr vV
0 -r
3 8 r

[5.3.2.12]

The above can be solved to yield:
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u

1 dP 2

S dzPU dz

[5.3.2.13]

2 1

4 7 +1

4 x

-v [5.3.2.14]

4 [ N' n
N

(For a more detailed discussion of the above see [76])

Equations [5.3.2.3] and [5.3.2.14] are the

flow-rate/pressure-drop relationships for flow in 1-D arrays of

fibers, arranged along and perpendicular to the flow,

respectively. The pressure drop across a three dimensional array

is the weighed sume of the pressure drop along the fibers and

across the fibers. Force per unit length of the fibers which are

parallel to the flow, which is in direction i, is:

dP
dz )i,1i

[5.3.2.15]r2
oi

where (dP/dz)i,lj is defined in eq. [5.3.2.3]. Force per unit
length of fibers perpendicular to the flow is:
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[5.3.2.16]

where (dp/dz)i,.L is defined in eq. (5.3.2.14]. There are

fibers of unit length per unit area parallel to the flow and N-nii
fibers perpendicular to the flow. Then:

Sni
- n. L-

+ (N-n ,
[5.3.2.17]

which can be written as:

F

L
[5.3.2.18]

eqs. [5.1.3], [5.3.2.3], and [5.3.2.14] with [5.3.2.18]

yields:

Si(ni/N , E )
1 1

[5.3.2.19]

F
L- I
L i,.

dP
dz i,L

2roi

L P

L i

n. F
-N + 1-

n.

N

Using

dP

dx

4 ui

2
rf
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where Si is the parameter that denotes all the terms that

represent the effect of void-fraction and anisotropic

fiber-density on the pressure drop:

S(ni/N, E )
1

1 - E

ni

1 )

In( 2
i +1

n
N i 4

[5.3,2.20]

8 4 ( 2 1) 1
7i ---- In2 +1n2-3 + + ---

i 2i 4 i

Equation [5.3.2.19] is the flow-rate/pressure-drop relationship

for laminar flow in direction-i through a three dimensional array

of fibers with unequal directional fiber-densities. Figure 5.3

is a plot of Si versus ni/N with E as the parameter. Si
demonstrates a strong dependance to mass-fraction, 1-E . At a

given E, the value of Si decreases as the ratio of fibers along

the flow to the fibers across the flow increases up to a certain

value of ni/N. Beyond this value of ni/N, S. increases.

Equation [5.3.2.19] can be written in the form of Darcy's

law. In the next equation the matrix [k*] is the diagonal matrix

of permeabilities:
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1
[u1]- [k ][dP/dx] [5.3.2.21]

2
kfk. =
4 Si

[5.3.2.22]

At the beginning of the discussion on viscous drag, the

possibility of a formulation based on a hydraulic radius analogy

between the medium and a round capillary was presented. It was

then suggested that developping a phenomenological relationship

for the hydraulic radius is not immediately possible. The

analogous Hagen-Pouiseuille flow is characterized by:

x---- = - u.
dx i r didi

[5.3.2.1]

where rd is the hydraulic radius. Comparing the above with eq.

(5.3.2.19] yields:
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[5.3.2.23]
2

rdi f=
Si

Clearly, as Si is a very complicated function of ni/N and

c, rdi could have not been formulated properly if the flow was

not studied in detail as flow over a 3-D array of fibers.

5.3.3 Liquid Diffusion

Liquid diffusion in unsaturated porous media is controlled

by the balance of surface tension forces with the viscous drag

forces. Consider a unit volume of the material with unit surface

area and unit width exposed to a reservoir of diffusing liquid.

Liquid diffuses into the medium with a velocity U. The

pressure-drop asscoiated with a flow velocity U is given by eq.

[5.3.2.19]. This pressure drop is balanced by the surface

tension forces acting at the meniscie, eq. [5.3.1.4]:

4 •. S.
1 1 uf
2 ui

r
f

2 a cos

r L.
s 1

[5.3.3.1]

where L. is the length of the diffused front in the i-thi
direction. Recognizing that
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U. = dL./dt
1 1

[5.3.3.2]

2
dL. a cos Y r

L. f
1 dt 2 S. r

1 S

Integrating the above with the initial condition of :

Li(t=O) = 0.
1

[5.3.3.3]

[5.3.3.4]

results in:

2
a cos Y r

L. = r r
1i ,ii S. r

1 S

[5.3.3.5]

For liquid diffusion in a round capillary Washburn[77] has shown

that :
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a cos V
L. = r t

2 b

Equation [5.3.3.5] can be written as

[5.3.3.6]

= a~r t
1

[5.3.3.7]

where a is the liquid diffusivity and is a function of the

properties of the medium and the diffusing liquid:

a = acos Y/2 u [5.3.3.8]

With the above formulation r i is defined to be the equivalent

suction-radius in direction i:
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* 2(1 - )ni/N
r . = rf [5.3.3.9]

S
1

The equivalent suction-radius is based on the analogy that if

the fibrous medium were to be modelled as an assemblage of round

capillaries, the capillaries would have a radius of r . This

parameter is a function of the medium void-fraction,

fiber-radius, and the directional fiber-density.
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5.4 EFFECTS OF THE INHOMOGENEITIES OF THE MEDIUM ON

LIQUID DIFFUSION

In the previous section the phenomena of surface tension

forces, viscous drag and liquid difusion in a homogeneous medium

were studied. The parameters that describe each of the

pheneomena were identified and related to the properties of a

homogeneous 3-D ordered array of fibers. As noted in section

5.2, the medium under study is not homogeneous. Variations of

the void-fraction take place in the three orthogonal directions.

However, it has been observed that for a given layer, the

variations of void-fraction from one layer to the neighboring

ones are more pronounced than the variation along the layers.

The variations of the void-fraction in the i=3 direction can be

assumed to take place from one layer to the other, with the

void-fraction being constant in each layer. This is due to the

small thickness of the layers which does not allow for

significant variations of void-fraction. The length scale for

variations across and along the layers has been observed to be

larger than the one associated with variations from one layer to

the next. Hence, it is proposed that the inhomogeneity of the

medium be parameterized by a step-wise void-fraction distribution

in the through-direction,i=3, with the void-fraction being

constant in each layer, Fig. 5.4.

In this section the effects of inhomogeneity of the medium

on liquid diffusion, viscous drag and suction potential is
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studied. By introducing a void-fraction distribution, the

macroscopic behavior of the medium with regards to the three

above mentioned phenomena is obtained by proper statistical

aggregation. The statistical analysis requires a proper

definition of aggregation. The analysis is straight forward for

suction-potential and viscous drag. However, simultaneous liquid

diffusion along many interconnected layers is by nature different

from liquid diffusion along an ensemble of isolated layers. This

phenomenon will be described later and its implications

demonstrated.

The inhomogeneity of the medium is represented by a

void-fraction frequency distribution subject to the constraint:

1

E Cf(E) dE
0

= ETT [5.4.1]

where

ET = The macroscopic void-fraction of the medium.

5.4.1 Effect of Inhomogeneity on Suction Potential

Every layer is assumed to be characterized by a uniform

value of void-fraction, and, hence, by one value of suction
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radius, rs . It follows that for a given void-fraction

distribution in the medium, f(E), a corresponding suction-radius

distribution, f(rs ) exists

5.4.2 Effect of Inhomogeneity on Viscous Drag

According to eqs. [5.3.2.19] and [5.3.2.20], the pressure

drop across the medium is a function of the void-fraction, and

the directional fiber-density. Hence, each layer, with a uniform

void-fraction, is characterized by a value of S , and the medium

by a frequency-distribution f(S). Liquid can flow in two

possible directions: along the layers and perpendicular to them.

In flow along the layers the flow can be either along the i=1 or

i=2 direction.

Consider flow along the layers. In this situation flow

passes through a set of parallel conduits. This is analogous to

the flow of electric current through a set of parallel

resistances. The equivalent resistance to flow is

1 -1[ f(E) dE
S eq(n./N, ET) =S(ni/ ) i=1,2 [5.4.2]

When a number of resistances are placed in parallel to eachother,

the equivalent resistance is always smaller than the smallest
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resistance. In other words, the value of S obtained for an

ordered homogeneous medium, eq. (5.3.2.20], is the maximum value

that any medium, with the same E and ni/N can have. Any

distortions in the equality of fiber-spacing leads to a decrease

in the value of S, which translates to a decrease in the pressure

drop for the same flow rate.

In the case of flow through the layers, flow passes through

the layers arranged serially. Hence, the equivalent S is:

Seq(n /N, F ) T = ff(E) S(niNE) dc i=3 [5.4.3]

5.4.3 Effect of Inhomogeneity on Liquid Diffusion

The phenomenon of liquid diffusion in a homogeneous fibrous

medium has been identified to be controlled by the

diffusion-radius, r . This parameter emerges from the balance of

surface tension forces with the viscous forces and is a function

of the directional fiber-density void fraction. The medium under

study is layered, with the layers having a non-uniform

void-fraction distribution. Hence, as each layer is

characterized by a certain value of void-fraction, it is also

characterized by a unique value of r . The study of liquid

diffusion in the fibrous insulation is seperated into diffusion

in the plane of the layers, and diffusion through the layers.
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The directional fiber-desnity in the direction perpendicular to

the layers is very small. This implies that the seperation

distance between the fibers is very large. Therefore, the number

and/or the strength of the suction sites in the direction

perpendicular to the layers is not sufficient to cause a

well-defined diffusion pattern as discussed in section

5.3.1. Hence, liquid diffusion from one layer to the other

cannot be properly represented by the equivalent suction-radius

model; and the model needs to be amended.

5.4.3.1 Diffusion Through The Layers

Diffusion in the fibrous media is caused by the action of

surface tension forces acting at the menisci. In section 5.3.1

the nature of these forces and the geometry of the menisci was

studied. It was shown that a measure of the strength of the the

suction sites is the equivalent suction-radius, rs . The smaller

the value of rs , the stronger the suction potential would be.

The suction-radius is related to the properties of the medium as:

r
r si = [5.4.4]

n.
S(1 -E)

N
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The relative strength of the suction-sites in different

directions depends on the ratio of directional fiber-density

values:

rsi n./Nr= n.IN [5.4.5]
r.s ni/N
sj1

Hence, if the directional fiber-densities in any two directions

are not significantly different, the suction potentials in the

two directions are effectively equivalent. This is the case for

the two orthogonal directions in the plane of the layers,

(i=1,2). Conversely, when the directional fiber-density in a

given direction is much smaller than the fiber-density in the

other direction, the suction potential in that direction will be

much weaker than the potential in the other direction. The

directional fiber-density in the the direction perpendicular to

the layers is found to be about one-tenth of the values of the

direction fiber-density values in the other two directions. This

implies that the suction sites connecting one layer to the next

are very weak. For liquid to move from one layer to the other,

all suction sites with suction-radii smaller than rs3 should be

fully wet and deactivated. This requirement translates to a

critical value of liquid content, below which liquid will not

travel from one layer to the next. The value of critical

liquid-content corresponds to the percentage of the

suction-radii, in the plane of the layer, which are smaller than

rs3'

However, the above discussion assumes a uniform distribution

of fiber-density in the i=3 direction. If one were to assume
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that the fiber-spacing in this direction varies, then it is

possible to envisage a situtation where there are suction sites

much stronger, but less numerous than before. This is to say

that the values of rs3 are not constant, and some may be close to

rs2 and r 1. Then, liquid would diffuse from one layer to the

other as shown in Fig. 5.5. Liquid diffuses in the plane of the

layer until it reaches a suction-site which connects the two

adjacent layers. Then, it diffuses from the layer to the next,

and travels in the plane of the new layer until it reaches

another suction site in the i=3 direction. This model does not

rule out the previous model based on a critical value of

liquid-content in the layer. The non-uniformity of the fiber

density in the i=3 direction reduces the numerical value of the

critical liquid-content from the one based on a uniform

directional fiber-density.

Consider the following: Assume that the liquid travels a

distance Lo, along the layer before it reaches a suction-site

connecting the layer to the next. Furthermore, assume that the

layer has a uniform thickness h. Then, the diffusing liquid
2 2 0.5would have to travel (L +h ) from one layer-connection to the

0

other. Diffusion takes place primarily in the plane of the

layer, and is characterized by r (Recalling that r 1 and r 2 are

not significantly different an average of the two is used). Then

the time that it takes for the liquid to travel from one layer to

the next is:

2 2L +h

t = 5.4.6]
r
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The above may be rewritten as:

I
h = a r [5.4.7]

The above represents liquid diffusion in the i=3 direction.

Comparing the above with eq. [5.3.3.7]:

L. = r t
1 1 [5.3.3.7]

indicates that the two equations are very similar. Equation

[5.4.7] states that liquid diffusion in the directin

perpendicular to the layers is caused by a tortuous diffusion in

the plane of the layers. The effect of the tortuous path is

represented by the tortuosity factor,

1

T 2

F-- + 1
h j

[5.4.91
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The Lo/h factor indicates the extent of interconnection between

adjacent layers. It is solely a property of the medium.

The above formulation yields the value of tortuosity based

on one value of r , and Lo/h. Clearly, both of these paramters

have a non-uniform distribution in the medium; consequentially

there must exist a distribution of the tortuosity factor. It

will be later shown that seperating the distribution of r from

that of T is not possible.

5.4.3.II Diffusion In The Plane Of The Layers

Liquid diffusion in the plane of the layers is given by

eq. [5.3.3.7]:

i=l,2 [5.3.3.7]

where r is defined in eq. [5.3.3.9]. The diffusion-radius is a

function of void-fraction and the directional fiber-density.
* *

Each layer is characterized by a value of r 1 and r 2'
corresponding to the value of the void-fraction in the layer.

Therefore, corresponding to f(E1 ,2) a non-uniform f(r 1,2)

exists.
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The above formulation implicitly assumes that liquid

diffusion takes place along an assemblage of isolated layers, and

does not take into account the possibility of liquid movement

from one layer to the other. In order to elucidate this point

consider the case of two round capillaries with radii rl, and r2,
with r2 larger than r1. With the two capillaries isolated,

liquid diffusion takes place according to the Washburn solution:

L1 = a rl t [5.4.10]

L2 = a r2 t [5.4.11]

Now consider the situation where the two capillaries are

inter-connected. The term "inter-connected" implies that at any

location along the two capillaries pressure is the same. This is

to say that liquid can freely move from one capillary to the

other. It can be easily shown [78] that with the coupled

capillaries:
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[5.4.12]

and,

L2 = r' 2 t [5.4.13]

gl(r 2/rl) [5.4.14]

r'2 = g2 (r2 /rl) [5.4. 15]

the above g1 and g2 are non-linear

plotted in Fig. 5.6. When the two

functions

radii are

of r2/rl'

of the same
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order of magnitude g1 (r2 /rl) is larger than r2/r1 , and g2 (r2 /rl)

is smaller than one, but not smaller than r1 /r2 . Hence, the

smaller capillary, which if uncoupled would trail the larger one,

leads the larger capillary. However, as the ratio of r2/rl
increases g2 approaches one and gl approaches r2/r1 . The net

result being that at large values of r2 /r1 the two capillaries

travel at the rate very close to that of the isolated large one.

These results indicate that liquid diffusion in coupled

capillaries is distinctly different from diffusion in isolated

ones. The reason for this lies in the ability of the liquid to

move from one capillary to the other. This flow takes place at

such a rate as to cause the pressure at any location, behind the

meniscus of the trailing capillary, to be the same in both

capillaries.

The effect of coupling between many capillaries of different

radii is very complicated. The equations cannot be easily

decoupled. The system of n-capillaries is described by a set of

n coupled nonlinear differential equations, with a singularity at

time equals to zero. There is no guarantee that a closed form

solution to such as system exists [79]. However, by studying the

behaviour of two coupled capillaries, cetain observations may be

made and generalized to the case of n-capillaires. Let us assume

that the variations of radius in the n-capillaries is not lager

than an order of magnitude. The coupling of the capillaries has

two effects. First, the capillary with the largest radius, which

if uncoupled would move furtherest the fastest, will slow down

substantially. Second, the distribution of the effective radius

which characterizes the coupled liquid diffusion, f(r ), is less

peaked and more flat than f(r), for the coupling brings the

values of effective radii, r , closer to eachother.

The observations made above can be extended to liquid

diffusion in n-interconnected layers. According to the above,

f(r ) based on f(E) is an approximation to f(r ), where f(r )
c c

includes the effect of the coupling between the n-layers.
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Incorporating the effect of coupling into the model is not

quantitatively possible. However, it is possible to predict that

f(r ) will be more flat and less peaked than f(r ). Also

r will be smaller than r . The decrease in the
c-max max

peakendness of f(r ) and the relative decrease of r from
,F c-gax
r is a strong function of the relative values of r . With

max
variations of r not in excess of an order of magnitude, the

variations in f(r ) and r should be noticeable, but not soc as to render f(r c-maxccurate estimator of f(r
large as to render f(r ) an inaccurate estimator of f(r ).c

-267-



5.5 MODEL SUMMARY AND RATIONALE FOR CHOICE OF EXPERIMENTS

In the previous sections the phenomenon of liquid diffusion

in fibrous insulation has been studied. In this section a

summary of the model is presented, and a series of experiments

are proposed. The experiments are designed to serve two

purposes. One is to generate the unknown paramters of the model.

The other is to test the model for consistency and accuracy.

The model for liquid diffusion in the fibrous insulation is

based on a simple geometric representation of the medium. The

medium is modelled as a three dimensional ordered array of fibers

arranged in a square lattice. The anisotropicity of the medium

is modelled by the introduction of the directional

fiber-densities. The inhomogeneity of the medium is modelled by

a non-uniform void-fraction distribution. Other characteristic

properties of the medium are the mean fiber-raius and the

tortuosity factor. Suction-potential, viscous drag, and liquid

diffusion in the medium are studied. In each of these studies

the physical parameters that control the phenomenon in a layer

are related to the properties of the homogeneous medium. The

overall behaviour is obtained by statistical aggregation over the

range of void-fraction values of the layers. Suction potential

is identified by an equivalent suction-radius distribution,

f(r ). The viscous drag is identified by the S term . The
s eq

equivalent suction-radius distribution, f(r ), represents the

phenomenon of liquid diffusion.



In order to evaluate f(rs), Seq, and f(r ), three inputs are

required. The model inputs and output paramters are:

INPUT: f(e), ni/N, rf

OUTPUT: f(rs), Seq, f(r )

Of the above inputs, the fiber mean-radius is known within some

accuracy; and ni/N is postulated by observing the medium under

microscope. Only f(E) is unknown and needs to be measured

experimentally. Each of the following three can be used to

back-calculate f(E): f(rs), f(r ), Seq. Once one of the three is

used to generate f(E), f(E) can be input to the model to predict

the other two.

In order to check the consistency and accuracy of the model,

as well as solving for the unknown f(E), it is proposed that

experiments be conducted to measure the three outputs of the

model. Each experimental result is then used to back-calculate

f(c), and predict the other two experimental results. To

elucidate this scheme consider Figure 5.7. In this figure,

f(r s), f(r ), Seq are circled. From each circle two arrows

emanate, indicating that the experimental values of the encircled

quantity are used, through the model, to predict the other two

experimental results. As indicated, each experimetnal result is

compared with the model prediction two times. This is the

ultimate test of consistency of the model and accuracy of the

experiments.

In short, three sets of experiments need to be conducted to

measure f(rs), Seq, and f(r ). The model does not predict the

value of tortuosity; this must be measured experimentally.
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Fig. 5.4 Schematic of the Proposed Model for Void-Fraction
Distribution
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Fig. 5.7 A Schematic of the Manner that the Different Parts of the
Model on Liquid-Diffusion are Related. The arrows
indicate that the Experimental Observations of
the Encircled Entity Predict the Values of the Other
Encircled Entities.
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CHAPTER 6

LIQUID DIFFUSION IN FIBROUS INSULATION:

EXPERIMENTS AND OBSERVATIONS

6.1 GENERAL CHARACTERISITICS OF THE TEST SAMPLES

Two types of fiberglass insualtion were used for the

experiments. They are manufactured by Owens-Corning Inc. The
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macroscopic void-fractions of the insulations were 94.5 and

98.2%. The medium with 94.5% is ordinarily used as a roof

insulation, whereas the other one could be used for walls. The

widely used pink insualtin was not used, because it did not

withstand the stresses caused by the surface tension forces and

would undergo permenant structural deformation. The directional

fiber density of both types of insulation were investigated using

a microscope. They were found to be approximately 52., 43., and

5.%, corresponding to i=1,2,3 directions.
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6.2 LIQUID CONTENT MEASURMENT PROBES

Measurement of liquid-content in porous media requires

special instrumentation. Several measurement technics have been

developed by various researchers[80-85]. However, they were

found not to be suitable for measurment of liquid-content in

fibrous insulation. Liquid-content probes have been developed to

measure the volumetric liquid-content in the fibrous insulation.

In the process of preliminary experimentation with the

insulation, it was discovered that de-ionized water dissolved

some of the phenolic-binder of the insulation and became ionized.

Therefore, it was decided to take advantage of this phenomenon,

and build the liquid-content probes around it. Hence,

resistance-probes were developed. The probe takes advantage of

the electric resistivity of the liquid and measures the volume of

liquid in the medium. The probe consists of two long stainless

steel needles of .46 mm diameter, seperated by 6.26 mm., Fig.

6.1. The probe is inserted into the medium and the electric

resistance between the two needles is measured.

The electric resistance of the probe is measured using an

alternating-current resistance measurement circuit. The choice

of a.c. measurement as opposed to the d.c. resistance-measurement

was dictated by the working liquid. The resistvity of the liquid

was caused by the ions which were dissolved in it. Were one to

impose a d.c. voltage across the probes, the ions in the liquid

would be seggregated and migrate towards the two needles

depending on the sign of their electric charge. This would, in

turn, result in a time-varying resistivity in the medium.

-279-



However, with an a.c. voltage across the probes, the ions in the

liquid would not migrate in a specific direction, but would

rather oscillate back and forth respondiong to the alternating

electric-field. The unwelcome feature of a.c.

resistance-measurment technic is the electric capacitance which

is set up in-between the two legs of the probe. The electric

impedance of a resistance oscillated at a frequency w is

ZR = R

and the impedance of an electric capacitance oscillated at the

same frequency is:

C = 1/(Cw)

The equivalent circuit to the probe would be a capacitor and

resistor in parallel. Hence, the equivalnet impedance would be:

1 T-1
ZT =( Cw + R )
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It is clear from the above, that as the frequency of oscillation

increases the impedance of the capacitor dominates that of the

resistor. Hence, the frequency of the oscillator had to be

chosen such that the capacitance effects be negilgible compared

to that of the resistance. Experimentation indicated that at 10

kilo-cycles the effect of capacitance with the probe inserted

into a bath of liquid was negligible compared to that of the

resistance. The resistance measurement circuit is shown in Fig.

6.2. It works on the basis of a voltage-divider , with the probe

being one of the resistances. The voltage across the probe is

processed at several stages. It is first amplified, the

carrier-wave is then removed by passing the signal through a

rectifier and a filter. The output voltage of the circuit would

corresponds to the probe resistance by the following relation:

_V pr o b e  R_____R rbe
=--------- Hobe

V. R + R
input calib probe

where Rcalib is the caliberation resistance.

In any experiment numerous probes are used. The probes are

connected to a switching circuit. The switching-circuit connects

the probe to the resistance-measurement circuit sequentially.

The switching circuit consists of 5 linear integrated circuit

dual-timers 556. The timers were connected in tandem, such that

whenever one would turn off, the next would be activated. When

activated, the resistance of the timer-chip was about 100 ohms;

otherwise it was of the order of Mega-ohms. Each probe was

connected to the resistance-measurement circuit for a specific
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duration of time. The switching frequency was set by adjusting

the appropriate resistances and capacitances in the

switching-box, and could vary from milli-seconds to hours. A

total of ten probes could be connected through the switching-box

to the resistance-measurement circuit. The voltage output of the

measurement circuit was plotted on a chart-recorder. The

profiles of voltages plotted on the recorder could, then, be

interpereted to yield liquid-content profiles. A schematic of

the measurement set-up is given in Fig. 6.3.

The output-voltage of the measurement circuit is a function

of the volume of liquid bridging the two legs of the probe. By

proper installation and caliberation the resistance across the

probe could be related to the liquid-content in the medium.

Figure 6.4 represents a schematic of the installed probe. The

resistance across the probes at 100% wetness is:

R( 0 =100%)= PjS/A

where

Pe= elctric resistivity of the medium

S = Distance between the legs of the probe

A = Area through which the electric current flows

= f(D/S)

In the above D and L are the diameter and length of each
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probe needle, respectively. With only part of the probe wet its

resistance is a function of the liquid content. Therefore:

R(O)
0 = Function( ------------- )

R(0=100%)

The caliberation curve was developed by making voltage

measurements in partially wet medium. The medium was then

weighed, dried and weighed again. The difference in the weight

of the medium was then translated to liquid-content values. The

caliberation curve is shown in Fig. 6.5. The probe's

output-voltage is plotted against the value measured by the

dry/wet method. The caliberation curve demonstartes that for

liquid-contents in excess of 15% the probe predicts the actual

values of the liquid-content with a reasonable accuracy. Below

liquid-content values of 15%, the liquid becomes pendular and

does not bridge the probe needles. Therefore, the probe readings

at liquid-contents below 10% are not very reliable.

The a.c.-measurement technic assumes a constant value of

medium-resistivity. For this reason a specific procedure was

developed to ensure that the liquid had a constant ion-density.

This procedure will be described later in this section. The

resistivity of the liquid is a function of the mobility of the

ions which is, in turn, a function of temperature. The change in

resistivity of the liquid as a function of temperature was

observed no to be negligible. In order to isolate this effect, a

reference cell was built. A pair of probes were installed in the

cell which was full of liquid at room temperature. The

resistance associated with the output-voltage of this probe is
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used as the reference value R(8=100%).

The liquid-content probes work on the basis of measuring the

electrical resistance of the liquid in the medium. It has been

found experimentally that the phenolic binder dissolves in water

and ionizes the water. De-ionized water was brought into contact

with pieces of the insulation. The water was then evaporated and

a yellow-colored residue was observed. The color of the

insulation being yellow, it was inferred that the residue must be

the phenolic-binder. The use of the liquid-content probes

requires a constant value of resistivity. In order to ensure

that the liquid used in the experiments has a constant

resistivity a special preparation recipe was developed.

Insulation pieces were cut to very small sizes. They were then

mixed with de-ionized and distilled water. The mixture was

constantly stirred as it boiled for about 30 minutes. In this

stage the water became saturated with binder. Then the mixture

was cooled to room temperature and filtered. The resulting

liquid is saturated with the binder and no more binder dissolves

in it. The density and viscosity of the liquid were found, within

experiemntal error, to equal those of pure water. The value of

surface-tension of the liquid was measured to be 73 dynes/cm at

room temerpature: an increase of 10% over that of pure water.

The contact angle was observed to be zero.
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6.3 MEASUREMENT OF SUCTION-RADIUS DISTRIBUTION

The strength of the suction-potential in the fibrous medium

is characterized by the ability of the medium to retain a liquid

against an adverse potential. The standard procedure for the

measurement of the suction-potential is to enclose the porous

medium in a cell and by slowly varying the pressure, displace one

fluid by another. By this method, the relationship between

pressure and liquid-content can be established. However, in the

case of fibrous medium a more simple experiment can be performed,

mainly because the variations of the suction-potential from one

layer to the other is of interest. In this experiment, the

insulation is allowed to absorb liquid from a pool against

gravity, Fig. 5.6. The liquid rises in the insulation under the

action of surface tension forces until it reaches a steady-state

height. The steady-state height distribution in the layers was

recorded by visual observation and the probes. The probes were

installed at different heights and the value of liquid-content at

each height was recorded. The experiment was conducted along the

three principal directions of the medium. The experiments on

along and across the layers were carried out on 17 different

samples. Six samples were used in experiments on absorption

through the layers. The observed frequency distribution of the

liquid columns in the medium were aggregated to yield a total

frequency-distribution. The height frequency-distributions

corresponding to experiemnts on along and across the layers were

found to be identical.

The liquid columns in the medium are supported by surface
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tension forces. Hence on can write:

pgh= 2acosY/ r5S

where rs is the suction-radius as defined in section 5.3.1. The

observed distibution of the liquid columns is transformed to a

suction-radius distribution. The density distribution of the

suction-radius for the two types of insulation, in the plane of

the layers, is presented in Fig. 6.7 and 6.8. In the experiments

on liquid absorption through the layers, the liquid rose to the

same level in all samples. The lqiuid rose through the layers

to the height of 1.587 cm. and 1.275 cm. in the heavier and

lighter insulation, respectively.
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6.4 MEASUREMENT OF PRESSURE-DROP/FLOW-RATE RELATION

In flow through saturated porous media a Reynolds number

based on a simple definition of the hydraulic radius of the

medium can be defined. Hydraulic radius is defined as the ratio

of the volume to surface of a capillary. For the ordered-array

model:

2
V = 1 - N7r

f

S = Nnrf

where V is the volume of the capillaries, and S is their surface

area . Therefore, the hydraulic radius is:

r = rf
h f

1 E
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Using typical values indicate that the rate of liquid diffusion

in the insulation is such that the flow may be considered

laminar. Therefore, in the measurement of

pressure-drop/flow-rate relationship, only the laminar flow

regime is considered. A schematic of the experimental apparatus

is shown in Fig. 6.9. The apparatus consists of two chambers

that are seperated by a piece of the insulation. Liquid enters

one of the chambers and passes through the insulation into the

next chamber. The sides of the insulation which are not in

contact with the chambers are coated with epoxy glue and rendered

impermeable to liquid-flow. The liquid is pumped through the

insulation and the flow rate is measured. A number of probes,

usually two or three, are inserted into the medium. These help

verify that all parts of the insulation are wetted, and that the

liquid is not short-circuiting around a more dense section of the

insulation. Close to the test-piece two vertical tubes are

connected to the two chambers. The pressure-drop across the test

piece is measured by the differential rise of liquid in the

vertical tubes. Experiments were conducted along the three

directions for both types of insulation. For each type of

insulation, and along each direction a number of experiments were

conducted. Equation [3.3.2.19] was used to transform the

observed values of pressure-drop and flow-rate to values of S.

Plots of S versus the Reynolds number, based on the hydraulic

radius, are given in Figs. 6.10 and 6.11. As indicated the value

of S remains constant over a range of Reynolds numbers. The

maximum experimental error is 5.4% for the heavier medium and

3.2% for the lighter one.
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6.5 EXPERIMENTS ON THE DIFFUSION PHENOMENON

Liquid diffusion in the insulation is controlled by the

action of capillary forces. In the medium under study, the

capillary forces are not very large. Hence, in studying

liquid-diffusion care must be taken so that the effect of the

hydrostatic head be negligible compared to the capillary forces.

This requires that the height of the test-pieces satisfy the

following inequality:

pgh < (2acosY/rs)

The range of observed values of the suction-radii indicate that

the thickness of the medium should be made very small.

Unfortunately this is only possible for only one type of

insulation. When the lighter insulation is cut into pieces of

1-cm. thickness, the pieces lose their structural integrity and

the layers seperate. Although diffusion experiments were

conducted on both types of insulation, the results for the

lighter insulation are considered to be unreliable. The technics

used in the experiments on liquid-diffusion in the plane of the

layers are different from the ones on liquid-diffusion from one
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layer to the other. Hence, each experiment is discussed

seperately.

6.5.1 Liquid diffusion in the plane of layers

In this set of experiments, the sample is cut to a height of

about 1-cm. It is then epoxyed onto a plexi-glass plate

connected to a liquid-reservoir, Fig. 6.12. The liquid is

introduced to the reservoir through a syringe, at a rate such

that the level of liquid in the reservoir does not fall below or

exceed the height of the sample. The liquid introduced at one

end of the test-piece diffuses along the layers. Once the

insulation gets wet, its color changes drastically. Hence, the

motion of the diffusing front is recorded by taking pictures of

the sample at regular time-intervals. Fig. 6.13 is a schematic

representation of the motion of the diffusion-front. For every

experimental run a number of pictures were taken. Each

photograph yields the frequency-distribution of the length

travelled by the liquid. This frequency-distribution and the

time that corresponds to it are reduced through eq. [5.3.3.7] to

generate a r -distribution. Similar to the experiments on

r -distribution, the difference in the r*-distributionss
associated with diffusion across and along the layers were within

the range of experimental errors. This is to say that no

difference between the diffusion rates along and across the

layers was observed. The cumulative r*-distribution for the

heavier insulation is given in Fig. 6.14. The Cumulative

r*-distribution for the lighter insulation is given in Fig. 6.15.

As indicated before, the results for the lighter insulation are

not considered reliable.
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6.5.2 Liquid Diffusion Through The Layers

A schematic set up of the experiment on liquid-diffusion

through the layers is shown in Fig. 6.16. Liquid diffuses

through the layers in the manner described in section 5.4.3.I.

Several probes are put in series and inserted into the

sample such that the series is in one layer of the insulation.

The probes are wired electrically in two different arrangements.

In once case each probe series is wired such that all probes are

electrically parallel with eachother. In this arrangement, the

circuit output corresponds to the average value of liquid-content

in the layer. In the other arrangement, each probe is monitered

seperately. In this way, liquid diffusion both along and through

the layers is observed. Hence, the values of critical

liquid-content, as defined in section 5.4 and chapters 2 and 3,

are obtained. This is acheived by monitoring the matrix of

probes. Consider a probe in a certain position along a certain

layer. The value of liquid-content at this location is monitored

until the diffusing liquid reaches the same location in the next

layer. The value of liquid-content at the first layer at the

time of the appearance of liquid at the second layer is taken to

be the estimator of the critical liquid-content.

The period of time that it took for the liquid to travel

from one set of probes to the next were recorded using the first

of the above arrangements. The data for a travel distance of

6.35 mm. is presented in Fig. 6.17. The experimental results

indicate that the travel-time between succeeding layers is not

only monotonic, but exhibits strong irregularity. Were the

tortuosity factor, as defined in eq. [5.4.9], uniform through the
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medium the travel-time would increase monotonically as the liquid

front travelled a larger distance away from the reservoir.

However, the irregular patterns suggest that not only the

tortuosity is not uniform, but its variations are such that they

overshadow the effects of increased length associated with the

front movement. Were the length of the test-samples, which is

equal to the thickness of the insulation-boards, an order of

magnitude larger, then perhaps, the effect of increased length

would show up. Not much information can be derived from the data

as presented in Fig. 6.17.

Nevertheless, if one were to hypothesize that the total

length through which the liquid has to diffuse is of no

significance, and part with the notion of ever-increasing

travel-time, one can study the data in another manner. With this

assumption, the travel-time between any two sets of probes

itself becomes a statistic. Fig. 6.18 exhibits the

frequency-distribution of travel-times between any two sets of

probes, compiled from eight experiments. A well defined

distribution is clearly demonstrated. The next task is to

translate the above distribution into a form which would generate

some information about the totuosity factor. It was suggested in

the above that the length affect is not present in the

experimental results. Then eq.[5.4.7] may be rewritten as:

2L(dL/dt) = ar [6.5.2.1]

Assuming that the first L term is relatively constant, one can

write:
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2 L (AL/At) = ar T

which can be re-arranged into the following form:

r T = (2/a)(AL/t) L [6.5.2.3]

In the above L is the probe seperation distance, L is some

representative length scale, and t is the travel-time. A

reasonable value of L is one half of the test-piece length.

Using the above values and approximation a r -distribution may

be generated. However, it can be easily recognized that given a

distribution of one of the variables, r , and that of the

product, the T--distribution cannot be uniquely defined. Yet, if

it is assumed that the two parameters T and r are statistically

independant, then the average of their proucts equals the product

of their averages:

[6.5.2.4]

-4 *
Using an verage value of 7x10 cm. for r , the average value oft

-2
is found to be 1.8x10-2. This value of r corresponds to a value

of 7.4 for Lo/h. Lo/h is a measure of the inter-connectedness of

the layers. Using an estimate of 2 mm. for an average value of

h, there is, on average, one inter-connection between layers
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every 1.5 cm.

The results of the experimental measurments of the critical

liquid-content is presented in Fig. 6.19. The average

critical liquid-content is about 70%. This implies that in a

given layer, the liquid-content should rise up to about 70%

before the liquid diffuses into the adjacent layer.
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6.6 EXPERIMENTAL RESULTS AND DISCUSSIONS

The manner in which all parts of the model are

inter-connected has been discussed in section 5.5. It was shown

that the parameters and estimators chosen to model the phenomena

of suction-potential, viscous drag, and liquid-diffusion are

related to eachother. The three phenomena are described by:

r s-distribution, S eq, and r -distribution, respectively.

However, the three set of parameters are all function of

void-fraction distribution, fiber-radius, and directional

fiber-density. The fiber radius, and the directional-fiber

density are known within a degree of certainty. In theory, the

experimental results on any of the three parameters may be used

to back calculate the void-fraction distribution. This

void-fraction distribution can then be used to calculate the

other two parameters. In this manner two objectives ar acheived.

First, the model is tested for consistency and accuracy. Second,

the limits and accuracy of the estimators are evaluated and

,perhaps, the experiments and estimators can be ranked in terms

of accuracy and conceptual correctness.

In the following a brief description of the methodology in

reducing the experimental results to the void-fraction

distribution is given. Then, the results of each experiment is

compared to the model based on the other two experiments. For

example, the experimental values of S and r -distribution are

used to calculate two r -distributions. These distributions are

then compared to the ones obtained experimentally.
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At first let some notation be defined. The parameters under

study are : rs-distribution, Seq , and r,-distribution. They

are respectively indexed as 1, 2, and 3. A result obtained by

reducing the data from a certain experiment will be subscripted

by that experiment's index. For example, when the experimental

values of S is used to predict the r -distribution, f(r ) will
eq

be written as f(r )2. Hopefully, with this nomenclature room for

confusion will be reduced.

The experiment on suction-potential yielded the

liquid-column height distribution. The height distribution is

reduced to f(rs ) by the following equality:5

pgh = 2acosY/rs [6.6.1]

It has been shown that the suction-potential is related to the

fiber-spacings and consequentially to the void-fraction,

fiber-radius, and the directional fiber-density:

r =

n.
1

- (1- E)

N

Hence, the r -distribution can be transformed to yield a f(s).

With this value of f(E), the model, eqs. [4.3.20], [4.4.2],

[4.4.3], and [4.3.30], predicts f(r ) and S
eq
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f(h)exp  f(rs)- f(E)--- f(r ) & eq,l

The experimental results obtained from the experiment on

pressure-drop/flow-rate consist of 3 S values. Equationseq
[4.3.30], [4.4.2], and [4.4.3] indicate how these values are

related to f(c). However, it is conceivable that more than one

f(c) can yield the same values of S. Therefore, an additional

constraint is required to be satisfied. This constraint is

conservation of mass:

J:f(E) dE = ET

Nevertheless, it is not clear that even with the above

constraint, the three values of S define f(E) uniquely. The

void-fraction distribution was back-calculated by assuming it can

be described by a Poisson-distribution. By trial and error the

distribution which fittted the data best was discovered. The

E -distribution was then used to calculate the f(rs) 2 and f(r )2:

[Seq ET exp ---f(E)--- f(r )2 and f(r )2

The experiments on liquid-diffusion in the plane of the

layers resulted in the r -distributions. Equation [5.3.3.9]

indicates the relationship between r ande . Hence, the
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experimental values of f(r ) can be reduced to yield a f(E),

which can be used to generate f(rs) 3 and Seq,3"

f(r )exp ) f ( )  f(rs 3 & Seq,3

The cumulative distribution of a function f is denoted by F.

In comparing the results, the cumulative-distribution of each

parameter is used in order to avoid errors associated with

differentiating experimental distributions. The comparison of

F(rs)exp with F(rs) 2 and F(rs) 3 , for the heavier medium in given

in Fig. 6.20. The comparison indicates that the experimentally

observed distribution has the largest spread and incorporates

higher values of rs . The experimental results are obtained by

transforming the observed distribution of the height of liquid

columns. Equation [6.6.1] indicates that a low value of

column-height translates into a large value of rs . Large volumes

of the binder, which were often observed in the medium, arrest

the rise of liquid in a layer and, hence, create a bias in the

data. This is beleived to explain the observed discrepancy

between the experimental distribution and the ones predicted by

the model, for the agreement between the two model predictions,

F(rs) 2 and F(rs) , is good. F(rs) 3 indicates a lower frequency

of capillaries at higher values of rs . This can be explained by

the coupling between the layers which causes an effective

reduction in the suction-potential. The experimental results and

the model predictions for the lighter medium are presented in

Fig. 6.21. The trends are identical to the observations made for

the heavier medium. The only difference is the extent of

deviation between F(rs) 2 and F(rs) 3 . However, as mentioned

earlier the results of the experiment on liquid-diffusion in the

lighter medium are not reliable.
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The values of S predicted by the model using f(r ) and
Seq s

f(r ) are compared with the experimental observations in

Fig.6.22, and 6.23 for the heavier and lighter medium,

respectively. The results are also compared with the theoretical

prediction based on a homogeneous model which was shown to

predict the upper limit. The comparison shows that the values of

S are farther from S than S . This is similar to the
eq,1 exp eq,3
observations on F(rs) 2 and F(rs) 3 . Nevertheless, the agreement

between the experimental observations and the model predictions

are astonishingly good for both types of medium.

Figures 6.24 and 6.25 present the comparison of F(r )
S* exp

with F(r )1 and F(r )2 for the heavier and lighter

medium,respectively. As before F(r ) for the lighter medium
exp

is not very reliable. The observed diffusion results for the two

orthogonal directions in the plane of layers were statistically

identical. However, the model predicted different

r -distributions for different values of directional

fiber-densities. The results indicate that f(r ) is flatter
exp

than the calculated ones for both types of insulation. This

confirms the discussion on the effect of coupling between the

layers on liquid-diffusion, given in the previous chapter. It

may be observed that the effect of directional fiber-density is

not pronounced. The agreement between the experimental values

and model predictions are very good for the heavier medium. The

discrepancy in the lighter medium is still within an

understandable range and indicates that the experimental results

are not completely random.

In summary, the model, the experiments, and the estimators

have been put to a rigorous test. By checking the model in three

different manners with data obtained on two types of insulation,

the consistency of model, relative accuracy of estimators, and

accuracy of experiments are verified. As it stands, the ensemble

of model, estimators and the experimental technics have proven to

be a successful combination.
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6.7 EXPERIMENTS AND DISCUSSIONS ON EFFECT OF GRAVITY ON

LIQUID-DIFFUSION

In the detailed analysis and experimentation of the previous

sections the effects of gravity on liquid-diffusion was not

incorporated. In the development of the model attention was

focused on the paramters that characterize the medium. The

experiments on liquid-diffusion were also designed such that the

effect of gravity be negligible. Nevertheless, the significance

of gravitational effect on liquid-diffusion cannot be overlooked.

In structures where condensation might take place, the presence

of gravity is a determining factor in the behavior of the

condensate. In this section the effect of gravity on

liquid-diffusion in fibrous insulation is investigated.

By this stage of study, it is well established that the

mechanism of liquid-diffusion in the plane of layers is

significantly different from diffusion between the layers.

Hence, it is reasonable to assume that the effect of gravity

depends on the orientation of the layers in the gravitational

field. Specifically, two orientations are of interest: layers

arranged parallel to gravity, and layers perpendicular to

gravity. The former corresponds to such assemblies as walls and

the latter to roofs.

In the phenomenon of liquid-diffusion, the gravitational

effects interact with the driving forces. When liquid is

diffusing in a plane oriented perpendicularly to gravity, the
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hydrostatic head in the wet-region adds to the driving potential

at the edge of the liquid-front. In the case where the direction

of liquid-diffusion is parallel to gravity, the weight of

the liquid behind the front adds to the driving forces. With

the liquid diffusing in the anti-parallel direction to gravity,

the effect of gravity is to reduce the suction forces by the

weight of the liquid.

Incorporation of the gravity effects in the formulations of

the previous sections is straight-forward. However, there are

certain aspects which do not fall within the above category and

are, incidentally, very important. Specifically, two issues need

to be investigated. First, is the value of liquid-content above

which the liquid drops coalesce to form a continuous column.

Second, the maximum height of liquid columns that the capillaries

can hold against gravity. These questions will be addressed and

analyzed in this section.

As vapor condenses in the medium, liquid accumulates in the

insulation. As described in sectin 5.4, liquid drops are formed

in a fashion such that their surface energy is minimized. This

requirement implies that liquid accumulates around

fiber-crossings. In this period of accumulation, liquid is in a

pendular state and does ot exhibit the tendency to migrate. This

is due to the fact that as the volume of liquid is small, not

enough menisci are activated to propel the liquid. Then, the

criterion for the commencement of condensate motion is that the

liquid-content should exceed a critical value. As the volume of

condensate increases the liquid drops grow and coalesce to form

larger drops and eventually, depending on the extent of the

condensation-region, create a column of liquid which has to be

supported by the capillay forces against gravity. The maximum

column height that can be supported by the surface tension forces

is a property of the medium and depends onthe arrangement of the

fibers. The critical issue is to determine whether the

condensate will begin to diffuse before the forces of gravity
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drain it to the bottom of the structure. In the next section a

set of experiments which explore this and other questions are

discussed.

6.7.1 Experiments

Several experiments have been conducted to investigate

liquid-diffusion in the presence of gravity. Some of the

experiments were qualitative. They helped in developing an

understanding of the physical phenomena at work. Both types of

experiments are discussed in this section.

6.7.1.1 Drainage Experiment

An experiment was conducted to measure the ability of the

medium to retain columns of liquid. Pieces of insulation were

cut along the layers to a height of 50 cm. The pieces were

immersed in the binder-saturated liquid for a period of no less

than 4 hours. They were then held vertically against gravity and

allowed to drain into a liquid pool. Liquid-content probes were

inserted into the medium at different locations. The time

dependant behavior of liquid drainage was recorded on the

chart-recorder. This experiment was conducted for both types of

insulation.

The liquid was observed to drain out of the insulation at a

fast pace. Figures 6.26 and 6.27 present the steady-state

distribution of liquid-content as a function of height, for both
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types of insulation. The plotted results are averages of several

experiments. The values of liquid-content less than 15% were

obtained by weighing the wet samples, drying them, and then

weighind the dry samples. The difference in weight was

translated to liquid-content values.

One common feature of both types of insulation is that above

a certain height the insulation holds a fixed volume of liquid

irregardless of the height. This liquid volume is approximately

the same for both insulation and is referred to as retained

liquid-content. During the drainage process, liquid travels from

the top to bottom and essentially washes down all the liquid in

its way. Hence, the value of retained liquid-content corresponds

to a minimum and stable liquid-content which is strongly held by

the fibers. In the regions closer to the bottom of the

insulation, the value of liquid-content goes through an abrupt

change with height. The change is more abrupt for the lighter

insulation, Fig. 6.27. Clearly, the medium cannot sustain liquid

columns with heights in excess of 15 cm. for the lighter

insulation and 22 cm. for the heavier insulation. Furthermore,

the volume of liquid that the capillaries can hold against

gravity decreases very rapidly with a small increase in height.

The total volume of liquid in the sample supported by the

capillaries is the maximum value that the medium can sustain.

Hence, any liquid in excess of this volume drains out from the

insulation.

The same experiment was conducted to study drainage through

the layers. The thickness of the insulation slabs available

commercially are about 7 cm. With the gravity acting

perpendicular to the plane of layers no significant drainage from

compeletely wet samples was observed. Hence, it is concluded

that in this orientation the hydrostatic head is not large enough

to cause drainage. A height of 7 cm. corresponds to regions of

very high saturation in Figs. 6.26 and 6.27. Hence, the

observation of no drainage through the layers is reasonable
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signifying that liquid is held up in both orientations by

capillaries of similar strength.

6.7.1.2 Other Observations

Many quantative observations were made during the course of

experimentations. These are described below. The implications

of these observations are used to develop a model for the effect

of gravity on liquid diffusion.

- After the drainage experiments of the previous section

were completed, each sample was turned upside-down. In this

arangement the top of the sample had a high liquid-content and

the bottom had liquid-content value equal to the retained

liquid-content. The liquid was observed to move rapidly to the

bottom, and establish a steady-state profile. The profiles were

similar to the ones obtained by the drainage experiments.

- The above experiment was continued in the following

manner: some liquid was removed from the bottom of the piece.

The sample was then turned upside-down once more. As before,

liquid diffused to the bottom of the layers. However, it was

observed that drainage took place mostly along a few layers. The

liquid in the majority of layers drained into a few and then

moved to the bottom of the sample.

- A dry piece of insulation, cut along the plane of layers

was held vertically. Slowly, small amounts of liquid were

introduced onto the top of the layers. After a while, the liquid

seeped into the medium. More liquid was then added. It turned

out that one of the layers would get wet and liquid would drain

through that layer only. This phenomenon can be easily explained
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by the notion of retained liquid-content.

- The liquid moving to the bottom of the piece in the

previous experiment would collect at the botom of the layer

through which it had drained. The liquid-content at the bottom

of the sample would build up and slowly diffuse to theadjacent

layers. This verifies the concept of critical liquid-content.

6.7.2 Modelling and Discussions

In this section the results of the experimental observations

and the models developed for gravity-free diffusion are used to

develop a model for the effect of gravity on liquid-diffusion.

Attention is focused on the dependance of the gravitational

effects on liquid-content.

Consider the situation where condensation takes place inside

the insulation. The insulation is oriented such that its layers

are parallel to gravity, and its height is in excess of 0.5 m.

Condensation takes place uniformly in each layer; yet,

condensation rate per unit volume differs from one layer to the

other. As condensation begins, liquid drops are formed at

various fiber-crossings and remain in the pendular state. As

condensation continues the liquid-content in the medium

increases. In the model for diffusion of liquid from one layer

to the other, the notion of a critical liquid-content has been

introduced. The model is based on the reasoning that for liquid

to migrate from one layer to another sufficient number of

suction-sites must be activated. This is assocaited with the

fact that the value of liquid-content in the layer should exceed

the critical-value before any diffusion can take place. The

value of critical liquid-content was found to be about 70%. In

the case under consideration, condensation rate per unit volume
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and consequentially the rate of liquid accumulation varies from
one layer to the other. Were gravity absent, liquid-content in
certain layers would exceed the critical value and liquid would

migrate to the other layers. However, with gravity present the

situation is completely different. Liquid-content can never

reach the critical value. An inspection of Figs. 6.26 and 6.27
indicates that the medium cannot sustain such liquid-content

except in the range of 10-20 cm from the bottom. Hence, the

liquid will drip downwards before it gets the chance to migrate

from one layer to the other.

As the volume of liquid in the medium increases from zero,
past the pendular state, liquid drops meet to coalesce. The

volume and vertical location of these drops varies. As the
volume and height of these coalesced drops increases a few of

then become so large that capillary forces cannot sustain them.
Hence, they start descending under gravitational forces. During

their journey to the bottom of the slab, the liquid volumes come

in contact with other ones and coalesce to make even larger

volumes. This avalanche effect causes the liquid drops, which

were otherwise supported by the capillary forces, to join the

draining liquid, for their volume is suddenly increased by many
folds. Hence, a large volume of condensate may be washed

downwards by the dripping of a small volume. As the liquid-

avalanche travels downwards it leaves some liquid behind it.
This corresponds to the retained liquid-content values, observed
during the drainage experiment, of 5-7%. Therefore,

liquid-contents in excess of the value of retained liquid-content

are unstable. The probability of an avalanche increases as the

values of liquid-content exceed the values of retained

liquid-content.

The ability of the medium to hold up liquid is a function of

its suction-potential. The frequency-distribution of

suction-potential may be estimated by making an analogy between

suction-potential and the height of liquid columns, and
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liquid-content with frequency-distribution of the potential.

This analogy is based on the fact that the percentage of volume

which is wet, at a given height, represents the percentage of the

suction-sites which can hold liquid up to that height. Clearly,

the experiments on drainage indicate that for the medium to hold

liquid-contents in excess of 5-7% the height of the liquid

columns can vary in a very narrow band. It can, therefore, be

inferred that suction-potential is at its low and varies very

little for liquid-contents in excess of 20%, Figs. 6.26 and 6.27.

With the above arguments, the following model is presented:

For liquid-contents less than the retained liquid-content,

the liquid is in the pendular state and does not exhibit a

tendency to move. In this state, the liquid is held by strong

suction forces. As the volumetric liquid-content increases the

small drops coalesce to form larger ones. However, the

suction-potential for liquid-contents in excess of the 5-7%

decreases to a relatively uniform value with increasing liquid

content. The decrease is dramatic for liquid-contents in excess

of 20% for the lighter insulation and 30% for the heavier

insulation. Hence, with liquid-contents in excess of these

values, it is most likely that some liquid volume becomes so

large that the suction forces cannot hold it any more and it

falls under its own weight. This fall triggers an avalanche

which washes down all of the liquid in the medium except for the

amount equal to the retained liquid-content.

For the situations were gravity is perpendicular to the

layers, the liquid-content can increase to very large values

without any dripping setting it. This is due to the fact that

the thickness of commercially available insulation is not large

enough for the weight of the columns to exceed the surface

tension forces. The maximum value of liquid-content prior to the

onset of diffusion is experimentally found to be 70%.
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CHAPTER 7

CONSIDERATIONS ON THE DESIGN OF INSULATED WALL STRUCTURES

7.1 GENERAL CONSIDERATIONS ON MATERIALS USED IN BUILDING

STRUCTURES

In the previous chapters the phenomenon of heat and mass

transfer with phase change in composite walls has been

exhaustively studied. The analytical results, as well as the

experimental results indicate that the behavior of composite

walls depends on both the climatic conditions and the properties

of the materials used in the construction of the insulated

building shells. In this section, the thermal and diffusive

properties of the building materials as they relate to heat and
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mass transfer across the building shell are discussed. In the

next section, two case studies are presented.

In most modern constructions the building structures are

insulated. Although closed-pore insulations are receiving

increasing attention, in the majority of cases the insulation

used is the open-pore fiberglass insulation. The thermal

property of the fiberglass insulation bas been the topic of many

investigations. The fiberglass insulation has large

void-fraction values, e.g. 98%. Therefore, the

thermal-conductivity and vapor-diffusivity of the material are

closely approximated by those of still-air. The experimental

results of this investigation shed light on the mechanisms of

liquid-diffusion in fibrous insulation. Liquid-diffusion is a

strong function of the orientation of the medium with respect to

gravity. It has been found that liquid diffusion from one layer

to the next occurs only when liquid-content in a layer reaches a

critical-value. This value is found to be approximately 60-70%.

However, with the fiberglass layers aligned parallel to the

gravity, the suction-sites in the medium cannot hold

liquid-contents in excess of 5-10%. In wall constructions, the

insulation is placed in such a manner that the layers are

parallel to the gravity. Therefore, in wall constructions,

liquid does not diffuse from one layer to the other, for the

condensate drips to the bottom of the wall before the

critical-value of liquid-content necessary for diffusion is

reached. On the otherhand, in the roofs, the insulation batt is

rolled over the roof and the layers are perpendicular to gravity.

In this situation the insulation can sustain liquid-contents of

up to 70-80% against gravity. As this value is larger than the

critical liquid-content, it is possible to envisage situations

where the condensate in the insulation flows towards the

dry-regions. The analysis of chapters 2 and 3 for mobile

condesates apply to roofs, whereas the analysis for immobile

condesates applies to building walls.



In a typical construction, the insulation is sandwiched by

various siding layers. The fiberglass insulation has the

smallest thermal-conductivity amongst all other materials. As

the thickness of the insulation is larger than any other layer in

the wall, the major thermal-resistance in a wall is associated

with the insulation. The vapor-diffusivity of many building

materials is to some extent known. Vapor-diffuses in still-air

faster than in any other building material. This implies that

the vapor-diffusivity of the insulation is the smallest in a

typical wall structure. However, the insulation's width may be

one of the largest in the wall. Hence, as it will be shown

later, the diffusive resistance of the insulation may be of the

same order of magnitude, perhaps even one of the smaller values,

in a typical structure. Therefore, the vapor-flux into the

structure is strongly controlled by the property of sidings used

in the wall-construction.

In sum the thermal and diffusive properties of the wall

layers determine the heat and vapor-flux rates through the

structure. Condensation-rate, and condensate accumulation in the

strucutre depend on, amongst others, on liquid-diffusion in the

insulation. In the next section, heat and mass transfer with

phase change in a typical wall strucuture for two extreme

climatic conditions will be studied.
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7.2 CASE STUDIES

In this section the thermal and diffusive properties of a

typical wall structure will be studied. Also, vapor condensation

in the structure for two climatic conditions will be studied. Of

the two cases one corresponds to condensation during the

cold-season, and the other during a humid warm-season. The

condensation rate, the subsequent evaporation of the condensate

for each case and the implications of placing a vapor-barrier

will be discussed.

The purpose of the study of thermal and diffusive properties

of materials used in a typical wall construction is to

investigate the range of effects that the choice of materials has

on condensation in insulated structures. A typical wall

construction consists of many layers. However, a very basic

design is studied in this section. Starting from the outside,

the wall consists of the following layers [86]:

1- wood-siding, 0.5 in.x8 in., lapped

2- Sheathing, 0.5 in., vegetable fiber board

3- Fiberglass Insulation

4- Gypsium wallboard, 0.5 in.

The thickness of the insulation is arbitrarily chosen to be 1-ft.

The results obtained in this section are not very sensitive to

the choice of the insulation's thickness. It is needless to

mention that an actual wall structure may be painted or
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wall-paperd on the inside. The thermal resistance of these

additions are minimal, yet they may offer large resistances to

vapor-flux. The air flow patterns on the two sides of the wall

structure also effect the flow of heat and vapor through the

wall. The value of heat transfer coefficient on the outside is

based on a 15mph wind, and that of the inside is based on natural

convection [86]. The mass transfer coefficients are calculated

using the Colburn analogy, eq. [4.2.8]. The thermal and

diffusive conductivities, thickness, and corresponding resistance

of each layer are given in Table 7.1. The material properties

are assembled from a variety of sources[87,88].

The values of thermal resistances in Table 7.1 indicate that

the only significant thermal resistance is provided by the

insulation. Hence, it is possible to neglect the presence of all

other layers on the heat-flux through the wall. The values of

temperature at the boundaries of the insulation are approximately

equal to those of the ambient. In the wall structure under

study, the thickness of the insulation is taken to be 1-ft. With

lower values of insulation-thickness, the error assocaited with

the above approximation increases.

On the other hand, the ratio of diffusive resistance of the

insulation to the total difffusive resistance is comparable to

that of other layers. It may be noted that the wood-siding

provides the largest diffusive resistance. This implies that the

wall is more vulnerable to vapor-flux from inside the building

than from the outside.

The proper location of vapor-barriers was discussed in

detail in chapter 4. It was shown there, that vapor-barriers

inhibit the flow of vapor into the insulation only during one

season. With a a change of season, the vapor-flux changes

direction and enters the insulation from the permeable side. A

vapor-barrier located on the inner-side of the insulation

inhibits vapor-flow and subsequent condensation during the
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cold-season, when the interior vapor-concentration is higher than

the outside. During the warm-season, if the building is

air-conditioned, the temperature of the vapor-barrier is less

than the outside temperature. Even without air-conditioning, it

is reasonable to assume that the outside-temperature will be

higher, perhaps slightly, from inside. With the vapor-barrier's

temperature less than the outside temperature, the

saturation-concentration corresponding to the vapor-barrier

temperature is likely to be less than the outside

vapor-concentration. Therefore, a vapor-flux into the insulation

is established. Depending, on the specific conditions,

condensation may occur in the insulation ( for more detail see

chapter 4). Condensation during the summer season is

investigated in case study 2.

With the vapor-barrier located on the outer-side of the

insulation, condensation may occur during the cold-season, and

the condensate evaporates into the building during the

warm-season. This is the topic of case study I.

The intention of the case studies is to study worst case

scenarioes. As indicated in the above vapor-barriers cannot

inhibit condensation year-around. We are interested in studying

the extent of condensation that occurs during the period other

than the one for which the location of the vapor-barrier has been

chosen. Steady-state condensation profiles are calculated

through a computer program called ADAM. The drying results are

obtained using a program called FRANCE. The programs and their

associated subroutines, plus the input data files are given in

Appendix 7.1.
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CASE I:

Consider a wall construction as shown in Fig. 7.1. This is

identical to the wall construction discussed before, except that

the outer-side of the insulation is covered by a vapor-barrier.

The vapor-barrier inhibits moisture migration and condensation

during the summer. However, condensation may occur during the

cold-season when the vapor-concentration inside is larger than

the saturation concentration at the vapor-barrier. To take an

extreme view, the outside temperature is taken to be -200 F. It

is assumed that the inside is held at'700 F, and 60% relative

humidity. The solution scheme for locating the

condensation-region has been discussed in chapter 4. The scheme

is to find initial estimates of the temperature and

vapor-concentration distributions in the wall structure by

ignoring condensation. The resulting values of temperature and

concentration at the boundary of the insulation are then used to

find the condensation-region by the methods of chapter 2. The

difference in the thermal properties of solid and liquid

condensate is ignored, as the difference has been shown to be

negligible in section 2.9. The boundary temperatures and

location of the condensation-region are used to calculate the new

temperature and concentration values at the insulation boundary.

The iteration scheme continues until the solution converges to a

final value.

The location of the condensation-region and the values of

temperature and concentration are shown in Fig. 7.1. It is

interesting to note that the total temperature drop occurs

effectively across the insulation. The relative humidity at the
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inner boundary of the insulation is reduced from 60% to 37%.

This is due to the drop in the vapor-concentration across the

gypsium wallboard. The liquid-content profile for a condensation

period for 4000 hours is shown in Fig. 7.2. The tempraure-profile

is also shown in the same figure. It may be noted that due to

the low level of relative humidity at the insulation boundary,

the latent heat transport coefficient,A', is not large. It

should be noted that condensation also occurs in the outer-side

sidings. However, as the value of vapor-diffusivity of the

sidings is low, the volume of the condensate may be assumed to be

negligible.

The outside temperature at the end of the cold-season is

changed to 80*F. This change causes the vapor-flux to change

direction and lead to the evaporation of the condensate. It was

found, by the methods of chapter 3, that the condensate

evaporated during approximately 4000 hours of warm-season. The

time-duration for evaporation is relatively large indicating that

under slightly more adverse conditions, e.g. higher inside

relative humidity, or workmanship imperfections, the condesate

may not evaporate completely over an annual cycle.

The wall structure with the vapor-barrier located at the

outside of insulation is suitable for warm and humid

environments, where summer condensation is to be avoided.

However, when placed in a cold environment condensation occurs in

the structure. The condensate may not evaporate during the

warm-season, primarily because the temperature difference across

the wall is not very large. It must be noted that the results

obtained here are not very exact, yet they indicate that the

resistance to vapor-flow provided by a single layer of

gypsium-board is sufficient to decrease the condensation rate.

With infiltration present, the volume of the condensate may

increases several fold. Addition of such layers as paint or wall

paper on the inside may significantly reduce condensation in the

insulation through depressing the humidity at the insulation's
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boundary.

The above case may be compared with the case where no

vapor-barrier is present. Naturally, condensation may occur

during the warm-season. However, we are interested on the

effects that the removal of the vapor-barrier may have on

condensation during the cold-season. The diffusive resistance of

the wood-sidings is so very large that condensation occurs both

in the insulation and the fiber-board. This implies that the

removal of the vapor-barrier has no positive effects on

condensation in the structure. Rather, the significaant

diffusive resistance of the wood-sidings creates a

pseudo vapor-barrier. The extent of the condensation-region for

the case without the vapor-barrier is identical to the case with

the vapor-barrier, as shown in Fig. 7.1.

CASE II:

In this study the same wall structure as in case I is under

study, except that the vapor-barrier is now located on the

inner-side of the insulation, Fig. 7.3. The location of the

vapor-barrier insures that no condensation occurs during the

cold-season. Of interest is the possibility of condensation

during the warm-season. Let the outside ambient conditions

represent a hot and humid summer, i.e. a temperature of 90*F and

a relative humidty of 80%. As before, the inside conditions are

kept at 70*F and 60% relative humidity. The temperature and

concentration profiles are obtained by the method discussed for

the previous case. The temperature, saturation-concentration and
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vapor-concentration values at the layers' boundaries are shown in

Fig. 7.3. As before, the significant temperature-drop occurs

across the insualtion. The large diffusive resistance of the

wood-sidings depresses the humidity at the insulation's boundary

to 20%. It was shown in chapter 4 that for a given set of

boundary conditions, it is possible to get: (a) no condensation,

(b) planar-condensation, (c) regional condensation. For the

condensation region to extend into the insulation, the

vapor-concentration on the hot-side must be larger than a

specific value. In this case, this value of relative humidity is

90%, Fig. 7.4. As the value of humidity is depressed to 20%,

condensation occurs only at the plane adjacent to the

vapor-barrier. The small vapor-concentration gradient translates

to a small condensation-rate. The liquid-content after 4000

hours of condensation is about 0.6%. Needless to mention that

this amount of condensation probabaly evaporates during the

cold-season, when the temprature drop across the wall is large.

If there were no vapor-barriers, condensation would not occur in

the insulation, as the relative humidty on the hot-side is rather

low. But, of course subsantial condensation would occur during

the cold season.

The case studies indicate that the temperature drop takes

place primarily across the insulation. On the othr hand, the

wood-siding is an effective vapor-retarder. The worst case

scenarioes discussed in this section indicate that condensation

occurs in the strucuture irregradless of the location of the

vapor-barrier. The proper location of the barrier depends on the

relative magnitude of the condensation rate. The condensate

formed in the cold-season in a structure designed to inhibit

condensation during summer, may not evaporate during the

warm-season. On the other hand, the large value of diffusive

resistance of the wood-siding insures minimal condensation

during the warm-season in structures designed to inhibit
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condensation during the cold-season.
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TABLE 7.1

THERMAL AND DIFFUSIVE PROPERTIES OF THE ELEMENTS IN A TYPICAL WALL STRUCTURE [86]

--------------------------------------------------------------------------------------------------------
Description Thickness Thermal Permeab R R* R/RT R*/R*T

Conduct -ility

-ivity

(inches) Btu/hr ft 2 F ft 2 /hr hr F/Btu hr % %
-------------------------------------------------------------------------------

Outside Air ----- 6 365 .167 .027 .26 .04

Wood Siding 0.5 1.234 .0024-.0051 .034 4.17 .054 61.5
Sheathing, Vegetable

Board 0.5 2.4 .025-.058 .017 .72 .027 10.61

Insulation 12 .016 .87 62.5 1.15 98.7 16.9

Gypsium Wallboard 0.5 4.4 .025-.058 .009 .718 .014 10.6

1.47 89.35 .68Inside Air .012 1.07 .175
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CHAPTER 8

CONCLUSIONS

The objective of this study was to investigate the

phenomenon of simultaneous transport of heat and mass in an

insulated structure. To this end the study was broken up into

two tasks. The first task was to develop an analytical model for

simultaneous heat and mass transfer with phase change in a porous

slab. The second task was to determine the mechanics of

liquid-diffusion in fibrous insulation. The results of the two

tasks were then combined to study the problem of moisture

migration and condensation in insulated building structures.

The analytical model of simultaneous heat and mass transport

with phase change in a porous slab was developed for two regimes

of liquid-content. At low values of liquid-content the liquid

drops are in a pendular state and liquid diffusion is negligible.

For values of liquid-content in excess of a critical value the

liquid drops coalesce and diffuse towards the drier regions in

response to the spatial gradients in liquid-content. During the

pendular state, the location of the condensation-region in the

porous slab is fixed in space, and liquid-content increases
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linearly with time. As the values of liquid-content exceed the

critical value, liquid begins to diffuse towards the drier

regions. The transition in the diffusive behavior of the

condensate causes the boundaries of the condensation-region to

move to new locations. After a sufficiently long time-period, the

liquid-content profile inside the condensation-region reaches a

steady-state distribution, where all of the condensed vapor

migrates towards the boundaries of the condensation-region and

evaporates into the adjacent dry-regions. It has been discovered

that the effect of condensation on the temperature profile in the

condensation-region can be represented by a non-dimensional

number which is referred to as the latent heat transport

coefficient. The location of the condensation-region as well as

the condensation rate per unit volume are determined by matching

the temperature and concentration profiles of the

condensation-region with those of the adjacent dry-regions.

The solution to the case where both solid and liquid

condensate are formed in the slab was also developed in this

work. However, it has been found that for the instances where

the latent heat of condensation and vapor-solidification are not

significantly different, the temperature-profile in the

condensation-region may be derived by assuming that the only one

type of condensate is present. In order for the results obtained

for the case where only liquid-condensate is present to be

aplicable to this situation, the relevant boundary equations are

modified to reflect the immobility of the solid-condensate.

The time-dependant effect of a step change in the values of

temperature and/or vapor-concentration at the boundaries of the

porous slab were also investigated for both types of diffusive

and non-diffusive condensate. A step change in the boundary

values leads to a transient motion of the boundaries of the

condensation-region. This analysis provides the necessary tools

for calculating the time-duration required for the drying of a

moist slab.
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The effect of placing an impermeable boundary on one side of

the condensation-region was found to be two-fold. First, it is

found that condensation occurs over a much wider range of

boundary values than if there were no impermeable boundaries

present. Second, condensation-rate increases significantly with

the placement of the impermeable boundary.

The fluid mechanics of flow in an unsaturated fibrous medium

was investigated by studying the suction-potential, viscous drag

and liquid-diffusion in fibrous insulation. The medium was

modelled as an assemblage of layers with each layer consisting of

an ordered array of filaments arranged with an unequal

number-density in the three orthogonal directions. The parameters

that control the fluid-flow are discovered to be the

fiber-radius, directionality fiber-density, macroscopic

void-fraction, and the spatial distribution of the void-fraction.

The experimental results are found to agree with the

model-predictions. It was observed that liquid diffusion from

one layer to the other is controlled by diffusion along the

layers and a factor that represents the tortuous path that the

diffusing liquid travels through in going from on layer to the

next. Experimental observations indicate that liquid diffusion

from one layer to the next take place only when the

liquid-content in one layer exceeds a certain value. This value

is experimentally estimated to be about 70%. The effect of

gravity of liquid-diffusion has been observed to depend on the

orientation of the layers with respect to gravity. With the

layers parallel to gravity the suction-sites in the fibrous

insulation can hold liquid-contents of up to 5-7%. At

liquid-contents in excess of this range the liquid drops coalesce

and form a continuous column which is driven to the bottom of the

layers by the gravitational forces. In commercially available

insulations the width of the insulation board is limited to a few

inches. With the layers of these types of insulation positioned

perpendicularly to gravity, the weight of the liquid columns is

not sufficent to overcome the surface tension forces. Therefore,
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with gravity perpendicular to the layers, the medium can hold up

to 70-80% of liquid by volume.

The phenomenon of condensation in insulated structures is

found to be controlled by the climatic conditions, thermal and

diffusive properties of the materials used in the wall

construction, air infiltration-rates, and the location of the

vapor-barrier. The analytical results indicate that condensation

rate is largest at the cold-edge of the porous slab. Hence, the

placement of a vapor-barrier on the cold-side of a wall leads to

large condensation-rates on the vapor-barrier. As most vapor

barriers are not capable of absorbing the condensate, the

condensed moisture will probably drip to the bottom of a wall

structure. The effects of air-infiltration on condesation rate

may not be underestimated, for the condensed moisture may consist

as much, if not more, of convected vapor as of diffusing vapor.

The types of materials used in the shell-construction must be

chosen such that the significant resistance to vapor-diffusion

takes place in a layer(s) where the temperature drop is not

significant. Two worst case scenarios for a typical wall

construction with significant insulation were investigated. It

is found that the moisture condensed during the cold season in a

wall strucutre desgined for the warm climates might not evaporate

completely during the warm-season. Over a period of years this

may have disastrous implications. On the other hand, moisture

condensation during the warm-season in the shell of an

air-conditioned building is found to be negligible. These

results emphasize the importance of the proper location of

vapor-barrier, choice of wall materials, and construction

workmanship.
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APPENDIX A

LISTING OF COMPUTER PROGRAMS ADAM AND FRANC
AND THE ASSOCIATED SUBROUTINES
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DXDZ=1./THCKINS
DELX=1./(N-1)
CALL CONC(THO-459.6,CHO)
CHO=CHO*HHO
CALL CONC(TCO-459.6, CCO)
CCO=CCO*HCO

C USING THE CHARACTERISITICS OF THE WALLS AND INSIDE AND OUTSIDE
C TEMPERATURE AND HUMIDITY,THE SUBROUTINE JERRICO CALCULATES THE
C TMEPRATURE ON THE TWO SIDES OF THE INSULATION.

CALL JERRICO(ELO,EL1,THOT,HH,TCOLD,HC, CHS,CCS,CH,CC)
ICNT=-

C***************************

C DEFINING SOME TERMS:
****************************

950 CONTINUE
TYPE *,'ITERATING TO GET THE RIGHT WALL TEMPS.'
DELT=THOT-TCOLD
DELC=CHS-CCS
TREF= ((THOT+TCOLD) /2.)
BETA=DELT/TREF
ETAH=(THOT-TREF)/DELT
ETAC=(TCOLD-TREF)/DELT
CALL CONC(TREF-459.6, CREF)
GAMA=1070./(.110 3*TREF)
OMEGA= (CREF* 1070.) / (CAPINS*DNSTYINS*TREF)
ALANDA=( (GAMA**2.) *2. *BETA*OMEGA)/(LEWIS+ (OMEGA*GAMA) )

***************************************************

C Solving the boundary condition equations

CALL MOSES (HH,UH,ETO)
TYPE *,'TAU=',TAU
CALL JONAS(HC,UC,ET1)
TYPE *,'TAU=',TAU
TO=ETO *DELT+TREF
T1=ET1 *DELT+TREF

************************************************************

C Locating the boundaries of the condensing region

DELTP= (ETO-ETI) *DELT
TREFP= ((ETO+ET1) *DELT/2. )+TREF
BETAP=DELTP/TREFP
GAMAP=1070 ./(.1103*TREFP)
CALL CONC(TREFP-459.6, CREFP)
OMEGAP= (CREFP*1070. ) / (.0763*. 24*TREFP)
ETAHP=(ETAH*DELT+TREF-TREFP)/DELTP
ETACP=(ETAC*DELT+TREF-TREFP)/DELTP
ALANDAP=( (GAMAP**2.) *2.*BETAP*OMEGAP)/(LEWIS+(OMEGAP*GAMAP))
TERM=-0 .5*((ALANDAP/(EXP (ALANDAP)-1.))+1.)
TERM= (0.5-ETAHP)/TERM
TRM=-0.5* (((ALANDAP*EXP (ALANDAP)) / (EXP (ALANDAP) -1.) )+1.)
TRM= (ETACP+0 .5) /TRM
DXDZ=TERM+TRM+1.
DZDX=1./DXDZ
ELO=TERM*DZDX
EL1=1.-(TRM*DZDX)
TYPE *,'ET0=',ET0 'ET1=',ET1,'T0=' TO'-T1=',T1
TYPE *, 'ELO=',ELO,'EL1=',EL1
ERO=ABS(ELOO-ELO)/ELO
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ER1=ABS (EL10-ELI) /EL1
IF(ERO.LT.ERL3.AND.ER1.LT.ERL3) GO TO 970

C Iterating in finding the two temps and c's on the cold and
C hot sides using the values of ELO and EL1

CALL JERRICO(ELO,EL1,THOT,HH,TCOLD,HC, CHS,CCS,CH,CC)
ELOO=ELO
EL10=ELI
GO TO 950

970 CONTINUE
ICNT=2
DO 500 I=1,N
X(I)=(I-1.)/(N-1.)
ZL(I)=ELO+DZDX* (I-1)/(N-I.)
U2 (I)=-0.5* ((ALANDAP**2.) * (EXP(ALANDAP*X(I)))/(EXP(ALANDAP)-1.))
Ul (I)=-0.5 * ((U2 (I) / ((-0. 5) *ALANDAP)) +1.)
TT=U2 (I) + (GAMAP*BETAP* (Ul (I) **2.))
TERM= (EXP (ALANDAP* (X(I)) )-1.) / (EXP (ALANDAP) -1.)
ETAP(I)=0.5* (-X(I) -TERM)
ETA(I) = (ETAP (I) *DELTP+TREFP-TREF)/DELT
T(I)=ETA(I) *DELT+TREF
U3=EXP (GAMAP*BETAP*ETAP (I) / (1. +BETAP*ETAP (I)))
U2(I)=U2(I)*BETAP*U3*GAMAP*DXDZ*DXDZ*CREFP
U1(I)=(Ul(I)*GAMAP*BETAP*DXDZ)**2.*U3*CREFP
U=Ul(I)+U2(I)
DTHDRT(I)=U/(VDFRCTN*62.2)
WRITE(70,*) X(I),DTHDRT(I)

500 IF(T(I) .LT.491.6)DTHDRT(I)=DTHDRT(I)*DNSTYRTO
NDIM=8
WRITE(70,*) ELO,EL1
DO 600 I=1,N
ZLL(I)=(I-1)/(N-1.)
IF(ZLL(I).LT.ELO.OR.ZLL(I).GT.EL1) GO TO 600
CALL ATSM(ZLL(I),ZL,DTHDRT,N,1,ARG,VAL,NDIM)
CALL ALI(ZLL(I) ,ARG,VAL,DTHDFUR(I) ,NDIM,ERL,IER)

600 WRITE (70,*) ZLL(I), DTHDFUR (I)
ZO=ELTOTAL*ELO
Z1=ELTOTAL*ELi

C OUTPUT:
************************************************

WRITE (60,601) THO,HHO, CHO,TCO,HCO,CCO.TREF,DELT
WRITE(60,602) NDELX,DZDX
WRITE (60,603) PELEWIS,BETA, GAMA,OMEGA,ALANDA
WRITE (60,607) TREFP,DELTP,BETAP,GAMAP,OMEGAP,ALANDAP
WRITE(60,604) Z0,Z1
WRITE(60,609) TO,Ti
CALL JERRICO(ELO,EL1,THOT,HH,TCOLD,HC,CHS,CCS,CH, CC)
WRITE (60,605)
DO 690 I=1,NLC+NLH+2

690 WRITE(60,606) I,TL(I),CL(I),HL(I)
WRITE (60,610)
DO 2000 I=1,N
WRITE (60,620)
CALL CONC(T(I)-459.6,CF(I))
CFR (I) = (CF (I) -CCS) /DELC
WRITE(60,613) X(I),ETA(I),CF(I)
WRITE(60,613) ZL(I) ,T(I) .,DTHDRT(I)

2000 CONTINUE
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SUBROUTINE MOSES (H,U,ETA)
COMMON/BCF/TAU
COMMON/BC/GAMA, BETA
TAU=1.
TAUO=0 .

1 CONTINUE
ERL=.0005
U3=0 .

10 U3=U3+.05
R=FU (U3,H)/FU (0. ,H)
IF(R.GT.0.) GO TO 10
IF(R.EQ.0.) GO TO 100
U1=U3-0.05
U2=U3

11 U3=U2- ((U2-U) / (FU(U2,H) -FU(U,H)) *FU(U2,H)
IF (ABS (FU(U3,H)) .LT.ERL) GO TO 100
IF (R) 20,100,30

20 Ul=U3
GO TO 11

30 U2=U3
GO TO 11

100 U=U3
ETA= .5- (U/ (GAMA* BETA) )
TAU=.5*BETA* (.5+ETA) +1.
TAU=1 ./TAU
ER=ABS (TAU-TAUO) /TAU
TAUO=TAU
IF(ER.GT..01) GO TO 1
RETURN
END
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SUBROUTINE JONAS (H, U, ETA)
COMMON/BCF/TAU
COMMON/BC/GAMA, BETA
TAU= .
TAUO=0.

1 ERL=.0005
U3=0 .

10 U3=U3-.05
R=FU (U3,H)/FU (0. ,H)
IF(R.GT.0.) GO TO 10
IF(R.EQ.0.) GO TO 100
U1=U3+0 .05
U2=U3

11 U3=U2- ( (U2-U1)/ (FU(U2,H) -FU (U1,H))) *FU (U2,H)
IF(ABS(FU(U3,H)) .LT.ERL) GO TO 100
IF (R) 20,100,30

20 U1=U3
GO TO 11

30 U2=U3
GO TO 11

100 U=U3
ETA=-0 .5- (U/ (GAMA* BETA))
TAU=0 .5*BETA* (-0 .5+ETA) +1.
TAU=1 ./TAU
ER=ABS (TAUO-TAU) /TAU
TAUO=TAU
IF(ER.GT..01) GO TO 1
RETURN
END
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FUNCTION FU(U,H)
COMMON/BCF/TAU
FU=1 .- H*EXP (U*TAU) +U
RETURN
END
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FUNCTION BEN(X,ETA)
COMMON/BN/ALANDA
T= (EXP (ALANDA*X) -1.) / (EXP (ALANDA) -1.)
T= (-T-X+1.) *.5
BEN=ETA-T
RETURN
END
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WRITE (11, *) ZZ,VDFRCTN
READ(2,*)ZZ
WRITE(11,*)ZZ
DO 1 I=1,NLH
READ(2,*)J,CND(I) ,VD(I),THCK(I)

1 WRITE(11, *)J, CND(I),VD(I),THCK(I)
READ(2, *)ZZ
WRITE(11,*)ZZ
DO 2 I=NLH+1,NLH+NLC
READ(2,*)J,CND(I) ,VD(I),THCK(I)

2 WRITE (11, *)J, CND(I) ,VD(I),THCK(I)
READ(2,*)ZZ,ERL
WRITE(11,*)ZZ,ERL
READ(2,*)ZZ,ERLIMIT
WRITE(11, *)ZZ,ERLIMIT
READ(2,*)ZZ,ERL3
WRITE (11, *) ZZ, ERL3
READ(2,*)ZZ,DNSTYRTO
WRITE(11,*)ZZ,DNSTYRTO
READ(2,*),ZZ,PE
WRITE (11, *) ZZ,PE
READ(2,*)ZZ,LEWIS
WRITE (11, *) ZZ,LEWIS
READ(2,*)ZZ,DELTME
WRITE(11, *)ZZ,DELTIME
READ(2,*)ZZ,PERIOD1
WRITE (11, *)ZZ,PERIOD1
READ(2, *) ZZ,TIMELIMT
WRITE (11, *)ZZ,TIMELIMIT
CLOSE (UNIT=2)
READ(70,*) ELO,ELI
THO=THO+459.6
TCO=TCO+459.6
S=ELO-EL1
NDIM=8
TIME=0.0
PERIOD1=PERIOD1 *VDINS

*******************************************************************
C CONVERTING THE INPUT DTHETADT TO LIQUID-CONTENT
C********************************************************************

WRITE(11,904)
DZ=Z (2) -Z (1)
DO 21 I=1,11
READ (70,*) Z (I), DTHDFUR (I)
THETA(I)=DTHDFUR (I) *PERIOD1
THINTL=THINTL+THETA (I) *DZ
WRITE(11,905) Z(I) ,THETA(I)

21 CONTINUE
WRITE (11,906) THINTL
CLOSE (UNIT=70)
CALL CONC (THO-459.6, CHO)
CALL CONC(TCO-459.6, CCO)
CHO= CHO*HHO
CCO=CCO*HCO
CALL JERRICO(ELO,EL1,TH,HH,TC,HC,CHS,CCS, CH,CC)
DTS=(TH-TC) * (ELl-ELO)
TRS= (TH+TC) /2.

C CALCULATING THE TEMPERATURE OF THE TWO SIDES OF THE INSULATION
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7 CONTINUE
CALL JERRICO(ELO,EL1,TH,HH,TC,HC,CHS,CCS,CH,CC) -
ICNT=1

C CALCULATING THE VALUES OF DT AND TR FOR THE GIVEN ELO AND EL1

CALL FINDZ(DTS,1.,.01,DT,FZERO)

C CALCULATING THE RELEVANT PARAMETERS

TR= (TRO+TR1) /2.
BETA=DT/TR
TO=-0.5*DT+TR
T1=0.5*DT+TR
GAMA=1070 ./ (.1103*TR)
RT=TR-459.6
CALL CONC(RT,CR)
OMEGAP= (1070. *CR)/(.0763*. 24*TR)
OMLE=OMEGAP/LEWI S
ALANDA= (2. * (GAMA**2.) *BETA*OMEGAP)/(LEWIS+ (OMEGAP*GAMA))
DELTIME=DELTME*VDINS*CR/(62.2*VDFRCTN*THCKINS*THCKINS)
TIMELIMIT=TIMELIMT*VDINS*CR/(62.2*VDFRCTN*THCKINS*THCKINS)
TYPE *,DT,TRO,TR1,FZERO,ELO,EL1
WRITE(11,17)
WRITE(11,11) TIME
WRITE(11,12) S,TIME1
WRITE(11,13) TR,CR,DT
WRITE(11,20) GAMA,OMEGAP,ALANDA

C GENERATING THE ETA AND LIQUID CONTENT DISTRIBUTIOON IN THE
C CONDENSING REGION

DELX=1/10.
DO 90 I=1,11
ANX(I)=DELX* (I-1)
ETAX(I)=.5-(ANX(I)/2.)-.5*((EXP(ALANDA*ANX(I))-1.) / (EXP(ALANDA)-1.))
TERM= (ALANDA*EXP (ALANDA*ANX (I))) / (EXP (ALANDA) -1.)
DETDX=-.5*(TERM+1.)
DETDX2=DETDX* * 2.
D2ETDX2=-.5* (ALANDA*ALANDA*EXP (ALANDA*ANX(I)))/(EXP (ALANDA)-1.)
TERM=DETDX2 *GAMA*BETA
TERM=TERM+D2 ETDX2
TERM1=EXP ((GAMA*BETA*ETAX (I)) / (1.+ (BETA*ETAX (I))))
TERM1=DETDX2 *GAMA*BETA
DTHDRTX (I) =TERM1*TERM* S * S

90 CONTINUE
WRITE (13,17)
WRITE(13,11)

C******* ******************* * * *****************************************

C CHANGINNG THE AXIS AND REDEFINING THE LQIUID CONTENT AND
C ETA VALUES

DO 95 J=1,11
I=12-J
Y (J)=ELO+ (ANX (J)) * (ELl-ELO)
ETAY(J)=ETAX(I)
DTHDRTY (J) =DTHDRTX-(I)
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CALL ATSM(Y(J) ,Z,THETA, 11,1,ARG,VAL,NDIM)
CALL ALI(Y(J) ,ARG,VAL,THETAY(J) ,8,.0001,IER)
THETA (J) =THETAY (J) + (DELTIME*DTHDRTY (J))
Z(J)=Y(J)
WRITE(13,*) J, Y(J) ,ETAY(J),THETAY(J),DTHDRTY(J)

95 CONTINUE

C CALCULATING THE RATE OF MOVEMENT OF THE BOUNDARIES

C EL1:

ETAH= (TH-TR)/DT
TERMH= (GAMA*BETA*ETAH)/(1i. + (BETA*ETAH))
TERM= (GAMA*BETA) / (2+BETA)
TOP=EXP (TERM) -HH*EXP (TERMH) + (BETA*GAMA*EXP (TERM) * (ETAH-. 5))
BOT=1. + (OMLE*EXP (TERM) *GAMA)
A1=2*TOP/BOT
A1=A1/THETA (11)

C ELO:

ETAC=(TC-TR)/DT
TERMC=(GAMA*BETA*ETAC) / (. + (BETA*ETAC))
TERM= (GAMA* BETA) / (BETA-2.)
TOP=EXP (TERM) -HC*EXP (TERMC)- (BETA*GAMA*EXP (TERM) * (-.5-ETAC))
BOT=1. + (OMLE*GAMA*EXP (TERM))
AO=2 *TOP/BOT
AO=AO/THETA (1)
WRITE(11,909) ETAH,ETAC,THETA(1) ,THETA(11)
WRITE (11, 3)AO,A1

C GENERATING THE NEW ELO AND EL1
C*********************************************************************

ELO=((ELO**2.)+(A0*DELTIME))**.5
EL1=1-((1-EL1)**2.+ (A*DELTIME))**.5
WRITE(11,4) ELO, EL1
TIME1=TIME1+(DELTIME*62.2*VDFRCTN/CR)
TIME=TIME+DELTIME
IF(ELO.GE.EL1) GO TO 1000
IF(TIME. GE. TIMELIMIT) GO TO 1000
DTS=DT
TRS = TR
S=ELO-EL1
GO TO 7

1000 CLOSE (UNIT=11)
STOP

17 FORMAT(/, ********************************************************
11 FORMAT(10X,'T I M E =', 2X,E10.4)
12 FORMAT(3X,'SCALE FACTOR=',E10.4,2X,'TIME1=',E10.4)
13 FORMAT(3X,'TR=',El10.4,2X,'CR=',E10.4,2X,'DT=',E10.4)
20 FORMAT(3X,'GAMAP=',E10.4,2X,'OMEGAP=',El0.4,2X,'ALANDAP=',El0.4)
904 FORMAT(/,10X,' I N I T I A L LIQUID-CONTENT DISTRIBUTION',/,

1 4X,'POSITION' ,15X,'LIQUID-CONTENT')
905 FORMAT(3X,E10.4,6X,E10.4)
906 FORMAT(3X,'INITIAL TOTAL LIQUID CONTENT=',2X,E10.4)
909 FORMAT(3X,'ETA HOT=',E10.4,2X,'ETA COLD=',E10.4,/,3X,'THETA AT ELO=',

1 E10.4,2X,'THETA AT EL1=',E10.4)
3 FORMAT(3X, 'A=',2X,E10.4,'A1=',2X,E10.4)
4 FORMAT(3X,'ELO=',2X,E10.4,'EL1=',2X,E10.4)

END
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NUMBER OF NODES, N='
'NUMBER OF LAYERS IN THE WALL ON THE HOT SIDE='
'NUMBER OF LAYERS IN THE WALL ON THE COLD SIDE='

AMBIENT CONDITIONS:

TEMPERATURE ON THE HOT SIDE(DEG.F)='
'REALTIVE HUMIDITY ON THE HOT SIDE='
'HEAT TRANSFER COEFFICENT ON THE HOT SIDE='
'MASS TRANSFER COEFFICIENT ON THE HTO SIDE='

TEMPERATURE ON THE COLD SIDE(DEG. F)='
'RELATIVE HUMIDITY ON THE COLD SIDE='
'HEAT TRANSFER COEFFICIENT ON THE COLD SIDE='
'MASS TRANSFER COEFFICIENT ON THE COLD SIDE='

INSULATION

THICKNES (FT)='
'THERMAL CONDUCTIVITY='
'THERMAL CAPACITANCE='
'VAPOR DIFFUSIVITY='
'MASS DENSITY='
'VOID FRACTION='

69.1
.371

60000000.
365000000.

-19.8
.9999999
14700000.
8900000.

PROPERTIES :

.5
.014
.24
.85

.0763
.99

PROPERTIES OF THE WALL LAYERS:

HOT SIDE:
# OF LAYERS

COLD SIDE:
#OF LAYERS
I

CNDCTVTY

CNDCTVTY

V.DFFSVTY

V.DFFSVTY

ERROR LIMIT S:
ERRORLIMIT IN GETTING LO&L1='
'ERRORLIMIT FOR CONVERGENCE='
'ERL3='

'MISC:
DENSITY RATIO OF ICE/WATER='
'PECLET NUMBER='
'LEWIS NUMBER='
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THCKNSS'

THCKNSS '

.00001
.00001
.01

.9
0.
1.
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