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Abstract

The work presented in this thesis addresses two problems: accurately localizing a mo-
bile robot using ultra-wideband (UWB) radio signals in GPS-denied environments; and
planning robot trajectories that incorporate belief uncertainty using probabilistic state es-
timates. Addressing the former, we improve upon traditional approaches to range-based
localization by capturing non-linear sensor dynamics using a Monte Carlo method for hid-
den bias estimation. For the latter, we overcome current limitations of scalable belief space
planning by adapting the Probabilistic Roadmap algorithm to enable trajectory search in
belief space for minimal uncertainty paths. We contribute a novel solution motivated by
linear least-squares estimation and the Riccati equation that provides linear belief updates,
allowing us to combine several prediction and measurement steps into one efficient update.
This reduces the time required to compute a plan by over two orders of magnitude, lead-
ing to a tractable belief space planning method which we call the Belief Roadmap (BRM)
algorithm.
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Chapter 1

Introduction

1.1 Project Overview

The work presented in this thesis is two-fold: (1) we have explored a method for range-based

localization with ultra-wideband (UWB) radio that simultaneously estimates the pose of a

mobile robot and the hidden biases in UWB range measurements; (2) we have developed

a novel method for planning under uncertainty that extends the Probabilistic Roadmap

algorithm to Kalman belief space and enables efficient graph search for paths that obtain

minimal belief uncertainty.

In this section, we introduce both problems in turn and provide motivation for our

solution techniques. In Section 1.2 we highlight the key contributions of this thesis work

in both problem domains. Section 1.3 describes the infrastructure and tools used in this

project. The chapter is concluded in Section 1.4, where we present a roadmap for the

document.

1.1.1 Range-Based Localization With UWB Radio

The Global Positioning System (GPS) provides position estimates of a user’s location on

the Earth to within a few meters, enabling geolocation in areas with a clear line-of-sight

(LOS) to GPS satellites. However, in indoor and dense urban environments, GPS becomes

unreliable or altogether unavailable. The need for accurate geolocation, however, exists in

indoor and dense environments for both civil and military applications.

One approach to this problem involves placing anchor radio beacons around the target
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environment, enabling localization by computing range measurements from a dynamic agent

to known beacons (which can geolocate via GPS). The agent emits a request signal to

which the anchor beacons respond upon receipt. Ranges to each anchor beacon can be

computed with a time-of-flight (TOF) calculation, measuring the round-trip time between

signal emission and response signal detection. The agent can then infer its position based

on range measurements from multiple sensors. Two problems limit the effectiveness of this

approach when using traditional narrowband radios, namely multipath fading and LOS

blockage. When a signal is transmitted, the channel properties of the environment may

result in multiple signal path reflections, known as multipath components. Multipath fading

occurs when interference between these path reflections results in signal degredation, or even

cancellation, which inhibits the receiver’s ability to successfully resolve the original signal

for time-based ranging. Additionally, obstacles in the environment may occlude the radio

transceivers. Such non-LOS (NLOS) scenarios may completely block signal transmission

or add substantial material propagation delays, both of which are problematic for ranging

applications.

The advent of ultra-wideband (UWB) technology presents a promising alternative that

may overcome the limitations of traditional narrowband radio. The spread-spectrum con-

cept employed by UWB utilizes extremely wide transmission bandwidths, which yields fa-

vorable properties for robust ranging. The wide transmission bandwidth of UWB, ranging

from near-DC to tens of gigahertz, corresponds to very fine, sub-nanosecond delay resolution

in the time domain. This property makes UWB pulses largely immune to multipath fading,

since individual signal paths can be distinguished in resolvable intervals of time. Further,

the low frequency, or base-band, components of the UWB signal enable better penetration

of building materials [10], making UWB transmission robust in dense environments.

Although ultra-wideband radio is a promising candidate for reliable RF signaling, the

problems of time-based ranging in dense multipath environments still exist. In such envi-

ronments, the time-of-flight measurement between UWB transceivers is subject to additive

delays which cause range estimates to be positively biased. Even though UWB signals are

robust to obstacles blocking the direct path, the obstacles still impose a substantial transmis-

sion delay as the signal passes through building materials. Also, even though UWB signals

are robust to multipath fading, the line-of-sight path can still be lost and the received signal

may be from a NLOS path reflection, traveling a greater accumulated distance between the
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pair of radios. While UWB signal connectivity may be robust to these phenomena, they

add an error to the range estimate and thus induce uncertainty in localization.

To solve this problem, probabilistic inference has been used to maintain a joint prob-

abilistic state estimate over the robot pose and hidden range biases [24]. Using a Markov

Chain Monte Carlo (MCMC) approach outperforms other state estimation methods because

MCMC filters allow for non-linear characteristics of the UWB sensor model to be incorpo-

rated. However, such sampling-based filters are limited by the curse of dimensionality; the

number of samples required for the filter to accurately estimate a distribution grows expo-

nentially in the state dimension. In the context of hidden bias estimation, as the number

of UWB sensors in the environment increases, the number of samples required to estimate

the range bias to each sensor grows prohibitively large.

We propose an improvement to this Monte Carlo method in Chapter 3 that uses the

Rao-Blackwellization technique, which enables certain forms of joint distributions to be

decomposed. We show that, by employing Rao-Blackwellization, the joint distribution over

the robot pose and hidden range biases in the range-based localization problem can be

decoupled into two smaller estimation problems. Subsequently, sampling is only required

for a distribution over robot poses in a space of constant dimension. The distribution over

hidden biases can be computed analytically, and the complexity of filtering scales linearly

to accommodate additional UWB sensors.

1.1.2 Planning in Belief Space

The second portion of this project addresses motion planning using probabilistic state esti-

mates. Stochastic robot motions, noisy sensor observations, imperfect maps of the environ-

ment and dynamic obstacles increase the likelihood of collision or becoming lost. To achieve

robust performance, a mobile robot must navigate safely through environments dominated

by uncertainty.

Recursive filtering algorithms such as the Kalman filter make it possible to maintain

an estimate of the robot’s belief uncertainty in response to non-deterministic actions and

observations, enabling mobile robots to perform tasks such as localization. However, to date,

robust and scalable methods that incorporate uncertainty into the planning process are still

an area of open research. In this work, we seek to integrate uncertainty predictions into

the planning algorithm, thereby enabling the robot to choose actions that result in minimal
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belief uncertainty. Our explicit goal is to plan in the space of robot beliefs, choosing

an optimal sequence of actions that is based on predictions of belief uncertainty during

execution.

A traditional solution for motion planning problems is the Markov Decision Process

(MDP) [6], which generates a global control policy that prescribes the best action to take

in any given situation to advance towards a desired goal state. By iteratively computing

the expected rewards of transitioning between states for a given set of actions, the MDP

converges to a solution where each possible action transition is assigned an expected cumu-

lative payoff. As the robot navigates towards a goal, the optimal path is easily determined

by taking the pre-defined action prescribed for the current belief state of the robot.

While this approach allows for non-deterministic actions, the MDP assumes the robot

can observe the full state of the environment after each action. In most real-world robot

problems, however, sensor limitations have a substantial effect on the level of certainty in the

robot’s belief. The partially observable Markov decision process (POMDP) [46] drops the

assumption that the state is fully observable and admits the problem of planning in belief

space. The POMDP generates a control policy for every possible state and encompasses

both probabilistic beliefs and action transitions, but with the cost of greatly increased

complexity.

In high-dimensional or continuous state spaces, it becomes intractable to compute a pol-

icy for every possible state, including those with very low likelihood. Randomized motion

planners have been successful in efficiently solving complicated planning problems by lim-

iting their scope to selected regions in the state space. The Probabilistic Roadmap (PRM)

algorithm [28] is one such method that approximates the topology of the configuration space

with a graph structure of accessible poses in free space. A pre-processing phase selects poses

according to a randomized sampling strategy and builds a visibility graph between them.

The PRM is capable of efficiently planning paths to a queried goal location by searching

the visibility graph for the shortest path. This limitation of this search, however, is that

it does not account for the uncertainty incurred while executing the plan and ignores the

potential for error.

In Chapter 4, we apply the intuition underlying the PRM to belief space planning. We

use the sampling-based pre-processing phase of the PRM to overcome the complexity of

the POMDP model by generating a simplified representation of belief space. We then show
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that by assuming Gaussian beliefs, it becomes possible to utilize Kalman filter updates

in conjunction with graph search to tractably compute plans over a graph through belief

space. This approach relies on the ability to simulate Kalman filter control and measurement

updates to predict the evolution of uncertainty along belief trajectories. We show that this

can be performed by computing a sequence of Kalman filter covariance updates at discrete

points along a given trajectory to obtain the posterior covariance.

In Chapter 5, we improve the efficiency of belief trajectory search by exploiting advan-

tageous mathematical properties of the Kalman filter. We present two alternative repre-

sentations of Kalman filter updates that allow multiple covariance prediction steps to be

aggregated into one simple update. We call these techniques “one-step” updates.

In Chapter 6, we apply one-step covariance prediction updates to belief trajectory search

to form the Belief Roadmap (BRM) algorithm. The use of one-step updates improves

the performance of trajectory search by over two orders of magnitude, making the BRM

a tractable method for planning in belief space and efficient on-line re-planning during

execution. We use the BRM to efficiently solve a very large planning problem across the

MIT campus, which we believe is considerably larger than existing results.

1.2 Contributions

The following contributions were made during the course of this research project:

1. We developed a scalable method for range-based localization that is robust to hidden

range biases and amenable to dense multipath environments. Our solution is based

on the Rao-Blackwellization technique, which, to our knowledge, has not otherwise

been applied to this problem domain.

2. We provided a general formulation for tractable belief space planning posed as search

over belief trajectories. We generalized the Probabilistic Roadmap (PRM) method to

a hybrid PRM, expanding the scope of the PRM from points in a discrete space to

probability distributions in a hybrid discrete-continous space. Our general formulation

also admits a hybrid filter-search process, which enables optimal graph search over

the hybrid distribution space.
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3. We derived a Kalman filter-style estimator for efficiently predicting Gaussian belief

evolution in a principled manner. This estimator replaces the non-linear filter equa-

tions with linear updates in the mean and factors of the covariance, providing a

powerful tool for future planning algorithms.

4. We developed two methods for aggregating Kalman filter covariance updates to form

a covariance transfer function for use in robot path planning. We applied the work of

Redheffer [42] and Kailath [26] to form a Hamiltonian matrix descriptor of Kalman

filter updates. We utilized additional results from abstract linear algebra [1, 2] and

Vaughan [51] to form a symplectic matrix descriptor, which enables linear updates

in factors of the covariance. These techniques have potential for numerous future

applications in the robotics domain.

5. We presented the Belief Roadmap (BRM) algorithm which enables efficient and prin-

cipled planning within the Kalman belief space and represents a significant advance

in planning under uncertainty. We used the BRM algorithm to solve the largest be-

lief space planning problem to date of which we are aware. The BRM method has

potential for substantial future advances in planning under uncertainty

1.3 Experimental Infrastructure

During the course of the project work, software development and hardware integration

was required to perform experimental analysis. Software was developed on a Linux plat-

form within the framework of the Carnegie Mellon Robot Navigation Toolkit (CARMEN)

[37], an open-source software package for mobile robot applications. The source code for

localization, navigation and ultra-wideband modules was implemented using the C and

Java programming languages. Sensor and motion models were developed using a mobile

wheelchair robot [13] with onboard computer, shown in Figure 1-1. The robot was out-

fitted with a TimeDomain UWB radio sensor [12], requiring hardware integration and the

development of a socket-level software interface in Java.
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Figure 1-1: Wheelchair Robot [13] with TimeDomain UWB radio [12].

1.4 Roadmap

The layout of this document is as follows: In Chapter 2 we review the background concepts of

probabilistic robotics and state estimation techniques. Both the localization and planning

problems we consider in this project rely on probabilistic techniques and recursive state

estimators.

We explore the range-based localization problem with ultra-wideband ranging in Chap-

ter 3. In this chapter we develop the motion and sensor models used throughout the work.

We also present the Rao-Blackwellization technique and apply it to the particle filter to

simultaneously maintain distributions over the robot pose and hidden range biases in a

scalable manner.

Chapters 4-6 incrementally develop a novel and efficient approach for belief space plan-

ning. In Chapter 4, we formulate the problem and develop a tractable solution by gener-

alizing the PRM to belief space and employing the linear-Gaussian assumption for beliefs.

This approach generates plans by performing graph search over belief trajectories and relies

on a “multi-step” filter process to compute covariance evolution along trajectories. The

multi-step Kalman filter update is a limiting factor in the efficiency of trajectory search,

which motivates finding an another approach.

We derive two alternatives to the multi-step covariance update, which we call “one-step”

updates. The derivation of one-step update methods merits a detailed discussion, which is

the topic of Chapter 5.
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We combine the general planning problem of Chapter 4 with the efficient one-step update

of Chapter 5 to form the Belief Roadmap (BRM) algorithm in Chapter 6. We analyze this

algorithm, demonstrate its effectiveness and discuss further applications.

The thesis is concluded in Chapter 7 with a discussion of future work and a summary

of our contributions in range-based localization and belief space planning.
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2.1 Introduction

Robots cannot perceive the true state of the world; in order to make decisions and execute

actions, they must rely on a belief that represents a hypothesis of the actual state of

the world. Some traditional approaches to robotics employ a “best guess” for this belief

[39], but such a limited belief representation often fails to produce reliable performance
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in the face of real-world uncertainty. A more recent alternative that allows for ambiguity

and uncertainty in the belief uses a probability distribution over a whole space of possible

guesses. This representation is the basis of probabilistic robotics, a modern approach to

robotics which enables the uncertainty of robot perceptions and actions to be captured in

the mathematically sound framework of probability theory.

This chapter introduces the key concepts of probabilistic robotics and reviews recursive

state estimation, or filtering, techniques, which can be used to update probabilistic state

estimates in response to uncertain control actions and noisy sensor measurements. Both the

localization and path planning problems that we consider in this project rely on probabilistic

techniques and recursive filters to achieve reliable performance when faced with uncertainty.

We begin by formulating the problem of mobile robot state estimation as the robot

interacts with its environment in Section 2.2, and introduce the most general recursive

solution, the Bayes filter, in Section 2.3. The remainder of the chapter is dedicated to

specific implementations of the Bayes filter, each maintaining the belief distribution in a

different form.

Section 2.4 presents the family of Gaussian filters, which maintain the belief as a mul-

tivariate normal distribution. We review the linear state-space representation in Section

2.4.1 and, in Section 2.4.2, derive the Kalman filter, which is one of the most widely used

implementations of the Bayes filter. In Section 2.4.3, the Kalman filter is broadened to

problems with nonlinear dynamics, leading to the extended Kalman filter (EKF). Section

2.4.4 describes the information filter, which is the complementary form of the Kalman filter

using the canonical parameterization of the Gaussian distribution.

Finally, in Section 2.5 we review the particle filter, a non-parametric state estimator

based on Monte-Carlo sampling methods. At the end of this chapter, Appendix 2.A presents

a reference for relevant matrix mathematics and Appendix 2.B derives the fundamental

equations of linear estimation.

2.2 Taxonomy of Robot State Estimation

The state of the robot characterizes all aspects of the configuration of the environment at

a given time that can impact the future configuration. In common applications, the state

is the pose of the robot relative to the environment, which in a 2-dimensional environment
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consists of the x, y and θ components of the robot’s location and orientation in the world.

Throughout the work, we denote the state of the robot at time t as the vector xt.

The state of the robot is dynamic; it evolves over time as the robot interacts with its en-

vironment. We are concerned with two types of interaction: control actions, which describe

robot actions that change the state of the environment, such as motion; and measurement

actions, which describe information gained by the robot through sensor observations that

affect perception of the environment. Both controls and measurements are modeled as data

vectors, denoted ut and zt, respectively, in which each data element describes a feature of

the interaction model. For example, control data may consist of the number of robot wheel

revolutions collected by an odometer. Similarly, measurement data could be the distance

observed by a range sensor between the robot and a known beacon in the environment.

Figure 2-1: Diagram of the generative temporal model that characterizes the evolution of states xt, controls
ut and measurements zt.

To incorporate the effects of controls and measurements over time, the evolution of the

robot state is modeled as a dynamic Bayes network (DBN). An example of this model is

shown in Figure 2-1. For each control ut and measurement zt shown in the diagram, we use

probabilistic laws to capture the stochastic evolution of the state xt. In general, we seek

to infer the state at time t as a result of all previous states, controls and measurements,

which can be characterized as a conditional probability distribution p(xt|x0:t−1, u1:t, z1:t−1).

To make inference computationally tractable, we employ the Markov assumption, which

assumes that the state xt is a sufficient summary of all previous controls and measurements

up to time t. This means that the posterior state after incorporating a control input
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depends only on the control data ut and the previous state xt−1, yielding the simplified

state transition probability

p(xt|x0:t−1, u1:t, z1:t−1) = p(xt|xt−1, ut). (2.1)

Further, the likelihood of an observation depends only on the current state, which gives rise

to the measurement probability

p(zt|x0:t−1, u1:t, z1:t−1) = p(zt|xt). (2.2)

The state cannot be directly observed; however, using the preceding model of the evo-

lution of the state, it is possible to recursively estimate the robot’s belief of the state.

2.3 The Bayes Filter

In this section, we present the most basic recursive state estimation algorithm, the Bayes

filter. The goal is to estimate the belief distribution over the robot’s state at time t in

response to all control and measurement actions since the initial belief at t = 0. This

distribution is written as

belt = p(xt|u1:t, z1:t). (2.3)

The foundation of the Bayes filter is Bayes rule, which relates a conditional distribution

p(a|b) to the reverse conditional p(b|a) as

p(a|b) =
p(b|a)p(a)

p(b)
. (2.4)

Bayes rule enables the posterior p(a|b) to be computed from the reverse conditional p(b|a)

and the prior p(a). This rule has powerful implications for inference, allowing the quantity

a to be revised given new evidence b without explicit knowledge of the conditional p(a|b).

Also, note that the denominator in Equation 2.4 does not depend on a, and can therefore

be replaced with a normalizer constant η = p(b)−1.

We apply Bayes rule (Equation 2.4) to the belief posterior belt to begin our derivation

24



of the Bayes filter, which gives us

p(xt|u1:t, z1:t) = ηp(zt|u1:t, z1:t−1, xt) · p(xt|u1:t, z1:t−1), (2.5)

where η is a normalization factor. Equation 2.5 decomposes the posterior into two parts, the

first of which is the measurement probability p(zt|xt) shown in Equation 2.2. The second

distribution corresponds to the predicted belief after incorporating the control ut at time t,

but before incorporating the measurement zt. We indicate this by denoting the predicted

belief with a bar as

belt = p(xt|u1:t, z1:t−1). (2.6)

The posterior belief in Equation 2.5 can then be rewritten as follows (by using Equation 2.2

and the notation introduced in Equations 2.3 and 2.6):

belt = ηp(zt|xt) · belt, (2.7)

which is known as the measurement update of the Bayes Filter and is shown in Line 3 of

Algorithm 1.

The belief prediction updates the most recent belief belt−1 by accounting for the state

transition at time t in response to the motion control ut. This can be shown mathematically

by applying the law of total probability, which is given by

p(a) =

∫

b
p(a|b)p(b)db. (2.8)

The law of total probability in Equation 2.8 is useful because it allows us to mathematically

incorporate the dependence of a on b if we only have p(a). This is performed by “integrating

out” or “marginalizing” b from the conditional distribution p(a|b), as shown in Equation 2.8.

In the context of the Bayes Filter, the law of total probability in Equation 2.8 allows us

to account for the state transition from the most recent state xt−1 by integrating over xt−1

in Equation 2.6, as follows:

p(xt|u1:t, z1:t−1) =

∫

xt−1

p(xt|u1:t, z1:t−1, xt−1)p(xt−1|u1:t−1, z1:t−1)dxt−1. (2.9)

We can see that two distributions in the integral in Equation 2.9 correspond to the state
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Algorithm 1 The Bayes Filter algorithm.

Require: Previous belief (belt−1), control (ut) and measurement (zt)
Ensure: Posterior belief (belt)
1: for all xt do

2: belt =
∫

p(xt|ut, xt−1)belt−1dxt−1

3: belt = ηp(zt|xt) · belt
4: end for

5: return belt

transition function (Equation 2.1) and the previous belief belt−1. Thus, Equation 2.9 sim-

plifies to become

belt =

∫

xt−1

p(xt|ut, xt−1)belt−1dxt−1, (2.10)

establishing the control update step (also known as the prediction update or time update)

of the Bayes filter.

The Bayes equation is written by combining the above results in Equations 2.7 and 2.9,

which gives us

belt = ηp(zt|xt)

∫

p(xt|ut, xt−1)belt−1dxt−1. (2.11)

Equation 2.11 provides a recursive form of computing the posterior belief distribution at

each time step given a new control and measurement, establishing the basis of the Bayes

filter algorithm. The full method is shown in Algorithm 1.

Many implementations of the Bayes filter are possible, each based on a particular rep-

resentation of the distribution p(xt) with corresponding state transition and measurement

functions. The remainder of this chapter explores derivatives of the Bayes filter technique

that are used in the work.

2.4 Gaussian Filters

Gaussian filters are a widely-used class of Bayes filter derivatives that maintain the belief

as a multivariate normal distribution, defined as

p(x) =
∣
∣
∣2πΣxx

∣
∣
∣

− 1
2
e−

1
2
(x−µx)T Σ−1

xx (x−µx) (2.12)

, N (µx,Σxx). (2.13)
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Note that the probability density of x is completely characterized by the first two moments of

the distribution, namely the mean µx and covariance Σxx. If the state x has n dimensions,

then the mean µx is an n-dimensional vector, and the covariance Σxx is a symmetric,

positive-semidefinite n× n matrix.

In this section we focus primarily on the most notable member of the Gaussian filter

family known as the Kalman filter [27]. The Kalman filter assumes the Gaussian moments

parameterization of the belief and restricts the state transition and measurement functions

to linear dynamics. The popularity of the Kalman filter stems from its tractability; the

belief is completely maintained by two parameters that admit simple Bayesian updates.

We lead up to the Kalman filter equations (shown in Section 2.4.2) by first reviewing the

linear state space model in Section 2.4.1 and deriving the fundamental equations of linear

estimation in Section 2.B.

Committing to a Gaussian posterior and linear dynamics has consequences that render

the Kalman filter ineffective in many applications. Many real-world control and measure-

ment models have nonlinear dynamics which cannot be captured in the restrictive linear

state space model. In Section 2.4.3, we explore the extended Kalman filter, which uses

a linearization technique to adapt the Kalman filter to handle nonlinear state transition

and measurement functions. Further, by restricting the belief to a unimodal distribution,

the Kalman filter cannot successfully maintain a posterior belief in problems with multiple

distinct hypotheses. This problem can be overcome and linearization can be avoided with

other models such as the particle filter (Section 2.5), but with the cost of added complexity.

Despite its shortcomings, the Kalman filter has been met with great success. While ob-

viously restrictive, the assumptions of a Gaussian belief distribution and linear system dy-

namics tend to be reasonable approximations in many real-world problems, making Kalman

filtering an efficient and computationally tractable approach to state estimation.

2.4.1 State-Space Representation

The dynamics of a discrete time linear system can be described by the state-space repre-

sentation. The state transition equation describes the evolution of the state due to control

inputs and process noise, and is given by

xt = Atxt−1 + Btut + wt, (2.14)
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where the components at time, t, are

xt, the state of the system (nx-dimensional vector)

ut, the control input (nu-dimensional vector)

At, the state transition matrix (nx × nx matrix)

Bt, the input gain (nx × nu matrix)

wt, the zero-mean process noise term (nx-dimensional vector).

The measurement equation describes the output of the system,

zt = Ctxt + qt, (2.15)

with

zt, the measurement (nm-dimensional vector)

Ct, the measurement matrix (nm × nx matrix)

qt, the zero-mean measurement noise term (nm-dimensional vector).

The stochastic elements of the system, wt and qt, are zero-mean noise terms with covariances

denoted cov(wt) , Rt and cov(qt) , Qt, respectively.

2.4.2 The Kalman Filter

The Kalman filter assumes the Gaussian moments parameterization (µt,Σt) and the linear

state space representation for the state transition and measurement functions. We begin

our discussion of the Kalman filter by deriving the Bayes filter control and measurement

updates for linear-Gaussian beliefs. This leads to the Kalman filter algorithm, which is

presented at the end of the section.

Derivation of the Kalman Filter

Control Update: (µt−1,Σt−1)⇒ (µt,Σt)

The control update of the Kalman filter can be derived by examining the state transi-

tion equation of the state space representation (Equation 2.14), which is restated here for
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convenience

xt = Atxt−1 + Btut + wt.

This equation models the update of the state xt from the previous state xt−1 as a function

of the state transition Atxt−1, controls Btut, and process noise wt. Given that the belief

distribution p(xt) is normally distributed, the posterior belief belt of the control update

is completely characterized by the mean µt and covariance Σt resulting from the state

transition equation.

The mean µt can be computed as the expectation of the state E[xt] in the following

manner,

µt = E[Atxt−1 + Btut + wt]

= Atµt−1 + Btut, (2.16)

where we note that by definition, E[xt−1] = µt−1, and the process noise wt is zero-mean

Gaussian.

The covariance Σt resulting from the control update is computed from the expected

deviation of the state xt about the mean µt, which is given as

Σt = cov(xt − µt) = E[(xt − µt)(xt − µt)
T ]. (2.17)

Using the mean update from Equation 2.16, we find the state prediction error

xt − µt = (Atxt−1 + Btut + wt)− (Atµt−1 + Btut)

= At(xt−1 − µt−1) + wt. (2.18)

Thus, we can calculate the covariance Σt of the state prediction by plugging Equation 2.18

into Equation 2.17, which yields

Σt = E[(At(xt−1 − µt−1) + wt)(At(xt−1 − µt−1) + wt)
T ]

= E[(At(xt−1 − µt−1) + wt)((xt−1 − µt−1)
T AT

t + wT
t )]. (2.19)

Since the process noise wt is, by definition, independent of the state prediction error, the
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expectation in Equation 2.19 multiplies out into two terms

Σt = AtE[(xt−1 − µt−1)(xt−1 − µt−1)
T ]AT

t + E[wtw
T
t ]. (2.20)

Recognizing that Σt−1 , E[(xt−1 − µt−1)(xt−1 − µt−1)
T ] and Rt , E[wtw

T
t ], Equation 2.20

becomes

Σt = AtΣt−1A
T
t + Rt, (2.21)

which completes the Gaussian belief update in response to controls.

Measurement Update: (µt,Σt)⇒ (µt,Σt)

The Kalman filter measurement update stems from the fundamental equations of linear es-

timation, which compute the Gaussian posterior of state x after incorporating measurement

z as

E(x|z) = µx + ΣxzΣ
−1
zz (z − µz) (2.22)

cov(x|z) = Σxx|z = Σxx − ΣxzΣ
−1
zz Σzx, (2.23)

where we use µa = E[a] and Σaa = cov(a) to denote the mean and covariance of random

variable a, respectively, and Σab to denote the cross-covariance of random variables a and

b. Note that the formal derivation of Equations 2.22-2.23 can be found in Appendix 2.B.

The measurement update can be obtained by adapting the fundamental equations of

linear estimation (2.22-2.23) to follow the control step. This requires us to derive the

quantities µx, µz, Σxz, and Σzz for the mean update E(x|z), and additionally Σxx for the

covariance update Σxx|z. Since this step follows the control update of the state xt, the belief

is N (µt,Σt) and the following assignments are trivial

µx = µt (2.24)

Σxx = Σt. (2.25)

The expected measurement µz can be computed by taking the expectation of the measure-
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ment equation (2.15) and using Equation 2.24

µz = E[Ctxt + qt] = Ctµt. (2.26)

Using Equations 2.15 and 2.25, the cross-covariance between the state xt and the measure-

ment zt is computed as

Σxz = cov(xt, Ctxt + qt)

= E[xt(Ctxt + qt)
T ]

= ΣtC
T
t = ΣT

zx. (2.27)

The measurement prediction covariance Σzz is similarly computed using the measurement

equation (2.15) and Equation 2.25 to obtain

Σzz = cov(Ctxt + qt, Ctxt + qt)

= E[(Ctxt + qt)(Ctxt + qt)
T ],

which simplifies, by multiplying out terms and applying the definition E[qtq
T
t ] , Qt, to

become

Σzz = CtΣtC
T
t + Qt. (2.28)

Now that the necessary terms have been computed, we can calculate the mean resulting

from the measurement update Equation 2.22, which is restated for convenience

E(x|z) = µx + ΣxzΣ
−1
zz (z − µz).

Plugging in for the terms (Equations 2.24, 2.26-2.28) yields

µt = µt + ΣtC
T
t (CtΣtC

T
t + Qt)

−1(z −Ctµt)

= µt + Kt(z −Ctµt), (2.29)

where Kt is referred to as the Kalman Gain and is given by

Kt = ΣtC
T
t (CtΣtC

T
t + Qt)

−1. (2.30)

31



Algorithm 2 The Kalman Filter algorithm.

Require: Prior belief (µt−1,Σt−1), control (ut) and measurement (zt)
Ensure: Posterior belief (µt,Σt)
1: µt = Atµt−1 + Btut

2: Σt = AtΣt−1A
T
t + Rt

3: Kt = ΣtC
T
t (CtΣtC

T
t + Qt)

−1

4: µt = µt + Kt(zt − Ctµt)
5: Σt = (I −KtCt)Σt

6: return µt, Σt

Similarly, we can form the measurement update of the covariance by plugging into

Equation 2.23, which is restated for convenience

Σxx|z = Σxx − ΣxzΣ
−1
zz Σzx.

Plugging in for the terms (from Equations 2.25, 2.27, 2.28) yields

Σt = Σt − ΣtC
T
t (CtΣtC

T
t + Qt)

−1CtΣt

= Σt −KtCtΣt

= (I −KtCt)Σt. (2.31)

The Kalman Filter Algorithm

The control and measurements updates derived above for linear-Gaussian beliefs give

rise to the Kalman filter algorithm, shown in Algorithm 2.

The control step is shown in lines 1-2, which update the prior belief belt−1 = (µt−1,Σt−1)

to the control posterior belief belt = (µt,Σt). This step incorporates the controls ut and

process noise wt into the belief according to the state transition equation (2.14). The

posterior mean µt is computed in line 1 using the mean update derived in Equation 2.16.

The prior mean µt−1 is updated by the linear state transition function At and the control

action ut, which is transformed into the state space using the mapping Bt. In line 2, the

control update of the covariance is computed using Equation 2.21. The posterior covariance

Σt is the result of a quadratic transformation of the prior covariance by the state transition

matrix At and additive, Gaussian process noise Rt. Note that the posterior belief resulting

from the control step belt can be considered the prior belief for the measurement step.

The measurement update is implemented in lines 3-5. The Kalman gain Kt is computed
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Algorithm 3 The Extended Kalman Filter algorithm.

Require: Previous belief (µt−1,Σt−1), control (ut) and measurement (zt)
Ensure: Posterior belief (µt,Σt)
1: µt = g(µt−1, ut)
2: Σt = GtΣt−1G

T
t + Rt

3: Kt = ΣtH
T
t (HtΣtH

T
t + Qt)

−1

4: µt = µt + Kt(zt −Htµt)
5: Σt = (I −KtHt)Σt

6: return µt, Σt

in line 3 using Equation 2.30. The Kalman gain determines the extent to which a new

measurement is incorporated into both the mean and covariance of the belief. In line 4,

the measurement update of the mean is computed using Equation 2.29 from our derivation.

The prior mean µt is updated according to the innovation, which is defined as the difference

between the actual observation zt and the predicted observation Ctµt. Note that the change

in the mean is determined by the Kalman gain multiplied by the innovation, which has the

effect of incorporating the new observation to the extent that it is innovative. Similarly, in

line 5 the prior covariance Σt is updated to account for the information gain of the obser-

vation zt according to Equation 2.31. In this step, the uncertainty of the belief is reduced

by a fraction determined by the Kalman gain Kt, resulting in the posterior covariance Σt.

2.4.3 The Extended Kalman Filter

One of the shortcomings of the standard Kalman filter is that it is unable to capture non-

linear dynamics in the state transition and measurement functions. The extended Kalman

filter (EKF) broadens the scope of the Kalman filter by linearizing the non-linear functions

about the mean at each update step. In this case, the linear state space representation is

replaced to allow arbitrary state transition and measurement functions as follows

xt = g(xt−1, ut, wt) (2.32)

zt = h(xt, qt). (2.33)

As before, the filtering algorithm is decomposed into separate control and measurement

steps which update the mean and covariance of the belief. In the control step, the mean

is simply propagated through the state transition function g, while the covariance requires
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linearization of g about the mean

µt = g(µt−1, ut) (2.34)

Σt = GtΣt−1G
T
t + VtWtVt, (2.35)

where Gt is the Jacobian of g with respect to xt, Vt is the Jacobian of g with respect to wt

and Wt is the process noise covariance.

Similarly, the measurement update becomes

µt = µt + Kt(Htµt − zt) (2.36)

Σt = (I −KtHt)Σt, (2.37)

where Ht is the Jacobian of h with respect to xt, Kt = ΣtH
T
t (HtΣtH

T
t + Qt)

−1 is the

Kalman gain and Qt is the measurement noise covariance.

These changes give rise to the resulting extended Kalman filter algorithm shown in

Algorithm 3.

2.4.4 The Information Filter

Another important member of the Gaussian filter family is the information filter, which

is the complementary form of the Kalman filter. The information filter is based on the

canonical parameterization of the Gaussian distribution, which is given by the information

matrix Ω and the information vector ξ. The canonical parameterization (ξ,Ω) is related to

the moments parameterization (µ,Σ) used in the Kalman filter as follows,

Ω = Σ−1

ξ = Σ−1µ.

The key point is to note that the information matrix is the inverse of the covariance ma-

trix, which represents the natural inverse relationship between information and uncertainty.

For the purposes of this project, we are primarily concerned with the extended information

filter (EIF) and the control and measurement updates of the second order moment. The

EIF follows from the information filter by linearization in the same way that the EKF
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Algorithm 4 The Extended Information Filter: Information Updates

Require: Previous information (Ωt−1), state transition Jacobian (Gt), process noise (Rt),
measurement Jacobian (Ht) and measurement noise (Qt)

Ensure: Posterior information (Ωt)

1: Ωt = (GtΣt−1G
T
t + Rt)

−1

2: Ωt = Ωt + HT
t Q−1

t HT
t

3: return Ωt

follows from the Kalman filter.

The information matrix updates in the EIF can be derived from the EKF in a very

straightforward manner by inverting the EKF control and measurement covariance updates.

The EIF control update can be found by taking the inverse of Line 2 in Algorithm 3 as

follows:

Ωt = Σ
−1
t = (GtΣt−1G

T
t + Rt)

−1
. (2.38)

Similarly, we can derive the EIF measurement update for the information matrix using

Lines 3 and 5 of Algorithm 3, and taking the inverse to give

Ωt = Σ−1 = (Σt −ΣtH
T (HΣtH

T + Qt)
−1

HtΣt)
−1

. (2.39)

To obtain the EIF measurement update, we apply the matrix inversion lemma to Equa-

tion 2.39. The matrix inversion lemma is a useful matrix relation which is given as

(X−1 + Y T Z−1Y )
−1

= X −XY T (Y XY T + Z)
−1

Y X. (2.40)

Note that a derivation of the matrix inversion lemma is given in Appendix 2.A.2.

By applying the matrix inversion lemma (Equation 2.40) to Equation 2.39, we obtain

the following form of the EIF measurement update

Ωt = Ωt + HT
t Q−1

t HT
t . (2.41)

Note that this is a particularly attractive form because measurement updates are additive.

Thus, multiple measurements can be incorporated in series by simply adding the associated

measurement information.
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Table 2.1: Duality of Kalman Filter and Information Filter
Inversion

Lemma (A + BC−1)
−1

↔ CB−1 − CB−1(A−1 + CB−1)
−1

CB−1

Control Adding Uncertainty (KF) Subtracting Information (IF)

Update (R + Ω−1)
−1

↔ Ω−1 −Ω−1(R−1 + Ω−1)
−1

Ω−1

Measurement Adding Information (IF) Subtracting Uncertainty (KF)

Update (M + Σ−1)
−1

↔ Σ−1 − Σ−1(M−1 + Σ−1)
−1

Σ−1

Later in the work (Chapter 5), we will see that the duality between the information

and Kalman filters can be mathematically advantageous. We conclude our discussion of

the information filter by presenting Table 2.1 to motivate the intuition that underlies this

relationship. We restate the matrix inversion lemma and show that in the linear-Gaussian

filtering problem, it describes the respective gain or loss of information or uncertainty in

the filter updates. The key idea is that adding uncertainty in the Kalman filter corresponds

to subtracting information in the information filter. Similarly, adding information in the

information filter corresponds to subtracting uncertainty in the Kalman filter. Either filter

can be used to compute a given update, but in certain cases it may be advantageous to use

a specific form depending on the size of the matrices (for computing matrix inverses) or the

algebra involved.

2.5 The Particle Filter

In some applications, the linear-Gaussian system underlying the Kalman filter may be too

restrictive to accurately capture the belief distribution and system dynamics. In such cases,

the probability density over state hypotheses may not resemble a unimodal Gaussian belief.

Further, the linearization technique utilized in the EKF may yield a poor approximation

of the underlying dynamics, leading to an accumulation of error that causes the belief to

diverge from the true state.

A Monte-Carlo technique known as the particle filter is a powerful alternative to Gaus-

sian filtering, enabling state estimation of arbitrary distributions with non-linear dynamics.

This non-parametric implementation of the Bayes filter maintains the posterior belief distri-

bution belt as a set of particles Xt, each of which represents a state hypothesis. By sampling

and assigning weight to these particles in a principled manner, the particle filter can capture

the contour of any probability density with any transition dynamics.
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Algorithm 5 The Particle Filter algorithm.

Require: Previous belief (Xt−1), control (ut) and measurement (zt)
Ensure: Posterior belief (Xt)
1: X t = Xt = ∅
2: for i = 1 to N do

3: sample x
[i]
t ∼ p(xt|ut, x

[i]
t−1)

4: w
[i]
t = p(zt|x

[i]
t )

5: X
[i]
t = 〈x

[i]
t , w

[i]
t 〉

6: end for

7: for n = 1 to N do

8: draw i with probability ∝ w
[i]
t

9: add x
[i]
t as X

[n]
t to Xt = 〈Xt,X

[n]
t 〉

10: end for

11: return Xt

We will denote particle i in the set of N samples at time t as X
[i]
t . Each particle consists

of a sampled state hypothesis x
[i]
t and an importance weight w

[i]
t , such that X

[i]
t = 〈x

[i]
t , w

[i]
t 〉.

The set of all N particles at time t is denoted

Xt = {〈x
[1]
t , w

[1]
t 〉, 〈x

[2]
t , w

[2]
t 〉, . . . 〈x

[N ]
t , w

[N ]
t 〉}.

Algorithm 5 shows the key steps in the particle filtering method. This variant of the

Bayes filter recursively constructs the set of particles Xt representing belt from the previous

set of particles Xt−1, updating the belief posterior in response to controls ut and observations

zt. Each filter iteration consists of two key phases. In the first, the algorithm constructs

a temporary set of particles X t from the previous particle set Xt−1 by applying the state

transition and observation functions to each particle (Lines 1-6). The likelihood of the state

hypothesis x
[i]
t represented by each particle is stored as the particle weight w

[i]
t . A second

phase of the algorithm involves resampling from the temporary particle set X t, drawing the

final set of N particles Xt, where the probability of particle i being selected is proportional

to its weight w
[i]
t (Lines 7-10).

Resampling is a very important part of the particle filter algorithm, for it removes

hypotheses that have very low weight and focuses more particles to regions with higher

probability. Before the resampling step, the particles are distributed according to belt.

After the resampling step, the particles are distributed according to the posterior belief

belt = ηp(zt|x
[n]
t )belt (as shown in line 9). At this point, the particle set may contain dupli-
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cates, since particles are drawn with replacement. These duplicate “copies” of hypotheses

allow for stochastic effects on the next filter iteration to be accounted for at a higher res-

olution in regions of the belief space with highest probability. The resampling technique

makes the particle filter very powerful, for it enables the filter to dynamically reallocate a

limited number of samples to the most pertinent contours of any belief distribution with

any transition functions. For further discussion of the mathematical basis and asymptotic

correctness of the resampling step, we refer the reader to [50].

We should also note the key limitation of the particle filter: the curse of dimensional-

ity. Although the particle filter abounds with favorable properties, it requires a sufficient

number of samples along each dimension of the state space to capture a reasonable set

of possible beliefs. This means that the number of samples required for belief estimation

grows exponentially in the number of states to estimate. For example, if m samples were

needed to accurately represent the hypotheses over one state, then O(sm) samples would be

required to capture the entire distribution over s states. It is for this reason that particle

filtering is most effective over a small number of states, as this method suffers from issues

of scalability in higher-dimensional spaces.
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2.A Matrix Mathematics Reference

2.A.1 Matrix Block Inversion

The inverse of a block matrix with blocks A, B, C and D,




A B

C D





−1

=




M11 M12

M21 M22





is defined by the following relations:

M11 = A−1 + A−1BM22CA−1 = (A−BD−1)
−1

C (2.42)

= (A−BD−1C)
−1

(2.43)

M12 = −A−1BM22 = −M11BD−1 (2.44)

M21 = −M22CA−1 = −D−1CM11 (2.45)

M22 = D−1 + D−1CM11BD−1 = (D − CA−1)
−1

B (2.46)

= (D − CA−1B)
−1

. (2.47)

2.A.2 Matrix Inversion Lemma

The matrix inversion lemma is a well-known identity defined as

(A−BD−1C)
−1

= A−1 + A−1B(D − CA−1B)
−1

CA−1, (2.48)

which can be derived from the matrix block inversion formulas by plugging Equation 2.47

into Equation 2.42.

We will make heavy use of a special form of Equation 2.48 in which X = A−1, Y =

BT = C and Z = −D−1. With these substitutions, the resulting equation becomes

(X−1 + Y T Z−1Y )
−1

= X −XY T (Y XY T + Z)
−1

Y X. (2.49)
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2.B Linear Least Squares Estimation

The fundamental equations of linear estimation [7] for computing the Gaussian posterior of

state x after incorporating measurement z are as follows

E(x|z) = µx + ΣxzΣ
−1
zz (z − µz) (2.50)

cov(x|z) = Σxx|z = Σxx − ΣxzΣ
−1
zz Σzx. (2.51)

The derivation of these equations motivates the Kalman filter, and begins by writing a

stacked vector for two jointly Gaussian random variables

y =




x

z



 ,

where

p(x, z) = p(y) = N (µy,Σyy).

The conditional pdf of x given z becomes

p(x|z) =
p(x, z)

p(z)
=

∣
∣
∣2πΣyy

∣
∣
∣

−1/2
e−1/2(y−µy)T Σ−1

yy (y−µy)

∣
∣
∣2πΣzz

∣
∣
∣

−1/2
e−1/2(z−µz)T Σ−1

zz (z−µz)

. (2.52)

The covariance of the conditional distribution can be found by examining the exponent

in Equation 2.52, which results from the subtraction of exponents in the numerator and

denominator of the fraction. Disregarding the resulting −1
2 scaling, the exponent becomes

λ ∝ (y − µy)
T Σ−1

yy (y − µy)− (z − µz)
T Σ−1

zz (z − µz)

∝




x− µx

z − µz





T 


Σxx Σxz

Σzx Σzz





−1 


x− µx

z − µz



− (z − µz)
T Σ−1

zz (z − µz).

We can rewrite this as

λ ∝




x− µx

z − µz





T 


Txx Txz

Tzx Tzz








x− µx

z − µz



− (z − µz)
T Σ−1

zz (z − µz), (2.53)
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where the elements of T are computed using the matrix block inversion formula given in

Equation 2.A.1 to obtain




Txx Txz

Tzx Tzz



 =




(Σxx − ΣxzΣ

−1
zz Σzx)

−1
−(Σxx − ΣxzΣ

−1
zz Σzx)

−1
ΣxzΣ

−1
zz

−Σ−1
zz Σzx(Σxx −ΣxzΣ

−1
zz Σzx)

−1
(Σzz − ΣzxΣ

−1
xx Σxz)

−1



 .

The elements of T correspond to




Txx Txz

Tzx Tzz



 =




Σ−1

xx|z Σ−1
xz|z

Σ−1
zx|z Σ−1

zz|z



 , (2.54)

which yields our desired result for the conditional covariance of x given z (shown in Equa-

tion 2.51):

cov(x|z) = Σxx|z = T−1
xx = Σxx − ΣxzΣ

−1
zz Σzx. (2.55)

The expected value of the state can be found by multiplying out the matrices of the exponent

in Equation 2.53. For convenience, denote ǫx = x− µx and ǫz = z − µz, yielding

λ = ǫT
x Txxǫx + ǫT

x Txzǫz + ǫT
z Tzxǫx + ǫT

z Tzzǫz − ǫT
z Σ−1

zz ǫz

= (ǫx + T−1
xx Txzǫz)

T
Txx(ǫx + T−1

xx Txzǫz) + ǫT
z (Tzz − TzxT

−1
xx Txz)ǫz − ǫT

z Σ−1
zz ǫz.

These last two terms cancel out, since, by the matrix block inversion equation (2.A.1)

Σ−1
zz = Tzz − TzxT

−1
xx Txz

leaving

λ = (ǫx + T−1
xx Txzǫz)

T

︸ ︷︷ ︸

(a−µa)T

Txx
︸︷︷︸

Σaa

(ǫx + T−1
xx Txzǫz)

︸ ︷︷ ︸

(a−µa)

.

It can be seen that this quadratic form matches the exponent of a Gaussian, and indeed

respresents the resulting conditional normal distribution of x given z. Thus

x− E(x|z) = ǫx + T−1
xx Txzǫz

= x− µx − ΣxzΣ
−1
zz (z − µz)
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and the desired result in Equation 2.50 for the expected state estimate is given

E(x|z) = µx + ΣxzΣ
−1
zz (z − µz).
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Chapter 3

Rao-Blackwellized Monte Carlo

Localization With UWB Ranging
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3.1 Introduction

The Global Positioning System (GPS) enables an agent’s location on the Earth to be es-

timated within a few-meter resolution. However, in regions without a clear line-of-sight
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(LOS) to GPS satellites, such as indoor or urban environments, geolocation estimates from

GPS become unreliable or even unavailable. One approach to the problem of geolocation

in harsh environments involves outfitting the mobile agent with an RF ranging sensor and

placing anchor beacons around the environment (which can geolocate via GPS). The dy-

namic agent can obtain range measurements to the known beacons by emitting a request

signal, to which the anchor beacons respond upon receipt. Ranges are computed with a

time-of-flight (TOF) calculation, measuring the round-trip time between signal emission

and response signal detection. The agent can then localize by inferring its position based

on odometry motion data and range measurements from multiple sensors.

While this approach is common in range-based localization problems, two key limitations

are encountered when using traditional narrowband radios: multipath fading and line-of-

sight (LOS) blockage. Multipath fading occurs when interference between multiple signal

path reflections degrades the signal. This inhibits successful ranging as the radio receiver

cannot accurately resolve the shortest path signal, rendering narrowband carriers largely

ineffective. A further limitation is encountered in non-LOS (NLOS) scenarios, in which

obstacles that are impenetrable by narrowband signals completely block signal reception.

Ultra-wideband radio, on the other hand, is known to overcome these limitations. The

fine delay resolution of UWB pulses make it largely immune to multipath fading, and

its extremely large signal bandwidth enables UWB to penetrate obstacle materials more

successfully than narrowband alternatives. While this makes UWB amenable to localization,

there are additional complications that must be addressed. The key issue is to account for

positive biases that occur in UWB range data, which are discussed in detail in Section 3.2.

It is possible to maintain a state estimate of the hidden range bias to each anchor beacon;

however, the bias transitions during robot motion are described by a highly non-linear

process, ruling out simple filtering techniques. Thus, the key challenge in this problem is

to choose an appropriate bias state distribution and an estimation method that is capable

of capturing non-linear bias transitions.

The particle filter has become a standard approach to the localization problem [17], as

it allows for various distinct robot pose hypotheses and admits non-linear transition and

observation functions. To solve the problem of localization amidst hidden range biasing, we

follow the approach of Jourdan et al. [24], where a solution based on the particle filter is

presented. They use this sampling-based Monte-Carlo method to estimate the joint distri-
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bution over robot poses and range biases, taking into account non-linear bias transitions.

While their approach outperforms methods that do not incorporate non-linear transitions,

they are limited by the particle filter’s vulnerability to the curse of dimensionality. The

number of samples required by the particle filter grows exponentially in the state dimen-

sion, meaning that as additional UWB sensors are added to the environment, this approach

for hidden bias estimation suffers from issues of scalability.

In this project we extend their work, showing that the underlying structure of this

estimation problem admits a technique known as Rao-Blackwellization, which can be used to

increase the efficiency of the particle filter. This technique decomposes the joint estimation

problem over poses and biases, allowing bias estimation to be marginalized out of the

particle filter and computed analytically. The resulting Rao-Blackwellized particle filter

(RBPF) only requires sampling from the lower-dimensional robot pose distribution and

scales linearly to accommodate additional UWB sensors.

We begin in Section 3.2 by providing a brief background of ultra-wideband technology

and explaining the properties that make UWB amenable to accurate localization. Section

3.2.1 presents the channel model and two-way UWB ranging protocol, and Section 3.2.2 de-

velops the sensor model used in the work. The probabilistic robot motion model that is used

during localization is shown in Section 3.3. In Section 3.4, we formally describe the particle

filter-based solution to the localization problem and show that the Rao-Blackwellization

technique can be applied to improve the efficiency and scalability of this approach. We

present experimental results in Section 3.5 and conclude the chapter in Section 3.6.

This chapter is appended with additional material. Section 3.7 includes a discussion of

related work in range-based localization and NLOS mitigation and Appendix 3.A provides

additional details of the two-way UWB ranging protocol.

3.2 Ultra-Wideband Radio

3.2.1 Ultra-Wideband Background

Ultra-wideband (UWB) technology offers a promising new alternative to overcome the lim-

itations of previous narrowband ranging systems. Recently approved by the US FCC in

2002, UWB radio is defined as having a bandwidth greater than 500 MHz or a fractional

bandwidth Bf > 20% (Bf = bandwidth
center frequency), compared with narrowband counterparts
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having Bf < 1% [11]. The extremely wide transmission bandwidth of UWB results from

generating short-duration baseband pulses using a technique known as impulse radio (IR).

Transmission of sub-nanosecond pulses results in spread-spectrum signals, which distribute

the signal energy across frequencies ranging from near-DC to tens of gigahertz [53].

The fine time resolution, and corresponding large bandwidth, of impulse radio makes

UWB a strong candidate for ranging applications. UWB pulses are largely immune to

multipath fading due to their fine delay resolution [10]. Each signal path from an emitted

sub-nanosecond pulse can be distinguished upon arriving at the receiver, without substantial

losses from interference or degradation in transmission. Additionally, since UWB signals

span a very wide frequency range that includes low frequency components, they undergo low

material penetration losses. This property makes UWB amenable to ranging applications

in dense indoor or urban environments where the signal must penetrate a variety of building

materials. Further, UWB pulses have a very low duty cycle ( ton

ton+toff
< 0.5%), resulting

in low power consumption. This is a desirable property for the geolocation problem, as it

makes UWB sensors extremely mobile and easily placed with low maintenance requirements.

These desirable properties motivate our discussion of ultra-wideband radio for range-

based localization. We begin by presenting a general UWB channel model in this section.

We then show how UWB radio can be used for ranging in Section 3.2.1, presenting a two-

way ranging protocol that can be used to obtain very accurate range estimates in LOS

conditions. In Section 3.2.2, we develop a sensor model based on experiments in LOS and

NLOS scenarios.

UWB Channel

Developing an accurate characterization of the UWB channel is still an active area of re-

search due to the nascent stage of the technology and the fact that traditional narrowband

models do not accurately model the behavior of impulse-based signals. Here we present a

general channel model that is commonly used to provide intuition for the relative advantages

of UWB radio.

The received signal r(t) can be related to the original signal s(t) using a tapped delay

channel model, which models signal transmission as a process with fading, time-shifting and
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noise. The tapped delay model for the UWB channel can be written as follows [5]:

r(t) =
L∑

l=1

αls(t− τl) + n(t), (3.1)

where L is the number of multipath components, αl is the fading coefficient of the lth path,

τl is the time delay of the lth path, and n(t) is zero mean Gaussian noise. The time delay

τl can be modeled as

τl =

√

(x− xb)2 + (y − yb)2 + dl

c
, (3.2)

where dl is the added length along the lth path induced by NLOS propagation, (x, y) is

the agent sensor location, (xb, yb) is the beacon sensor location, and c = 3× 108 m/s is the

speed of light.

Equation 3.1 can be used to provide insight into the advantage of UWB radio over

narrowband alternatives. When transmitting a narrowband signal st in a multipath envi-

ronment, the time delays τl of each signal path tend to be much smaller than the wavelength

of the signal. The L signal paths overlap in the time domain, meaning that in the aggregate

resulting signal rt the contribution of each path is indecipherable. Further, in the frequency

domain, the overlap of signal paths causes phase interference and results in cancellation and

signal degradation. Thus, the received signal rt provides inadequate information for robust

range estimation.

On the other hand, the fine temporal resolution of UWB enables each of the L multipath

arrivals to be distinctly separated by the receiver, as they arrive in resolvable time intervals.

The added path length of each multipath component dl results in time delays tl that are

larger than the pulse width. This provides multipath-immunity for UWB ranging, making

UWB radio a strong candidate for ranging applications in dense multipath environments.

UWB Time-Based Ranging

Ultra-wideband radio can be used to generate range estimates by measuring the time taken

for a signal to travel between a pair of UWB transceivers. If this time-of-flight ttof can be

accurately measured, the range r (in meters) between radios can then be computed as

r = ttof · c,
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where, again, c = 3.0 × 108 m/s is the speed of light.

Since the local clocks on both radios are not synchronized, it is necessary to use a

two-way technique known as half-duplex ranging. This method measures the round-trip

time taken for a request-response signal transaction between the agent (requester) and the

anchor beacon (responder). To compute the range to a reference sensor, a UWB requester

can measure the time between transmitting a UWB pulse and receiving a response pulse.

The total time ttotal recorded by the requester is equal to twice the time-of-flight, so the

range can be calculated using ttof = ttotal

2 .

Note that this is a simplified description of the actual two-way ranging protocol used,

which accounts for time delays internal to the sensor. A supplementary discussion of the

details of half-duplex ranging is presented in Appendix 3.A.

Challenges of UWB Ranging

While this time-based approach enables accurate ranging in open LOS conditions, range

measurements are often positively biased in NLOS scenarios. Overestimated ranges are

due to channel delays resulting from propagation through non-free space or the receipt of

a reflected multipath component. NLOS can impose a substantial propagation delay as

the signal passes through building materials. Also, when a LOS path does not exist, the

received signal may be a reflected multipath component, traveling a greater accumulated

distance between the pair of radios. In either case, the first path pulse extracted by the

leading edge detection algorithm does not correspond to the direct path. These phenomena

add a positive bias to the range estimate, and thus induce uncertainty in localization.

In the next section, we develop a probabilistic ranging model to capture knowledge of

this uncertainty.

3.2.2 Ultra-Wideband Measurement Model

The UWB sensor model used in the project work is based on the the behavior of range

measurement biases in two scenarios: line-of-sight (LOS), in which there exists a clear

path between range sensors in open space; and non-LOS (NLOS), where obstacles occlude

transmission along the direct path. The general model used for range estimates can be

written as

rt = dt + bt + nt, (3.3)
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Figure 3-1: The Ultra-Wideband Ranging Model in LOS. The x-axis is the true range between sensors
and the y-axis is the measured systematic error (unbiased measurements are at 0), and the error bars give
the standard deviation of the random noise.

where rt is the range, dt is the distance between UWB sensors, bt is the range bias, and nt

is additive noise. In the following sections we build this model in more detail by examining

the two types of biases.

Gaussian Noise in LOS Scenarios

The round-trip time calculation discussed in Section 3.2.1 is approximate in nature, leading

to uncertainty in the range calculation which can be modelled as a stochastic process. In a

testing campaign, we developed a Gaussian model to describe ranging uncertainty in LOS

scenarios.

We attempted to characterize this Gaussian process by gathering range data between a

pair of sensors at various distances with LOS visibility. The distance was increased in 0.25

meter increments from 1 to 14 meters of separation and at each point, 1,000 range samples

were gathered. The resulting data is plotted in Figure 3-1, showing the mean bias µb and

standard deviation σb errorbar at each distance.

This data suggests that the LOS range bias can be reasonably modeled as distance-

varying Gaussian noise, with mean µb(dt) and standard deviation σb(dt). Computing a

linear regression yields

µb(dt) = µm
b dt + µb

b (3.4)

σb(dt) = σm
b dt + σb

b . (3.5)
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Figure 3-2: Ultra-Wideband Range Bias in NLOS [24]. Range data gathered by a mobile robot displays
characteristic biasing as the robot moves around the environment. This data suggests that the bias tends
to remain constant in local regions with constant UWB channel properties, and transitions abruptly when
entering a new region. These effects are due to NLOS transitions, where the UWB channel in different
spatial regions is defined by different multipath and propagation profiles.

The range function in Equation 3.3 then becomes

rt = dt + µb(dt) +N (0, σb(dt)
2), (3.6)

where the bias bt is now a linear function of the distance µb(dt), and the noise term nt is

zero-mean Gaussian noise with covariance σb(dt)
2.

When used in filtering problems, the range function in Equation 3.6 corresponds to the

observation function zt = h(xt) + vt, with zt = rt, vt = N (0, σb(dt)
2) and h(xt) is given as

h(xt) = dt + µb(dt) (3.7)

= µb
b + (1 + µm

b )

√

(x− xb)
2 + (y − yb)

2, (3.8)

where xt is assumed to be the robot pose (x, y, θ)t at time t.

Stochastic Model of NLOS Biasing

In NLOS scenarios, additional positive bias is induced by two phenomena. The first type

of delay occurs when the UWB signal travels through obstacles, in which the pulse is

delayed and distorted during propagation through the obstacle material. The second type

of bias occurs when the signal cannot penetrate obstacles occluding the direct path, and the

received signal is a multipath component which is reflected around the obstacle. The path

of a reflected signal requires more time for transmission, and thus induces an overestimate
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Figure 3-3: Bias Transition Model. This tri-modal distribution represents the transition probabilities for
the bias at a given time step. The central mode represents the hypothesis that the bias bt will remain
relatively unchanged from the prior bias bt−1. The left at right modes represent the possibility that the bias
may undergo a discrete jump if the hidden UWB channel properties change.

in the TOF calculation.

We follow previous work [24] as a starting point, which develops a probabilistic model of

bias transitions resembling a notch. This distribution is motivated by examining the behav-

ior of range measurements as the robot moves around a mixed LOS/NLOS environment.

Figure 3-2 shows range data gathered by the robot as it moves around an environment.

In this figure it is evident that the range bias is constant for short periods of time, but

undergoes discrete jumps between consecutive time periods. The intuition underlying this

behavior is that the UWB channel properties vary in different spatial regions of the map

due to local LOS or NLOS characteristics. Bias estimates tend to remain constant in local

spaces with common UWB channel properties, but jump significantly when crossing the

threshold to an adjacent spatial locality.

This behavior can be captured probabilistically as a notch-shaped distribution, shown

in Figure 3-3. This density accounts for the two possible bias transitions observed at a

given time step; either the bias remains relatively constant, or the robot enters a new

spatial region and the bias jumps a discrete amount. The central mode in this distribution

represents the probability that the bias remains the same during a new time step. The two

modes on the left and right represent the probability that the bias will jump by at least ǫ

to bt = bt−1 ± ǫ (with limits imposed on the extreme values of the bias).

Note that in a practical implementation, the bias transition probability distribution

p(bt|bt−1) also depends on the existence of controls ut 6= ∅ at time t, resulting in the

transition probability p(bt|ut, bt−1).
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3.3 Probabilistic Robot Motion Model

In addition to UWB sensors, our robot receives odometry data from two wheels which we use

to perform control updates during localization. In this section, we present the probabilistic

robot motion model used to compute state transitions.

To capture the relationship between the control input and realized change in robot pose,

robot motion can be decomposed into three components [16]: down-range, cross-range, and

turning motions. Down-range motion, denoted D, corresponds to the distance traveled in

the major axis of movement (forwards and backwards in robot coordinates). Cross-range

motion, C, describes the lateral translation in the direction orthogonal to the major axis,

which models shifting effects such as slippage. The turning component, T , is the turn

performed by the robot during movement. The components of this model are depicted in

Figure 3-4 for an example trajectory.

The state transition equation which models the state update due to robot motion over

a given time interval is

xt = g(xt−1, ut), (3.9)

where the control variable corresponding to this motion model is ut =
[

D C T

]T
and

the components of g corresponding to state variables x, y, and θ are

gx = x + D cos (θ +
T

2
) + C cos (θ +

T + π

2
)

gy = y + D sin (θ +
T

2
) + C sin (θ +

T + π

2
)

gθ = θ + T mod 2π.

This formulation lends itself to a natural probabilistic noise model in which each of the

three motion components are represented as normal distributions. Each distribution is

conditionally Gaussian given the amount of lateral d and rotational t movement reported

by odometry over the current time interval, and is parameterized as

D ∼ N (dµDd
+ tµDt, d

2σ2
Dd

+ t2σ2
Dt

) (3.10)

C ∼ N (dµCd
+ tµCt , d

2σ2
Cd

+ t2σ2
Ct

) (3.11)

T ∼ N (dµTd
+ tµTt , d

2σ2
Td

+ t2σ2
Tt

). (3.12)
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Figure 3-4: Probabilistic Motion Model. The robot motion trajectory (shown on the left) is decomposed
into down-range D, cross-range C and turning T components in the probabilistic motion model (shown on
the right). Each of these components is normally distributed, capturing the stochastic nature of motion
outcomes.

3.4 Monte Carlo Range-Based Localization

Our goal is to accurately estimate the location of a dynamic robot given odometry motion

data and UWB range measurements from multiple anchor beacons within a dense multipath

environment, as in [24]. We restrict our discussion and experiments to the estimation of

a two-dimensional robot pose; however, the method presented is generalizable to larger

problems. We assume a harsh target environment, where GPS signals are unavailable, but

geolocation can be performed by obtaining UWB range measurements in mixed LOS/NLOS

conditions. As discussed in Section 3.2, these range measurements will be positively biased

according to unobservable, spatially-varying UWB channel properties. Thus, to achieve

accurate localization it is necessary to estimate these hidden range biases in addition to the

robot location.

We seek to infer the robot pose xt and range biases bt = {b[1], b[2], . . . b[m]} to each

of m reference sensors at time t based on all past controls u1:t and measurements z1:t.

Probabilistically, this corresponds to the joint distribution over poses xt and biases bt,

which is given as

p(xt, bt|u1:t, z1:t).

Using the sensor and motion models developed in Sections 3.2.2 and 3.3, the evolution of

this inference problem over time can be characterized by a dynamic Bayes network (DBN).

The graphical model corresponding to the network in our localization problem is shown in

Figure 3-5. The robot pose xt at time t is stochastically dependent on the previous pose
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Figure 3-5: Graphical model of state inference in our range-based localization problem.

xt−1 and the motion ut, which is given as the state transition probability p(xt|xt−1, ut).

Similarly, the range bias bt depends on the previous bias bt−1 and the robot motion ut

with bias transition probability p(bt|bt−1, ut). This corresponds to the non-linear NLOS

bias transition model presented in Section 3.2.2. At each time step, the range measurement

zt depends stochastically on the robot pose xt and the range bias bt as the measurement

probability p(zt|xt, bt).

Conventional parametric techniques for maintaining this DBN, such as Kalman filter

approaches, have proven ineffective in capturing the nonlinearity of bias transitions [14].

This problem is addressed by Jourdan et al. [24], where they use a particle filter to main-

tain an estimate of the joint distribution over agent positions and UWB range biases. As

discussed in Section 2.5, particle filters offer a nonparametric implementation of the Bayes

filter which maintains the belief distribution as a finite set of sample particles. Each particle

represents a belief hypothesis drawn randomly according to the prior belief. Particles can

be propagated through arbitrary control and measurement functions, accumulating weight

based on the likelihood of the resulting hypothesis they represent. This technique is pow-

erful because the particle set can approximate a broader range of hypotheses and functions

that cannot be accurately represented by parametric models.

This Monte Carlo approach is well-suited to our range-based localization problem for

several reasons. Foremost, the particle filter admits multiple distinct state hypotheses,

allowing for the distribution over robot poses and range biases to be multi-modal. This can

be crucial in situations where the given information suggests that the robot could be at
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one of many distinct locations (e.g. in either of two identical rooms which would generate

similar observations). Further, the NLOS bias model developed in Section 3.2.2 is based

on the fact that bias transitions are not smooth, and the bias is likely to jump between

distinct values represented by the tri-modal distribution shown in Figure 3-3. The particle

filter also admits non-linear transition and observation functions. The motion and sensor

models used in this problem are both non-linear and can be more reasonably approximated

by using a Monte Carlo method than by filters that employ linearization techniques, such

as the EKF.

While these powerful advantages have made the particle filter a popular approach to

localization, the major drawback of this method is that sampling in high-dimensional spaces

can be inefficient. For this approach to be applicable to a more general class of problems, it is

necessary to accommodate a larger number of states. In our problem formulation, the belief

consists of the robot pose augmented with range biases for each sensor in the environment.

As the number of UWB beacon sensors grows, the particle filter must estimate additional

biases and sample from a higher-dimensional state space. Additionally, if this Monte Carlo

approach is used to estimate a larger robot belief (e.g. three-dimensional location), or if

the sensor infrastructure requires additional state, it will suffer from scalability issues.

In the remainder of this chapter, we extend the work of Jourdan et al. [24] by showing

that their Monte Carlo approach can be made more efficient and scalable by decomposing

the joint state distribution. The resulting Rao-Blackwellized particle filter provides a more

general approach to localization problems with the potential to offer increased performance

on a wider class of problems.

3.4.1 Rao-Blackwellization Technique

A technique known as Rao-Blackwellization has been shown to increase the efficiency and

accuracy of particle filters for DBN structures in which some of the state variables can be

marginalized out exactly [15]. This technique has proven useful in numerous applications,

notably in the implementation of the FastSLAM algorithm [38]. The Rao-Blackwellized

particle filter (RBPF) divides the hidden state variables into two groups, sampling particles

for one group as in the standard PF, while analytically computing the other. This improves

overall efficiency by reducing the dimensionality of the sampling space, and can increase

accuracy by exactly computing the set of tractable variables.
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The motivation for the Rao-Blackwellization technique can be seen as follows. Suppose

the set of state variables st can be divided into two partitions st = {xt, bt}. The posterior

belief p(st|u1:t, z1:t), with controls ut and observations zt, can then be written as the joint

distribution p(xt, bt|u1:t, z1:t). It is possible to decompose a joint distribution using the law

of conditional probability, which is given as

p(a|c) =
p(a, c)

p(c)
, p(c) > 0 (3.13)

for the random variables a and c. This shows that if a and c are conditionally dependent,

then the conditional probability p(a|c) of a given c equals the joint probability p(a, c) nor-

malized over p(c). Note that by multiplying Equation 3.13 on both sides by p(c), we obtain

the following form (sometimes referred to as the chain rule):

p(a, c) = p(a|c)p(c). (3.14)

We can apply Equation 3.14 to the joint distribution p(xt, bt|u1:t, z1:t) over poses xt and

biases bt, substituting a = bt and c = xt to obtain the following decomposition:

p(xt, bt|u1:t, z1:t) = p(bt|u1:t, z1:t, xt) · p(xt|u1:t, z1:t). (3.15)

Equation 3.15 suggests that if p(bt|u1:t, z1:t, xt) is analytically tractable, then the posterior

belief corresponding to the subset of state variables xt can be computed independently.

This can have a substantial impact when applied to Monte Carlo methods, such as the

particle filter, which require a number of samples that grows exponentially in the number

of state dimensions. Instead of sampling from the full distribution p(x, b| . . .), we only need

to sample from the lower-dimensional distribution p(x| . . .). We then separately maintain

p(bt|u1:t, z1:t, xt) by computing it exactly at each time step.

Put differently, to maintain the joint distribution over xt and bt with a particle filter,

each particle would represent a sampled hypothesis of robot pose and range biases, such

that

X
[i]
t = 〈x

[i]
t , b

[i]
t 〉, (3.16)

where x
[i]
t and b

[i]
t are vectors of n and m dimensions, respectively. Thus, to maintain

p(x, b| . . .) it is required to sample from a (n + m)-dimensional space. When the Rao-
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Blackwellization technique is applied, the joint distribution over xt and bt is maintained as

two separate conditional distributions as shown in Equation 3.15. In this case, each particle

consists of a sampled robot pose hypothesis and a corresponding distribution over range

biases, which is given as

X
[i]
t = 〈x

[i]
t , p(b

[i]
t )〉, (3.17)

Thus, it is only necessary to sample from the n-dimensional space of robot poses xt, and

subsequently maintain a bias distribution is each particle.

3.4.2 Simultaneous Pose and Bias Estimation

The Rao-Blackwellization technique can be applied to the range-based localization problem,

allowing us to decompose our joint posterior over the robot state xt and bias state bt, as

in Equation 3.15. Our task is then to derive the necessary filter update equations for

maintaining the conditional distributions corresponding to each partition of the state.

Bias Distribution Estimation

We begin by examining the conditional distribution of the bias state p(bt|u1:t, z1:t, xt). Ap-

plying Bayes rule (Equation 2.4), we obtain

p(bt|u1:t, z1:t, xt) = ηp(zt|u1:t, z1:t−1, xt, bt) · p(bt|u1:t, z1:t−1, xt), (3.18)

where η is a normalization factor. Due to conditional independence (shown in the graphical

model in Figure 3-5), this simplifies to become

p(bt|u1:t, z1:t, xt) = ηp(zt|xt, bt) · p(bt|ut). (3.19)

We can apply the law of total probability (Equation 2.8) to capture the dependence of the

bias transition model on the previous bias bt−1 as follows

p(bt|u1:t, z1:t, xt) = ηp(zt|xt, bt) ·

∫

p(bt|ut, bt−1)p(bt−1)dbt−1. (3.20)

In Equation 3.20, it is clear to see that the conditional bias distribution admits separate

control and measurement updates.
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Note: In Equations 3.19-3.20 we have removed xt from the bias transition model due to

conditional independence, as in our current model the bias update does not depend on the

location of the robot. However, if the bias model varies over position in the environment

(e.g. if a detailed sensor coverage map is available), it is possible to incorporate xt into the

bias transition function. In that case, one would then have to perform forward-backward

inference to capture the smoothed distribution p(bt−1|xt) in the transition integral.

Robot Pose Distribution Estimation

Similarly, we can derive the components of the robot state conditional distribution p(xt|u1:t, z1:t)

arising in Equation 3.15. Note that this corresponds to the standard belief distribution used

in the Bayes filter; however, in deriving the filter, we must account for the dependence of

the observation function on both the robot state xt and the bias state bt. Again, we apply

Bayes rule and conditional independence to obtain the standard recursion

p(xt|u1:t, z1:t) = ηp(zt|u1:t, z1:t−1, xt) · p(xt|u1:t, z1:t−1)

= ηp(zt|xt) ·

∫

xt−1

p(xt|ut, xt−1)p(xt−1|u1:t−1, z1:t−1)dxt−1. (3.21)

We can incorporate the bias bt by using the law of total probability (Equation 2.8), which

gives

p(zt|xt) =

∫

bt

p(zt|xt, bt)p(bt)dbt. (3.22)

Altogether, the conditional distribution over the robot state is written by combining Equa-

tions 3.21-3.22, yielding

p(xt|u1:t, z1:t) = η

∫

bt

p(zt|xt, bt)p(bt)dbt

·

∫

xt−1

p(xt|ut, xt−1)p(xt−1|u1:t−1, z1:t−1)dxt−1. (3.23)

3.4.3 Rao-Blackwellized Particle Filter

The Rao-Blackwellized particle filter algorithm is shown in Algorithm 6, and is comprised

of the filter updates derived in the previous section which culminated in Equations 3.20 and
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Algorithm 6 The Rao-Blackwellized Particle Filter algorithm.

Require: Previous belief (Xt−1), control (ut) and measurement (zt)
Ensure: Posterior belief (Xt)
1: X t = Xt = ∅
2: for i = 1 to N do

3: sample x
[i]
t ∼ p(xt|ut, x

[i]
t−1)

4: compute p(b
[i]
t , ut) =

∫

b
[i]
t−1

p(b
[i]
t |ut, b

[i]
t−1)p(b

[i]
t−1)db

[i]
t−1

5: w
[i]
t =

∫

b
[i]
t

p(zt|x
[i]
t , b

[i]
t )p(b

[i]
t )db

[i]
t

6: compute p(b
[i]
t |ut, zt, xt) = ηp(zt|x

[i]
t , b

[i]
t ) · p(b

[i]
t |ut)

7: X
[i]
t = 〈x

[i]
t , p(b

[i]
t ), w

[i]
t 〉

8: end for

9: for i = 1 to N do

10: draw i with probability ∝ w
[i]
t

11: add 〈x
[i]
t , p(b

[i]
t )〉 to Xt

12: end for

13: return Xt

3.23. We utilize the RBPF for maintaining the bias-augmented belief state in our range-

based localization problem as a particle set, with particle i given as

X
[i]
t = 〈x

[i]
t , p(b

[i]
t )[1], p(b

[i]
t )[2], . . . p(b

[i]
t )[M ], w

[i]
t 〉,

where x
[i]
t is a sampled robot pose, p(b

[i]
t )[j] is the range bias distribution corresponding to

sensor j, M is the number of sensors, and w
[i]
t is the importance weight assigned to the

particle. For convenience in notation, we will assume there is one sensor M = 1 in the

environment and refer to the bias distribution as p(b[i]), without loss of generality.

In this section, we discuss in detail the steps of the algorithm and their implementation

in our solution to the localization problem.

Choice of Representation

In Chapter 2 we presented the Bayes filter, and showed that any implementation thereof re-

quires a representation of the state distribution p(st), a state transition model p(st|ut, st−1),

and an observation model p(zt|st). When decomposing the state variables with the Rao-

Blackwellization technique, one must then choose these three distributions for each partition

of the hidden variables.

As we have stated, our goal is to utilize Rao-Blackwellization to improve the efficiency of
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particle filtering for localization, allowing us to maintain the robot pose with the traditional

sampling-based approach and exactly compute the range bias distribution in each update.

In this case, the density of the robot pose p(xt) is represented as a sampled particle set and

the transition function due to motion p(xt|ut, xt−1) can be computed in the typical manner.

The observation function p(zt|xt), however, is dependent on the range bias bt.

Thus, the remaining task is to choose a representation for the hidden range bias distri-

bution and the corresponding transition and observation models. In order to analytically

compute the bias distribution for each particle at each timestep, the representation must ad-

mit a closed-form update. Further, it must enable the observation function p(zt|xt), which

integrates over the bias density (Equation 3.22), to be computed. Typical choices would

include exponential family functions, such as the normal distribution; however, given the

NLOS sensor model and non-linear notch transition model (Section 3.2.2), the selection of

reasonable representations is more limited. We chose to model the bias density with a dis-

crete multinomial distribution, as this admits closed-form updates and naturally captures

the notch transition model. This representation also enables simple computation of the

importance weight integration (line 5) by iterating over discrete bins in the multinomial.

The implementation is discussed side-by-side with the algorithm in more detail below.

Discussion of RBPF Implementation

As in the standard particle filter (Chapter 2.5), the RBPF method consists of two main

steps. The first step is in lines 1-8 of Algorithm 6, which creates a temporary set of particles

X t based on the controls ut and observations zt in the filter iteration at time t. The second

step produces the resulting particle set Xt by resampling the temporary set X t according to

the particle weights wt. We begin by discussing the control and measurement update steps

used to generate X t.

The control updates for the conditional distributions of the robot pose and bias are

performed in lines 3 and 4 as follows:

• Line 3: Implements the state transition of the robot pose corresponding to robot

motion. This is performed by sampling controls from the motion model (Section 3.3)

and applying them to the previous robot pose xt−1. The raw controls, distance d

and rotation t, are used to sample from the downrange D, crossrange C, and turn T

distributions defined in Equations 3.10-3.12.
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Figure 3-6: Bias Transition Update. The bias multinomial distribution p(bt−1) is updated in response
to controls ut by computing the weighted sum of the transition probability of each multinomial bin. This
computation is depicted graphically in the box in the center of the figure, showing the contribution of each
bin transition to the resulting distribution p(bt), shown on the right.

• Line 4: Implements the bias transition model discussed in Section 3.2.2, which up-

dates the bias distribution p(b
[i]
t ) of particle i in response to controls ut. To incorporate

the dependence on the previous bias, we integrate over the previous bias distribution

p(b
[i]
t−1). Since the bias is maintained as a discrete multinomial density, this is im-

plemented as a summation over each bias bin convolved with a corresponding notch

transition model. This is depicted in Figure 3-6 and can be described as

p(bt|ut) =
B∑

j=1

p(bt|ut, βj−1 < bt−1 ≤ βj)
︸ ︷︷ ︸

notch transition

p(βj−1 < bt−1 ≤ βj)
︸ ︷︷ ︸

bias bin

, (3.24)

where B is the number of bins in the bias multinomial and βj is the upper boundary

of the bin interval j. For a given bin (βj−1 < bt−1 ≤ βj), the contribution to the up-

dated density p(bt|ut) is computed by multiplying by a corresponding notch transition

multinomial located about the center of the bin
βj−1+βj

2 . The sum over all of these

resultants yields the updated distribution p(bt|ut), and is a well defined probability

density (no normalization is required).
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Figure 3-7: Range Measurement Update. The robot, at pose (x, y), obtains a range measurement to the
sensor beacon located at (xb, yb). The predicted observation is given by the euclidean distance d between
the robot and sensor plus the bias b with Gaussian noise (shown in blue). The importance weight wt of
a particle is computed as the observation probability p(zt|xt, bt), whose computation is depicted in red.
The probability of obtaining the observed range z is calculating by evaluating the sensor model Gaussian
p(zt|xt, bt) at range zt = z.

The measurement updates for each distribution take place in lines 5 and 6 as follows:

• Line 5: Implements the importance weight w
[i]
t calculation for particle i by computing

the observation probability p(zt|x
[i]
t ). The observation model depends on the range

bias b
[i]
t , which is incorporated by integrating over the bias distribution p(b

[i]
t ). For

the discrete multinomial bias density, this is computed as a summation, given as

p(zt|x
[i]
t ) =

B∑

j=1

p(zt|x
[i]
t , βj−1 < b

[i]
t ≤ βj)

︸ ︷︷ ︸

sensor model

p(βj−1 < b
[i]
t ≤ βj)

︸ ︷︷ ︸

bias bin

, (3.25)

where B is the number of bins in the bias multinomial and βj is the upper boundary

of the bin interval j. This computation is depicted in Figure 3-7 for one bias bin

(βj−1 < b
[i]
t ≤ βj), where the bias b used in the calculation is the center of the

corresponding bin b =
βj−1+βj

2 . The distance d between the robot x
[i]
t = (x, y) and a

known sensor (xb, yb) is computed as

d =
√

(x− xb)2 + (y − yb)2. (3.26)
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In the figure, omitting the indices of the particle, the predicted measurement distribu-

tion p(zt|xt, bt) is a Gaussian (Section 3.2.2) centered about a mean predicted range

of d + b. The likelihood of obtaining the actual range z is computed by evaluating

zt = z in the predicted observation function.

• Line 6: Implements the bias measurement update, which calculates the probability

of each possible bias given the observed range measurement. The bias distribution

is updated by iterating through the discrete multinomial distribution and computing

the measurement probability for each bin. Each bin in the multinomial distribution

can be updated as

p(α < b
[i]
t ≤ β|ut, zt, x

[i]
t ) = ηp(zt|α < b

[i]
t ≤ β, x

[i]
t ) · p(α < b

[i]
t ≤ β|ut, x

[i]
t ), (3.27)

where α and β are the lower and upper bin boundaries, respectively. The right-

hand term p(α < b
[i]
t ≤ β|ut, x

[i]
t ) is simply the current bin value obtained during the

control update. The measurement probability p(zt|α < b
[i]
t ≤ β, x

[i]
t ) is computed as in

the importance weight computation described above and shown in Figure 3-7. After

iterating through all regions in the multinomial, the distribution is then normalized.

The resampling phase of Algorithm 6 in lines 9-12 is identical to that of the standard

particle filter. The final particle set Xt is obtained by sampling particles from X t, where

each particle i is drawn according to its importance weight w
[i]
t .

3.5 Experiments and Results

In order to evaluate the Rao-Blackwellized particle filter localization algorithm, we per-

formed two experiments in a small indoor environment in simulation. In both experiments,

a mobile robot traversed a path approximately 50 m in length turning to follow three corri-

dors in an office-like scenario. The map was 50 m on a side and UWB beacons were placed

at randomized locations. The environment was filled with walls and obstacles to generate

mixed LOS and NLOS conditions. To quantify the accuracy of localization, we measured

the realized positional error of the robot at the goal location. In each evaluation, we com-

pared the RBPF approach presented in Section 3.4 to a particle filter estimating the full

joint distribution over robot poses and range biases.
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Figure 3-8: Scalability of Localization Performance. This graph shows error bars for the positional
accuracy of the Particle Filter (PF) and Rao-Blackwellized Particle Filter (RBPF) with a constant number
of particles and variable number of UWB beacons. The RBPF scales well to estimate an increasing number
of UWB range biases, using the additional measurement information to improve localization performance.
The PF, on the other hand, cannot accurately represent the belief distribution with only 200 particles as
the dimension of the belief space increases. Positional accuracy of the PF improves from 3 to 6 beacons, but
thereafter diverges and realizes worse performance than using odometry alone (which obtains an average
positional error of 1.3 m).

Evaluation of Algorithm Scalability

The first evaluation tested the scalability of the localization algorithms by increasing the

number of UWB beacons in the environment, while limiting the filters to a constant number

of particles. We varied the number of beacons from 3 to 30, limited the particle filters to

200 samples and performed 40 trials for each environment.

The results of these trials are shown in Figure 3-8. As the number of UWB beacons

is increased, the RBPF scales well to estimate additional biases and use the information

gain to achieve better localization performance. The PF, however, cannot maintain an

accurate position estimate as the dimension of the belief space increases with additional

beacon biases. The particle filter is able to utilize sensor information to improve localiza-

tion performance from 3 to 6 beacons, but diverges as the state space if further increased

with additional beacons. This divergence is somewhat counterintuitive; one would expect

additional sensor information to improve the quality of localization. Since the particle filter

is limited to 200 particles, it is overwhelmed with increasing numbers of states and left to

choose from a set of poor hypotheses. As a result, the robot becomes nearly lost and realizes
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Figure 3-9: Comparison of Positional Accuracy. This graph shows error bars for the positional accuracy of
the Particle Filter (PF) and Rao-Blackwellized Particle Filter (RBPF) over a varying number of particles. In
an environment with 10 UWB beacons, the RBPF consistently realizes more accurate and reliable positional
accuracy than the PF. The RBPF requires very few particles to achieve reasonable localization, and scales
well to utilize additional sensor information as shown in an additional plot with 25 UWB beacons. The
ellipses and rectangles in the diagram indicate points of equivalent computational time between methods.

worse performance using sensor measurements than with odometry alone (which obtains an

average positional error of approximately 1.3 m).

This behavior hints at an underlying insight into the advantage of decomposing the joint

distribution through Rao-Blackwellization; it is in the nature of this problem to maintain

separate estimates of the robot pose and hidden biases. The RBPF ensures that particles

are distributed to best represent the space of robot pose hypotheses. In the particle filter, on

the other hand, the distribution of samples in the robot pose subspace of a high-dimensional

state space can deplete to a sparse and incorrect representation without a sufficient number

of particles.

Comparison of Positional Accuracy

The second evaluation tested the positional accuracy of each algorithm as the number of

particles available to the filter was varied. During this experiment, we maintained a constant

number of UWB beacons and increased the number of particles in each filter, performing

twenty trials for each data point. The motivation for this test was to demonstrate that the

RBPF uses particles more efficiently, achieving better performance with a smaller number
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of particles.

The results of the experimental trials are shown in Figure 3-9. In an environment with

10 UWB beacons, the average positional error of the particle filter generally decreases as

more particles are available to represent additional hypotheses. This downward trend is

very slow, indeed even with 104 particles (not shown in graph), the particle filter is still

unable to localize as well as the RBPF with only 10 particles.

It is interesting to note that the positional accuracy of the RBPF does not noticeably

improve with additional particles, as one would assume. This suggests that the RBPF makes

very efficient use of particles and can accurately identify salient robot pose hypotheses.

This also suggests that maintaining a separate, even coarse, representation of range biases

as a multinomial is very effective in capturing non-linear bias transitions. Also note that

the graph contains an additional plot of the average positional error of the RBPF in an

environment with 25 UWB beacons, which demonstrates similar results.

There is an important issue to address regarding the comparisons in these two evalua-

tions. We have not discussed the additional space and computation requirements required

by the RBPF, which suggest that the number of particles is not a straightforward com-

parison. While this is the case, these evaluations provide insight for the behavior of both

algorithms. Additionally, we have measured running times for each filter update during

execution to provide comparison on the basis of computation. In Figure 3-9, we have shown

two points of equivalent computation time between the RBPF and the PF indicated by

the ellipses and rectangles. The average time per filter update required for the RBPF with

10 UWB beacons and 10 particles, is equivalent to the average time per filter update re-

quired by the PF with 10 UWB beacons and 150 particles (shown with ellipses). Similarly,

the rectangles shown in Figure 3-9 indicate a computational time equivalence between the

RBPF at 80 particles, and the PF at 1000 particles, for 10 UWB sensors. With this added

dimension, it becomes clear that the RBPF algorithm produces superior results in typical

operating conditions.

3.6 Conclusion

In this section, we have presented an improvement of the Monte Carlo approach to UWB

range-based localization by applying the Rao-Blackwellization technique. This technique
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enables the joint distribution over robot poses and range sensor biases to be decomposed into

two simpler distributions: a distribution over robot poses; and, a conditional distribution

of sensor biases with respect to robot poses. Rather than sampling particles from the full

joint distribution, it is only necessary to sample robot poses and, subsequently, analytically

compute bias estimates for each particle. We have shown that the Rao-Blackwellized particle

filter outperforms a standard particle filter approach to state estimation of a joint posterior

over robot poses and range sensor biases. The RBPF results in both greater scalability to

environments with more UWB beacons and better positional accuracy during localization.

3.7 Related Work

In this section we discuss related work in the problems of range-based localization and

NLOS mitigation.

Previous Work in Range-Based Localization

Our work was primarily based on the Monte Carlo approach to UWB-based localization

presented in [24], however other approaches have been presented using other carriers and

different localization techniques. In [44], an EKF-based approach is used for indoor local-

ization with the Cricket system, in which each sensor transmits on both RF and ultrasonic

channels. While this hybrid sensor avoids most bias issues, many beacons are required per

room and their EKF approach is subject to periodic failures. A positioning system is de-

veloped in [30] uses signal measurements between IEEE 802.11b wireless Ethernet nodes.

While they are able to overcome biasing and infer the location of a mobile agent, they re-

quire a substantial training phase to build a sensor map of the environment. An interesting

alternative is presented in [41], where magnetic field sensors are used to overcome the NLOS

biasing limitations of RF sensors. They do not use an explicit sensor noise model, but rather

use a least-squares method to estimate the location of a mobile robot. For further reading

on localization in wireless networks we refer the reader to [21, 20].

Previous Work in NLOS Mitigation

Numerous techniques have been explored to cope with the biases induced by NLOS signaling

conditions. Statistical information about the NLOS error is used in [54], where a time history
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of the variance of ToA measurements is used to identify NLOS observations. Subsequently,

they reconstruct the equivalent LOS measurement after detecting NLOS. This technique

was applied to obtain rough position estimates using mobile GSM telephones, but it is

unclear if this method is applicable to UWB measurements.

Similarly, biased and unbiased Kalman filters are employed in [19, 31] to determine

if measurements correspond to LOS or NLOS signal paths. Then position estimates at

consecutive time intervals are smoothed by an additional filter to ensure a continuous robot

trajectory. Also, by building a scattering model of the environment, ToA statistics can

be constructed and used with techniques such as maximum likelihood (ML) to mitigate

the effects of NLOS error [3, 4]. Both of these techniques, however, require a substantial

training period to model the target environment.

3.A Ultra-Wideband Ranging

There are a number of techniques that enable positioning using RF sensors. Conventional

approaches are based on angle of arrival (AOA), received signal strength (RSS), and time

of arrival (ToA) calculations. Time-based schemes such as ToA are well-suited for ultra-

wideband signals, because they provide great accuracy by exploiting the fine time resolution

of UWB. In this section we discuss a time-based ranging method that we utilize for robot

localization.

Communication and Ranging Protocol

Ultra-wideband radio can be used to generate range estimates by measuring the time taken

for a signal to travel between a pair of UWB transceivers.

In a typical RF communication scheme, a transmitter emits waveform symbols within

constant time segments called frames. The receiver can use a correlation-based approach to

identify and decode the transmitted data within the frame. Shifted versions of a template

signal are used to compute the correlation with a received signal, resulting in correlation

peaks at the locations of matching waveforms. The time delay which results in the largest

correlator output can then be used as the ToA estimate for ranging.

Conventional serial-based searching over each bin becomes intractable as the set of

possible delay positions is very large in comparison to the UWB bin size. Further, it is
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impractical to continuously sample the high resolution UWB signal at the Nyquist rate,

especially at beacon sensor locations where low power consumption is very desirable.

To overcome this challenge, the template correlation search is typically computed using

a coarse-to-fine method, which consists of an acquisition phase followed by a payload phase.

Acquisition is the process of synchronizing the radios. The goal is to identify the region in

the signal frame, or lockspot, where the receiver can expect the payload data to arrive. A

UWB link is created by sending several data frames called the acquire preamble. The receiver

performs signal strength integration over coarse-sized windows within the frame, identifying

the sub-frame region that contains the most signal energy. By placing the lockspot at this

location, the uncertainty region for the payload arrival is drastically reduced.

The payload phase involves a fine resolution correlation-based search over the region

surrounding the lockspot. The correlation output can then be processed to find the first

path pulse, corresponding to the ToA of the ranging payload. Once this ToA is accurately

measured, it is straightforward to compute the distance between sensors by using the ve-

locity of the signal (in this case the speed of light c). However, such a precise measurement

requires the clocks on both sensors to be synchronized, which is not the case in practical

UWB systems.

Half-Duplex Ranging

A common ranging approach that alleviates the need for prior synchronization is known as

half-duplex ranging [32]. This method measures the round-trip time taken for a request-

response signal transaction between the agent (requester) and the anchor beacon (respon-

der). In simplistic terms, this can be likened to sonar ranging, which measures the time

elapsed between emitting a sonar ping and receiving an echo from the target object. The

distance to the object is then computed using half of the round-trip time. Similarly, to

compute the range to a reference sensor, a UWB requester can measure the time between

transmitting a UWB pulse and receiving a response pulse. The challenge, however, is to

account for positive biasing of the two-way time-of-flight due to internal delays in the sensor.

Three types of internal delays create errors in measuring the round trip time for a signal

transaction between sensors:

1. Electrical Delay (telec): Two forms of electrical delay add to the round trip time:

time in transmission telec−out required to create a pulse in internal logic and send it
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to the antenna; and time during reception telec−in for the pulse to travel from the

antenna back through internal logic. Since each transceiver undergoes both delays

during ranging, we can lump them together as telec−A = telec−in−A + telec−out−A for

sensor A. Note that the each radio pre-computes its own constant electrical delay on

startup.

2. Acquisition Delay (tacq): The radios use a separate coding scheme to transmit the

acquire preamble for synchronization, which adds a number of frames to the trans-

mitted signal. This process identifies a lockspot within the frame window in which

the payload signal is expected to arrive.

3. Leading Edge Delay (tled): When a payload ranging pulse is received, the time window

surrounding the lockspot must be processed and searched to detect the location of the

first pulse component. A leading edge detection algorithm identifies the first multipath

component received, which corresponds to the most direct pulse path. The time offset

from this peak to the lockspot tled is an additional bias.

These delays and the resulting round-trip time calculation between radios A and B are

depicted in Figure 3-10. In this diagram, the independent timers in each radio are shown

along the respective time lines tA and tB. The ranging process begins when radio A emits a

request at tA = 0. The request signal undergoes an electrical delay telec−out−A before being

transmitted from the antenna into open air. The signal then incurs a time-of-flight delay

ttof before reception by the antenna of radio B. Note that this delay ttof corresponds to the

exact range we wish to calculate.

The signal undergoes an electrical delay in radio B telec−in−B, traveling from the antenna

to internal logic. At this point, the radio timers tA and tB are not synchronized, and a delay

of tacq is required to correct for this in the acquisition phase, which processes the acquire

preamble frames of the signal packet. Radio B sets its clock to tB = 0 at the coarse

estimation of the payload arrival time, and at this point the radios are synchronized. The

first path pulse is found using a leading edge detection algorithm and the corresponding

offset tled−B occurs before the lockspot tB = 0. The response signal is emitted from the

antenna of radio B at tB = telec−out−B. Note that the response signal is appended with

information packets that contain the timing delays incurred on radio B, namely telec−B,

tacq and tled−B.
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Figure 3-10: Half-Duplex Ranging Method: Radio A computes the range to radio B by using a two-way
time-of-flight measurement and accounting for internal time delays.

The response signal undergoes the second time-of-flight ttof delay, before reception by

radio A’s antenna, and then propagates through an additional electrical delay telec−in−A.

Since radios A and B are synchronized, the lockspot of radio A at tA = tround−trip represents

the coarse estimation time of the ranging pulse arrival. The leading edge detection algorithm

then finds the time offset tled−A before tA = tround−trip at which the direct path pulse occurs.

Thus, the round-trip time tround−trip is the total of all of the delays

tround−trip = telec−out−A + ttof + telec−in−B + tacq + tled−B + telec−out−B

+ttof + telec−in−A + tled−A.

The desired time-of-flight ttof can then be determined as

ttof =
tround−trip − telec−A − telec−B − tacq − tled−A − tled−B

2
.
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Finally, the range r (in meters) between radios A and B can be computed as

r = ttof · c,

where c = 3.0 × 108 m/s is the speed of light.
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Chapter 4

Planning in Belief Space With

Trajectory Search
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In the following three chapters we incrementally develop a novel and efficient approach

for planning in belief space. To date, methods for planning an optimal sequence of actions

that consider robot belief distributions have been met with limited success due to the

prohibitive size of the robot belief space. In this work, we show that by employing the linear-

Gaussian assumption for robot beliefs and using a sampling-based approach to construct a

representative subset of this belief space, planning in belief space can be performed tractably

in a principled manner.
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4.1 Introduction

For mobile robots to autonomously perform complex tasks, they must have the ability

to plan a viable sequence of actions that achieves a desired goal with safe and reliable

execution. One of the key challenges faced in attaining robust autonomy is to cope with

the uncertainty that pervades real-world interactions. The perceptual limitations of a robot

leads to incomplete information about the true state of the world; as the robot becomes

more uncertain of its state, it is much more prone to failure. Since the level of reliability in

performance is often directly linked to uncertainty in the robot’s belief of the world, it is

paramount that the planning algorithm choose actions that minimize belief uncertainty.

In this work, we are concerned with the problem of motion planning under uncertainty

for mobile robots. To navigate safely and achieve robust performance, it is essential that

robots choose paths that result in minimal belief uncertainty, thereby mitigating the chance

of colliding with objects or becoming lost. The intuition underlying this approach is that it

may be preferable to detour from paths with higher expected uncertainty, even if they are

much shorter. If the robot biases its plans toward trajectories with better sensor coverage

and higher expected information gain, the robot can achieve higher reliability in lieu of

faster, but more risky, performance.

The maturing field of probabilistic robots has made it possible to capture the uncertainty

inherent in robot actions, observations and beliefs with probability theory, enabling the evo-

lution of robot-environment interactions to be modelled as a network of stochastic processes.

Recursive filtering algorithms, such as the Kalman filter, make it possible to maintain an

estimate of the robot’s belief uncertainty as a probability distribution, which is updated in

response to non-deterministic actions and observations. Methods using probabilistic state

estimates have achieved great success in applications such as robot localization; however, to

date, robust and scalable methods that incorporate uncertainty into the planning process

are still to be desired.

Traditional solutions to motion planning rely on simplifying assumptions of the robot’s

belief to exploit the efficiency of well-established optimization and search algorithms. If it

is assumed that perfect knowledge of the robot’s pose is available, a routine search over

possible states can be used to find a solution path; however, such techniques are not robust

in real-world scenarios where the robot pose is estimated from incomplete information of
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observations and dynamics. The Markov Decision Process (MDP) [6] does admit non-

deterministic action outcomes while generating a global control policy, but assumes the

robot can observe the full state of the environment after each action. While this may be

reasonable if the pose uncertainty remains small, in most real-world robot problems sensor

limitations play a key role in determining the certainty of the robot’s belief state.

The restrictive assumptions and limited performance of traditional planning algorithms

motivate the development of methods that create plans utilizing the knowledge of uncer-

tainty available in the probabilistic state estimate. Modern approaches to planning with

incomplete state information are typically based on the partially observable Markov decision

process (POMDP) model [46] or cast as a graph search through belief space [9]. Computing

POMDP solutions requires finding an optimal action for each possible belief in the entire

belief space. While the POMDP provides a general framework for belief space planning, as

the size of the belief space grows POMDP techniques become computationally intractable.

The complexity of the solution grows exponentially in both the number of possible control

outcomes and the number of potential observations. Numerous approximation algorithms

continue to mitigate the problem of scalability [40, 45, 47], but to date POMDP techniques

still face computational issues in addressing large problems.

A promising alternative for belief space planning involves graph search over trajectories

through belief space. In general, trajectory search is subject to similar scalability issues as

POMDP techniques, wherein solutions become computationally infeasible as the belief space

grows larger. While the formal POMDP model is only tractable for very small problems,

the key insight for efficient trajectory search is that we are only concerned with the subset

of beliefs the robot may actually experience. Randomized motion planners, such as the

Probabilistic Roadmap (PRM) [28], have proven successful in solving complicated planning

problems by limiting their scope to selected regions in the state space. The PRM algorithm

approximates the topology of the configuration space with a graph structure of trajectories

between accessible poses in free space.

Our goal is to apply the intuition underlying the PRM to belief space planning. We

seek to use PRM methodology to overcome the POMDP complexity in the same way that

the PRM has successfully solved high-dimensional motion planning problems; namely, by

generating a compact representation of the belief space. Ideally, the PRM would do this

by first limiting the scope of search to robot beliefs that are realizable, and then building a
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trajectory graph exclusively within this free space.

Even with a simplified representation of the belief space, scalability remains a limiting

factor, as the branching factor of search through belief space is equal to the number of

potential observations. For a robot using ranging sensors, incorporating all possible mea-

surements at a given belief state yields a set of posterior beliefs that becomes intractably

large. It is possible to overcome this limitation, however, by choosing a suitable belief rep-

resentation. If one employs the common assumption that the belief state can be maintained

as a single-mode Gaussian distribution, the effects of stochastic controls and potential mea-

surements can be predicted in closed form using Kalman filter updates. We show that by

also assuming the maximum likelihood observation at each belief, the Kalman filter mean

updates become a linear process. This helps to isolate the search process to mean-belief

trajectories, while also guaranteeing that straight-line trajectories represent well-defined

filter updates.

In this chapter, we present a belief space variant of the PRM algorithm that utilizes the

linear-Gaussian assumption to incorporate uncertainty into planning. Our general approach

based on trajectory search is developed here and then further optimized in Chapter 5,

culminating in the Belief Roadmap (BRM) algorithm in Chapter 6.

We begin in Section 4.2 by presenting the Probabilistic Roadmap (PRM) algorithm,

which enables efficient motion-planning in robot configuration space by creating a sim-

plified graph representation of the space. Our goal in Section 4.3 is to extend the PRM

methodology to belief space to develop a tractable approach to planning with incomplete

states. While the PRM cannot generally be applied to belief space, we show in Section 4.3.2

that by using Gaussian beliefs, a linear form of Kalman filter updates can be derived to ad-

mit PRM graph generation and search in the Kalman belief space. The resulting trajectory

search algorithm is shown in Section 4.3.3, which finds a goal path of minimal uncertainty

by propagating Kalman filter predictions of belief uncertainty through the trajectory graph.

The chapter is concluded with a discussion in Section 4.4.

4.2 PRM-Based Planning in Configuration Space

The Probabilistic Roadmap (PRM) algorithm [28] can be used to produce a collision-free

path between start and goal positions given a map and robot dimensions. The PRM method
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creates a graph of potential trajectories, then performs trajectory search through this graph

to find a valid path between the start and goal. We begin this section by motivating the

PRM algorithm from the formulation of the general motion planning problem.

The set of all possible robot poses within the map is known as the configuration space

[34], which is denoted C. This set can be partitioned such that C ≡ Cfree ∪ Cobst, where

Cfree is the subset of all collision-free poses and Cobst is the subset of all poses resulting in

collision with obstacles. In motion planning problems, the task is to find a path between

start xstart and goal xgoal locations by searching for an optimal series of trajectories that

lie exclusively within Cfree. In real-world scenarios, it may be intractable or unreasonable

to compute an exact representation of Cfree; the PRM algorithm overcomes this challenge

by approximating Cfree using a sampling-based technique.

4.2.1 PRM Algorithm

The Probabilistic Roadmap provides a general framework for efficiently solving fully ob-

servable motion planning problems in two stages, as follows [28, 8]:

1. Pre-processing phase: The PRM builds and maintains a trajectory graph, or

roadmap, that is a simplified representation of Cfree. Robot poses are sampled from

C according to a suitable probabilistic measure and an inexpensive test is performed

to determine if the pose lies in Cfree or Cobst. Desirable poses within Cfree are re-

tained and added as nodes in the trajectory graph. Edge trajectories are then created

by computing the visibility to other nodes in the graph and retaining collision-free

trajectories to the k nearest neighbors.

2. Query phase: Given a start and goal pose, a graph search algorithm finds a path

through the trajectory graph that connects the corresponding start and goal nodes.

If the start or goal location is not in the trajectory graph, an attempt is made to first

add and link a corresponding node to the graph, as in the pre-processing phase.

The power of the PRM algorithm lies in the pre-processing phase, which captures salient

features of the configuration space, resulting in a compact representation amenable to

search. For planning problems in high-dimensional spaces, Cfree can be approximated as

a discrete graph by sampling poses from C, retaining desirable samples and computing the

visibility between them.
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The PRM is also versatile, for it provides a very general framework that can be applied

to a large class of problems and customized for specific tasks. The pre-processing phase

allows considerable freedom in choosing sampling strategies, and the query phase can be

implemented with any searching algorithm. Sampling strategies can be used to capture

different topological features of Cfree. Such strategies can be used to bias samples towards

regions of interest and to determine whether a sample should be retained or discarded.

The most basic sampling strategy is uniform sampling, which samples a pose with uniform

probability from C. Other strategies can be used to find samples near obstacles or in

corridors by sampling an initial pose and then directing subsequent samples to probe a

region. Good sampling strategies are not only useful in identifying regions of interest,

but also in reducing the number of samples needed to represent Cfree, resulting in increased

search efficiency. For further discussion of sampling strategies, we refer the reader to [23, 36].

4.2.2 PRM Issues and Considerations

The PRM algorithm is a compromise: it can overcome the intractability of complex planning

problems by sacrificing exactness and optimality for improved efficiency through approxi-

mation. As such, there are issues inherent to this tradeoff that must be considered when

applying the PRM. Some general considerations are listed below:

• Search Efficiency : The strength of the PRM lies in its ability to perform simple graph

search through a complex space by using a compact representation of the space. Since

the complexity of search algorithms grows exponentially in the number of states that

must be considered, the efficiency of the query phase is strongly dependent on the

number of samples needed to represent Cfree. For the PRM to be tractable, it is

essential that the graph representation of Cfree be sufficient, yet minimal.

• Visibility of Free Space: The configuration space C must have favorable visibility

properties in order to find a simple and efficient solution. If Cfree has limited visibility,

it may require an unreasonable number of samples or complex sampling strategies

to obtain a solution, if any. In [23], however, it is shown that in practice many

motion planning problems do have suitable visibility properties, despite high algebraic

complexity.
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• Quality of Sampling Strategies: The quality of PRM solutions depends on the ability of

sampling strategies to accurately capture the topology of free space, while limiting the

number of unnecessary samples. While sampling strategies do not guarantee accurate

coverage of the space, good sampling strategies decrease uncertainty in the quality of

the generated graph. Thus, it is important for sampling strategies to allocate a higher

density of samples to regions of free space with poorer visibility properties.

In general, these considerations reflect that the PRM technique is beneficial in problems

where the free space can be represented by a roadmap that is small enough, yet complete

enough, to successfully answer queries.

4.3 Extending the PRM to Kalman Belief Space

The quality of a plan strongly depends on a robot’s ability to reliably execute the plan.

While the Probabilistic Roadmap algorithm has proven successful in generating solutions

to complicated planning problems, it does not consider the quality of these plans when faced

with the uncertainty of real-world execution. As with other traditional planning algorithms,

the PRM deals only with trajectories in state space, ignoring the error inherent in the

robot’s incomplete state knowledge which results in deviations from planned trajectories.

This limitation can be overcome by generating plans in the belief space of the robot instead

of the state space, which the robot cannot directly observe. In the same way that the

PRM (Section 4.2) has been used to solve high dimensional motion planning problems that

were previously considered intractable [18, 29], we seek to utilize the PRM methodology to

overcome the complexity of the formal POMDP for belief space planning. In this section,

we improve upon the general PRM by adapting the algorithm to incorporate probabilistic

state estimates and generate robust plans in belief space.

4.3.1 Formulation of Belief Space Planning

While the PRM algorithm itself is not robust to uncertainty, it provides a general framework

and intuition for approaches in belief space. In this section, we show that by constraining

the robot to realizable states along the PRM state trajectories, the size of the corresponding

belief space can also be drastically reduced with a set of suitable assumptions.
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To highlight the key issues involved in this problem, we begin by formally stating the

belief space planning problem.

Problem Formulation

The traditional planning problem requires finding a path from an initial state xstart to a

goal state xgoal. However, since the robot cannot observe the actual state of the world, our

task is to plan in the space of its beliefs, which is denoted B. The belief space B consists of

all possible belief distributions b, which represent probability densities over states b = p(x).

We assume the robot begins with a known initial belief bstart, and seeks a path to a

belief in the goal subspace G, which denotes the set of belief distributions whose maximum-

likelihood state is the goal state G , {b|E[b] = xgoal}. Each path is a series of belief actions

that map the current belief distribution to a posterior distribution in belief space. In motion

planning, each belief action corresponds to executing some motion control, and obtaining

some observation to realize a posterior belief.

Our task is to find the path through belief space from bstart that results in a posterior

belief distribution bgoal within the goal subspace bgoal ∈ G with the minimum expected cost,

where the cost objective function J is given as

J(b0, u0, . . . , bT , uT ) =

T∑

t=0

C(bt, ut) + D(bT ), (4.1)

where J(. . .) is the cost of a path, C(bt, ut) is the cost of executing control ut from belief

bt, and D(bT ) is the cost associated with the resulting uncertainty of the goal belief bT .

Preliminary Discussion

In the general POMDP model of this problem, the graph of potential belief trajectories is

too large to admit a tractable search. For each state trajectory, the corresponding belief

trajectories must represent the continuum of posterior belief distributions that result from

stochastic control outcomes and incomplete observations. In a discretized version of the

general POMDP, a search tree with nodes at each state branches in the number of possible

control outcomes and the number of possible measurements. In other words, the planner

must consider performing each of N controls u1:N from a given state x. Executing a specific

control ui could result in a set of M stochastic outcomes {u
[1]
i , . . . , u

[M ]
i }, each with an as-
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sociated probability, and therefore M possible resulting states {x
[1]
i , ..., x

[M ]
i }. Similarly, for

each state x
[j]
i , the observation z

[j][k]
i obtained could be any of a set of L noisy observations

{z
[j][1]
i , . . . , z

[j][L]
i } with corresponding probabilities. The effective branching factor of the

corresponding search tree would then be N ·M · L.

We can overcome the intractability of the POMDP, however, by using a PRM-based

approach with a suitable choice of belief representation and specific assumptions about the

controls and observations during planning. The intuition behind the PRM can be extended

in a straightforward manner to reduce the size of the belief space. The set of beliefs that

is actually realizable by the robot is the subset of belief distributions whose maximum

likelihood state is in free space Bfree , {b|E[b] ∈ Cfree}, where Cfree corresponds to robot

configurations (states) in free space.

This suggests that, as in the standard PRM, one could sample from Cfree to generate

potential trajectory arcs in Bfree; however, in belief space such trajectories would only

capture the topology of the first-order moment of belief distributions. One could attempt

to sample the expected uncertainty as well, but it is not clear that there exists a suitable

sampling source or probability measure to account for higher order moments of the belief

distribution. Even if one were to sample complete belief distributions (perhaps by uniform

sampling), it would then be necessary to compute the visibility between belief distributions.

This is problematic in belief space, because without a suitable sampling source the notion

of visibility is ill-defined. In the next section, we show that a reasonable alternative can

be found through compromise; by parting with the PRM’s discrete representation of the

trajectory space and standard search algorithm for a hybridized approach.

General Form of Solutions: Hybrid PRM

Since this problem is posed as a search over belief trajectories, recursive filtering techniques

can be used to compute posterior beliefs in lieu of explicitly computing the visibility between

belief distributions. This suggests that we can use the PRM in belief space by formally

noting the correspondence between the state space C and the mean-belief subspace Bµ of

the belief space B. Thus, we can use the pre-processing phase of the PRM to generate a

discrete graph of trajectories through Bµ
free ≡ Cfree, reducing the size of the belief space

representation with the mean-beliefs constrained to discrete values. The remainder of the
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belief distribution is left unconstrained and continuous, forming a hybrid search space1.

The problem with this formulation, however, is that we have yet to show that mean-belief

trajectories in Bµ
free ensure visibility in the belief space B. In fact, in general they do not;

however, if we use a suitable class of belief distributions whose corresponding filter admits

a linear update of the mean, then straight-line trajectories in Bµ
free become well-defined.

Thus, a hybrid version of the PRM can be used to approach belief space planning, as

follows:

• Pre-processing phase: A simplified representation of the belief space is generated as

a hybrid of discrete mean-belief trajectories and continuous belief distribution space.

Mean-belief samples have well-defined straight-line visibility only if the belief distri-

bution admits linear filter updates of the mean.

• Query phase: The query phase consists of a corresponding search-filter hybrid pro-

cess: a graph search is performed over mean-belief trajectories; and recursive filter

updates analytically compute the belief distribution along the trajectory.

While at first glance this representation is not as sparse as in the standard PRM, note that

only mean-belief trajectories are used for explicit search. There is, however, and added

cost: the efficiency of search is now constrained by the computational load of simultaneous

recursive filtering.

As we have stated, in general recursive filtering algorithms do not admit a linear mean

update. However, in the next section we show that by representing beliefs in a linear-

Gaussian system with a specific assumption about observations, Kalman filter updates take

on a suitable linear form2.

4.3.2 Predicting Trajectory Uncertainty with the Kalman Filter

The Gaussian distribution is a natural choice for the belief representation in this problem

for a number of reasons. First, the normal distribution is completely characterized by its

1The hybrid space representation makes intuitive sense, for the only assumption we have made to limit
the scope of the problem is that Bfree consists of the subset of B whose maximum likelihood is in Cfree. Bfree

is not constrained in any other way, meaning that the remainder of the corresponding belief distributions,
and all moments other than the mean, can take on any value.

2In the next chapter we show that, by factoring the covariance matrix, that Kalman filter also provides
linear updates in the numerator and denominator of this matrix fraction. This has further implications in
the context of the general solution form developed in this section.
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first and second moments, providing a simple representation of the parameters of interest

in this problem. The mean is used to identify PRM trajectories and the covariance as a

measure of uncertainty for decision-making during planning. Additionally, the domain of

applications can be easily extended to allow well-behaved non-linear systems with the EKF.

Most importantly, Gaussian beliefs allow the evolution of uncertainty to be captured in

closed form with Kalman filter updates, which have advantageous mathematical properties.

In this section we show that the Kalman filter mean update can be linearized with suitable

assumptions, enabling the hybrid PRM approach to be used in a principled manner.

Linear Mean Update

To apply the Kalman filter to belief trajectory search, we must first make specific assump-

tions about the controls and observations during planning. We assume that the controller

can adhere to a given trajectory, executing motions that drive the mean of the belief dis-

tribution to specified points. This is not to say that controls are deterministic; rather, the

stochastic nature of controls is accounted for by Kalman filter covariance updates. The

transition function of the motion model g(ut, µt−1) is typically decomposed into a series

of rigid transformations and, with the given assumption, the control update of the mean

vector (line 1 of Algorithm 3) can be written linearly using homogeneous coordinates, such

that 


µt

1



 =




g(ut, µt−1)

1



 = Gt(ut)




µt−1

1



 . (4.2)

We also assume that the observation received at a given belief is the maximum-likelihood

observation,

zt = h(µt),

which results in a simple measurement update (line 4 of Algorithm 3) of the mean vector

as

µt = µt + Kt(h(µt)− h(µt))

= µt.

While this assumption is clearly an approximation, it allows us to predict the expected

information gain from likely observations in different regions of the environment.
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Algorithm 7 Multi-Step Covariance Update Along Trajectory procedure.

Require: Start covariance Σ, edge trajectory eµ,µ′ and step length ǫ

Ensure: Posterior covariance Σ′

Compute MultiStep(Σ, eµ,µ′ , ǫ)
1: Initialize Σ′ = Σ
2: for µi = µ to µ′ step ǫµ = ǫ · δeµ,µ′ do

3: Σi = GiΣ
′GT

i + Ri

4: Σ′ = Σi − ΣiH
T
i (HiΣiH

T
i + Qi)

−1
HiΣi

5: end for

6: return Σ′

The implication of this linear form of the mean update is very important; it means that

linear trajectories through the mean-belief subspace have well-defined visibility properties,

and the hybrid PRM formulation can be used. In other words, these assumptions restrict

the mean of our belief distribution exclusively to states along the trajectory, while allowing

the uncertainty of controls and measurements to be incorporated in closed form by Kalman

filter covariance updates. In this formulation, the complexity of searching is thus greatly

reduced, for we avoid branching in belief space.

Covariance Propagation Along Trajectories

Given a linear form of the Kalman filter mean update, it is possible to approximate the

evolution of expected belief uncertainty along a trajectory by performing covariance updates

at N discrete points {µ1, . . . , µN} along the trajectory. Beginning with an initial covariance

Σ0 at the start of the trajectory, filter updates are performed by simulating robot motion

ut and observations zt along the trajectory as prescribed by the assumptions in the mean

update. For each point along the trajectory, a filter iteration is computed by performing

separate control and measurement updates.

The EKF control update incorporates the state transition dynamics g(ut, µt−1) and

process noise Rt corresponding to the motion ut of the robot from the previous trajectory

point. This is computed as in line 2 of Algorithm 3, which is restated here

Σt = GtΣt−1G
T
t + Rt, (4.3)

where Gt is the state transition function g(ut, µt−1) linearized about the mean state µt and

Rt is the process noise of the motion model linearized about the simulated control ut.
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Algorithm 8 Build Belief Trajectory Graph procedure.

Require: Map C ≡ Bµ

Ensure: Belief trajectory graph G = {{ni}, {eij}} with belief node set {ni} and edge
trajectory set {eij}
Build Trajectory Graph (Bµ)

1: Sample poses {µi} from Bµ
free using a standard PRM sampling strategy.

2: Build graph node set ni = {µ = µi,Σ = ∅}
3: Create edge set {eij} between nodes (ni, nj) if the straight-line path between

(ni[µ], nj[µ]) is collision-free
4: return G = {{ni}, {eij}}

Expected sensor measurements zt are computed at each point along the trajectory as

the maximum likelihood observation. In the case of UWB sensors, range measurements

are simulated from the mean robot pose to the known sensor locations. The measurement

update incorporates the expected uncertainty of these range measurements into the be-

lief distribution. The measurement covariance update is computed from lines 3 and 5 of

Algorithm 3, which is given as

Σt = Σt − ΣtH
T
t (HtΣtH

T
t + Qt)

−1
HtΣt, (4.4)

where Ht is the measurement function linearized about the mean state µt and Qt is the

expected process noise of the maximum likelihood observation zt.

The expected belief uncertainty ΣN at the end of a trajectory is the result of propagating

the initial uncertainty Σ0 through multiple filter updates at discretized positions along the

trajectory, as shown in Algorithm 7.

4.3.3 Planning with Trajectory Search

It is now possible to implement the hybrid PRM formulation shown in Section 4.3.1 for the

Kalman belief space by using the EKF variant developed in Section 4.3.2. In this section,

we present the resulting trajectory search algorithm for a linear-Gaussian system. This

algorithm consists of a build phase and a query phase, which are presented in turn.

Belief Trajectory Graph Build Process

We have shown in Section 4.3.2 that linear EKF mean updates admit well-defined

straight-line trajectories through the mean-belief subspace Bu of the Kalman belief space
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B. Therefore, it is possible to generate a mean-belief trajectory graph by implementing

the pre-processing phase of the hybrid PRM for a linear-Gaussian system. In Algorithm 8,

we show the trajectory graph build process which creates a hybrid representation of the

Kalman belief space.

This Build Trajectory Graph routine is very similar to the standard PRM pre-

processing phase, noting again the equivalence between the configuration space C and the

mean-belief subspace Bu. As in the PRM, poses µi are sampled from free space Bµ
free

according to a sampling strategy in line 1. A trajectory graph is then formed by creating

straight-line edges eij between poses, which is shown in line 3. However, there are some

important distinctions to be made. First, the node structure has been adapted to the

Kalman belief space, as shown in line 2. Instead of using only poses µi to represent nodes

in the graph, each belief node ni also includes a covariance matrix ni[Σ]. In accordance

with the hybridized belief space representation, the mean of belief nodes ni[µ] is assigned

a discrete value while the covariance is continuous and initially unconstrained ni[Σ] = ∅.

Similarly, an edge eij between nodes ni and nj is a well-defined straight-line trajectory

between mean-beliefs ni[µ] and nj[µ], while the corresponding covariance evolution between

these nodes is unconstrained.

After building a node set and edge set in lines 1-3, the resulting belief trajectory graph

structure G is returned at the end of the build process in line 4.

Belief Trajectory Graph Search Process

In the general PRM, the query phase consists of a standard algorithm for computing the

shortest path in a state visibility graph. Since planning in belief space takes the form of the

hybrid PRM shown in Section 4.3.1, our query phase now involves a hybrid search process

over discrete mean-belief trajectories, while analytically computing uncertainty updates

along these trajectories. With the ability to predict uncertainty over mean-belief trajectories

in Kalman belief space (Section 4.3.2), it is possible to implement the search-filter hybrid

process using EKF covariance updates when branching during graph search. The search can

find paths of minimal uncertainty by making decisions based on the cumulative uncertainty

of different paths.

A simple implementation of this search process is shown in Algorithm 9, which takes the

form of a uniform cost (UC) search through the trajectory graph. The primary modification
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Algorithm 9 The Uniform-Cost Belief Trajectory Search algorithm.

Require: Start belief (µ0,Σ0), goal location µgoal, map Bµ and edge step size ǫ

1: G = {{ni}, {eij}} ← Build Trajectory Graph (Bµ)
2: Append G with nodes {n0, ngoal} and edges from start node {e0,j} and to goal node
{ei,goal}

3: Augment node structure with best parent node np = ∅, such that ni = {µ,Σ, np}
4: Create search queue with initial position and covariance Q← n0 = {µ0,Σ0, ∅}
5: while Q is not empty do

6: Pop n← Q

7: if n = ngoal then

8: Continue
9: end if

10: for all n′ such that ∃en,n′ and not In Path(n, n0, n′) do

11: Σ′ ← Compute MultiStep(n[Σ], en,n′, ǫ)
12: if tr(Σ′) < tr(n′[Σ]) then

13: n′ = {n′[µ],Σ′, n}
14: Push n′ → Q

15: end if

16: end for

17: end while

to the standard UC algorithm is that the notion of cost is no longer cumulative distance, but

rather expected uncertainty. We compute this cost using a standard measure of uncertainty,

the trace of the covariance matrix tr(Σ). The trajectory search algorithm is modified from

the standard UC search accordingly:

• The best cost at each node ni[Σ] and the search state cost n[Σ] ∈ Q are covariance

matrices.

• Where a cumulative distance calculation would normally take place during node ex-

pansion, this search process propagates uncertainty along the corresponding trajec-

tory to estimate cumulative uncertainty. This is shown in line 11, where the Com-

pute MultiStep procedure (Algorithm 7) is called to compute a series of EKF co-

variance updates along a trajectory.

• The node relaxation step in lines 12-15 similarly consists of a comparison between the

current search state cost and the best cost achieved thusfar. If the trace of the search

state covariance is less that the best cost at a given node (i.e., if the uncertainty of

the current search path is better than the best found so far), the node is updated with

the lower covariance. Also, this node is then pushed back onto the queue to propagate

this new covariance to neighboring nodes.
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Algorithm 10 In Path Boolean function.

Require: End node n, start node n0 and target node n′

Ensure: Return true if target node n′ is in path defined by best parent structure between
{n[np], . . . , n0}, otherwise return false

IN PATH(n, n0, n
′)

1: while n 6= n0 do

2: n← n[np]
3: if n = n′ then

4: return true

5: end if

6: end while

7: return false

There are several points that should be addressed in regards to this algorithm. First,

in line 3, the node structure of the trajectory graph is augmented with a best parent node

np, which is used to maintain a best-path policy. The best parent node ni[n
p] of node ni

corresponds to the neighboring node nj whose outgoing edge eji resulted in the minimum

achievable covariance ni[Σ] at node ni. At the end of the search process, the best path to

the goal node can be found as the reverse policy in the best parent ngoal[n
p] configuration

of the search graph state. In other words, the best path policy can be obtained by starting

at the goal node ngoal and recursively following the best parent nodes n[np] until reaching

the start node n0.

Second, the trajectory search algorithm assumes a queue function Q that orders the

nodes in a first-in, first-out manner. Third, the UC search requires a boolean In Path

function (used in line 10) which acts as a visited list to prevent loops during search. A

neighbor node n′ should not be considered during the expansion of node n if it is already a

member of the best path to n. An example In Path procedure is shown in Algorithm 10,

which searches the best parent configuration from an end node n to the start node n0 in

the graph to see if a target node n′ is already in the current best path. This is a valid

concern because unlike cumulative distance searches, where the cost grows monotonically

during search, covariance updates may cause the uncertainty to increase or decrease as the

search progresses. This could result in a cyclic path, which although might be desirable in

some circumstances, we omit in our work. Fourth, it is assumed that when a node n′ is

improved and pushed onto the queue in lines 13-14, it replaces any current member n′ on

the queue.

Fifth, it should be noted that the objective function J (shown in Section 4.3.3) is not
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specifically addressed in Algorithm 9. We do not explicitly include the cost per trajec-

tory C(. . .), since this parameter is application-dependent. Algorithm 9 is intended to be

general and could be easily adapted to include an additional distance cost, for example,

in the search state at each node. Instead, we focus on the problem of minimizing the un-

certainty at the goal node, which is associated with cost function D(ngoal[Σ]). Sixth, we

assume a discretization for trajectories, specified by the step size ǫ, that approximates the

actual motion of the robot. This should be determined for each specific application by

approximating the typical operating characteristics of robot controls. Finally, while more

efficient, heuristic-driven search processes may exist, we leave the construction of admissible

heuristics for future work and focus on improving the efficiency of filter predictions.

4.3.4 Trajectory Search Issues

The method we developed in this chapter, which culminated in the trajectory search algo-

rithm (Algorithm 9), presents a general solution to the problem of belief space planning.

Although this algorithm is tractable, three key side-effects result from the multistep covari-

ance update that impose efficiency limitations and scalability concerns:

The first issue is that branching during the hybrid search process requires performing

multiple EKF updates to compute the posterior covariance prediction along a trajectory

(line 11). Since these multistep covariance updates must be performed for each outgoing

trajectory of the state node during each iteration of the search, a key strength of the general

PRM algorithm is lost: its ability to answer queries online by performing search over the

trajectory graph very efficiently.

The second issue is inherent in the mechanism for uncertainty propagation along tra-

jectories. For a given trajectory, each novel initial covariance at the start node must be

fully propagated through a multistep filter update to obtain the posterior covariance. This

is problematic because each time a node is improved during the search process, the new

“best cost” covariance is propagated to neighboring nodes, as seen in lines 12-15. This new

initial condition requires a multistep covariance update to each neighboring node, meaning

that the search process may be required to perform redundant multistep updates for a given

trajectory.

Redundant updates also create an additional side-effect: they make re-planning ineffi-

cient. Although some applications of the PRM are designed to answer a single query, motion
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planning typically requires re-planning online to account for deviations from the predicted

execution. This means that our algorithm should be tailored to handle multiple queries

from the same PRM graph. Since trajectory updates must be recomputed for each novel

covariance, each re-planning query process must start from scratch, performing a redundant

search since the entire search process is completely dependent on the initial belief.

As can be seen, the current multistep method for covariance propagation induces a sub-

stantial computational penalty during the search process. Its sensitivity to initial conditions

and the vast number of redundant computations that result motivate the development of

an alternative.

4.4 Conclusion

We have presented a general method for robot motion planning under uncertainty, which

takes the form of belief space planning using probabilistic state estimates. While solving

the general formulation of this problem is computationally intractable, we show that by

limiting the problem to a pertinent subspace, choosing a suitable belief distribution and

making reasonable assumptions about controls and observations, it becomes possible to

perform trajectory search in belief space.

Our solution takes the form of a PRM-Kalman filter hybrid. The pre-processing phase

builds PRM trajectories in the mean-belief subspace of Gaussian distributions, which has

favorable visibility properties. The query phase adapts a standard search algorithm to

incorporate multistep EKF covariance updates along each branch of the search tree.

Although our trajectory search algorithm provides a tractable solution in belief space,

this approach is limited by the computational costs of repeated multistep updates. This

problem motivates the focus of the next chapter, which involves deriving an efficient one-step

alternative to the redundant multi-step uncertainty update.
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Chapter 5

One-Step Update for Trajectory

Uncertainty
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5.1 Introduction

In the last chapter, we showed that using Kalman filter predictions along trajectory arcs

enables search within Gaussian belief space; however, this approach suffers from issues of

scalability and computational feasibility due to the computational burden of performing

redundant trajectory updates during search. This motivates deriving an alternate update

to avoid the cost of computing repetitive multi-step Kalman filter updates over trajectories

during searching and replanning.

In this chapter we focus on developing a one-step update to efficiently propagate uncer-

tainty along a robot trajectory in a single computational step. Since we have shown that

the mean of the belief distribution can be made to satisfy a linear Kalman filter update,

in this problem we can assume it is predetermined and focus solely on the evolution of the

second moment. We have also shown that Kalman filter covariance updates can applied

in succession at discrete points to propagate an initial covariance along a trajectory and

obtain the posterior covariance. At each point, we incorporate the uncertainty effects of

robot motion, the state transition Gt and process noise Rt , VtW
−1
t V T

t , and the expected

measurement information Mt , HT
t Q−1

t Ht. We will assume that these quantities are also

predetermined for each of N time steps. With these assumptions, the problem we are solv-

ing can be formally stated as follows:

Given: an initial covariance Σ0 and the mean vectors µ0:N , state transition matrices G1:N ,

control uncertainty matrices R1:N and measurement information matrices M1:N for each of

N time steps.

Find: posterior covariance ΣN = onestep(Σ0, µ0:N , G1:N , R1:N ,M1:N ), where onestep is

a simple computation that avoids explicitly computing the Kalman filter update at all time

steps for each novel initial covariance Σ0.

The solution to this problem is not straightforward, because the recursive covariance

update in the Kalman filter is a non-linear function. Combining the control and measure-

ment updates for one time step (lines 2, 3 and 5 of Algorithm 3), the full update in one
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filter iteration is given as

Σt = (GtΣt−1G
T
t + Rt)

−(GtΣt−1G
T
t + Rt)H

T
t (Ht(GtΣt−1G

T
t + Rt)H

T
t + Qt)

−1
Ht(GtΣt−1G

T
t + Rt),

or alternatively, by basing the recursion around the control posterior, as

Σt = Rt + GtΣt−1(I + MtΣt−1)
−1

GT
t .

In either case, it is clear to see that the form of this equation is fractional and that for

multiple recursive steps it becomes a sequence of nested non-linear equations. This does

not immediately lend itself to solving for the posterior covariance as a simple, non-repetitive

function of the initial covariance.

We will show in this chapter that the key to computing a one-step uncertainty update

lies in functional composition of Kalman filter covariance updates. If each covariance update

can be represented in a form that admits composition into a function of the same form, then

multiple covariance updates can be represented as one update. In this chapter we present

two such forms that admit functional composition of Kalman filter covariance updates.

One is based on the Redheffer “star” product and provides an intuitive representation of

individual KF updates and composition of multiple KF updates. The other method enables

the non-linear Riccati equation corresponding to covariance updates to be decoupled into

a linear system by factoring the covariance matrix as a matrix fraction. This is potentially

very powerful because it linearizes the covariance update, resulting in a form of the Kalman

filter that is completely linear.

The layout of this chapter is as follows: We begin in Section 5.2 by presenting an

algebraic solution that is motivated by properties of the Kalman filter covariance updates.

In Section 5.3 we provide an introduction to solutions motivated by the Riccati equation.

We present a theoretical background of the Riccati equation, showing both the form of

the equation and the two associated systems that pertain to the one-step problem. In

Section 5.4 we show the explicit correspondence between Kalman filtering and the Riccati

equation, and then describe the one-step solutions resulting from each characteristic system.

Redheffer’s “star product” and parallels to scattering theory, which yield a versatile solution
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for simultaneously solving the forward and backward onestep problem, are discussed in

Section 5.4.1. A solution based on symplectic systems is presented in Section 5.4.3, which

linearizes the Kalman filter update by factoring the covariance.

5.2 KF Interpretation and Algebraic Solution

In this section we show that the mathematical properties of the Kalman filter motivate an

algebraic solution to the OS problem by factoring the covariance matrix. Each covariance

update can be expressed in fractional form, and by decomposing the initial covariance matrix

as a fraction, each update becomes a linear operator in the numerator and denominator of

this fraction.

To demonstrate this, we rely on the following relation for matrix fractions:

AB−1 + C = AB−1 + CBB−1 = (A + CB)B−1, (5.1)

which can be interpreted, through a slight abuse of notation, as

A

B
+ C =

A + CB

B
.

To see how this can be applied to linearize EKF covariance updates, let us begin by

assuming that the covariance matrix can be factored as a matrix fraction, such that

Σ = XY −1 →
X

Y
, (5.2)

which can be trivially attained using X = Σ and Y = I. The control and measurement

covariance updates can then be expressed as linear functions of X and Y , using Equation 5.1

and the dual Kalman and information forms of the filter. The steps of this derivation are

shown in the following sections.

5.2.1 Linear Fractional Control Update

We begin with the EKF control update, restated here as

Σt = GtΣt−1G
T
t + Rt. (5.3)
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Applying the decomposition made in Equation 5.2, the control update in Equation 5.3

becomes

XtY
−1
t = GtXt−1Y

−1
t−1G

T
t + Rt. (5.4)

By re-grouping terms on the right-hand side of Equation 5.4, we can see that it matches

the form of Equation 5.1 as

GtXt−1(G
−T
t Yt−1)

−1 + Rt ≡ AB−1 + C

with A = GtXt−1, B = G−T
t Yt−1 and C = Rt. Thus, applying Equation 5.1 gives us

X tY
−1
t = (GtXt−1 + RtG

−T
t Yt−1)(G

−T
t Yt−1)

−1, (5.5)

which, in fractional form could be expressed as

Xt

Y t

=
GtXt−1 + RtG

−T
t Yt−1

G−T
t Yt−1

.

Thus, Equation 5.5 demonstrates a control update Σt−1 → Σt that is linear in the numerator

and denominator of the fraction as




X

Y





t

=




G RG−T

0 G−T





t




X

Y





t−1

. (5.6)

We can thus capture the control update of the covariance at time t as a transfer function,

denoted

TC
t ,




G RG−T

0 G−T





t

. (5.7)

5.2.2 Linear Fractional Measurement Update

The measurement update can also be expressed as a linear fractional update by beginning

with the information form of the update (line 2 of Algorithm 4), which is given as

Ωt = Ωt + Mt. (5.8)
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Applying the decomposition of Equation 5.2, noting that Ω = Σ−1 = (XY −1)−1, we can

express Equation 5.8 as the inverse of the desired fractional form in Equation 5.1, such that

XtY
−1
t = (Y tX

−1
t + Mt)

−1
≡ (AB−1 + C)

−1
,

where A = Y t, B = Xt and C = Mt. Using these values and the relation in Equation 5.1,

we obtain

XtY
−1
t =

(

(Y t + MtXt)X
−1
t

)−1

= X t(Y t + MtX t)
−1

. (5.9)

The fractional interpretation of this update can be expressed as

Xt

Yt
=

X t

Y t + MtX t

,

which represents a linear update in the numerator and denominator of the fraction. The

linear system corresponding to Equation 5.9 is given as




X

Y





t

=




I 0

M I





t




X

Y





t

. (5.10)

Thus, we can represent the measurement covariance update at time t as a transfer function,

denoted

TM
t ,




I 0

M I





t

. (5.11)

5.2.3 Complete Linearized Covariance Update

Given the linear forms of the control and measurement covariance updates derived above,

we can represent the update of one full iteration of the filter as a linear system by combining

96



Equations 5.6 and 5.10, resulting in




X

Y





t

=




I 0

M I





t




G RG−T

0 G−T





t




X

Y





t−1

(5.12)

=




G RG−T

MG MRG−T + G−T





t




X

Y





t−1

, (5.13)

where we now have a linear matrix operator for the filter update at time t as

Tt , TM
t · T

C
t =




G RG−T

MG MRG−T + G−T





t

. (5.14)

5.2.4 One-Step Covariance Propagation

With a linear update in the factored form of the covariance, it is now possible to build a

one-step update matrix that exactly represents multiple filter updates. To compute the one-

step matrix for N updates, T ⋆, the individual updates for each time step can be combined

by matrix multiplication as follows:




X

Y





N

= TN · TN−1 · · · T2 · T1
︸ ︷︷ ︸

T ⋆

·




X

Y





0

. (5.15)

The resulting one-step representation is a block matrix of the form

T ⋆ ,




T ⋆

11 T ⋆
12

T ⋆
21 T ⋆

22.



 (5.16)

With this update matrix, it is now possible to compute the posterior covariance ΣN that

results from performing multiple filter updates from an initial covariance Σ0. The first step

is to factor the initial covariance as a matrix fraction Σ0 = X0Y
−1
0 , which can be trivially

fulfilled by setting X0 = Σ0 and Y0 = I. Using this initial condition and the linear equations

for XN and YN shown in Equation 5.13, the posterior covariance can be computed as

ΣN = XNY −1
N = (T ⋆

11Σ0 + T ⋆
12)(T

⋆
21Σ0 + T ⋆

22)
−1. (5.17)
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5.2.5 A Note Concerning Initial Conditions

We have not been very rigorous in motivating our choice of initial conditions. To provide a

more formal justification, we show that our assumed initial condition Σ0 = X0Y
−1
0 = Σ0I

−1

is an achievable result of performing a boundary update T0 from each of two possible bound-

ary conditions (which we will denote with a minus subscript as Σ− = X−

Y−

, or equivalently

Ω− = Y−

X−

). The first boundary condition we will consider is that of infinite uncertainty,

or equivalently zero information. The second is that of zero uncertainty, or equivalently

infinite information. The linear system corresponding to the boundary update is given as




X

Y





0

=




G RG−T

MG MRG−T + G−T





0




X

Y





−

(5.18)

We consider each boundary condition in turn, by solving the system in Equation 5.18 and

imposing the constraint Σ0 = X0Y
−1
0 .

Boundary Case: Infinite Uncertainty, Zero Information

The boundary condition of infinite uncertainty Σ− = ∞, or zero information Ω− = 0,

corresponds to the case where Y− = 0, which is shown as follows:

Σ− =
X−

Y−
=

X−

0
=∞, Ω− =

Y−

X−
=

0

X−
= 0, X− 6= 0.

Using Equation 5.18, the covariance factors are written as

X0 = G0X− + 0 = G0X− (5.19)

Y0 = M0G0X− + 0 = M0G0X−. (5.20)

Solving for the initial condition using Equations 5.19-5.20, we obtain,

X0Y
−1
0 = G0X− ·X

−1
− G−1

0 M−1
0 = M−1

0 ,

which implies the following constraint:

Σ0 = M−1
0 . (5.21)
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By denoting A = G0X− and applying the constraint in Equation 5.21 to Equations 5.19-

5.20, we obtain the following solution set:




X

Y





0

=




A

Σ−1
0 A



 , A 6= 0. (5.22)

Note that our trivial initial condition of X0 = Σ0 and Y0 = I is valid with A = Σ0.

Note: The result shown above is intuitive when considering EKF/EIF control and measure-

ment updates from the boundary condition of zero information Ω− = 0 and, equivalently,

infinite uncertainty Σ− = ∞. The EKF control update is irrelevant, since adding any

process noise to infinite covariance results in infinity:

Σ0 = G0Σ−GT
0 + R0 = G0∞GT

0 + R0 =∞. (5.23)

The measurement update, however, shows that an update from this boundary condition

corresponds to receiving a measurement M0 = Ω0:

Ω0 = Ω− + M0 = 0 + M0 = M0. (5.24)

Thus, this boundary update is equivalent to beginning in a state with zero information and

increasing certainty by incorporating a measurement of value M0 = Ω0 = Σ−1
0 .

Boundary Case: Zero Uncertainty, Infinite Information

The boundary condition of zero uncertainty Σ− = 0, or infinite information Ω− = ∞,

corresponds to the case where X− = 0, which is shown as follows:

Σ− =
X−

Y−
=

0

Y−
= 0, Ω− =

Y−

X−
=

Y−

0
=∞, Y− 6= 0.

Plugging into the system equations (Equation 5.18), the covariance factors are written as

X0 = G0 · 0 + R0G
−T
0 Y− = R0G

−T
0 Y− (5.25)

Y0 = M0G0 · 0 + (M0R0G
−T
0 + G−T

0 )Y− = (M0R0 + I)G−T
0 Y−. (5.26)
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Computing the initial covariance corresponding to Equations 5.25-5.26 gives us

X0Y
−1
0 = R0G

−T
0 Y− · Y

−1
− GT

0 (M0R0 + I)−1

= R0(M0R0 + I)−1,

implying the following constraint on R0 and M0:

Σ0 = R0(M0R0 + I)−1. (5.27)

We make the substitution B = G−T
0 Y− for the free variables, and apply the constraint in

Equation 5.27 to Equations 5.25-5.26, yielding the solution set:




X

Y





0

=




R0B

(M0R0 + I)B



 , B 6= 0, {R0,M0|Σ0 = R0(M0R0 + I)−1}. (5.28)

This result is also intuitive, although not as straightforward as the previous boundary update

in which the control update had no effect. Due to the ordering of control and measurement

updates, the initial covariance can result from a combination of both adding uncertainty R0

to the boundary state of perfect information, and then subsequently adding measurement

information M0. It is for this reason that the constraint set is a function of both R0 and

M0. However, our assumed initial condition of X0 = Σ0 and Y0 = I is the trivial result of

adding only process noise R0 = Σ0 and zero measurement information M0 = 0, with B = I.

5.3 Riccati Equation Theory

The covariance update function of the Kalman filter obeys a form of the Riccati equation,

which is a non-linear difference function with a broad theoretical background. An explo-

ration of Riccati theory yields insight into the one-step filtering problem; in this section

we develop the theoretical basis for two solutions to the one-step problem. We show that

the discrete Riccati equation is associated with two characteristic systems, each of which

allows us to capture the EKF covariance update by encoding it in matrix form. Both

systems admit functional composition of these matrices, allowing us to take multiple up-

date descriptor matrices and combine them into one descriptor matrix, thereby facilitating

one-step solutions.
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5.3.1 Characteristic Systems of the Riccati Equation

The mathematical roots of the Riccati equation stem from non-linear, ordinary differential

equations and the equation comes in many forms that are applicable to both continuous

and discrete problems. In our work we will be concerned with the discrete Riccati difference

equation (DRDE), which takes the form

Xt+1 = B + AXt(I − CXt)
−1D. (5.29)

This difference equation computes the value of Xt+1 at a new time step as a non-linear

function of the previous value of Xt. We will refer to Xt as the Riccati variable and in our

problem this will be the covariance matrix.

The DRDE is associated with two characteristic systems: one is called Hamiltonian and

the other is called symplectic [1]. The corresponding matrices for these systems are defined

as follows:

Definition of Hamiltonian and Symplectic Matrices

• We denote J as the 2n × 2n matrix

J =




0 −In

In 0



 (5.30)

and JT = J−1 = −J .

• A 2n× 2n block matrix S =




A B

C D



 is called Hamiltonian if

JS = (JS)T = −STJ, (5.31)

which implies that the n× n blocks B and C are symmetric, or self-adjacent.

• A 2n× 2n matrix T =




E F

G H



 is called symplectic if

T T JT = J, (5.32)
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which implies that T is symplectic iff T is invertible and

T −1 = JTT T J =




HT −F T

−GT ET



 . (5.33)

Hamiltonian System

The first characteristic system associated with the DRDE is a Hamiltonian system of the

form

xt = Axt−1 + Byt (5.34)

yt−1 = Cxt−1 + Dyt. (5.35)

Written in matrix form, the equations become




xt

yt−1



 =




A B

C D





︸ ︷︷ ︸

St




xt−1

yt



 , (5.36)

where St is a Hamiltonian matrix corresponding to the DRDE. As can be seen, the Hamil-

tonian system is a forward-backward system in time, similar to the filtering and smoothing

problems in linear estimation, where xt is filtered from xt−1 at the previous time step, and

yt−1 is smoothed from yt in the next time step.

Symplectic System

The DRDE is also associated with a symplectic system of the form:




Y

Z





t

=




E F

G H





︸ ︷︷ ︸

Tt

·




Y

Z





t−1

. (5.37)
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The symplectic formulation represents a linear-fractional or Mobius transfer function F(Y,Z),

which is given as

F(Y,Z) = (EY + FZ)(GY + HZ)−1 →
EY + FZ

GY + HZ
(5.38)

and defines a matrix fraction whose numerator and denominator are linear functions encoded

in the symplectic matrix T .

The linear-fractional nature of the DRDE can be exposed in the following series of

manipulations:

Xt+1 = B + AXt(I − CXt)
−1D

= B + AXt(D
−1 −D−1CXt)

−1

=
(

B(D−1 −D−1CXt) + AXt

)(

D−1 −D−1CXt

)−1

=
(

(A−BD−1C)Xt + BD−1
)(

−D−1CXt + D−1
)−1

(5.39)

≡ (AXt + B)(CXt + D)−1, (5.40)

where we have simplified notation with the substitution of A, B, C and D from Equa-

tion 5.39 to 5.40. Note that the system has been decoupled into a matrix fraction, where

both the numerator and denominator are linear functions of Xt.

Since an initial condition X0 will lead to a fractional result X1 = (AX0+B)(CX0+D)−1,

this suggests factoring Xt as a matrix fraction, Xt = YtZ
−1
t . Substituting this fractional

form of Xt into Equation 5.40 yields the linear system of Equations 5.37-5.38 in the following

manner:

Xt+1 = Yt+1Z
−1
t+1 = (AYtZ

−1
t + B)(CYtZ

−1
t + D)−1

= (AYt + BZt)Zt · Z
−1
t (CYt + DZt)

−1

= (AYt + BZt)(CYt + DZt)
−1 (5.41)

≡ (EYt + FZt)(GYt + HZt)
−1. (5.42)

Equation 5.41 indicates that factoring Xt = YtZ
−1
t admits a well-defined linear-fractional

update and satisfies a linear system in Yt and Zt as in Equation 5.37. Thus, we have shown
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that the DRDE corresponds to a linear symplectic system, which is given as

Yt+1 = EYt + FZt (5.43)

Zt+1 = GYt + HZt, (5.44)

where Xt = YtZ
−1
t and {E,F,G,H} are defined by Equation 5.39 (using the relations in

Equations 5.40-5.42) as

Tt =




E F

G H



 =




A−BD−1C BD−1

−D−1C D−1



 . (5.45)

Hamiltonian-Symplectic Correspondence

Note that the symplectic system corresponds directly to the Hamiltonian system, which can

be derived from Equations (5.34-5.35) by rewriting the Hamiltonian system as a forward

system. We can rearrange the terms in Equation 5.35 as follows:

yt−1 = Cxt−1 + Dyt

Dyt = yt−1 − Cxt−1

yt = D−1yt−1 −D−1Cxt−1. (5.46)

Then, by plugging yt from Equation 5.46 into Equation 5.34 we obtain

xt = Axt−1 + Byt

= Axt−1 + B(D−1yt−1 −D−1Cxt−1)

= (A−BD−1C)xt−1 + BD−1yt−1, (5.47)

which yields the same symplectic system shown in Equation 5.45




xt

yt



 =




A−BD−1C BD−1

−D−1C D−1





︸ ︷︷ ︸

Tt




xt−1

yt−1



 , (5.48)

where T is a symplectic matrix associated with the DRDE (5.29).
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Case of Hermitian Riccati Variable

When Xt is Hermitian, D = AT and B and C are also Hermitian. In this case, the Riccati

equation is known as the Hermitian discrete Riccati difference equation (HDRDE), which

is adapted from Equation 5.29 to become

Xt+1 = Bt + AtXt(I − CtXt)
−1AT

t . (5.49)

In the Kalman filtering problem, the covariance matrix is real and symmetric, and therefore

Hermitian. In this chapter we will be concerned with the Hamiltonian and symplectic

descriptor matrices corresponding to the HDRDE, which are updated from Equations 5.36

and 5.48 to respectively become

St =




A B

C AT





t

, (5.50)

Tt =




E F

G H





t

=




A−BA−T C BA−T

−A−TC A−T





t

. (5.51)

For additional theoretical background regarding the Riccati equation, Hamiltonian systems

and symplectic systems, we refer the reader to [1, 2].

5.3.2 Functional Composition of the Riccati Equation

We will now show that the Hamiltonian and symplectic matrix representations of the

HDRDE (Equations 5.50-5.51) admit functional composition, which as we have stated is

the key to solving the one-step filtering problem.

Hamiltonian Composition: Redheffer Star Product

Hamiltonian descriptor matrices can be composed by an operator known as the Redheffer

“star” product (denoted with a ‘⋆’) [42] . We can formally derive this method of composition

by starting with descriptor matrices of a Hamiltonian system at two adjacent timesteps as
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follows:




x2

y1



 =




A B

C D








x1

y2



 , (5.52)




x3

y2



 =




W X

Y Z








x2

y3



 . (5.53)

(Note: for clarity it should be stated that these two system matrices have the same block

structure, where each block actually corresponds to a time-varying quantity.) Our goal is to

determine the Hamiltonian matrix corresponding to the aggregate system that represents

both Equations 5.52 and 5.53. We will show that the resulting system can be computed

using the star product in the following manner:




x3

y1



 =




A B

C D



 ⋆




W X

Y Z








x1

y3



 . (5.54)

Our explicit goal is to derive equations for the variables x3 and y1 in terms of x1 and y3

to determine the star product operation in Equation 5.54. We begin by writing the given

equations from the systems in Equations 5.52 and 5.53, as follows:

x2 = Ax1 + By2 (5.55)

y1 = Cx1 + Dy2 (5.56)

x3 = Wx2 + Xy3 (5.57)

y2 = Y x2 + Zy3. (5.58)

Substituting y2 from Equation 5.58 into Equation 5.55 we solve for x2 as follows:

x2 = Ax1 + B(Y x2 + Zy3)

(I −BY )x2 = Ax1 + BZy3

x2 = (I −BY )−1Ax1 + (I −BY )−1BZy3 (5.59)
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We also substitute x2 from Equation 5.55 into Equation 5.58 to solve for y2 as follows:

y2 = Y (Ax1 + By2) + Zy3

(I − Y B)y2 = Y Ax1 + Zy3

y2 = (I − Y B)−1Y Ax1 + (I − Y B)−1Zy3. (5.60)

Now with x2 and y2 both written in terms of x1 and y3, it is possible to similarly solve for

x3 and y1. To solve for x3, we substitute x2 from Equation 5.59 into Equation 5.57:

x3 = Wx2 + Xy3

= W
(

(I −BY )−1Ax1 + (I −BY )−1BZy3

)

+ Xy3.

which is simplified to give the desired result

x3 = W (I −BY )−1Ax1 + (X + W (I −BY )−1BZ)y3 . (5.61)

We also substitute y2 from Equation 5.60 into Equation 5.56 to solve for y1 as follows:

y1 = Cx1 + Dy2

= Cx1 + D(I − Y B)−1Y Ax1 + D(I − Y B)−1Zy3,

which simplifies to become

y1 = (C + D(I − Y B)−1Y A)x1 + D(I − Y B)−1Zy3 . (5.62)

Now, with Equations 5.61 and 5.62, our solution is obtained as the aggregate system in

Equation 5.54, which can now be written in terms of one matrix as




x3

y1



 =




W (I −BY )−1A X + W (I −BY )−1BZ

C + D(I − Y B)−1Y A D(I − Y B)−1Z








x1

y3



 , (5.63)

where we have now derived the star product as a set of matrix block operators, shown

formally in the following definition.
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Definition of Star Product

The star product of two block matrices is a set of matrix block operators given as




A B

C D



 ⋆




W X

Y Z



 =




W (I −BY )−1A X + W (I −BY )−1BZ

C + D(I − Y B)−1Y A D(I − Y B)−1Z



 . (5.64)

Note: It is sometimes useful to employ an alternate form of the operators in the 1, 2 and

2, 1 entries of the resultant in Equation 5.64, which is derived by using the following relation:

(I − EF )−1E = (E−1 − E−1EF )−1 = E(I − FE)−1. (5.65)

Applying Equation 5.65 to the 1, 2 and 2, 1 entries of Equation 5.64 yields the following

alternate forms:

X + W (I −BY )−1BZ = X + WB(I − Y B)−1Z (5.66)

C + D(I − Y B)−1Y A = C + DY (I −BY )−1A. (5.67)

Symplectic Composition

Composition of symplectic descriptor matrices is given by a much simpler operator, matrix

multiplication. This can be trivially demonstrated by noting that a forward symplectic

system at two consecutive time steps




x3

y3



 =




W X

Y Z








x2

y2



 and




x2

y2



 =




A B

C D








x1

y1





can be aggregated by matrix multiplication as follows:




x3

y3



 =




W X

Y Z



 ·




A B

C D








x1

y1



 . (5.68)

5.4 Riccati-Based One-Step Update Solutions

With the theoretical background in place, we now show the explicit correspondence between

Kalman filter covariance updates and the Riccati equation. A full iteration of the Kalman
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filter involves two update steps: a control update and measurement update. In mobile robot

filtering applications, it is typically assumed that in a given time step, the control update

precedes the measurement update. For the EKF update at time t, we denote the posterior

covariance resulting from control and measurement updates as Σt and Σt, respectively. Note

that for ease of readability, we will omit the time subscripts from all quantities other than

the covariance Σt in the subsequent derivations; however, all quantities are assumed to be

time-varying.

The EKF control update (line 2 of Algorithm 3) is given as

Σt = GΣt−1G
T + R, (5.69)

where R , V WV T denotes the process noise in state space. We will use two forms of

the measurement update. The standard EKF form of the measurement update (line 5 of

Algorithm 3) is given by

Σt = Σt − ΣtH
T (HΣtH

T + Q)
−1

HΣt. (5.70)

We also use the covariance version of the EIF measurement update (line 2 of Algorithm 4)

with Ωt = Σ−1
t , which is given as

Σt = (Σ
−1
t + M)−1, (5.71)

where M , HT Q−1H denotes the measurement information in state space.

It is possible to formulate the Riccati equation corresponding to a full filter update in

two ways. The KF recursion may be written to produce the posterior covariance directly

following either the measurement Σt or control Σt update, as shown below.

Measurement-Based Recursion

The measurement-based recursion can be formed by plugging Equation 5.69 into Equa-

tion 5.70, which yields

Σt+1 = (GΣtG
T + R) (5.72)

−(GΣtG
T + R)HT

[

H(GΣtG
T + R)HT + Q

]−1
H(GΣtG

T + R).
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It requires a significant amount of work to show that the Kalman filter recursion based

on the measurement update in Equation 5.72 obeys the Riccati equation form in Equation

5.49. For this reason, the result is stated here and the proof can be found in [2].

Equation 5.72 corresponds to the HDRDE (restated from Equation 5.49)

Σt+1 = B + AΣt(I − CΣt)
−1AT ,

where

A = G−RHT (HRHT + Q)−1HG

B = R−RHT (HRHT + Q)
−1

HR

C = GT HT (HRHT + Q)
−1

HG.

Control-Based Recursion

Basing the recursion on the control update, Σt is produced by plugging Equation 5.71 into

Equation 5.69, yielding the Riccati equation

Σt = R + G
(

Σ
−1
t−1 + M

)−1
GT

t

= R + GΣt−1

(

I + MΣt−1

)−1
GT . (5.73)

The control recursion in Equation 5.73 has a straightforward correspondence to the HDRDE

(Equation 5.49) with A = G, B = R, and C = −M .

Equivalence of Recursions

We are typically interested in the resulting filtered covariance for a given time step, which

suggests basing the recursion on the measurement posterior Σt. However, for clarity in the

subsequent derivations in this chapter, it is advantageous to base the covariance recursion

on the control posterior Σt at each “half”-timestep, for algebraic reasons shown above.

It turns out that this is very reasonable, because the same basic results can be obtained

using either form. This is possible the HDRDE is well-defined for both the individual

control and measurement updates. We demonstrate this here, without proof, by showing the

HDRDE form of each update.The measurement update (using Equation 5.71) corresponds
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to the HDRDE as

Σt = 0 + IΣt(I + MΣt)
−1

I = (Σ
−1
t + M)−1, (5.74)

with A = I, B = 0, C = −M , and the EKF/EIF measurement update shown on the right.

The control update corresponds to the HDRDE as

Σt = R + GΣt−1(I − 0Σt−1)
−1GT

t = GΣt−1G
T + R, (5.75)

with A = G, B = R, C = 0, and the standard EKF control update is shown on the right.

5.4.1 Hamiltonian Filtering Formulation

In this section we demonstrate that the star product composition of Hamiltonian descriptor

matrices shown in Section 5.3.2 can be used to aggregate Kalman filter covariance updates.

Using the Kalman filter correspondence to the HDRDE provided in Equation 5.73, it is

straightforward to build the Hamiltonian matrix that describes a Kalman filter update. We

restate this explicitly as follows:

HDRDE: Xt = B + AXt−1(I − CXt−1)
−1AT

KF-HDRDE: Σt = R + GΣt−1(I + MΣt−1)
−1

GT .

With A = G, B = R, and C = −M , it directly follows that the Hamiltonian matrix

(Equation 5.50) corresponding to the HDRDE is given as

St =




A B

C AT





t

=




G R

−M GT





t

.

The power of this representation of Kalman filter updates is that these matrices St encode

the uncertainty effects of each update step at time t. Further, we showed in Section 5.3.2

that Hamiltonian descriptor matrices St at adjacent time steps can be aggregated using the

star product. Therefore, the net EKF covariance update for all updates from time t = 1 to

N can be captured by star-producing consecutive updates as

S1:N = S1 ⋆ S2 ⋆ · · · ⋆ SN−1 ⋆ SN . (5.76)
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We now have a method for aggregating EKF updates into the matrix S1:N , but for the

moment we defer to an alternate interpretation. This process can be described much more

intuitively with an analogy in the context of Redheffer’s original work, scattering theory.

5.4.2 Scattering Theory Parallel

The Hamiltonian formulation of Kalman filter covariance updates provides a very intuitive

parallel with scattering/transmission-line theory, which was developed in the 1940s through

1960s to study the propagation of waves through a medium. Stemming from the work of

Redheffer [42], a scattering theory framework was developed for filtering by Kailath and

Ljung in [33, 26, 52, 49], which we make use of in this section. The key to this analogy lies

in the forward-backward Hamiltonian system associated with the HDRDE: in filtering, this

corresponds to a system which simultaneously produces filtered and smoothed estimates; in

scattering theory it is interpreted as waves traveling through a medium in opposite directions

with forward and backward transmission and reflection operators, whose interactions are

determined by the state space parameters {G,R,M}. Given these parameters for a set

of consecutive scattering medium layers, or equivalently a set of consecutive Kalman filter

updates, the descriptor matrices for each update can be combined using the star product to

produce one descriptor matrix. This resulting descriptor matrix represents the aggregate

scattering medium, or equivalently the aggregate filter update, which exactly captures the

effects of all individual layers, or filter steps.

The underlying HDRDE for the scattering model is represented as follows:

Σt = Pt + ΦtΣt−1(I −MtΣt−1)
−1ΦT

t , (5.77)

where at filtering time t (or scattering layer t)

Φt = state transition matrix (or scattering transmission matrix )

Pt = error covariance (or right reflection coefficient)

Mt = measurement information (or left reflection coefficient)

and the associated Hamiltonian matrix (Equation 5.50) is called the scattering matrix and
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has the form:

St =




Φ P

−M ΦT





t

=




G R

−M GT





t

. (5.78)

Multiple layers can be composed using the star product. Here, through a slight abuse of

notation, we explicitly demonstrate the star product operator by adding layer St+1 to layer

St, computing St:t+1 = St ⋆ St+1 as follows:




Φ P

−M ΦT





t:t+1

=




Φ P

−M ΦT





t

⋆




G R

−M GT





t+1

, (5.79)

which yields the set of recursions (using Equations 5.64, 5.66 and 5.67):

Φt:t+1 = Gt+1(I + PtMt+1)
−1Φt (5.80)

Pt:t+1 = Rt+1 + Gt+1Pt(I + Mt+1Pt)
−1GT

t+1 (5.81)

Mt:t+1 = Mt + ΦT
t Mt+1(I + PtMt+1)

−1Φt. (5.82)

Intuitive Individual Updates

It is useful to note that Hamiltonian descriptor matrices can be used for each individual

measurement and control update. In Equations 5.74 and 5.75, we showed the HDRDE

corresponding to measurement and control updates, respectively. These translate directly

into descriptor matrices as

SM
t =




I 0

−M I





t

and SC
t =




G R

0 GT





t

, (5.83)

where SC
t is a control update matrix and SM

t is a measurement update matrix. The full

update matrix for one iteration of the control-based recursion is then given as

St = SM
t ⋆ SC

t . (5.84)

Initial Conditions

The initial conditions in this formulation are handled in similar fashion to our discussion in

Section 5.2.5. The insight in applying the initial covariance is to create a boundary layer,
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which is a scattering layer that is attached to the null scattering layer.

First we consider the interpretation of a null layer, or equivalently a null filter update,

which is denoted S∅. In terms of wave propagation, this null layer can be likened to a

vaccuum with no interaction effects: no reflections P∅ = M∅ = 0 and unity transmission

Φ∅ = I. In filtering, a null filter update would correspond to control and measurement

updates that have no effect on the covariance: there would be no process noise R = 0 or

measurement information M = 0, and the state transition matrix would be unity G = I.

The null layer would thus be represented by a descriptor matrix as follows:

S∅ =




Φ P

−M ΦT





∅

=




G R

−M GT





∅

=




I 0

0 I



 . (5.85)

This is easily verified, as star-producing any matrix with the null scattering matrix results

in the original matrix.

Based on the interpretation of the null layer, it is straightforward to see that the initial

covariance Σ0 could be represented as a null layer with additional process noise R = P = Σ0,

or alternatively with additional measurement information M =M = Σ−1
0 = Ω0. It could

also be represented as a combination of R and M whose net contribution is Σ0. These are

identical to the cases derived in Section 5.2.5. The first two cases would be boundary layers

described as

S0 =




I Σ0

0 I



 , or S0 =




I 0

−Ω0 I



 , (5.86)

where this boundary layer can be attached to a scattering medium to impose an initial

condition.

The scattering matrix interpretation is very intuitive, but this can also be shown formally

by star-producing the initial condition matrix with the filter update descriptor matrix at

t = 1. For algebraic simplicity in the derivation, we concern ourselves with the initial

condition matrix S0 on the left in Equation 5.86, which gives us:

S0 ⋆ S1 =




I Σ0

0 I



 ⋆




G1 R1

−M1 GT
1



 =




− P0:1

− −



 . (5.87)

Note that at the moment we are only concerned with the 2, 1 entry of the resultant, which
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is the effective error covariance in state space of the combined filter update S0:1. Using the

recursion for this term P0:1, defined in Equation 5.81, we obtain

P0:1 = R1 + G1Σ0(I + M1Σ0)
−1GT

1 ⇒ Σ1. (5.88)

This result is very important, because it is identical to computing Σ1 using the Kalman

filter HDRDE in Equation 5.73. Equation 5.88 shows that by adding the boundary layer in

Equation 5.73, the filtered covariance after the Kalman filter update {G1, R1,M1} is exactly

computed as P0:1 = Σ1. In general, this means that the state of uncertainty in the filter can

be maintained as a descriptor matrix, and the posterior covariance of a subsequent filter

update results from the star product block operator for P.

Computing the Hamiltonian One-Step Update

As shown in Equation 5.76, the scattering matrices for multiple layers t = 1 to N can be

combined by using the star product to generate the aggregate layer descriptor S1:N , which

in general we will denote as S⋆.

The key to the filtering interpretation of an aggregate filter descriptor S⋆ lies in the

associative property of the star product operation [42], which ensures that the star product

of any scattering matrices yields another scattering matrix of the same form, such that

S⋆ =




Φ⋆ P⋆

−M⋆ Φ⋆T



 =




G⋆ R⋆

−M⋆ G⋆T



 . (5.89)

The implication of this is powerful and extends beyond the scope of our desired one-step

operator; not only will this enable us to compute a multi-step covariance update in one-

step, but we also generate an exact description of the aggregate filter. We now have the

aggregate state transition G⋆, process noise R⋆ and measurement information M⋆ for a

trajectory, which is independent of initial conditions.

As shown in Equations 5.87-5.88, a one-step update of the covariance can be easily

computed for a novel initial condition Σ0. After S∗ has been computed, the posterior

covariance Σ is exactly computed as

Σ = R⋆ + G⋆Σ0(I + M⋆Σ0)
−1G⋆T

. (5.90)
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5.4.3 Symplectic Filtering Formulation

It is straightforward to formulate the KF covariance update as symplectic system by once

again recognizing the correspondence between the Kalman filter and HDRDE in Equa-

tion 5.73, where A = G, B = R, and C = −M . The symplectic descriptor matrix for the

HDRDE (shown in Equation 5.51) is given as

Tt =




A−BA−TC BA−T

−A−T C A−T





t

=




G + RG−T M RG−T

G−T M G−T





t

,

which represents a forward linear system shown in Equation 5.45 as




Y

Z





t

=




G + RG−T M RG−T

G−T M G−T





︸ ︷︷ ︸

Tt

·




Y

Z





t−1

, (5.91)

where Σt is decomposed as the matrix fraction Σt = YtZ
−1
t .

Intuitive Individual Updates

We note again that descriptor matrices can be formed from the HDRDE corresponding

to each individual measurement and control update in Equations 5.74 and 5.75. These

equations translate into symplectic descriptor matrices as

T M
t =




I 0

M I





t

and T C
t =




G RG−T

0 G−T





t

, (5.92)

where T C
t is a control update matrix and T M

t is a measurement update matrix.

Note that this is the same result derived from the Kalman filter equations in Section 5.2,

shown in Equations 5.11 and 5.7. The resulting solution in that section (Equation 5.14) was

indeed an equivalent symplectic solution. The only difference is that Equation 5.14 was the

result of a measurement-based recursion, which formed Tt as Tt = T M
t · T C

t . Our current

solution in Equation 5.91 is the result of a control-based recursion, which is given as

Tt = T C
t · T

M
t =




G + RG−T M RG−T

G−T M G−T



 . (5.93)
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Algorithm 11 Build One-Step Hamiltonian Matrix procedure.

Require: Edge trajectory eµ,µ′ and step length ǫ

Ensure: One-step aggregate star descriptor matrix S⋆

Build OneStep Hamiltonian(eµ,µ′ , ǫ)
1: Initialize S⋆ = I2n×2n

2: for µi = µ to µ′ step ǫµ = ǫ · δeµ,µ′ do

3: Compute Gn×n
i and Rn×n

i from motion control µi−1 → µi

4: Build control update descriptor SC
i =

[
Gi Ri

0 GT
i

]

5: Compute Mn×n
i from maximum likelihood measurement at µi

6: Build measurement update descriptor SM
i =

[
I 0

Mi I

]

7: S⋆ = S⋆ ⋆ SC
i ⋆ SM

i

8: end for

9: return S⋆

Algorithm 12 Compute One-Step Hamiltonian Update procedure.

Require: Start covariance Σ and OS star descriptor S⋆ =

[
G⋆ R⋆

M⋆ G⋆

]

Ensure: Posterior covariance Σ′

Compute OneStep Hamiltonian(Σ,S⋆)

1: Compute Σ′ = R⋆ + G⋆Σ(I + M⋆Σ)−1G⋆T

2: return Σ′

Recovering the Posterior Covariance

The solution to the one-step problem with symplectic matrices is identical to the Kalman

filter-based solution presented in Section 5.2. One must first build an aggregate symplectic

matrix that accounts for all measurement and control updates from time t = 1 to N , which

is given by matrix multiplication as

T ⋆ = T1:N = T M
N · T C

N · · · T
M
1 · T C

1 . (5.94)

Then, given a novel initial covariance Σ0, the resulting posterior covariance after N updates

is easily computed as

ΣN = (T ⋆
11Σ0 + T ⋆

12)(T
⋆
21Σ0 + T ⋆

22)
−1, (5.95)

where T ⋆
ij is the i, j block of the aggregate symplectic matrix T ⋆.
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Algorithm 13 Build One-Step Symplectic Matrix procedure.

Require: Edge trajectory eµ,µ′ and step length ǫ

Ensure: One-step aggregate symplectic descriptor matrix T ⋆

Build OneStep Symplectic(eµ,µ′, ǫ)
1: Initialize T ⋆ = I2n×2n

2: for µi = µ to µ′ step ǫµ = ǫ · δeµ,µ′ do

3: Compute Gn×n
i and Rn×n

i from motion control µi−1 → µi

4: Build control update descriptor T C
i =

[
Gi RiG

−T
i

0 G−T
i

]

5: Compute Mn×n
i from maximum likelihood measurement at µi

6: Build measurement update descriptor T M
i =

[
I 0

Mi I

]

7: T ⋆ = T M
i · T C

i · T
⋆

8: end for

9: return T ⋆

Algorithm 14 Compute One-Step Symplectic Update procedure.

Require: Start covariance Σ and OS symplectic descriptor T ⋆ =

[
T ⋆

11 T ⋆
12

T ⋆
21 T ⋆

22

]

Ensure: Posterior covariance Σ′

Compute OneStep Symplectic(Σ,T ⋆)
1: Compute N = T ⋆

11Σ + T ⋆
12

2: Compute D = T ⋆
12Σ + T ⋆

22

3: return Σ′ = ND−1

5.5 Summary of One-Step Solutions

In this chapter, we presented two forms of one-step solutions that allow multiple EKF co-

variance updates to be aggregated into one covariance transfer function. The motivation

for these one-step methods was to improve the efficiency of the belief trajectory search pre-

sented in Chapter 4. We thus conclude this chapter by summarizing the one-step solutions

in terms of covariance propagation along trajectories. For each method, we present a build

procedure and update procedure in algorithmic form. The build procedure constructs an

aggregate EKF descriptor matrix for a trajectory which represents the one-step transfer

function. The update procedure computes the posterior covariance Σ′ at the end of a tra-

jectory for a novel initial condition Σ by applying the one-step transfer function. For the

Hamiltonian solution, the corresponding build and update procedures are shown in Algo-

rithms 11 and 12, respectively. For the symplectic solution, the corresponding build and

update procedures are shown in Algorithms 13 and 14, respectively.

Each build procedure computes an aggregate one-step descriptor matrix by iterating
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through a sequence of discrete points along a trajectory eµ,µ′ . At each point µi, the state

transition Gi and process noise Ri matrices are computed according to the incremental

motion control from the previous point ui = µi−1 → µi. A control update descriptor matrix

is then created with Gi and Ri. Similarly, the expected measurement information Mi is

computed at each point µi from the maximum likelihood measurement. A measurement

update descriptor matrix is then formed using Mi. Finally, for each discrete point µi the

aggregate one-step descriptor is updated, via functional composition, to account for the

uncertainty effects encoded in the control and measurement update descriptors.

Each update procedure implements the respective one-step computation. For the Hamil-

tonian method, this computation is shown in Equation 5.90. For the symplectic method,

the update computation is shown in Equation 5.95.
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Chapter 6

The Belief Roadmap Algorithm
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6.1 Introduction

In this chapter, we combine the general trajectory search algorithm from Chapter 4 with the

efficient one-step update from Chapter 5 to form the Belief Roadmap (BRM) algorithm. As

we discussed in Chapter 4, the key limitation of the trajectory search planning algorithm is

the computational penalty of performing redundant multi-step updates during graph search.
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The BRM method mitigates this burden by replacing the multi-step trajectory update in

the hybrid search process with a simple, one-step transfer function. In experiments, we

show that this improves search times by over two orders-of-magnitude. While it is still

necessary to compute the uncertainty effects along each trajectory in multiple steps, this

cost is amortized to the one-time BRM build process. Altogether, the BRM algorithm

harnesses the tractable foundation for belief space planning presented in the trajectory

search formulation, while realizing substantial on-line speed gains with one-step uncertainty

updates.

The efficiency of the BRM algorithm is owed to the decoupling of multi-step uncertainty

propagation from initial conditions that is performed by one-step methods. Specifically, the

one-step insight enables us to move the repetitive computational burden of MS updates

from the on-line search process into a one-time procedure in the off-line build process.

Section 6.2 shows the manifestation of this trade-off as we modify both the trajectory

graph build phase of Algorithm 8 and the hybrid search process in Algorithm 9 to construct

the BRM algorithm. In Section 6.2.3, we propose an alternate form of the search process

which uses a modified objective function to limit the maximum uncertainty encountered

along the solution path. In Section 6.3, we present our experimental setup and results,

beginning with a derivation of the linearized motion and sensor models used in this work

in Sections 6.3.1-6.3.2. We assess the algorithmic and localization performance of the BRM

and present an example solution to a large planning problem across the MIT campus in

Sections 6.3.4-6.3.6. In Section 6.4, we conclude the work presented in this chapter and

defer discussion of further applications and future work to Chapter 7.

6.2 The Belief Roadmap Algorithm

In this section, we develop the Belief Roadmap algorithm by adapting the trajectory graph

planning algorithm presented in Chapter 4 to use one-step trajectory updates. We first

present the modified BRM build process in Section 6.2.1, leading to the complete BRM

planning algorithm in Section 6.2.2.

6.2.1 Building the Belief Roadmap

With one-step trajectory updates, it is possible to isolate the cost of performing multiple
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Algorithm 15 Build Belief Roadmap procedure.

Require: Map C ≡ Bµ over mean-belief locations
Ensure: BRM graph G = {{ni}, {eij}, {Sij}} with belief node set {ni}, edge trajectory set
{eij} and one-step descriptor set {Sij}
Build BRM Graph(Bµ)

1: Sample poses {µi} from Bµ
free using a standard PRM sampling strategy.

2: Build graph node set {ni} for each sample such that ni = {µ = µi,Σ = ∅}
3: Create edge set {eij} between nodes (ni, nj) if the straight-line path between

(ni[µ], nj[µ]) is collision-free
4: for all edges eij ∈ {eij} do

5: Sij ← Build OneStep(eij, ǫ)
6: end for

7: return G = {{ni}, {eij}, {Sij}}

Kalman filter updates along each trajectory to the off-line pre-processing phase of the

planning algorithm. We adapt the graph building method in Algorithm 8 to construct

one-step descriptor matrices as shown in Algorithm 15.

Two modifications have been made to Algorithm 8. First, the underlying structure of

the trajectory graph G has been augmented with a set of one-step descriptor matrices {Sij}

corresponding to each edge eij in the trajectory edge set {eij}. Each one-step descriptor

matrix Sij represents the uncertainty transfer function between nodes ni and nj along the

trajectory eij . The second modification is the addition of a build step for the one-step

matrices, shown in lines 4-6. For each edge in the graph, the Build OneStep procedure

is used to construct the corresponding descriptor matrix. Either of the build methods,

Build OneStep Hamiltonian (Algorithm 11) or Build OneStep Symplectic (Algo-

rithm 13), may be used, depending on the choice of one-step update.

Note that the graph structure and uncertainty transfer functions are all created without

knowledge of the initial covariance used during search. This is a substantial improvement

over the original build method in Algorithm 8, for we have amortized the cost of sequential

Kalman filter trajectory updates to the off-line pre-processing phase. While the computa-

tional burden of the Build OneStep routine for a given trajectory is roughly equivalent

to that of the conventional Compute MultiStep (Algorithm 7), the Build OneStep

method is independent of initial conditions and, thus, computed only once during the en-

tire course of planning and re-planning.
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Algorithm 16 The Belief Roadmap (BRM) algorithm.

Require: Start belief (µ0,Σ0), goal location µgoal, map Bµ and edge step size ǫ

Ensure: Path p resulting in minimal covariance at µgoal

1: G = {{ni}, {eij}, {Sij}} ← Build BRM Graph (Bµ)
2: Append G with nodes {n0, ngoal}, edges {{e0,j}, {ei,goal}}, and one-step descriptors
{{S0,j}, {Si,goal}}

3: Augment node structure with best parent node np = ∅, such that ni = {µ,Σ, np}
4: Create search queue with initial position and covariance Q← n0 = {µ0,Σ0, ∅}
5: while Q is not empty do

6: Pop n← Q

7: if n = ngoal then

8: Continue
9: end if

10: for all n′ such that ∃en,n′ and not In Path(n, n0, n′) do

11: Σ′ ← Compute OneStep(n[Σ],Sn,n′)
12: if tr(Σ′) < tr(n′[Σ]) then

13: n′ ← {n′[µ],Σ′, n}
14: Push n′ → Q

15: end if

16: end for

17: end while

6.2.2 BRM Trajectory Search

The complete BRM algorithm is shown in Algorithm 16. The only modification to

the search process from Algorithm 9 is that we have replaced the multi-step trajectory

uncertainty update with a one-step transfer function. This is shown in line 11 of Al-

gorithm 16, where the posterior covariance along a given trajectory is obtained from the

Compute OneStep routine. Again, this one-step update can be performed by using either

the Compute OneStep Hamiltonian or Compute OneStep Symplectic procedure

depending on which one-step method is chosen.

In general, the issues noted in the discussion of the trajectory search algorithm in Sec-

tion 4.3.2 apply to the BRM algorithm. However, there are additional considerations which

we explore below.

Discussion of Search Complexity

For a trajectory consisting of k actions, the multi-step update in Algorithm 7 requires O(k)

EKF control and measurement updates to compute a posterior covariance. This means

that the asymptotic complexity of the overall search process in Algorithm 9 is O(kbd), with
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branching factor b and search depth d. The efficiency improvement of modifying the search

process to use one-step updates, such that k = 1, is not immediately apparent, since the

difference in complexity is a constant multiplier k of exponential growth. However, the

computational cost of performing specific EKF updates, consisting of relatively expensive

matrix operations (multiplications and inversions) and measurement simulations, has a

significant effect on the overall time to plan. It is for this reason that using a one-step

update during the hybrid search process, with complexity O(bd), results in a substantial

improvement in efficiency.

There are additional points to make note of regarding our search process. In order

to guarantee an optimal solution of the objective function, it is necessary to perform an

exhaustive search of the BRM graph G for acyclic paths between the start and goal locations.

Note, however, that in practice the depth of this exhaustive search does not traverse the

entire graph G; rather, the depth is a function of the largest connected component Gcc

between the start and goal nodes. This point has two implications. First, the average

complexity of the search process may be significantly less than the worst case complexity

if the nature of the graph is such that Gavg
cc << Gworst

cc . Second, the added complexity of

computing one-step descriptors during the build process need only be limited to performing

Build OneStep for trajectories within the connected component. While Gcc is determined

after the build process for a specific on-line query, this suggests that the one-time cost

of building a one-step trajectory can be arbitrarily moved between the build and search

processes to suit a given application. For example, the Compute OneStep routine could

be easily modified to build a one-step descriptor on-demand during the search process if the

given matrix has not yet been computed.

It should also be noted that one of the key benefits of the BRM is its applicability to on-

line planning. If the search phase was only to be performed once to generate a static plan,

the one-step technique would lead to little improvement in the overall planning process.

However, in typical motion planning problems it is desirable to re-plan during the course of

execution to account for deviations from the original plan and also to incorporate dynamic

constraints. The BRM provides an very suitable approach for handling multiple queries

because it amortizes the significant cost of filtering over trajectories to the one-time build

phase. As a result, planning and re-planning with novel initial conditions are performed

very efficiently by the BRM’s stream-lined search process.
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Algorithm 17 The Min-Max Belief Roadmap (minmax-BRM) algorithm.

Require: Start belief (µ0,Σ0), goal location µgoal, map Bµ and edge step size ǫ

Ensure: Path p from µ0 to µgoal with minimum maximum covariance.
1: G = {{ni}, {eij}, {Sij}} ← Build BRM Graph (Bµ)
2: Append G with nodes {n0, ngoal}, edges {{e0,j}, {ei,goal}}, and one-step descriptors
{{S0,j}, {Si,goal}}

3: Augment node structure with best path p = ∅ and maximum covariance Σp
max = ∞

along path p, such that ni = {µ,Σ, p,Σp
max}

4: Create search queue with initial position and covariance Q← n0 = {µ0,Σ0, ∅,∞}
5: while Q is not empty do

6: Pop n← Q

7: if n = ngoal then

8: Continue
9: end if

10: for all n′ such that ∃en,n′ and n′ ∋ n[p] do

11: Σ′ ← Compute OneStep(n[Σ],Sn,n′)
12: if max(tr(Σ′), tr(n[Σp

max])) < tr(n′[Σp
max]) then

13: n′ ← {n′[µ],Σ′, {n[p], n′},max(Σ′, n[Σp
max])}

14: Push n′ → Q

15: end if

16: end for

17: end while

An additional advantage of the BRM in on-line applications stems from planning within

belief space, wherein the actual robot belief during execution can be directly utilized by

the planner. For example, when the robot reaches a waypoint during trajectory execution,

it can efficiently re-plan using the realized belief covariance as the initial condition of the

search process. This ability makes the BRM an attractive method for robust planning and

execution under uncertainty.

6.2.3 Modified BRM for MinMax Path Uncertainty

In the BRM formulation shown in Algorithm 16, the search process finds the series

of trajectories that results in minimal uncertainty at the goal location; however, it may

be desirable to instead limit the maximum uncertainty encountered along an entire path.

One approach could be to impose bounds on the maximum allowable uncertainty during the

BRM search tr(Σ) < trmax to discard undesirable goal paths. In a more principled approach,

one could modify the BRM search process to optimize an alternative objective function that

minimizes the maximum predicted uncertainty along the entire path. Within the context

of the BRM graph, this approach would consider the posterior covariance predicted at each
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intermediate belief node in a series of trajectories. The goal would be to minimize the

objective function K, which is given as

K(µ0,Σ0, u0, . . . , µT ,ΣT , uT ) =

T∑

t=0

C(µt, ut) + D(max(Σ0, ...,ΣT )), (6.1)

where K(. . .) is the cost of a path, C(µt, ut) is the cost of executing control ut from pose µt,

and D(...) is the cost associated with the maximum uncertainty of all discrete belief nodes

along the path.

The BRM search process is adapted to minimize the objective function K in Algo-

rithm 17, which we have named the Min-Max Belief Roadmap (minmax-BRM) algorithm.

There are two key changes from the standard BRM. First, the augmented search node

structure in line 3 stores the best path p to the given node and the maximum covariance

Σp
max along p. The best path ni[p] to node ni corresponds to the series of nodes beginning

at the start node n0 that collectively has the minimum maximum (min-max) covariance of

all such paths considered to node ni. The maximum covariance ni[Σ
p
max] along this best

path ni[p] is also stored in the search state for computing the associated cost D in the

objective function K (Equation 6.1) and for decision-making during search. Note that the

covariance ni[Σ] stored at node ni is no longer the minimum achievable covariance, but

rather to posterior covariance resulting from the best path ni[p].

The second change is a series of modifications to the node expansion step in lines 10-16.

First, path cycles are disallowed in line 10, where a neighboring node n′ is only considered

if it is not already in the search state path n[p]. Then, as before, for each valid neighboring

node n′ the current search state covariance is propagated along the corresponding edge

in line 11. The primary decision-making step in line 12 is modified for the new objective

function. In this case, the path being considered in the current search state {n[p], n′} is

deemed better than the existing path n′[p] to node n′ if its maximum uncertainty is less

than that of the existing path. Note that the maximum uncertainty of the current search

path {n[p], n′} is computed by taking the max function of the associated uncertainty of

each portion of this path, which is tr(n[Σp
max]) for n[p] and tr(Σ′) for n′. If the current

search path is better than the existing path, then the node n′ is updated accordingly in

line 13 and placed on the queue in line 14.

A key consideration of the minmax-BRM algorithm is that it can only guarantee opti-
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mality for a specific resolution of the uncertainty evolution along a path. In Algorithm 17,

we only consider the covariance at node locations within the entire path. While the Com-

pute OneStep method exactly computes the posterior covariance of multiple KF updates

along a trajectory, the underlying multi-step process is not monotonic. This means that it

is possible for the covariance at an intermediate point along a trajectory to be larger than

both the prior covariance and posterior covariance for the full trajectory. It is possible to

revert to some form of multi-step approach to this problem, but, without further assump-

tions, the guarantee of optimality will always be limited to the resolution of discretization.

We leave the analysis of this problem for future work, and place our focus on the standard

BRM for experiments.

It is important to note the generality of the BRM formulation, which was demonstrated

in this section by modifying the search process to optimize an alternative objective function.

The BRM technique presents a general approach to planning in belief space that can be

adapted to solve a broad class of planning problems.

6.3 Experiments and Results

In order to evaluate the BRM algorithm, we performed a series of evaluations on a small

planning domain in simulation. In this section, our experimental setup and the results

of each evaluation are presented in turn. We begin by presenting the motion and sensor

models used in our experiments, which are linearized versions of the models developed in

Sections 3.3 and 3.2.2, respectively, for use in our EKF-based formulation. Note that, for

readability, we omit time index subscripts in the next two sections; however, all matrices

derived are time-varying quantities.

6.3.1 Linearized Motion Model

The non-linear probabilistic motion model presented in Section 3.3 can be approximated

by linearization for use by filtering techniques that require a linear system. For conve-

nience, we restate the state transition function xt = g(xt−1, ut) for this motion model (from
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Equation 3.10):

gx = x + D cos (θ +
T

2
) + C cos (θ +

T + π

2
)

gy = y + D sin (θ +
T

2
) + C sin (θ +

T + π

2
)

gθ = θ + T mod 2π,

where gx, gy and gθ are the components of g corresponding to each state variable, and the

control variable ut is given by ut =
[

D C T
]T

with down-range D, cross-range C and turn

T components.

In the EKF, the state transition matrix G is the Jacobian of the motion model with

respect to the state, and is computed by linearizing the state transition function g about

the mean state µ as follows:

G =










δgx

δx

δgx

δy

δgx

δθ
δgy

δx

δgy

δy

δgy

δθ
δgθ

δx

δgθ

δy

δgθ

δθ










µ

=








1 0 a

0 1 b

0 0 1








,

where

a = −D sin (µθ +
T

2
)− C sin (µθ +

T + π

2
)

b = D cos (µθ +
T

2
) + C cos (µθ +

T + π

2
).

The linearized process noise in state space is computed as R , V WV T where W is the

process noise covariance in control space

W =








σ2
D 0 0

0 σ2
C 0

0 0 σ2
T








and V is the mapping from control to state space, computed as the Jacobian of the motion

129



model with respect to the control space components

V =









δgx

δD

δgx

δC

δgx

δT
δgy

δD

δgy

δC

δgy

δT
δgθ

δD

δgθ

δC

δgθ

δT









µ,µ[u]

.

Computing these partial derivatives leads to

V =









cos (θ +
T

2
) cos (θ +

T + π

2
) −

1

2

(

D sin (θ +
T

2
) + C sin (θ +

T + π

2
)
)

sin (θ +
T

2
) sin (θ +

T + π

2
)

1

2

(

D cos (θ +
T

2
) + C cos (θ +

T + π

2
)
)

0 0 1









µ,µ[u]

,

where the components of V are evaluated at the mean state µ and the mean control µ[u]

(D, C, and T take on the mean values of the respective normal distributions specified in

equations 3.10-3.12).

6.3.2 Linearized LOS Sensor Model

Similarly, the UWB sensor model developed in Section 3.2.2 can be linearized for use in

the EKF. For convenience we restate the distance-varying Gaussian noise model of the bias

N (µb(d), σb(d)) and the observation function z. The noise model is given by,

µb(d) = µm
b d + µb

b

σb(d) = σm
b d + σb

b

and the observation function z = h(x) + v is determined by,

h(x) = µb
b + (1 + µm

b )

√

(x− xb)
2 + (y − yb)

2

v = N (0, σb(d)2),

where (x, y) is the robot pose, (xb, yb) is the beacon location, d is the euclidean distance

and the parameters of the Gaussian bias distribution are linear functions of the distance.

The linearized transformation from measurement space to state space is computed as the

measurement Jacobian H, computed as the partial derivatives of the measurement function
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with respect to each component of the state:

H =

[
δh

δx

δh

δy

δh

δθ

]

,

which becomes:

H =

[
(1 + µm

b )(x− xb)
√

(x− xb)
2 + (y − yb)

2

(1 + µm
b )(y − yb)

√

(x− xb)
2 + (y − yb)

2
0

]

. (6.2)

Note that (x − xb) = d cos θm and (y − yb) = d sin θm, where θm = atan2(y − yb, x− xb) is

the angle of measurement relative to the robot pose. Thus, Equation 6.2 becomes

H =

[

(1 + µm
b )d cos θm

d

(1 + µm
b )d sin θm

d
0

]

=
[

(1 + µm
b ) cos θm (1 + µm

b ) sin θm 0
]

. (6.3)

As can be seen, the range measurements yield no information on bearing, and thus only

affect the estimation of the x and y components of the robot state.

The measurement noise covariance Q , cov(q, q) for a given beacon is the 1× 1 matrix

Q =
[

(σm
b d + σb

b)
2.

]

(6.4)

6.3.3 Experimental Setup

Our evaluations of the BRM algorithm consisted of two objectives: (1) to quantify the

computational advantage of using the linearized one-step EKF covariance update during

the search process; and (2), to assess the quality of plans produced by the BRM algorithm

in terms of minimizing uncertainty at a goal location.

We used various maps of sizes ranging between 30− 100 m on a side with UWB sensor

beacons placed at random locations. These environments were assumed to be free of obsta-

cles with line-of-sight (LOS) conditions for UWB sensors. This test design was chosen for

two primary reasons. Firstly, LOS conditions reduce the experimental bias that could result

from environment-specific artifacts in NLOS scenarios with random trajectory generation.

Secondly, for the purposes of generality, the UWB sensor model in LOS conditions provides

a less sensor-specific noise model. By using only the linear-Gaussian portion of the noise
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model, our results are more general and provide greater intuition for applying the BRM to

other sensor domains.

The BRM graph was built by sampling poses according to a medial-axis sampling strat-

egy [22]. In the LOS environments used, all poses are visible; however, we limit the creation

of edges from each node to the k-nearest neighbors. The resulting BRM graph was used

with beacon sensor locations from the map for EKF covariance propagation.

In the EKF trajectory updates during testing, motion controls were simulated between

discrete points along the given trajectory arc. The length of the sub-arcs corresponding

to each control action was chosen to emulate the actual length of discrete motion updates

during real-world plan execution. An EKF control update is performed for each simulated

control action ut by computing the corresponding state transition Gt and process noise Rt

matrices linearized about the mean-belief location µt−1 at the beginning of the sub-arc.

Further, at each mean-belief location µt, UWB range measurements were simulated to bea-

cons within a specified radius. For each beacon, the maximum-likelihood observation was

computed by measuring distance dt relative to the mean-belief location µt and calculat-

ing the mean µb(dt) and standard deviation σb(dt) of the distance-varying Gaussian bias.

The linearized measurement Jacobian Ht and the measurement noise covariance Qt were

computed using the values of µb(dt) and σb(dt)
2, respectively.

6.3.4 Algorithmic Performance

To assess the speed improvement of employing one-step EKF updates over trajectories,

we compared the time required by the BRM search process (Algorithm 16) using one-step

covariance updates to that of the standard trajectory search (Algorithm 9) with MS covari-

ance updates. The experiments were performed over maps of varying size with UWB sensors

placed at randomized locations. To reduce the variability in speed results, the number of

belief nodes and the number of UWB sensors were constrained as follows. In each trial, the

number of nodes in the BRM graph was sampled in proportion to the area of the environ-

ment. This served to limit the variability of trajectory lengths in the BRM graph, allowing

for reasonable comparison of speed results measured over different graphs. Additionally, a

constant number of UWB sensors was used throughout all trials. Similarly, this limited the

variability of the time required for measurement updates in different environments.
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(a) Time vs. Tree Depth (b) Time vs. Path Length

Figure 6-1: Algorithmic Performance. (a) Time to Plan vs. Tree Depth (b) Time to Plan vs. Path Length.
Note that these are semi-log graphs, indicating two orders of magnitude increase in speed.

The results of the speed comparison over search tree depth and resulting path length

are shown in Figure 6-1. Figure 6-1(a) shows the time required by the planning search

process with respect to the depth of the search tree for both planners. As evidenced in

this semi-logarithmic plot, the BRM demonstrates a consistent improvement of over two

orders of magnitude in search time. Further, the cost of searching grows logarithmically

with increasing tree depth, indicating that the efficiency of the BRM search process scales

well to accommodate larger trajectory graphs.

Similar results are shown in Figure 6-1(b), which plots the time required to search with

respect to the length of the resulting path. Again, the one-step update employed by the

BRM consistently outperforms the multi-step planner by over two orders of magnitude in

search time. This comparison reiterates the significant scalable improvement that is enabled

by the one-step technique.

Note that both planning algorithms also incur a one-time build cost to generate the

trajectory graph, in which the BRM incurs the additional cost of computing one-step update

descriptors for each edge in the graph. As a result, the time required to perform the build

phase and one query is comparable in either planner. However, the key point to note is

that the BRM amortizes the one-time cost of aggregating multi-step updates over the entire

planning and re-planning process, whereas the standard trajectory search planner incurs this

multi-step cost for every query. The BRM thus realizes substantial speed gains in on-line

planning tasks, as demonstrated in these experiments, enabling belief space planning to not

only be computationally tractable, but also efficient in real-world execution.
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6.3.5 Localization Performance
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Figure 6-2: Characterization of Planner Positional Accuracy. (a) Accuracy vs. Sensor Range. The
localization performance of the shortest path algorithm increased as more sensors were in range. The BRM
was able to find paths with sufficient sensor information for localization even with very short range. (b)
Accuracy vs. Sensor Noise. The BRM consistently outperforms the shortest path planner. The positional
accuracy of the shortest path planner shows unreliability and that it suffers with increased noise.

To evaluate the quality of paths produced by the BRM algorithm, we compared the

performance of plan execution for paths generated by the BRM search process to those

resulting from a standard shortest path search. The aim of this evaluation was to test

the underlying intuition of the BRM design; that detouring from the shortest path for

trajectories with greater potential information gain may result in less positional error at

the goal location. We quantified the quality of plans in these experiments by measuring the

average positional error obtained at the goal location after executing paths prescribed by

each planner.

We performed two evaluations of localization performance by artificially changing pa-

rameters of the sensor model. The intuition for this test design stems from the objective

function J that is minimized by the BRM, which is restated here as

J(b0, u0, . . . , bT , uT ) =

T∑

t=0

C(bt, ut) + D(bT ),

where J(. . .) is the cost of a path, C(bt, ut) is the cost of executing control ut from belief

bt, and D(bT ) is the cost associated with the resulting uncertainty of the goal belief bT .

We seek to test the hypothesis that as the quality of the sensor is improved, there is less

difference in potential information gain between trajectories (as they all become equally

good) and, thus, the cost D associated with goal uncertainty becomes less significant in

differentiating paths. Then, as the cost C of executing controls becomes dominant, shorter
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paths consisting of less cumulative control uncertainty will be favored, and the BRM should

perform similarly to a shortest path planner. Conversely, decreasing the quality of the

sensor should make trajectories with greater potential sensor information favorable. In

randomized environments, such trajectories should tend to deviate from the shortest path

and their execution should result in more reliable performance.

In the first analysis, we artificially limited the range of the UWB sensors by discarding

measurements beyond a maximum range rmax. Figure 6-2(a) shows the realized positional

error after executing plans for different maximum sensor ranges. It is clear that when rmax

is small, the BRM is able to find trajectories in close proximity to sensors and remain

localized, attaining reasonable positional accuracy. At the same time, the shortest path

receives less range measurements and results in greater positional error. However, as rmax

increases, trajectories farther from sensors provide sufficient information for localization

and the positional errors converge to similar values for both planners.

In the second analysis, we artificially modified the stochastic, distance-varying noise

model of the UWB range sensors. The resulting positional error obtained at the goal

location is shown in Figure 6-2(b) for the BRM and shortest path planners over varying

sensor noise. We see that the BRM is able to select trajectories with more favorable sensor

measurements and achieve greater positional accuracy. As the sensor noise increases, both

algorithms result in greater positional error, but the performance of the shortest path

algorithm is less reliable and degrades more quickly. Note that the spikes in this graph

indicate sensitivity to the randomly generated environment for each noise level. In future

experiments we seek to isolate this variability.

Overall, these two evaluations indicate that, by incorporating predictions of uncertainty,

the BRM choses higher-quality paths that yield improved reliability in performance.

6.3.6 Example: Large Planning Problem

Our final experiment was a demonstration of the BRM algorithm in a very large planning

problem. Figure 6-3 shows paths generated through a trajectory graph which spans the

MIT campus. The robot must travel in free-space (shown in white) outside of buildings

from a starting location in the lower right corner to a goal location in the upper left corner.

UWB ranging beacons are scattered throughout the environment and shown as small blue

circles. Figure 6-3(a) shows the path generated by the shortest path planner, which finds
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(a) Shortest Path (b) Lowest Expected Cost

Figure 6-3: Example motion plans for navigation across MIT campus (from lower right to upper left).
Paths are computed by a shortest path planner in (a) and by the BRM planner in (b). In each case, the
solid blue line shows the prescribed path, small blue circles are UWB sensor beacons and the green ellipses
are the predicted covariances of the robot position estimate during execution. The shortest path is direct,
but grows very uncertain. The BRM path enables the robot to stay well localized at the cost of slightly
increased length.

a direct route but does not consider uncertainty. As a result, the uncertainty grows very

large, as indicated by the green covariance ellipses. The BRM algorithm, on the other hand,

chooses a path that results in less uncertainty, as shown in Figure 6-3(b). While this path

is less direct, it traverses areas of high sensor density which are amenable to localization

and more likely to yield reliable performance.

6.4 Conclusion

In this chapter we have presented the Belief Roadmap (BRM) algorithm, which is a belief

space variant of the Probabilistic Roadmap algorithm that substantially improves planning

performance and positional accuracy during execution. We have shown that the computa-

tional cost of EKF predictions during search can be reduced by pre-computing “one-step”

covariance transfer functions that combine multiple EKF update steps into a single process.

We demonstrated that this insight decreases the time required to search during planning by

over two orders of magnitude. We have also shown that, by incorporating uncertainty into

planning, the BRM chooses higher quality paths than a traditional shortest path planner

and yields improved reliability during execution. Finally, we demonstrated the BRM algo-

rithm on a large-scale planning problem and showed that we could plan efficiently in very

large spaces.
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Chapter 7

Conclusion and Future Work
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This chapter concludes the thesis with a discussion of future work and a summary of

the contributions made during this project. In Section 7.1 we suggest future exploration

into improvements and extensions of the range-based localization algorithm presented in

Chapter 3. Section 7.2 consists of further discussion of belief space planning, in which we

consider immediate applications and extensions of the Belief Roadmap algorithm and also

propose areas for future work. In Section 7.3, we conclude the work presented in the thesis.

7.1 Future Work in Range-Based Localization

In Chapter 3, we demonstrated that the Rao-Blackwellized particle filter can be used to

improve the scalability and performance of Markov Chain Monte Carlo methods for range-

based localization with hidden bias estimation. The promising results obtained with this

approach suggest future exploration in several domains:

• Improved Bias Transition Model: In our experiments we implemented the range

bias belief as a multinomial distribution in an attempt to capture the notch-shaped

transition probabilities (Section 3.2.2) observed in sensor measurements on a moving

robot. The control update of this distribution requires updating each bias bin of each
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multinomial maintained in a given particle. The computational complexity of this up-

date could be reduced by finding an alternative bias belief model which admits closed

form updates. In future work, we seek to explore distributions from the exponential

family which may fulfill this requirement.

• Sensor Coverage Map: While our range-based localization algorithm is designed to

operate in environments with limited map information, in some applications it may be

possible to build an a priori sensor coverage map with regional bias characterization.

With this additional information, it is likely that our approach could yield positioning

results with greatly increased accuracy.

• Multi-agent Localization: In future research, our approach could be extended to

accommodate dynamic sensor locations in problems such as multi-agent localization

using a cooperative UWB network.

• Real-World Testing: We seek to perform future tests in real-world scenarios and

to explore alternative sensor models based on further experimentation. Additionally,

we intend to pursue real-world system integration tests, using the BRM planning

algorithm for navigation.

7.2 Future Work in Belief Space Planning

The BRM algorithm not only presents an effective solution to the motion planning problem

in belief space, but it also exposes new avenues for research and has great potential for

further applications. In this section, we explore some additional considerations of the BRM

algorithm, propose immediate applications that would require very little modification and

discuss potential extensions for future work.

Immediate Applications to Other Problem Domains

There appear to be several immediate applications and extensions of the BRM technique:

• Dynamic Environments: The efficiency of search makes on-line re-planning very

feasible. One advantage of this efficiency is the ability to consider certain forms of dy-

namic constraints during search. Dynamic obstacles that create trajectory occlusions
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could be accounted when considering possible trajectories during search. It is possi-

ble to account for other constraints that affect the sensor or motion models, however

this would require recomputing one-step descriptors for affected trajectories, which is

more costly.

• High-Dimensional Belief Space and General PRM Replacement: In this

work, we limited the scope of our exploration to the 2-dimensional motion planning

problem. We also were primarily concerned with finding trajectories with greater

potential for information gain from observations, since in the motion model for a 2D

mobile robot most atomic control actions have a similar incremental effect on uncer-

tainty. However, the BRM algorithm is generally applicable to higher-dimensional

problems and problems where control uncertainty is dominant. For example, the

BRM could be applied to the motion planning problem for a n-DOF robot arm with

no observation feedback. If uncertainty costs vary significantly in the dimensions of

the control space, the BRM could generate much more reliable plans than a naive

PRM-based alternative.

• Choosing Between Goals: Given a set of multiple goals {µ1, ..., µj}, the BRM could

be modified to simultaneously find the minimum achievable covariance {Σmin
1 , ...,Σmin

j }

at each goal and then choose the minimum of this set as min({Σmin
1 , ...,Σmin

j }). This

would correspond to performing Algorithm 16 on the largest connected component

G⋆
cc of the trajectory graph G that contains the start location and all goals {µ1, ..., µj},

such that G⋆
cc ≡ G

1
cc ∪ · · · ∪ G

j
cc.

• Finding Goals: The results of a BRM search can be used to identify “safe” goal

locations, or nodes within the BRM graph that have low expected uncertainty.

• Finding Uncertain Regions:

Identifying Points for Exploration: Instead of finding “safe” goals, the results of

a BRM search can be used to identify uncertain locations for further exploration.

Graph Pruning : After applying the BRM, we could improve efficiency during re-

planning by pruning regions of the graph with high uncertainty that are likely to be

undesirable during re-planning. By reducing the size of the trajectory graph to areas

we would likely use, search during re-planning could be made more efficient.

139



Guide Sampling to Uncertainty : After applying the BRM algorithm, we can ac-

tively identify regions of the solution path in which the robot is likely to encounter

the greatest uncertainty. Further applications of the BRM on a more local level at a

higher sampling resolution could be used to generate better plans for avoiding uncer-

tain regions. This leads directly to the hierarchical BRM approach suggested below.

• Trajectory Optimization via Hierarchical BRM: A hierarchical BRM could be

used to address two issues of the standard BRM: a fundamental limitation of PRM-

based approaches is that the efficiency of search depends on the number of nodes

in the graph; and, BRM solutions represent coarse, straight-line trajectories that

suggest further optimization. By applying a coarse-to-fine methodology to the BRM,

the BRM can be broken into modular subproblems (e.g. individual trajectory arcs)

that can be each solved efficiently with additional applications of the BRM at higher

resolution. A coarse trajectory search could first be employed to identify the best

(or n best) high-level path suggestions. Further applications of the BRM could be

employed sequentially on smaller regions of the belief space, effectively solving modular

POMDP’s with boundary constraints. Additionally, these fine-grained searches at

higher resolution could be prioritized to regions of the path with the highest expected

uncertainty.

One consideration of a hierarchical BRM is that guarantees of search optimality in

the BRM are limited to the resolution of a given search. It is not immediately clear

what global guarantees or bounds could be made in a modular approach of varying

resolution.

Future Work

There appear to be several natural domains for improving the BRM in future work. We

begin by listing some considerations of the BRM algorithm that should be addressed:

• Generalizing the BRM to Other Sensor Models: The following considerations must

be taken into account when attempting to use the BRM algorithm with other sensor

models:

7→ is the sensor model linearizable?
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7→ does the maximum likelihood observation make sense?

7→ is it reasonable to simulate measurements?

• Assumption of Maximum-Likelihood Observation: A crucial assumption in the BRM

formulation is that of the maximum-likelihood observation, which is necessary to

ensure a linear EKF mean update. This assumption is reasonable when: (a) the

sensor model does not yield large deviations in potential measurement information in

local regions; and (b), when the expected belief uncertainty is small enough that error

in the state estimate does not cause the mean-predicted-observation to have much

error. Ideally we would like to consider potential observations based on the belief

uncertainty of the robot. If the belief uncertainty is large, it becomes increasingly

likely that the actual state of the robot is farther away from the mean. Thus, we

should consider the likelihood of receiving observations in a spatial region of the belief

space that accounts for this uncertainty.

• Assumption of Linear Controls: While the linear EKF control update of the mean is

reasonable for a mobile robot with differential-drive, it may not be reasonable in other

applications with nonholonomic kinematic constraints. Further, the linear-Gaussian

assumption of controls may not be reasonable in some problem domains, such as

UAVs.

UKF Extension of the BRM

A natural BRM extension to address these issues would involve incorporating the unscented

Kalman filter (UKF) [25] to capture the variability of observations and controls over a

local spatial region defined by the covariance. The UKF improves upon the linearization

technique with a compromise between sampling-based methods and the linear-Gaussian

assumption. The UKF creates two Sigma points for each dimension of the state, which are

placed on each side of the mean at a distance and weight that are functions of the prior

covariance Σt−1. The non-linear control and measurement steps update each individual

Sigma point, capturing regional non-linear effects about the mean. At the end of a UKF

iteration, the filter reconstructs the resulting mean ut and covariance Σt from the updated

Sigma points.

Our goal in future work would be to apply the UKF to the BRM algorithm to capture the
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variability of observations (and potentially controls) over a local spatial region. Ideally, we

would like to use the UKF instead of the EKF; however, the UKF formulation is completely

coupled with the prior covariance at each step. This is problematic, because the efficiency

of the BRM algorithm relies on the ability of EKF updates to be decoupled from initial

conditions. In future work, we seek to explore in detail the UKF formulation in search of a

reasonable compromise between EKF and UKF theory for application to the BRM.

Additional Areas for Future Work

Other areas for future work could include the following:

• Extend BRM to Uncertain Maps It may be possible to extend the BRM to un-

certain maps for the purposes of exploration with SLAM. Similar techniques currently

use the entropy as a measure of the expected information gain of taking specific ac-

tions. In [48], a cumulative measure of entropy is computed along potential action

trajectories to choose actions that simultaneously maximize the expected information

gain in terms of unexplored map territory and robot localization. In another inte-

grated exploration approach [35], average entropy is computed at each location in a

grid-map for use as one component of the overall exploration objective function. In

an EKF-SLAM-based technique, it may be possible to sample and build trajectories

from the map distribution and then use a variant of the BRM algorithm to predict

uncertainty and identify goals of interest.

• Trajectory Optimization: In addition to the hierarchical BRM method suggested

above, trajectory optimization could also take the form of a greedy algorithm along

local trajectories. Such an algorithm could follow the gradient of information and

deviate from the straight-line trajectory, subject to arriving at the node location at

the end of the trajectory. It may be possible to determine this gradient using the

linear, symplectic descriptor matrix for each filter update.

• Sensor-Specific Sampling Strategies: It is likely that belief space planning would

be improved by developing sampling strategies that are aware of the sensor model.

Current sampling strategies are naive to sensor information, meaning that belief un-

certainty is only considered during the search phase. It may be possible to use the

sensor model to bias the build phase toward regions of the belief space that are likely
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to have better information properties. As a result, “better” trajectories would be

considered during search and the overall algorithm might find paths that obtain less

goal uncertainty.

• Stability Analysis of Trajectories: The one-step methods developed for use in the

BRM algorithm present advantageous mathematical properties for stability analysis of

trajectories. The eigenvalues of the Hamiltonian and Symplectic one-step matrices can

be used directly to characterize the stability of covariance growth along trajectories.

In terms of control, the one-step descriptors represent a transfer function of covariance

along a trajectory. It may be possible to borrow tools from control theory to analyze

and make use of the properties of this transfer function. Potential applications could

include assessing the stability of a cyclic trajectory or using the eigenvalues as a

heuristic during search to bias towards trajectories that are more stable.

• Improve Efficiency of Search Process: In this work, we limited our focus to

a breadth-first search strategy, but it is possible that more efficient searches exist.

Future research could lead to admissible heuristics that would allow a more efficient,

A⋆-based search to be used.

7.3 Conclusion

In Chapter 3, we presented an improvement for Markov Chain Monte Carlo approaches

to range-based localization with hidden bias estimation by using the Rao-Blackwellization

technique. We showed that this method enables the joint estimation problem over robot

poses and range biases to be decomposed into two simpler estimation problems. Conse-

quently, the number of samples required to maintain an accurate state estimate is limited

to exponential dependence on only the constant dimensional space of robot poses; the

range bias distributions can be analytically computed for each robot pose hypothesis. We

demonstrated in experiments that use of Rao-Blackwellization substantially improves the

scalability and performance of a standard particle filter approach to UWB range-based

localization.

In the Chapters 4-6, we incrementally developed a solution to the problem of belief space

planning for linear-Gaussian POMDP’s. In Chapter 4, we presented a tractable formulation

of the belief space planning problem posed as search over belief trajectories. We showed
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that it is possible to isolate the mean-belief to well-defined trajectories in belief space by

using a linearized version of the Kalman-filter for belief tracking. We then developed a

hybrid Probabilistic Roadmap with a corresponding search process that was capable of

finding a series of belief trajectories that obtain minimal covariance at a goal location. The

efficiency of this search process was limited by the multi-step Kalman filter updates required

to propagate an initial covariance along each branch of the search tree. In Chapter 5, we

showed that the EKF admits one-step covariance updates, which enables the multi-step

cost to be shifted to the build phase, leading the drastically reduced on-line search times.

This culminated in the Belief Roadmap (BRM) algorithm presented in Chapter 6, which

we have shown substantially improves planning performance and positional accuracy over

traditional planners that ignore uncertainty. We demonstrated the BRM algorithm with

UWB ranging in a very large planning problem, which we believe to be considerably larger

than existing results [43].
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