
Learning Common Sense Knowledge from User

Interaction and Principal Component Analysis

by

Robert Speer

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

c© Robert Speer, MMVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

August 26, 2007

Certified by. .
Henry Lieberman
Research Scientist
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Learning Common Sense Knowledge from User Interaction

and Principal Component Analysis

by

Robert Speer

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2007, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

In this thesis, I present a system for reasoning with common sense knowledge in
multiple natural languages, as part of the Open Mind Common Sense project. The
knowledge that Open Mind collects from volunteer contributors is represented as a
semantic network called ConceptNet.

Using principal component analysis on the graph structure of ConceptNet yields
AnalogySpace, a vector space representation of common sense knowledge. This rep-
resentation reveals large-scale patterns in the data, while smoothing over noise, and
predicts new knowledge that the database should contain. The inferred knowledge,
which a user survey shows is often correct, is used as part of a feedback loop that
shows contributors what the system is learning and guides them to contribute useful
new knowledge.

Thesis Supervisor: Henry Lieberman
Title: Research Scientist

3

4

Acknowledgments

This work is dedicated to the memory of Push Singh. Push was my advisor when I

joined the Open Mind Common Sense project two years ago, and his big ideas about

what the project could become inspired the direction my research would take. He

valued research for the long term – to him, what a project would do for the future of

AI was more important than what it would do for the next demo week – and I wish

he could be here to see the results of the task he gave me.

I owe a lot to Henry Lieberman for taking me as a student and ensuring that this

research could continue. I thank him for his advice and support, and for organizing

opportunities for me to present my research to a larger audience.

Catherine Havasi was essential to the success of this research. The ideas that

made AnalogySpace work arose largely from the research and brainstorming we did

together, and I thank her for sharing her thoughts, her critiques, and the expertise

she brought from the many years she has spent working on common sense. I am also

grateful for her love, friendship, and emotional support, which gave me the motivation

to keep going.

I thank Jason Alonso for his design ideas and technical help, and in general I

thank my colleagues in the Commonsense Computing Group for being a bunch of

excellent people who do interesting research. I would also like to thank my friends

. . . and their friends, and their friends’ friends . . . for turning out in droves to take my

user evaluation. Finally, I owe some thanks to the over 10,000 contributors to Open

Mind Common Sense, without whom none of this would have been possible.

5

6

Contents

1 Introduction 15

2 Background 19

2.1 Why do we need common sense? . 19

2.2 The Open Mind project . 21

2.3 Building on Open Mind . 21

2.3.1 ConceptNet . 21

2.3.2 Learner . 22

2.3.3 GlobalMind . 24

2.3.4 OMCS no Brasil . 24

2.4 Related work . 25

2.4.1 Common sense knowledge bases 25

2.4.2 Semantic networks . 26

2.4.3 Principal component analysis 27

3 Acquiring knowledge 29

3.1 The Design of ConceptNet 3 . 29

3.1.1 Concepts . 30

3.1.2 Predicates . 30

3.1.3 Implementation . 31

3.2 Creating ConceptNet . 32

3.2.1 Pattern matching . 32

3.2.2 Shallow parsing . 33

7

3.2.3 Link parsing . 34

3.2.4 Normalization . 35

3.2.5 Reliability of Assertions . 36

3.2.6 Polarity . 36

3.3 Open Mind Commons . 37

3.3.1 Reconstructing natural language 39

3.4 Contents of ConceptNet . 40

3.4.1 Comparison to other semantic networks 42

3.4.2 Discussion . 46

4 AnalogySpace 49

4.1 The concept/property representation 50

4.2 Similarity is a linear operation . 51

4.3 Singular value decomposition . 52

4.4 Weighting and normalizing . 53

4.4.1 Canonical directions . 55

4.5 Implementation . 55

4.5.1 Incorporating IsA inference 56

4.6 Results . 60

4.6.1 Generalized similarity . 60

4.6.2 Automatic analogies . 60

4.6.3 Eigenconcepts . 63

4.6.4 Significance of principal components 67

4.6.5 Ad-hoc categories . 68

5 Evaluation 71

5.1 Experimental setup . 71

5.2 Producing statements to evaluate . 72

5.3 Results . 73

8

6 Applying AnalogySpace 77

6.1 Verifying existing knowledge . 77

6.2 Dealing with systematic vandalism 78

6.3 Topic detection . 81

6.4 Semantic spectra . 82

6.5 Aligning knowledge bases . 83

6.6 Conclusion . 84

A Parsing patterns 85

A.1 Top-level English parsing patterns . 85

A.2 Phrase-level English parsing patterns 87

A.3 Portuguese patterns . 88

B User evaluation data 91

C Visualizations of AnalogySpace 97

D Downloadable resources 105

9

10

List of Figures

1-1 The Open Mind Commons interface 17

1-2 A visualization of AnalogySpace . 17

2-1 An illustration of a small section of ConceptNet 22

2-2 An example of reasoning by cumulative analogy 23

3-1 Open Mind Commons asks questions to fill gaps in its knowledge . . 38

3-2 The distribution of scores among predicates in the English and Por-

tuguese ConceptNets . 41

3-3 The word lengths of concepts in the English and Portuguese ConceptNets 41

3-4 Mapping ConceptNet entries onto WordNet and BSO entries 47

4-1 The first 50 singular values in English and Portuguese 67

5-1 The distribution of users’ responses to the evaluation. 74

C-1 e0 and e1 components of concepts and properties. 98

C-2 e1 and e2 components of concepts and properties. 99

C-3 e3 and e4 components of concepts and properties. 100

C-4 e1 and e5 components of concepts and properties. 101

C-5 e3 and e6 components of concepts and properties. 102

C-6 e7 and e8 components of concepts and properties. 103

11

12

List of Tables

3.1 Relation types in ConceptNet 3 . 31

3.2 Simplifying IsA statements . 34

3.3 Mapping ConceptNet entries onto WordNet and BSO entries 46

4.1 The largest terms in eigenconcept e0 (“desirability”) 64

4.2 The largest terms in eigenconcept e1 (“feasibility”) 64

4.3 The largest terms in eigenconcept e2 (“things vs. events”) 65

4.4 Concepts that are similar to an ad-hoc category of furniture 69

5.1 The scale used to assign aggregate scores to responses to the user eval-

uation. 74

5.2 Mean scores for each source of predicates in the user evaluation. . . . 74

6.1 AnalogySpace determines the topic areas of three news articles. . . . 82

A.1 Top-level parsing patterns used to build ConceptNet in English. . . . 86

A.2 Phrase-level parsing patterns used to build ConceptNet in English. . . 88

A.3 Regular-expression patterns used to build ConceptNet in Portuguese. 89

B.1 Results from the user evaluation . 91

13

14

Chapter 1

Introduction

In many applications of artificial intelligence, interaction between the human and the

computer is hindered by a fundamental gap in understanding between the user and

the computer. The user’s goal in using the program is to accomplish things in the

real world; meanwhile, the computer doesn’t even know what the real world is. What

the computer is lacking is common sense, the body of basic knowledge that people

know and computers don’t.

The Open Mind Common Sense (OMCS) project in the MIT Media Lab has

collected a large corpus of this common sense knowledge by harnessing the knowledge

of large numbers of ordinary volunteers on the Web. The project’s main Web site has

collected over 700,000 statements from tens of thousands of volunteers.

The knowledge that OMCS has collected is represented in a semantic network

called ConceptNet, which gives many AI applications access to common sense knowl-

edge [Liu and Singh, 2004]. But the task of making ConceptNet more broadly useful

poses the following questions:

• How can we improve the depth of knowledge that ConceptNet has on each

topic?

• How do we represent that knowledge in a way that makes use of its implicit

large-scale structure?

15

• How can we encourage contributors to add high-quality knowledge to Concept-

Net?

• How can ConceptNet automatically form hypotheses and conclusions that im-

prove its ability to learn?

In my view, the answers to all of these questions are related. We need to extract

from the Open Mind corpus a knowledge representation that is informative to both

ordinary users and to the computer; create an inference engine that makes efficient

use of the knowledge representation, letting the computer determine what it knows

and what it has yet to learn; and set up a dialogue between the user and the computer,

where the computer uses its inference engine to ask relevant questions and inform the

user on how best to teach it.

The knowledge representation that makes this all possible involves transferring

knowledge between three levels of representation:

1. The Open Mind corpus, which is made of ordinary sentences in natural language

2. ConceptNet 3, a semantic network built from predicates that are extracted from

OpenMind

3. AnalogySpace, which uses principal component analysis to map ConceptNet

into a vector space where fast linear algebra operations can make use of its

large-scale structure.

ConceptNet 3 represents much of the information in Open Mind in a machine-

understandable form. It expresses the statements of common sense collected by

Open Mind as a semantic network, built of edges (predicates) representing machine-

understandable versions of the natural-language statements and nodes (concepts) rep-

resenting the phrases related by those statements.

Open Mind Commons is a knowledge collection interface that runs on top of

ConceptNet 3, bridging the gap between the computer-understandable knowledge

and contributors. When contributors enter new statements through this interface,

16

Figure 1-1: The Open Mind Commons interface, displaying some existing knowledge
and guiding the user to provide more.

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05 0 0.05 0.1

F
ea

si
bi

lit
y

Desirability

person/Desires

person/CapableOf

person
feel lovedsnake

add numbers

homework
see the worldslavery

make friends

talk to a person

dog
computer

friend

play sport

comfort

watch tv
die

fall

car
love

vote

get drunk

tie shoes

sexhard work

fly an airplane

ignored

nothing

dictatorship

fly

catch a cold

forget

lots of money

close door

hurt

Losing a wallet

smell flowers
age

lose a key

live at home

come home

receive gifts

walk on walls

drink wineflood
know the truth

lose his job

hate

make mistakes

reproduce

breathe air

walk on water

live forever
live in the ocean

office work

speak human languages
commit perjury/Causes

Causes/pain

human/CapableOf

UsedFor/fun

breathe water

Figure 1-2: A visualization of AnalogySpace, projected into two dimensions by the
first two principal components. These particular components distinguish desirable
things from undesirable things, and possible actions from impossible ones.

17

they immediately become part of ConceptNet, and inference procedures that run on

top of ConceptNet help to guide the user, by asking relevant questions whose answers

will fill gaps in ConceptNet.

These questions are provided by AnalogySpace, which represents ConceptNet in

a vector space, similarly to the way that latent semantic indexing (LSI) represents

documents and search terms, or Google’s PageRank represents Web pages. With this

representation, a method of common-sense inference called “cumulative analogy” can

be implemented using optimized linear algebra techniques. The inferences produced

by AnalogySpace are considered “generally or occasionally true” by surveyed users

68.9% of the time, compared to 80.8% for existsing knowledge in OMCS. The vector-

space representation can also be used by applications to find parts of ConceptNet

that relate to a natural language input, which can be applied to AI tasks such as

predictive text entry and topic sensing.

The focus of this thesis is AnalogySpace, and the new methods of reasoning that

this new representation enables for the Open Mind Common Sense project. Along the

way, the tools in the Open Mind project that are equipped to work with AnalogySpace

– Open Mind Commons and ConceptNet 3 – will be introduced and explained.

18

Chapter 2

Background

Common sense is the body of basic real-world knowledge that people know and com-

puters don’t. It consists of the kind of things that people leave unstated because they

are obvious. Things fall down, not up. Parents are older than their children. People

want to be happy. These kinds of facts underlie every human conversation without

being explicitly said.

Because computers have no knowledge of common sense, people cannot interact

with computers as effectively as they would interact with other people. People want

computers to help them accomplish things in the real world, but computers don’t even

know what the real world is. Giving computers access to common sense knowledge

is thus a fundamental and important problem in AI.

2.1 Why do we need common sense?

When I am sending a text message from my cellular phone, I can use a system called

T9 to type text on its numeric keypad with only one keypress per letter. The system

deals with its incomplete input by choosing, out of the exponentially large space of

texts I might have entered, a message that is made of English words. However, I

often have to correct the system, in cases where multiple words are possible but only

19

one is what I mean. If I press the sequence of keys corresponding to this message:

I am on the bus. I’ll be home soon.

What appears instead is a meaningless message, spelled with the same digits:

I am on the cup. I’ll be good room.

The phone needs more information in order to get the message right. What it

needs is not just a stronger model of the English language – after all, “I am on the

cup” is a perfectly grammatical sentence, and the second sentence is nearly so. What

the phone needs is a model of which message makes sense.

If my phone had access to the knowledge that I, as a person, am more likely to

be on a bus than on a cup, that I am probably not a room, and that I’d more likely

need to send a text message about “being home” than “being good”, then it would

have the information it needs to choose the correct message. In fact, the domain of

predictive text entry is one where ConceptNet, the focus of this research, has already

been applied [Stocky et al., 2004]. Markov N-gram models are more frequently used

for this purpose, but the effectiveness of N-grams falls off quickly as N increases,

meaning that these models cannot use more than a few words of context [Lieberman

et al., 2005], while a ConceptNet-based method can construct a semantic context out

of many recent words.

Though T9 text can be easily corrected – the phone has the 0 key set aside for that

purpose – the same problem crops up in areas where it is harder to fix the computer’s

mistakes. In automatic speech recognition, the computer faces a similar problem of

choosing one sensible text out of a large space of possibilities; the mistakes that speech

recognizers make can be hilarious, such as substituting “peach wreck in kitchen” for

“speech recognition”,1 but they hinder productivity, and the very reason the errors

are amusing is that the computer should be able to know better. Speech recognition is

1This example comes from the website of the TypeWell text transcription software: http://www.
typewell.com/speechrecog.html.

20

another application that can be improved using ConceptNet [Lieberman et al., 2005].

These are just a few examples where human-computer interaction would be im-

proved by common sense knowledge. Some other problems in AI that can benefit

from common sense are computer vision [Schierwagen, 2001, p. 7], and user interfaces

such as calendar software [Mueller, 2000; Smith, 2007].

2.2 The Open Mind project

Open Mind Common Sense was started in 1999 at the MIT Media Lab, with the goal

of collecting a large knowledge base of common sense from ordinary people. The focus

of OMCS was its Web site, which prompted its visitors to answer questions and to

contribute knowledge in several different forms. It stored its knowledge in the form

of English sentences; some of these sentences came from fill-in-the-blank templates

like “You would go to the store because ”, and some were entered as free

text. This Web site has collected over 700,000 statements from tens of thousands of

volunteers.

Even though the site provided no reward for entering correct, sensible information,

most of the information it collected was judged by reviewers to be correct and sen-

sible [Singh et al., 2002]. However, because the information was collected as English

statements, it would take some effort to get that information into a form that would

be useful to a computer.

2.3 Building on Open Mind

2.3.1 ConceptNet

ConceptNet [Liu and Singh, 2004] is a semantic network that is built from the in-

formation that Open Mind has collected, expressing that information in a form that

applications can use.

Many kinds of statements that users have entered into Open Mind can be expressed

as relationships between two concepts, which are essentially short phrases of natural

21

Figure 2-1: An illustration of a small section of ConceptNet.

language. In a sentence such as “a trunk is part of a car”, for instance, the two

concepts are “trunk” and “car”, and the relationship is “PartOf”. When such a

relationship is expressed in a computer-understandable form, it is called a binary

predicate.

ConceptNet scans the statements in Open Mind and expresses as many of them

as possible as binary predicates. The result is that the knowledge can be viewed as a

labeled, directed graph where the nodes are concepts and edges represent predicates.

One edge in this graph is labeled “PartOf”, and points from the concept “trunk” to

the concept “car”.

The previous release of ConceptNet, ConceptNet 2, uses both pattern-matching

and natural language chunking to extract predicates from natural language, making

use of a natural language library called MontyLingua [Liu, 2004] to extract the relation

and the two concepts from each sentence. ConceptNet 3, which will be described in

the next chapter, is constructed by a similar process, but it combines parsing and

pattern-matching into a single operation.

2.3.2 Learner

Observing that “OMCS does not leverage knowledge it has gathered to guide its future

acquisition in any way” [Chklovski, 2003, p. 10], Tim Chklovski used knowledge

22

Figure 2-2: An example of reasoning by cumulative analogy, adapted from [Chklovski,
2003].

extracted from Open Mind to create the Learner system [Chklovski, 2003]. With

this system, Chklovski introduced the idea of reasoning about common sense by

“cumulative analogy”.

In cumulative analogy, statements of common sense knowledge are divided up into

objects and properties, where each object can be described as having many properties.

Chklovski’s implementation parses sentences that consist of a noun phrase followed

by a verb phrase. The noun phrase – the subject of the sentence – is considered as

the object, and the verb phrase, describing something that is true about that object,

is the property.

Reasoning by cumulative analogy starts from a particular object. The first step

is to find the object’s nearest neighbors: other objects that have the most similar

sets of properties. The properties of those nearest neighbors are then examined. Any

property that occurs many times among an object’s nearest neighbors, but is not

already known about the object itself, can be inferred to be true about the at object.

Consider a cumulative analogy starting from the object “squirrel”, where the

knowledge base already knows that squirrels are living things, are small, and are

mammals, among possibly other properties, but it does not know that they have fur.

The nearest neighbors to “squirrel” are other objects that have similar properties,

such as other small mammals. Many of these nearest neighbors are described as

having fur, so by cumulative analogy to those nearest neighbors, the knowledge base

infers that squirrels may have fur.

When cumulative analogy is used in ConceptNet, the object is renamed the con-

23

cept, for consistency with existing ConceptNet terminology. This kind of analogy is

an important part of the newest Open Mind interface, Open Mind Commons. Analo-

gySpace, described in Chapter 4, adds more power to cumulative analogies by creating

a vector space of potential analogies and expressing it in terms of its principal com-

ponents.

2.3.3 GlobalMind

Common sense knowledge is often not universal; much of it is culturally dependent

[Anacleto et al., 2006]. When you enter a restaurant in the United States, for instance,

you usually wait for an employee of the restaurant to seat you. In Korea, you sit down

at a table and wait for service [Chung, 2006, p. 25]. Both ideas of what to do in a

restaurant can be considered common sense knowledge for someone, but which a

particular person considers to be true depends on the culture that person is familiar

with.

The knowledge collected by OMCS inherently represents only the common sense

of English speakers, and generally only that of Americans. The GlobalMind project

[Chung, 2006] branched off from Open Mind in order to collect knowledge from sev-

eral cultures in several languages, and allow bilingual users to supply translations

between the languages. In this way, GlobalMind collects knowledge that can be used

in applications in languages other than English. It can infer translations between lan-

guages to compare the common sense of different cultures, and to enable applications

such as an automatic, context-sensitive phrasebook [Musa et al., 2003].

GlobalMind added sentence patterns and knowledge-collection interfaces in East

Asian languages to Open Mind. Its web site (globalmind.media.mit.edu) has col-

lected over 15,000 binary predicates in Korean and 10,000 in Japanese since 2005.

2.3.4 OMCS no Brasil

Separately from the GlobalMind project, a sister project in Brazil (Open Mind Com-

mon Sense no Brasil) began collecting common sense in Portuguese.

24

Seeing the difficulties that free-text statements create in the English OMCS cor-

pus, the creators of OMCS no Brasil decided to only allow statements to be entered

through fill-in-the-blank templates. This makes it much easier to create a ConceptNet

from the Portuguese OMCS corpus, as no parsing is necessary.

OMCS no Brasil has collected over 80,000 statements of from its contributors,

many of them checked for accuracy by the project’s maintainers. Some of these are

statements of general common sense, while others have been sorted into topic areas

such as health and sex education. These topics are useful to an application which

uses OMCS no Brasil to guide learning activities [de Carvalho et al., 2007].

2.4 Related work

2.4.1 Common sense knowledge bases

Along with Open Mind, other projects have worked with databases of common sense

knowledge, taking somewhat different approaches.

The Cyc project [Lenat, 1995], started by Doug Lenat in 1984, acquires its knowl-

edge from knowledge engineers who handcraft assertions and express them in Cyc’s

logical framework using a logical representation called CycL. To use Cyc for natural

language tasks, one must first translate the natural language text into CycL. This is

a complex process, whose difficulty is equivalent to semantic parsing. While Cyc does

its reasoning in a domain of unambiguous logical assertions, Open Mind focuses on

working in a domain where ambiguity is pervasive and logical clarity is often lacking,

features that are inherent to natural language interaction with users.

Erik Mueller’s ThoughtTreasure [Mueller, 1998] is a system for advanced reason-

ing and natural language interaction using a common sense knowledge base. It fills

a different role from Open Mind – for example, it does not have a way of inferring

new relational knowledge, and only acquires new knowledge if the knowledge is hand-

coded or appears in a relational table [Mueller, 1998, ch. 9]. Much of the knowledge

represented in ThoughtTreasure, though, is compatible with the ConceptNet repre-

25

sentation, and in fact a large quantity of “part-of” knowledge from ThoughtTreasure

has been imported with permission into Open Mind. ThoughtTreasure and Open

Mind can be seen as potential symbiotes, not as competitors.

2.4.2 Semantic networks

Semantic networks, which computationally define the meanings of words and phrases,

are usually considered to be different from common sense knowledge bases. Much of

the information that semantic networks use to define words, however, overlaps with

the domain of common sense knowledge. This is one reason that Open Mind Common

Sense aims to be used as a semantic network (in the form of ConceptNet) as well as

a knowledge base.

WordNet [Fellbaum, 1998] is a particularly well-known semantic network that is

used in many applications. Much of the information in WordNet expresses common-

sense knowledge. The question of “What kind of thing is it?” is answered by Word-

Net’s hypernym relation type, just as it is by ConceptNet’s IsA. The questions “What

is it part of?” and “What parts does it have?” are similarly answered by WordNet’s

meronym and holonym relations, as they are by ConceptNet’s PartOf.

A newer and less well-known semantic network, the Brandeis Semantic Ontology

(BSO) [Pustejovsky et al., 2006], overlaps even more with the domain of common sense

knowledge. Based on James Pustejovsky’s Generative Lexicon theory of semantics

[Pustejovsky, 1998], the BSO defines four types of relations called qualia:

• Formal, which defines a hierarchy of types; equivalent to ConceptNet’s IsA

• Constitutive, the relationship between an object and its parts; equivalent to

ConceptNet’s PartOf

• Telic, expressing the purpose or function of an object; equivalent to Concept-

Net’s UsedFor

• Agentive, describing how the object comes into being. Not previously present

in ConceptNet, this relation has now been introduced as CreatedBy.

26

There is a considerable amount of overlap in the knowledge contained in semantic

networks such as the BSO and the knowledge contained in ConceptNet 3. This point

will be elaborated in Section 3.4.1, which evaluates how many ConceptNet predicates

overlap with information contained in the BSO and WordNet.

2.4.3 Principal component analysis

The process of using principal component analysis, or singular value decomposition,2

to find similarities in ConceptNet derives from the AI technique of latent semantic

analysis (LSA), which applies the same technique over a domain of words and doc-

uments [Deerwester et al., 1990]. LSA is often used in information retrieval, where

it is known as LSI for latent semantic indexing. In the representation used by LSA,

a document is seen as an unordered collection of words, and the matrix of words

verses documents is analyzed with SVD documents are sorted into implicit categories

according to the words that are contained in them.

Various research projects have extended the idea of LSA to apply it to the goal

of finding semantic similarities, not just topical similarities, between words. The ap-

proach used by [Patwardhan and Pedersen, 2006] is to apply LSA with documents

replaced by short phrases or sentences, so that words acquire connections from appear-

ing near each other instead of appearing anywhere in the same document. [Banerjee

and Pedersen, 2003] use the occurrence of words in a WordNet gloss as a measure

of semantic similarity. [Turney, 2005] uses co-occurring pairs of words themselves

as vectors, with the other domain being the surrounding context in which they ap-

pear. That project produces analogies in a more literal sense than AnalogySpace: the

resulting vector space of similarities between pairs of words can be used to answer

SAT-style multiple-choice analogy questions, as in “quart:volume :: mile:distance”.

The idea of applying principal component analysis to graph-structured represen-

tations of knowledge is relatively unexplored. Perhaps the closest thing to it is an-

2SVD and PCA refer to the same technique with different terminology [Wall et al., 2003]. One way
of making a distinction between them is that PCA is a general process, while SVD is a mathematical
implementation of it.

27

other project descended from Open Mind Common Sense. This project [Gupta and

Kochenderfer, 2004] used Honda’s domain-specific Open Mind Indoor Common Sense

corpus, constructing an SVD for each relation (such as PartOf or AtLocation) that

would infer new instances of that relation.

AnalogySpace goes beyond the Honda project: instead of dividing up the different

types of knowledge into distinct SVD matrices, it uses the relation type as part of

the information in the SVD, by introducing the “concept/property” representation

described in Section 4.1. One SVD, then, describes similarities and inferences of all

kinds, which allows much more information to contribute to each inference, and helps

this kind of reasoning to generalize to the entire domain of ConceptNet.

28

Chapter 3

Acquiring knowledge

The results in this thesis are built on ConceptNet 3, which I designed along with

other members of the Commonsense Computing Group [Havasi et al., 2007] as an

architecture for extracting knowledge from the Open Mind corpus and collecting more

knowledge to add to it. The original purpose of ConceptNet 3 was to be a backend

for an updated Web interface to Open Mind, which would improve the quality of

the data it collected using the Learner model of asking questions by analogy. This

research later led us to try singular value decomposition as an algorithm for inference.

3.1 The Design of ConceptNet 3

In developing ConceptNet 3, we drew on our experience with working with Con-

ceptNet as users, and observed what improvements would make it easier to work

with. The new architecture of ConceptNet is more suitable to being incrementally

updated, being populated from different data sources, supporting parallel semantic

networks such as the English and Portuguese ConceptNets, and using various modes

of inference to find potential new predicates.

29

3.1.1 Concepts

The basic nodes of ConceptNet are concepts, which are aspects of the world that

people would talk about in natural language. Concepts correspond to various con-

stituents of the common-sense statements that users have entered; they can represent

noun phrases, verb phrases, adjective phrases, or prepositional phrases (when describ-

ing locations).

Although they are derived from constituents, concepts are not literal strings of

text; a concept can represent many related phrases, through the normalization process

described later.

3.1.2 Predicates

In a semantic network where concepts are the nodes, the edges are binary predicates,

which express relationships between two concepts. (Remember that predicates are

complete statements of common sense knowledge that express a relationship – in

other areas, they may be better known as assertions. Predicates have three parts:

a relation, which can be thought of as a function of two arguments, and the left

concept and right concept that form the arguments of that function. Some examples

of relations are IsA, PartOf, HasLocation, and UsedFor. The 19 basic relation types,

shown in Table 3.1, are not a closed class, and we plan to add more in the future. One

of them, ObstructedBy, has not yet been collected in English, only in Portuguese.

A predicate can be notated as a parenthesized expression, such as (UsedFor 〈bed〉

〈sleep〉). Keep in mind that the concepts in angle brackets are not literal strings of

text, but the best way of representing a concept is with a representative phrase of

text that produces it. In this notation, 〈bed〉, 〈a bed〉, and 〈beds〉 all refer to the

same concept.

Predicates are extracted from the natural language statements that contributors

enter, and they maintain a connection to natural language by keeping a reference to

the original sentence that generated them, as well as the substrings of the sentence

that produced each of their concepts, and the string representing the sentence with

30

Label Example
IsA Hockey is a sport.
PartOf A finger is part of a hand.
AtLocation You are likely to find a book in a library.
MadeOf Windows are made of glass.
UsedFor Pens are used for writing.
CapableOf Boats can float on water.
HasProperty Sunsets are beautiful.
Desires A person wants love.
CausesDesire Being cold would make you want to light a fire.
Causes The effect of having a haircut is to have shorter hair.
MotivatedByGoal You would do housework because you want to have a clean house.
HasSubevent One of the things you do when you read a book is turn pages.
HasFirstSubevent The first thing you do when you go for a drive is get in the car.
HasLastSubevent The last thing you do when you take a shower is dry off.
HasPrerequisite If you want to get fit, you should lift weights.
DefinedAs Death is the end of life.
ReceivesAction An apple can be eaten.
ObstructedBy (Quando se tenta dormir, um problema encontrado pode ser insônia.)
CreatedBy Music is created by composing.

Table 3.1: Relation types in ConceptNet 3.

the concepts replaced by placeholders, such as “{1} is used for {2}”. This last

string is called a frame.

Because ConceptNet, whenever it stores a predicate, keeps track of the frame and

the original text for each of its concepts, it maintains the information it needs to

turn that predicate or similar predicates that are derived from it back into natural

language.

3.1.3 Implementation

ConceptNet 3 is implemented as a PostgreSQL database, with interconnected tables

that represent predicates, concepts, relations, users, and scores assigned by users.

Each predicate also stores a reference to its natural language representation, in the

form of two unstemmed strings of text and a frame, and other tables store parsing

patterns and lists of stopwords for the purpose of creating ConceptNet.

The layout of the database is defined by CSAMOA [Alonso, 2007], an API for

constructing a ConceptNet from a data source. CSAMOA defines a modular struc-

31

ture for the procedures that build ConceptNet, including natural language processing

tools, allowing them to be easily replaced to deal with another data set or another

language.

3.2 Creating ConceptNet

3.2.1 Pattern matching

A prominent problem that must be confronted by ConceptNet is how to translate the

Open Mind corpus, which consists of unparsed English sentences, into meaningful

predicates. Previous versions of ConceptNet were created with a combination of

two techniques: regular-expression pattern matching, and chunking to distinguish

patterns that were equivalent except for the types of phrases they should match.

Most predicates were created by simply matching a regular expression; the Has-

Subevent relation could come from the pattern “One of the things you do when

you (.+) is (.+)”. Given the statement “One of the things you do when you drive

is steer”, for example, this would produce the predicate (HasSubevent 〈drive〉 〈steer〉).

An example of a pattern that needs to have its phrase types disambiguated is

“(.+) is (.+)”, which could match IsA statements such as “grass is a plant”,

HasProperty statements such as “grass is green”, and ReceivesAction statements

such as “grass is eaten by cows”. ConceptNet 2 would resolve this by feeding the

match result into the MontyLingua chunker [Liu, 2004], to determine whether it was

a noun phrase, verb phrase, or adjective phrase.

Regular expression pattern matching has its limitations. Suppose that some-

one enters this statement: “One of the things you do when you change a lightbulb

is make sure the switch is off”. This is supposed to produce the predicate (Has-

Subevent 〈change a lightbulb〉 〈make sure the switch is off〉), but because regular

expressions match greedily by default, the regular expression instead matches (Has-

Subevent 〈change a lightbulb is make sure the switch〉 〈off〉).

Using regular expressions to check patterns also makes certain patterns impossible:

32

the common HasLocation pattern “You are likely to find noun-phrase prepositional-

phrase”, for example, has to be broken up into cases according to the preposition,

because there is otherwise no word in between to indicate where the first match ends

and the second begins. Even more problematic is the catch-all CapableOf pattern,

noun-phrase verb-phrase, intended to match statements such as “Birds fly”. Concept-

Net 2 handles this as a special case.

It would be infeasible to check all matches with the chunker, however, because

chunking of natural language is inherently inaccurate. It would take a full parser to

identify many kinds of verb phrases, for example, and even then some verb phrases

may be missed because one word in them receives the wrong part-of-speech tag.

3.2.2 Shallow parsing

The approach taken by ConceptNet 3 is to use a simple parser as a kind of pattern

matcher. The parser is not asked to produce a single correct interpretation of a

sentence; it is only used to check whether an interpretation provided by a pattern is

possible.

In this system, the HasSubevent pattern above becomes “One of the things you

do when you VP is VP”. When a sentence is found to potentially match this pattern,

the shallow parser is consulted to determine whether the portions of the sentence

that match an occurrence of VP are reasonable verb phrases. The parser never has

to perform the extremely unreliable operation of guessing which of many parse trees

is correct.

The parser is a simple, rule-based, bottom-up chart parser [Wirén, 1987] that

applies this “check, don’t guess” approach at all levels. In the rule VP → V NP, the

parser recursively checks whether there are reasonable V and NP constituents that

could span the segment of text being checked as a VP. Even the tagger that originally

assigns part-of-speech tags to the words cannot make any unilateral decisions, so the

tagger is an N-best Brill tagger [Brill, 1992] that assigns all reasonable tags to each

word. The complete list of parsing rules that build on the results of the N-best Brill

tagger can be found in Appendix A.

33

As a result of this design, the parser does just what it needs to do for pattern-

matching: it acts as a filter that prevents patterns from matching against the wrong

constituents, or segments of text that are not constituents at all.

3.2.3 Link parsing

Though the shallow parser will extract the meaning that the contributor intended in

most cases, it will miss useful information in certain forms of sentences. In particu-

lar, contributors who enter IsA statements in free text tend to use complex sentence

structures that provide extraneous information beyond the level that can be repre-

sented in ConceptNet, but a simple, useful statement can often be found embedded

within that complex structure. You can see some examples of simplified statements

in Table 3.2.

What the contributor says What OpenMind hears
A goldfish is a type of carp that makes a nice
pet

A goldfish is a carp

A nightgown is a long, loose garment worn to
bed

A nightgown is a garment

A uniform is a special outfit worn by members
of a group

A uniform is a outfit

A foot is a unit of measurement equal to
twelve inches

A foot is a unit of measurement

A hut is a small, simple shelter A hut is a shelter

Table 3.2: Simplifying IsA statements.

This simplification can be done using a link parser (also known as a dependency

parser), which parses complete sentences and represents them as a collection of links

between words, instead of as a grammatical tree. ConceptNet uses the Link Grammar

Parser [Sleator and Temperley, 1993] for this purpose.

In a complex IsA statement, we want to find the two arguments linked to the verb

“is”. The targets of these links are single words, but usually we would like to pull

in some additional words, such as a determiner, so we can represent the simplified

predicate by a reasonable English sentence, or the preposition “of” and its argument,

because this often conveys information that is inherent to the concept and should not

34

be discarded.

ConceptNet 3 runs free-text statements through the Link Grammar Parser to find

IsA statements, identify the words linked by “is”, pull in additional words as necessary,

and put the selected words together into a sentence. The contents of Table 3.2 are

actual results from the link parser.

3.2.4 Normalization

When a sentence is matched against a pattern, the result is a “raw predicate” that

relates two strings of text. The normalization process determines which two concepts

these strings correspond to, turning the raw predicate into a true edge of ConceptNet.

The following steps are used to normalize a string:

1. Remove punctuation.

2. Remove stop words.

3. Run each remaining word through a stemmer. We currently use Porter’s Snow-

ball stemmer, in both its English1 and Portuguese versions [Porter, 2001]. As

a special case in English, assign “people” the stem person, not its Porter stem

peopl.

4. Alphabetize the remaining stems, so that the order of content words in the

phrase doesn’t matter.

A concept, then, encompasses all phrases that normalize to the same text. As

normalization often results in unreadable phrases such as “endang plant speci” (from

“an endangered species of plant”), the normalized text is only used to group phrases

into concepts, never as an external representation. This grouping intentionally lumps

together many phrases, even ones that are only related by accidents of orthography,

because we have found this to be an appropriate level of granularity for reasoning

about undisambiguated natural language text collected from people.

1For compatibility with previous work, we use the original version of the English Snowball stem-
mer (the one commonly called “the Porter stemmer”), not the revised version.

35

Phrases that consist entirely of stopwords, such as “you”, “something”, or “that

one”, cannot be made into a concept. Statements that involve such phrases are

discarded. This is often desirable, because it weeds out excessively vague statements.

3.2.5 Reliability of Assertions

In ConceptNet 3, each predicate has a score that represents its reliability. This score

comes from two sources. A user on Open Mind Commons can evaluate an existing

statement and increase or decrease its score by one point. The score can also be

implicitly increased when multiple users independently enter sentences that map to

the same predicate, and this is where the majority of scores come from so far.

The default score for a statement is 1. A statement with score 1 is supported

by one person: the person who entered it. Statements that achieve zero or negative

scores, because a user has decreased their score or entered the opposite statement,

are considered unreliable, and are not used for making analogies. Statements with

positive scores contribute to analogies proportionally to their score.

3.2.6 Polarity

In ConceptNet 3, we have introduced the ability to represent negative assertions.

When an interface to ConceptNet, such as Open Mind Commons, asks a question

that it has formed by analogy, and the user answers “no”, ConceptNet needs to

be able to record the relevant fact that the inferred statement is false (or that its

negation is true, which we assume to be equivalent in the knowledge representation

of ConceptNet). Also, it is useful to allow ConceptNet to represent contributed

statements that express the negation of one of ConceptNet’s standard relations, such

as “A whale is not a fish” or “Cats cannot read”.

To this end, we added a polarity parameter to our predicate models that can take

the values 1 and −1. A negative polarity is assigned either when a user of Commons

answers “no” to a question, or when the process that builds ConceptNet finds a

sentence with a negative word in it.

36

In English, the word “not” is treated as an adverb by the Brill tagger, so it can be

picked up by the shallow parser anywhere that an ADVP is allowed. Other words that

indicate negation include the determiner “no”, the morpheme “n’t”, and the adverb

“never”. If any of these words occurs in a parsed sentence, either in the frame or in

one of the concepts, the resulting predicate gets its polarity negated.2

The Portuguese Open Mind uses different templates for users to enter positive

statements and negative statements, so negation can be detected entirely within the

pattern matcher. Concepts in Portuguese are not scanned for negative words.3

About 2.9% of the English predicates and 4.2% of the Portuguese predicates cur-

rently in ConceptNet 3 have a negative polarity.

Importantly, score and polarity are independent quantities. A predicate with a

negative polarity can have a high, positive score, indicating that multiple users have

attested the negative statement (an example is “People don’t want to be hurt”).

Predicates with a zero or negative score, meanwhile, are usually unhelpful or nonsen-

sical statements such as “Joe is a cat” or “A garage is for asdfghjkl”, not statements

that are “false” in any meaningful way.

3.3 Open Mind Commons

Open Mind Commons [Speer, 2007] is a new Web-based interface for users to con-

tribute knowledge to Open Mind, accessible at http://commons.media.mit.edu. It

was based in part on the recommendations of a paper that evaluated the original

OMCS site [Singh et al., 2002], which proposed features that should be present in

“OMCS 2”, which was never actually implemented.

Among other things, the authors recommended focusing on knowledge entry through

templates instead of in free-form text, allowing users to help validate and organize the

2In the case where there are multiple negated words, as in “A person doesn’t want to not have
food”, the polarity ends up being positive because it is negated twice, and the resulting predicate is
equivalent to “A person wants to have food”. In English, this is usually the correct behavior.

3This has the advantage of avoiding confusion with the way double negatives are used in Por-
tuguese, as well as allowing me to maintain the pattern matcher without actually knowing Por-
tuguese.

37

Figure 3-1: Open Mind Commons asks questions to fill gaps in its knowledge.

knowledge, and giving users feedback about what the system was learning by making

inferences. We created Open Mind Commons to fulfill these goals. Its interface is

designed around letting users explore and refine the existing knowledge, and using

inference to ask the right questions to guide users’ contributions.

Open Mind Commons uses ConceptNet 3 as its database backend. The knowledge

that users see on the site is the knowledge currently present in ConceptNet 3, and

when users add more knowledge, it immediately becomes part of ConceptNet.

In order to incorporate inference into Open Mind Commons, we began by using

the “cumulative analogy” method that was originally implemented in Chklovski’s

Learner system [Chklovski, 2003], which is described in section 2.3.2. When Com-

mons makes an inference by analogy, it puts it into a priority queue of questions to

ask users when they browse to either of the two concepts involved in the inference.

The result is that when a user looks up a concept, such as “ocean”, the user sees a

list of what Commons considers the most relevant questions to ask to fill gaps in its

knowledge about that concept. An example of these questions is shown in Figure 3-1.

In addition to inferring entire statements by analogy, Open Mind Commons also

makes partial inferences, in which one of the concepts is left blank. This allows the

interface to present the user not just with yes/no questions, but with open-ended,

fill-in-the-blank questions such as “You would find in the ocean”.

Later, we modified this method to find analogies by principal component analysis

38

instead of by nearest neighbors. This is the “AnalogySpace” method described in

Chapter 4. The modified method, which is now used for inference in Open Mind

Commons, remains true to the motivation behind cumulative analogy, but implements

it in a very different way.

Asking questions based on analogies serves to make the database’s knowledge more

strongly connected, as it eliminates gaps where simply no one had thought to say a

certain fact; it also helps to confirm to contributors that the system is understanding

and learning from the data it acquires.

3.3.1 Reconstructing natural language

In order to ask users whether inferred statements are true, Open Mind Commons

needs to turn abstract predicates back into natural language. It does this using the

strings of text that ConceptNet stored when it originally turned natural language

statements into predicates, as described on page 30. This is done by the following

procedure, referred to as InferNaturalLanguage, which turns a predicate (specified by

two concepts, a relation, and a polarity) into a sentence.

The InferNaturalLanguage procedure

1. Find a canonical sentence frame for the relation.

In a language where all input to Open Mind is done through templates, such as

Portuguese, the canonical frame is simply the most common template that the

Web site used to acquire knowledge about that relation. In English, a canonical

frame was chosen by hand for each relation, with the goal of being worded

generally enough that it will make sense for any instance of that relation. For

the AtLocation relation, for example, the canonical English frame is “You are

likely to find {1} on or in {2}”, and the canonical Portuguese frame is

“Uma coisa que você pode encontrar em um(a) {2} é um(a) 1”.4

4These canonical frames represent a tradeoff between natural language and generality. Often, they
need to include slightly unnatural constructions, such as the English “on or in” or the Portuguese
“um(a)”.

39

2. For each concept, find the text that is most often used to express it in this

context.

(a) First, look up all predicates that use the chosen frame, and find all natural

language texts in those predicates that have the same stem as the concept

in question, in the same place in the frame. Reject texts containing neg-

ative words such as “not”. Choose the remaining text that appears the

most times in this context.

(b) If step 2a produced no candidates, repeat it using all predicates expressing

the same relation, but not necessarily the same frame.

(c) If step 2b produced no candidates, find the 5 most common texts that

normalize to the same stem, regardless of what kinds of predicates they

appear in. From those 5 texts, choose the shortest one.

3. Fill in the frame with the two texts to yield a sentence.

The effect of this process is to construct new sentences out of predicates by follow-

ing the example of other sentences that were parsed into predicates. Some examples

of the sentences it produces can be seen when it is used in the user evaluation in Chap-

ter 5. It does not work perfectly, but it often produces reasonable and understandable

sentences.

3.4 Contents of ConceptNet

ConceptNet, when constructed from the Open Mind Common Sense data set using

the process described in this chapter, contains over 250,000 unique predicates in

English, derived from over 300,000 of the sentences in OMCS (some of them expressing

the same predicate). In Portuguese, it contains more than 80,000 unique predicates

derived from more than 125,000 sentences. The English sentences that were not made

into ConceptNet predicates have been preserved in their raw form in the ConceptNet

database, where a future parser may be able to make predicates out of them.

40

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 4 8 16 32

N
um

be
r

of
 p

re
di

ca
te

s

Reliability score

English
Portuguese

Figure 3-2: The distribution of scores among predicates in the English and Portuguese
ConceptNets.

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 c

on
ce

pt
s

Content words in concept

English
Portuguese

Figure 3-3: The word lengths of concepts in the English and Portuguese ConceptNets.

41

Surprisingly, although the Portuguese corpus has been around for a shorter time

and has fewer predicates, its predicates tend to have higher scores, from being asserted

by different users more times on average. The fact that all Portuguese statements

were entered through structured templates, not through free text, may have caused

them to coincide more often.

The highest-scored predicate in the English ConceptNet is “Hockey is a sport”,

asserted independently by 55 different users.5 The highest-scored predicate in the

Portuguese ConceptNet is “Pessoas dormem quando elas estão com sono” (“People

sleep when they are tired”), asserted independently by 318 users. The distribution of

scores is shown on a log-log graph in Figure 3-2, showing how Portuguese has fewer

predicates overall than English, but has more predicates with high scores.

The concepts that are the most inherently useful are the ones containing one or

two content words (words that remain after stopwords are removed), as these can

be matched against natural language more often than concepts that are many words

long. Although there are more possible concepts as the number of words increases,

the number of concepts of each word length falls off exponentially after reaching a

maximum at a length of 2 words, as shown in Figure 3-3. This shows that people do

not often contribute statements involving unnecessarily long phrases. The falloff in

concept length in English could be due in part to the lower probability of long phrases

being accepted by the chart parser, but the same rate of falloff occurs in Portuguese,

where no parser is used.

3.4.1 Comparison to other semantic networks

Section 2.4.2 introduced the idea that ConceptNet contains the same kind of infor-

mation as other semantic networks, such as WordNet [Fellbaum, 1998] and the BSO

[Pustejovsky et al., 2006]. This can be shown by sampling predicates from Concept-

5In previous papers, the highest-scored predicate was claimed to be “Baseball is a sport”, at a
score of 72. It turns out that statements were being counted extra times when they were re-used by
OMCS 1 as prompts for higher-level statements, expressing facts of the form “ ‘Baseball is a sport’
is true because...”, and this created a bias in which older predicates got higher scores. With this
bias removed, the score of “Baseball is a sport” is now 41.

42

Net and determining how often they match predicates in other resources, an analysis

that was first presented in [Havasi et al., 2007].

As described in Section 2.4.2, WordNet and the BSO both describe relationships

between their entries that are a subset of the valid ConceptNet predicate types. We

begin by equating certain ConceptNet relations to WordNet’s pointers and the BSO’s

qualia, as follows:

ConceptNet WordNet BSO

IsA Hypernym Formal

PartOf Meronym Constitutive

UsedFor none Telic

In addition to finding equivalent types of relationships, we also want to be able to

say when nodes in the different semantic networks are equivalent. This is not an exact

process, particularly because the different networks express information at different

granularities.

In WordNet, for example, the nodes of the network are synsets, or sets of dis-

ambiguated word senses whose meanings are assumed to be equivalent. Every word

sense is associated with a single part of speech. A given word, such as “bill”, can

correspond to a large number of distinct word senses. This breaks up information

differently than ConceptNet, which does not disambiguate ambiguous words, and

groups together words and phrases that have common word stems instead of common

meanings.

The BSO also distinguishes word senses with different parts of speech, and some-

times also distinguishes multiple senses with the same part of speech, but generally

uses many fewer senses for each word than WordNet does. In the BSO, also, “lexi-

cal” nodes that represent words and phrases of natural language get their properties

from higher-level “ontological” nodes caled types, which serve a purpose similar to

WordNet’s synsets.

These different levels of granuality can be reconciled with a slight loss of precision.

For all practical purposes, the relations in ConceptNet constrain the parts of speech of

43

their arguments, so in particular predicates we can distinguish noun phrases from verb

phrases. IsA and PartOf take two noun phrases as their arguments, while UsedFor

takes a noun phrase and a verb phrase.

We can then identify nodes in the other resources with ConceptNet’s concepts,

in the same way those concepts were created in the first place: by normalizing text

with the Porter stemmer. Given a ConceptNet predicate, we have two concepts,

represented by their stemmed text, and an inferred part of speech for each one. If

the BSO contains a lexical item of the correct part of speech that stems to the same

text as one of the ConceptNet concepts, we consider the BSO node’s type and the

concept to be related. (Recall that lexical items in the BSO do not have properties,

only types do.) Similarly, for any WordNet synset containing a word sense that stems

to the same text, and has the appropriate part of speech, we consider that synset and

the concept to be related.

We can then determine whether a predicate in ConceptNet corresponds to an

equivalent fact in the BSO or WordNet, by determining whether there exists a BSO

qualia or WordNet pointer that connects two nodes that are related, respectively, to

the two concepts in the predicate.

As an example, consider a predicate in ConceptNet representing the statement “A

fork is for eating things”. This would be represented in this document’s usual notation

as (UsedFor 〈fork〉 〈eating things〉) or (UsedFor 〈fork〉 〈eat〉), which are equivalent.

The phrase “a fork” provides a very straightforward association between Concept-

Net and the BSO. The phrase’s stem is fork. There is a lexical item in the BSO,

“fork”, that also has the stem fork, and whose type, incidentally, is Fork. So the

concept 〈fork〉 is related to the BSO type Fork.

“Eating things” has the stem eat, which it shares with the BSO lexical item “eat”,

whose type is Eat Activity. This relates the concept 〈eat〉 to the type Eat Activity.

If the BSO contains a telic qualia (the counterpart of UsedFor) that relates Fork

to Eat Activity, then this ConceptNet predicate is represented in the BSO. In this

case, it isn’t: the telic of Fork is Assistance Activity, not Eat Activity.

Now, for any predicate in ConceptNet, we can look for a corresponding statement

44

in WordNet or the BSO, with one of three possible outcomes:

• No comparison: For one or both of the concepts, we can find no nodes in

the other resource that are related according to our definition. This does not

necessarily indicate that the two resources disagree, but that we don’t know

how to map this information from ConceptNet into the other resource.

• Hit: We can find related nodes for both concepts, and the nodes are connected

by the appropriate relationship.

• Miss: We can find related nodes for both concepts, but they are not connected

by the appropriate relationship.

The criterion for determining whether “a relationship exists” does not require the

relationship to be expressed by a single pointer or qualia. For example, the only

direct hypernym of the first sense of “dog” in WordNet is “canine”, but we want to

be able to match more general statements such as “a dog is an animal”. So instead,

we check whether the target database contains the appropriate relation from the first

concept to the second concept or to any ancestor of the second concept under the IsA

relation (that is, the hypernym relation or the formal qualia). Under this criterion,

ConceptNet’s (IsA 〈dog〉 〈animal〉) matches against WordNet, as WordNet contains

a noun sense of “dog” that has a hypernym pointer to “canine”, and a series of

hypernym pointers can be followed from “canine” to reach a sense of “animal”. This

process allows many reasonable matches that could not otherwise be made, and uses

the hierarchical structures of WordNet and the BSO as they are intended.

We ran this evaluation independently for IsA, UsedFor, and PartOf predicates,

against each of WordNet and the BSO (except that it is not possible to evaluate

UsedFor against WordNet). As a control to show that not too many hits arose from

random noise, we also tested “randomized IsA predicates”. These predicates were

created by making random IsA predicates out of the shuffled arguments of the IsA

predicates we tested, so that these predicates would express nonsense statements such

as “soy is a kind of peninsula”. Indeed, few of these predicates were hits compared to

45

Resource Type Hit Miss No comparison
WordNet IsA 2530 3065 1267
WordNet PartOf 653 1344 319
WordNet Random 245 5272 1268
BSO IsA 1813 2545 2044
BSO PartOf 26 49 2241
BSO UsedFor 382 1584 3177
BSO Random 188 4456 2142

Table 3.3: The results of the comparison. A “hit” is when the appropriate concepts
exist in the target database and the correct relationship holds between them, a “miss”
is when the concepts exist but the relationship does not hold, and “no comparison”
is when one or both concepts do not exist in the target database.

real ConceptNet predicates, even though IsA predicates are the most likely to match

by chance. Table 3.3 presents the results, and Figure 3-4 charts the success rates for

each trial (the ratios of hits to hits plus misses).

A Pearson’s chi-square test of independence showed that the difference in the hit

vs. miss distribution between the real predicates and the randomly-generated ones is

very statistically significant, with p < 0.001 (df = 1) for each relation type. WordNet

has χ2 = 2465.3 for IsA predicates and χ2 = 1112.7 for PartOf predicates compared

to random predicates; the BSO has χ2 = 1834.0 for IsA, χ2 = 159.8 for PartOf, and

χ2 = 414.7 for UsedFor compared to random predicates.

3.4.2 Discussion

As a resource, ConceptNet differs from most available corpora in the nature and

structure of its content. Unlike free text corpora, each sentence of OMCS was entered

by a goal-directed user hoping to contribute common sense, resulting in a wealth of

statements that focus on simple, real-world concepts that often go unstated.

This comparison has shown that our information frequently overlaps with two

expert-created resources, WordNet and the Brandeis Semantic Ontology, on the types

of predicates where they are comparable. The goal of ConceptNet is not just to

emulate these other resources, though; it also contains useful information beyond

what is found in WordNet or the BSO. For example, many “misses” in our evaluation

are useful statements in ConceptNet that simply do not appear in the other resources

46

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Random IsA PartOf UsedFor

P
er

ce
nt

ag
e

of
 h

its

WordNet
BSO

Figure 3-4: When ConceptNet predicates can be mapped onto relations between
WordNet and BSO entries, they match a significant percentage of the time.

we evaluated it against, such as “sauce is a part of pizza”, “a son is part of a family”,

and “weekends are used for recovery”.

Those kinds of details, based around the way that people see the world, make

ConceptNet 3 a good basis for making new inferences about common sense. The next

chapter will explain AnalogySpace, one method for making those inferences, which

together with human interaction completes a feedback loop that adds more knowledge

to ConceptNet.

47

48

Chapter 4

AnalogySpace

As discussed in previous chapters, the ability to find similarities and analogies in

ConceptNet is important to many applications, particularly the Open Mind Commons

interface. When the cumulative analogy model (see Section 2.3.2) of similarity and

analogy is implemented as an SQL query over ConceptNet, however, it does not scale

well. When there are hundreds of thousands of common sense predicates to work

with, it requires either performing a search operation that does not complete quickly

enough to run interactively on a Web site, or reducing the number of nearest neighbors

used to the point that it seriously degrades the quality of the analogies.

This chapter presents a representation of ConceptNet that allows similarity and

related operations to be expressed in terms of linear algebra. This allows the opera-

tions to be optimized using known linear algebra techniques, particularly truncated

singular value decomposition (SVD) [Wall et al., 2003], a form of principal component

analysis.

Analyzing ConceptNet with SVD has the interesting side-effect of revealing the

principal components of the knowledge in ConceptNet, and making a map of all its

concepts in terms of these components. This representation, called AnalogySpace,

helps people to visualize the structure of ConceptNet and allows the computer to

work with a more intuitive, generalized idea of similarity.

49

4.1 The concept/property representation

The similarity between two concepts a and b measures how many predicates about a

are also true when a is replaced by b. If a predicate changes from true to false when a

is replaced by b, it counts against similarity. A concise way to calculate this similarity

function, sim(a, b), is to find the number of properties that a and b have in common,

minus the number where they explicitly differ.

It will help to define this idea of a “property” more formally. A property is

something that, when combined with a concept, forms a predicate.

Because predicates can be expressed as the ordered triple

(conceptL, relation, conceptR),

a property can be expressed as an ordered pair, either as (conceptL, relation) or

(relation, conceptR). These are distinct kinds of properties, called left properties and

right properties respectively. A left property can be made into a predicate by filling

in its conceptR, and a right property can be made into a predicate by filling in its

conceptL.

We can define these functions for talking about concepts and properties mathe-

matically:

pred(c, p) is defined as the predicate in the knowledge base where concept c fills

the unfilled slot of property p. For most combinations of c and p, there will be no

such predicate, so consider pred(c, p) to signify a “null predicate” in that case.

value(pred) is the truth value of a predicate, which is equal to the predicate’s

polarity (1 or -1) if the predicate exists. If pred is the null predicate, its value is 0.

Using these definitions, we can express the similarity function as a sum that

compares all possible properties:

sim(a, b) =
∑
p

value(pred(a, p)) · value(pred(b, p))

50

4.2 Similarity is a linear operation

We can look at ConceptNet from the point of view of linear algebra, by expressing

all of ConceptNet as an m× n matrix A, where the m rows are the concepts (named

c1 . . . cm) and the n columns are properties (p1 . . . pn). These concepts and proper-

ties can also be seen unit vectors that form a basis: the space of concepts is made

of the unit vectors ĉ1, . . . , ĉm, and the space of properties is made of the basis vec-

tors p̂i, . . . p̂j. As an example, the first concept in order, c1 (suppose it represents

“aardvark”) can be expressed as the vector ĉ1 = [1 0 0 0 . . .]T .

The entry Aij in the ConceptNet matrix is equal to value(pred(ci, pj)). Row i of

the matrix is equal to AT ĉi, a vector which expresses concept ci as a combination

of unit properties, and column j similarly equals Ap̂i, expressing property pj as a

combination of unit concepts. (We could also multiply A on both sides by a unit

concept and a unit property, as in ĉT
i Ap̂j, and this is the same as value(pred(ci, pj))

because it is equivalent to looking up an entry in the matrix.)

The above formula for similarity can now be expressed as a vector equation. The

similarity between two concepts is their dot product in the space of properties:

sim(ci, cj) = (AT ĉi) · (AT ĉj) = ĉT
i AA

T ĉj = (AAT)ij

This means that we can express similarity as a product of matrices. AAT is a

matrix of similarities between all pairs of concepts, based on the properties they have

in common. Dually, ATA is a matrix of similarities between properties based on the

concepts they have in common. Similarity is therefore a linear operation that we can

model using linear algebra.

This representation does not yet make similarity any easier to compute. Calcu-

lating AAT is at least as costly as calculating sim(ci, cj) for every pair of concepts in

ConceptNet. However, linear algebra provides a tool that we can use to approximate

this operation, and to discover other useful results along the way.

51

4.3 Singular value decomposition

Any matrix A can be factored into an orthonormal matrix U , a diagonal matrix Σ,

and an orthonormal matrix V T . The operation that does so is known as singular

value decomposition. In the context of natural language processing, SVD is most

often used to classify documents using latent semantic analysis [Deerwester et al.,

1990], but here we are using SVD for a different purpose.

This factorization, A = UΣV T , allows the matrix A to be built from a sum of r

outer products of column vectors from U and row vectors from V , weighted by the

singular values σi that appear on the diagonal of the matrix. Here, r is the rank of

the matrix, or equivalently the number of non-zero values in Σ.

A =
r∑

i=1

uiσiv
T
i

Typically, the matrices are arranged so that the singular values in Σ are ordered

from largest to smallest. This allows the SVD to be approximated by a truncated

SVD, a product of smaller matrices. Let Uk contain the first k columns of U , V T
k

contain the first k rows of V T , and Σk contain the first k singular values in Σ. Then

Ak = UkΣkV
T
k

where Ak is the rank-k matrix that best approximates A by a least-squares measure

[Wall et al., 2003].

Let us run a truncated SVD on ConceptNet, where k = 50 (a value that I have

found to be reasonable through experimentation). The resulting Ak is a rank-50

approximation to A that we can store as a product of three smaller matrices. Since

we never need the un-truncated results of the SVD (and it would not even be feasible

to compute them), let us remove the subscripts on those variables from here on:

Ak = UΣV T .

Besides just being the pieces of an approximation, these matrices carry a meaning

of their own. U and V define a set of 50 orthogonal axes, forming a 50-dimensional

52

vector space of data that we can call AnalogySpace. U expresses each axis as a

linear combination of concepts, while V expresses each axis as a linear combination

of properties.

So while concepts and properties started out as incompatible types of data, the

SVD turns both concepts and properties into vectors in AnalogySpace. One vector in

this space represents the concept “dog”, for example, and that same vector represents

the linear combination of properties that dogs have.

Let us now represent this idea in our notation. Just like Ap̂i represents a property

as a vector of concepts, and AT ĉi represents a concept as a vector of properties, we

can now represent both concepts and properties as vectors over the 50 orthogonal axes

of AnalogySpace. Define s(ci) and s(pi) to represent both concepts and properties as

vectors in the new basis of AnalogySpace. These vectors can be found by transforming

the input vectors with the matrices U and V :

s(ci) = UT ĉi

s(pi) = V T p̂i

4.4 Weighting and normalizing

So far, we have been treating all predicates with equal weight. A natural way to

improve the results is to weight them by their ConceptNet score, which measures

their reliability. Again, high scores indicate that predicates have been verified or

independently stated by multiple users.

To change the entries in A to reflect the predicates’ scores, we redefine the function

value(pred) that defines its entries, by multiplying the predicate’s polarity by its score,

as long as the score is non-negative. The result of value(pred) can now be any integer,

not just -1, 0, or 1.

It’s important to remember the distinction between score and truth value here. A

statement with a zero or negative score is completely unreliable, so its entry in the

matrix should be 0 whether its truth value is positive or negative. A statement with a

53

negative truth value, however, can have a positive score: “Pigs can’t fly” is a reliable

negative statement, and it has a score of 2 in the current database, so the entry in

the A matrix indexed by 〈pig〉 and (CapableOf 〈fly〉) is -2.

It is also useful, at this point, to adjust for a bias in A that will skew the results

of the SVD. ConceptNet inherently includes more information about some concepts

than others: there are hundreds of predicates involving the concept 〈person〉, and

only a few involving the concept 〈turtle〉. This makes the similarity function tend to

return values of higher magnitude for 〈person〉 than 〈turtle〉, either in the positive

or negative direction. The result is that 〈tortoise〉 appears more similar to 〈person〉

than 〈turtle〉, simply because 〈person〉 has more properties to line up with.

This can be fixed by normalizing the rows of the A matrix – that is, by dividing

each row by its Euclidean norm, turning it into a vector of length 1. This, however,

creates an opposite problem: concepts with a single property get magnified out of

proportion. One property can appear as significant as ConceptNet’s entire body of

knowledge about people.

To prevent low-frequency concepts from being magnified unnecessarily, the con-

cepts can be given a minimum magnitude before normalizing them. One way to do

this is to add a unique component of a fixed magnitude m to each concept vector.

These components will not correlate with anything else, so they will not affect the

directions of vectors in the SVD result, but they will ensure that no concept can have

a magnitude smaller than that of the added component. As a practical implementa-

tion, these additional components can be simulated by simply dividing each row Ai

of the matrix by
√
Ai · Ai +m2, instead of by

√
Ai · Ai. This method is used inside

ConceptNet with m = 5.

After normalizing by concepts, call the resulting concept/property matrix Â. This

will be used in place of A from here on, in similarity and other results. Notice that

ÂÂT is very similar to the covariance matrix of concepts (if it were fully normalized

instead of semi-normalized, it would be the same). The similarity between concepts

according to this matrix is also close to their cosine similarity (defined as the cosine

of the angle between two concept vectors), differing only in the effect of the added

54

components:

ÂÂT ≈ sim(ci, cj)

||AT ĉi|| ||AT ĉj||
=

(AT ĉi) · (AT ĉj)

||AT ĉi|| ||AT ĉj||

4.4.1 Canonical directions

In the results of an SVD, there is no reason to prefer a particular principal component

over its negation. These components are eigenvectors, after all, and eigenvectors are

unaffected by scalar factors. Normalizing the eigenvectors into unit vectors still leaves

two equally good possibilities, v and −v, for each eigenvector. The las2 algorithm,

as implemented in SVDLIBC, tends to choose between the two directions arbitrarily,

and it can even make different choices when run on the same data.

To impose consistency between multiple invocations of the SVD, we add an ad-

ditional constraint: the concept 〈person〉 must be in the positive direction on every

axis. If las2 returns a principal component with a negative 〈person〉 term, then that

component is replaced by its negation.

4.5 Implementation

The contents of the ConceptNet matrix Â are, of course, very sparse. Most of its

entries are 0, and should remain 0 because it makes no sense for certain concepts and

properties to be related. The SVD, then, needs to be run over a sparse representation

of the matrix.

ConceptNet’s SVD is performed by a wrapper around Doug Rohde’s SVDLIBC

library [Rohde, 2001], which contains an implementation of the las2 single-vector

Lanczos method, a fast SVD algorithm for sparse data. Sparse SVD methods can

introduce error through floating-point imprecision, but las2 has the advantage that

most of the imprecision occurs in the low-order singular values, which are discarded

anyway.

With this implementation, it actually takes longer to initially construct the sparse

matrix Â, including reading all the necessary data from ConceptNet’s database, than

it does to compute its SVD. When the SVD results are being used in a context where

55

ConceptNet is being updated interactively, such as the Open Mind Commons web site,

it is efficient enough to simply keep the matrix in memory and update it incrementally

as predicates in ConceptNet are added or updated. A background process can then

periodically recalculate the SVD.

The columns of the sparse matrix represent all concepts that occur in at least 5

predicates, and the rows represent all properties that occur at least once in a predicate

with a positive score and include a concept that occurs at least 5 times. If this would

lead to a row or column of all zeros (for example, if a concept never appears together

with a property that is significant enough to be represented in the matrix), that row

or column is left out of the matrix, as it might otherwise cause SVDLIBC to return

erroneous results. Currently, this results in an SVD that is run over a matrix of 69236

properties by 12671 concepts, containing 219474 predicates.

4.5.1 Incorporating IsA inference

An advantage of AnalogySpace is that it is easy to augment it with additional infor-

mation to be used in making analogies. , we would like to be able to make inferences

that move information across IsA links – there are many cases in which a concept

should pass on its properties to its children under the IsA relation, and if several ob-

jects with the same IsA parent have the same property, then the parent might have

that property as well.

This does not inherently occur in AnalogySpace. It is possible for the concept

〈dog〉 to be nowhere near the property (IsA, 〈dog〉), and therefore nowhere near con-

cepts that are types of dogs. It can be beneficial to remedy this in making analogies.

The way to do this is to add “identity” predicates that connect each concept to its

own IsA properties.

When interpreted in natural language, identity predicates express statements such

as “a dog is a dog”. These are not meant to be useful statements, or even to act as

assertions of common sense at all – in fact, predicates that relate a concept to itself

are usually disallowed from ConceptNet as being uninformative. In this case, though,

we have a reason to add these virtual predicates into the SVD, which is that they

56

produce useful similarities with other predicates. Think of an identity predicate as

not expressing the assertion “A dog is a dog”, but the meta-assertion “Subtypes of

dogs should inherit properties from dogs”. To encourage properties to be inherited,

we can give the identity predicates a moderately high score, such as 5.

Incidentally, this removes the need for the meaningless components that were be-

ing added earlier to ensure that concept vectors had a minimum magnitude before

being normalized. If every concept has an IsA property pointing to itself with score

5 (actually two of them, since one is a left property and the other is a right prop-

erty), then every concept has a minimum magnitude, and these properties are in fact

different properties for every concept.

There is one situation where adding identity predicates is detrimental, however,

and that is in inferring IsA statements themselves. If the cumulative analogy process

tries to propagate identity predicates to similar concepts, it breaks the abstraction

that makes identity predicates work. Identity predicates applied to other concepts

are no longer identity predicates – they are just IsA predicates which will be false

half of the time.

The following example shows how such an inference can go wrong:

• A piano is a musical instrument.

• A musical instrument is a musical instrument (identity).

• Therefore, a piano is similar to a musical instrument.

• A piano is a piano (identity).

• Therefore, infer that a musical instrument is a piano (not generally true!)

I currently deal with this by keeping two SVDs in memory. One SVD is used

only for inferring IsA predicates. This SVD does not include identity predicates, and

adds virtual components that ensure a minimum magnitude before normalizing, as

described before. The other SVD includes identity predicates, and is used for inferring

all types of predicates except IsA predicates. The results that will be presented from

here on correspond to the SVD that uses identity predicates.

57

Another way to deal with this, which I have not used, would be to make identity

predicates use a new relation which acts like IsA but is not equal to it. Suppose there is

a relation called “InheritsFrom” which appears everywhere that IsA appears, but also

appears as identity predicates connecting every concept to itself. Then InheritsFrom

has the desired effect of propagating other properties through similarity, and the

problem above can be prevented by disallowing attempts to create new InheritsFrom

predicates through inference (they can only be created when a new IsA predicate is

created)

Adding identity predicates leads to the final version of the procedure for creating

AnalogySpace. Begin by defining a helper procedure, Add-Entry:

The Add-Entry procedure

Take as input the 4-tuple (c, p, value,M), where c is a concept, p is a property, value

is a number, M is a sparse matrix, and the rows and columns of M are augmented

with lists that assign a label to each index.

1. Find a row of Â labeled with c, or add a new one if none exists. Call the index

of this row i.

2. Find a column of Â labeled with p, or add a new one if none exists. Call the

index of this column j.

3. Set Mij := value.

Now the Create-AnalogySpace procedure can be defined.

The Create-AnalogySpace procedure

Take as input a minimum concept degree d, a number of dimensions k, and a minimum

concept magnitude m.

1. Create an empty sparse matrix A, augmented with lists of labels for its rows

and columns.

58

2. For each predicate pred, with score > 0, that connects concepts of degree ≥ d:

(a) Let value := score(pred) · polarity(pred).

(b) Break up pred into a left concept cL and a right property pR.

(c) Run Add-Entry(cL, pR, value, A).

(d) Break up pred into a right concept cR and a left property pL.

(e) Run Add-Entry(cR, pL, value, A).

3. Copy A to A′, where identity predicates will be added.

4. For each concept c of degree ≥ d:

(a) Create the properties pL = (c, IsA) and pR = (IsA, c).

(b) Run Add-Entry(c, pL, m, A′).

(c) Run Add-Entry(c, pR, m, A′).

5. Create Â by dividing each row Ai in A by
√
Ai · Ai +m2.

6. Create Â′ by dividing each row A′
i in A′ by ||A′

i||.

7. Find U , Σ, and V by decomposing Â using las2, stopping after k dimensions

have been found. Repeat to find U ′, Σ′, and V ′ from Â′.

8. For each column Uc in U , if the entry of Uc labeled “person” is negative, negate

all entries in Uc and Vc. Repeat with U ′ and V ′.

If a predicate is added or changed later, add it to the matrices using step 2. To

enter it in Â and Â′, scale the rows that have changed according to their new norms.

When a sufficient number of new predicates have been added, run steps 7 and 8 again.

The resulting singular value decompositions, (U,Σ, V) and (U ′,Σ′, V ′), can then

be used to find similarities and analogies by calculating dot products between their

rows. For the reasons described on page 4.5.1, the (U ′,Σ′, V ′) version should not be

used for inferring IsA predicates.

59

4.6 Results

4.6.1 Generalized similarity

As AnalogySpace is an orthogonal transformation of the original concept and property

spaces, dot products in AnalogySpace should approximate dot products in the original

spaces. This fact can be used to compute similarity between concepts or between

properties in AnalogySpace. I call the result generalized similarity.

Not only is generalized similarity easier to compute than the original similarity

function, it can actually be more informative. It takes into account not only whether

two concepts have properties exactly in common, but whether they have properties

that are similar (which, dually, is determined by whether those properties are satisfied

by similar concepts). This means that generalized similarity is evaluated over multiple

levels of reasoning at the same time.

Concepts that ought to be similar, but share no exact properties, get an ordinary

similarity value of 0, but their generalized similarity can be a positive number. So

generalized similarity allows a useful similarity value to be calculated for any two

concepts, not only concepts with exact properties in common.

Just as AAT is a matrix of similarity for all pairs of concepts, AkA
T
k is a matrix of

generalized similarity. This matrix shows us how to calculate generalized similarity

using U and V :

AkA
T
k = UΣV TV ΣUT = UΣIΣUT = UΣ2UT

For two concepts ci and cj, their entry in this matrix – their generalized similarity

– is ΣUT ĉi · ΣUT ĉj, or, equivalently, Σs(ci) · Σs(cj).

4.6.2 Automatic analogies

What gives AnalogySpace its name is the way it naturally produces new hypotheses by

making analogies to similar objects, much like cumulative analogy. In AnalogySpace,

analogy becomes as easy as similarity: while similarities come from dot products

60

between two concepts or two properties, analogies come from dot products between

a concept and a property.

Remember that the factors of the SVD multiply to give a reduced-rank approxima-

tion to Â: Âk = UΣV T . Âk contains a “smoothed” version of ConceptNet, described

by the 50 principal components. If you look up a concept as a row of Âk, you get a

weighted list of properties that the concept “should” have according to those principal

components. It gets assigned those properties based on the properties that similar

concepts have, which is similar to how analogies work in the Learner model, except

without the limitation that only a certain number of nearest neighbors participate in

the analogy.

The value of an analogy between concept ci and property pj can be found, then,

by indexing into Âk:

ĉT
i Âkp̂j = p̂T

j UΣV T ĉi = s(pj)
T Σs(ci)

This is essentially a dot product between the concept s(ci) and the property s(pj),

except that the components are weighted by Σ. Selecting the n highest-valued analo-

gies that do not correspond to existing predicates in ConceptNet yields a list of n

new inferences.

One can visualize how this works spatially. In the concept/property representa-

tion, concepts are sums of unit properties, and properties are sums of unit concepts.

These sums still approximately hold when the concepts and properties are trans-

formed into the same space by a truncated SVD, so concepts will tend to point in

the same direction as the properties they have, and vice versa. Then, if a concept

and property point in approximately the same direction but have no predicate linking

them, the system can hypothesize that that predicate should exist.

In Section 5, the performance of this analogy procedure is evaluated by having

users check its results.

61

Partial inferences

The user interface of Open Mind Commons requires not just the kind of inferences that

come from the “automatic analogy” process described above; it also requires partial

inferences, in which one of the concepts is left unspecified, which are presented to

users as fill-in-the-blank questions instead of yes/no questions. The purpose of partial

inferences is to prompt the user for under-represented types of information.

AnalogySpace can produce partial inferences by aggregating the values of the

analogies it produces. Let a property type be defined as a property with the concept

removed, so the only information it specifies is the relation and whether it is a left or

right property. We can find out how strongly a property type is inferred for a given

concept, instead of a single property, by adding up the analogy values of all properties

of that type:

partialValue(ci, type) =
∑

pj∈type

(Âk)ij

However, this is not quite the right information. Since Âk is an approximation

to the information in ConceptNet, the properties that are already most strongly

represented already in ConceptNet will tend to get the highest weights. The next

step, then, is to discount these values based on how many predicates in ConceptNet

already relate that concept to that property type. Call this number n, and let the

score of a partial inference decrease exponentially as n increases:

partialScore(ci, type) =
partialValue(ci, type)

(0.8)n

The base of 0.8 is a parameter that can be adjusted, determining whether this

procedure favors collecting multiple predicates of the same type, or introducing new

property types that AnalogySpace does not suggest as strongly.

62

4.6.3 Eigenconcepts

The operations discussed so far, similarity and analogy, have not depended on con-

cepts’ absolute positions in AnalogySpace, but only their positions relative to each

other. Each concept is represented by a vector of 50 coordinates in AnalogySpace;

these coordinates can be seen as describing the concept in terms of 50 eigenconcepts

that form the axes of AnalogySpace.

As an inherent result of how the SVD is calculated, matrix U contains the eigen-

vectors of AAT , the matrix of similarities between concepts; V contains the eigen-

vectors of ATA, the matrix of similarities between properties; and Σ contains the

eigenvalues that are shared by both sets of eigenvectors. Because these eigenvectors

are vectors in the space of concepts and properties respectively, they can be con-

sidered eigenconcepts and eigenproperties. These eigenconcepts and eigenproperties

become the basis vectors e0, . . . , e49 of AnalogySpace. Since the eigenproperties are

identical to the eigenconcepts in AnalogySpace, it is reasonable to simply call them

all “eigenconcepts”.

The coordinates of a concept or property in AnalogySpace can be thought of as

expressing that concept or property as a combination of eigenconcepts. Equivalently,

the coordinates can be seen as expressing how similar a concept or property is to each

eigenconcept.

Although the eigenconcepts can be arbitrary linear combinations of concepts, they

turn out to often represent useful real-world categories such as “living things”, “ac-

tions”, “household objects”, “desirable things”, and so on. Some of the more in-

teresting eigenconcepts are shown below, and the graphs in Appendix C plot the

concepts and properties in ConceptNet relative to the first 10 eigenconcepts. Re-

member that all of these eigenconcepts have been oriented so that 〈person〉 is in the

positive direction.

63

Weight Concept Weight Property
0.056 〈fulfilment〉 0.984 (〈person〉, Desires)
0.055 〈a good job〉 0.012 (AtLocation, 〈home〉)
0.055 〈respect〉 0.011 (UsedFor, 〈fun〉)
0.053 〈compliment〉 0.010 (HasProperty, 〈good〉)
0.052 〈achieve a goal〉 0.010 (HasProperty, 〈important〉)

.
-0.059 〈alone〉 -0.008 (〈drive a car〉, Causes)
-0.059 〈lose friends〉 -0.008 (〈lie〉, Causes)
-0.056 〈ridicule〉 -0.009 (HasProperty, 〈bad〉)
-0.056 〈hate〉 -0.011 (〈person〉, HasProperty)
-0.055 〈lose job〉 -0.012 (IsA, 〈disease〉)

Table 4.1: The largest terms in eigenconcept e0 (“desirability”).

Weight Concept Weight Property
0.083 〈breathe air〉 0.934 (〈person〉, CapableOf)
0.081 〈work in an office〉 0.096 (〈human〉, CapableOf)
0.076 〈see with eyes〉 0.060 (〈children〉, CapableOf)
0.074 〈voice opinions〉 0.059 (UsedFor, 〈fun〉)
0.072 〈like to win〉 0.055 (〈child〉, CapableOf)

.
-0.045 〈live in the ocean〉 -0.008 (IsA, 〈walk on water〉)
-0.046 〈walk on walls〉 -0.009 (〈walk on water〉, IsA)
-0.050 〈live forever〉 -0.009 (IsA, 〈breathe water〉)
-0.059 〈walk on water〉 -0.009 (〈breathe water〉, IsA)
-0.066 〈breathe water〉 -0.011 (〈person〉, Desires)

Table 4.2: The largest terms in eigenconcept e1 (“feasibility”).

e0: Desirability

The most significant eigenconcept, e0, represents things people want. That is, the

larger a concept’s component in the e0 direction is, the more desirable it is likely to

be. Concepts with negative e0 components, then, are particularly undesirable.

Table 4.1 shows the concepts and properties that contribute the most weight to e0

– that is, the most desirable and undesirable concepts, and the properties that most

indicate desirability and undesirability, according to ConceptSpace.

e1: Feasibility

The next eigenconcept represents actions that people can do. To a lesser extent, it

represents actions that can be done by certain kinds of people, such as children, or

64

Weight Concept Weight Property
0.093 〈Utah〉 0.246 (AtLocation, 〈desk〉)
0.092 〈Maine〉 0.200 (〈cat〉, AtLocation)
0.091 〈chair〉 0.162 (AtLocation, 〈home〉)
0.083 〈Delaware〉 0.160 (AtLocation, 〈city〉)
0.079 〈zoo〉 0.147 (AtLocation, 〈house〉)

.
-0.010 〈voice opinions〉 -0.005 (〈man〉, CapableOf)
-0.011 〈like to win〉 -0.008 (CapableOf, 〈talk〉)
-0.011 〈see with eyes〉 -0.010 (〈human〉, CapableOf)
-0.012 〈breathe air〉 -0.017 (〈person〉, Desires)
-0.012 〈work in an office〉 -0.112 (〈person〉, CapableOf)

Table 4.3: The largest terms in eigenconcept e2 (“things vs. events”).

by things that are similar to people, such as cats or computers. Its largest terms are

listed in Table 4.2. Like e0, the representation of e1 in property space is dominated

by a single term – (〈person〉, CapableOf), with a weight of 0.93.

In the appendices, Figure C-1 plots the coordinates of concepts and properties in

AnalogySpace, relative to e0 and e1.

e2: Things versus events

Concepts that fall on the positive side of e2 tend to be “things”, and those on the

negative side tend to be events. It is tempting to call this a distinction between nouns

and verbs, but those terms would be misleading, as this is a semantic distinction and

not a grammatical one. The positive direction of e2 contains clusters representing

places, people, household objects, and animals, while the negative direction consist

of actions people can take and events that they want.

Some actions that are strongly associated with a single object, such as “play a

guitar”, are located in the positive direction, near their associated objects. Negation

also puts some things in counterintuitive places: some atypical actions go in the posi-

tive direction because people cannot or do not want to do them,1 and properties that

are false for most objects, such as (CapableOf, 〈talk〉), go in the negative direction.

Figure C-2 plots e2 against the “feasibility” axis e1.

1It worries me that 〈vote〉 apparently falls in this category.

65

More eigenconcepts

After this, major clusters of concepts begin to fall in places other than the axes. This

has to happen, because the clusters are not precisely orthogonal to each other. The

eigenconcepts may point in directions that are not easily described because they are

combinations of slightly related categories of things.

Axis e3, in the positive direction, contains moderately-sized physical objects, par-

ticularly a large cluster of musical instruments such as 〈flute〉 and 〈guitar〉. Concepts

in the opposite direction tend to be places. Axis e4 contains household objects,

which includes many of the things in the e3 direction, but not musical instruments.

Figure C-3 plots e3 against e4.

Axis e5, in the negative direction, contains events that are entertaining, such as

〈see a movie〉 and 〈go to a concert〉. Figure C-4 compares e1 and e5, which between

them distinguish four classes of concepts: possible actions, fun actions, impossible

actions, and objects that are not actions at all.

e6 contains buildings, particularly human dwellings in the positive direction. In

the opposite direction are things that are not buildings, either because they are larger

places (states and countries) or because they are small objects. It is interesting to

plot e6 against e3 (Figure C-5) to see the different distinctions they make between

classes of objects.

Eigenconcepts have less obvious interpretations as they appear later in the list,

but continue to distinguish relevant groups of concepts and properties. The two

next eigenconcepts are e7 and e8, plotted in Figure C-6. Both eigenconcepts mix

together too many different kinds of things to have a straightforward interpretation,

but between them they create a sort of circular spectrum of nouns, identifying definite

clusters of living things, food, furniture, places, and office supplies.

The aforementioned eigenconcepts show how the contents of ConceptNet fall into

natural categories of things with similar properties. Looking at extreme values on the

axes described by the eigenconcepts can help to highlight and compare these natural

categories.

66

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 5 10 15 20 25 30 35 40 45 50

S
in

gu
la

r
va

lu
e

Index

English
Portuguese

Figure 4-1: The first 50 singular values in English and Portuguese.

4.6.4 Significance of principal components

In implementing the SVD, I chose the number of principal components k = 50 rather

arbitrarily. If there are many more than 50 meaningful factors that explain similarities

between concepts, this is okay; part of the reason for truncating the SVD at 50

components is for speed. It is important, however, to confirm that there are at least

50 factors that convey meaningful information and not just random noise.

A plot of the singular values (Figure 4-1) shows a slope change after 12 singu-

lar values in English and 13 in Portuguese, a sign that there may be some special

significance to the first 12 or so eigenconcepts, but this does not prevent the later

eigenconcepts from providing useful information. I have found by experimentation

that AnalogySpace produces more useful analogies with k = 50 than it does with

k = 20. The slope change here distinguishes particularly interesting eigenconcepts

from ordinary ones, not ordinary eigenconcepts from random noise.

Sources such as [Harris, 1975, p. 177] discuss a straightforward way to estimate

67

the number of statistically significant factors in the results of a principal component

analysis. If s2
i is the variance of row i of the covariance matrix AAT , and m is the

total number of rows, then the number of significant factors can be estimated as

the number of principal components whose eigenvalue σ2 is greater than the average

variance,
∑

i s
2
i /m.

The las2 algorithm in SVDLIBC computes, at most, the first 429 singular values

for ConceptNet, with the 429th one having σ2 = 1.93. Singular values beyond that

are presumably lost in floating-point imprecision. All the values returned by las2 are

far greater than the average variance of 0.08, showing that ConceptNet has more than

enough significant components.

4.6.5 Ad-hoc categories

The vectors that are compared in AnalogySpace do not have to correspond to existing

concepts or properties in ConceptNet. In some cases, it is useful to construct a new

vector in AnalogySpace, such as a synthetic concept made of a sum of concepts. Such

a vector can represent an ad-hoc category that is useful in an application. The idea

of ad-hoc categories is similar to the idea of a “mini-document” in LSI, a collection

of a few words that represents, for example, a search query.

As an example, we can create a category of furniture from the sum of concepts

〈chair〉 + 〈table〉 + 〈desk〉 + 〈bed〉 + 〈couch〉. If we add up the ConceptSpace vectors

for these concepts, we get a combined vector in ConceptSpace, scat, that represents

the category as a whole. (We could also create a sum of unit concepts, ccat, and

transform it into AnalogySpace by multiplying it by U , to get the same result.)

One simple way to use an ad-hoc category is to look for its strongest similarities to

existing concepts, and thus discover more objects that seem to belong in the category.

More applications are explored in Chapter 6.

To look for similarities, we use scat in the same way we would use a concept’s

AnalogySpace vector, s(c). We can find the similarity of a particular concept ci to

the category by calculating Σs(ci) · Σscat. A vector of similarities over all concepts –

68

call it c′ – can be found as:

c′ = UΣ2scat = UΣ2UT cT
cat

The largest components of c′ reflect the objects that are most similar to the

category. c′ should look like the original category ccat, except extended to assign a

value to all concepts.

For the category of furniture, the most similar concepts include other kinds of

furniture and parts of a house, as shown in Table 4.4.

Weight Concept
1.218 chair
1.013 couch
0.966 sofa
0.906 bed
0.761 floor
0.744 carpet
0.712 table
0.682 living room
0.667 beanbag chair
0.643 armchair

Table 4.4: Concepts that are similar to an ad-hoc category of furniture.

69

70

Chapter 5

Evaluation

In order to show that SVD-based reasoning produces reasonable, useful inferences, I

invited people to participate in an evaluation of its performance. The results show

that users consider inferences from AnalogySpace to be true a large percentage of the

time, significantly more often than randomly-generated predicates.

5.1 Experimental setup

In this evaluation, subjects were presented with a list of statements from various

sources. The statements were all expressed as English sentences by the InferNatural-

Language procedure in Open Mind Commons (described in Section 3.3.1), and were

selected randomly from four different sources:

• Existing predicates in ConceptNet 3 with a score greater than 1

• Predicates inferred by vanilla AnalogySpace

• Predicates inferred by AnalogySpace, with identity predicates added (as de-

scribed on p. 56)

• Randomly-generated predicates

Participants were presented with a list of 60 such sentences. Each sentence was

accompanied by a drop-down box labeled “Rate...”, which the participants would

71

use to give their opinion of how true the sentence was. The possible options were

“Generally true”, “Occasionally true”, “Don’t know / Opinion”, “Generally false”,

and “Doesn’t make sense”. The participant’s choices were submitted via JavaScript

as soon as they were made, so that partial results would be available even from users

who did not finish the evaluation. If a participant chose one answer and then changed

it, the new answer would replace the old one.

The following text appeared above the list:

The following is a list of 60 statements. Some of them are true statements

about common sense knowledge, while others are false or nonsensical.

We’d like you to label which statements are which.

For each statement, please rate how true you consider the statement (or

whether it doesn’t make sense) using the dropdown box to its right. Dis-

regard errors in grammar if you can still make sense out of the sentence.

After answering the questions and clicking “Done”, participants then saw a page

explaining what the experiment was about, followed by the list of statements, this

time sorted according to their source. This page had no effect on the experiment’s

results, but it allowed participants to conclude for themselves whether the inference

procedures had performed well.

5.2 Producing statements to evaluate

All statements that participate were asked to evaluate were produced by the Infer-

NaturalLanguage procedure, even the statements from ConceptNet which already had

natural language representations. The reason for this was to make statements from

different sources appear the same. InferNaturalLanguage produces some sentences

with incorrect grammar, but running it on all predicates makes the quality of the

grammar consistent across all the displayed sentences.

The statements from ConceptNet were selected uniformly randomly from all pred-

icates with a score greater than or equal to 2 – that is, all predicates that have been

72

confirmed by a user other than the user who originally entered them.

The inferred statements were chosen by a weighted random process, designed to

emphasize the inferences that have higher dot products in AnalogySpace, as these

are the inferences that Commons is most likely to ask its users about, while not

presenting the same set of top-ranked inferences to every user. Given an inference

with a dot-product score of s, it is assigned a value of s ∗ r4, where r is a random

value chosen uniformly from [0, 1), and the inferences with the 15 highest values are

selected.

The random statements are chosen in such a way that they have a reasonable

chance of making grammatical sense. Properties are chosen at random until a left

property and right property are found that share the same relation, so that they can

be overlapped to form a predicate. The resulting predicate is turned into a sentence

with InferNaturalLanguage.

5.3 Results

238 people participated in the evaluation, with no compensation offered. After dis-

carding results from participants who answered less than half of the questions, there

were 195 participants remaining.

As expected, the statements that participants most often considered true were

the statements that were already present in ConceptNet. Random statements were

rarely considered true, and were most often rated as “Doesn’t make sense”. The

inferred statements were much more highly rated than random predicates, and in

fact performed comparably to the existing statements in OMCS. Users gave inferred

predicates a positive rating – that is, one of “Generally true” or “Occasionally true”

– 68.9% of the time, compared to 80.8% positive ratings received by the existing

predicates that the inferences were based on. Figure 5-1 shows a breakdown of the

users’ responses to the evaluation by the predicate’s source.

To compare the average performance of each source of statements, the possible

responses were assigned numerical values on the 4-point scale shown in Table 5.1:

73

0%

10%

20%

30%

40%

50%

60%

70%

Random Inference Inference + IsA OMCS

P
er

ce
nt

ag
e

of
 r

es
po

ns
es

Generally true
Occasionally true

Don’t know / Opinion
Generally false

Doesn’t make sense

Figure 5-1: The distribution of users’ responses to the evaluation.

Score Response
2 Generally true
1 Occasionally true
0 Don’t know / Opinion

-1 Generally false or Doesn’t make sense

Table 5.1: The scale used to assign aggregate scores to responses to the user evalua-
tion.

Source Score
Random -0.688
AnalogySpace 0.820
AnalogySpace + identity 0.874
ConceptNet 1.333

Table 5.2: Mean scores for each source of predicates in the user evaluation.

74

With this scale, Table 5.2 shows the mean scores received by each source of state-

ments, averaged across all contributors.

To evaluate the significance of these results, I ran a correlated-samples ANOVA

over the mean scores that each participant assigned to each source. Table B.1, in

Appendix B, lists these mean scores for each user. The ANOVA showed that it is

very statistically significant that there is a difference between the groups (p < .0001,

df = 3).

In order to determine which differences were statistically significant, I then ran

a Tukey HSD test on the results of the ANOVA. The test calculated that, for a

difference to be significant at the p < .01 level, the means must differ by at least 0.10.

The difference between AnalogySpace with and without identity predicates, with

a difference in means of 0.054, was not enough to be significant. All other differences

were significant, which shows in particular that both inference algorithms performed

significantly better than random predicates.

75

76

Chapter 6

Applying AnalogySpace

The properties of AnalogySpace make it useful in ways besides just generating po-

tential inferences. This chapter describes some other ways that AnalogySpace can be

applied.

6.1 Verifying existing knowledge

The examples of using AnalogySpace so far have focused on using it to produce new

inferences, by discarding entries that correspond to existing knowledge. If only the

entries corresponding to existing knowledge are kept instead, then AnalogySpace can

be used to verify existing knowledge.

Because a predicate can be broken down into a left concept and a right property,

or a right concept and a left property, each predicate corresponds to up to two entries

in the reconstructed ConceptNet matrix Â′
k. (Entries may be missing if they involve

a concept or property used too infrequently to appear in the matrix.) We can find

these entries in the same way we made analogies before, by taking the weighted dot

product of their coordinates in AnalogySpace, s(pj)
T Σs(ci). The sum of these entries

– call it v – is a “verification score” for the predicate, which indicates how well the

predicate is supported by other knowledge.

As an example, these five predicates were the most well-supported predicates

about the concept 〈book〉, receiving the highest verification scores:

77

• Something you find at school is books (v = 0.2131)

• Something you find on your desk is books (v = 0.1979)

• You are likely to find a book in a library (v = 0.1755)

• Something you find on a table is books (v = 0.1561)

• Something you find in a cabinet is books (v = 0.1162)

For the concept 〈book〉, LocationOf predicates tended to receive high verifica-

tion scores. The highest-scoring non-LocationOf predicate was “A book is used for

learning” (v = 0.1022).

The five most dubious predicates about 〈book〉, having the lowest non-zero veri-

fication scores, are:

• Books taste good (v = −0.0040)

• You are likely to find a cover in a book (v = 0.0013)

• Books can win prizes (v = 0.0016)

• A religious book (v = 0.0019)1

• Books contain pictures (v = 0.0019)

This procedure could be useful to incorporate into a future version of Open Mind

Commons, which could use it to draw attention to dubious statements, so that users

could either confirm or reject them.

6.2 Dealing with systematic vandalism

Nothing prevents Open Mind’s contributors from entering inaccurate, nonsensical, or

malicious statements, and sometimes they do. Vandalism is a problem faced by many

1This was mis-parsed as a CapableOf predicate, with “a religious” as the noun and “book” as
the verb.

78

online projects that are open to the public, and Open Mind is no exception, but the

AnalogySpace representation can help to curb it in some cases.

Vandalism in Open Mind can take many forms, many of which turn out to be

harmless or self-defeating. Other forms can be easily removed by searching for cer-

tain words. Occasionally, more advanced techniques are necessary to sort the good

statements from the garbage.

One common form of vandalism is where a user types a statement made of nonsense

characters, such as “hfghfghdf”, or fills in nonsense characters in a template, such as

“An activity something can do is sdf”. Statements made completely of nonsense have

no effect because they will never parse as anything. Nonsense characters in a template

will either be rejected by the shallow parser, or turn into a ConceptNet node of degree

1, which has essentially no effect on inference because it will contribute nothing to

similarity.

Other vandalism takes the form of sentences that don’t convey knowledge, and

may not convey much of anything at all, such as “They can be serving cake there

now”. These, too, can become irrelevant if the parser fails to parse them, or if one of

the concepts turns out to be entirely made of stopwords (such as “they”), at which

point it will be rejected from ConceptNet.

Many kinds of vandalism use abusive language, making them easy to spot. Con-

ceptNet 3 automatically rejects concepts containing the word “fuck” or any of various

slurs against groups of people. (Statements containing the word “shit”, on the other

hand, are retained, because they tend to be correct, if crudely stated.)

The vandalism that remains consists of incorrect or unhelpful statements that

connect two established concepts, such as “Joe is a cat” or “You are likely to find a

weasel in your pants”. These statements are typically rare enough that they blend in

with other well-meaning but confused statements in ConceptNet. They never achieve

high reliability scores, and tend not to correlate with anything, so most of these

statements appear as noise from a principal components point of view. In this case,

the fact that a truncated SVD maintains correlations while removing noise is very

useful, as it discards the information conveyed by random incorrect statements.

79

Only one form of vandalism actually has a significant effect on SVD-based infer-

ence. A few users have spent a great deal of time entering systematic nonsense into

Open Mind, instead of random nonsense that doesn’t connect to anything. One user

of the original Open Mind, for example, answered every fill-in-the-blank question with

“thermonuclear war”, a pattern that was easy to detect and remove. Another user,

identified here as User #3595, has a subtler contribution history that illustrates the

problems posed by systematic vandalism, along with a solution that AnalogySpace

provides.

User #3595 was a prodigious contributor, adding approximately 6500 new state-

ments to Open Mind. Several hundred of these, near the beginning, were valid, useful

common sense statements. It seems that the user grew tired of making useful con-

tributions, and possibly became frustrated at the lack of feedback. With increasing

frequency, he began entering meaningless, systematic statements involving people’s

names: “Sheila is late. Ed is late. Brenda is late. Sheila is poor. Ed is poor. Brenda

is poor. Sheila is in jail...” Even so, he would then return to adding useful statements

at some point. It is possible that the user was confused and not malicious, but either

way, he left behind thousands of statements of systematic nonsense to be identified.

Instead of being neutralized by the SVD, these statements were magnified, be-

cause they form a very consistent pattern across many concepts. Fortunately, this

means that the SVD could also be used to identify these statements. The names and

properties that #3595 used comprised an obvious spike in the SVD results, with all of

them having AnalogySpace vectors pointing in essentially the same direction (except

for some ambiguous names such as “bill”).

Simply removing all of his contributions would sacrifice too many valid statements.

The key was to identify only the statements that were part of this pattern of nonsense,

and remove them. To do so, I only had to search for the predicates entered by

user #3595 whose properties were indicated by the SVD to be similar to a signature

property of his, such as (LocationOf, 〈jail〉). Applying this process a few times allowed

me to remove about 2700 nonsense predicates, which I did before running the user

test or reporting the other results in this thesis.

80

6.3 Topic detection

AnalogySpace has shown some promising preliminary results when applied to the task

of topic detection, using the method of ad-hoc categories described in Section 4.6.5.

By creating categories for each possible topic, and categories representing the texts

we wish to classify, and comparing the dot products between these categories, we can

find which topic corresponds most strongly to each text.

Creating topics does not necessarily require a training set of texts. All we need

to do is pick a number of representative concepts that are related to each topic, and

add them together to form an ad-hoc category. The following example shows how

this can work.

For this example, we will compare three topics:

• Politics = 〈politics〉 + 〈vote〉 + 〈govern〉 + 〈elect〉 + 〈state〉

• Business = 〈business〉 + 〈company〉 + 〈industry〉 + 〈market〉 + 〈money〉

• Sports = 〈sport〉 + 〈game〉 + 〈ball〉 + 〈play〉 + 〈win〉

To create a category from a text, we remove all of its stopwords, find all words

and adjacent pairs of words that correspond to concepts in AnalogySpace, and use

the sum of those concepts to form an ad-hoc category. This example uses three texts

from news articles, found in the appropriate sections of Google News:

1. The eight Democrats seeking their party’s U.S. presidential nomination sparred
Sunday in a nationally televised debate. VOA’s Paula Wolfson reports foreign
policy issues topped the event, which was held in the key state of Iowa.2

2. Midwest Air Group Inc. said Thursday night that it will accept a cash offer
to be acquired by private investment firm TPG Capital, rejecting a revived
cash-and-stock offer from AirTran Holdings Inc.3

3. Jose Guillen’s first-inning homer into the White Sox bullpen was a message for
the Chicago relievers to be ready early. Guillen followed the two-run shot with
a two-run single in the second, driving in five runs and sparking Seattle’s offense
in the Mariners’ 11-5 romp of the White Sox on Sunday afternoon.4

2Paula Wolfson, Voice of America, August 19, 2007.
3Emily Fredrix, Forbes, August 17, 2007.
4Tim Booth, Associated Press, August 19, 2007.

81

Article # Politics Business Sports
1 0.408 0.255 0.236
2 0.006 0.484 0.117
3 0.140 -0.123 0.583

Table 6.1: AnalogySpace determines the topic areas of three news articles.

When these texts are turned into ad-hoc category vectors, and are compared with

the topic vectors for their similarity in AnalogySpace, the correct topic shows up as

the most similar in each case, as shown in Table 6.1. This shows the potential for this

to be expanded into a more robust topic-detection system, and since little training

seems to be necessary, this system could be provided with a set of topics adapted to

the task at hand.

This method could also be used with the possible “topics” simply being the entries

of ConceptNet, yielding a weighted list of concepts that are semantically associated

with the input text, similar to the example in Section 4.6.5. This kind of information

can be used to improve the results of predictive text entry and speech recognition

[Lieberman et al., 2005].

6.4 Semantic spectra

Because AnalogySpace is a continuous space, it can be used in ways that go beyond

simply making a discrete choice, as the topic detection example above does. Many

applications of common sense knowledge involve measuring the strength with which

particular ideas occur in a text. As illustrated in Section 4.6.3 and the graphs in Ap-

pendix A, AnalogySpace is particularly good at representing concepts in a spectrum.

Common sense knowledge has frequently been applied to affect sensing, or de-

tecting emotions in text [Liu et al., 2003a]. Affect-sensing based on common sense

knowledge has been applied in user interfaces that can empathize with the user [Liu

et al., 2003a, p. 6], as well as an interface for navigating text by emotion [Liu et al.,

2003b]. This is another task that could be facilitated by working in AnalogySpace,

because emotions are an example of a semantic spectrum.

82

If we first identify directions in AnalogySpace that correspond to basic emotions,

we can combine these directions into a space representing a range of possible emotions.

In fact, we have already seen directions that are similar to emotions and are easy to

express when examining the eigenconcepts: the +e0 direction is “pleasant”, while

−e0 is “unpleasant”, −e5 is “enjoyable”, and −e1 – the direction representing actions

seen as atypical or infeasible – could be seen as “surprising”. There is no reason

to limit the vectors that define an emotional space to being eigenconcepts, though,

except for familiarity.

With a set of emotional vectors defined, then concepts that occur in text can

be projected into that emotional space in an operation as straightforward as matrix

multiplication.

6.5 Aligning knowledge bases

While ConceptNet contains a wealth of information in both English and Portuguese,

the two languages currently act as completely different semantic spaces. Given a

concept or set of concepts in English, there is no clear way to find corresponding

concepts in Portuguese.

With both languages’ ConceptNets represented as vector spaces, however, it could

be possible to align these vector spaces with each other. The first step would be to

“anchor” a certain number of concepts by finding English and Portuguese concepts

that are direct translations of each other. This kind of data could be collected from

bilingual contributors as in GlobalMind [Chung, 2006], or it could be imported in

large quantities (albeit somewhat noisily) from an electronic multilingual lexicon.

Concepts that are not anchored could then be translated by using nearby anchored

concepts as a guide. Similarities could be propagated between languages using the

tenet that if two concepts are similar in one language, they should be similar in

another, and this would eventually build up a somewhat smooth, locally-consistent

mapping between languages.

This could be applied to other tasks besides translation, as well: for example, it

83

could be used to augment the domain-general ConceptNet with some domain-specific

knowledge. I feel that this is a very promising direction for future research using

AnalogySpace.

6.6 Conclusion

The AnalogySpace representation allows the information in ConceptNet to be used

in a number of new ways. The implementation of cumulative analogy as a vector

operation within AnalogySpace is an elegant way to create new hypotheses that can

be fed back into ConceptNet. Other operations on AnalogySpace can be used intro-

spectively, to refine ConceptNet and improve its quality, or externally, to make the

knowledge in ConceptNet available in a form that is useful to applications.

The power of AnalogySpace comes from the way it exploits large-scale patterns

in ConceptNet. By identifying the principal components of ConceptNet, we find the

“signal” representing the collective knowledge of thousands of contributors, while

abstracting away the noise.

84

Appendix A

Parsing patterns

A.1 Top-level English parsing patterns

In the process of building ConceptNet, statements in the Open Mind Common Sense

corpus are checked against these patterns, in order, until one matches, so that earlier

patterns take precedence over later ones. When a match is found, the constituent

labeled with :1 will become the first concept, and the constituent labeled with :2 will

become the second, of a predicate described by the given relation.

The expressions in italics require a portion of the text to be parsed as a phrase of

that type. The parsing rules for phrases appear in the next section.

85

Table A.1: Top-level parsing patterns used to build Concept-
Net in English.

Pattern Relation
The first thing you do when you VP:1 is VP:2 HasFirstSubevent
The last thing you do when you VP:1 is VP:2 HasLastSubevent
Something you need to do before you VP:1 is VP:2 HasPrerequisite
NP:1 requires NP:2 HasPrerequisite
If you want to VP:1 then you should VP:2 HasPrerequisite
NP:1 BE ADVP made of NP:2 MadeOf
NP:1 BE a kind of NP:2 TAG IsA
NP:1 BE a sort of NP:2 TAG IsA
Something you might find P NP:2 is NP:1 AtLocation
Something you find P NP:2 is NP:1 AtLocation
Somewhere NP:1 can be is P NP:2 AtLocation
You are likely to find NP:1 P NP:2 AtLocation
NP:1 BE used for NP:2 UsedFor
NP:1 BE used to VP:2 UsedFor
You can use NP:1 to VP:2 UsedFor
People use NP:1 to VP:2 UsedFor
People use NP:1 for NP:2 UsedFor
NP:1 BE ADVP for VP:2 UsedFor
NP:1 BE ADVP for NP:2 UsedFor
NP:1 BE capable of NP:2 CapableOf
An activity NP:1 can do is VP:2 CapableOf
An activity NP:1 can do is NP:2 CapableOf
You would VP:1 because you want to VP:2 MotivatedByGoal
You would VP:1 because you want NP:2 MotivatedByGoal
NP:1 ADVP wants to VP:2 Desires
NP:1 ADVP wants NP:2 Desires
NP:1 ADVP want to VP:2 Desires
NP:1 ADVP want NP:2 Desires
NP:1 BE defined as NP:2 DefinedAs
NP:1 BE the NP:2 DefinedAs
NP:1 BE DT symbol of NP:2 SymbolOf
NP:1 would make you want to VP:2 CausesDesire
You would VP:2 because XP:1 CausesDesire
The effect of XP:1 is that S:2 Causes
The effect of XP:1 is NP:2 Causes
The consequence of XP:1 is that XP:2 Causes
Something that might happen as a consequence of XP:1 is
that XP:2

Causes

Something that might happen as a consequence of XP:1 is
XP:2

Causes

ADVP NP:1 causes you to VP:2 Causes
ADVP NP:1 causes NP:2 Causes
One of the things you do when you VP:1 is XP:2 HasSubevent
Something that might happen when you VP:1 is XP:2 HasSubevent

86

Pattern Relation
Something that might happen while XP:1 is XP:2 HasSubevent
Something you might do while XP:1 is XP:2 HasSubevent
NP:1 BE part of NP:2 PartOf
Something that might happen as a consequence of XP:1 is
XP:2

Causes

ADVP NP:1 causes you to VP:2 Causes
ADVP NP:1 causes NP:2 Causes
One of the things you do when you VP:1 is XP:2 HasSubevent
Something that might happen when you VP:1 is XP:2 HasSubevent
Something that might happen while XP:1 is XP:2 HasSubevent
Something you might do while XP:1 is XP:2 HasSubevent
NP:1 BE part of NP:2 PartOf
You make NP:1 by NP:2 CreatedBy
NP:1 is created by NP:2 CreatedBy
There BE NP:1 P NP:2 AtLocation
NP:1 BE PASV:2 ReceivesAction
You can ADVP V:2 NP:1 ReceivesAction
NP:1 BE P NP:2 AtLocation
NP:1 BE ADVP AP:2 HasProperty
NP:2 ADVP has NP:1 PartOf
NP:2 ADVP have NP:1 PartOf
NP:1 BE ADVP NP:2 TAG IsA
NP:1 ca n’t VP:2 CapableOf
NP:1 cannot VP:2 CapableOf
NP:1 can VP:2 CapableOf
NP:1 VP:2 CapableOf

A.2 Phrase-level English parsing patterns

The following rules are used in a bottom-up chart parser to find all possible matching

phrases. The set of possible matches then determines whether the top-level patterns,

described above, can match.

Expressions in square brackets refer to tags assigned by the N-best Brill tagger

[Brill, 1992], trained on the Brown corpus. Words can be assigned multiple possible

tags, so the square-bracket expressions match if they match any one of the tags.

87

Table A.2: Phrase-level parsing patterns used to build Con-
ceptNet in English.

ADVP → ε | [RB] | [RB] [RB] | [MD] [RB] | DO [RB]
AP → [JJ] | [VBN] | [PRP$] | AP AP | AP and AP | AP , AP | NP [POS]

| [JJR] | [JJS] | [CD]
BE → be | is | are | was | were | being | been | [MD] be | [MD] [RB] be | ’s

| ’re | ’m
CHANGE → get | become | gets | becomes
DO → do | does | did
NP → [DT] AP N’ | AP N’ | [DT] N’ | N’ | Npr | [VBG] | [PRP] | [VBG]

NP | [VBG] NP [RB] | [VBG] P | [VBG] NP P | NP PP | NP and
NP

Npr → [NNP] | [NNP] Npr
N’ → [NN] | [NNS] | [NN] N’
P → [IN] | [TO]
PASV → [VBN] | [VBN] PP | [VBN] PP PP
PP → P NP | [TO] VP
S → NP VP
TAG → ε | [VBN] PP | [WDT] VP | [WDT] S
V → [VB] | [VBP] | go [VB] | go and [VB] | [VBZ]
VP → ADVP V | ADVP V NP | ADVP V PP | BE NP | BE AP | CHANGE

AP | VP [RB]
XP → NP | VP | S

A.3 Portuguese patterns

The Portuguese ConceptNet can be built out of a plain-Portuguese representation of

the statements collected by Open Mind Common Sense no Brasil using only regular-

expression matching, because all of its statements were collected through pre-defined

templates. The regular expressions that follow are used similarly to the English top-

level patterns, in that a predicate is created from the first one that matches.

Each pattern is also associated with a polarity that is assigned to the resulting

predicate, and a number indicating which parenthesized group (1 or 2) is the first

concept.

88

Table A.3: Regular-expression patterns used to build Con-
ceptNet in Portuguese.

Pattern Relation Group Polarity
^Um(a) (.+) é um tipo de (.+)$ IsA 1 1
^Uma coisa que você pode encontrar em
um(a) (.+) é um(a) (.+)$

AtLocation 2 1

^Você (as vezes|pode|frequentemente|muito
frequentemente|quase sempre|geralmente)
quer um(a) (.+) para (.+)$

UsedFor 1 1

^Você (quase nunca|raramente|geralmente
n~ao) quer um(a) (.+) para (.+)$

UsedFor 1 -1

^Um(a) (.+) é usado(a) para (.+)$ UsedFor 1 1
^Você geralmente encontra um(a) (.+) em
um(a) (.+)$

AtLocation 1 1

^Um lugar onde você geralmente encontra
um(a) (.+) é em um(a) (.+)$

AtLocation 1 1

^Pessoas (.+) quando elas (.+)$ HasSubevent 2 1
^Um outro jeito de dizer (.+), é (.+)$ DefinedAs 1 1
^Quando se tenta (.+), um problema
encontrado pode ser (.+)$

ObstructedBy 1 1

^Quando pessoas (.+), uma forma de
ajudar é (.+)$

MotivatedByGoal 2 1

^Para (.+) deve-se (.+)$ HasPrerequisite 1 1
^Antes de (.+), deve-se (.+)$ HasPrerequisite 1 1
^Para poder (.+) é preciso (.+)$ HasPrerequisite 1 1
^Uma? (.+) gosta de (.+)$ Desires 1 1
^Para conseguir (.+) deve-se (.+)$ MotivatedByGoal 2 1
^O que leva alguém a (.*) é o(a) (.+)$ HasPrerequisite 1 1
^As pessoas (cuidam de um doente em
casa) para (.+)$

MotivatedByGoal 1 1

^(.+) pode ser um dos sintomas de (.+)$ Causes 2 1

89

90

Appendix B

User evaluation data

Table B.1: Results from the user evaluation described in
Chapter 6. The four central columns refer to the four sources
of statements, and the numbers in those columns are the aver-
age scores that each user assigned to each type of statement.

Subject ID Random Inference1 Inference2 OMCS # answered
23180 -0.60 0.27 1.27 1.07 60
23181 -0.27 1.07 1.00 1.67 60
23182 -0.79 0.73 1.00 0.69 57
23183 -0.67 1.07 1.07 1.67 60
23184 -0.87 0.93 1.40 1.20 59
23185 -0.47 0.33 1.27 1.20 60
23187 -0.47 1.13 1.07 1.53 60
23191 0.20 1.33 0.47 0.40 60
23196 -0.71 0.92 0.46 1.36 53
23199 -0.38 0.27 0.50 1.23 42
23200 -0.43 0.47 0.54 1.46 55
23201 -1.00 0.80 1.40 0.55 41
23206 -0.47 1.07 1.00 1.73 59
23208 -0.43 0.77 1.00 1.89 40
23211 -0.93 0.69 0.73 1.07 58
23212 -0.70 1.20 0.63 1.75 32
23213 -0.42 1.40 0.83 1.36 45
23216 -0.93 0.79 0.73 1.21 58
23218 -0.80 0.87 0.87 1.80 60
23221 -0.07 0.80 1.47 1.60 60
23222 -0.87 0.40 0.73 1.79 59
23224 -0.63 -0.10 0.70 0.89 37
23225 -0.67 1.07 1.47 1.33 60
23226 -0.87 0.57 0.93 1.86 57
23227 -1.00 1.00 0.87 1.27 60

91

Subject ID Random Inference1 Inference2 OMCS # answered
23228 0.11 0.89 1.29 1.71 32
23229 -0.87 0.54 0.86 1.62 55
23230 -0.45 1.15 1.44 1.88 41
23233 -0.60 0.47 0.80 1.73 60
23234 -0.87 0.47 0.87 1.93 60
23236 -0.86 0.64 0.33 1.38 45
23239 -0.87 0.67 0.43 1.80 59
23241 -0.86 1.33 1.08 1.47 57
23244 -0.69 0.78 1.09 1.50 45
23245 -1.00 0.38 0.67 1.29 40
23246 -0.87 1.20 0.21 0.93 59
23248 -0.50 0.86 0.86 1.67 55
23253 -0.80 0.80 0.93 1.73 60
23258 -0.21 0.67 1.14 1.53 58
23261 -0.67 1.13 0.47 0.60 60
23264 -0.80 1.00 1.07 1.27 60
23265 -0.60 1.20 1.00 1.27 59
23267 -0.80 0.64 0.27 0.80 59
23268 -0.50 1.08 0.88 1.83 47
23271 -1.00 1.40 1.00 1.73 60
23273 -0.53 0.73 0.73 1.53 60
23274 -0.47 0.47 0.67 1.13 60
23277 -0.93 1.07 0.58 1.36 54
23278 -0.80 0.13 0.80 1.60 60
23280 -0.80 0.33 1.20 1.20 60
23282 -0.53 1.00 0.29 0.93 59
23283 -1.00 0.70 1.00 2.00 31
23286 -0.27 0.93 0.93 1.07 60
23288 -0.47 1.43 1.40 1.67 59
23289 -0.80 0.67 1.00 1.53 60
23290 -0.67 0.80 0.60 1.47 60
23291 -0.53 0.33 0.86 1.20 59
23292 -0.53 1.14 1.43 2.00 57
23293 -1.00 0.79 0.43 1.07 57
23294 -0.73 0.67 1.29 1.40 59
23297 -0.80 0.27 0.73 1.60 60
23298 -0.73 0.50 0.79 1.67 58
23299 -0.87 0.80 0.67 0.40 60
23300 -1.00 0.53 1.13 1.60 59
23301 -0.40 0.93 0.87 1.27 60
23302 -0.73 1.00 0.47 1.20 60
23305 0.20 1.00 1.27 1.40 60
23308 -0.47 0.71 0.80 1.73 59
23309 -0.60 1.27 1.47 1.53 60
23310 -0.80 1.13 0.60 1.47 60
23311 -0.40 0.40 0.47 1.53 60
23314 -0.87 0.87 0.67 1.60 60

92

Subject ID Random Inference1 Inference2 OMCS # answered
23315 -1.00 0.40 0.47 0.93 60
23317 -0.93 -0.20 0.67 1.13 60
23318 -0.60 0.27 0.60 1.73 60
23319 -0.87 0.20 0.93 0.87 60
23320 -0.87 1.20 0.40 1.20 60
23321 -0.47 0.93 1.13 1.73 59
23322 -1.00 0.40 0.43 1.00 59
23323 -0.07 1.73 0.87 1.33 60
23324 -0.47 0.36 0.33 1.47 59
23326 -0.87 0.67 1.20 1.53 60
23327 -0.53 0.47 0.60 1.60 60
23328 -0.73 0.67 0.60 0.93 60
23329 -0.20 0.86 0.67 1.60 59
23331 -0.60 0.73 0.47 1.40 60
23333 -0.53 0.40 0.64 1.20 59
23335 -0.47 0.80 0.73 1.53 60
23336 -0.87 1.27 0.80 1.00 60
23337 -0.87 1.20 1.20 1.60 60
23338 -0.44 0.67 0.50 1.29 35
23341 -0.67 0.86 0.67 1.20 59
23343 -1.00 0.43 0.33 1.07 59
23345 0.07 1.00 0.53 1.40 60
23346 -0.40 0.93 1.21 1.73 59
23348 -0.67 1.20 0.67 1.40 60
23351 -0.27 0.93 1.40 1.60 60
23352 -0.47 0.87 1.20 1.47 60
23354 -0.93 0.86 0.47 1.27 59
23356 -0.40 0.93 1.33 1.33 60
23357 -0.53 1.13 1.13 1.33 60
23360 -0.80 1.13 1.27 1.64 59
23362 -0.80 0.60 0.60 1.87 60
23363 -0.87 0.53 0.80 1.00 60
23365 -0.67 1.27 1.13 1.07 60
23366 -1.00 0.33 0.53 1.53 60
23367 -0.53 0.67 0.60 1.27 60
23368 -0.87 1.50 0.93 1.40 59
23369 -0.73 0.60 1.29 1.40 59
23370 -1.00 0.73 0.93 1.20 60
23373 -0.80 0.29 1.00 1.11 36
23374 -0.87 1.07 0.93 0.80 60
23375 -0.87 1.13 1.07 1.33 60
23376 -0.53 1.60 1.33 1.87 60
23377 -0.73 0.60 0.73 1.13 60
23378 -0.93 0.93 0.80 1.53 60
23379 -1.00 1.07 1.00 1.20 60
23380 -1.00 0.73 0.87 1.60 60
23381 0.53 1.07 1.40 2.00 60

93

Subject ID Random Inference1 Inference2 OMCS # answered
23383 -1.00 0.14 0.53 1.27 59
23385 -0.79 1.07 1.33 1.73 59
23386 -0.73 0.40 0.60 0.93 60
23387 -0.87 1.07 0.47 1.13 60
23390 -0.67 0.80 1.27 1.53 60
23391 -0.87 1.07 0.80 0.87 60
23392 -0.63 0.50 1.09 1.50 43
23393 -0.53 0.20 0.71 1.27 59
23394 -0.93 0.80 1.40 1.67 60
23395 -0.53 0.73 1.40 0.80 60
23398 -1.00 0.79 0.80 1.47 59
23399 -0.93 0.93 0.80 1.33 60
23400 -1.00 0.53 1.13 1.47 60
23401 -1.00 0.93 0.73 1.13 59
23406 -0.80 0.40 -0.27 0.60 60
23407 -0.80 0.47 0.67 0.80 60
23409 -1.00 0.93 0.93 1.27 60
23411 -1.00 0.60 0.73 1.40 60
23413 -0.93 1.00 1.13 1.53 60
23414 -0.67 1.20 1.47 1.00 60
23415 -0.60 0.60 0.73 1.40 60
23417 -0.93 0.87 0.00 1.33 60
23420 -0.80 0.87 1.07 1.40 60
23421 -0.67 1.20 1.00 1.93 60
23422 -0.87 1.40 1.07 1.40 60
23423 -0.73 0.67 0.64 1.73 59
23426 -0.80 0.67 1.20 1.27 60
23427 -1.00 1.20 1.07 1.67 60
23428 -1.00 1.60 0.60 1.53 60
23429 -0.73 1.07 1.13 1.13 60
23430 1.00 1.60 1.21 1.47 59
23431 -0.87 1.00 0.47 1.13 60
23432 -1.00 -0.20 0.93 1.13 60
23435 -0.93 0.29 0.67 1.40 59
23436 -0.87 0.53 0.43 1.20 59
23437 -0.60 1.07 0.79 1.13 59
23438 -0.73 0.73 0.80 1.40 60
23439 -0.87 0.43 0.73 0.80 59
23440 -0.87 0.27 0.87 1.67 60
23444 -0.93 0.93 1.53 1.27 59
23445 -0.47 0.93 1.27 1.33 59
23448 -0.27 1.07 1.20 1.13 60
23451 -1.00 1.20 0.86 1.73 59
23452 -0.73 0.80 1.33 1.60 60
23453 -0.67 1.13 0.00 0.87 60
23456 -1.00 1.00 0.60 1.20 60
23458 -0.53 0.53 1.13 0.73 60

94

Subject ID Random Inference1 Inference2 OMCS # answered
23460 -1.00 0.73 0.40 1.27 60
23461 -0.33 0.73 1.73 1.67 60
23462 -0.67 1.43 1.60 1.40 59
23463 -0.73 1.07 1.13 1.33 60
23464 -0.87 0.67 1.20 1.47 60
23465 -0.40 0.27 1.00 1.47 60
23466 -0.87 1.20 0.93 1.47 59
23468 -0.67 0.57 0.40 1.47 59
23469 -1.00 1.33 0.53 1.73 60
23470 -0.73 0.67 1.00 1.40 60
23472 -0.60 0.47 0.93 1.47 60
23474 -0.80 1.00 0.87 0.87 60
23476 -0.80 0.53 0.27 1.67 60
23480 -0.80 0.80 0.93 1.53 60
23482 -0.73 0.93 0.67 0.53 60
23484 -0.73 1.13 0.53 1.87 60
23490 -0.53 0.93 0.53 1.10 57
23492 -0.79 0.80 1.13 1.10 54
23493 -0.60 0.87 0.53 1.00 60
23494 -0.67 0.47 0.80 1.13 60
23495 -0.87 1.33 0.67 0.20 60
23496 -0.60 0.87 1.47 1.00 60
23499 -0.53 1.00 1.27 1.07 60
23500 -0.60 1.00 0.80 0.67 60
23501 -0.80 0.67 0.73 0.53 60
23502 -0.33 1.67 1.47 0.93 60
23503 -0.67 1.07 1.33 1.00 60
23504 -0.80 0.80 1.07 1.00 60
23505 -0.87 1.07 0.93 0.73 60

95

96

Appendix C

Visualizations of AnalogySpace

The following figures represent the contents of AnalogySpace by plotting two selected

components of all concepts and properties, corresponding to each concept or prop-

erty’s weight within two principal components (“eigenconcepts”). This representation

is discussed in Chapter 4.

Concepts are indicated with the symbol + at their coordinates, and properties

are indicated with ×. Additionally, in color versions of this document (such as the

electronic copy in MIT’s DSpace), concepts are colored red while properties are blue.

A subset of the points are labeled, chosen for legibility so that the labels do not

often overlap. Some labels appear next to an arrow at the edge of a graph, as well;

these indicate an important concept or property that would be plotted far beyond

the bounds of the graph. Concepts are labeled with a common natural language

representation of that concept, left properties are labeled with a concept, a slash, and

a relation (such as “person/CapableOf”), and right properties are labeled like left

properties but in the opposite order.

Concepts or properties that appear at the same angle from the origin are similar

according to the two eigenconcepts being plotted.

97

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05 0 0.05 0.1

E
ig

en
co

nc
ep

t e
1

(F
ea

si
bi

lit
y)

Eigenconcept e0 (Desirability)

person/Desires

person/CapableOf

person
feel loved

snake

add numbers

homework

see the worldslavery

make friends

talk to a person

dog

computer

friend

play sport

comfort

watch tv

die

fall

car

love

vote

get drunk

tie shoes

sex
hard work

fly an airplane

ignored

nothing

dictatorship

fly

catch a cold

forget

lots of money

close door

hurt

Losing a wallet

smell flowers
age

lose a key

live at home

come home

receive gifts

walk on walls

drink wineflood

know the truth

lose his job

hate

make mistakes

reproduce

breathe air

walk on water

live forever

live in the ocean

office work

speak human languages

commit perjury/Causes

Causes/pain

human/CapableOf

UsedFor/fun

breathe water

Figure C-1: e0 and e1 components of concepts and properties.

98

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-0.1 -0.05 0 0.05 0.1 0.15

E
ig

en
co

nc
ep

t e
2

(O
bj

ec
ts

)

Eigenconcept e1 (Feasibility)

person/CapableOf

person

feel loved

snake

add numbers

elephant
swim

city

attend school

work

talk to a person

go to play

dog

computer

friend

sing

building

idaho

human

fall

Main

car

vote

tie shoes

run

living room

house

zoo

fly

shopping mall

close door

laugh at jokes

washing machines

play games
walk on walls

reproduce

breathe air

walk on water

person/Desires

snake/AtLocation

AtLocation/city

potato/AtLocation

human/AtLocation

human/CapableOf

mouse/AtLocation

CapableOf/talk

AtLocation/house

AtLocation/kitchen

AtLocation/desk

AtLocation/home

UsedFor/relax

UsedFor/fun

Figure C-2: e1 and e2 components of concepts and properties.

99

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

E
ig

en
co

nc
ep

t e
4

Eigenconcept e3

person

rock

city

country

restaurant

computer

park

sing

idaho

human

potato

file

Main

mouse

basement

house

zoo

play piano

banjo

saxophone

a countryside

cornet
snare drum

guitar

balalaika

toy

clavichord

an organ

new hampshiremexico

pencil

instrument

hour glass

acoustic guitar

circus

double bass

musical instrument

kitten

keyboard

bell
zither

snake/AtLocation

AtLocation/city

AtLocation/office

fox/AtLocation

IsA/place

person/CapableOf

mouse/AtLocation

AtLocation/house

AtLocation/kitchen

AtLocation/desk

AtLocation/band

AtLocation/home

AtLocation/building

UsedFor/relax

AtLocation/school

AtLocation/orchestra

UsedFor/fun

UsedFor/play

IsA/instrument

UsedFor/play music

UsedFor/enjoy it

IsA/state

UsedFor/entertaining

AtLocation/bathroom

AtLocation/cabinet

AtLocation/store music

MadeOf/wood

lizard/AtLocation

Figure C-3: e3 and e4 components of concepts and properties.

100

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.1 -0.05 0 0.05 0.1

E
ig

en
co

nc
ep

t e
5

(E
nt

er
ta

in
m

en
t i

s
ne

ga
tiv

e)

Eigenconcept e1 (Feasibility)

person/CapableOf

person
snake

add numbers

swim

a parkway

attend school

go for a haircut

play football

work

make friends

go to play

put on clothesdog

computer

party

sing

breathe

play sport
watch tv

file

read books

die

fall

sleep

mouse

play cards

vote

tie shoes

run

sex

read

fly kites

ride bicycles

need to eat
appointment book

fly pay a bill

play

swimming pool

laugh at jokes

play games

pencil

see a movie

walk on walls

letter opener

dance

reproduce

breathe air

sit in chairs
walk on water

person/Desires

AtLocation/office

love/CausesDesire

cat/CapableOf

Causes/fun

AtLocation/house

AtLocation/kitchen

AtLocation/desk

AtLocation/home

HasSubevent/sleep

UsedFor/relax

UsedFor/exercise

UsedFor/fun

IsA/instrument

UsedFor/enjoy it

UsedFor/entertaining

Causes/enjoy it

Figure C-4: e1 and e5 components of concepts and properties.

101

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

E
ig

en
co

nc
ep

t e
6

Eigenconcept e3

person

snake

rock
swim

city

country

restaurant

go to play

computer

park

idaho

human

Main

paper

book

house

zoo

automobile

dictionary

banjocornet

glue

an organ

diner

pencil

percussion instrument

play a violin

cartoon

rented apartment

new jersey instrument triangle

snake/AtLocation

UsedFor/eat

human/AtLocation

AtLocation/office

fox/AtLocation

IsA/place

person/CapableOf

person/AtLocation

AtLocation/house

AtLocation/desk

AtLocation/band

AtLocation/home

AtLocation/mall

AtLocation/school

AtLocation/store

monkey/AtLocation

UsedFor/fun

IsA/tool

AtLocation/church

AtLocation/town

IsA/state

UsedFor/entertaining

AtLocation/a large city

AtLocation/music store

Figure C-5: e3 and e6 components of concepts and properties.

102

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

E
ig

en
co

nc
ep

t e
8

Eigenconcept e7

person

snake

rock

elephant

swim

a parkway
homework

bedroom

country

restaurant

go to bed

seat

children

dog

desk

computer

park
carafe

man

family

idaho

potato

chicken

file

office building

window

fox

place

bird

pet

mouse

food

tv

key

fire

paper

living room

cat

secretary

cow

water

roofhouse

small dogs

tiger

pantry

squirrel

fly

Apple trees

river

bed

home

pen

cloth

closet

stapler

furniture

Lofts

monkey

cake

cottage

beaver

liquor glass
bread

theater

pencil

a steel pen
calculate

bowl

french restaurant

paperclip

door

statue
envelope

floors

lamp

chair

hall

lizard

shark

fungus

brook

grape

a director chair

ferrets

blowfish

AtLocation/bedroom

AtLocation/country

AtLocation/restaurant

AtLocation/park

human/AtLocation

IsA/place

IsA/food

AtLocation/state park

AtLocation/a countryside

AtLocation/home

AtLocation/building

AtLocation/mall

AtLocation/school

AtLocation/street

AtLocation/field

AtLocation/tree

AtLocation/garden

AtLocation/soup

PartOf/house

cat/AtLocation

UsedFor/sit

AtLocation/grocery store

AtLocation/pocket

AtLocation/town

AtLocation/new york

AtLocation/den

chair/AtLocation

Figure C-6: e7 and e8 components of concepts and properties.

103

104

Appendix D

Downloadable resources

This document has depended on a large amount of code and data, which is available

to be downloaded from: http://web.media.mit.edu/~rspeer/thesis.

From there, you will find links to the following items:

• A snapshot of the ConceptNet database

• The Python code (CSAMOA) that builds ConceptNet

• The Ruby code that runs the Open Mind Commons site and performs SVD

operations

• An electronic, color copy of this thesis (also available from dspace.mit.edu)

If the link above should ever go dead, contact me by e-mail at rspeer@alum.mit.edu

for the files.

105

106

Bibliography

[Alonso, 2007] Jason Alonso. CSAMOA: A common sense application model of ar-
chitecture. In Proceedings of the Workshop on Common Sense and Intelligent User
Interfaces, Honolulu, Hawaii, 2007.

[Anacleto et al., 2006] Junia Anacleto, Henry Lieberman, Marie Tsutsumi, Vnia
Neris, Aparecido Carvalho, Jose Espinosa, and Silvia Zem-Mascarenhas. Can
common sense uncover cultural differences in computer applications? In World
Computer Congress, 2006. Available from: http://www.media.mit.edu/~lieber/
Publications/Cultural-Differences-IFIP06.pdf.

[Banerjee and Pedersen, 2003] Satanjeev Banerjee and Ted Pedersen. Extended gloss
overlaps as a measure of semantic relatedness, 2003. Available from: http://

citeseer.ist.psu.edu/banerjee03extended.html.

[Brill, 1992] Eric Brill. A simple rule-based part of speech tagger. In HLT ’91: Pro-
ceedings of the workshop on Speech and Natural Language, pages 112–116, Morris-
town, NJ, USA, 1992. Association for Computational Linguistics. Available from:
http://dx.doi.org/10.3115/1075527.1075553.

[Chklovski, 2003] Timothy Chklovski. Learner: a system for acquiring commonsense
knowledge by analogy. In K-CAP ’03: Proceedings of the 2nd International Confer-
ence on Knowledge Capture, pages 4–12, New York, NY, USA, 2003. ACM Press.
Available from: http://portal.acm.org/citation.cfm?id=945645.945650.

[Chung, 2006] Hyemin Chung. GlobalMind — bridging the gap between different
cultures and languages with common-sense computing. PhD thesis, MIT Me-
dia Lab, 2006. Available from: http://web.media.mit.edu/~lieber/Teaching/
Common-Sense-Course/Hyemin-Thesis.pdf.

[de Carvalho et al., 2007] Aparecido F. de Carvalho, Junia C. Anacleto, Henry
Lieberman, Muriel Godoi, and Silvia Zem-Mascarenhas. Using common sense
for planning learning activities. In Catherine Havasi and Henry Lieberman, ed-
itors, Workshop on Common Sense and Intelligent User Interfaces, Honolulu,
HI, January 2007. Intelligent User Interfaces Conference. Available from: http:

//eurydice.cs.brandeis.edu/csiui/Papers/cs_education_iui.pdf.

[Deerwester et al., 1990] Scott C. Deerwester, Susan T. Dumais, Thomas K. Lan-
dauer, George W. Furnas, and Richard A. Harshman. Indexing by latent semantic

107

analysis. Journal of the American Society of Information Science, 41(6):391–407,
1990. Available from: http://citeseer.ist.psu.edu/deerwester90indexing.

html.

[Fellbaum, 1998] Christiane Fellbaum. WordNet: An Electronic Lexical Database.
MIT Press, Cambridge, MA, 1998.

[Gupta and Kochenderfer, 2004] Rakesh Gupta and Mykel J. Kochenderfer. Using
statistical techniques and WordNet to reason with noisy data. In Workshop on
Adaptive Text Extraction and Mining, Nineteenth National Conference on Artificial
Intelligence (AAAI-04), San Jose, California, July 2004. Available from: http:

//web.media.mit.edu/~rgupta/p2.pdf.

[Harris, 1975] Richard J. Harris. A Primer of Multivariate Statistics. Academic Press,
London, 1975.

[Havasi et al., 2007] Catherine Havasi, Robert Speer, and Jason Alonso. Concept-
Net 3: a flexible, multilingual semantic network for common sense knowledge. In
Recent Advances in Natural Language Processing (to appear), Borovets, Bulgaria,
September 2007. Available from: http://web.mit.edu/~rspeer/www/research/

cnet3.pdf.

[Lenat, 1995] Doug Lenat. Cyc: A large-scale investment in knowledge infrastructure.
Communications of the ACM, 11:33–38, 1995.

[Lieberman et al., 2005] Henry Lieberman, Alexander Faaborg, Waseem Daher, and
José Espinosa. How to wreck a nice beach you sing calm incense. Proceedings of
the 10th International Conference on Intelligent User Interfaces, 2005.

[Liu and Singh, 2004] Hugo Liu and Push Singh. ConceptNet: a practical common-
sense reasoning toolkit. BT Technology Journal, 22(4):211–226, October 2004.
Available from: http://portal.acm.org/citation.cfm?id=1031314.1031373.

[Liu et al., 2003a] Hugo Liu, Henry Lieberman, and Ted Selker. A model of textual
affect sensing using real-world knowledge. In IUI ’03: Proceedings of the 8th in-
ternational conference on Intelligent user interfaces, pages 125–132. ACM Press,
2003. Available from: http://portal.acm.org/citation.cfm?id=604067.

[Liu et al., 2003b] Hugo Liu, Ted Selker, and Henry Lieberman. Visualizing the af-
fective structure of a text document. In CHI ’03: CHI ’03 extended abstracts on
Human factors in computing systems, pages 740–741. ACM Press, 2003. Available
from: http://portal.acm.org/citation.cfm?id=765961.

[Liu, 2004] Hugo Liu. MontyLingua: An end-to-end natural language processor with
common sense. Technical report, MIT, 2004. Available from: http://web.media.
mit.edu/~hugo/montylingua.

108

[Mueller, 1998] Erik T. Mueller. Natural language processing with ThoughtTreasure.
New York, Signiform, 1998. Available from: http://citeseer.ist.psu.edu/

mueller98natural.html.

[Mueller, 2000] Erik T. Mueller. A calendar with common sense. In Intelligent User
Interfaces, pages 198–201, 2000. Available from: http://citeseer.ist.psu.edu/
316437.html.

[Musa et al., 2003] Rami Musa, Madleina Scheidegger, Andrea Kulas, and Yoan An-
guilet. GloBuddy, a dynamic broad context phrase book. In Modeling and Using
Context, pages 1026–1026. Springer, Berlin / Heidelberg, 2003. Available from:
http://www.springerlink.com/content/97eajmlg42xfpchj.

[Patwardhan and Pedersen, 2006] Siddharth Patwardhan and Ted Pedersen. Using
WordNet-based context vectors to estimate the semantic relatedness of concepts.
In EACL 2006 Workshop Making Sense of Sense—Bringing Computational Lin-
guistics and Psycholinguistics Together, pages 1–8, Trento, Italy, 2006. Available
from: http://acl.ldc.upenn.edu/W/W06/W06-2501.pdf.

[Porter, 2001] Martin F. Porter. Snowball: a language for stemming algo-
rithms. Snowball web site, 2001. http://snowball.tartarus.org/texts/

introduction.html, accessed Jan. 31, 2007.

[Pustejovsky et al., 2006] James Pustejovsky, Catherine Havasi, Roser Sauŕı, Patrick
Hanks, and Anna Rumshisky. Towards a generative lexical resource: The Bran-
deis Semantic Ontology. Proceedings of the Fifth Language Resource and Evalu-
ation Conference, 2006. Available from: http://www.cs.brandeis.edu/~arum/

publications/lrec-bso.pdf.

[Pustejovsky, 1998] James Pustejovsky. The Generative Lexicon. MIT Press, Cam-
bridge, MA, 1998.

[Rohde, 2001] Doug Rohde. Doug Rohde’s SVD C library. SVDLIBC web site, 2001.
http://tedlab.mit.edu/~dr/SVDLIBC/, accessed Aug. 18, 2007.

[Schierwagen, 2001] Andreas Schierwagen. Vision as computation, or: Does a com-
puter vision system really assign meaning to images? In M. Matthies, H. Malchow,
and J. Kriz, editors, Integrative Systems Approaches to Natural and Social Dy-
namics. Springer-Verlag, Berlin, 2001. Available from: http://www.informatik.

uni-leipzig.de/~schierwa/vision.pdf.

[Singh et al., 2002] Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim, Trav-
ell Perkins, and Wan L. Zhu. Open Mind Common Sense: Knowledge acqui-
sition from the general public. In On the Move to Meaningful Internet Sys-
tems, 2002 - DOA/CoopIS/ODBASE 2002 Confederated International Conferences
DOA, CoopIS and ODBASE 2002, pages 1223–1237, London, UK, 2002. Springer-
Verlag. Available from: http://www.media.mit.edu/~push/ODBASE2002.pdf.

109

[Sleator and Temperley, 1993] D. D. Sleator and D. Temperley. Parsing english with
a link grammar. In Third International Workshop on Parsing Technologies, 1993.
Available from: http://citeseer.ist.psu.edu/44375.html.

[Smith, 2007] Dustin Smith. EventMinder: A Personal Calendar Assistant That Rec-
ognizes Users’ Goals. PhD thesis, MIT Media Lab, 2007.

[Speer, 2007] Robert Speer. Open Mind Commons: An inquisitive approach to learn-
ing common sense. Proceedings of the Workshop on Common Sense and Inter-
active Applications, 2007. Available from: http://web.mit.edu/~rspeer/www/

research/commons.pdf.

[Stocky et al., 2004] Tom Stocky, Alexander Faaborg, and Henry Lieberman. A
commonsense approach to predictive text entry. In Conference on Human Fac-
tors in Computing Systems, Vienna, Austria, April 2004. Available from: http:

//agents.media.mit.edu/projects/textentry/CHI04_textEntry.pdf.

[Turney, 2005] Peter D. Turney. Measuring semantic similarity by latent relational
analysis, Aug 2005. Available from: http://arxiv.org/abs/cs/0508053.

[Wall et al., 2003] Michael E. Wall, Andreas Rechtsteiner, and Luis M. Rocha. A
Practical Approach to Microarray Data Analysis, chapter 5, pages 91–109. Kluwel,
Norwell, MA, Mar 2003.

[Wirén, 1987] Mats Wirén. A comparison of rule-invocation strategies in context-free
chart parsing. In Proceedings of the third conference on European chapter of the
Association for Computational Linguistics, pages 226–233, Morristown, NJ, USA,
1987. Association for Computational Linguistics.

110

