
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-032 June 25, 2009

Programming Manifolds
Jacob Beal and Jonathan Bachrach

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4410134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Programming Manifolds

Jacob Beal Jonathan Bachrach

Original Version: December, 2006
Edited: May, 2009

Abstract

Many programming domains involve the manipulation of values distributed through a manifold—
examples include sensor networks, smart materials, and biofilms. This paper describes a programming
semantics for manifolds based on theamorphous mediumabstraction, which places a computational de-
vice at every point in the manifold. This abstraction enables the creation of programs that automatically
scale to networks of different size and device density. Thissemantics is currently implemented in our
language Proto and compiles for execution on Mica2 Motes andseveral other platforms.

1 Introduction

Many programming domains involve the manipulation of values distributed through a manifold. A few
current examples:

• A wireless sensor network deployed throughout a large ship to allow a small crew to monitor the health
of the vast collection of machinery onboard, and manage flowsof water, coolant, etc. throughout the
ship.[10]

• A programmable biofilm where a colony of cells coordinate chemically to capture an image or dis-
pense a drug in carefully timed and located doses.[12]

• An ad-hoc packet radio network deployed on the roofs of buildings, doing routing and traffic management.[9]

• Reconfigurable robots coordinating to build arbitrary physical structures.[13]

Each of these are examples is aspatial computer—a collection of devices that fill space and whose
ability to interact is strongly dependent on their proximity. The network of devices making up the computer
approximates a geometric region of Euclidean space: the colony of cells covers the surface on which they
grow, the sensor network fills the interior of the ship, etc.

It is natural to think about programming these spaces using geometric notions. The structure of the
space, however, may be quite complicated. For example, communication on the ship may detour around
bulkheads and cargo areas, while the reconfigurable robots may form an elaborate shape with complicated
bends and folds. Thinking about the spaces as manifolds willmake programming them easier, as we can
then largely decouple a geometric description of the behavior we want from the details of communication
and execution on individual devices necessary to implementit.

This paper describes a programming semantics for manifoldsbased on theamorphous mediumabstrac-
tion, which places a computational device at every point in the manifold. This abstraction enables the
creation of programs that automatically scale to networks of different size and device density. This seman-
tics is currently implemented in our language Proto, compiles for execution on Mica2 Motes, and has been
used to implement algorithms for sensor networks and modular robotics (Figure 1).

1

(a) Tracking (b) Threat Avoidance (c) Plane Wave

Figure 1: Programs for target tracking (a), threat avoidance (b), and directable plane waves (c) being verified
on 100, 1000, and 10000 simulated devices, respectively.

2 A Brief Review of Manifolds

We will start by briefly going over what a manifold is: if you are familiar with them, feel free to skip this
section.

A manifold is a space that looks like a Euclidean space locally, though its whole structure may be much
more complicated, with holes and other geometric awkwardness. To be precise:

Definition 1 An m-manifold is a spaceM where each point in the space has a neighborhood which is
homeomorphic to an open set inR

m.

Them is the dimension of the manifold. Since we are interested in the real world, we will mostly be
interested in 2-manifolds (surfaces) and 3-manifolds (volumes).

Some examples of manifolds:

• A curve is a 1-manifold

• Figure 2(a) shows a 2-manifold. Other examples are the surface of the Earth, the road network, a
Mobius strip, and a Klein bottle.

• The interior of a building and a coffee cup are both 3-manifolds

In the interests of simplicity, we will only consider manifolds which are Riemannian, smooth, and
compact—that is, ones where distance and derivatives make sense, and without nasty topological quirks.
This excludes a great number of interesting mathematical objects, but not much that we can build in the
real world. Our semantics might apply to manifolds without these properties as well, but we have not been
motivated to investigate the matter.

Functions can be defined on manifolds, mapping each point in the manifold to a value. We will call
these functionsfields after the fashion of physics, and denote a field eitherF for a generic field, or by its
range (e.g.R for a field of numbers).

3 The Amorphous Medium

An amorphous mediumis a manifold where every point is a computational device. Nearby devices share
state—each device has some neighborhood in which it can access the state of other devices. Information
propagates across the manifold at a maximum velocityc, so the processor accesses the past light cone of its
neighborhood, not the current values (Figure 2(b)).

2

neighborhood of p

p

(a) Amorphous Medium

P

Space

Neighborhood of P

Fut
ur

e
lig

ht
 co

ne

Past light cone

T
im

e

(b) Information Propagation (c) Discrete Network

Figure 2: An amorphous medium is a manifold where every pointis a computational device that shares state
with a neighborhood of other nearby devices. Information propagates through an amorphous medium at a
fixed rate, so each processor has access only to values in the intersection of its neighborhood and past light
cone. An amorphous medium may be approximated by a mesh-likediscrete network.

All of the infinitely many devices execute the same program, but their executions diverge due to differ-
ences in sensor values, randomness, and interaction with their neighborhoods.

Obviously, we cannot build an amorphous medium—there are infinitely many processors! We can,
however, approximate it on a discrete network. Therein liesthe power of the abstraction: by writing a
program for an abstract continuous space, we end up with codethat can be run approximately on a wide
range of different real networks.

Because all interactions in the amorphous medium are local,if we can build an approximate implementa-
tion of a neighborhood, then we can approximate any computation on the amorphous medium. Fortunately,
although a manifold may have a complex shape, it is defined to be simple in the neighborhood of each point.

For unit disc communication, for example, the neighborhoodcan be approximated as the set of 1-hop
neighbors in the network, withc equal to the average hop distance divided by the time betweenperiodic
updates.

Note also that there is a duality between the amorphous medium and the network used to approximate it.
Given an amorphous medium, we can evaluate how well various networks approximate it; given a network,
we can find an amorphous medium which it approximates.

We will not treat the transformation between continuous anddiscrete in detail in this paper: see [3] and
[6] for more information on this issue.

4 Evaluation Model

Our language, Proto, uses ideas from both functional and stream programming to provide an evaluation
model for computing with an amorphous medium.

Programs written in Proto can be thought of either as a network of streams or as a dataflow graph
evaluated repeatedly over time. In this description, we will use the dataflow graph interpretation.

There are two basic elements in the language:

Definition 2 An expression is a functione : M → F
i that takes an amorphous medium as input and

produces a set of fields as output.

Definition 3 An operator is a functiono : F
i → F

j that takes a set of fields as input and produces a set of
fields as output.

3

3

+

f

(a) Expression

+

3f

2 4 3

5 7

(b) Evaluation

Figure 3: An expression is evaluated at a point in time by applying it to an amorphous medium, producing
a set of fields as output. For example, the expression(+ f 3) produces a field where every point mapped
to n by f maps ton + 3 in the new field. General evaluation is instantaneous evaluation repeated at fixed
intervals.

For example, the expression4 takes an amorphous medium and produces a field where every point in the
amorphous medium maps to4, and the operatorsqrt takes a scalar field and produces a scalar field where
every point that mapped ton in the input field maps to

√
n in the output field.

The means of composition is implied by the functional definition. We will use LISP notation to show
composition, though the reader should remain aware that Proto is not a LISP.

Composing an operator with a compatible expression produces another expression. For example:(sqrt
4) is an expression that takes an amorphous medium and producesa field where every point in the amorphous
medium maps to2.

Composing an operator with another operator produces an operator. An expression can be converted
into an operator by means of a special scope functionsi : F

i → M, which takes a set of fields and returns
an amorphous medium which is the intersection of their domains. Composing the scope function with an
expressione produces an operatorsie that gives the value of an expression on the amorphous medium
where the input variables are defined. Using this, we can define compound operators that include arbitrary
expressions: for example,(lambda (x) (* 2 x)) is an operator that takes a scalar field and produces a scalar
field where every point that mapped ton in the input field maps to a2n in the output field.

We can now define the instantaneous evaluation of an expression—its evaluation at a given point in
time—as simply its application to an amorphous medium, producing a set of fields (Figure 3). To find out
what values have actually been computed, we must further evaluate the field at particular points.

To evaluate an expression across time, we perform a sequenceof instantaneous evaluations at fixed
intervals.1 Each instantaneous evaluation depends only on the previousevaluation (via thedelayoperator—
see Section 9). In the future, we look to allow make evaluation continuous in time instead of at discrete fixed
intervals.

5 Instantaneous Pointwise Computation

We now know enough to translate any purely functional operation on a normal computer into a pointwise
operation on an amorphous medium: the amorphous medium version simply applies the operation uniformly
to every point in the amorphous medium. A few examples:

1In the approximate implementation, we will not attempt close time synchronization. It is sufficient to have a low skew in
evaluation rate.

4

• ∗ : R
i → R takes any number of real-valued fields and returns a real-valued field where each point

maps to the product of the values that it mapped to in the inputfields.

• truncate : R → R× R takes a real-valued field and returns two real-valued fields:the first containing
the integer part of values in the input field, the second containing the fractional part.

• tup : F
i → T takes any number of fields and returns a field of tuples.1st : T → F takes a field of

tuples and returns a field of the first component of each tuple,2nd : T → F returns the second, and
so on.

Allowing operator-valued fields, we have pointwise first order functions as well. Nor is there any block
to defining recursive operators.

We can now describe any instantaneous pointwise computation on an amorphous medium—that is, any
computation where the results at a point do not depend on its history or the history of values at other points.

A few issues in pointwise operations warrant specific attention:

• Purely functional exception handlers can be translated foruse on an amorphous medium. For example,
by adjoining a specialerror value to every operator, we can allow composition of operators without
extremely strict compatibility checking: any input not handled properly by the operator results in an
output oferror .

• A pointwise random number generator is not particularly useful, since there are so many points that
the resulting field is completely homogeneous. Instead, we will use arandom operator that creates
an arbitrary finite partition of the amorphous medium, then assigns a single value to each element of
the partition.

• For pointwise expressions, conditionals can operate pointwise. When side-effects or computations
across the space are involved, we will need two varieties of conditional (see Section 8).

• Input can be gathered via a pointwisesenseoperation that takes an identifier for an input device and
returns its current value. Output can be produced similarlywith a pointwiseact operation that takes a
value and supplies it to an output device. The output is a side-effect, however, and thus may interact
with conditionals.

6 Motivating Examples

As we begin to discuss more complex operations, we will carryalong two motivating examples,gradient
andbound:

(def gradient (src)
(letfed ((n infinity (mux src 0 (min-hood (+ (nbr n) (nbr-range))))))
n))

(def bound (src lim boundary)
(if boundary 0 (<= (gradient src) lim)))

For now, do not worry about understanding the code: it is enough to know that thegradient function
measures the distance from every point to a source by settingthe distance at the source to zero, then relaxing
across the whole space using the triangle inequality, and the bound function builds on top of this, selecting
the interior of a region by clipping against a boundary.

5

f

4

min−hood

9
4

nbr−range

9
4 4

9

9 4

4

nbr

+

Figure 4: Thenbr operation selects neighborhood values for computation at each point. Computing is car-
ried out on neighborhoods with pointwise operations transformed to apply to neighborhood fields. Finally,
a summary operation collapses each neighborhood of values into a single value for each point.

7 Computation Over Neighborhoods

Now we will begin to extend our semantics to take advantage ofthe amorphous medium, beginning with
computations that extend across local areas of the manifold. To do this, we’re going to use something new:
a field-valued field.

The operationnbr takes a field as input and returns a field of fields, where each point maps to a field
where the domain is the neighborhood and the values are the values in its past light cone (Figure 4). Included
in the neighborhood field for each point is the value of the point itself at the current time. Note that including
this value changes little, since there will generally also be neighbors arbitrarily close by which map to
arbitrarily close values.

Notice thatnbr isn’t so much performing a computation as selecting the values that will be used for
computation. In order to produce a usable output, we’ll haveto summarize this field of values back down
into a single value in the end.

We will sometimes also need information about the structureof the manifold, so we also define spe-
cial expressions for geometric information:nbr-range andnbr-angle give fields of spatial displacement to
neighbors,nbr-density gives a field of the density of neighbors, andnbr-lag gives a field of time displace-
ment to neighbors.

Polymorphic forms of pointwise operations can safely be applied to these fields of neighborhood values,
“one level down.” Scalar values can be mixed into the computation as well—the polymorphic form simply
uses the scalar in operating on each point in the neighborhood.

Finally, the field of neighborhood fields is summarized back into an ordinary field with one of several
summary operators. At present, we have defined and used five summary operators:int-hood (which takes
an integral),any-hood, all-hood, min-hood andmax-hood. 2 We have not yet determined whether these
summary operators are sufficient; if not, then the set of operators can simply be extended.

For example,gradient includes an expression applying the triangle inequality,(min-hood (+ (nbr n)
(nbr-range))) (Figure 4). This selects two neighborhood fields—one filled with estimates of distance to
source, the other with the distance to neighbors—and adds them to find the estimates distance to the source

2Themin-hood andmax-hoodoperations are actually infimum and supremum limits, ensuring that their value is always well
defined.

6

F

and

mux

x

nbr

T

FF T

T F

T
F

F

TF F

falseany−hood

(a) Example ofmux

2

F

21

1

not

2

mux

f

FT

1

T

(b) Example ofif

Figure 5: The conditionalmux runs both computations and uses the test to select an answer,allowing the
whole space to influence both computations. For example,(mux x (not (all-hood (nbr x))) false) finds the
boundary of regionx by selecting the points insidex from the group of points with a neighbor outside of
x. The conditionalif , on the other hand, is a syntactic operator which branches computation by restricting
the domain of the fields for each branch, then combines the results usingmux. Shown above is a simple
example(if f 1 2).

through each neighbor. The triangle inequality is then applied by taking the minimum of all these distances
with min-hood.

When approximated on a network, thenbr operation implies communication: devices proactively broad-
cast the values that will be needed by their neighbors. In some cases, static analysis can reduce or eliminate
communication costs: for example, thenbr of a constant need not be broadcast. Transformed pointwise
operations are then performed on the collection of values most recently broadcast. Finally, the five summary
functions above can all be approximated well with finite samples.3

We now have a mechanism for computations that extend throughneighborhoods. Computation on gen-
eral regions of the manifold awaits two more ingredients: conditionals, which will allow us to specify the
region, and state, which will allow information to travel across long distances.

8 Conditional Computation

In any model of computation, conditionals are interpreted either as branching or selection. In the branching
interpretation, a test is evaluated and the result determines which of two computations is executed. In the
selection interpretation, both computations are performed, and the test determines which result is returned.
The branching interpretation is most common, since it makesside-effects easy to understand and control.

In computing on an amorphous medium, however, we will find that we need to use both approaches.
First, we will assume that the test produces a field of booleans, and the value of the field at each point deter-
mines which computation should produce the value for that point. The neighborhood of a point, however,
may contain points where the test produces an opposite value. The question, then, is this: if the conditional
computation contains neighborhood operations, should they be able to use the values of neighbors where

3A few subtleties of the approximation:int-hood is defined as a Lebesgue integral,all-hood is defined to yield true when the
set of false neighbors has measure zero, andany-hoodyields false when the set of true neighbors has measure zero.

7

7 f

7 3

7

delay

(a) Time T-1

7 f

7 2

3

delay

73

(b) Time T

7 f

7 6

2

2

delay

(c) Time T+1

delay1

+

0

1

0

8

7

5

4

(d) Feedback Loop

Figure 6: Thedelay operator,(delay default input), takes its scope from the current input and its values
from the previous input, filling in any missing values with the initial value. The figure above shows three
successive time-steps of the evaluation of(delay 7 f). Thedelay operator is used to create state variables
using a feedback loop. For example, the counter shown in (d) starts at zero and increases by one each round.

the test goes the other way?
Under the branching interpretation, which we will nameif , the test is used to restrict the space involved

in the computation, and neighbors in the opposite branch areexcluded. The branching interpretation is
useful for preventing unnecessary computation and for controlling actuation, which has side-effects.

For example,bound usesif because it needs the boundary to stop the gradient from propagating further.
Under the selection interpretation, which we will namemux for its multiplexing behavior, the space is

not restricted. This interpretation is useful for computations that span space. For example, an impermeable
boundary for a region identified with a boolean fieldx can be calculated using the expression(mux x (not
(all-hood (nbr x))) false), which will return true for the points inside the region which have a point outside
as a neighbor (Figure 5(a)). If we substituteif for mux, then the computation will fail, because no point
outside the region is accessible to the neighborhood operation in the true branch.

For example,gradient usesmux because the devices near the source need to be able to see the source
in order to know how far they are from it.

The implementation ofmux is easy: it is a pointwise operator(mux test true-expr false-expr)that just
uses the value of the first field to choose between values from the second and third fields.

We can then implementif usingmux and a restriction of the domain. We annotate such a restricion in
our diagrams as a dotted box with a booleantest field to it, where the domain inside the box contains only
those points where thetestfield maps to true. We will not allow the programmer to specifythese restrictions
directly, however, as that introduces the danger of ending up with undefined values.

Putting these pieces together, we can defineif as a syntactic operator(if test then else)which wraps the
terminals of thethen andelseexpressions in arestrict operation that implements this change of domain,
then pastes the results together usingmux (Figure 5(b)). Usingtest for both splitting the branches and
pasting together their outputs guarantees that nothing in the domain is left undefined.

We can then implement any other conditional operator we wanton the basis ofmux andif .

9 Computation With State

We now have computations that extend over small distances inspace, and the ability to restrict the space in
which they apply. In order to extend them across long distances in space, we will need to add state to our

8

∆
T

im
e

Neighborhood of Q

T
im

e

Q

2

1

P
Space

(a) Insufficient Time Resolution

∆
T

im
e

Neighborhood of Q

T
im

e

P Q

2

1

Space
(b) Smooth Propagation

Figure 7: Discrete time evaluation causes “hiccups” in long-distance information propagation when the
delay between evaluations is longer than the time it takes information to propagate across a neighborhood.
When Q operates on its neighborhood at point 2, the most distant accessible value is that calculated by P at
point 1. If space is the limiting factor (a), then there is an additional delay between when information from
P arrives and when Q can do its next calculation. If time is thelimiting factor (b), then Q can repropagate
the values from P with no apparent delay.

computations. Incidentally, this also gives us the tools for computations that extend over time.
In keeping with our functional approach, we establish statewith a feedback loop: a state variable is

defined by an initial value and an update function which uses values from each time-step to calculate the
values for the next.

Fundamental to this is thedelay operator,(delay init value), which takes its domain from the current
time-step and its values from the previous time-step (Figure 6). At startup and following space restriction,
there may be undefined values in the domain: these are filled infrom init .

Using delay, we can set up a feedback loop where the output of the delay operator is fed into an expres-
sion that computes the next input. For example, we can make a counter by making a loop where we add one
to the delayed value (Figure 6(d)).

Another common use of feedback is long-distance communication. Thegradient function uses it in this
manner, chaining relaxation with a feedback loop incorporating a neighborhood operation. The feedback
loop provides a slot for the communication to chain through.

This structure is captured with a syntactic operator,(letfed ((name init expr) . . .) body), which estab-
lishes a set of state variables that can use each other’s old values during updates. The body of theletfed
expression can then calculate using the values of the feedback variables.

10 Spatial Computation

We now have all of the tools necessary to create general computations that extend over arbitrary portions of
the manifold. The general form of such a computation is localpropagation using neighborhood operations,
chained by means of a set of feedback variables holding the values to be communicated.

As long as evaluations happen frequently enough, this combination of local propagation and feedback
variables can propagate information across arbitrary distances at the maximum velocityc. If the delay
between evaluations is shorter than the time it takes information to propagate across a neighborhood, then
every evaluation will happen just as some point is receivingthe information, and it can be propagated

9

instantaneously. If the delay is longer, however, then long-distance propagation will “hiccup” as information
reaches the edge of a neighborhood, but cannot pass beyond ituntil the next evaluation occurs.

One pattern we have found broadly useful is relaxation, where points start with an extreme value, except
for a few seeds which know their final value. The desired field is then calculated recursively, as neighbors of
the seeds relax toward their final value, which allows their neighbors to relax as well, and so on, spreading
outward across the manifold.

Thegradient function is an example of code that uses this pattern. Repeating the code from above:

(def gradient (src)
(letfed ((n infinity (mux src 0 (min-hood (+ (nbr n) (nbr-range))))))
n))

Points outside the source start at infinity, while points within start at zero. Every point looks at its
neighborhood and calculates the shortest distance to the source through each neighbor, then selects the
minimum as its own distance. The net effect is that as time progresses, correct distance values spread
outward from the source, until the desired distance field hasbeen calculated for the entire manifold.4

Given this set of building blocks, it is easy to express complex programs simply. Implemented in our
language Proto, for example, it takes only 28 lines to describe a target tracking program and 23 lines to
describe a program for threat avoidance (Figure 1)—see the Appendix for the code, and [3] for a line-by-
line explanation of these examples.

The manifold semantics we have presented allows the same code to run on networks with widely varying
numbers and distributions of nodes. Figure 8 shows target tracking scaling across networks ranging from 20
to 10,000 nodes. The figures show target detection as large orange circles, the reporting node as a large red
circle, and the reported position of the target as a blue linetipped with magenta. Network connections are
green (except in the 10K case, where there are too many to show), nodes where tracking data is flowing are
small red circles, and other nodes are tiny red dots. All of these different scales provide the same behavior
as the 100 node network in Figure 1(a) at different resolutions.

Moreover, the compiled code is compact enough to fit (along with a custom virtual machine to execute
it) on Mica2 motes, which have a scant 4KB of RAM and a 16Mhz microcontroller.

Not all spatial programs can be expressed well using these primitives. Inherently discrete algorithms,
such as TDMA or matrix-based optimization, can be run only awkwardly, by recreating the discrete space
within the continuous space.

11 Conclusion

We thus have a programming semantics that gives us a global model of computation on an amorphous
medium, which is implemented in our language Proto. This model is powerful because it allows us to
prescribe the behavior of a spatially embedded network without concerning ourselves with the details of its
deployment or communication patterns. Furthermore, programs can be very simple and use primitives that
carry over some intuitions from ordinary single-processorprogramming.

11.1 Related Work

This work does not, of course, exist in a vacuum. Previous work on amorphous medium languages pro-
poses the amorphous medium abstraction[4], general strategies for control[7], and an ancestor language of
Proto[5]. Recently, we described[6] how the abstraction simplifies engineering of emergent behavior and
investigated its applicability to sensor network programming[3]

4Note that this code does not handle a changing source, since it cannot rise in response to the source getting farther away from
a point. That version ofgradient is significantly more complicated.

10

(a) 20 devices (b) 1,000 devices (c) 10,000 devices

Figure 8: Target tracking scales across a wide range of networks. Shown above are simulations of with
twenty, one thousand, and ten thousand devices, all providing the same behavior as the 100 node network in
Figure 1(a) at different resolutions. (Note: the 10K simulation does not show network connections in green,
as there are too many)

Others have envisioned computing on platforms like the amorphous medium. MacLennan’s field trans-
formation computers[18] use a different basis for computation that does not require locality in its operations.
The Continuum Computer Architecture[20] envisions building a real platform that closely approximates an
amorphous medium, though with a different programming model. The Connection Machine[14] provided
a grid of processing, which *Lisp[16] allowed users to manipulate in terms of fields, but the programming
model was firmly wedded to the discrete grid structure of the implementing hardware.

Cellular automata computing has proved a useful way of approximating the behavior of continuous
media[21], and there is in fact a continuous formulation of CAs.[17] CAs could certainly be used as a spatial
computer on which Proto could be executed, though the regularity might create problems for approximation.
At the present time, we are not aware of a language for CAs which supports scaling to machines of different
resolution.

The specification of behavior in a CA is inherently local, however, and lends itself to investigation of
emergent behavior rather than engineered computation.

The language Regiment[19] is a sensor-network language which operates on geometric regions of space,
but it is focused on data-gathering and only distributes some operations across space.

Other work on languages in amorphous computing [1] has shared the same general goals, but has been
directed more towards problems of morphogenesis and pattern formation than general computation. A
notable exception is Butera’s work on paintable computing[8], which allows general computation, but lacks
an abstraction barrier separating an applications programmer from low-level network details.

Finally, the structure of Proto as a dynamic network of streams is strongly influenced by Bachrach’s
previous work on Gooze[2], as are many of the compilation strategies used to compact Proto code for
execution on Motes. There is a long tradition of stream processing in programming languages. The closest
and most recent work is Functional Reactive Programming (FRP) [11] that is based on Haskell [15], which
is a statically typed programming language with lazy evaluation semantics. In these systems, less attention
is spent on runtime space and time efficiency, and the type system is firmly wedded to Haskell, with all of
its strengths and weaknesses.

11.2 Future Directions

The work described herein only begins to answer the host of interesting questions about how to program on
manifolds. From our perspective, the most pressing open problems are:

• How can the evaluation model be extended to continuous time without losing the advantages of

11

discrete-time programming models?

• How can approximation error be usefully characterized and bounded?

• How can relaxation be modified to allow non-monotonic results?

• How can the behavior of a program on a changing manifold be usefully characterized?

• How can actuation that reshapes the manifold be usefully described and controlled?

As always, a strong driver for future investigation will be application of these ideas to new problems,
which will best reveal their weaknesses.

References

[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homs y, T. Knight, R. Nagpal, E. Rauch, G. Sussman,
and R. Weiss. Amorphous computing. Technical Report AIM-1665, MIT, 1999.

[2] Jonathan Bachrach. Gooze: a stream processing language. In Lightweight Languages 2004, November
2004.

[3] Jonathan Bachrach and Jacob Beal. Programming a sensor network as an amorphous medium. In
Distributed Computing in Sensor Systems (DCOSS) 2006 Poster, June 2006.

[4] Jacob Beal. Programming an amorphous computational medium. In Unconventional Programming
Paradigms International Workshop, September 2004.

[5] Jacob Beal. Amorphous medium language. InLarge-Scale Multi-Agent Systems Workshop (LSMAS).
Held in Conjunction with AAMAS-05, 2005.

[6] Jacob Beal and Jonathan Bachrach. Infrastructure for engineered emergence in sensor/actuator net-
works. IEEE Intelligent Systems, pages 10–19, March/April 2006.

[7] Jacob Beal and Gerald Sussman. Biologically-inspired robust spatial programming. Technical Report
AI Memo 2005-001, MIT, January 2005.

[8] William Butera. Programming a Paintable Computer. PhD thesis, MIT, 2002.

[9] Benjamin Chambers. The grid roofnet: a rooftop ad hoc wireless network. Master’s thesis, MIT, 2002.

[10] Fred Discenzo, Francisco Maturana, and Raymond Staron. Distributed diagnostics and dynamic re-
configuration using autonomous agents. InInternational Conference on Complex Systems 2006, June
2006.

[11] Conal Elliott and Paul Hudak. Functional reactive animation. InProceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP’97), volume 32(8), pages 263–273,
1997.

[12] Drew Endy. Foundations for engineering biology.Nature, 438:449–453, November 2005.

[13] S.C. Goldstein, J.D. Campbell, and T.C. Mowry. Programmable matter.Computer, 38(6):99–101, June
2005.

[14] W.D. Hillis. The Connection Machine. MIT Press, 1985.

12

[15] S. P. Jones and J. Hughes. Report on the programming language haskell 98., 1999.

[16] C. Lasser, J.P. Massar, J. Miney, and L. Dayton.Starlisp Reference Manual. Thinking Machines
Corporation, 1988.

[17] Bruce MacLennan. Continuous spatial automata. Technical Report Department of Computer Science
Technical Report CS-90-121, University of Tennessee, Knoxville, 1990.

[18] Bruce MacLennan. Field computation: A theoretical framework for massively parallel analog com-
putation, parts i-iv. Technical Report Department of Computer Science Technical Report CS-90-100,
University of Tennessee, Knoxville, February 1990.

[19] Ryan Newton and Matt Welsh. Region streams: Functionalmacroprogramming for sensor networks.
In First International Workshop on Data Management for SensorNetwor ks (DMSN), August 2004.

[20] Thomas Sterling and Maciej Brodowicz. Continuum computer architecture for nano-scale and ultra-
high clock rate technologies. InInternational Workshop on Innovative Architecture for Future Gener-
ation High-Performance Processors and Systems, January 2005.

[21] Tommaso Toffoli and Norman Margolus.Cellular Automata Machines: A new environment for mod-
eling. MIT Press, 1987.

13

A Example Code

Note: the code below uses an optional extra argument formin-hood andmax-hoodthat tells which element to use for
comparison.

A.1 Target Tracking

In this code, a clique of nodes detecting a target estimate its location by averaging their coordinates. A channel is
created along the shortest path to the monitoring station (dst), and the location estimate flows back along that channel,
so that the information need not be transmitted to uninvolved portions of the network.

(def local-average (v)
(/ (int-hood v) (int-hood 1)))

(def gradient (src)
(letfed ((n infinity

(+ 1 (mux src 0 (min-hood (+ (nbr n) (nbr-range)))))))
(- n 1)))

(def grad-value (src v) ; flow values down gradient
(let ((d (gradient src)))
(letfed ((x 0 (mux src v

(2nd (min-hood (nbr (tup d x)) 1st)))))
x)))

(def distance (p1 p2)
(grad-value p1 (gradient p2)))

(def dilate (src n) (<= (gradient src) n))

(def channel (src dst width)
(let* ((d (distance src dst))

(trail (<= (+ (gradient src) (gradient dst)) d)))
(dilate width trail)))

(def track (target dst coord)
(let ((point

(if (channel target dst 10)
(grad-value target

(mux target
(tup (local-average (1st coord))

(local-average (2nd coord)))
(tup 0 0)))

(tup 0 0))))
(mux dst (- point coord) (tup 0 0))))

A.2 Threat Avoidance

Given coordinates, a threat sensor and a model of exponentially decaying threat, we the expected safest path to a
destination is calculated by relaxation and gradient descent.

(def exp-gradient (src d)
(letfed ((n src (max (* d (max-hood (nbr n))) src)))
n))

14

(def sq (x) (* x x))

(def dist (p1 p2)
(sqrt (+ (sq (- (1st p1) (1st p2)))

(sq (- (2nd p1) (2nd p2))))))

(def l-int (p1 v1 p2 v2) ; approx. line integral
(pow (/ (- 2 (+ v1 v2)) 2) (+ 1 (dist p1 p2))))

(def max-survival (dst v p)
(letfed

((ps 0 (mux dst 1
(max-hood
(* (l-int (nbr p) (nbr v) p v) (nbr ps))))))

ps))

(def greedy-ascent (v coord)
(- (2nd (max-hood (nbr (tup v coord)) 1st)) coord))

(def avoid-threats (dst coords)
(greedy-ascent
(max-survival
dst
(exp-gradient (sense :threat) 0.8) coords) coords))

15

