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Abstract

In this thesis we study three problems related to financial modeling.

First, we study the problem of pricing Employee Stock Options (ESOs) from the
point of view of the issuing company. Since an employee cannot trade or effectively
hedge ESOs, she exercises them to maximize a subjective criterion of value. Modeling
this exercise behavior is key to pricing ESOs. We argue that ESO exercises should
not be modeled on a one by one basis, as is commonly done, but at a portfolio
level because exercises related to different ESOs that an employee holds would be
coupled. Using utility based models we also show that such coupled exercise behavior
leads to lower average ESO costs for the commonly used utility functions such as
power and exponential utilities. Unfortunately, utility based models do not lead
to tractable solutions for finding costs associated with ESOs. We propose a new
risk management based approach to model exercise behavior based on mean-variance
portfolio maximization. The resulting exercise behavior is both intuitive and leads
to a computationally tractable model for finding ESO exercises and pricing ESOs as
a portfolio. We also study a special variant of this risk-management based exercise
model, which leads to a decoupling of the ESO exercises and then obtain analytical
bounds on the implied cost of an ESO for the employer in this case.

Next, we study Guaranteed Withdrawal Benefits (GWB) for life, a recent and
popular product that many insurance companies have offered for retirement plan-
ning. The GWB feature promises to the investor increasing withdrawals over her
lifetime and is an exotic option that bears financial and mortality related risks for
the insurance company. We first analyze a continuous time version of this product
in a Black Scholes economy with simplifying assumptions on population mortality
and obtain an analytical solution for the product value. This simple analysis reveals
the high sensitivity the product bears to several risk factors. We then further in-
vestigate the pricing of GWB in a more realistic setting using different asset pricing
models, including those that allow the interest rates and the volatility of returns to be
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stochastic. Our analysis reveals that 1) GWB has insufficient price discrimination and
is susceptible to adverse selection and 2) valuations can vary substantially depending
on which class of models is used for accounting. We believe that the ambiguity in
value and the presence of significant risks, which can be challenging to hedge, should
create concerns to the GWB underwriters, their clients as well as the regulators.

Finally, many problems in finance are Sequential Decision Problems (SDPs) under
uncertainty. We find that SDP formulations using commonly used financial metrics
or acceptability criteria can lead to dynamically inconsistent strategies. We study
the link between objective functions used in SDPs, dynamic consistency and dynamic
programming. We then propose ways to create dynamically consistent formulations.

Thesis Supervisor: Dimitris J. Bertsimas
Title: Boeing Professor of Operations Research
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Chapter 1

Introduction

1.1 Motivation

Much of quantitative finance is based on models of market variates - how prices

of securities traded in the markets evolve, how market participants behave and the

interaction between the two.

In a landmark paper, Black and Scholes [18] proposed a model to price a stock-

option based on the price of the underlying stock. They provided not only a way

to unambiguously price an option, but also a method to “hedge” out and in theory,

eliminate the risk of holding or underwriting this option. This spawned an entire

new field of financial engineering and a fresh body of work based on the concept of

risk-neutral pricing and hedging was created and is still being pursued very actively.

Simultaneously, in industry, a plethora of complex financial derivatives are being

created, marketed and sold to institutions and households.

The assumptions underlying the risk neutral pricing theory are that the markets

are complete and that the market players do not face constraints in buying and sell-

ing the various instruments traded in the market. In this ideal setting, all derivative

securities are redundant and can not only be priced unambiguously but also hedged

perfectly from the prices of other traded instruments. The quantitative link between

various traded instruments in the market is established by using a parametric model

for price process of the underlying(s) on which the derivative instruments are writ-

ten. This method works fairly well for pricing standard instruments that are heavily

traded. But as the derivative instrument to be priced becomes more intricate in its

dependence on the underlying(s) and the market for it more constrained, the finan-

cial engineering methodology becomes less precise and more subjective. The model
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that is used to link together prices of different securities then itself becomes a key

factor in valuation. Due care must then be taken in creating models to price such

an instrument as well as interpreting results from the so called no-arbitrage pricing

models.

In this thesis, we examine two problems in pricing derivatives in “incomplete”

markets and show how even reasonable models can sometimes leave out significant

determinants of value.

Models for behavior of market participants such as investment managers or con-

sumers are in general decision and control problems. Again here, we observe in a

dynamic setting, an ad-hoc formulation of an investment manager’s problem that

employs the commonly used financial metrics can lead to a model where the man-

ager takes conflicting decisions over time. We also examine in this thesis, general

properties of a dynamic decision framework for “consistency” in decisions.

1.2 Contributions

Modeling Exercise Behavior for pricing Employee Stock Op-

tions

We consider the problem of pricing Employee Stock Options (ESOs) from the point

of view of the companies that issue them. Although, off late, ESOs have been losing

popularity due to scandals and less favorable accounting regulations, they still con-

stitute a sizeable chunk of many companies’ compensation costs. Since employees are

constrained in both trading as well hedging ESOs, the standard risk-neutral pricing

framework cannot be directly applied to ESOs. Employees, would exercise ESOs to

maximize a personal measure of value or utility. Pricing ESOs then encompasses twin

problems - we first need to model employee exercises, which can be sub-optimal from

a risk neutral perspective, while being subjectively optimal; and then compute the

risk-neutral cost of the ESOs under these exercise policies. The choice of model for

exercise behavior, will have a big impact on the valuation of ESO costs.

Most ESO exercises are driven by the need of a risk-averse employee to limit the

uncertainty of an option payoff that she cannot hedge. The basic financial tenet of

diversification would suggest that as all ESOs are exposed to common risk sources,

they have diminishing marginal value to the employee. It is then plausible that

incremental option grants will, in general, be exercised differently. This, in turn,

would lead to a different incremental cost for an ESO grant to the employer. The
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models that have been proposed in literature, typically price ESOs on an individual

basis and in isolation and would not take this effect into consideration. We propose a

new approach - to explicitly take into account the employee’s need for diversification

with respect to the entire portfolio of ESOs that she holds while modeling her exercise

behavior. Thus we propose to price ESOs at a portfolio level rather than at individual

level.

We first augment the conventional utility based framework that leads to an en-

dogenous exercise model for ESOs and show that in general bundling together of

ESOs affects exercise behavior and tends to cause an employee to exercise her ESOs

earlier on average. This makes her forgo a larger part of the option value of the port-

folio, thereby reducing its cost for the employer. Also, an immediate consequence of

taking these portfolio effects into account is that the cost of an option portfolio is no

longer linear or equal to the sum of its parts. Further, issuance of new options can

have a retrospective effect on the cost of already issued options.

We then use the concept of risk management and ideas in portfolio optimization

to motivate a model, where the employee exercises options so as to optimize a risk-

adjusted value of the entire portfolio at each time step. This causes the employee to

exercise options in decreasing order of a barrier function that can be interpreted as a

pseudo Sharpe-ratio for the option. The advantage of this model is that it leads to a

computationally simple framework to both price the ESO portfolio and also allocate

its costs amongst its components. For a special risk-management based exercise model

we show that option exercises decouple and one can think of applying the “pseudo

Sharpe-ratio” criterion to options on a one-by-one basis. In this case, we recover a

linear pricing rule for ESOs and also derive tight analytical bounds on the cost of an

ESO.

Pricing Guaranteed Withdrawal Benefits for Life

Complex financial derivatives are often embedded in retail investment products. We

consider one such recent and extremely popular innovation in the private pension

product space - the Guaranteed Withdrawal Benefits (GWB) for life. The GWB

for life option, which is usually available as an add-on to a Variable Annuity (VA)

investment fund, guarantees an investor a non-decreasing stream of payments in her

retirement until death, with her funds always staying invested in the VA. In return,

the investor pays a small fee indexed to the quantum of the guarantee, every year.

While prima-facie, GWB for life appears to be just another, somewhat exotic, financial
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option, pricing it poses many challenges. Due to its exposure to population longevities

and dependence on investor behavior over time and complex dependence on various

financial market factors, the complete markets hypothesis does not hold for the GWB.

We first undertake an analysis of GWB for life in a simplified setting using the

Black-Scholes model for asset prices. This allows us to get an almost closed form

solution for the value of GWB. We use this solution to draw insights and investigate

the impact of potential risk factors and find almost all of them to be quite significant.

We then price GWB in a more realistic setting using models that allow interest

rates and equity-market volatilities to be stochastic. We find that accounting for these

additional risks can alter valuations significantly. In addition, GWB has considerable

exposure to realized investor population longevity. These facts suggest that hedging

GWB is likely to be only partially successful in practice. We also find that the typical

GWB for life offering with its uniform pricing across fund classes and investor ages is

susceptible to adverse selection in its customer profile and needs price discrimination.

Dynamic Consistency For Sequential Decision Problems

Portfolio Optimization and Risk Management are standard problems in finance. In a

dynamic setting, these can be viewed as instances of a much broader class of problems

- Sequential Decision Problem (SDP)s. We study SDPs in context of an important

normative criterion for a good SDP model - that it should lead to dynamically con-

sistent planning. A lack of dynamic consistency would mean that the decision maker

would make plans, while being fully aware that she will not carry them through.

While SDPs arise in several decision and control settings, we show that tendency to

be dynamically inconsistent is particularly severe for financial applications. This is

because SDPs based on many of the performance metrics such as Sharpe-ratio, vari-

ance adjusted mean, Value at Risk etc as well as acceptability criteria based on so

called dynamic risk measures turn out to be dynamically inconsistent.

We explore the connection between dynamic consistency and the algorithmic no-

tion of dynamic programming or Bellman’s principle and find them to be closely

related, though not identical. We show that most dynamically consistent strategies

can be considered to be arising from SDPs that have a sum decomposable represen-

tation across time and event space. We then examine how “conflicts” due to dynamic

inconsistency can be resolved for specific applications. We also propose a new class

of dynamically consistent performance metrics that are essentially expectations with

respect to probability measures distorted in a specific way.
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1.3 Thesis Overview

The thesis is organized as follows. In Chapter 2, we introduce the problem of ESO

pricing for the company that issues them. We examine how the presence of other

ESOs in an employee’s portfolio can affect the exercise decisions concerning ESOs and

thereby their cost to the company. In Chapter 3, we then propose risk management

based models for exercise behavior, and through them, a tractable way to price ESO

portfolios. In Chapter 4, we then turn to the problem of pricing GWB for life.

In this chapter, we propose an analytical framework to price GWB for life for a

continuous time counterpart of the product. In Chapter 5, we price GWB for life using

realistic models and investigate the impact of modeling interest rates and volatilities

as stochastic processes on pricing. In Chapter 6, we look into the issue of dynamic

consistency for SDPs, especially in the context of some standard problems in finance.

We summarize the findings and some interesting research directions in Chapter 7.
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Chapter 2

Pricing Employee Stock Options

2.1 Introduction

Employee Stock Options (ESOs) are commonly used by corporations as an effective,

but often controversial, form of compensation for mid and high level employees. An

ESO is typically an American Call Option that the employee can exercise between

two pre-specified dates, the earlier date called the Vesting Date and the later the

Expiration Date. By its very structure, an ESO acts like a performance - linked

compensation for higher echelon executives. Moreover, the employing company would

realize the cost of this pay only in the event of its stock performing well.

The popularity of ESOs as a means of compensation for employers can be at-

tributed to three important reasons:

• They directly link pay to performance and serve to align, at least partially, the

management’s interests with those of the shareholders, thereby mitigating some

of the “agency problems”1.

• Long-term options create an incentive for the employee to stay with the company

and thus options with vesting schedules can be used to retain talent.

• Most ESOs are at the money (ATM) call options. Until recently, under Fi-

nancial Accounting Standards Board (FASB)’s alternate accounting provisions,

companies could expense stock option grants to employees at their intrinsic

value, i.e., zero costs for the ATM options. Thus this form of compensation,

1Agency problems arise because in general the goals and objectives of a company’s management
do not coincide with those of its share-holders.
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at grant, would not add to company’s expenses or show up in its profit and

loss/earnings statements.

On the negative side, ESOs issued to executives can also create a conflict of in-

terest between management and shareholders, as the asymmetric option payoff can

incentivize managers to undertake projects with unduly high risk. More important,

perhaps, is the fact that ESOs actually amount to a significant liability on a com-

pany’s balance-sheet that often goes under-expensed. For example, when ESOs issued

by technology companies were exercised by the employees during the dot-com boom,

there were payoffs amounting to tens and sometimes hundreds of millions of dollars.

These were effectively a transfer of value from the shareholders to the employees,

mainly executives.

2.1.1 Motivation

Empirical surveys show high-level executives receive a bulk of their compensation

as stock options, a trend which has recently started to somewhat reverse because of

scandals and controversies. For example, according to the data compiled by Hender-

son [67], in 2002, 58% of the net CEO pay in the US and 24% in the UK was options

related. In terms of balance-sheet liabilities, Hall and Murphy, [63] report that in

1992, firms in the Standard & Poor’s 500 granted their employees options worth a

total of 1.1 billion at the time of grant. This figure reached 119 billion in 2000 before

dropping down to 71 Billion in 2002, still a sizeable figure. Because ESO related costs

can amount to a substantial fraction of the firms’s balance-sheet, evaluating this cost

is important for investors and regulators.

Pricing ESOs is however made difficult because of the fact that they are not

tradeable and hence do not have a directly observable market price. We also cannot

price these options using standard models such as the Black-Scholes framework [18],

because the option bearer faces constraints that would not allow her to hedge these

options effectively2. This coupled with risk-averseness causes a typical employee to

exercise an ESO in a way that would substantially reduce its cost below its Black-

Scholes or risk-neutral price.

More specifically, the employing company realizes the ESO cost if and when the

employee exercises the option. Unlike a regular call option which typically gets ex-

2To hedge a call option, the employee should be able to short the employing company’s stock.
This is usually prohibited by regulatory bodies. Also if the employee were able to hedge out the
options, then many of the objectives of issuing the options as a means of incentive and retentive
compensation will be lost.
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ercised at or close to expiry3, an ESO is typically exercised much earlier, see Hall

and Murphy [63]. ESOs follow subjective exercise patterns that are difficult to pre-

dict because the employee exercise ESOs to realize a measure of personal value. The

clauses related to vesting and forfeiture of options (in the event of employee quitting

or being terminated) further complicate the problem of pricing ESOs.

Unfortunately, but perhaps also unsurprisingly, there is no consensus in literature

or in practice about what the fair cost of ESOs is. After some accounting contro-

versies and several debates, the FASB issued a revision to Statement 123 that deals

with accounting principles for stock related compensation in 2004 [54]. This made it

mandatory for publicly traded corporations to expense ESOs at their “fair value” (or

levels more representative of the cost incurred than the intrinsic value accounting),

effective 2005. The European counterpart, International Accounting Standards Board

(IASB), had laid down similar stipulations earlier through [74]. However FASB, IASB

and other regulatory bodies have only laid down broad guidelines when it comes to

methods and models to estimate a “fair cost” of ESOs, going only so far as indicating

preferences for some models - such as the lattice model. For example, the Securities

and Exchange Commission (SEC) Bulletin guidelines [108], state that the accounting

practice used to price an ESO must be based on sound financial economic theory and

be generally accepted in the field but stops short of laying down a specific accounting

rule, see Cvitanic and Zapatero [47]. While it is broadly agreed that the true cost of

an ESO lies between its intrinsic value and the Black-Scholes value, there continues

to be an active debate about what exactly the “fair cost” of an ESO is.

In this chapter, and Chapter 3, we seek to develop a framework to model ESO

exercises so as to estimate the cost of the outstanding ESOs on a company’s balance-

sheet. Our focus in this chapter will be to understand the functional nature of ESO

costs. In Chapter 3, we seek practical methods to expense ESOs that are driven by

economic reasoning and at the same time are simple to implement in practice.

While not considered in this thesis, an interesting problem related to costing

ESOs is estimating the value of ESOs to the employee. This has been studied well

e.g. Lambert, Larcker and Verrechia in [83], Ingersoll in [73]. Understanding how an

employee would value the options grant is useful in designing compensation packages

to incentivize desired management or employee actions. How an employee would

value an option grant though will not be the same as the cost it represents to the

company. In this context, it is worth mentioning a generally accepted conclusion that

3It is well-known that an American Call Option on the stock of a company that does not pay
dividends is optimally exercised at expiry.
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the option’s value to the employee is less than the cost of issue to the employer as has

been discussed by Hall and Murphy in [62] and [63]. The difference, a “deadweight

loss”, may also be seen as a price that the company pays to solve its agency problems

and retain talent, see Kadam [77].

2.1.2 Related Work

ESOs have been an active topic of research and debate and there is a vast body of work

that deals with pricing of ESOs and other issues related to them. As the topic touches

so many fields, the contributions also come from diverse areas including Accounting,

Econometrics, Asset Pricing and Mathematical Finance. Chance [32] provides a de-

tailed analysis of the issues related to ESOs from many different perspectives as well

as a sound critique of the approaches that have been proposed to address these issues

in the literature. Hall and Murphy [63] analyze historical trends in issuance of ESOs

by corporations to executives and lower level employees and the possible attractions

and pitfalls of using them as incentive - pay. Another paper by the same authors,

[62], provides a good understanding of the role of ESOs in incentivizing executives

and how risk-averseness and other idiosyncratic investor characteristics might affect

exercise behavior using a stylized model. The authors propose a simple utility based

framework and give numerical examples to illustrate the effects of risk-averseness and

trading restrictions on employee’s exercise behavior and cost of ESOs to the issuers.

Huddart and Lang [71] present an empirical analysis of how employees tend to ex-

ercise their ESOs using over 10 years of data. Bettis, Bizjak and Lemmon [15] provide

an analysis of exercise behavior and incentive effects of ESOs using an empirically

calibrated utility model.

The employee’s decision-process remains fundamental to pricing an ESO4. Hence,

even though we do not seek to value ESOs from an employee’s perspective, we still

need to have a model of the employee’s exercise behavior.

In general, for modeling exercise behavior, two broad approaches have been used,

as observed in Carr and Linetsky [31]. The first approach treats ESO exercise as

an endogenous process and models it as a decision triggering from typically a utility

optimization consideration. There are several factors that can potentially influence

4However, approaches to pricing, that circumvent this have also been proposed. For example,
Bulow and Shoven [27] suggest an alternate way of accounting for ESO costs, in which the ESOs
are expensed as rolling options of quarterly maturity until they are exercised or lapse. In another
strikingly different approach to pricing, Core and Guay [43] suggest an empirically calibrated model
that uses data available in a company’s proxy statement to price ESOs.
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exercise decisions:

• Employee’s Risk Averseness - Employees are typically over-exposed to their

employers. The option-bearer might want to offload some of this by exposure

by cashing the ESOs.

• Tax Implications.

• Career related moves can cause early ESO exercises or forfeitures.

• Liquidity crunches may force an early exercise of the option.

• ESO terms and company policies - Companies tend to reset strikes of options

in the event the stock price goes significantly below the strike and also issue

new ESO grants (termed as “reload”) on exercises. Sometimes these features

are explicitly embedded in the ESOs and can impact exercise related decisions.

To retain tractability, endogenous exercise models often retain focus on one or few

of the several possible factors that can influence exercise decisions. For example, for

Constant Relative Risk Aversion (CRRA) utilities, Ingersoll [73] derives the subjec-

tive and objective value of ESOs when the employee is constrained to hold a certain

fixed proportion of her wealth in the stock of the employing company. Detemple and

Sundaresan [49] analyze the value of a non-tradeable option using dynamic program-

ming methods under a binomial stock price model for CRRA utilities - that is directly

applicable to pricing an ESO. Using a simple 2-period binomial model Kulatilaka and

Marcus [82] show how liquidity constraints and other idiosyncratic factors related

to an employee can influence the exercise behavior. The authors remark that FASB

recommended methods miss out on or inaccurately estimate the effect of such factors.

The second approach is to model exercise behavior as an exogenous process. A jus-

tification for this is provided by Carpenter [29] who showed that empirically calibrated

utility based models do a no better job of predicting exercises when compared to a

model that uses random exogenous exercises and forfeits. This motivated researchers

to look at intensity based models where exercise is modeled as an independent random

process. An example is the model in Carr and Linetsy [31], where exercise occurs as

an arrival in a Poisson process whose intensity is albeit modulated by the stock price.

This model gives an analytical expression for the ESO cost. In a similar spirit, Hull

and White [72], while pointing out drawbacks of the methods proposed by FASB to

expense options, suggest an “Enhanced FASB 123” method to expense options. Their

approach is to use a binomial stock price process and an employee behavior model
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in which exercise is triggered whenever the stock price hits a certain multiple of the

strike. Cvitanic and Zapatero [47] use a similar framework, but in continuous time,

which is solvable analytically. They also employ a fictitious barrier based exercise

policy for the employee, in this case the employee would exercise her option when the

stock price hits a barrier that decreases exponentially with time, and also allow for

exercises due to employee exiting the company.

Sircar and Xiong [109] propose an elaborate framework that takes into account

reload (wherein exercise of options leads to a new grant) and reset (underwater options

have their strikes reset) features of options, and gives analytical formulae for the

option price under the assumptions of no expiry and no hedging constraints. Dybvig

and Lowenstein in [52], Hemmer, Matsunaga and Shelvin in [66] and Acharya, John

and Sundaram in [3] also consider the impact of reload features on option prices.

Bodie, Ruffino and Treussard [21] propose a broad framework that an employee can

use to weigh ESO benefits while making career related decisions.

2.1.3 Contributions

Most of the proposed ESO costing methods implicitly assume that employees exercise

ESOs in an “all or none” fashion. While this assumption is appropriate for traded

options, the possibility of partial exercise must be considered while valuing ESOs,

as it is reasonable to expect employees to exercise options in batches to distribute

the risk over time. Notable exceptions that consider the effect of partial exercises of

options are Jain and Subramnaian [75] and Grasselli [61] which provide an analysis of

how allowing for partial exercises can impact values and cost of ESOs using primarily

a two-period binomial model. Grasselli [61] also considers the possibility of partial

hedging using correlated instruments on option prices. Recent work by Leung and

Sircar [86] and Rogers and Scheinkman [104] have also considered these effects and

solved for optimal exercises numerically using a utility based framework.

What we propose here is to take this reasoning a step further. ESOs are granted

in lots and batches and most employees at any given point of time will, in fact,

have a basket of unexercised ESOs with varying strikes, expiries and vesting dates.

Since, most researchers agree that risk-averseness and over-exposure to the employ-

ing company’s fortunes drives early exercise of the ESOs, the degree of this exposure,

accumulated primarily through the employee’s own ESO portfolio, will weigh on her

decision to exercise an option. Moreover, unlike many of the other quantities al-

luded to in ESO pricing models, unexercised ESO grants to an employee constitute
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information that should be readily available to the company and hence easy to use.

We therefore argue that unlike the usual approach taken in literature so far to price

ESOs, and unlike FASB recommended methods, ESOs perhaps need to be priced not

one by one but as an entire portfolio of options held by a particular employee. Thus,

ESO exercises can not only be “partial’ but also “coupled”. This would also mean

that ESO costs in general will not be linear. For example, the cost of a lot of ESOs

does not increase linearly with its size. More generally speaking, the cost of an ESO

portfolio will not be the same as the sum of its parts.

In this chapter, we examine the case for portfolio pricing of options by trying

to study the qualitative implications of a portfolio approach on ESO costing. We

use a standard expected utility maximizing framework as a basis for the employee’s

decision process. We begin with the case where employees have several ESOs with

the same terms. We find that even in this simple case, exercise policies and hence the

implied cost of the grant for the employing company can, in general, vary arbitrarily

depending on the nature of employee’s utility function and the stock price dynamics.

However, for commonly used utility functions such as the class of Constant Relative

Risk Aversion (CRRA) and Constant Absolute Risk Aversion (CARA) utilities, for

any stock price dynamics diversification needs would cause the employee to exercise

a proportionally larger component of her grant earlier. As a result, the cost of the

portfolio in these cases increases sub-linearly with the grant size for options with

similar terms. We find this effect interesting because it suggests that ESOs not only

have diminishing marginal utility for employees, as one would expect, but in some

sense also diminishing marginal costs (or more generally, diminishing average costs)

for employers issuing them. We then seek to extrapolate these findings to the case

where the employee has multiple types of ESOs in their portfolio. Surprisingly, even

for CARA utilities, cost of an option portfolio can turn out to be super-additive,

i.e., more than the sum of it parts for some stock price dynamics. However, with an

additional but reasonable assumption on stock price dynamics that can be linked to

diversification, the cost of the portfolio with multiple types of ESOs can be shown to

be sub-additive or less than the sum of its parts. Our analysis thus establishes that

a one-by-one costing of ESOs is likely over-estimating the cost of ESOs.

2.1.4 Chapter Layout

In Section 2.2, we briefly describe the model used in this chapter. In Section 2.3,

we discuss the simple two period case and conditions on utility functions that will
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make the average cost of an option grant decreasing in the size of the grant. Next,

in Section 2.4, we consider the multi-period case for a single option type and show

that the average cost under both CARA and CRRA utilities will be decreasing for

arbitrary stock price dynamics. In Section 2.5, we then consider the case of ESO

portfolios with multiple option types and show that there exists a partial order of

exercise between options of different types. In Section 2.6, we examine in detail

the problem of expensing multi-type multi-period option portfolios, particularly for

CARA utilities. Section 2.7 provides a summary of the results obtained.

2.2 Model

We work with a discrete time model, where the employee treats her ESO grants as

investment rather than consumption instruments. Further, the employee will never

require to exercise her ESOs for liquidity reasons. We do not consider the impact of

the employee quitting or being fired on option exercises or costs. We also do not take

into account the “reset” and “reload” tendencies/policies that companies sometimes

have in more exotic ESO grants as we would like to retain focus on the key goal of this

chapter i.e., the impact of a portfolio approach on exercise behavior and the implied

option cost.

The employee has a concave utility function U(·) and a planning horizon T and

seeks to maximize the expected utility of her wealth position WT at T .

In our model, the employee may have N different type of options in her portfolio

P. The type i option is characterized by a strike price, denoted by Ki, an expiry Ti

and a vesting date Vi. Also, the number of unexercised options of type i in P at time

t are denoted by αi,t, with αi
4
= αi,0. Restricted stock grants can be treated within

this framework as options with strike 0. We also impose the natural restrictions that

the employee can neither trade nor hedge against these options. We allow for partial

exercises and for mathematical convenience “fractional exercises” to avoid integrality

constraints.

We assume that all non-ESO wealth is invested in a well diversified portfolio,

whose returns are independent of the employing company’s stock. Any proceeds

from option exercise are also likewise invested. An assumption that helps us simplify

the analysis considerably is that the employee continues to measures her wealth at

time T in units of wealth indexed to some reference time, by discounting time t cash-

flows a subjective discounting factor βt. βt can be interpreted as an “opportunity
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cost of cash” for the employee5.

This approach is in similar spirit but slightly more general than the one used

in several utility based models for exercising ESOs, notably Kadam [77], Huddart

and Lang [70], Kulatilaka and Marcus [82] and more recently, the model discussed

in Rogers and Scheinkman [104]. In principle, upon exercise, the employee has the

freedom to invest the proceeds along with other non-option wealth in the markets, and

hence must jointly solve the problem of investing non-option wealth and exercising

ESOs. Such an approach has been taken for example in Leung and Sircar [86],

Grasselli [61]. Allowing for this additional flexibility usually requires making some

other restrictive assumptions in order to maintain analytical tractability. Both Leung

and Sircar [86] and Grasselli [61] assume that the employee has Constant Absolute

Risk Aversion (CARA) type utilities and also assume simple dynamics for stock price

processes. By using a model where the employee always uses her wealth at time 0 as a

numeraire and subjectively discounts future cash-flows, we can decouple the exercise

decision from the non-option wealth investment decision and simplify the analysis

considerably. We, in fact, assume no particular form of dynamics on the stock price

process except that it is a Markov process, to keep notation less cumbersome.

Under the model described above then, the employee’s decision problem can be

described by the following optimization problem. βt denotes the time t discount

factor for the employee, based on her opportunity cost of cash and W , the current

non-option wealth in the reference time units.

maxV = E[U(WT )] ;

s.t. WT = W +
N∑
i=1

T∑
t=s

xi,tβt(St −Ki)
+ ,

xi,t is Ft −measurable. ,
T∑
t=0

xi,t = αi . . . 1 ≤ i ≤ N ,

xi,t = 0 if t < Vi or t > Ti . (2.1)

The exercise problem in (2.1) is a dynamic programming problem.

The quantity xi,t denotes the number of options of type i to be exercised at time

t. The expectations in (2.1) are with respect to the employee’s belief about the

5The analysis presented carries through even when the subjective discount factor βt is taken to
be stochastic. We only require that βt is almost surely decreasing with time. For simplicity, we will
however consider βt to be non-stochastic.
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employing company’s stock price process. We will assume that there exists a unique

preferred solution to the problem in (2.1). To make this precise, if there are multiple

solutions to the problem, then the employee chooses for implementation at any given

time an exercise policy that has the smaller value of the ordered set {xi,t : 1 ≤ i ≤ N},
when comparisons are made in the lexicographic order. We denote the exercise policy

so obtained by x∗ and the optimal exercise for option i at time t by x∗i,t.

We assume, there is also a unique risk-neutral measure, Q, that prices securities,

and is absolutely continuous with respect to the real or believed stock price process.

Let Dt = exp(−
∫ t

0
rsds) denote the time t discount factor based on risk-free interest

rates rs. Then the cost of the grant to the employer is given by:

C(P ) = EQ

[
N∑
n=1

T∑
t=0

x∗i,tDt(St −Ki)
+

]
. (2.2)

We also assume that the stock does not pay dividends. The quantity Dt(S0−K)+ is

a Q sub-martingale by Jensen’s inequality.

Most people, typically expect stocks to appreciate on average over time, i.e., be-

lieve the stock price process to be a sub-martingale. By Jensen’s inequality, the

expected value of an option’s payoff which is a convex function of the stock price, is

increasing in the time of exercise. However, the employee’s utility function is con-

cave and hence delaying exercise need not increase the expected utility of the payoffs

received for the employee. Thus, there is a trade-off between exercising immediately

and waiting, and the exercise decision will be impacted by several factors including

the nature of utility function, the time to expiry, assumed dynamics of stock prices,

the level of current non-option wealth and the number of unexercised options.

Our goal in this chapter is to analyze qualitatively the nature of an employee’s

exercise policy, as governed by (2.1) and thereby get some comparative statics on the

cost of issuance to the employer, as given by (2.2). We start with a simple case, where

N = 1, i.e., the employee has several options of a single type in the portfolio.

2.3 Nature of ESO Cost Functions

In this section, we show that even for concave utility functions, the cost of issuing

ESOs can become convex.

Let us take the simplest instance of (2.1), with the number of types N = 1 and

expiry time T = 2.
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We will assume that the options in question have already vested. The correspond-

ing exercise decision problem is then,

maxV = E[U(W + xβ0(S0 −K)+ + β1(α− x)(S1 −K)+)] ;

s.t. 0 ≤ x ≤ α . (2.3)

As there is only one type of option involved, we have dropped the sub-scripts ref-

erencing the option type. The quantity x denotes the only decision variable in this

problem - the number of options to be exercised at time 0. If the optimal value of

this decision variable is x∗, then the implied cost to the employing company is given

by

C(α,W0) = x∗(S0 −K)+ +D1(S1 −K)+ .

We find that, even for this simple case, the employee exercise policy or the implied

cost for the employers cannot be generalized. The value of the option grant to the

employee, as measured in terms of her optimal attainable utility will always be concave

in the option grant, so long as the employees utility function is concave. As a function

of the grant-size, the cost can however become super-linear.

We now give a simple example where the cost of the option grant becomes convex.

Example 2.1. The employee has a utility function

U(y) = min

(
y,

1

3
y + 40

)
and an initial wealth W = 50. The employee’s utility function is concave (though not

differentiable). Assume the employee also has α ESOs with strike 90 expiring in one

period, i.e., T = 1. To keep things simple, we set both the opportunity cost of cash

as well as risk-free interest rates to zero. Suppose the current stock price S0 = 100

and the employee believes that at T = 1, S1 will be either 120 or 80, with equal

probability. The probability of these movements in the risk neutral measure can then

also be verified to be 1
2
. This implies that the fair value of an American call option

expiring at T = 1 is 15. It is relatively straightforward to verify that the optimal no.
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of options, x∗0, that the employee should exercise at time 0 is given by

x∗0 = min(1, α).

Thus the resulting cost C(α,W ) to the company is:

C(α,W ) = 10 ·min(1, α) + 15 · (α− 1)+ (2.4)

(2.4) shows that the cost of this grant to the employing company is convex in the

size of the grant in this case.

In Lemma 2.1 that follows, we characterize a class of utility functions for which

the cost function becomes sub-linear in grant-size. This shows that mere concavity

of the utility function, which is sufficient to infer diminishing marginal value to the

employee, is however not sufficient to draw any conclusions about the implied cost

functions.

Lemma 2.1. Consider the two-period, single ESO type, exercise problem in (2.3)

and the corresponding cost function (2.4). We assume that the employee’s utility

function U(·) is twice continuously differentiable. Then, the average cost of an ESO

i.e., C(α,W )
α

is decreasing in α, for all values of W > 0, irrespective of the believed

dynamics of S1, if the following condition on the utility function U(·) is satisfied:

−y·U ′′(x+y)
U ′(x+y)

is increasing in y for all x > 0, y > 0.

Proof. We fix the non-option wealth W and treat it as a constant for this proof. We

first rewrite the problem (2.3) in terms of a different control variable y
4
= x

α
. Also for

ease of notation we let P0
4
= β0(S0−K)+, P1

4
= β1(S1−K)+ and ∆

4
= P1−P0. Then

the employee’s problem is

max
0≤y≤1

V = E[U(W + αyP0 + α(1− y)P1)]

= E[U(W + α(P1 − y∆))]. (2.5)

Let us first assume that the optimal y in (2.5), say y∗, satisfies 0 < y∗ < 1. Then

(2.5) is a concave maximization problem. First order optimality conditions require

E[U ′(W + α(P1 − y∗∆)) ·∆] = 0 . (2.6)
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Differentiating (2.6) w.r.t. α, we get

E
[
U ′′ (W + α(P1 − y∗∆)) ∆

(
P1 − y∗∆ + α

∂y∗

∂α
∆

)]
= 0 ;

i.e., αE
[
−U ′′(W + α(P1 − y∗∆))∆2

] ∂y∗
∂α

= E[−U ′′(W + α(P1 − y∗∆))(P1 − y∗∆)∆] . (2.7)

Now, if the condition specified in the lemma is satisfied, as W > 0 and P1−y∗∆ =

y∗P0 + (1− y∗)P1 ≥ 0, we must have

−U ′′(W + α(P1 − y∗∆))α(P1 − y∗∆)

U ′(W + α(P1 − y∗∆))
≥ αγ(W + αP0); if ∆ > 0 ,

−U ′′(W + α(P1 − y∗∆))α(P1 − y∗∆)

U ′(W + α(P1 − y∗∆))
≤ αγ(W + αP0); if ∆ < 0 ;

where

γ(W + αP0)
4
=

−U ′′(W + αP0)P0

U ′(W + α(P1 − y∗∆))
.

Hence, we must have

−U ′′(W + α(P1 − y∗∆))(P1 − y∗∆)∆ ≥ γ(W + αP0)U ′(W + α(P1 − y∗∆))∆ .

Using this fact in (2.7), we get

αE
[
−U ′′(W + α(P1 − y∗∆))∆2

] ∂y∗
∂α

≥ γ(W + αP0)E[−U ′(W + α(P1 − y∗∆))∆]

= 0 .

Now as U(·) is concave, U ′′(·)∆2 < 0. This in turn implies

∂y∗

∂α
≥ 0 .

But,

C(α,W )

α
= C1 − y∗(C1 − C0) ,

where C1 is the fair value of the European call option with strike K maturing at

T = 1 and C0 = (S0−K)+. Since C1 ≥ C0, for non-dividend paying stocks, it follows
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that the average cost of a grant, i.e., C(α,W )
α

is decreasing in α in the region where

0 < y∗ < 1. Now consider an α̂, such that y∗ = 0. Since y∗ must be continuous as

an implicit function of α, if y∗ > 0 for some α, then we must have y∗ = 0 for all

α < α̂. Similarly, if y∗ = 1 ⇒ C(ᾱ,W )
ᾱ

= C0, for some ᾱ, then y∗ = 1 for any α > ᾱ.

As C0 ≤ C1, this completes the proof.

Remark 2.1. The condition in Lemma 2.1 is satisfied by the two most commonly

used classes of utility functions. For CARA or exponential type utility functions,

where U(x) = −e−cx with c > 0,

−U ′′(W + y)y

U ′(W + y)
= cy ,

which is indeed increasing in y. For CRRA, or power utility functions, where

U(x) = x1−a−1
1−a , a ≥ 1, we have

−U ′′(W + y)y

U ′(W + y)
= a

y

W + y
= a

(
1− W

W + y

)
,

which is again increasing in y.

Remark 2.2. Note that Lemma 2.1, shows that the average cost of an ESO grant

is decreasing in the size of the grant for certain utility functions. This is a weaker

condition than to say that the cost of the ESO grant is concave. The latter implies

decreasing marginal cost and consequently subsumes decreasing average costs.

In the next section, we examine the nature of ESO cost functions for CARA and

CRRA utilities for the case where the employee’s ESO portfolio consists of options

of a single type, but expiring after several periods.

2.4 The multi-period problem for one type of op-

tions and nature of cost function

In this section, we seek to characterize the ESO cost function, as in Lemma 2.1 for

the multi-period case. We continue to assume that the employee has only one type

of options, i.e., N = 1. Dropping the sub-scripts corresponding to the option type,
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the multi-period version of the single ESO type portfolio can be written as

maxV = E

[
U

(
W +

T∑
t=0

βtxt(St −K)+

)]
;

s.t.
T∑
t=0

xt = α ,

xt ≥ 0 . (2.8)

As before, we assume that there is a unique preferred optimal exercise policy6 denoted

by x∗. The corresponding cost function (2.4) is given by

C(α,W0) =
T∑
t=0

Dtx
∗
t (St −K)+ .

We next consider the CARA and CRRA utility cases separately and show that as in

the two-period case, the average ESO cost is decreasing in the size of the grant even

when the expiry is several periods away.

Exponential or CARA Utilities

The function U(·) in (2.8) in this case is given by U(y) = −e−cy, for some c > 0. We

first show that the optimal exercise policy for this class of utility functions assumes

a relatively simple form. In fact, it is independent of the non-option wealth level W .

Lemma 2.2. For CARA utilities, the optimal exercise policy x∗0 is independent of the

employee’s non-option wealth level W and has the form x∗0 = (α − η∗)+, where η∗ is

a quantity that is independent of α, and W .

Proof. Suppose an exercise policy, x∗ maximizes (2.8) for some α and W > 0 for the

CARA utility U(y) = −exp(−cy). This happens if and only if x∗ is a solution to the

6In case of multiple competing optimal policies, the employee chooses the one that requires
exercising the fewest number of options immediately. This policy should lead to a conservative
estimate of costs to the employer.
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problem

minV = E

[
exp

(
−c

T∑
t=0

βtxt(St −K)+

)]
;

s.t.
T∑
t=0

xt = α ,

xt ≥ 0 .

which has no dependence on W . It then follows that the optimal exercise policy is

independent of W .

Since we are only concerned with the dependence of exercise policy on α and W ,

we fix the other parameters, i.e., current stock price S0 and the discount factor β0

that should be applied to any payout received in current period to convert it to its

reference time equivalent and treat them as constants. The optimal number of options

to be exercised in the current period can be characterized as

x∗0(α,W ) = inf{x | 0 ≤ x ≤ α and x∗0(α− x,W + β0(S0 −K)+) = 0} .

Using the independence of optimal policy from non-option wealth, then we have

x∗0(α,W ) = inf{x | 0 ≤ x ≤ α and x∗0(α− x, 0) = 0} . (2.9)

Now, we define the set A0 and η∗ as follows:

A0
4
= {α ≥ 0 | x∗0(α, 0) = 0}

η∗
4
= supA0 = sup{α > 0 | x∗0(α, 0) = 0} (2.10)

Suppose A0 is empty, then we simply set η∗ =∞ and the lemma holds, as x∗0(α,W ) =

0 for all α,W . The proof is also trivial if x∗0(α,W ) = α for all α, in which case we set

η∗ = 0. Hence, we consider the case that A0 is not empty, i.e., x∗0(α,W ) = x∗0(α, 0) > 0

for some α > 0. We claim that in this case

• A0 is bounded above and η∗ is finite

• If α < η∗ then x∗0(α, 0) = 0

If either of the above is not true, then as x∗0(α, 0) must be continuous in α, there must
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exist α, ᾱ such that α < ᾱ and

x∗0(α, 0) = 0 and

x∗0(ᾱ, 0) = 0

but x∗0(α, 0) > 0 if α < α < ᾱ .

Let x∗0(ᾱ− δ, 0) = y for some δ : ᾱ− α > δ > 0. Then, using (2.9),

y = ᾱ− α− δ .

But, this would mean

lim
α→ᾱ

x∗0(α, 0) = ᾱ− α > 0 ,

while x∗0(ᾱ, 0) = 0. The optimal exercise policy is then discontinuous in grant size,

which leads to a contradiction.

Hence η∗ is finite and

x∗0(α, 0) = 0 if α < η∗ . (2.11)

It then follows from (2.9) and (2.11) that the optimal exercise policy is given by

x∗0(α,W ) = x∗0(α, 0) = (α− η∗)+ ,

which is of the desired form.

Corollary 2.1. For CARA utilities, the average cost of an ESO grant is decreasing

in the size of the grant.

Proof. We prove this by induction on the number of time periods to expiry. We

can actually prove a stronger result - the marginal cost of issuing an ESO in the

case of CARA utilities is decreasing, i.e., the cost function is concave in grant size.

The result holds trivially for T = 0, i.e., when the option is expiring immediately.

Suppose it holds for T = m. Let C(α,W,m) denote the cost of α ESO grants with

m periods to go, when the employee has non-option wealth W . (We fix the current

price of the underlying to S0 and the accumulated discount factor is β0.) We have

two possibilities:
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• x∗0 = 0: Then C(α,W,m + 1) = EQ[D1C(α,W,m)|F1], and the concavity of

cost property follows from induction hypothesis.

• x∗0 > 0: Then, from Lemma 2.2 it follows that the marginal cost of the ESO

grant is (S0 −K)+ for all α > η∗, with η∗ as defined in Lemma 2.9. Since the

stock does not pay dividends, by Jensen’s inequality the discounted European

call option payoff, i.e., Dt(St −K)+ is a sub-martingale under the risk neutral

measure Q. Then the marginal cost (S0−K)+ for grant size α > η∗ is less than

that for any size α′ < η∗, which is at least EQ[D1(S1 −K)+|F1].

Remark 2.3. For the exponential utility model, the asymptotic marginal cost of grant-

ing an in-the-money ESO, as the size of the total grant α→∞, turns out to be equal

to the options intrinsic value, i.e., (S0 −K). This is the same as the cost at which

companies used to expense ESOs prior to the FASB stipulations in 2005. However,

the intrinsic value for this model comes out as a marginal cost and not as the average

cost, as was used for cost accounting.

Power or CRRA Utilities

For CRRA or power utilities7 U(·) in (2.8) takes the form U(x) = x1−γ

1−γ , for some

γ > 1. In Section 2.4, for CARA utilities, the optimal exercise policy was shown

to be independent of non-option wealth W and to assume a very simple form. For

CRRA utilities, the non-option wealth W will impact exercise policy. Nevertheless,

as we show in the Lemma 2.3, the dependence of optimal exercise policy in grant size

and non-option wealth level is easily characterized in this case as well.

Lemma 2.3. For CRRA utilities, the optimal exercise policy has the form

x∗0(α,W ) =

(
θα− (1− θ) W

β0(S0 −K)+

)+

,

where θ is independent of α, W and 0 ≤ θ < 1. S0 denotes the current stock price

and β0 the accumulated discount factor.

Proof. For this proof, we again fix β, the subjective discount factor for current payoffs

and the current stock price S.

7This class also includes log utilities, i.e., U(x) = ln(x), which can also be considered as a power
utility in the limiting case γ → 1.
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We first note that the value function is homogeneous for CRRA utilities. If

Vd(x, α,W ) denotes the utility derived by following an exercise policy x given an

initial grant α and non-option wealth level W , then we must have

Vd(Mx,Mα,MW ) = M1−γ · Vd(x, α,W0)

Also note that, if xx is a feasible exercise policy to follow for grant α, then Mx must

be a feasible policy for the grant Mα. This means that if x∗ is an optimal exercise

policy for a grant of size α and when non-option wealth is W
M

, then M · x∗, is the

optimal exercise policy for a grant of size α and non-option wealth W . Hence

x∗0(Mα,W0) = M · x∗0
(
α,
W

M

)
. (2.12)

Suppose the options have strike K and expiry T . The optimal exercise quantity

x∗0(α,W ) must satisfy the following condition:

x∗0(α,W ) = inf{x | 0 ≤ x ≤ α and x∗0(α− x,W + x · β0(S0 −K)+) = 0} .

Then, using (2.12) we get

x∗0(α,W ) = inf

{
x | 0 ≤ x ≤ α and x∗0

(
α− x

W + x · β0(S0 −K)+
, 1

)
= 0

}
.(2.13)

Suppose x∗0 = 0 for all combinations of α and W . Then the form specified in the

lemma trivially applies with θ = 0. If not, then we must have S > K. Consider then

a certain combination (α,W ), say (αA,WA) such that

x∗0(αA,WA)
4
= x∗A > 0

Using (2.13), then

x∗0

(
αA − xA

WA + xAβ0(S0 −K)
, 1

)
= 0 (2.14)

Now, we define the set A0 and quantity κ as follows:

A0
4
= {α ≥ 0 | x∗0(α, 1) = 0}

κ
4
= supA0 = sup{α > 0 | x∗0(α, 1) = 0} . (2.15)
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(2.14) shows that the set A0 is non-empty. We now show that

• κ must be finite, i.e., A0 is bounded above and

• If α < κ, then x∗0(α, 1) = 0.

If either of these claims is not true then as the optimal exercise policy must be

continuous in grant size, there would exist α, ᾱ such that α < ᾱ and

x∗0(α, 1) = 0 and

x∗0(ᾱ, 1) = 0

but x∗0(α, 1) > 0 if α < α < ᾱ .

Let x∗0(ᾱ− δ, 1) = y for some δ : ᾱ− α > δ > 0. Then, using (2.13)

ᾱ− δ − y
1 + yβ0(S0 −K)

= α ,

i.e., y =
ᾱ− δ − α

1 + αβ0(S0 −K)
.

But, this would mean that

lim
α→ᾱ+

x∗0(α, 1) =
ᾱ− α

1 + αβ0(S0 −K)
> 0 ,

while x∗0(ᾱ, 1) = 0; i.e., the optimal exercise policy is discontinuous in grant size,

which cannot be the case as the value function is continuously differentiable. From

(2.13) and (2.15), it follows that if α
W
≥ κ, then

κ =
α− x∗0(α,W )

WA + x∗0(α,W ) · β0(S0 −K)
, (2.16)

i.e., x∗0(α,W ) =
1

κβ0(S0 −K) + 1
α− κβ0(S0 −K)

κβ0(S0 −K) + 1

WA

β0(S0 −K)
. (2.17)

Since x∗0(α, 1) = 0 if α < κ, using (2.12), we conclude

x∗0(α,W ) = 0 if
α

W
< κ . (2.18)
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Combining (2.17) and (2.18), we get

x∗0(α,W ) =

(
α− κ ·W

1 + κ · β0(S0 −K)+

)+

.

which is of the form stated in the lemma, and the parameter θ = 1
1+κβ0(S0−K)

is

independent of α and W . Note that the exercise quantity given by (2.19) always

satisfies the constraint x∗0 < α.

Lemma 2.3 can be used to show that average costs of an ESO portfolio with a

single type of options is decreasing when the employee has CRRA utility. We first

prove the following useful result, which formalizes the notion that early exercises tend

to reduce ESO costs. For this, the following definition will be helpful:

Definition 2.1. Consider two strategies xA and xB for exercising an option grant

of size α. Strategy xA is said to dominate strategy xB if it always leaves a greater

number of options unexercised i.e.,

α−
t∑
t=0

xAt ≥ α−
t∑
t=0

xBt , 0 ≤ t ≤ T

Next, we show that the cost of a grant associated with a dominant strategy is

always higher.

Lemma 2.4. If strategy xA to exercise an option grant of size α dominates another

strategy xB, then the option cost CA associated with strategy xA is higher than the

cost CB associated with xB.

Proof. For 0 ≤ t ≤ T − 1, recall

αAt
4
= α−

t∑
s=0

xAs ;

αBt
4
= α−

t∑
s=0

xBs .

αAt and αBt are Ft measureable. As xA dominates xB, we must have αAt ≥ αBt .

Also, let Pt
4
= Dt(St −K)+. Then Pt is a sub-martingale as the stock does not pay
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dividends. Now,

CA − CB = EQ

[
T−1∑
t=0

(xAt − xBt )Pt + (αAT−1 − αBT−1)PT

]

= EQ

[
T−1∑
t=0

(xAt − xBt )Pt + (αAT−1 − αBT−1)EQ[PT |FT−1]

]

≥ EQ

[
T−1∑
t=0

(xAt − xBt )Pt + (αAT−1 − αBT−1)PT−1

]
(2.19)

= EQ

[
T−2∑
t=0

(xAt − xBt )Pt + (αAT−2 − αBT−2)PT−1

]
(2.20)

. . .

= 0 .

In (2.19), we used the fact that αAT−1 ≥ αBT−1 and that Pt is a sub-martingale. In

(2.20), we substituted αAT−1 = αAT−2 − xAT−1 and αBT−1 = αBT−2 − xBT−1. Note that the

inequality is strict if the discounted option payoff process Dt(St−K)+ is a strict sub-

martingale and there is a non-zero probability of a positive difference in unexercised

option positions.

Remark 2.4. Option payoff process is guaranteed to be a Q sub-martingale if the

stock does not pay dividends. Lemma 2.4 also holds under a weaker condition - the

employee must exercise all her options, whenever the stock reaches a level at which

the payoff process no longer remains a sub-martingale under the Q measure.

We now use Lemmas 2.3 and 2.4 to show that ESO cost is sub-linear in grant size

for CRRA utilities.

Corollary 2.2. If the employee has CRRA utility, then the average cost of a batch

of ESOs, all with the same terms, is decreasing in the size of the grant.

Proof. Fixing, S0, T and β0, from the homogeneity of CRRA utilities, (2.12), it follows

that

C(α,W ) = αC

(
1,
W

α

)
.

Thus, to prove that average cost is decreasing in α, it suffices to show that cost of

the ESO grant is increasing in initial wealth i.e., W . For this, we appeal to Lemma

2.4 and demonstrate that the number of unexercised options associated with a higher
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non-option wealth level dominates the number of unexercised options with a lower

non-option wealth level on a path-by-path basis using finite induction.

Consider, for an option with strike K and expiry T , two different combinations of

grant sizes and non-option wealth (α0,W0) and (ᾱ0, W̄0) at time 0, such that α0 ≥ ᾱ0

and W0 ≥ W̄0. We will show that these inequalities are preserved throughout the

option’s life-time.

Suppose S0 ≤ K, then there are no exercises at t = 0, and the first combination

will continue to dominate the second at t = 1. If S0 > K, then using Lemma 2.3, the

difference in unexercised options after exercises at time 0 are accounted for will be

α1 − ᾱ1 = α0 −
(
θα0 − (1− θ) W0

β0(S0 −K)

)+

−

(
ᾱ0 −

(
θᾱ0 − (1− θ) W̄0

β0(S0 −K)

)+
)

≥ α0 − ᾱ0 −
(
θ(α0 − ᾱ0)− (1− θ) W0 − W̄0

β0(S0 −K)

)+

≥ (1− θ)(α0 − ᾱ0)

≥ 0 .

Also, the difference in subjectively discounted non-option wealth at t = 1 will be

W1 − W̄1 = W0 + β0

(
θα0 − (1− θ) W0

β0(S0 −K)

)+

(S0 −K)

−

(
W0 + β0

(
θα0 − (1− θ) W̄0

β0(S0 −K)

)+

(S0 −K)

)

≥ W0 − W̄0 −
(
−θ(α0 − ᾱ1) + (1− θ) W0 − W̄0

β0(S0 −K)

)+

β0(S0 −K)

≥ W0 − W̄0 −
(

(1− θ) W0 − W̄0

β0(S0 −K)

)+

β0(S0 −K)

≥ θ(W0 − W̄0)

≥ 0 .

Thus the first combination will always dominate the second at the beginning of the

period t = 1. By repeating this argument, we see that number of unexercised option

associated with the first grant will always dominate the ones associated with the

second. Moreover, the difference will become strict whenever there is an exercise.

Using Lemma 2.4 then we conclude that when discounted option payoff process is a

Q sub-martingale, the cost function is increasing in the non-option wealth position.

This, in turn implies that the average cost is decreasing in the size of the grant.
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We demonstrated in this section, that irrespective of stock price dynamics, when

the employee has CARA or CRRA type preferences, her exercise policies would make

average ESO costs decreasing in the grant size. We now consider the case when the

employee’s portfolio consists of multiple types of options, i.e., N > 1. The analysis

for this case is considerably involved. We begin by showing that there exists a partial

and intuitive order of exercises between different option types in the next section.

2.5 Option Exercises with Multiple Option Types

Generally speaking, an employee is likely to have unexercised options of multiple

types in her portfolio. However, because of the explosion of number of state variables

(options of each type have to be tracked), the problem becomes considerably difficult

to analyze. Before, moving on to the question of cost function structure in this case,

we consider some properties of relative exercises between options of different types

that can help to make the analysis easier. We begin by showing that the model based

on expected utility of a measure of terminal wealth, as described in (2.1), guarantees

a certain rational order of exercise between competing options. This is summarized

in the following lemma:

Lemma 2.5. The exercise policy of an employee seeking to optimize her expected

utility as in (2.1) will satisfy the following properties:

1. Any unexercised and expiring in the money options will be exercised.

2. For two options with same strike K but different expiries, the ones with the

earlier expiry will be exercised in entirety before any of the options with the

later expiry are exercised.

3. For two options with different strikes but same expiries, the ones with the lower

strike will be exercised in entirety before any of the options with the higher strike

are exercised.

Proof. The first property is trivial to show. For Property 2, simply note that if

there exists an optimal policy which exercises an option with a later expiry before an

option with an earlier expiry, with both having the same strikes, then switching the

unexercised earlier expiry options for an equal number of options with the later expiry

will result in a dominant strategy. Property 3 also follows from a similar argument,

but requires a little more effort. Let i, j be such that Ti = Tj but Ki < Kj. Assume
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that property 3 does not hold. Then for some values of Wt, St, αi, αj we must have

x∗i,t < αi but x∗j,t > 0. Now, consider an alternate strategy x̃ - which is identical to x∗

except for following differences:

• x̃i,t = x∗i,t+ε and x̃j,t = x∗j,t−ε, where ε = min{αi−x∗i,t, x∗j,t} > 0. The employee’s

wealth at time t due to this strategy change increases by ∆ = ε · βt(Kj −Ki)

• If along any sample path, we subsequently have α̃i(s, ω) < x∗i (t, ω) for s > t,

then set x̃i,t = α̃i(s, ω) and x̃j(t, ω) = x∗j(t, ω) + x∗i (t, ω)− α̃i(s, ω). Due to this,

the employee’s payoff in this state reduces by the amount ∆(s, ω) such that

∆(s, ω) = (x∗i (t, ω)− α̃i(s, ω)) · βs((Ss −Ki)
+ − (Ss −Kj)

+

≤ (x∗i (t, ω)− α̃i(s, ω))βt+1(Kj −Ki) .

Thus, the net change in terminal wealth by employing strategy x̃ over x∗ for any

sample path ω is given by

∆W = ∆−
Ti∑

s=t+1

∆(s, ω)

≥ εβt(Kj −Ki)−
Ti∑

s=t+1

(x∗i (t, ω)− α̃i(s, ω))βt+1(Kj −Ki)

≥ ε(Kj −Ki)(βt − βt+1) > 0 ;

since
∑Ti

s=t+1(x∗i (t, ω)− α̃i(s, ω)) = ε. Thus x̃ dominates terminal payoffs over x∗ on

a path-by-path basis and hence x∗ cannot be an optimal exercise policy for (2.1).

Although, exercise properties mentioned in Lemma 2.5 appear intuitive and some-

what obvious, these properties - especially property 3, are not satisfied by all pro-

posed models of exercise behavior. For example, consider the model proposed in Jain

and Subramanian [75], in which the employee exercises to optimize utility of inter-

temporal consumption. In their model, employee’s optimization problem takes the

form

max E

[
T∑
t=1

U(t, Pt)

]
.

where Pt denotes the payoff received at time t from option exercises. We illustrate

a simple example in Appendix A, that shows that under this model Property 3 of
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Lemma 2.5 can be violated8.

Lemma 2.4 imposes a partial order of relative exercise between different vested

options. However, it cannot predict the relative order of exercise between two options

with strikes K1 and K2 and expiries T1 and T2 when K1 < K2, but T1 > T2. The

exact order of exercise will depend on the believed stock dynamics and one can even

have an interleaving of the exercises of two options. This makes the general case of

multi-period multi-type ESO costing quite challenging.

In Section 2.6, we now turn again to the key question of interest - the nature of

the cost associated with a portfolio of ESOs when the employee has multiple types of

options. We consider the case of CARA utilities as they offer a considerable ease in

understanding this cost structure.

2.6 ESO costs for portfolios with multiple ESO

types

In Section 2.4, we observed that for most common utility functions the average cost

of an ESO grant is decreasing in grant size, irrespective of the stock-price dynamics.

This suggests that the cost of an ESO option portfolio is sub-linear i.e., it is less than

the sum of its parts. In this section, we seek to examine if the analogous property

of sub-additivity holds for portfolios with multiple ESO types. Unfortunately, it

turns out that in this case, the option cost can be super-linear for certain stock price

processes. However, under an “acceptable” set of stock price dynamics, as we will

clarify shortly, the sub-linearity property can be shown to hold for CARA utilities.

We also demonstrate that when there are multiple types of options, new grants can

have a retrospective effect on already issued ESOs (if the grant is unanticipated), by

making them cost more or less.

We consider only the CARA class of utilities in this section. CARA utilities offer

considerably simplify the analysis because future exercises become independent from

past exercises for these models.

We start with proving a useful property of exercise policies associated with CARA

utilities, that will help us to better understand the costs associated with different parts

of an ESO portfolio.

8Note that one would expect an employee to exercise an option with lower strikes first even when
faced with liquidity related issues.
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Lemma 2.6. Suppose the employee has a CARA type utility function and α1 vested

ESOs with expiry T1 and α2 vested ESOs with expiry T2 where T1 < T2. Both sets of

options have the same strike K. Then, her exercise policy and associated cost for α2

options with expiry T2 is the same as in the case when she is made only this grant

and not the α1 options with expiry T1.

Proof. To simplify notation, we consider two employees, A and B who have the same

CARA type preferences and identical beliefs about the stock price process St and also

use the same subjective discounting βt. Employee A has α1 options with expiry T1 as

well as α2 options with a later expiry T2. Employee B on the other hand has only α2

options with expiry T2. All options have the same strike K. Then the lemma states

that A and B will have identical policies for exercising the options with expiry T2.

From Lemma 2.4 it follows that A will have exercised all α1 options with expiry T1

before any option with expiryy T2 is exercised. Then, at the beginning of any period,

A′s portfolio will contain

1. some y > 0 options with expiry T1 and α2 options with expiry T2 OR

2. only unexercised options with expiry T2.

In the latter is true then as exercise policy of ESOs in case of CARA utilities are

independent of the non-option wealth level, further exercises of options with expiry

T2 by A, occur independently and uninfluenced by prior exercises of options with

expiry T1. Hence whenever A exercises options with expiry T2, B must also exercise

an identical number of her options with expiry T2, provided they had the same number

of options with expiry T2 at the beginning of the period. It also follows that they will

have identical exercises from that point onwards.

Thus to show the result of the lemma, all we need to show is that whenever

A leaves some options with expiry T1 unexercised, B does not exercise any of her

options.

To see why this is true, suppose at some point, A finds it optimal to leave α′ > 0

options with expiry T1 and all α2 options with expiry T2 unexercised. Now consider

another hypothetical employee C, identical to A and B in preferences, beliefs and

investment opportunities but having α′ + α2 options with expiry T2 at this juncture.

We argue that C will leave at least α2 of her options unexercised. Indeed, if this is

not the case then we have the following contradiction: as C has a strictly dominating

ESO portfolio over A, she must realize at least as much utility as A expects at that

point. If C exercises more than α′ of her options, it is clear that her strategy can
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be copied by A and hence their expected utilities at that point must be equal. Then

A′s exercise policy which can always be implemented by C, is also optimal for C

and should be the one chosen by C as it requires fewer exercises. Hence it must be

optimal for C to leave more than α2 of her options unexercised. From Lemma 2.2, it

follows that then B should not exercise any of her options, when A does not exercise

options that have expiry T2.

This also shows that the cost associated with the grant with expiry T2 is not

affected by any grant of options with the same (or even lower) strike and an earlier

expiry for CARA utilities. This establishes the result we sought to prove.

Lemma 2.7. Suppose the employee has CARA type utility function and α1 vested

ESOs with strike K1 and α2 vested ESOs with maturity K2, where K1 < K2. Both

sets of options have the same expiry T . Then, her exercise policy and associated cost

for α2 options with strike K2 is the same as in the case when she is made only this

grant and not the α1 options with strike K1.

Proof. The proof is broadly similar to that of Lemma 2.7 and omitted.

Lemma 2.6 shows that for CARA utilities, when an employee has a portfolio of

two different types of ESOs differing only in their expiries, the cost of the ESO with

a later expiry is essentially the same as it would have been when the employee was

made a grant of only that type of options. It is easy to see by a similar reasoning that

even when the employee has CRRA utilities, the exercise for ESOs with later expiries

will get “delayed” by presence of any options with earlier expiries. This usually means

that such a grant will cost more to the company then it would have on a stand-alone

basis. If the property of sub-additivity were to hold, then it must be true that the

exercise of options with the earlier expiry gets pushed forward and the consequent fall

in their cost makes up for any rise in the cost of options with the later expiry. Rather

surprisingly, this does not hold in general and thus the sub-linearity property does

not extend directly to ESO portfolios with multiple types of grants. The following

example illustrates the issue.

Example 2.2. We consider an employee with the CARA utility function U(W ) =

−exp(−cW ), with c = 0.00025. This employee has α1 = 100 options expiring at time

T1 = 1 and α2 = 100 options expiring at T2 = 2. All options are vested and have

strike K = 90. Further, the dynamics of stock price currently at 100 are as illustrated

in Figure 2.2.
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Figure 2-1: Employee’s belief about stock price dynamics. Numbers on arrows indi-
cate a probability of transition while the circles enclose realized stock price.

We assume both the risk-free as well as subjective discounting factors to be constant

at 1 for simplicity. It turns out that that for this particular problem, the optimal

exercise strategy for the employee, with respect to the options expiring at T = 1 is to

not exercise any of them at t = 0. The corresponding fair value cost to the employer

for this part of the grant as a result is 100 · 12.88 = 1288. If however, the employer

was made a grant of only 100 options expiring at T1 = 1 and none expiring at T2,

then the employee would have been compelled to exercise 7.58 options immediately and

the rest at t = 1. The resulting cost would have been 7.58 · 10 + 92.42 · 12.88 = 1263.

As we know from Lemma 2.7 the cost associated with the option grant corresponding

to expiry T = 2 remains the same as it would have been had the grant been made in

isolation.

Thus, in this particular case, the cost of the total option grant turns out to be more

than the sum of its parts! In this example, the presence of longer duration options

helps the employee to in essence “diversify” the risk of payoffs with options expiring

at T = 1. In the event of a price decline at time t = 1, the presence of ESOs maturing
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at 2 will still allow her to receive a high payoff with a high likelihood. This enables her

to hold on to some of the options expiring at T = 1, which she would have otherwise

exercised.

In this same example, if we consider a more risk-averse employee with value of

c = 0.001, then this behavior flips. This employee, for the same stock price process,

will exercise all 100 options expiring at T = 1 if she also had the options expiring at

T = 2. On the other hand, if she did not have the options expiring latter, she would

have exercised only 23 options. It is easy to see that, the option cost of the portfolio

will be sub-linear or less than the sum of costs associated with the grants made in

isolation.

Example 2.2 shows that cost structure of portfolio with multiple types of ESO

grants can be difficult to generalize.

It turns out that we can trace the possibility of supper-additivity of option portfo-

lios to that of the use of different types of options for “diversification”. For most asset

dynamic models this should not be the case. We now formalize this notion. We first

fix an option type i to simplify notation. We define for CARA utilities, the Certainty

Equivalent and Incremental Certainty Equivalent of an option grant as follows:

Definition 2.2. Let the optimal utility of an employee with CARA utility and risk

aversion parameter c for an endowment of α options of the type i be U∗(α). Then,

the ‘Certainty Equivalent’ of this grant, h(α) is defined as

h(α) = − ln(−U∗(α))

βc
,

where as before β is the period’s subjective discount factor.

Certainty equivalent can thus be viewed as a measurement of utility in “cash”

units, i.e, the amount of money needed to realize the same utility.

Definition 2.3. Suppose the optimal utility for an employee with CARA utility and

risk aversion parameter c holding a portfolio P of options is U∗(P ) and in case he is

made an additional grant of α options of type i, the same changes to U∗(α, P ). Let

βt be the accumulated discounting factor. If the current discounting factor is β, then

the “Incremental Certainty Equivalent” of this grant, ht(α|P ) is defined as

ht(α|P ) = − ln(−U∗(α, P ))

βtc
+

ln(−U∗(P )))

βtc
.
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Similarly, we define the incremental certainty equivalent of the portfolio P as

ht(P |α) = − ln(−U∗(α, P ))

βtc
+

ln(−U∗(α)))

βtc
.

We then define the “option non-diversifiability” condition as follows:

Definition 2.4. The stock price process considered by the employee is “ option non-

diversifiable” if the incremental certainty equivalents of any two option grants irre-

spective of their size or type are co-monotone.

Remark 2.5. Most commonly encountered stock price processes are independent “re-

turns” processes. For such processes, it is easy to see that Incremental Certainty

Equivalents are increasing functions of the current stock price and thus should be

co-monotone.

We now show that when the option non-diversifiability condition is satisfied, the

cost associated with an ESO portfolio is in fact sub-additive, i.e., less than the sum

of its parts. We first show that presence of additional grants speeds up exercises of

ESOs in general.

Theorem 2.1. For a CARA employee, if the stock price process considered by the

employee is option non-diversifiable then for any endowment P and option i and grant

size α:

•

h′0(α) ≥ h′0(α|P ) ,

• The optimal exercise strategy corresponding to the option type i in presence of

additional portfolio P is dominated by the optimal exercise strategy when not

endowed with P .

Proof. We prove this by induction on the time to expiry of option i, Ti. For Ti = 0,

the proposition trivially holds as both h0(α) and h0(α|P ) are given by (STi −Ki)
+,

and either all or none of the options will be exercise in either case. Suppose the

proposition is true for Ti = k. Then, we show the same should hold for Ti = k + 1.

Suppose with Ti = k + 1 periods to go, in the case when the employee also has an

additional endowment P , the optimal exercise policy leaves her with a part P ′ of the
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portfolio P and ᾱ options of type i. Then, as it is sub-optimal for the employee to

exercise any more options of type i, the first order optimality conditions imply

E[−cU(ᾱ, P ′) · β0(S0 −Ki)
+ + Uα(ᾱ, P ′)] ≤ 0 ,

Hence,

h′0(ᾱ|P ) = h′0(ᾱ|P ′) =
E[β1 · exp(−β1c · (h1(ᾱ) + h1(ᾱ|P ′))) · h′1(ᾱ|P ′)]

E[exp(−β1c · (h1(P ′) + h1(ᾱ|P ′)))]
≥ β0(S0 −K)+ . (2.21)

Now, using the induction hypothesis,

E[β1 · exp(−β1c · (h1(ᾱ) + h1(ᾱ|P ′))) · h′1(ᾱ|P ′)]
E[exp(−β1c · (h1(P ′) + h1(ᾱ|P ′)))]

≤ E[β1 · exp(−β1c · (h1(ᾱ) + h1(ᾱ|P ′))) · h′1(ᾱ)]

E[exp(−β1c · (h1(P ′) + h1(ᾱ|P ′)))]
. (2.22)

We now define a new probability measure R, such that its Radon-Nikodym derivative

w.r.t. the original measure P is given by

dR
dP

=
exp(−β1c · h1(ᾱ))

E[exp(−β1c · h1(ᾱ))]
.

Then, from (2.21) and (2.22), we have

h′0(ᾱ|P ) ≤ E[exp(−β1c · (h1(ᾱ) + h1(P ′|ᾱ))) · β1 · h′1(ᾱ)]

E[exp(−β1c · (h1(ᾱ) + h1(P ′|ᾱ)))]

=
ER[exp(−β1c · h1(P ′|ᾱ)) · β1 · h′1(ᾱ)]

ER[exp(−β1c · h1(P ′|ᾱ))]

= lim
∆→0

1

∆

ER[exp(−β1c · h1(P ′|ᾱ)) · β1 · h1(ᾱ + ∆|ᾱ)]

ER[exp(−β1c · h1(P ′|ᾱ))]

≤ lim
∆→0

1

∆

ER[exp(−β1c · h1(P ′|ᾱ))] · ER[β1 · h1(ᾱ + ∆|ᾱ)]

ER[exp(−β1c · h1(P ′|ᾱ))]
(2.23)

=
E[exp(−β1c · h1(ᾱ)) · β1 · h′1(ᾱ)]

E[exp(−β1c · h1(ᾱ))]
. (2.24)

In (2.23), we have made use of the fact that as β1h1(ᾱ+ ∆|ᾱ) and β1h1(P |ᾱ) are

co-monotone by the assumption of option non-diversifiability, exp(−cβ1h1(ᾱ+ ∆|ᾱ))

and β1h1(P |ᾱ) must be negatively correlated.

From, (2.21) and (2.24) it follows that in the absence of the additional endowment
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P , the employee must leave α̃ ≥ ᾱ options unexercised. This proves the second part

of the hypothesis.

Now to show the first part, we consider two cases:

1. The employee does not exercise any type i options when endowed with addi-

tional portfolio P . In this case, the option holder must also not exercise any

options, when not endowed with P . Thus ᾱ = α̃ = α and the first part of the

induction hypothesis follows from (2.24).

2. The employee makes an exercise in the presence of P . In this case, h(α|P ) =

(S − Ki)
+, which is a lower bound on the marginal certainty equivalent and

hence the first part of the induction hypothesis trivially holds.

Corollary 2.3. For CARA employees, the marginal cost to the employer of any

option grant is less when the employee has a portfolio of some unexercised options

compared to the case when she has none. Thus, the cost of the option portfolio is

sub-additive in its components.

Proof. This follows directly from Theorem 2.1 and Lemma 2.4.

Remark 2.6. It should, in fact, be easy to show a relatively stronger condition. If a

portfolio P can be parceled in two sub-portfolios P1 and P2, then

C(P ) ≤ C(P1) + C(P2) .

2.7 Summary

In this chapter, we demonstrated that one should not consider the employee decision

associated with exercising an ESO in isolation, but rather in the context of the entire

non-tradeable ESO portfolio that she carries. We sought to qualitatively analyze how

adopting such a point of view would impact the exercise behavior of the employee

and consequently the implied cost to the issuing company using a simple utility based

model as described in (2.1). We observed that in general, the cost function can be

sub-linear or super-linear in the size of the portfolio. However, for utility functions

commonly considered in literature, such as CARA and CRRA utilities, when the ESO

portfolio has only one type of option, the average cost of the grant can be shown to

be decreasing in grant size, irrespective of stock price process dynamics.
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The problem corresponding to ESO portfolios with options of multiple types, espe-

cially multiple maturities, is more complex. We first showed that the proposed model

ensures a “rational” order of exercise between different options. Then, we showed

how this property results in certain simplifications for CARA type utility functions.

However, in general, nothing can be said about the cost of an ESO portfolio vis-a-vis

the cost of its individual components for aribtrary stock price beliefs. Under addi-

tional reasonable restrictions on the stock price process, we showed that for CARA

utilities the cost due to ESO allocations will be sub-additive for an arbitrary portfolio

of options. The restriction that is required on stock price processes for this to hold is

in fact quite intuitive - it effectively says that ESOs should not have diversification

benefits with respect to one another. Note that no such assumption was necessary

while dealing with the case of options of the same type.

The model in in (2.1) is however not very suitable for practical use. This is

because in the most general case, it will entail solving a high dimensional dynamic

programming problem just to obtain the employee’s exercise policy. While the CARA

utility model has some nice properties and limits the state space to just unexercised

options of various kinds, it does not scale well as the number of different types of

options in the employee’s portfolio increases. Also restricting usability are the several

model parameters such as perceived or real world stock price dynamics and utility

function specifications that will be needed to use this model.

Our task going forward is then to develop a practically useable model to incorpo-

rate the portfolio effect on exercise policies. The ultimate goal of this model should

be to estimate the cost of the ESO portfolio for the employer. It will be also desirable

to have an attribution of the portfolio cost to its different components. The latter is

important because as we demonstrated, a new grant can affect the exercise and the

cost of already issued options, if it is not anticipated by the employee. Further, if the

employer wishes to transfer some of its ESO related liabilities to an external agency,

such a cost split-up estimate will be crucial for the external agency.

This motivates us to look for an alternate modeling approach, which is the topic

for Chapter 3.
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Chapter 3

Tractable Models for Pricing

Employee Stock Options

3.1 Introduction

In Chapter 2, we observed that ESOs should ideally be priced at a portfolio level, as

an employee’s decision whether to exercise an ESO is likely to be influenced by the

presence of other ESOs in her portfolio. As a result, the approach of costing ESOs

on a stand-alone basis is probably flawed and an ESO portfolio’s cost may be very

different from what one would obtain when each component is priced individually.

Also, we observed that under reasonable assumptions, the portfolio cost function is

sub-additive and hence piecemeal costing of ESOs will in general overestimate their

cost.

The model presented in Chapter 2, though simple and appealing, is computa-

tionally demanding and involves several subjective parameters that would be difficult

to obtain or even estimate using limited stock option exercise data that a company

would typically have. These shortcomings motivate us to look in a relatively new

direction to tackle the problem of modeling ESO exercises.

In our proposed model, the employee uses a risk-management based framework

to make decisions about exercising ESOs. More specifically, an employee treats her

ESO portfolio as an investment portfolio and rebalances it periodically to manage

the associated risk that cannot be hedged. This rebalancing must occur through

exercising of options in lieu of trading them, as she is unable to do so because of

contractual reasons. We measure unhedgeable risk in terms of the short-term variance

it introduces to the employee’s portfolio. This is similar in spirit to the Markowitz
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mean-variance portfolio optimization framework, the oldest formal risk-management

toolkit known to finance for this purpose. Such an approach has not been used in the

literature before to the best of our knowledge and provides for a common framework

to analyze employee behavior for all stock-related compensation. It gives a joint

exercise model for all the ESOs in an employee’s portfolio and one which can be

solved very efficiently.

We find that the exercise behavior implied by this risk-management conisderation

can be computed using a simple optimization routine. We show that the employee

exercises an option, possibly partially, when a certain barrier function associated

with the option, which we call the “delta-barrier function” falls below a stochastically

varying threshold. Exercises based on this criteria are also shown to be consistent with

the partial relative order or exercises between different options as shown in Lemma

2.5 in Chapter 2, where this order was established from very different considerations.

Our exercise model takes into account only the impact of unhedgeable risk on

employee’s exercise decisions. This, we believe is the most important factor that

leads to early exercises. Some factors such as termination or quitting and vesting

would also affect pricing. The model we propose is still flexible enough to incorporate

these effects and with a little loss of computational tractability. Whenever applicable

we will remark how this may be done in practice, but for the most part, we retain

focus on demonstrating how coupled exercise behavior can be modeled in a tractable

way.

We also propose another related model for ESO exercises, where the employee

measures risk in terms of unhedgeable volatility of her portfolio. We show that this

simplifying modeling assumption leads to an all-or-none exercise by the employees

naturally, an unstated assumption in bulk of the ESO costing literature to date. This

also implies a linear pricing rule for ESO portfolios. This model provides an attractive

alternative for companies to estimate cost, when data is limited or for accounting

purposes. Another benefit is that under this model, the payoff that employee gets

upon exercising can be closely approximated by a martingale process. This allows us

to get narrowly spaced analytical bounds on the resulting cost of the option to the

employee.

A key advantage of these models is that it uses very few subjective parameters that

can make cost estimation and calibration cumbersome. Apart from a few parameters,

which are representative of employee’s risk-averseness and can be calibrated from

exercise data, the model refers to quantities that should be available from market

data. This has an added benefit in terms of hedging the ESO cost risks, for parties
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who intend to do so.

The key contributions in this chapter are:

(a) We provide a concrete and tractable framework to price ESOs as a portfolio

based on a risk-management approach.

(b) The exercise strategy that we derive is barrier based where the employee exer-

cises the option when an explicit function of the stock and option parameters

hits a threshold level. While, barrier based ESO exercise models, have been

examined and analyzed in the literature before, most explicit barrier functions

considered hitherto in the literature are ad-hoc and/or motivated primarily by

the ease of computation/analysis. We provide an investment decision rationale

for the proposed barrier function.

(c) Our exercise model, being a joint exercise model for a portfolio of options,

predicts how different options will be exercised in relation to each other. Our

model is parsimonious in terms of number of parameters making it easier to

calibrate and verify for use in practice. The model also guarantees a pecking

order of exercise between options.

(d) We also provide a simplified model, again inspired by a risk-management based

framework, that naturally leads to an all-or-none exercise by the employee and

a linear pricing rule for ESO portfolios. Further, for this model, we are able

to derive analytical bounds that bracket the cost of the option within a fairly

tight interval.

Chapter Layout

In Section 3.2, we describe the model used in this paper. In Section 3.3, the Risk

Management framework used to model exercise behavior for ESOs is motivated. We

the describe the myopic mean-variance optimization based decision model and derive

the employee’s exercise behavior for the same. We define the delta-barrier exercise

function which plays an important role in the exercise consideration in Section 3.4

and also list its important properties. In Section 3.5, we describe the myopic mean-

volatility decision framework. A special case of this framework makes the exercise

decisions with respect to different ESOs in the portfolio independent of each other

and the portfolio cost additive. Based on this, we derive analytical bounds on the

cost of an ESO in Section 3.6. Finally, in Section 3.7 we summarize the results and

the models presented to price ESOs.
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3.2 Model

As remarked in Chapter 2, we believe ESOs are modeled more appropriately as invest-

ment instruments rather than consumption ones. We therefore take an investment-

decision perspective for exercise models.

We model the problem of option exercise by employee as a portfolio optimization

problem. The employee then naturally considers the decision to exercise an option or

not in the larger context of her overall portfolio.

Employee’s Portfolio

Similar to the model in Section 2.2 in Chapter 2, we assume that the employee holds

a portfolio of N types of call options. We allow the portfolio to also include options

that are expected to be issued in future. Let αi denote the number of options of type

i held by the employee. Without loss of generality, we assume that the 1st N1 of

the N options have already been issued (but not necessarily vested). The ith issued

option where 1 ≤ i ≤ N1, is characterized by the tuple (Ki, Vi, Ti), with Ki denotes

the strike, Vi the vesting time, and Ti the expiry time for option i. Note that this

means that the employee can exercise an option of type i at any time between Vi and

Ti. We can easily include restricted stock grants in this model, as a special type of

call option by setting Ki = 0, and Vi as the time till which the stock must be held.

For restricted stock, Ti would be set to ∞ or the end of the planning horizon for the

employee.

The remaining N2 = N −N1 ESOs are the ones that have not been yet issued but

are anticipated by the employee and hence would affect her decision process. These

options, expected to be granted in the future, will not have an absolutely set strike.

However, the level of moneyness at which these options will be granted is assumed to

be certain and known, i.e., the strike is fixed as a multiple of the prevailing stock price

on the date of issue1. We characterize an unissued option i, where N1 + 1 ≤ i ≤ N ,

by the tuple (Ii,mi, Vi, Ti). Here, Ii denotes the issue date of the ith anticipated

option, while mi is the preset ratio
SIi
Ki

and Vi and Ti denote respectively the vesting

and expiry times of the option as before. In addition to the ESO portfolio, we also

assume that the employee holds some non-option related wealth Wt. This wealth Wt

may also have some correlation with the employing company’s stock.

1For example, the future option could be known to at the money(ATM) at the time of issuance.
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Stock Price Dynamics

The stock price St is assumed to follow a geometric Brownian Motion as in the Black-

Scholes framework with volatility σ. We assume that there are no dividends to keep

the analysis simple. The model may be easily extended to incorporate continuous

dividends without much difficulty though.

If µ is the expected return on the stock, then

dSt = µStdt+ σStdZt .

The risk-free rate r is also assumed to be non-stochastic. In the risk-neutral world,

dSt = rStdt+ σStdZ
Q
t .

Let Ci,t denote the Black-Scholes value of the option i and Ei,t = (St −Ki)
+, the

payoff upon exercise at time t. Also let δi,t denote the “delta” of this option or the

sensitivity of its Black-Scholes option value to St. For options that have already been

issued, i.e., for i : 1 ≤ i ≤ N1,

Ei,t = (St −Ki)
+ ,

Ci,t = StN(di,t)−Ke−r(Ti−t)N(di,t − σ
√
Ti − t) ,

δi,t = N(di,t) ,

where, di,t =
ln( St

Ki
) + r(Ti − t)
σ
√
Ti − t

+
1

2
σ
√
Ti − t .

For those options for which the strike is yet to be set, i.e., for j : N1 + 1 ≤ j ≤ N ,

Cj,t = St

(
mjN(d̄j,t)− e−r(Tj−Ij)N(d̄j,t − σ

√
Tj − Ij)

)
, (3.1)

δj,t = mjN(d̄j,t)− e−r(Tj−Ij)N(d̄j,t − σ
√
Tj − Ij) ,

where, d̄j,t =
ln(mj) + r(Tj − Ij)

σ
√
Tj − Ij

+
1

2
σ
√
Tj − Ij .

From (3.1), we see that unissued options, in terms of their Black-Scholes value behave

very much like restricted stock until the issue date (or the time until which the strike

is fixed). We will appeal to this fact later in our analysis.
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Exercise Behavior

We characterize an employee in terms of her risk-averseness and exposure to the

company’s stock2.

In our setting, the employee can neither sell the option nor hedge it by selling

short the underlying stock. These are obvious restrictions that apply to ESO holders.

The only way the ESO holder can reduce the risk associated with the option payoff

is by exercising it. We do allow for limited proxy hedging in this model. We will

assume that the employee has no inside-information about stock prices that she can

exploit for personal gains.

Also, in our model the employee does not explicitly take into account the possibil-

ity of being terminated or quitting voluntarily departure or being forced to exercise

options to meet liquidity needs in future while making exercise related decisions.

These effects can be incorporated by adding them as exogenous shocks to the model.

For our basic model, we ignore the “reset” and “reload” features that may be

present in ESO terms. As we shall see later, our model can be easily augmented to

account for these.

We also assume that the employee is taxed immediately on the proceeds received

upon any exercise3 and the applicable marginal tax rate remains constant throughout

the planning horizon. Under this assumption, taxes do not make a structural differ-

ence to our problem and hence we assume without loss of generality that there are

no taxes (we can effectively replace all grants αi by αi(1− f), f being the marginal

tax rate, to account for the taxes and reduce the general problem to the case when

there are no taxes, see also Aboody [2].).

The key determinant of the employee’s decision process concerning ESO exercises

2Employees have a disproportionate exposure to the company’s stock as a bulk of their current
and future wealth is related to the stock performance of the company. Hence the entire risk associated
with company’s stock value (and not just the systemic risk, i.e., the market correlated risk) would
matter to the employee.

3There are more than one types of ESOs and they can defer in their tax and accounting treat-
ments. The most commonly issued type of ESOs are of the type called ‘Non-qualified Stock Options’
and are subject to the kind of tax treatment assumed here. Specifically, these options are treated in
the same way as compensation but are taxable at exercise. This means that for these options, the
value (St−K) realized upon exercise is treated as income irrespective of whether the stocks received
as a result of exercise are sold or not. Moreover, this value is assessed at the applicable income tax
rate for the employee. Certain other options called the Incentive Stock Options differ in their tax
treatment. For them, the tax is assessed only when the stocks received as a result of the exercise
are actually sold. If the stock is held for a sufficiently long time (typically a year), upon selling, the
gains realized (over the option strike price), if any, are assessed at the applicable capital gains tax
rate. Since the latter is typically much less than marginal income tax rates, an employee holding
an incentive stock option often has an incentive to convert the option to a stock and hold on to the
stock purely due to tax reasons. In this paper, we do not treat the case of Incentive Stock Options.
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is then her need to manage the risk associated with her ESO portfolio. We propose

two decision making frameworks based on risk-management or portfolio optimization

approach.

(a) Mean-Variance Optimization - Th mean variance optimization methodology

proposed by Markowitz [90] is probably the most commonly approach used to

model a risk - reward tradeoff. Here, we assume that the employee uses mean-

variance optimization to adjust her ESO portfolio on a day-to-day basis.

(b) Mean-Volatility Optimization - This framework is also motivated by a risk man-

agement perspective. It has an advantage over the mean-variance optimization

for pricing ESOs because under certain additional assumptions, it leads to an

all-or-none exercise strategy for options, and makes the portfolio pricing prob-

lem separable. This allows us to estimate the cost of a portfolio of options as a

sum of the costs of its components.

Unlike the utility based models in Chapter 2, the exercise models that will be

presented in this chapter are not suitable to get an idea of the subjective value of

ESO grants to the employee. The models that we propose only give us a handle on

the employee’s exercise behavior when granted a portfolio of options. Using this we

can estimate the cost of this grant to the company issuing the options.

Upon exercise of ESOs, as the granting company creates fresh new stocks, there

is also a dilution effect, see Black and Scholes [18]. We also neglect the effects of

such “dilution” since, in practice, the number of ESOs exercised will be very small

compared to the number of shares outstanding for a typical company, making this

effect relatively insignificant. We compute the cost associated with an ESO as simply

the expected value of payoffs received from the exercise under the risk neutral measure

Q.

We now describe our risk-management based exercise models in greater detail.

3.3 Risk Management Models

In this section, we propose a method to model employee exercise behavior, that is

both computationally as well as conceptually simple. To motivate the model, we start

with a discrete time setting, where the employee divides her time horizon into evenly

spaced periods of length ∆ for making exercise related decisions. As described below,

a simplifying assumption that we make is that the employee manages her portfolio

risk myopically.
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• Instead of assuming trading restrictions on the ESOs for their entire duration,

for deciding whether to exercise an option in the current period or not, we

assume the employee weighs in the effect of trading restrictions on the options

for only that period. This is the myopic enforcement of the trading constraints.

Under this view, the employee can hedge the option position after time t + ∆,

and thus lock in its fair market value at the end of the period, which for type

i option is Ci,t+∆. Suppose, at time t, the employee exercises xi,t of the αi,t of

the type i options she had at the beginning of the period. As a result, she will

be left with αi,t+∆ = αi,t − xi,t type i unexercised options at the beginning of

the next period t+ ∆. Then the (time-discounted) value realized from the ESO

portfolio is

V =
N∑
i=1

xi,tEi,t + exp(−r∆)
N∑
i=1

αi,t+∆Ci,t+∆ .

• The reason an employee may exercise her options earlier than she would have

in absence of trading restrictions, is because of the risk related to the option

position during the current period that she could not hedge. In the absence of

this risk, the time t fair value of the total discounted payoff received via her

strategy of exercising xi,t type i options at t is given by

EQ[V ] =
N∑
i=1

xi,tEi,t + EQ

[
exp(−r∆)

N∑
i=1

αi,t+∆Ci,t+∆

]
(3.2)

=
N∑
i=1

xi,tEi,t +
N∑
i=1

(αi,t − xi,t)Ci,t . (3.3)

However, because the employee cannot hedge the option position by short selling

the stock, some of this value is at risk and the employee accounts for it by

penalizing the fair value obtained in (3.3) by a term that is proportional to the

variance in the realized value under her exercise strategy for the period.

varQ(V ) = varQ

(
exp(−r∆)

N∑
i=1

αi,t+∆Ci,t+∆

)
.

• This effectively means that at each period the employee solves a one-step mean-

variance portfolio optimization, but using the risk-neutral distribution instead of
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subjective or actual probabilities4. We characterize the employee’s risk aversion

to unhedgeable risk by a parameter λ, which can be interpreted as the penalty

imposed on unhedgeable risk per period. The employee’s objective function is

then to

max EQ[V ]− λ

2
varQ(V ) . (3.4)

The employee’s problem is thus a standard one stage portfolio optimization

problem in a risk-neutral setting where the employee maximizes the unhedgeable

variance adjusted value of her ESO portfolio at the end of the period. The trade-

off that the employee faces is to exchange some ESOs for their intrinsic value

to cut the portfolio variance at the expense of some of its “fair” value. The

variance metric makes the option exercise problem a true portfolio problem as

different entities of the portfolio are correlated.

• The different ESOs in the employee’s portfolio are all correlated because their

value depends on the employer’s stock price. The myopic setting enables us to

get a handle on quantifying this dependence as it can be now modeled through

the option’s “delta” which is its local sensitivity to the stock price St.

For small ∆, using the first order Taylor expansion, the discounted value of the call

option i at t+ ∆ can be approximated as

e−r∆Ci,t+∆ ≈ Ci,t + δi,t · (e−r∆St+∆ − St) .

Thus, the variance of V is given by

varQ(V ) =

(
N∑
i=1

(αi,t − xi,t)δi,t

)2

σ2S2
t ∆ .

The portfolio optimization problem that the employee wishes to solves is to max-

imize the short-term variance penalized value of her portfolio and can be stated as:

4Subjective or actual forward distributions pose a difficult estimation problem as well, making
their use undesirable in a practical setting. Also under the assumption that the risk due to St is
completely unhedgeable and hence uncorrelated with the market, the average rate of return µ on
St should be equal to the risk-free rate r under the CAPM or APT theory. This will lead to an
identical problem for the employee.

63



max
N∑
i=1

xi,tEi,t +
N∑
i=1

(αi,t − xi,t)Ci,t −

λ∆

2

(
N∑
i=1

(αi,t − xi,t)δi,t

)2

σ2S2
t ;

s.t. 0 ≤ xi,t ≤ αi,t ,

xi,t = 0 if t < Vi . (3.5)

One drawback of the above formulation is that it may recommend exercises for

options that are not in the money. We fix this by adding a constraint that only in

the money options can be considered for exercise. With this additional constraint,

problem (3.5) is equivalent to the following quadratic optimization problem.

max −
N∑
i=1

xi,t(Ci,t − Ei,t)−
λ∆

2
σ2S2

t

(
N∑
i=1

(αi,t − xi,t)δi,t

)2

; (3.6)

s.t. 0 ≤ xi,t ≤ αi,t ,

xi,t = 0 if St ≤ Ki or t < Vi . (3.7)

The problem in (3.7), being a quadratic programming problem with linear constraints

(LCQP), can be readily solved using standard convex optimization techniques. As

we shall see in Section 3.4, it also has an intuitive solution in terms of how options

are chosen for exercises. We first see how the model can be augmented to allow

partial or proxy hedging of the employer stock related risk as well as incorporate

other unhedgeable risk in the employee’s portfolio without making any structural

change in the problem (3.7) that the employee needs to solve.

Partial hedging with the myopic Mean-variance Optimization

Model

Until now, we assumed the option risk is completely unhedgeable and the employee

does not possess any illiquid non-option wealth. The myopic mean-variance maxi-

mization model can be naturally extended to include possible partial hedging by the

employee as well as other assets in the employee’s portfolio that cannot be hedged

or traded. We now assume that there is a market tradeable factor ZM
t that has a
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correlation ρ with ZM
t . Thus, the variation of St can then be written as

dSt
St

= r · dt+ σρdZM
t + σ

√
1− ρ2Z̄Q

t

The factor ZM
t denotes the tradeable market risk while Z̄Q

t denotes the idiosyn-

cratic risk associated with St and is uncorrelated with ZM
t . Let Yt denote an appro-

priately sized zero net cost portfolio, with a volatility σSt in value and exposure to

ZM
t . Then,

dYt = σStdZ
M
t

in the risk neutral setting.

The employee may also have other unhedgeable and illiquid assets in her invest-

ment portfolio. These may also add to her exposure to the employer’s stock price. An

example would be pension fund contributions. We can incorporate these our model

as well. Let Wt be the time t fair value of the other non-tradeable assets that the

employee owns. Let β0 denote the exposure of return on these assets to return on

the stock St and σ0 denote the uncorrelated risk in the portfolio. We again assume a

factor representation for Wt,

dWt

Wt

= rdt+ β0σdZ
Q
t + σ0dZ

Y
t .

To keep notation simple, we will assume that the factor corresponding to ZY
t is

idiosyncratic and cannot be hedged against, but the general case can be dealt with

in a similar fashion.

The problem (3.7) then becomes

max
{xi,t},yt

Wt +
N∑
i=1

αi,tCi,t −
N∑
i=1

xi,t(Ci,t − Ei,t)−
λ∆

2
Σ2 ;

s.t. Σ2 = σ2S2
t

(
ρ

(
β0
Wt

St
+

N∑
i=1

(αi,t − xi,t)δi,t

)
+ yt

)2

+ (1− ρ2)

(
β0
Wt

St
+

N∑
i=1

(αi,t − xi,t)δi,t

)2

+ σ2
0W

2
t ,

0 ≤ xi,t ≤ αi,t ,

xi,t = 0 if St ≤ Ki or t < Vi . (3.8)
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This is equivalent to the problem

max
{xi,t}

−
N∑
i=1

xi,t(Ci,t − Ei,t)−
λ∆

2
(1− ρ2)σ2S2

t

(
β0
Wt

St
+

N∑
i=1

(αi,t − xi,t)δi,t

)2

;

s.t. 0 ≤ xi,t ≤ αi,t ,

xi,t = 0 if St ≤ Ki,t or t < Vi,t . (3.9)

Thus in effect, we add β0
Wt

St
of restricted stock to the employee’s portfolio, and the

problem (3.9) is structurally similar to (3.7). Note also that ungranted but anticipated

options also behave like restricted stock with the exposure as given by (3.1) and these

may also be incorporated in the model likewise.

The term λ that corresponds to the penalty applied to the one period variance

in value that cannot be hedged against and the length of the period ∆ for which the

short-selling restriction is imposed appear in conjunction. In the limiting case one

can make the short selling constraint less severe by reducing the time step ∆, while

simultaneously increasing the penalty term for the unhedgeable risk resulting from

this constraint, in such a way that the product λ∆ is held constant and thus come

up with a continuous version of the myopic mean-variance optimization problem.

Another advantage of the model from a practical point of view is that the individ-

ual’s risk averseness and ability to hedge as well as the discretization time-step are

all captured by a single hyperparameter

υ
4
= λ∆(1− ρ2).

In practice, υ should be obtained empirically from employee stock option exercise

data.

We can thus consider the problem as stated in (3.10) below as the prototype of

the employee’s exercise problem.

max −
N∑
i=1

xi,t(Ci,t − Ei,t)−
υ

2
σ2S2

t

(
N∑
i=1

(αi,t − xi,t)δi,t

)2

;

s.t. 0 ≤ xi,t ≤ αi,t ,

xi,t = 0 if St ≤ Ki or t < Vi . (3.10)

In the next section, we examine some of the interesting properties of exercise
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policies that are obtained as solutions of (3.10).

3.4 Exercise Behavior under Myopic Mean Vari-

ance Optimizing Policy

We now consider the solution to the problem in (3.10).

For notational convenience, henceforth, we will drop the suffix t for each quantity

in this section, with the understanding that the optimal policy x∗i and the quantities

discussed in this section are computed for each time t.

We now characterize the nature of the exercise policy that the employee will

follow to maximize the myopic mean variance criterion. Let G denote the set of

vested options that are in the money. G represents the set of options that are eligible

for immediate exercise.

Lemma 3.1. Let G denote the set of options that have vested and are in the money.

If i, j ∈ G and Ci−Ei
σSσi

<
Cj−Ej
σSδj

, then options of type i must be all exercised before any

of type j is exercised.

Proof. Let x∗i denotes the optimal number of type i options to be exercised.

The “delta” of the portfolio at optimality can then be defined as

δ∗
4
=

N∑
i=1

(αi − x∗i )δi .

The first order optimality conditions for Problem (3.10) then require that:

Ci − Ei ≥ (λ∆δ∗σ2S2)δi if i ∈ G and x∗i = 0 ,

Ci − Ei = (λ∆δ∗σ2S2)δi if i ∈ G and 0 < x∗i < αi ,

Ci − Ei ≤ (λ∆δ∗σ2S2)δi if i ∈ G and x∗i = αi .

Hence, if Ci−Ei
σSδi

<
Cj−Ej
σSδj

, then any option of type i cannot be exercised unless all

options of type j have been exercised.

Lemma 3.1 immediately motivates the following simple algorithm to solve the

optimization problem (3.10).

Algorithm 3.1. Algorithm to find Optimal Exercise Policy
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1. Initialize x∗i := 0 for all i, δ† :=
∑N

i=1 αiδi

2. Find G, the set of indices of exercisable options

3. Sort the options in G in increasing order of

ζi
4
=

Ci − Ei
δi

(3.11)

4. Loop through options in G in increasing order of ζjs. For each option j

If ζj ≥ υσSδ†, then

Stop. The current values of all x∗i are optimal and δ† = δ∗

else if ζj < υSδ† but ζj ≥ υσS(δ† − αjδj), then

Set x∗j :=
δ†−

ζj
υσS

δj
and then δ† :=

ζj
υσS

Stop. The current values of all x∗i and δ∗ are optimal and δ† = δ∗

else

Set x∗j := αj and δ† := δ† − αjδj

Note, that the portfolio’s delta δ† (and hence its instantaneous variance) as well as

its value monotonically decrease throughout the algorithm. Algorithm 3.1 works by

decreasing the delta of the portfolio until the myopic mean-variance objective reaches

its optimal value.

In general, the myopic mean-variance maximization model would recommend both

partial as well as complete exercises. As can be seen from Algorithm 3.1, at any time,

the model recommends an all or none exercise policy for all but one option. However,

in practice as the stock price varies continuously, at any given time the method would

almost always recommend no exercise or a partial exercise of one particular option.

In the next section we see that the myopic mean-variance based exercise strat-

egy guarantees the same logical order of exercises between options as the one we

established in Chapter 2 from a utility maximization consideration.

The delta-barrier function and its properties

The quantity ζj as defined in (3.11) plays an important role in determining and

sequencing options for exercise. ζj is a function of the option’s strike and time to

expiry. It also depends on the current stock price. ζj can thus be interpreted as an

exercise barrier function associated with each option.
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Definition 3.1. The “delta-barrier” function of an option with strike K and time to

expiry T is defined as

B(S,K, T ) =
C(S,K, T )− (S −K)+

σSδ(S,K, T )
. (3.12)

Here δ(S,K, T ) is the delta of a call option with expiry T and strike K.

The delta-barrier function admits an intuitive interpretation as a pseudo-Sharpe

ratio for the option. (Note that the delta-barrier is a ratio of the option premium

(C-E) over the short-term volatility of this premium.) Algorithm 3.1 shows that the

employee always exercises options in an increasing order of their pseudo-sharpe ratios.

Definition 3.2. An exercise strategy is a “delta-barrier based exercise strategy” if it

satisfies the following property:

There exists a global, possibly stochastic, threshold ν ≥ 0 such that the strategy

recommends to (partially or completely) exercise an option with strike K and time to

expiry T if and only if

(a) the option is in the money and

(b) B(S,K, T ) ≤ ν .

The myopic mean-variance optimizing exercise strategy is thus a “delta-barrier”

based exercise strategy. The delta-barrier function has certain monotonicity proper-

ties with respect to its arguments. As a consequence, a delta-barrier based exercise

strategy guarantees the same pecking order in which options will be exercised as we

obtained from a different argument in Lemma 2.5 in Chapter 2. We demonstrate this

through a series of results on the properties of the delta-barrier function.

Lemma 3.2. The function B̃(S,K, T )
4
= C(S,K,T )−S+K

σSδ(S,K,T )
is monotone in S and de-

creases with the same.

Proof. We have,

C = SN(d)−Ke−rτN(d− σ
√
T ) ,where ,

d =
ln( S

K
)

σ
√
T

+
( r
σ

+
σ

2

)√
T .

Note that both the numerator and the denominator of B̃(S,K, τ) are always non-

negative as C ≥ (S−K)+ ≥ (S−K), C being the Black-Scholes value of the option.
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Further the denominator σSN(d) is an increasing function of S as d is increasing in

S and so is N(·). The numerator, on the other hand, is a decreasing function of S as

∂

∂S
(C − S +K) = N(d)− 1 < 0 .

It then follows that B̃(S,K, t) is decreasing in S .

Corollary 3.1. Between two ESOs having the same expiry, a delta-barrier based

exercise strategy first exercises the option with a higher value of the ratio S
K

; i.e., it

exercises first the option that is deeper in the money.

Proof. The proof follows directly from Lemma 3.2. Observe that for in-the-money

options B̃(S,K, T ) = B(S,K, T ). Moreover, B(·) (and B̃(·) ) are homogeneous in

the sense that B(S,K, T ) = B( S
K
, 1, T ). It then follows from the definition of a

delta-based exercise strategy that between two options having the same expiry, such

a strategy would first exercise an option with the lower strike.

Lemma 3.3. When the option is in the money, i.e., S ≥ K; the delta-barrier function

B(S,K, T ) is increasing in T .

Proof. This property requires a bit more effort to prove. We define the function

b(m, y) = B(mK,K, y2) = B(m, 1, y2) .

It follows that the delta-barrier function is increasing in T if b(m, y) is increasing

in y. Note that we operate under the case m > 1.

Now,

b(m, y) =
1

mσ

C − E
N(d)

.

⇒ ∂b

∂y
=

1

mσ

(
Θ

N(d)
+

(C − E)Φ(d)

(N(d))2

(
lnm

σy2
−
( r
σ

+
σ

2

)))
,

where,Θ = mΦ(d)σ + 2ryN(d− σy)e−ry
2

.

Note that Θ ≥ 0 and (C − E) ≥ 0. Thus, it follows that if

lnm

σy2
−
( r
σ

+
σ

2

)
≥ 0 ,

then the delta-barrier function is increasing in τ . Hence, we need only consider the
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case when

lnm

σy2
−
( r
σ

+
σ

2

)
< 0 . (3.13)

In this case,

∂b

∂y
=

Φ(d)

mσ(N(d))2

(
mN(d)σ + 2rye−ry

2N(d)N(d− σy)

Φ(d)
+ (C − E)

(
lnm

σy2
− r

σ
− σ

2

))
.

The quantity in the brackets,

Q = mN(d)σ + 2rye−ry
2N(d)N(d− σy)

Φ(d)
+ (C − E)

(
lnm

σy2
− r

σ
− σ

2

)
,

is increasing in m when m ≥ 1 and the condition (3.13) is satisfied. This can be

verified easily by taking 1st order derivatives and noting that N(d), N(d−σy) should

increase with m, while the quantity C − E decreases with m and so does Φ(d) when

m > 1. It then follows that if we can show that Q ≥ 0 for m = 1, then ∂b
∂y

should be

positive for all m ≥ 1. At m = 1, we have Q = Q0 with

Q0 = N(d)σ + 2rye−ry
2N(d)N(d− σy)

Φ(d)
−
(
N(d)− e−ry2N(d− σy)

)( r
σ

+
σ

2

)
⇒ yQ0 = −N(d)

( r
σ
− σ

2

)
y + e−ry

2

N(d− σy)

(( r
σ

+
σ

2

)
y + 2ry2N(d)

Φ(d)

)
.

Again, if f
4
= ( r

σ
− σ

2
)y ≤ 0, it will trivially follow that Q0 > 0, hence we consider the

case when f > 0. Note that 2ry2 = d2 − f 2 when m = 1. Thus, we have

yQ0 = −N(d)f + e−
d2−f2

2 N(f)

(
d+

N(d)

Φ(d)
(d2 − f 2)

)
= −N(d)f +

Φ(d)N(f)

Φ(f)
d+

N(d)N(f)

Φ(f)
(d2 − f 2)

=
N(d)N(f)

Φ(f)

((
Φ(d)

N(d)
d+ d2

)
−
(

Φ(f)

N(f)
f + f 2

))
.

Since d ≥ f , it will follow that yQ0 ≥ 0 if we can show that the function

f(x)
4
=

Φ(x)

N(x)
x+ x2

is increasing in x from x ≥ 0. This in turn follows from the fact that the function

g(x)
4
= Φ(x)

N(x)
+ x ≥ 0 for x ≥ 0 and is also increasing in x, a fact proved in Lemma
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B.1 in Appendix B.

Corollary 3.2. Between options having the same strike, any delta-barrier based exer-

cise strategy completely exercises the one with the shorter before exercising an option

with a longer expiry.

Proof. This is a direct consequence of the Lemma 3.3.

To summarize, a delta-barrier based exercise strategy naturally satisfies the fol-

lowing desirable properties that one would expect of a rational exercise behavior as

obtained in Lemma 2.5 in Chapter 2.

1. An option which is at the money at expiry will be exercised. This is because

the barrier function B is zero for such options and by definition, the threshold

υ > 0.

2. Between two options that are in the money and have the same expiry, the

strategy always exercises the option that has the lower strike first.

3. Between two options that are in the money and have the same strike, the strat-

egy always exercises the option that has the shorter expiry first.

Figure 3-1 shows how the delta-barrier function varies with moneyness i.e., S
K

and

time to maturity(for r = 0.05 and σ = 0.2 (annualized)).

Under the myopic mean-variance optimization framework, the option exercise

problem for the employee is a simple quadratic problem. This enables us to ob-

tain the cost of an entire ESO portfolio by simply simulating a price process path for

the stock. Also, the same simulations can be used to allocate the cost of the portfolio

amongst its different components by simply keeping tracks of the exercise along each

sample path.

The exercise threshold ν for the delta-barrier based exercise strategy that we

derived from the mean-variance optimization framework is in general stochastic and

depends on the overall portfolio structure. This makes the option pricing problem

non-linear. While this, as we argued in Chapter 2, represents a truer picture of ESO

portfolio cost, a linear model is simple and more interpretable to report. In the next

section, we see how we can derive a linear model for pricing ESOs by a suitable

modification of the risk management framework presented in this section.
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Figure 3-1: Variation of Delta-Barrier function w.r.t. moneyness and time to matu-
rity.

3.5 Myopic Mean-Volatility Based Exercise Model

The myopic mean-variance based exercise model allows one to model parsimoniously

the effects of partial exercises and coupling of option exercises. Under this model

the ESO portfolio cost will be non-linear. Based on our analysis in Chapter 2, such

non-linear models are likely to present a truer picture of the ESO costs. However

they might be unsuitable for accounting and reporting purposes. Moreover costs still

have to be recovered via simulation of the stock price, which does not provide a great

insight to the price process. These properties result from using a variance based

optimization scheme.

We now propose a variant of the myopic mean-variance based optimization model,

the “myopic mean-volatility optimization” model, where the employee penalizes the

instantaneous volatility in his/her portfolio instead of the instantaneous variance. As

a side-note, for normal distributions, the problem of penalizing the volatility instead

of variance in the utility function is akin to Value at Risk (VaR) or Conditional Value

at Risk (CVaR) constrained optimizations, that organizations often use to manage
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their risk.

We will see that with certain additional assumptions, the problem of finding the

optimal exericse policy for ESOs becomes separable for this model. An immediate

related consequence is options are exercised as all or none and we get a linear pricing

rule for options, where the cost of an option portfolio can be obtained as the sum of

its parts. Another surprising and extremely useful benefit of the model is that we get

simple analytical formulae for bounds on the cost of an ESO.

The only difference that we make in our model is that the employee now penalizes

the fair value of her portfolio by its short-term unhedgeable volatility rather than

variance. Thus her objective as described in (3.4) now changes to

max EQ[V ]− χ
√

varQ(V ) . (3.14)

Here χ is a risk-averseness parameter, and ∆ as before is the length of a time-

period.

The problem (3.9) then becomes:

max
{xi,t},yt

Wt +
N∑
i=1

αi,tCi,t −
N∑
i=1

xi,t(Ci,t − Ei,t)− χ
√

∆Σ ;

s.t. Σ2 = σ2S2
t

(
ρ

(
β0
Wt

St
+

N∑
i=1

(αi,t − xi,t)δi,t

)
+ yt

)2

+ (1− ρ2)

(
β0
Wt

St
+

N∑
i=1

(αi,t − xi,t)δi,t

)2

+ σ2
0W

2
t ,

0 ≤ xi,t ≤ αi,t ,

xi,t = 0 if St ≤ Ki or t < Vi . (3.15)

For the optimal choice of yt, the problem in (3.15) reduces to

max
{xi,t}

−
N∑
i=1

xi,t(Ci,t − Ei,t)− χ
√

∆Σ ;

s.t. Σ2 = σ2S2
t (1− ρ2)

(
β0
Wt

St
+

N∑
i=1

(αi,t − xi,t)δi,t

)2

+ σ2
0W

2
t ,

0 ≤ xi,t ≤ αi,t ,

xi,t = 0 if St ≤ Ki or t < Vi . (3.16)
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Just as in the model presented in Section 3.3, the term χ that corresponds to the

penalty applied to the one period volatility in value due to hedging restrictions and

the length of the period ∆ for which the short-selling restriction is imposed appear

in conjunction. Again, in the limiting case one can make the short selling constraint

less severe by reducing the time step ∆, while simultaneously increasing the penalty

term for the unhedgeable risk resulting from this constraint in such a way that the

product χ
√

∆ is held constant and thus effectively use the myopic mean-volatility

optimization problem in (3.16) in a continuous time setting.

We now show that the optimal exercise policy for (3.16) is a delta-barrier based

exercise policy. Moreover, if the only source of unhedgeable risk in the employee’s

portfolio comes through the exposure to the employer’s stock, then the threshold in

the delta-barrier based exercise policy becomes a constant and the problem becomes

separable.

Proposition 3.1. The optimal exercise strategy corresponding to the problem in

(3.16) is a “delta-barrier” based strategy. Also if σ0 = 0, then the exercise thresh-

old becomes fixed and the optimal exercise strategies for different option types become

decoupled.

Proof. We will again drop the suffix t, to ease notation. Let x∗i denote the optimal

number of type i options to be exercised. We define the quantity δ∗ and the variance

at optimality as follows

δ∗ = β0
W

S
+

N∑
i=1

(αi − x∗i )δi ;

(Σ∗)2 = (δ∗)2(1− ρ2)σ2S2 + σ2
0W

2 .

Let G denote the set of options that are vested and are in the money, i.e., can be con-

sidered for exercise. Then the first order optimality conditions imply, at optimality:

Ci − Ei ≤ χ
√

∆
β∗(1− ρ2)σ2S2

Σ∗
δi if i ∈ G and x∗i = 0 ,

Ci − Ei = χ
√

∆
β∗(1− ρ2)σ2S2

Σ∗
δi if i ∈ G and 0 < x∗i < αi ,

Ci − Ei ≥ χ
√

∆
β∗(1− ρ2)σ2S2

Σ∗
δi if i ∈ G and 0 < x∗i < αi .

Hence there exists a threshold ν such that an option i is exercised only if it is in

the money and its delta barrier function ξi = Ci−Ei
σSδi

satisfies ξi < ν.
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Now consider the case, when σ0 = 0. Problem (3.16) (with the time t suffixes

dropped) in this case becomes

max
{xi}

−
N∑
i=1

xi(Ci − Ei)− χ
√

∆
√

1− ρ2

(
β0
W

S
+

N∑
i=1

(αi − xi)δi

)
σS ;

s.t. 0 ≤ xi ≤ αi ,

xi = 0 if i /∈ G. (3.17)

This is a Linear Optimization problem. Let

ν = χ
√

∆
√

1− ρ2 .

Then a solution to (3.17) is given by

x∗i = αi if ξi =
Ci − Ei
σSδi

< ν and i ∈ G ,

x∗i = 0 if ξi =
Ci − Ei
σSδi

≥ ν or i /∈ G . (3.18)

Thus, the exercise policy in this case is an all or none policy. Moreover, the

threshold ν = χ
√

∆
√

1− ρ2 is a constant and independent of the portfolio struc-

ture. This shows that the optimal exercise policy for each option can be determined

independently.

As the exercise policy for (3.16) is delta-barrier based, the rational exercise order

properties stated in Lemma 2.5 in Chapter 2 will hold for this version of the employee’s

problem as well. With the exercise policy obtained through solving (3.18), the ESO

costing problem is not only decoupled, i.e., the problem can be solved for each option

separately but also becomes linear i.e., the cost of the portfolio of ESOs now will

simply be a sum of the cost of its components.

We term the exercise strategy obtained in the special case when σ0 = 0, as de-

scribed in (3.18) as a ”fixed threshold delta-barrier based exercise strategy”. Again

we observe that the model parameters, χ, ∆ and ρ can be combined in a single

hyperparameter ν given by

ν = χ
√

∆
√

1− ρ2 . (3.19)

ν can be interpreted as the target pseudo Sharpe-ratio, desired by the employee
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of an option to keep it in her portfolio. Intuitively, this strategy recommends exer-

cise to the employee when the instantaneous volatility in the option value becomes

significantly high compared to the incremental value of holding the option vis-a-vis

exercising it, i.e., its pseudo Sharpe-ratio drops below a fixed threshold. Only ν mat-

ters for pricing options and this is the parameter that should be empirically calibrated

for implementation.

Lemma 3.2 showed that the delta-barrier function is decreasing in S (for S >

K). The barrier function is also homogeneous in S and K. Thus, given an exercise

threshold ν, there exists a critical multiple Mt such that, if the ratio St
K

of the stock

price to the option’s strike exceeds this multiple then the option will be exercised. In

our model, M depends only on the option’s time to expiry.

Figure 3.5 shows the critical exercise price by strike multiple as a function of time

to expiry for various values of ν under the fixed-threshold delta-barrier based exercise

strategy (at 20% annualized volatility in stock returns σ and risk free-rate r = 5%

annualized). The relationship is almost linear, especially when option has some time

to expiry.

Figure 3-2: Exercise multiple v/s and time to expiry for different values of ν.

Barrier policies where the employee exercises her ESOs when the stock price to

strike multiple exceeds a barrier function have been suggested in the literature before.

For example, in the Hull and White [72] model, the employee exercises the stock price
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hits a certain multiple. Note that this model does not consider the impact of time to

expiry on the option exercises. Another such method is proposed in Cvitanic, Weiner

and Zapatero [47], in which the employee exercises an ESO whenever the ratio of the

stock price to the option’s strike exceeds a target multiple that declines exponentially

with the residual life of the option. This target multiple also has a discontinuity

at the option expiry time. These barrier based exercise strategies are ad-hoc and

motivated primarily from analytical considerations. The fixed threshold delta-barrier

based exercise strategy proposed here, in (3.18), was derived from a simplified but

explicit model of employee behavior.

In addition, as we shall see in the next section, this model of exercise behavior

also offers computational advantages. In particular, we can obtain tight analytical

bounds on the implied cost of an ESO for the employer.

3.6 Pricing ESOs under the fixed threshold delta-

barrier exercise strategy

In the previous section, we saw that under the myopic mean-volatility optimization

framework, when the only risk that the employee is unable to hedge is the one cor-

responding to her employer’s stock, the portfolio cost of ESOs becomes linear and

can be obtained by adding the cost of all constituent options. Moreover each ESO

in the portfolio is exercised independently of the other and according to the fixed

threshold delta-barrier based exercise strategy as described by (3.18). In this section,

we attempt to price analytically the cost Cν of the ESO for this exercise strategy,

given an exercise threshold ν. Suppose at time t = 0, the employee has an option

with strike K and maturity T . Let the prevailing stock price be S0. We first under

the case that the option has already vested, i.e., the employee can exercise the option

right away if she desires to do so. To recap, under the fixed threshold delta-barrier

based exercise policy, the employee exercises the option when the following conditions

are satisfied

• The option is in the money, i.e., St > K ,

• The delta-barrier function Bt = Ct−Et
σδtSt

is less than or equal to the exercise

threshold ν.

Because, the stock price process is continuous, the barrier function Bt, which is

a continuous function of the stock price St will also follow a continuous path. Hence
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if B0 > ν, and if the option is exercised at a subsequent time τ ; we can expect the

following condition to be satisfied at the time of exercise τ .

Bτ = ν

⇒ Cτ − Eτ = νσSτδτ . (3.20)

Unfortunately, condition (3.20) does not hold strictly and there is a probability that

Bt < ν at exercise. To see how this can happen, consider a sample path where the

option remains out of money up to time τ . The delta-barrier function however could

still decrease and it might be the case that Bτ < ν. If now the option moves into

the money, the delta-barrier function will decrease even further and under the fixed

threshold exercise policy, the option must be exercised at this point. The condition

(3.20) will be violated in this case. Fortunately, such an event can occur only with

a small probability and close to option expiry. We can in fact show that (3.20) is

violated if and only if the option is exercised in the window (T −TN , T ), where TN is

a constant that depends on the risk free-rate r, volatility σ and the exercise threshold

ν. Also when the violation does occur it is small in magnitude. As a result, we can

derive upper and lower bounds on the cost of the option to the issuer which will be

fairly close to each other and thus give a fair indication of the actual cost to the

employee.

Lemma 3.4. Given an exercise threshold ν, risk-free rate r and volatility level σ,

there exists a unique critical expiry TN such that

• B(S, t) ≥ ν for all out of the money options if t < T − TN and

• If t > T − TN and the option has not yet been exercised, then the option will be

exercised as soon as it gets in the money.

Proof. Let us define TN as that expiry for which B(K,K, T − TN) = ν. Note that

B(K,K, T − TN) = 1− e−rTN
N
((

r
σ
− σ

2

)√
TN
)

σN
((

r
σ

+ σ
2

)√
TN
) .

and thus depends neither on K nor on T but only on r, σ and ν. From Lemma 3.3, it

follows then B(K,K, t) > ν for t < TN . Also for t = T − TN , the barrier function for

ATM stock price is exactly ν. Hence, for t > T − TN from Lemma 3.3 and Lemma

3.2, B(S, t) ≤ ν for all values of S ≥ K. This completes the proof.
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Lower bound on the cost Cν of a vested ESO

Let τ be the time the barrier B(t) first hits the threshold ν before time T and that

the option is in the money, i.e., the exercise time of the option. If the option expires

unexercised, then we set τ =∞. Let τ ∗ = min{τ, T}. Then τ ∗ is a stopping time.

Lemma 3.5.

EQ[e−rτ (Cτ − Eτ )] = C0 − Cν
0 , (3.21)

where Cν
t denotes the cost function of issuing the ESO (as incurred by the employer),

and Ct denotes the Black-Scholes price of the Call option that has the same terms as

the ESO.

Proof. Let us define A as the event that the employee exercises her option during its

lifetime, i.e., τ = τ ∗.

EQ[e−rτ
∗
Cτ∗ ] = P (τ ∗ = τ)EQ[e−rτ

∗
Cτ∗|τ = τ ∗] + P (τ ∗ 6= τ)EQ[e−rτ

∗
Cτ∗|τ 6= τ ∗]

= P (τ <∞)EQ[e−rτCτ |τ <∞] + P (Ac)EQ[e−rTCT |Ac] .

Note Ac is the event τ 6= τ ∗. Now, as an expiring in the money option is always

exercised under a delta-barrier based exercise policy. Ac ⇒ ST < K and hence in this

case, the ESO was never exercised i.e., τ ∗ = T . Also, since ST < K, CT = 0. It then

follows that

EQ[e−rτ
∗
Cτ∗ ] = EQ[e−rτCτ ] .

As Ct is the price of a tradeable asset, e−rtCt is a martingale. Since τ ∗ is a stopping

time, by the optional stopping theorem, EQ[e−rτ
∗
Cτ∗ ] = C0.

Finally, note that EQ[e−rτEτ ] = Cν
0 by definition. Hence, we conclude that

EQ[e−rτ (C(τ)− E(τ))] = C0 − Cν
0 .

Lemma 3.6.

EQ[e−rτδ(τ)Sτ ] = S0δ0 . (3.22)

Proof. Again, let A be the event that the employee exercises her option during its
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lifetime, i.e., τ = τ ∗. We have

EQ[e−rτ
∗
Sτ∗δτ∗ ] = P (τ ∗ = τ)EQ[e−rτ

∗
Sτ∗δτ∗ |τ = τ ∗] + P (τ ∗ 6= τ)EQ[e−rτ

∗
Sτ∗δτ∗|τ 6= τ ∗]

= P (τ <∞)EQ[e−rτS(τ)δ(τ)|τ <∞] + P (Ac)EQ[e−rTST δT |Ac] .

As an expiring in the money option will be exercised, Ac ⇒ ST < K. Hence

conditioned on Ac, δT = 0. This is because δ(t) = N

(
ln(

St
K

)+r(T−t)
σ
√
T−t + 1

2
σ
√
T − t

)
.

Hence if ST < K δ(T ) = 0 (in limit). It then follows,

EQ[e−rτSτδτ ] = EQ[e−rτ
∗
Sτ∗δτ∗ ] .

Now,

e−rtStδt = e−rt(Ct +Ke−r(T−t)N(dt + σ
√
T − t))

= e−rt
(
EQ
t

[
e−r(T−t)(ST −K)+

]
+ EQ

t

[
e−r(T−t)K · 1{ST>K}

])
= EQ

t [e−rTST · 1{ST>K}] .

Thus, the function e−rtStδt is in fact a martingale under the risk neutral measure Q.

Since, τ ∗ is a stopping time it then follows

EQ[e−rτ
∗
Sτ∗δτ∗ ] = S0δ0 .

Lemma 3.7. Under the fixed threshold delta-barrier exercise policy, the cost of the

ESO to the employer is lower bounded by

Cν
0 ≥ Cν−

0

4
= max(0, C0 − νσS0δ0)

= S0N(d0)(1− νσ)−Ke−rTN(d0 − σ
√
T ) . (3.23)

Proof. Under the fixed threshold delta-barrier exercise policy, the following inequality

always holds.

Bτ ≤ ν

⇒ Eτ ≥ Cτ − νσSτδτ .

Hence, EQ[e−rτEτ ] ≥ E[e−rτCτ ]− νσE[e−rτSτδτ ]

⇒ Cν
0 ≥ C0 − νσS0δ0 .
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Upper bound on the cost Cν
0 of a vested ESO

Lemma 3.8. If T > TN then,

Cν
0 ≤ C(S,K, T − TN) ,

where C(S,K, T − TN) denotes the price of the call option with same strike K but

maturity T − TN .

Proof. From Lemma 3.4, it follows that

• If the option is in the money at time T − TN , then it will be exercised at that

time if it already has not been,

• If the option is exercised after time T − TN , then it was out of money at time

T − TN . It will then be exercised as soon as the option gets in money since the

barrier function Bt will always be less than ν for an ATM option for t > T −TN .

It then follows that the payoff for exercise in [T − TN , T ] will be less than ε for

any ε > 0 and the contribution to the option costs for an exercise in this interval

can be neglected.

Then, we can consider the option exercise strategy as a (possibly sub-optimal) way

of exercising an American Call option with strike K and expiry T − TN . This gives

us the desired bound.

The bound given by Lemma 3.4, although simple turns out to be rather weak in

practice. The following result allows us to compute a much stronger bound.

Refined Upper Bound on the cost Cν
0 of a vested ESO

Lemma 3.9. Let T ′ = T − TN . Then

Cν
0 ≤ Cν+

0

4
= max

(
S0 −K,EQ[e−rT

′
(CT ′ − νσST ′δT ′)+]

)
. (3.24)

Proof. We know on any sample path where the option was exercised for a non-zero

payoff i.e., before time T ′ = T − TN ,

Eτ = Cτ − νσSτδτ .
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From the martingale property,

e−rτEτ = EQ
τ [e−rT

′
(CT ′ − νσST ′δT ′)]

≤ EQ
τ [e−rT

′
(CT ′ − νσST ′δT ′)+] .

As before, let A denote the event that the option was exercised sometime during its

life. Then,

Cν
0 = EQ[e−rτEτ ;A] ≤ EQ[e−rT

′
(CT ′ − νσST ′δT ′)+;A]

≤ EQ[e−rT
′
(CT ′ − νσST ′δT ′)+] .

In Appendix B, the following expression for E[e−rT
′
(CT ′ − νσST ′δT ′)+] is derived in

terms of bivariate normal distributions:

Cν
0 ≤ C0 − σνS0δ0

+Ke−rTN2

(
d(S0, K, T )− σ

√
T ,−d(S0, K, T

′) + σ
√
T ′,−

√
T ′

T

)

−(1− νσ)S0N2

(
d(S0, K, T ),−d(S0, K, T

′),−
√
T ′

T

)
, (3.25)

where

d(S,K, T ) =
ln( S

K
)

σ
√
T

+
( r
σ

+
σ

2

)√
T .

N2(a, b, ρ) denotes the probability Pr(X ≤ a, Y ≤ b) for two jointly normal random

variables X and Y , each having zero mean and unit variance, and correlation ρ.

Exercise
Threshold ν

Maturity
Shortening TN

Lower
Bound Cν−0

Upper
Bound

Refined Upper
Bound Cν+

0
0.00 0.000 25.21 25.21 25.21
0.25 0.096 21.42 24.82 21.44
0.50 0.378 17.63 23.64 17.72
0.75 0.839 13.84 21.65 14.05
1.00 1.473 10.05 18.73 10.43
1.25 2.280 6.26 14.65 6.85

Table 3.1: Cost Estimates (Upper bounds and Lower bounds) for an ATM ESO for
different values of the exercise threshold.
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Table 3.1 shows the bounds obtained by this method for a range of exercise thresh-

olds on at-the-money vested ESO with strike 100 (for r = 0.05, σ = 0.2 (both annu-

alized) and T = 4 years). In general, the lower bound obtained is a better estimate of

the true cost, as it differs from the actual cost only when there has been an exercise

after time T −TN . In this case, the lower bound contribution naively adds a negative

payoff to the cost instead of a zero payoff. However, both the magnitude of the nega-

tive payoff as well as the probability of exercise in the interval (T − TN , T ) are small.

As we can see the lower and refined upper bounds are quite close to each other. Both

bounds get tighter as ν decreases and converge to the Black-Scholes value for ν = 0.

Also, the bounds also converge together to 0 and intrinsic value respectively for the

option for that value of ν for which TN = T .

Pricing unvested ESOs

In this section, we consider the case when the options have not yet vested, but will

vest at a future time T0 > 0. In presence of the constraints imposed due to the

vesting feature, the fixed threshold delta-barrier based exercise strategy would exercise

options as follows:

(a) If at the vesting time T0, the barrier-delta function is less than the exercise

threshold i.e., BT0 ≤ ν, and the option is in the money then it is exercised

immediately at T0.

(b) If at time T0, the barrier-delta function is above the exercise threshold ν, then

the option is exercised whenever it is in money and BT0 ≤ ν.

Vesting provision in fact increases the cost of the option to the employer. This is

because the vesting constraint can only cause the employee to delay her exercise of

the ESO. This effect of vesting on ESO cost has been observed before, see Ingersoll

[73]. At time T0, when the ESO vests, if the stock price then exceeds the threshold L

where L satisfies B(L,K, T − T0) = ν then the option is exercised immediately. To

obtain the cost of the option with vesting, we must then replace the option cost for

the sample paths when ST0 > L to the realized cost which is e−rT0(ST0 −K)+.

Lemma 3.10. Under the delta-barrier exercise strategy with a fixed threshold ν, the

cost W ν
0 of the ESOs with maturity T , vesting lag T0 and strike K can be bounded as

follows: Let T ′ = T −TN where TN is as defined in Lemma 3.4. Suppose T ′ ≥ T0 and
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L be such that

B(L,K, T − T0) = ν. (3.26)

Then,

Y ν
0 ≥ Y ν−

0 = ∆V + C0 − νσS0δ0;

Y ν
0 ≤ Y ν+

0 = ∆V + EQ[e−rT
′
(CT ′ − νσST ′δT ′)+] ,where,

∆V = EQ[e−rT0(ST0 −K − CT0 + νσST0δT0)
+] . (3.27)

Proof. It is clear that at T0, if ST0 ≥ L the option will be exercised, else it will behave

like a regular ESO, with no vesting from that point. Since T−T0 ≥ TN , using Lemma

3.4, we get L ≥ K. Further, from Lemma 3.2,

ST0 −K > CT0 − νσST0δT0 for K > L .

Then,

Y ν
0 = EQ[e−rT0(ST0 −K);ST0 ≥ L] + EQ

T0
[e−rT0Cν

T0
;ST0 < L]

= EQ[e−rT0(ST0 −K − CT0 + νσST0δT0);ST0 ≥ L] + EQ[e−rT0(CT0 − νσST0δT0);ST0 ≥ L]

+EQ
T0

[e−rT0Cν
T0

;ST0 < L]

= EQ
T0

[e−rT0(ST0 −K − CT0 + νσST0δT0)
+] + EQ[e−rT0(CT0 − νσST0δT0);ST0 ≥ L]

+EQ
T0

[e−rT0Cν
T0

;ST0 < L]

= ∆V + EQ[e−rT0(CT0 − νσST0δT0);ST0 ≥ L] + EQ
T0

[e−rT0Cν
T0

;ST0 < L] .

Then, using Lemma 3.7, we have

Y ν
0 ≥ ∆V + EQ[e−rT0(CT0 − νST0δT0);ST0 ≥ L] + EQ

[
EQ
T0

[e−rT0(CT0 − νσST0δT0)];ST0 < L
]

= ∆V + C0 − νσS0δ0 .

And using Lemma 3.9 we get,

Y ν
0 ≤ ∆V + EQ[e−rT0(CT0 − νST0δT0);ST0 ≥ L]

+EQ
[
e−rT0EQ

T0
[e−r(T

′−T0)(CT ′ − νσST ′δT ′)+];ST0 < L
]

≤ ∆V + EQ[e−rT
′
(CT ′ − νσST ′δT ′)+] .
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This completes the proof.

It may be noted that ∆V can be expressed in terms of bivariate normal distri-

butions, once we have the value of threshold L. L however must be computed nu-

merically by inverting the delta-barrier function, which should be relatively straight

forward as this function is monotonic. Also, when T ′ < T0, then the value of the

vested option simply becomes equal to that of a call option with expiry T0 under the

delta-barrier exercise strategy.

Incorporating Termination and Reload Effects

We can extend the delta-barrier method to account for termination effects at the

expense of some analytical tractability. With a reload feature, the employee upon

exercising her ESOs gets new ESOs aside from the exercise proceeds. To incorporate

reload options in our models, we can simply add the additional value of reload options

to the exercise payoff in our myopic setting. This feature can thus be accounted with

little additional computational complexity.

Similarly termination effects can be incorporated in the model exogenously. A

common approach used is to model termination as an arrival in a Poisson process

(with possibly time inhomogeneous arrival rates). Since the exercise strategy used by

the employee is easily solvable, we can price the ESO in presence of the possibility of

early termination by using direct Monte Carlo simulations.

3.7 Conclusions and Future Directions

In this chapter, we proposed a myopic risk management based framework to model

exercise behavior for Employee Stock Options (ESOs). This framework leads to a

tractable method to compute the cost of an ESO portfolio. This was directly moti-

vated by the Markowitz portfolio optimization problem. The resulting exercise be-

havior is governed by the level of a barrier function which depends on the time value

of the option, i.e., the option’s premium over its intrinsic value and the instantaneous

volatility in the option price, both evaluated at their Black-Scholes’ values. Using

this exercise behavior, we can price the cost of ESOs to the issuing company. We also

showed that in general, neither would a risk-averse employee exercise all her options

at the same time nor would the cost of a portfolio of options be equal to the sum

of its parts. However, this becomes the case under certain model assumptions which

lead to an exercise behavior where the employee exercises her option when it is in

86



money and the barrier function is below a threshold which depends on the employee’s

risk-averseness. These assumptions also allow us to derive tightly spaced analytical

bounds on the cost of the option to the issuers. We also indicated how these results

can be extended to account for vesting and exogenous termination.

In terms of future work, it will be interesting to see if one can build a dynamic

but tractable model that can take into account portfolio effects for expensing options.

Also the delta-barrier function implies an artificial shortening of the option lifetime

which is an undesirable modeling side-effect. A model which better accounts for the

remaining value of the option’s time value will be useful and so will be tighter bounds

on the option’s cost. Finally, an empirical analysis to see how well the predicted

exercise behavior matches with observed behavior will be of great interest.
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Chapter 4

Variable Annuities with

Guaranteed Lifetime Payouts

4.1 Introduction

Advances in medicine and better mechanisms to contain and deal with man-made and

natural calamities have led to a remarkable increase in life expectancies over the last

few decades. People are living longer and spending a significant part of their lives in

retirement, especially in the developed countries. At the same time, the social security

systems have come under a cloud. Particularly in the US, many influential voices in

both political and academic circles have expressed concerns about the sustainability

of the government sponsored social security system. For example, see the opinion

expressed by John Snow [111]. Moreover, life-style and health-care related costs have

continuously spiralled upwards, especially for the elderly - who are a high risk group

and have made life in retirement not only longer but also more expensive. As a

result of all this, the idea that individuals and households need to have a systematic

retirement plan for and by themselves, is now gaining more and more traction.

The private sector industry has come up with several innovations and offerings in

the retirement solutions space. Insurance companies have been offering equity linked

pension schemes with portfolio insurance for quite some time. Variable Annuity (VA)

products are widely popular in the US across all demographics as investment and

tax-planning instruments. VA Sales in the were expected to cross $180 billion for the

year 2007 according to research by Milliman. Similar products are also very popular

in other developed markets such as the UK and Japan and are gaining grounds in the

emerging markets as well. Companies offering VA products are now embedding them
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with options that will allow investors to also use them as a steady and assured source

of income during retirement. More than 95% VA products now offer some sort of

financial guarantees with them. These guarantees generally offer the investor a form

of downside protection against market risk and thus helps her secure her retirement

nest-egg.

Over time, the options provided with VAs have become more innovative and exotic.

One of the earliest embedded options made available with VAs was the “Guaranteed

Minimum Death Benefit” scheme, see Milevsky and Posner, [93] for details. GMDB

entitles the investor’s beneficiary to collect a minimum benefit (usually the initial

amount invested in the VA fund with a small appreciation rate) upon the investor’s

death. Thus the GMDB is like a stochastic maturity put option. Insurance compa-

nies subsequently introduced schemes that would enable the investor to collect the

scheme’s benefits during her own lifetime, unlike the GMDB. Examples of these are

the Guaranteed Minimum Accumulation Benefits (GMAB) family and Guaranteed

Minimum Income Benefits (GMIB) family (also known as Guaranteed Annuity Op-

tions(GAO)). GMAB guarantees to the investor a certain minimum level of capital

appreciation over pre-specified horizons and is again a complex variant on the basic

put option. Under the GMIB/GAO scheme, which became especially popular in the

UK, investor’s money is invested in a VA fund for a fixed duration and upon maturity,

which typically occurs at retirement age, the underlying account value can be either

withdrawn or annuitized at a guaranteed payout rate. GMIB/GAO can be considered

as an equity-quantoed (equity denominated) interest rate option.

More recently, companies have been offering the “Guaranteed Minimum With-

drawal Benefit” (GMWB) schemes. Under this scheme, the investor’s capital is in-

vested through a VA fund in an asset-mix of her choice. The investor is guaranteed

that upon maturity, again linked usually to the retirement age, she will be able to

take at least an x % of her initial investment every year for N years, no matter how

the underlying investment performs1. According to Milliman’s third annual Guaran-

teed Living Benefits (GLB) survey of leading U.S. VA carriers, election rates of the

GMWB scheme or its variants have increased steadily from from 24% in 2004 to 29%

in 2005, to 40% in 2006, and then to 43% during the first six months of 2007 and the

GMWB family has now become the most popular of all VA products.

Insurance companies have now also started offering a lifetime benefit feature with

GMWB and other VA linked options, enabling the investor to simultaneously manage

both financial as well as longevity related risks. While a lifetime benefit feature can be

1Typically x ·N = 100 so that the total guarantee is equal to the original investment.
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offered with any of the GMAB, GMIB or GMWB schemes, according to Milliman’s

third annual GLB survey, that offered with the GMWB is emerging as the most

popular of these and continues to wrest market share from the other two. GMWB

with lifetime withdrawals is commonly known as “Guaranteed Lifetime Withdrawal

Benefits” (GLWB) or “Guaranteed Withdrawal Benefits” (GWB) for life. GWB

for life typically guarantees to the investor withdrawal amounts that are indexed

to her VA account’s high water-mark value (called the benefit base) for her entire

life. A key advantage of the GMWB/GWB family of schemes over other VA related

options available in the market is that in these schemes, the underlying investment

can continue to have market exposure even when the withdrawals start and thus has

a better growth opportunity. In contrast, if exercised the GMIB/GAO annuitizes the

investor’s account value, effectively converting it into fixed income instruments upon

maturity. The GWB for life usually also has a ratchet like feature commonly known as

step-ups, where the benefit base used to calculate the guaranteed withdrawal amounts

is periodically and automatically raised to the VA account value, if the latter exceeds

the same.

Unlike exchange traded or over the counter options, the investor pays for the op-

tions elected with VAs in a piece-meal way over several years, typically as a fixed

fraction of the underlying VA account value or the defined “protection” level2. Cur-

rently, insurance companies are offering the GWB for life at annual fees in the range

of roughly 50 to 90 basis points. The fee is typically indexed to the benefit base that

is used for calculating the guaranteed withdrawal amounts3.

If fairly priced, the GWB for life option is an attractive retirement solution for

investors as it allows them to manage the risks related to their own longevities, which

cannot be mitigated at an individual level. Further, the ability to stay invested in

the market while in retirement would allow investors to better cope with the inflation

related risk, which becomes significant as the retirement lifespans get longer4.

For the long term sustainability of the GWB, it is also important that the com-

panies offering it remain profitable and viable. For example, GAO schemes were

2This type of arrangement is in part due to the insurance industry conventions and in part to
ease the burden of large payments from clients. The fee structure impacts both pricing and risk
management of these products.

3Schemes differ in terms of promised withdrawal rates as well as features such as the frequency of
“step-ups” in the benefit base and the indexing of the fees. The website http://www.annuityfyi.com
provides a long but non-comprehensive list of leading insurance companies offering GWB for life like
products.

4Equity markets are known to be better hedges against inflation as compared to fixed income
instruments like annuities over a long run, see, for example, Bodie [20].
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launched in the UK in a high interest rate environment, but as they drew closer to

maturity, interest rates plummeted while the stock markets soared, forcing at least

one company to close its product to new buyers (Chu and Kwok, [39]). Also, if

the GWB is significantly underpriced or raises the possibility of a debilitating loss

for the underwriting company, then the related credit-worthiness issues should make

potential clients skeptical of the GWB. This is because payouts from the GWB for

life option, if they happen at all, will occur only 20 to 30 years after the client has

enrolled into the option. Hence the continued claims paying ability of the company

underwriting the GWB guarantee is considerably important. Because VA based so-

lutions are so widely used and can have a huge impact on market (over 55% of the

estimated trillion dollar plus worth of VA assets are beleived to be in equity mar-

kets according to VA Data Research Services (VARDS)), this is an issue that should

concern regulators as well.

Our goal for this chapter as well as Chapter 5 is to analyze the cost and risk of

underwriting the GWB for life guarantee. Our analysis suggests that concerns about

GWB will not be entirely misplaced because the product entails considerable risk

from a large number of factors that should pose serious challenges in its valuation

and risk management.

4.1.1 Related Work

Brennan and Schwartz [24] and Boyle and Schwartz [23] were one of the first to extend

the option pricing methodology to insurance contracts where the time or frequency

of payouts are linked to investor’s death.

The GMDB option, which is essentially a stochastic maturity put option, has

been extensively analyzed in the literature; for example by Milevsky and Polsner [93],

Mudavanhu and Zhuo [97]. Chu and Kwok [38] analyze the GMAB type principle

protection scheme with reset features. Moreover, Milevsky and Salisbury [95], Dai,

Kwok and Zong [48], Siu [110] also consider how policy-holders can strategically

exercise options embedded in a VA and their impact on the implied cost. Biffis [17],

Chu and Kwok [39], Boyle and Hardy [22], Ballotta and Haberman [10], Pelsser [100]

have analysed the GMIB/GAO type option feature in VAs.

“Equity Indexed Annuities” (EIAs) constitute another family of products similar

to VAs with embedded options and allow investors to claim a limited or (“capped”)

upside in equity markets, with a floor protection. Practically, EIAs are different from

VAs because unlike the VA based options which are derived from privately managed
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funds, EIAs are contractually linked to the published market indices. However, both

families of products are analyzed using similar methods and models. EIAs have also

been studied extensively: see for example, Gaillardetz and Lin [59], Buetow [26],

Kijima and Wong [80], Siu [110], Cheung and Yang [36].

The GWB for life is a relatively recent addition to the market space, and is yet

to be analyzed in detail in the literature. A product similar to the GWB for life -

the GMWB which guarantees withdrawals over a fixed number of years, has been

analyzed in Milevsky and Salisbury [95], Dai, Kwok and Zong [48], Chen, Vetzal and

Forsyth [34]. Milevsky and Salisbury [95] point out that GWMB is like a Quanto

Asian Put Option in a Black-Scholes economy and find that it is possibly severely

underpriced. Dai, Kwok and Zong [48] analyze the same product from an investor’s

perspective and focus on deriving the optimal withdrawal policies, again in a Black-

Scholes framework. Recently Chen, Vetzal and Forsyth [34] also consider the impact of

optimal “withdrawal” strategies as well as jump risks in the context of GMWB. These

papers do not consider the ratchet or step-up feature that is common in GWB for

life products. Another recent work by Hoz, Kling and Rub, [69], presents a numerical

analysis of the GWB for life with ratchet like features using the general contingent

claim analysis framework for VAs as outlined by Bauer, Kling and Russ [13]. Again

the valuation is in a Black-Scholes world. Thus, valuations of the GWB/GMWB

family have so far been based primarily on the basic Black-Scholes framework with

constant interest rates.

Coleman et. al [40] investigate effects of jumps and stochastic volatilities in hedg-

ing the GMDB with a ratchet or step-up like feature. Coleman, Li and Patron [41]

consider hedging against both interest rate and equity related risks in the context of

long-duration VA liabilities.

Insurance products that offer financial guarantees over an investor’s lifetime also

face risks related to population mortality (or longevity) apart from the risk due to

the market factors. Lately, researchers have begun to question the commonly made

assumption that population mortality risk can be considered to be statistically diver-

sifiable. Cairns, Blake and Dowd [28], Biffis [16] and Milvesky, Promislow and Young

[94] have argued that population mortality related risk may consist of a systemic com-

ponent to it5 and hence may not be entirely diversifiable. Biffis and Millossovich [17]

suggest interesting ways to jointly model mortality risks as well as various financial

risks in the context of GAOs.

5For example, medical breakthroughs or natural or man-made calamities can systematically im-
pact a population’s longevity.
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4.1.2 Goals, findings and Contributions

In this chapter, we seek to develop a basic understanding of the GWB for life feature

and investigate the associated risk-factors and their severity.

• We formally introduce the GWB for life feature and examine how such a product

would have performed, if it were offered in the past.

• We first analyze a continuous time version of the GWB for life assuming re-

tirement lifespans are exponentially distributed and Black-Scholes asset price

dynamics. This model allows us to obtain an analytical expression for GWB

value. While this analysis cannot be used as an absolute valuation tool for the

GWB for life, it provides us valuable insights into the possible sources of risk.

We find that:

– The GWB guarantees become more expensive for the company as the

volatility of the underlying VA fund increases. Also, the product value

varies significantly depending on the investor age at inception thus creating

an adverse selection bias risk.

– The GWB value has a convex relationship with interest rates making it

susceptible to volatilities in interest rates as well.

– GWB for life also has a sizeable risk related to investor pool longevities.

4.1.3 Chapter Layout

In Section 4.2, we formally describe the product specifics and other stylized features

that we consider in this chapter as well as the next. Section 4.3 then provides an

idea of how such a product might have fared (from the point of view of the com-

pany offering the product) in a historical context. Next, in Section 4.4, we derive

an analytical expression for the fair value of the GWB for life guarantee under the

simplifying assumptions mentioned earlier. We then use this analysis with some nu-

merical examples to get a sense of the relative price of GWB for life and the different

sources of risk to value in Section 4.5. We conclude with a summary of the findings

in Section 4.6.
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4.2 Product Description

In this section, we formally describe the Guaranteed Withdrawal Benefit (GWB) for

life feature. Typically, this option is available as an add-on or a rider feature with a

VA account at a fee premium.

• All guaranteed payments and fees are defined in terms of two state variables -

one is simply the underlying VA account value and the other is referred to as the

“benefit base”. The benefit base is used to determine the guaranteed withdrawal

amount for a year. We use Bn and Cn to respectively denote the benefit base

and the account value net of withdrawals, if any, at the nth anniversary.

• Suppose at time 0, an investor aged A opens an account with the GWB for

life feature with an initial investment C0. This capital is invested in an asset

mix of investor’s choice through a VA fund. All dividends and distributions are

assumed to be reinvested. For simplicity, we construct a reference index St for

the VA fund to tracks its total returns. The initial value of the benefit base is

set as B0 = C0.

• There is a minimum waiting period W and a retirement age AR defined in the

contract. The investor can start taking withdrawals from her account from

the (T + 1)st anniversary, where T = max(AR − A,W ). We assume A,AR,W

to be all integers. For n > T , the investor is guaranteed to be able to take

a withdrawal of q · Bn−1 at the nth anniversary. The insurance company is

responsible for covering any shortfall in case the account value falls below the

guaranteed withdrawal level, i.e., q ·Bn−1. This is the GWB guarantee and q is

termed as the guaranteed withdrawal rate.

• If the withdrawal taken at the nth anniversary does not exceed the contractual

guarantee (i.e., 0 for the first T anniversaries and q ·Bn−1 thereafter), the benefit

base Bn at the nth anniversary is set to the higher of Bn−1 and the contract

value after withdrawals (if any), i.e., Cn. This is the step-up (also sometimes

known as ratchet) feature. If the withdrawals exceed the contractual guarantee,

then Bn is set to the lower of Bn−1 and Cn.

• The investor is allowed to withdraw during any year the greater of the gains in

her account value over the previous year or a certain fraction b of her account

value without any penalties. Withdrawals in excess of these and the guaranteed
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level, however, result in the imposition of a surrender charge. In addition, large

withdrawals may also result in tax penalties.

• Every year, the investor is charged a fraction h of the benefit base for the year,

i.e., h ·Bn−1 at the nth anniversary, as fees for the GWB guarantee. We assume

that the fees are charged separately to the investor rather than being deducted

from the account6.

• Upon investor’ death, the residual account value is returned to a beneficiary.

While the above description does not fit any one specific product in the market,

it captures the key features of this class of products. Annual fees for GWB for life

option are usually the same for all participating investors, irrespective of their age

or chosen asset mix. Most insurance companies offering GWB also leave room to

unilaterally increase GWB fees after sales. We do not analyze the value of this option

to the GWB provider. Any tendency to increase the premium in contracts already

made poses a reputation risk besides going against the very spirit of insurance and

will make potential clients wary.

Appendix C provides a numerical illustration of the evolution of GWB over an

investor’s lifetime for a hypothetical sequence of the reference VA fund returns and

withdrawals by the investor.

GWB valuation is clearly dependent on how the investor chooses to withdraw.

In principle, the investor can strategize her withdrawals. Milevsky and Salisbury

[95], Dai, Kwok and Zong [48] and Chen, Vetzal and Forsyth [34] investigate the

implications of “optimal” dynamic withdrawals by investors in the context of the

GMWB and find them to increase the GMWB costs substantially. However, we

believe that in practice, especially for the GWB for life type product, investors are

unlikely to follow such optimal dynamic policies. This is because:

• “Optimal” withdrawal policies typically recommend the investor to withdraw

her investment out completely, when the protection guarantee is out-of-the

money. The papers cited above consider only the surrender charges that the

insurance company levies on large withdrawals to evaluate the cost of large

6In practice, fees related to VA products are typically deducted from the investor’s account every
year and thus affect the account value. The assumption about fees being charged separately allows
us to isolate the cash inflows and outflows associated with the product. This makes the break-even
fee computation, which otherwise would need solving a fixed point problem, much easier. As the fee
involved is small, typically few tens of basis points a year, we do not expect this approximation to
alter our results in a significant way.
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withdrawals for the investors. In practice, investors will also incur high indirect

costs in terms of taxes on the excess distributions and this is likely to make

taking large strategic withdrawals unattractive for investors.

• Investors are also more risk-averse, unable to hedge risks due to their own

longevities and less equipped than institutions like insurance companies to hedge

financial risk.

• Withdrawing less than the allowed amount is also likely to be sub-optimal for

the investor as the guarantees are valid for her lifetime.

Also, n practice, most investors follow simple thumb rules rather than complex dy-

namically optimal strategies to manage their investments. In our analysis, we will

primarily focus on the case where the investor withdraws the contractually guaran-

teed amount at each anniversary7. This is the maximum withdrawal the investor can

take without causing the step-ups to reverse. Let Rs
n+1 denotes the return on the

underlying VA fund for the period (n, n+ 1]. The dynamics of the account value Cn

and the benefit base Bn for a steady contract specified rate of withdrawal are given

by:

Cn+1 = (Cn ·Rs
n+1 − qn+1Bn)+ ;

Bn+1 = max(Bn, Cn+1) , (4.1)

where

qn =

{
0 , if n ≤ T ,

q , if n > T .
(4.2)

So far, we have not incorporated the mortality related randomness in our model. We

assume that the mortality process is independent of the market dynamics, and the

insurance company is risk-neutral with respect to it. We denote by Q, the measure on

the expanded sample space containing both the securities market and the investors’

mortalities and which is obtained by combining the risk neutral pricing measure

and the mortality laws. While we do not price the mortality risk into the GWB,

we investigate the magnitude of the implied risk. This can be used to compute a

premium or risk capital. See Milevsky, Promislow and Young, [94] for suggestions

about pricing mortality risk.

In the subsequent parts of this chapter as well as Chapter 5, we provide increas-

ingly refined analyses of the GWB product. Before proceeding to a formal analysis

7Later, in Section 5.3 in Chapter 5, we consider an alternate dynamic withdrawal strategy.
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using the risk-neutral pricing machinery, we first perform a small but interesting back-

testing experiment and examine how liabilities and revenues for a GWB guarantee

underwriter would have looked like, had it been offered in the past.

4.3 GWB - A Hypothetical Historical Analysis

We examine in this section how GWB would have fared had it been offered at var-

ious times in this and the last century. We set the GWB product parameters as

follows- guaranteed withdrawal rate q = 6%, minimum waiting period W = 3 years,

retirement age AR = 65 years, and fee rate h = 0.65%.

We then calculate the total values (discounted back to the time of account opening)

of the liabilities and fees for the insurance company arising from the GWB feature

if an investor aged 60 opened an account with an initial investment of 100, 000 at

the beginning of each of the 1124 months from January 1871 to December 1972.

We consider three possible asset allocation mixes, 20% equities, 60% equities and

100% equities by value. The balance is assumed to be invested in bonds, whose

month-on-month returns, we assume are the same as the prevailing long term interest

rates. We also assume that the VA portfolio is re-balanced monthly to get the desired

asset mix composition and dividends from equities are re-invested, i.e., there are no

distributions. We consider three values for realized investor longevity - 85 years, 90

years and 95 years.

To compute the cash-flows involved, we use the monthly data for S&P composite

levels, dividends and long-term interest rates, as extrapolated by Shiller and available

online from the website [1] for the period - January 1871 to December 2007. Since the

corresponding benchmark short-term interest rates were not available for the entire

period, we use a flat annual rate of 3.5% for discounting all cash-flows.

We first consider the performance of the GWB, if the month when the VA account

was opened was one of the 277 months from December 1949 to December 1972. This

ensures that we consider the markets for the relatively stable post second world war

interval only.

Rather surprisingly, for all asset-mix choices, in not one of these 277 scenarios,

the insurance company underwriting the GWB would have had to finance any part of

the guaranteed withdrawals, even if the investor went on to live for 95 years. Thus,

in all cases, the minimum withdrawal guarantee was superfluous and never drawn

upon! Table 4.1 summarizes the distribution of the net-value earned to the company

from the product, i.e., the difference between the total discounted value of the fees
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collected and the payouts made over the product’s lifespan. This suggests a healthy

20% to 30% margin on sales on average. Also, it suggests that the longer the investor

lives and the more aggressive her VA fund choice, the higher are the revenues for the

company on average8.

Equity
Expo-
sure

Investor
Age at
Death

Average Std. minimum
5%le
value

Median
95%le
value

maximum

85 17,145 2,541 14,259 14,471 15,806 22,467 22,677
20% 90 20,554 3,524 16,568 16,787 19,317 27,552 27,751

95 23,970 4,308 18,708 19,006 22,741 32,004 32,286
85 19,978 2,699 16,401 16,747 19,110 25,791 26,669

60% 90 24,510 3,638 19,480 20,210 23,804 33,308 34,361
95 29,709 4,753 23,118 24,095 28,881 42,141 43,572
85 23,509 6,889 16,042 16,655 21,214 43,566 45,767

100% 90 28,965 7,986 19,930 20,776 25,080 51,064 54,000
95 35,565 9,118 23,719 25,922 32,119 57,311 60,933

Table 4.1: Distribution statistics of GWB for life net value in different scenarios for an
account started between Dec. 1949 and Dec. 1972 (for initial investment of 100,000).

If however, we consider the entire range of the data available9, i.e., a total of 1224

vintages with the month of account opening ranging from January 1871 to December

1972, the results look very different. Table 4.2 shows key statistics for the total

discounted value of the payouts that the company would have had to finance while

Table 4.3 shows the same for the total discounted net value, i.e., fees less payouts,

that the company booked.

Equity
Expo-
sure

Investor
Age at
Death

Average Std. minimum
5%le
value

Median
95%le
value

maximum

85 0 0 0 0 0 0 0
20% 90 124 939 0 0 0 5,045 13,876

95 1,630 4,025 0 0 0 19,549 29,182
85 579 3,613 0 0 0 20,340 44,813

60% 90 2,669 9,642 0 0 0 51,255 75,390
95 5,898 16,436 0 0 0 79,621 101,371
85 9,734 27,822 0 0 0 130,526 160,970

100% 90 17,268 42,238 0 0 0 182,010 231,579
95 25,672 55,316 0 0 0 225,359 291,843

Table 4.2: Distribution statistics of GWB for life payouts in different scenarios for an
account started between Jan. 1871 and Dec. 1972 (for initial investment of 100,000).

8Note that these are average revenues and do not represent fair values.
9The corresponding time-frame would include two world wars and the Great Depression.
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Equity
Expo-
sure

Investor
Age at
Death

Average Std. minimum
5%le
value

Median
95%le
value

maximum

85 15,004 1,880 12,070 13,173 14,569 22,199 22,677
20% 90 17,011 2,781 5,269 14,645 16,305 27,232 27,751

95 17,424 5,319 (8,252) 8,653 17,320 31,636 32,286
85 18,378 4,512 (17,936) 13,392 17,855 27,698 29,486

60% 90 19,511 9,209 (44,945) 1,293 20,367 33,046 35,122
95 19,350 15,793 (67,686) (19,154) 22,156 39,785 43,572
85 14,989 25,965 (115,372) (50,905) 19,273 51,043 58,948

100% 90 12,475 40,230 (170,711) (89,250) 22,063 64,825 74,888
95 8,929 53,827 (223,944) (120,486) 25,229 76,652 88,656

Table 4.3: Distribution statistics of GWB for life net value in different scenarios for an
account started between Jan. 1871 and Dec. 1972 (for initial investment of 100,000).

These tables show that while still profitable on average, the GWB for life is defi-

nitely not a low-risk money spinner. The net-income values are considerably smaller

and the insurance company would have had to burden guaranteed withdrawals in

quite a few scenarios resulting in substantial losses (assuming no hedging). Also,

average net value now decreases with the aggressiveness of the chosen asset mix and

higher investor longevities no longer appear beneficial to the company.

The statistics for shortfall and net-value given in Table 4.2 imply that they have a

skewed distribution in which large losses occur with small probabilities. This suggests

that model estimation risk is important for GWB as it is the extreme events that drive

most of the losses and the pricing model used must be able to accurately capture them.

We end this section with a caveat - in general, any historical analysis for GWB

can be regarded as best as only instructive, because the GWB not only has a skewed

distribution for realized value but also has a long duration and financial data is

typically not stationary over such durations.

We now turn to valuing GWB using risk neutral pricing methods.

4.4 Black Scholes Model with Continuous Step-

ups and Exponential Mortality - CBSME Model

As (4.1) indicates, GWB has discrete cash-flows and step-ups. Considerable analytical

simplicity however is offered by considering a continuous time version of the GWB.

In this section, we consider this case and derive an analytical expression for the GWB

value. This is useful in generating insights in to the risk factors associated with the
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GWB.

• Step-ups as well as all cash-flows, i.e., withdrawals and fee payments are made

continuously.

• Investor’s lifespan in retirement is exponentially distributed with mean 1
λ
.

We assume that St, the reference index for the chosen VA fund, follows a geomet-

ric Brownian motion with constant volatility σ and the risk free rate r rate is also

constant. This is basically the Black-Scholes model [18].

The investor starts taking withdrawals from time t > T
4
= max(W,AR−A) at the

rate qtBt where,

qt =

{
0 , if t ≤ T ,

q , if t > T .

The investor also (separately) pays fees to the company at rate h indexed to Bt.

For ease of reference, we shall henceforth refer to this model, which treats GWB as a

continuous time instrument and prices it under the Black Scholes framework assuming

exponential retirement lifespans, as the CBSME model.

In this model, the only state variables that affect the GWB value are Bt, Ct and

the investor age or equivalently time t. The dynamics for Bt and Ct are given as:

dCt =

{
rCtdt− qtBtdt+ CtσdZ

Q
t if Ct ≥ 0 ,

0 if Ct = 0 .
(4.3)

dBt = 1{Ct=Bt}(dCt)
+ . (4.4)

Here ZQ
t is a Q Brownian motion. Now, let L(C,B, t) denote the fair value of the

protection offered to the investor through the GWB scheme at t as a function of the

state variables. This is simply the part of the withdrawals that are borne by the

insurance company. Note that if H(C,B, t) denotes the fair value of all withdrawals

made by the investor or her beneficiary, then the following equality holds

L(C,B, t) = H(C,B, t)− C . (4.5)

Let Gh(C,B, t) denote the value of the revenue stream from the investor at time

t as a function of the state variables. We also define a normalized revenue stream as

G(C,B, t)
4
= Gh(C,B,t)

h
.

Our goal is to find the functions L(C,B, t) and G(C,B, t).
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We first prove the following property that reduces the dimensionality of the prob-

lem.

Proposition 4.1. The functions L(C,B, t) and G(C,B, t) are homogeneous B,C

and satisfy the following relations:

L(C,B, t) = B · L
(
C

B
, 1, t

)
;

G(C,B, t) = B ·G
(
C

B
, 1, t

)
. (4.6)

Proof. Let the tuple (Bt, Ct) denote an investor’s benefit base and account value at

time t. For a given sample path ω of the evolution of the market and mortality

factors, let (Bs(ω), Cs(ω)) be the value of this tuple at some time s ≥ t along ω.

From the homogeneity of the system dynamics as given by (4.4), it follows that had

the investor started with a benefit base and account value combination (y ·Bt, y ·Ct)
for some y > 0, then the sample path ω values of these quantities at some time s ≥ t

would have been (y · Bs(ω), y · Cs(ω)). Moreover, the cashflows that the company

incurs, i.e., the shortfalls and revenues at any time t are also homogeneous functions

of the benefit base Bt and account value Ct. From these, it follows that for any y < 0,

L(y · C, y ·B, t) = y · L(C,B, t) ;

G(y · C, y ·B, t) = y ·G(C,B, t) .

Hence for B > 0, we must have

L(C,B, t) = B · L
(
C

B
, 1, t

)
;

G(C,B, t) = B ·G
(
C

B
, 1, t

)
.

In light of Proposition 4.1, we define the functions l(x, t) and g(x, t) as follows

l(x, t) = L(x, 1, t) . . . , 0 ≤ x ≤ 1 ;

g(x, t) = G(x, 1, t) . . . , 0 ≤ x ≤ 1 . (4.7)
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The quantity x can be interpreted as the benefit base capitalization ratio C
B

. The func-

tions l(x, t) and g(x, t) are to be interpreted as the values of respectively the liabilities

and revenue streams, normalized by the benefit base, before a step-up operation is

performed.

It turns out that for t ≥ T , it is easier to find L(C,B, t) and G(C,B, t) (or

equivalently l(x, t) and g(x, t)) by solving a differential equation. Once this is done,

L(C,B, t) and G(C,B, t) can be determined for t < T by taking a risk neutral expec-

tation of their respective values at time T . For this we will need the joint distribution

for (BT , CT ) conditional on (Bt, Ct) for t ≤ T under the risk neutral measure Q. We

therefore break the pricing of GWB into two different phases:

1. Phase 1: When t < T . There are no withdrawals in this phase.

2. Phase 2: When t ≥ T and the investor has started taking withdrawals.

We now describe each of these in detail beginning with Phase 2.

Value of Cashflows in Withdrawal Phase (Phase 2)

Here, because of the assumption that the investor has an exponentially distributed

residual life in retirement, l(x, t) and g(x, t) as defined in (4.7) become independent

of time t for t ≥ T . We summarize and prove this in the following proposition.

Proposition 4.2. For t ≥ T ,

l(x, t) = l(x, T ) ;

g(x, t) = g(x, T ) . (4.8)

Proof. Note that both the market returns process and the mortality process are mem-

oryless for t ≥ T . Moreover the dynamics of the state variables as given (4.4) also do

not depend on t for t ≥ T as qt = q is a constant for this period. It then follows that

for t ≥ T , the system has no memory and hence

L(C,B, t) = L(C,B, T ) ;

G(C,B, t) = G(C,B, T ) .

Using (4.7), the result in (4.8) then follows immediately.

103



For t ≥ T , then l(x, t) and g(x, t) can be regarded as functions of just one variable.

To ease notation, for this particular subsection, where we are working under the case

t ≥ T , we shall denote them as simply l(x) and g(x) respectively.

Lemma 4.1. 1. The function l(·) satisfies the following 2nd order differential equa-

tion

1

2
σ2x2l′′ + (rx− q)l′ − (r + λ)l = 0 ; (4.9)

and the boundary conditions

l(0) =
q

r + λ
, (4.10)

l′(1) = l(1) . (4.11)

2. The function g(·) satisfies the following 2nd order differential equation

1

2
σ2x2g′′ + (rx− q)g′ − (r + λ)g + 1 = 0 ; (4.12)

and the boundary conditions

g(0) =
1

r + λ
, (4.13)

g′(1) = g(1) . (4.14)

Proof. We will prove the result only for l(x), as the proof for g(x) follows along

identical lines. We know that in phase 2, L(C,B, t) = L(C,B, T ) = B · l(C
B

). Let A

be the event that the investor passes away in the interval (t, t + dt]. Thus P(A) =

λdt+ o(dt2). When 0 < C < B, dB = 0. Then by Ito’s Lemma,

dL = P(A) · (0− L) + (1− P(A)) ·
(
∂L

∂C
dC +

1

2

∂2L

∂C2
< dC · dC >

)
= −λLdt+

∂L

∂C

(
(rC − qB)dt+ σCdZQ

t

)
+
∂2L

∂C2
σ2C2dt .

Here, < dC · dC > is short-hand for EQ[dC2]. Under the risk-neutral measure, we

must have

EQ[dL] = rLdt− (qBdt− L)+ ,

i.e., (rC − qB)
∂L

∂C
+

1

2
σ2C2 ∂

2L

∂C2
− λL = rL . (4.15)
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Using the property that L(C,B, t) = B · l(x), with x
4
= C

B
, we get

(rx− q)l′ + 1

2
σ2x2l′′ − λl = rl ,

i.e.,
1

2
σ2x2l′′ + (rx− q)l′ − (r + λ)l = 0 .

For the first boundary condition, we simply note that

l(0) = L(0, 1, T )

= EQ
[∫ ∞

0

exp(−(r + λ)t) · qdt
]

=
q

r + λ
.

The second boundary condition is more technical and represents a “smooth pasting

condition”. We give a rough proof:

Suppose step-ups can occur only after a delay ∆. Let Bt = B, Ct+∆ = C and

L(Ct+∆, Bt+∆) = L(C,max(C,B))
4
= L̃B(C). The function L̃B(·) is assumed to be

continuously differentiable. Then, it follows that

if C > B,
dL̃B(C)

dC
=

dL(C,C)

dC
= l(1) .

By continuity,

dL̃B(C)

dC
|C=B = l(1) . (4.16)

Now, since Bt is continuous,

lim
∆→0

L̃B(C) = Bl

(
C

B

)
,

hence, lim
∆→0

dL̃B(C)

dC
= l′

(
C

B

)
. (4.17)

Putting (4.16) and (4.17) together, we get the boundary condition (4.11).
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The differential equations in Lemma 4.9 have the following general solutions

l(x) = C1x
−ke−

q

σ2xWhM
(
k,m,

2q
σ2x

)
+ C2x

−ke−
q

σ2xWhW
(
k,m,

2q
σ2x

)
,

(4.18)

g(x) = D1x
−ke−

q

σ2xWhM
(
k,m,

2q
σ2x

)
+D2x

−ke−
q

σ2xWhW
(
k,m,

2q
σ2x

)
+

1
r + λ

;

(4.19)

where

k =
r

σ2
− 1 ,

m =

√(
1
2

+
r

σ2

)2

+ 2
λ

σ2
.

The functions WhW(k,m, z) and WhM(k,m, z) are hypergeometric functions that

solve the Whittaker Differential Equation (see Mathworld, [91]):

d2u

dz2
+
du

dz
+

(
k

z
+

1
4
−m2

z2

)
u = 0 .

Some basic properties of these functions, as well as the limits limz→∞WhM(k,m, z)

and limz→∞WhW(k,m, z) are provided in Appendix D. Using these properties, we

can find the constants C1, C2, D1, D2 satisfying the boundary conditions given in

Lemma 4.1 as

C1 =
q

r + λ
·
(

2q

σ2

)k Γ(1
2
− k +m)

Γ(1 + 2m)
; (4.20)

C2 = C1 ;
(1

2
+ k +m)WhM(k + 1,m, 2q

σ2 ) + WhM(k,m, 2q
σ2 )

WhW(k + 1,m, 2q
σ2 )−WhW(k,m, 2q

σ2 )
; (4.21)

D1 = 0 ; (4.22)

D2 =
1

r+λ

WhW(k + 1,m, 2q
σ2 )−WhW(k,m, 2q

σ2 )
. (4.23)

Value of Cashflows at Inception and in Phase 1

The values of liabilities and the normalized revenue streams for the GWB product at

time T , when the withdrawals start will be given by

L(CT , BT , T ) = BT · l
(
CT
BT

)
;

G(CT , BT , T ) = BT · g
(
CT
BT

)
,
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where the functions l(·), g(·) and the various parameters in the formulae are given by

(4.18), (4.19) and (4.20)-(4.23). Since there are no cash outflows involved in Phase 1

or during the waiting period, when the investor does not withdraw, it follows that, if

It denotes the indicator variable that the investor is alive at time t, then

L(C0, B0, 0) = EQ[IT e
−rTL(CT , BT , T )]

= e−rTE[IT ]EQ
[
BT · l

(
CT
BT

)]
. (4.24)

For the revenue stream, we have

G(C0, B0, 0) = EQ
[∫ T

0
e−rtItBtdt+ IT e

−rTG(CT , BT , T )
]

=
∫ T

0

(
e−rt · E[It] · EQ[Bt]

)
dt+ e−rT · E[IT ] · EQ

[
BT · g

(
CT
BT

)]
.

(4.25)

From (4.24) and (4.25), it follows that, to compute the value of the product at time

0, we need:

• The joint distribution of BT and CT under the risk neutral measure.

• The marginal distribution of Bt under the risk neutral measure.

Fortunately, both these quantities are computable, using properties of Brownian Mo-

tion. It is easier to work with the transformed processes

ct
4
= ln

(
Ct
C0

)
; (4.26)

bt
4
= sup

u:0≤u≤t
cu

= ln

(
supu:0≤u≤tCu

)
C0

= ln

(
Bt

B0

)
. (4.27)

The equality in (4.27) follows from the fact that ln(·) is a monotonous function and

that C0 = B0.

It can be shown that the joint distribution of ct, bt under Q is given by

fQct,bt(z,m) =

{
2(2m−z)
σ2t

· 1
σ
√
t
Φ
(

2m−z
σ
√
t

)
· exp

(
ν
σ2 z − ν2

σ2 t
)

. . . , m ≥ z ,

0 . . . , m < z ;

where, ν = r − 1

2
σ2 . (4.28)
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The function Φ(x)
4
= 1√

2π
exp(−x2

2
) is the standard normal density function. The

marginal distribution of bt on the other hand is given by

fQbt (m) =
2
σ
√
t
Φ
(
m− νt
σ
√
t

)
− 2ν
σ2

exp
(

2νm
σ2

)
·N
(
−m− νt
σ
√
t

)
. . . ,m ≥ 0. (4.29)

Here N(·) denotes the standard normal cumulative density function. Equations (4.28)

and (4.29) are derived in Appendix E. These distributions then allow us to compute

the expectations in (4.24) and (4.25) and consequently L(C,B, 0) and G(C,B, 0).

Note that (4.28) and (4.29) are respectively the joint distribution of (bT , cT ) and

marginal distribution of bt conditional on b0 = c0.

For evaluating the value of the product at an intermediate time s during Phase

1, such that, 0 < s < T , we would need these distributions conditional on general

values of bs, cs satisfying cs ≤ bs. This can be in fact obtained readily from (4.28)

and (4.29) by noting that

bt = sup
u:0≤u≤t

cu

= max{bs, sup
u:s≤u≤t

cu} .

Unfortunately, although we know the joint distributions for bt and ct (and hence

effectively Bt and Ct), through (4.28), the integrals in (4.24) and (4.25) do not have

a closed form representation and must be evaluated numerically.

Note that, we have assumed exponential mortality model for the investor only in

Phase 2. Investor mortality rates during Phase 1, to be used in (4.24) and (4.25) can

be arbitrary.

We now use the expressions derived in this section, to compute the value and

sensitivity of the GWB for life product for a typical offering.

4.5 Numerical Results

In this section, we use the results derived in Section 4.4 for some numerical compu-

tations. As the CBSME model considered therein is an approximation of the actual

GWB product, we focus more on risk and sensitivity analysis rather than absolute

valuations. The experimental set-up is as follows:
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Product Parameters

• We set the minimum waiting period W = 3 years, the retirement age AR = 65

years and the guaranteed withdrawal rate q = 6%. These are indicative of

typical offerings.

• For computing the net value of the GWB, we will assume that the fees are

charged at the rate h= 0.65% of the benefit base and take a reference initial

investment of C0 = 100. Thus the net value figures that we obtain can be

interpreted to have units of percentage of sales of VAs for which the GWB for

life was elected.

Investors’ Profiles

• We consider investor age at inception, i.e., A to vary in the range 50 to 70 years.

• Investor chooses an asset-mix for investment by selecting a target level of expo-

sure (by value) that her portfolio will have to equities and we denote the same

by α. We consider four levels for α - 20%, 40%, 60% and 80%. The balance of

the portfolio will be invested in relatively less volatile instruments, which we re-

fer to as “bonds”10. The VA fund is also assumed to be continuously rebalanced

to maintain the taget exposures.

• We also consider the overall value of GWB for the insurance company for sales

across different investor cohorts and investment plans. For this, we assume

that the distribution of clients’ age at inception, A, weighted by their initial

investment amount C0 is uniformly distributed in the range 50 to 70. Further,

for each cohort, the fraction of investment in VA funds with values of α as

20%, 40%, 60% and 80% is 0.1, 0.4, 0.4 and 0.1 respectively. We refer to this

portfolio of clients with the stated distribution of age at inception and asset-

mix selection as the “meta-portfolio” and this is again indicative of a typical

VA client pool.

• For estimating mortality risk, we use the year 2008 mortality table11 published

by the Pension Benefit Guaranty Corporation (PGBC) and which is used to

value annuities under the Employee Retirement Income Security Act (ERISA)

10These need not be interest rate or zero-coupon bonds.
11These mortality rates have been obtained as a 50-50 blend of mortality rates for healthy males

and females in the US.
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Section 4050 available from [101]. We assume that the mortality rates remain

stationary, i.e., different cohorts experience the same mortality rate at the same

ages. We convert this agewise table into a continuous time mortality or hazard

rate function by modeling investor death as the arrival of a time inhomogeneous

Poisson process with piecewise constant intensities, each piece being of length

one year12. For convenience, the relevant mortality rates published in this table

and the implied hazard rates and average residual life (for ages 49 and above)

are listed in Appendix F.

For Phase 2, i.e., for t > T , we then set the intensity to be the inverse of

the expected residual life of the investor at T , as implied from the hazard rate

function. Thus, in Phase 2, we model death as the arrival of a time homogeneous

Poisson process.

For illustration, Table 4.4 gives the maximum number of Phase 1 and average

number of Phase 2 years for five different cohort ages - 50, 55, 60, 65 and 70. For

the cohort who starts at ages 50, 55 and 60, withdrawals will start at age 65.

Because of the minimum waiting period constraint, withdrawals for the cohorts

aged 65 and 70 at inception will start at ages 68 and 73 respectively.

Cohort Age Max. Phase 1 years (T)
Avg. Withdrawal
Years ( 1

λ)
50 15 20.38
55 10 20.38
60 5 20.38
65 3 18.01
70 3 14.27

Table 4.4: Maximum Phase 1 years and Average Phase 2 years for select cohorts.

Asset Dynamics

We assume that both equity markets as well as bonds have log-normal returns and

are uncorrelated. The Black Scholes volatility of the equity market returns σe, is set

to 20% (annualized), while the same for the bonds, σb, is set to 2% (annualized).

The one year risk-free rate is taken to be 3.5%. Because the VA fund is rebalanced

continually, the VA fund index St will follow a geometric Brownian motion consistent

with the assumptions of Section 4.4. Its volatility σ for an exposure α to equities is

12This is commonly known as De-Moivre’s approximation.
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obtained as

σ2 = α2 · σ2
e + (1− α)2 · σ2

b . (4.30)

The following table gives the effective volatility for the four asset allocation mixes

that we consider:

Equity Exposure (α) Effective Volatility (σ)

20% 4.31%
40% 8.09%
60% 12.03%
80% 16.01%

Results

For each cohort or age-group, we compute the value of Liabilities and Revenue

base at inception for an account started with an investment of 100, i.e., the values

L(100, 100, 0) and G(100, 100, 0). These are reported in Tables 4.5 and 4.5 respec-

tively. These are used to compute the break-even fee h0, or the fee at which the Net

Present Value will become 0 and the NPV, assuming a fee of h = 0.65%. Results for

each cohort and asset mix are summarized in Tables 4.5 and 4.5.

Exposure to equities

Cohort Age 20% 40% 60% 80%
50 10.38 14.97 21.80 30.57
55 10.55 14.98 21.38 29.33
60 10.77 14.89 20.53 27.29
65 8.64 11.96 16.44 21.77
70 5.28 7.66 10.97 14.98

Table 4.5: Liability Values for different cohorts and asset mixes under the CBSME
Model.

From these results, it would appear that the typical fees of around 65 bps charged

by the company grossly underprices the product. However, we re-emphasize that the

CBSME model used here analyzes a continuous time version of the actual product

and is not comparable to the same at an absolute level. Besides, the exponential

model for retirement lifespans is also rather crude as is evidenced by Figure 4-1 that

shows how average residual life varies with age.
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Exposure to equities

Cohort Age 20% 40% 60% 80%
50 2684 2870 3126 3427
55 2192 2345 2545 2776
60 1712 1829 1975 2138
65 1423 1515 1628 1754
70 1247 1325 1420 1526

Table 4.6: Revenue Values/Fees for different cohorts and asset mixes under the CB-
SME Model.

Exposure to equities

Cohort Age 20% 40% 60% 80%
50 0.39% 0.52% 0.70% 0.89%
55 0.48% 0.64% 0.84% 1.06%
60 0.63% 0.81% 1.04% 1.28%
65 0.61% 0.79% 1.01% 1.24%
70 0.42% 0.58% 0.77% 0.98%

Table 4.7: Break-even fees for select cohorts and asset mixes under the CBSME
Model.

Exposure to equities

Cohort Age 20% 40% 60% 80%
50 7.07 3.69 -1.48 -8.30
55 3.70 0.26 -4.83 -11.29
60 0.36 -3.00 -7.69 -13.39
65 0.61 -2.11 -5.85 -10.37
70 2.82 0.95 -1.74 -5.06

Table 4.8: Net value of the GWB product for select cohorts and asset mixes under
the CBSME Model.
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Figure 4-1: Average Residual life as a function of Age

Nevertheless, since the version of GWB considered by the CBSME model is struc-

turally similar to the actual product, we can use the results of Section 4.4 to get an

idea of primary risk factors and their magnitudes. The availability of a near closed

form solution considerably speeds up the computations needed for this investigation.

Figure 4-2, shows how the break even fee varies with cohort age while Figure 4-3

shows the variation of net-value (at h = 0.65% fees) with cohort age for different asset

mix choices.

We observe that:

• In general, the more aggressive the asset mix, the more expensive would be

the GWB for life guarantee. A decomposition of the net-value as provided in

Tables 4.5 and 4.5 for selected cohorts reveals that in fact the payout liabilities

increase sharply with the VA fund volatility. This would mean that the risk

capital requirements will also be higher for GWB guarantee associated with

the more volatile VA funds. The corresponding changes in the net value and

break-even fees are more subdued because the fee structure which is indexed to

the benefit base provides a greater upside in revenues for more aggressive asset

mixes and helps to somewhat offset the increases in the liabilities.
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Figure 4-2: Break Even fee as a function of Age A for different asset mix choices
under the CBSME Model.

• Cohort age is a significant determinant of the value of the product. The ideal

time for an investor to opt for GWB is probably just before retirement so as

to minimize the duration of Phase 1 and maximize the same for which the

withdrawal guarantee applies, i.e., Phase 2. Because of the waiting period

W = 3 years, the number of years for which withdrawals are guaranteed starts

decreasing with the investor age at inception, A, for A ≥ 62. However, for an

investor with A < 62 years, the number of phase 2 years is the same as what it

would have been had she started at age 62 years, because she must reach the

retirement age AR = 65 years before withdrawals can start. On the other hand,

the number of years for which the insurance company can collect fees from the

investor is more. This leads to a fall in the break-even fees and an increase

in the net value for the company13. As a result cohorts aged 62 are the most

expensive for the insurance company.

13Because of the step-up feature, the costs and revenues associated with the GWB actually have a
slightly more complex relationship with cohort age. However, as step-ups tend to increase the value
of both the withdrawal guarantees as well as the fee base, the effects somewhat offset each other.
This also suggests that the step-up feature is of limited additional value to the investor because
the fees are indexed to the benefit base and hence they also get stepped up with the level of the
guarantee.
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Figure 4-3: Net Value as a function of Age for different asset mix choices under the
CBSME Model.

We find that there is a significant risk of adverse selection of clientele in the one

price fits all approach that the companies have been using to market and sell the

GWB. In the long run, companies must differentiate in fees based on the investor

age and their fund selections. A few companies have started charging a premium for

GWB guarantees on more aggressive asset mixes. However price differentials across

investor ages are also needed.

Next, we consider the sensitivity of the entire client portfolio, i.e., the meta-

portfolio described earlier to shifts in interest rates and mortality rates. Figures

4-4 and 4-5 show how respectively the break-even fees and the net-value fluctuate

with the interest rate r. As expected, the GWB guarantee becomes more expensive

as interest rates decrease. Further, the relationship between net value and interest

rates is convex14. This indicates that interest rate volatility will work to lower GWB

valuations and must be considered in pricing it.

Finally, we compute the net value and break even fees for the meta-portfolio if

all average residual lives (during Phase 2) were to change by ±1. The numbers,

14An intuitive reason for this convex nature is that as the risk-free rate decreases, not only does
the possibility of a withdrawal shortfall increase but also the discount factor that would apply to
the resulting payouts decreases.
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Figure 4-4: Break even fee for the meta-portfolio as a function of risk-free rate under
the CBSME Model.

presented in Table 4.9, show that the mortality related risk is substantial. To put

things in perspective, the average residual lives at 65 for healthy males and females

in the US differ by more than 2 years.

Change in Avg.
Residual Life

Break even fee Net value at h=0.65%

none 0.80 % -3.09
+1 0.85 % -4.08
-1 0.76 % -2.10

Table 4.9: Impact of changes in average withdrawal years on break-even fee and net
value of the meta-portfolio under the CBSME Model.

Thus, the scenarios considered in Table 4.9 are well within the realms of possibility.

Also, the effective longevities for the insurance company can be different from the

population longevities and difficult to estimate if the amount of capital invested and

investor age are dependent. Further, because there are no liquid mortality sensitive

instruments, the resultant risk can be difficult to manage.
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Figure 4-5: Net Value of the meta-portfolio as a function of risk-free rate for the
CBSME Model.

4.6 Summary

In this chapter, we introduced the GWB for life feature - an exotic option that

insurance companies have been offering to investors to plan for their retirement. The

GWB feature allows an individual to stay invested in the market and capture the

upside while being assured of a steady income during retirement.

We then used a simplified model to derive an analytical expression for the value of

liabilities and revenues due to the GWB option. Using these results, we analyzed the

impact of various risk factors on the same for typical values of the problem parameters.

This analysis showed:

• The value of the product is sensitive to the choice of the asset mix by the

investor. The more aggressive (or volatile) the asset mix, the more expensive is

the GWB guarantee.

• The value of GWB is also significantly dependent on the cohort age. In general,

the product becomes more expensive for the company (and conversely more

attractive to the investor), the shorter the pre-withdrawal period and longer

the withdrawal period. The dependence of the break-even fee on investor char-
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acteristics might lead to an adverse bias in company’s customer profile, unless

more price differentiation is provided.

• The product is negatively exposed to volatility in interest rates.

• The product value is quite sensitive to the client pool’s mortality distribution.

This is a challenge, because this risk can be difficult to hedge in practice.

In the next chapter, we seek to value the GWB in a more realistic setting, taking

into account the various risk factors identified in this chapter.
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Chapter 5

Guaranteed Lifetime Payouts:

Further Analysis

5.1 Introduction

In Chapter 4, we introduced the Guaranteed Withdrawal Benefits (GWB) for life

product that insurance companies have been offering off late as a retirement invest-

ment solution. We also presented in Section 4.4 of this chapter, the simple CBSME

model for analysing the GWB. The various simplifying assumptions - notably Black

Scholes asset price dynamics, exponentially distributed retirement lifespans and con-

tinuous step-ups helped us to derive an almost closed-form solution for the value of

GWB liabilities and revenues.

We shift the focus of this chapter to modeling the GWB product in a more realistic

setting. Inevitably, this will come at the cost of the tractability that we achieved with

the CBSME model. We first remove the assumptions about continuous step-ups and

an exponential distribution for the retirement lifespans. This gives us a base-line

valuation of the product in the Black-Scholes model.

Ballotta [9], Lee and Stock [84], Wang, Gerrard and Haberman [115] have pointed

out the importance of considering interest rate risks for VA products with embedded

options. However, except for the GAO/GMIB type of products, which are primar-

ily interest rate options, valuation impact due to stochastic interest rates is seldom

considered. Since GWB for life has long durations, that can easily extend over 30

to 40 years, interest rates can fluctuate significantly during the product’s lifetime.

The analysis presented in Section 4.5 of Chapter 4 using the CBSME model also

indicated a negative exposure to interest rate volatility. Apart from interest rate
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risks, as the historical analysis presented in Section 4.3 of Chapter 4 revealed, GWB

is like a deep-out-of-the money option. Hence, sound modeling of the “tail events”

in asset returns is crucial for GWB valuations. As we pointed out in Chapter 4,

the GMWB/GWB family has been regarded in the literature as primarily an equity

based product and has not really been analysed in the literature beyond the Black-

Scholes model, which assumes constant interest rates and a normal distribution for

(continuously compounded) asset returns.

In this chapter, we refine the basic Black-Scholes models to investigate the effect of

stochasticity in interest-rates and “stochastic volatilities” on GWB pricing. Milevsky

and Salisbury [95], Dai, Kwok and Zong [48] and Chen, Vetzal and Forsyth [34] show

how fully rational or strategic investor behavior can impact GMWB costs in a Black-

Scholes model. We find that even under “typical” investor behavior, accounting for

stochasticity of interest rates as well as stochastic volatilities can significantly impact

GWB valuation. We also consider an alternate withdrawal behavior for investors

where they refuse step-ups in the Phase 2 of the product, but find it to have a limited

negative impact on valuation. Like Chapter 4, we also conduct a sensitivity analysis

GWB value with respect to investor characteristics such as age and asset-mix choice

as well as mortality rates, under different models. We then examine some issues

related to hedging the GWB.

5.1.1 Findings and Contributions

In this chapter, we seek to price the GWB in a realistic setting, incorporating the

risk-factors identified in Chapter 4. We proceed by taking a typical GWB offering and

pricing it under a series of valuation models. We start with the basic Black Scholes

framework and then incrementally refine it to account for first, stochastic interest

rates and then, stochastic volatilities. We ensure that the models are tuned so that

they correspond to the same level of interest rates and option implied volatilities. We

find:

• All models corroborate the key inferences made from the simple CBSME model,

namely,

– GWB value is quite sensitive to both the chosen asset mix as well as the

age of the investor.

– GWB has a high sensitivity to the client pool’s mortality.
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• Accounting for stochasticity in interest rates and return volatilities has a mate-

rial downside effect on valuations.

• The value put to the GWB has a high dependence on the class of models

used. Neither the GWB nor an equity-option with duration anywhere close to

the GWB lifespan is actively traded in the market. Any valuation of a GWB

product will involve assumptions about markets and investors, not all of which

can be inferred from the market data. Hence companies issuing the GWB must

value them using their own proprietary models1. Given its impressive sales, this

“model risk” associated with the GWB implies that there is a high possibility of

a significant mis-valuation of the insurance companies’ liabilities due to model

mis-specification.

• Investor behavior on the other hand, does not seem to impact the cost sig-

nificantly. This, we believe, can be attributed to the step-up feature and the

indexing of fees to the benefit base, which provide a natural hedge against

dynamic withdrawals.

• Hedging GWB is challenging because its valuation itself is sensitive to the model

family used. Further, it has a high exposure to risk factors such as mortality

rates for which effective hedging instruments may not be available. Moreover,

on the whole, though net-value seems less sensitive to investor behavior, hedging

policy would depend on how customer behavior evolves. We also show that even

simple delta-hedging poses challenges, as the step-up feature makes the delta

discontinuous.

We find that on the whole, there is considerable ambiguity surrounding the true value

of GWB for life. This and a high exposure to risk factors that are not actively traded

implies that the GWB for life bears a substantial risk for its underwriters that will

be very challenging to manage and hedge against.

5.1.2 Chapter Layout

In this chapter, we consider three arbitrage pricing models to value the GWB for

life. These models differ in their assumptions about asset price dynamics in the risk-

neutral world. In Section 5.2, we first outline a general pricing framework for the

1GWB for life should be a Level 3 asset in the parlance of the FAS 157 standard issued by the
Financial Accounting Standards Board (FASB), [55].
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GWB. We then describe in detail each of the three models that we use for pricing. In

Section 5.3, we present an alternate and dynamic mode of withdrawals by investors

and discuss how GWB value can be computed for this withdrawal strategy under the

different models considered in this chapter. In Section 5.4, we present and analyze

numerical results from valuations under different models and assumptions on with-

drawal behavior. This is followed by a discussion on hedging and potential issues

therein in Section 5.5. Finally, we summarize the findings and some directions for

future research in Section 5.6.

5.2 Valuation Models

In this section, we describe the three asset dynamics models that we use to price the

GWB guarantees. The CBSME model in Section 4.4 of Chapter 4 made two rather

strong assumptions:

1. Step-ups and cash-flows happen continuously.

2. The residual life of investor in retirement is exponentially distributed.

Step-ups for a GWB type product typically happen annually. Continuous step-ups

can significantly distort valuation. The 2nd assumption is also inaccurate as mortality

rates typically increase with age.

We relax both these assumptions for the analysis in this chapter.

This means we consider both the step-ups as well as cash-flows to happen dis-

cretely, more specifically, annually. The product that we analyze then corresponds

exactly to the specifications given in Section 4.2 of Chapter 4. For the analysis in

this section, we will assume that the investor withdraws the contractually guaranteed

amount at each anniversary. We restate the dynamics in (4.1) of the GWB state

variables under this assumption:

Cn+1 = (Cn ·Rs
n+1 − qn+1Bn)+ ;

Bn+1 = max(Bn, Cn+1) , (5.1)

where

qn =

{
0 , if n ≤ T ,

q , if n > T .
(5.2)

As before Rs
n+1 = Sn+1

Sn
denotes the return on the underlying VA fund for the

period (n, n+ 1].
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In addition, we also now allow the investor’s residual life, TA, to have an arbitrary

distribution, say fTA(·). The only assumption we make is that TA is independent of

the market factors.

When the mortality related risk is diversifiable or the insurance company is risk-

neutral to such risk (as we assume for our valuation analysis), there are two equivalent

ways to account for the randomness in TA:

1. Find the value of the product as a function of TA. The fair value of the product

is obtained as simply an expectation of this value function under fTA(·).

2. Model the investor’s death as the arrival time of a non-homogeneous Poisson

process, i.e., one with time dependent intensity such that the implied distribu-

tion of the residual life TA is fTA(·). Note for any distribution function fTA(·),
such an intensity process (often known as a mortality or hazard rate) can al-

ways be defined2. We then find the value of GWB as a function of time using

backward substitution.

The second method, as we shall illustrate shortly, has computational advantages.

While we do not consider the case of stochastic mortalities here, this framework also

allows one to incorporate the same, if desired, more easily (see Biffis [16]).

5.2.1 General Framework for pricing GWB products

Let Ln(Cn, Bn, ω) and Gn(Cn, Bn, ω) respectively denote the values of liabilities and

revenue base (i.e., revenues normalized by the fee rate h), at time n, excluding the

cash-flows pertaining to the nth anniversary for a given sample path ω.

Let rfn
4
=
∫ n
n−1

rsds denote the continuously compounded risk-free rate for the

interval (n−1, n] and In be the indicator variable that the investor is alive at the end

of year n. Then on a given sample path ω,

In(ω)Ln(Cn, Bn, ω) = In+1(ω) · e−r
f
n+1
(
(qn+1Bn − CnRs

n+1)+ + Ln+1(Cn+1, Bn+1, ω)
)

In(ω)Gn(Cn, Bn, ω) = In+1(ω) · e−r
f
n+1 (Bn +Gn+1(Cn+1, Bn+1, ω)) (5.3)

For an investor aged A, we define

λAn
4
= ln

(
P(In = 1)

P(In−1 = 1)

)
.

2To achieve this, hazard rate at time λt at time t is simply set a λt
4
= fTA (t)

1−FTA (t) , with FTA(·),
being the cumulative density function for TA.
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λAn is thus a discrete time “hazard” or mortality rate. It is common to assume that the

residual life spans corresponding to different cohorts have stationary distributions.

This means that the hazard rate can be expressed as a function of the investor’s

current age. More specifically, if λn is the hazard rate of a population at birth then,

λAn = λA+n. Thus P(In = 1) = exp(−
∑n

i=1 λ
A
i ). We assume there exists a finite N

such that P(IN+1 = 1) = 0, or equivalently, λN+1 =∞.

We define product epochs as dates where contractual adjustments or cash-flows
related to the product occur. From (5.1) and (5.3), it can be seen that all epochs
related to the GWB, whether cash-flows in terms of withdrawals by the investor and
payment of fees to the company or changes to state variables due to step-ups or
withdrawals, happen on contract anniversaries. Hence, any arbitrage pricing model
that gives the joint distribution of one year risk free rate rfn and Rs

n can be used to
price the GWB. Most commonly used asset price and interest rate dynamics models
are Markovian. If we are working with such a Markovian model with a state vector
Yt, which by assumption must be independent of mortality dynamics, then it must be
possible to express liabilities and revenue stream values as some functions of time and
the state variables Cn, Bn and Yn. Let Ln(Cn, Bn, Yn) and G(Cn, Bn, Yn), respectively
denote the fair value of liabilities and revenues conditional on the investor being alive
at year n. These functions must satisfy the following recursive relations:

Ln(Cn, Bn, Yn) = e−λ
A
n+1EQ

[
e−r

f
n+1

{(
qn+1Bn − CnRsn+1

)+
+ Ln+1

(
(CnRsn+1 − qn+1Bn)+,max(Bn, CnRsn+1 − qn+1Bn), Yn+1

)}
| Yn

]
,

Gn(Cn, Bn, Yn) = e−λ
A
n+1EQ

[
e−r

f
n+1 {1

+ Gn+1

(
(CnRsn+1 − qn+1Bn)+,max(Bn, CnRsn+1 − qn+1Bn), Yn+1

)}
| Yn

]
.

(5.4)

For compliant investor withdrawals, we have a homogeneity relation along the lines

of Proposition 4.1 in Chapter 4.

Proposition 5.1. If investor withdraws at the contractual rate q ·Bn, then

Ln(Cn, Bn, Yn) = Bn · Ln
(
Cn
Bn

, 1, Yn

)
,

Gn(Cn, Bn, Yn) = Bn ·Gn

(
Cn
Bn

, 1, Yn

)
.

Proof. We note that the dynamics of the state variables Bn+1 and Cn+1 as described

in (5.1) are homogeneous in Bn and Cn. Also, all the cashflows that the insurance

company incurs are homogeneous in Cn, Bn. The proof then follows along the same

lines as Proposition 4.1 in Chapter 4.
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In light of Proposition 5.1, we define functions ln(x, Yn) and gn(x, Yn) for 0 ≤ x ≤
1. as follows:

ln(x, Yn)
4
= Ln(x, 1, Yn) ,

gn(x, Yn)
4
= Gn(x, 1, Yn) .

From Proposition 5.1 and (5.4), it follows that:

ln(x, Yn) = e−λ
A
n+1 ·

{
x · EQ

[
e−r

f
n+1

(qn+1

x
−Rsn+1

)+

| Yn
]

+ EQ
[
e−r

f
n+1 · ln+1

(
x ·Rsn+1 − qn+1, Yn+1

)
· 1{ qn+1

x <Rsn+1≤
1+qn+1

x } | Yn
]

+ x · EQ
[
e−r

f
n+1 ·

(
Rsn+1 −

qn+1

x

)
· ln+1(1, Yn+1) · 1{Rsn+1>

1+qn+1
x } | Yn

]}
.

(5.5)

gn(x, Yn) = e−λ
A
n+1 ·

{
EQ
[
e−r

f
n+1 | Yn

]
+ EQ

[
e−r

f
n+1 · gn+1

(
x ·Rsn+1 − qn+1, Yn+1

)
· 1{ qn+1

x <Rsn+1≤
1+qn+1

x } | Yn
]

+ x · EQ
[
e−r

f
n+1 ·

(
Rsn+1 −

qn+1

x

)
· gn+1(1, Yn+1) · 1{Rsn+1>

1+qn+1
x } | Yn

]}
.

(5.6)

The above model is quite generic and will hold for any Markovian asset returns

process. If, the asset price returns and interest rates have no memory (such as is the

case in the Black Scholes Model), or have dynamics such that the state vector Yn

equilibrates, i.e., reaches a steady state distribution in an interval corresponding to

the epoch interval (which is 1 year in our case), then we may drop the conditioning

and dependency on Yn. This leads to a simpler model, which we call the independent
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period returns model. The simplifications can be explicitly written as:

ln(x) = e−λ
A
n+1 ·

{
x · EQ

[
e−r

f
n+1 ·

(qn+1

x
−Rs

n+1

)+
]

+ EQ
[
e−r

f
n+1ln+1

(
x ·Rs

n+1 − qn+1

)
· 1{ qn+1

x
)<Rsn+1≤

1+qn+1
x
}

]
+x · ln+1(1) · EQ

[
e−r

f
n+1 ·

(
Rs
n+1 −

qn+1

x

)+
]}

(5.7)

gn(x) = e−λ
A
n+1 ·

{
EQ
[
e−r

f
n+1

]
+ EQ

[
e−r

f
n+1 · gn+1

(
x ·Rs

n+1 − qn+1

)
· 1{ qn+1

x
)<Rsn+1≤

1+qn+1
x
}

]
+x · gn+1(1) · EQ

[
e−r

f
n+1 ·

(
Rs
n+1 −

qn+1

x

)+
]}

(5.8)

To use the model in equations (5.7) and (5.8), all one needs is a joint distribution

of one period asset returns and interest rates. The Black-Scholes model is just one

example of such asset return dynamics. We may use, for example, a more heavy

tailed-distribution (to adjust for the observed smiles and skews in option volatilities)

for the asset price returns.

In practice, most sophisticated asset return models are Markovian with state vec-

tors that are mean reverting. For GWB, product epochs are contract anniversaries

and are thus spaced apart by a year. If the state variables have mean reversion times

that are small compared to this interval, then we may assume that the corresponding

Markov process has equilibrated by the next epoch and thus approximate the returns

over different periods as independent.

A drawback with this approach is that it cannot be used for mid-epoch-interval

valuation, i.e., when we are trying to find the value of the product between epochs,

especially when a contract anniversary is imminent. Mid-epoch-interval valuation is

important if the GWB is to be hedged dynamically with frequent trading. However,

this shortcoming can be easily dealt with by invoking the stationarity assumption

only after a certain duration, e.g, after the second product epoch (or the one after

the closest product epoch).

State variables for some models such as, equity stochastic volatility models some-

times have relatively fast mean reversion, (see for example, Dragulescu and Yakovenko

[50]) compared to the one year time-frame. Unfortunately, however many interest rate
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models used in practice have dynamics that involve variations over long periods3. For

example, multi-factor affine rate models have long equilibrating periods and hence

state vectors associated with them would have an impact on product valuations. In

this case, we need to preserve the state of the system.

5.2.2 Pricing Models for the GWB for life

We now consider three different models to price GWB for life. We assume that the

underlying VA fund is invested in a mix of equity and bonds and is continuously

rebalanced to maintain a fixed proportion by value between these two asset classes.

The equity exposure is the key source of volatility in the account. We take the

relatively less volatile bonds asset class to have excess returns (over the risk-free

rates) that are log-normal and independent of the risk-free rate and equity returns

in all the models considered. For the joint dynamics of the risk-free rate and excess

equity returns, we consider three different models:

BSM model : In this we assume that the interest rates are non-stochastic and

constant and the equity returns are lognormal. Since the bond returns are

also log-normal and the VA fund is continuously rebalanced to hold a constant

proportion by value of equities and bonds, it will also have log-normal returns

in this model. Thus, we do not have any state variables in the BSM model.

SILN model : In this model, we allow for interest rates to be stochastic and use

a two factor Vasicek model, which is an extension of the model proposed by

Vasicek [113] for interest rates. We continue to assume log-normal excess returns

for equities and by extension for the VA fund.

SISV model : Here, the interest rates are modeled by a two-factor Vasicek model

as in the SILN model. In addition, we use the Heston model (see Heston [68]),

which is a stochastic volatility model for excess equity returns.

We do not consider the effect of jumps in asset prices which is sometimes important

for short-duration derivatives. However, we do not believe this to be significant for

the GWB, as jump effects are likely to be diffused out over the interval between two

epochs4. Also models that employ jumps are difficult to calibrate in practice.

3This may be an artifact of the fact that stochastic volatility models are calibrated using options,
which have a much smaller duration, typically less than a year, while interest rate models are
calibrated using instruments with substantially longer durations.

4Chen, Vetzal and Forsyth [34] report that jumps significantly increase the product price for the
GMWB. However, they add jumps on top of the diffusion process and do not attribute how much of
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The risk due to jumps in asset prices becomes significant when one is very close to

a contract anniversary, especially if a step-up is imminent. However, the probability

of such an event should be small. We refer to Bakshi, Cao and Chen [8], Biffis and

Millossovich [17] for more information on stochastic jump based models.

We now describe each of the three models presented earlier in more detail. For

notational convenience, we define an equity market index Et.

Black Scholes Asset Dynamics - BSM Model

In this section, we consider the valuation of GWB in the Black-Scholes setting, i.e.,

the risk-free rates r(t) and the equity market volatility σe(t) are known as functions

of time. Since the underlying VA fund is continuously rebalanced to hold a constant

proportion of stocks and bonds, it will also follow a geometric Brownian motion.

Further, the volatility of the returns in the VA fund will also be a known function of

time. Thus St evolves as:

dSt
St

= r(t)dt+ σ(t)dZQ
t (5.9)

in the risk neutral world. For brevity, henceforth we shall refer to this model as

the BSM model. As discussed earlier, the asset returns in Black-Scholes world are

independent (in fact, returns over arbitrarily small periods that are disjoint are inde-

pendent) and there is no state-vector associated with this model. Using (5.7) in this

context, we get

ln(x) = e−(λAn+1+rfn+1) ·

{
x ·
∫ ln( qn+1

x )

−∞

(qn+1

x
− ez

)
· Φ (z;µn+1, σn+1) dz

+
∫ ln

(
1+qn+1

x

)
ln( qn+1

x )
ln+1 (xez − qn+1) · Φ (z;µn+1, σn+1) dz

+ x · ln+1(1) ·
∫ ∞

ln
(

1+qn+1
x

) (ez − qn+1

x

)
· Φ (z;µn+1, σn+1) dz

}
.

(5.10)

the increase can be attributed to an increase in the effective volatility of the diffusion process and
how much is due to the jump effects.
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Here, σ2
n+1

4
=
∫ n+1

n
σ2(s)ds and µn+1

4
= rn+1− 1

2
σ2
n+1 and Φ(z;µ, σ) denotes the normal

density function for mean µ and variance σ2. For gn(x), we have a similar relation:

gn(x) = e−(λAn+1+rfn+1) ·

{
1 +

∫ ln
(

1+qn+1
x

)
ln( qn+1

x )
gn+1 (xez − qn+1) · Φ (z;µn+1, σn+1) dz

+ x · gn+1(1) ·
∫ ∞

ln
(

1+qn+1
x

) (ez − qn+1

x

)
· Φ (z;µn+1, σn+1) dz

}
.

(5.11)

We also have the boundary conditions:

lN = 0 ,

gN = 0 . (5.12)

Using the integral equations in (5.10), (5.11) together with (5.12), one can re-

cursively solve backwards for the function ln(·), gn(·). In fact, the first and the last

expectation terms in (5.10) and the last term in (5.11), can be computed using the

Black-Scholes option formulae for call, put and digital options. However, the central

term in these equations seems to render an exact closed form solution difficult, though

very good approximations can be computed quickly using interpolation.

In Section G.1 in Appendix G, we provide further details on how we use equations

(5.10) and (5.10) for numerical computations.

Remark 5.1. Note that if we had an exponential residual life distribution, i.e., λAn

were constant for n ≥ T and the risk-free rates rfn and volatilities σfn were also con-

stants, then the functions ln(·) and gn(·) would be identical for n ≥ T0 and these could

be solved using a recursive version of equations (5.10) and (5.11). Integral equations of

these kind are known as Fernholz Integral Equations of the 2nd kind. These equations

are counterparts of the equations (4.16) and (4.17) in Chapter 4. The key change

is that the boundary condition (4.11) that applied to the latter, was a consequence of

continuous step-ups and does not hold in the current setting.

Stochastic Interest Rates and Lognormal Equity Returns - SILN Model

Through this model, we consider the impact of stochasticity of interest rates of GWB

valuation. For this, we use a two-factor Vasicek Model for the short-rate, as suggested

in [39] for GAO pricing. A 2-factor model is preferred over the simpler one factor

interest rate models, because in a one factor model, all forward interest rates become
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fully correlated. The two factor model is the simplest model, which allows for a

relative movement between different points in the yield curve. The short rate model

(under the risk-neutral measure) is given by

rt = x1
t + x2

t + b(t) ;

dx1
t = −κ1x

1
t + σ1dZ

1
t ;

dx2
t = −κ2x

2
t + σ1dZ

2
t ;

< dZ1
t · dZ2

t > = ρdt . (5.13)

The function b(t) is deterministic and chosen so as to agree with initially observed

yield curve in the market. Our model for the equity returns is

dEt
Et

= rtdt+ σedZ
e
t . (5.14)

Ze
t is assumed to be independent of the factors driving the short rate. Thus, in essence

we assume that the excess equity returns are independent of the short rate process

and has a log-normal distribution. Again, as the excess bond returns are also assumed

to be log-normal and as the VA fund is continuously rebalanced, it should also have

log-normal excess returns. We will refer to this model as the Stochastic Interest Rate,

Lognormal Excess returns Model or SILN model for short. For the SILN model, the

state variable Yn is the two dimensional vector (x1,n, x2,n).

The short rate model, considered here is a Gaussian model, and entails a small

but non-zero probability of the short-rate becoming negative. A way to avoid this

problem is to instead use the Cox-Ingersoll-Ross process for short rates, see Cox,

Ingersoll and Ross [44] and Duffie [51].

The Gaussian model however has the advantage that the Stochastic Differential

Equation in (5.13) has a solution, which makes valuation computations using simula-

tions much faster. More details on how this can be used for faster GWB valuations,

as well as on how b(t) is adjusted to fit the initial yield curve are provided in Section

G.1 in Appendix G.

Stochastic Interest Rates and Stochastic Volatility - SISV Model

In the SISV model, we take both interest rates and equity volatilities to be stochastic.

For interest rates, we use the same 2-factor Gaussian Model as described by (5.13) for

the SILN model. We model excess equity market retuns to follow the Heston process
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(see Heston [68]) under the risk neutral measure:

dEt
Et

= rtdt+
√
VtdZ

e
t ;

dVt = κe(θs − Vt) + ξ
√
VtdZ

σ
t ;

< dZQ
t · dZσ

t > = ρedt . (5.15)

Ze
t and Zσ

t are assumed to be independent of the short rate factors. The Heston

Model is a stochastic volatility model and can capture the skew and smile effects

seen in the implied volatility curves. In addition, because of the square-root term in

(5.15), it does not allow the variance to go negative. We re-emphasize that even for

the SISV model, we assume that the excess bond returns are log-normal. Thus the

Heston model is used only to model excess equity returns5. Section G.3 in Appendix

G briefly outlines how we use the SISV model in numerical valuations of GWB.

5.3 Valuation under Alternate Withdrawal Strat-

egy

So far, we assumed that the investor continues to withdraw anually at the product

stipulated rate q, that will allow her to capture the step-ups. In reality investors

do have some leeway in selecting their withdrawal patterns and this can impact the

cost of the GWB to the insurance company. For example, Milevsky and Salisbury

[95] analyze that for the related GMWB, strategic withdrawals by investors can in-

crease the break-even fee by over two-folds over the one obtained assuming a passive

withdrawal scheme. “Optimal” withdrawal schemes usually require the investor to

take large excess withdrawals in many scenarios (see for example, Dai, Kwok and

Zong [48]). As remarked in Section 4.2, Chapter 4, we believe this is likely to be

sub-optimal in practice because large excess withdrawals incur for the investor not

only an imposition of a moderate surrender charge or an excess withdrawal penalty

by the insurance company but also possibly more severe indirect costs in terms of

tax payments. Given that the only incentive for excess withdrawals will be to save

on future GWB premium (which is typically small at few tens of basis points), it is

unlikely that in the presence of reasonably high indirect costs due to taxes, a rational

investor will make the large excess withdrawals that can hurt the insurance company

5Note that the returns on a fixed proportion by value portfolio of multiple assets do not follow a
Heston process, even when returns for each individual asset are modeled to follow one.
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severely.

Generally, excess withdrawal fees are not charged for withdrawing gains in the

contract portfolio value. Considering this and the fact that withdrawing during a

down market actually will cause the benefit payments to reset to a lower value and

is likely to be sub-optimal, we consider the following alternative withdrawal strategy

for the investor

• The investor does not take any withdrawals in Phase 1, i.e., upto the first T

years.

• In Phase 2, i.e., after time T , the investor takes withdrawals in a way so as to

sustain the guaranteed payment level set at time T .

The rationale behind this “excess withdrawals only during up-markets” is that by

avoiding any excess withdrawals that will cause the benefit base to fall, the investor

does not let the level of the guaranteed withdrawals to drop in retirement. On the

other hand, by not allowing the same to rise in Phase 2 years, the investor does

not allow the fees to rise in the up-market scenarios, where the GWB protection is

unlikely to be exercised. This is because the average remaining duration of the GWB

guarantee decreases every year, once in Phase 2 and the probability of a shortfall

given an account value that fully capitalizes the benefit base is also declining as a

result. The investor allows for step-ups to take place in the Phase 1 years, because

when in Phase 1, the average duration of the guarantee does not decrease at the next

anniversary.

The dynamics of the state variables Cn and Bn under this “dynamic withdrawal

policy” are given by:

Wn =

{
0 . . . n ≤ T ,

max(q ·Bn−1, Cn−1(Rs
n − 1)) . . . n > T .

(5.16)

Cn = (Cn−1 ·Rs
n−1 −Wn−1)+

Bn =

{
max(Bn−1, Cn−1 ·Rs

n) . . . n ≤ T ,

Bn−1 . . . n > T .

Wn represents the withdrawal made on the nth anniversary.

Again, if one considers a Markovian asset dynamics model with the state variable

Yn, the value of future liabilities and revenue streams under this modified withdrawal

policy at time n will be given by some functions L̃(Cn, Bn, Yn) and G̃(Cn, Bn, Yn)

respectively.
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Further, because the dynamics as given in (5.17) are again homogeneous in the

state variables, it can be easily verified that Proposition 5.1 holds for L̃(Cn, Bn, Yn)

and G̃(Cn, Bn, Yn) as well and

L̃(Cn, Bn, Yn) = Bn · L̃
(
Cn
Bn

, 1, Yn

)
;

G̃(Cn, Bn) = Bn · G̃
(
Cn
Bn

, 1, Yn

)
.

Let l̃n(x)
4
= Ln(x, 1, Yn) and g̃n(x)

4
= Gn(x, 1, Yn). Then, we have:

l̃n(x, Yn) =



e−λ
A
n+1 ·

{
EQ[e−r

f
n+1 · l̃n+1(xRsn+1, Yn+1) · 1{Rsn+1≤

1
x
}]

+ x · EQ[e−r
f
n+1 ·Rsn+1 · l̃n+1(1, Yn+1) · 1{Rsn+1>

1
x
}|Yn]

}
, if n ≤ T ;

e−λ
A
n+1 ·

{
x · EQ

[
e−r

f
n+1
( q
x −R

s
n+1

)+ | Yn]
+ EQ

[
e−r

f
n+1 · l̃n+1

(
xRsn+1, Yn+1

)
· 1{ q

x
<Rsn+1≤

1+q
x
} | Yn

]
+EQ

[
e−r

f
n+1 · l̃n+1(1, Yn+1) · 1{Rsn+1>

1+q
x
} | Yn

]}
, if n > T.

(5.17)

g̃n(x, Yn) =



e−λ
A
n+1 ·

{
EQ[e−r

f
n+1 |Yn]+

+ EQ[e−r
f
n+1 · g̃n+1(xRsn+1, Yn+1) · 1{Rsn+1≤

1
x
}]

+ x · EQ[e−r
f
n+1 ·Rsn+1 · g̃n+1(1, Yn+1) · 1{Rsn+1>

1
x
}|Yn]

}
, if n ≤ T ;

e−λ
A
n+1 ·

{
EQ
[
e−r

f
n+1 | Yn

]
+ EQ

[
e−r

f
n+1 · g̃n+1

(
xRsn+1 − q, Yn+1

)
· 1{ q

x
<Rsn+1≤

1+q
x
} | Yn

]
+EQ

[
e−r

f
n+1 · g̃n+1(1, Yn+1) · 1{Rsn+1>

1+q
x
} | Yn

]}
if n > T .

(5.18)

Relations in (5.17) and (5.18) can be used to obtain GWB valuations for any Marko-

vian model for asset price dynamics, including the BSM, SILN and SISV models

described earlier.

We now turn to a numerical analysis of GWB valuations and sensitivity analysis

under different models and withdrawal strategies.
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5.4 Numerical Results

We use the models described in Sections 5.2 to price the GWB numerically. The

values of different parameters related to GWB terms and investor characteristics are

the same as in Section 4.5 of Chapter 4 and are restated below:

Product Parameters

The guaranteed withdrawal rate q is set to 6%. The minimum waiting period W is

taken to be 3 years, and the retirement age AR to be 65 years. For computing net

value of the GWB, we will assume that the fees are charged at the rate h= 0.65% of

the benefit base per year and take a reference initial investment of C0 = 100. Thus

the net value figures that we obtain can be interpreted to have units of percentage of

sales of VAs for which the GWB for life was opted.

Investors’ Profile

We perform a valuation of GWB across a cross-section of investor ages and asset mix

choices as in Section 4.5 of Chapter 4.

• We consider investor age at inception, i.e., A to vary in the range 50 to 70 years.

• Investors choose an asset-mix for investment by selecting a level for α, which

is the exposure (by value) their VA account will have to equities. We consider

four levels for α - 20%, 40%, 60% and 80%. The balance of the portfolio will be

invested in bonds.

• Finally, we consider the average value of GWB for the insurance company for

sales across different investor cohorts and investment plans. For this, we assume

that clients’ age at inception, A, weighted by their initial investment amount

is uniformly distributed in the range 50 to 70. Further, each investor chooses

the values of α - 20%, 40%, 60% and 80% with probabilities 0.1, 0.4, 0.4 and 0.1

respectively. We refer to a portfolio of clients with the stated distribution of

age and asset-mix selection as the “meta-portfolio”.

Mortality Rates

We compute the mortality rates λn from the table published by the Pension Benefit

Guaranty Corporation (PGBC) in [101]. Relevant values from this table are also

listed in Appendix F for reference. As before we use de-Moivre’s approximation to
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convert these mortality rates into hazard rates6. For sensitivity analysis with respect

to mortality we consider two cases:

• Population mortality rates shift to the right by 1 year7 to get the new mortality

rates as λ−n = λn+1, with λ−m =∞ for m ≥ N .

• Population mortality rates shifts to the left by 1 year to get the new mortality

rates as λ+
n = λn−1.

Asset Dynamic Models

As indicated before, we use three different asset dynamic models for pricing GWB.

For each of these models, we assume that excess returns for bonds are lognormally

distributed and are independent of equity and interest rate dynamics. Also for all the

models considered, we assume that excess equity returns are independent of interest

rates. The structural parameters for various models are as follows:

BSM Model : We take the functions r(t) and σ(t) in (5.9) to be constant at 3.5%

and 20% respectively. Both numbers are annualized values. In addition, we

take the volatility of bond returns to be σb = 2%. The effective volatility of the

VA fund returns for a given level of α is then given by (4.30).

SILN Model : For the interest rate dynamics in (5.13), we use the same structural

parameter values as specified in [39] i.e., κ1 = 0.77, κ2 = 0.08, σ1 = 2%,

σ2 = 1% and ρ = −0.7. The function b(t) is deterministic and chosen so

as to agree with the initially observed yield curve in the market. To make

this comparable to the BSM model, unlike Chu and Kwok [39], who prefer to

choose an upwardly sloping curve as the initial yield curve, we use a flat initial

yield curve, γ0(t) = 3.5%. The parameter values chosen translate to about

0.63% annualized volatility in one year interest rates. This volatility would also

contribute to the total volatility in equity and bond returns. Hence, for the

accompanying equity rate dynamics as specified in (5.14), we choose a slightly

smaller value of σe, to ensure that the one-year total volatility in equity returns

is the same as that for the BSM model i.e., 20%. This value of σe turns out

to be 19.99% and is not much different from the one used in the BSM model.

We similarly adjust the volatility in excess bond returns down to σb = 1.90%

6Because we effectively use a discrete time framework with one year time steps for valuing GWB,
one year mortality rates and hazard rates can actually be used interchangeably.

7Note that this operation leads to a decrease in longevities.
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so that the total one year return volatility matches that in the case of the BSM

model.

SISV Model : Since the interest rate dynamics for the SISV model are the same

as in SILN model, we continue to use the same values for parameters κ1, κ2,

σ1, σ2, ρ and b(t) as in the SILN nodel. For the structural parameters in the

Heston model (5.15), we set their values close to those suggested by Bakshi,

Cao and Chen in [7]. In particular, we take κe = 1, ξ = 0.42, ρe = −0.75. The

values of ρe, ξ and κe basically give the volatility smile curve its shape, with

ρe primarily influencing the the skew and ξ the curvature. Various empirical

estimations of the Heston model from market data report parameter values

for ρe and ξ close to the ones that we use, see Bakshi, Cao and Chen [7, 8],

Moodley [96], Zhang and Shu [119]. There seems to be a large variation in

reported values of κe, see Dragulescu and Yakovenko [50]. The wide range of

values is indicative of the practical issues in estimating or calibrating parameter

values for sophisticated models such as the Heston model. The value of κe, that

we choose is at the lower end of this spectrum. After fixing these parameters,

we impose the constraint V0 = θ, and simultaneously adjust them so that the

Black-Scholes implied volatility8 for a 1-year ATM option, assuming a fixed

interest rate of 3.5% is 20%. This yields a value of θ = V0 = 0.0496. We again

adjust the volatility in excess bond returns down to σb = 1.90% so that the

total one year return volatility matches that in the case of the BSM model.

Additional details about computational procedures for each model are provided in

Appendix G.

Remark 5.2. In practice, estimation of model parameters for asset-dynamic models

is a challenging problem in itself, especially for complex models such as the two-factor

Gaussian short rate model and the Heston Model. These are usually computed by a

so-called calibration of the models, so that the model implied prices agree with observed

market prices of common liquid instruments. Since the number of instruments used

for calibration is typically much greater than that of model parameters, “pure” models

would rarely fit well to explain all the observed market prices. Moreover, the best-

fitting parameter values for one day are unlikely to be same as the ones the next

day. Hence model parameter values are often estimated by using both cross-sectional

8We do not consider the effect of interest rate volatilities here, but as discussed in the context of
SILN model, do not expect this to be significant.
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data of market instruments and time-series data, see Bakshi, Cao and Chen [7]. This

presents some difficulties, as while the model is indicative of asset dynamics under the

risk-neutral measure, the time series data is representative of the real world dynamics.

For the case of the GWB, this task is especially challenging, as an ideal model

should represent risk-neutral dynamics over a very long time-frame.

Finally, interest rate models and stochastic volatility models are likely to be cal-

ibrated independently in practice as they serve to price mostly non-overlapping uni-

verses of securities. An estimation of market implied correlation between the factors

driving these models is in most cases difficult because of the lack of liquid securities

having exposure to both. For our analysis here, we have ignored these complexities

of model estimations, and chosen a set of “typical” values for the more structural

parameters while choosing the values of other parameters so that the models agree on

the annual volatility of the equity index and the initial yield curve.

5.4.1 Valuation and Impact of Model Selection

We see that the choice of model used to price the GWB guarantee has a substantial

impact on the valuation. Table 5.1 shows the break-even fees while Table 5.2 shows

the net value at 0.65% fees for various combinations of investor age at inception and

asset-mix selection. As compared to the continuous step-ups and exponential residual

mortality rates framework of Chapter 4, the break even fees are much smaller and

the net value much higher. This can be primarily attributed to the discreteness of

step-ups.

Accounting for interest rate stochasticity (SILN model) substantially reduces the

valuations over the BSM model. The break-even fee for the meta portfolio increases

from 47 basis points under the BSM model to 55 basis points under the SILN model,

while the net value decreases from 3.75% of sales to 2.11% of sales. These decreases

are driven by interest rate volatility effects. Figures 5-1 and 5-2 show how respectively

the break even fee and net value for the meta-portfolio change with interest rate r for

the BSM model. As in the case of the CBSME model, the relationship is convex and

indicates that interest rate volatility will make the GWB offering more expensive for

the insurance company.

Incorporating stochastic volatility through the SISV model leads to a further

significant decrease in valuations over the SILN model. These reductions are again

uniform across all cohorts and asset mix selections. Thus stochastic interest rates and

stochastic volatilities are both significant effects in the case of GWB for life.
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Contract Specified With-
drawals

Dynamic Withdrawals

Cohort
Age

Equity
Expo-
sure

BSM SILN SISV BSM SILN SISV

20% 0.16% 0.26% 0.27% 0.16% 0.26% 0.27%
50 40% 0.29% 0.39% 0.42% 0.29% 0.39% 0.43%

60% 0.49% 0.57% 0.62% 0.49% 0.58% 0.62%
80% 0.71% 0.78% 0.83% 0.71% 0.79% 0.83%
20% 0.19% 0.30% 0.32% 0.19% 0.30% 0.32%

55 40% 0.35% 0.45% 0.49% 0.35% 0.46% 0.49%
60% 0.57% 0.66% 0.70% 0.58% 0.66% 0.70%
80% 0.81% 0.89% 0.92% 0.82% 0.90% 0.93%
20% 0.24% 0.36% 0.37% 0.24% 0.36% 0.37%

60 40% 0.43% 0.53% 0.55% 0.43% 0.53% 0.56%
60% 0.67% 0.75% 0.78% 0.68% 0.76% 0.80%
80% 0.93% 1.00% 1.02% 0.95% 1.02% 1.04%
20% 0.17% 0.26% 0.27% 0.17% 0.26% 0.28%

65 40% 0.34% 0.41% 0.44% 0.34% 0.42% 0.45%
60% 0.56% 0.62% 0.66% 0.57% 0.63% 0.67%
80% 0.79% 0.85% 0.89% 0.81% 0.87% 0.91%
20% 0.06% 0.12% 0.13% 0.06% 0.12% 0.13%

70 40% 0.17% 0.22% 0.25% 0.17% 0.22% 0.26%
60% 0.32% 0.37% 0.43% 0.33% 0.38% 0.44%
80% 0.51% 0.55% 0.62% 0.53% 0.57% 0.64%

Meta Meta 0.47% 0.55% 0.58% 0.47% 0.55% 0.59%

Table 5.1: Break-even fees under different models.
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Contract Specified With-
drawals

Dynamic Withdrawals

Cohort
Age

Equity
Expo-
sure

BSM SILN SISV BSM SILN SISV

0.20 13.47 10.90 10.52 13.40 10.74 10.37
50.00 0.40 10.17 7.63 6.63 10.01 7.39 6.42

0.60 4.86 2.42 0.97 4.75 2.24 0.82
0.80 -2.03 -4.36 -5.88 -1.89 -4.30 -5.82
0.20 10.41 7.98 7.66 10.34 7.84 7.53

55.00 0.40 7.05 4.78 3.98 6.89 4.57 3.79
0.60 1.93 -0.19 -1.21 1.82 -0.33 -1.36
0.80 -4.48 -6.49 -7.40 -4.33 -6.35 -7.34
0.20 7.41 5.35 5.15 7.33 5.23 5.04

60.00 0.40 4.14 2.35 1.84 3.98 2.17 1.67
0.60 -0.47 -2.09 -2.70 -0.59 -2.19 -2.83
0.80 -6.01 -7.53 -7.99 -5.85 -7.33 -7.89
0.20 7.20 5.89 5.71 7.12 5.79 5.63

65.00 0.40 4.90 3.74 3.26 4.69 3.53 3.08
0.60 1.57 0.51 -0.16 1.32 0.29 -0.37
0.80 -2.52 -3.52 -4.17 -2.61 -3.56 -4.26
0.20 7.49 6.88 6.74 7.42 6.79 6.67

70.00 0.40 6.43 5.82 5.32 6.21 5.59 5.14
0.60 4.57 3.96 3.13 4.23 3.64 2.87
0.80 2.02 1.43 0.41 1.67 1.11 0.14

Meta Meta 3.75 2.11 1.40 3.61 1.95 1.25

Table 5.2: Net value under different models.
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Figure 5-1: Break even fee for the meta portfolio as a function of risk-free rate for
the BSM model.

On the other hand, if investors follow a dynamic withdrawal policy, there is a

relatively small effect on valuations. The net values on the whole again decrease

when compared to those obtained under a contractual withdrawal policy assumption.

We also see that changes in the break-even fees are somewhat more subdued as

compared to the changes in net-value with a change in withdrawal policies. This

is because changing the withdrawal behavior from contractual to a dynamic policy

decreases both the payout liabilities and the revenue streams. Their net result in

this case is typically a very small increase in break-even fees. These differences are

revealed more clearly in Tables 5.3 and 5.4, which list the liabilities and revenue

streams separately. Thus, although a dynamic withdrawal behavior might not impact

net-valuation much, it still can have an important bearing on hedging. Tables 5.3

and 5.4 also show that, the revenue-stream valuations are considerably stable across

different models (with a difference of less than 30 basis points on sales.) However,

the value of the guarantee can swing by as much as 2.5 percentage points on sales.

This suggests that model selection will have an effect not only on the valuations, but

also on capital requirements for prudent risk and liquidity management.

Since, the dynamic withdrawal policy has on the whole a relatively small effect on
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Contract Specified With-
drawals

Dynamic Withdrawals

Cohort
Age

Equity
Expo-
sure

BSM SILN SISV BSM SILN SISV

20% 4.25 7.07 7.56 4.21 7.02 7.52
50 40% 8.43 11.25 12.43 8.23 11.05 12.27

60% 15.02 17.74 19.35 14.48 17.20 18.90
80% 23.43 26.03 27.62 22.32 24.94 26.67
20% 4.28 6.94 7.32 4.24 6.89 7.29

55 40% 8.38 10.89 11.77 8.18 10.67 11.61
60% 14.53 16.88 17.93 13.98 16.31 17.48
80% 22.12 24.35 25.21 20.97 23.18 24.25
20% 4.35 6.59 6.80 4.31 6.54 6.77

60 40% 8.20 10.18 10.67 7.99 9.94 10.50
60% 13.58 15.37 15.91 12.99 14.74 15.41
80% 19.99 21.66 21.97 18.72 20.37 20.90
20% 2.55 3.98 4.16 2.52 3.95 4.13

65 40% 5.31 6.59 7.03 5.17 6.42 6.91
60% 9.23 10.40 10.97 8.81 9.94 10.61
80% 13.96 15.08 15.56 13.04 14.09 14.77
20% 0.79 1.49 1.63 0.79 1.48 1.62

70 40% 2.22 2.91 3.38 2.17 2.85 3.33
60% 4.55 5.23 5.98 4.38 5.04 5.82
80% 7.60 8.26 9.15 7.18 7.81 8.77

Meta Meta 9.58 11.40 12.09 9.21 11.00 11.78

Table 5.3: Value of insurance company liabilities from GWB for life under different
models.
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Contract Specified With-
drawals

Dynamic Withdrawals

Cohort
Age

Equity
Expo-
sure

BSM SILN SISV BSM SILN SISV

20% 17.72 17.97 18.07 17.61 17.76 17.89
50 40% 18.60 18.88 19.06 18.24 18.44 18.69

60% 19.88 20.16 20.32 19.23 19.44 19.71
80% 21.40 21.67 21.74 20.43 20.64 20.85
20% 14.69 14.93 14.98 14.58 14.73 14.82

55 40% 15.43 15.67 15.75 15.07 15.24 15.40
60% 16.46 16.69 16.72 15.80 15.97 16.12
80% 17.65 17.86 17.81 16.64 16.83 16.91
20% 11.75 11.94 11.95 11.64 11.77 11.81

60 40% 12.34 12.52 12.50 11.96 12.10 12.17
60% 13.11 13.28 13.21 12.40 12.54 12.58
80% 13.98 14.13 13.98 12.88 13.03 13.02
20% 9.74 9.87 9.87 9.64 9.73 9.76

65 40% 10.21 10.33 10.28 9.86 9.95 9.99
60% 10.80 10.91 10.81 10.13 10.23 10.24
80% 11.44 11.55 11.39 10.42 10.52 10.51
20% 8.29 8.37 8.37 8.21 8.27 8.29

70 40% 8.65 8.73 8.70 8.39 8.45 8.48
60% 9.11 9.19 9.11 8.61 8.68 8.69
80% 9.62 9.69 9.56 8.85 8.92 8.91

Meta Meta 13.33 13.51 13.50 12.82 12.95 13.03

Table 5.4: Value of revenues from GWB for life under different models.
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Figure 5-2: Net value of the meta portfolio as a function of risk-free rate for the BSM
model.

valuations, henceforth we consider valuations based on contract-compliant withdrawal

policy only.

5.4.2 Valuation Spreads Across Asset mixes and Cohort Ages

Figures 5-3 and 5-4 show that across all models, break-even fees and net-value num-

bers are significantly different for different asset mixes and cohort ages. This confirms

the findings of Section 4.5 in Chapter 4 that charging a uniform premium across all

cohorts and asset-mixes might lead to a selection bias in the investor pool. In general,

investors choosing a more aggressive asset-mix get a “better deal” on the GWB. Also,

the optimal age to select the GWB feature is around 62 years. This is the age that

has the highest ratio of years during which withdrawals can be made to the overall

GWB duration.

5.4.3 Sensitivity to Mortality rates

We next investigate how a shift in cohort mortality rates would impact GWB for life

values. For this, GWB for life valuation was done for the cases when the mortality
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Figure 5-3: Break even fee as a function of Cohort Age for different models and asset
mixes assuming contract compliant withdrawals.
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Figure 5-4: Net value as a function of Cohort Age for different models and asset mixes
assuming contract compliant withdrawals.
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rate curve was shifted in and out by 1 year to obtain the modified mortality rates

λ+
n and λ−n respectively as described earlier in the section. Table 5.5 summarizes

the impact on valuation of the meta-portfolio in these scenarios. The numbers again

corroborate the analysis in Section 4.5 of Chapter 4. All models indicate a very high

sensitivity to assumed mortality rates.

Mortality rates
Model λn λ+

n λ−n
BSM 0.47% 0.51% 0.43%

Break-even fees SILN 0.55% 0.59% 0.50%
SISV 0.58% 0.63% 0.54%
BSM 3.75 2.96 4.47

Net Value SILN 2.11 1.19 2.96
SISV 1.40 0.52 2.23

Table 5.5: Sensitivity of the meta portfolio value to mortality rates under different
models assuming contract compliant withdrawals.

5.5 Hedging Considerations for the GWB

Since GWB for life constitutes a financial option like guarantee whose risk cannot be

diversified away, it must be “hedged” using offsetting derivatives or trading strategies.

The mechanism of delta-hedging derivatives is a well-understood method and fol-

lows the same principle as stated in their ground-breaking paper by Black and Scholes

[18]. Naive delta-hedging however is unlikely to be effective for GWB for life.

Below we outline how one may hedge the GWB under the BSM model, which is

the simplest pricing model. Hedging with more advanced models is similar in principle

but will involve more instruments.

• Each pricing model identifies a market factor of risk. For the BSM model, the

only market factor risk directly considered by the model is the underlying VA

fund index St. This risk can be hedged against easily by taking an offsetting

position in an instrument that has similar characteristics as the VA fund, for

example a portfolio of equity index futures and other asset classes that the VA

fund invests in. The magnitude of this position is given by the delta or the

sensitivity of the GWB value to Rs
t , the instantaneous return in St. Delta-

hedging provides a first-order insulation and can protect value only for small

magnitudes of Rs
t . A higher level of protection can be achieved by gamma
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hedging, where one takes a position in another instrument so that the second

order derivative of the overall portfolio value under the BSM model with respect

to Rs
t is zero. Any instrument which has a non-linear dependence on Rs

t , for

example an option on a proxy for the VA fund, can be used for the purpose.

• Model parameters are obtained by a calibration process using liquid market

instruments that the model should be able to price. In addition to the model

implied risk, valuations also face a Model parameter risk which arises due to er-

rors in calibration of model parameters or the drift in their values over time as

the model is recalibrated. The BSM model has two parameters, return volatil-

ities and interest rates. The model can be calibrated by using, for example,

long term options and bonds. Model parameter risk can be mitigated by taking

offsetting positions in the calibrating instruments so that the overall portfo-

lio value is stable under small changes in the values of model parameters. If

the mis-specification in parameters, is large then this risk cannot be eliminated

completely. Also, if the overall portfolio has a high convexity or concavity with

respect to model parameters then its value will drift over time in a biased man-

ner. 9. There is significant risk due to this in the case of GWB, when the BSM

model is used. For example, the relationship between GWB values and interest

rate, as illustrated in Figure 5-2 is convex.

In the case of GWB ideally instruments that have exposure to volatilities and

interest rates over a long duration should be used for model parameter esti-

mations. A key difficulty with this is that instruments that are sensitive to

volatilities, such as options, are liquid only over short time horizons, typically

less than 2 years.

• Finally, we have the model specification risk, where the model used for pricing

does not take into account all possible risk factors or their interactions. This is

substantially high for the GWB, where dynamics of the various risk factors such

as interest rates, asset returns and their volatilities as well as the correlations

between them are difficult to model accurately. This represents an ambiguity

in model specification, often termed as model risk and is closely connected to

hedging in incomplete markets. A robust towards hedging is required to control

model related risk. Theoretical work in this field is still in its infancy, see Cont

[42].

9This could happen if the assumed model family is not appropriate for the market factor dynamics.
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Hedging GWB also requires insurance companies to manage the fluctuations in

value due to changes in mortality trends. In general, there are few liquid instruments

that are sensitive to mortalities. However, insurance companies also issue life insur-

ance policies or features like GMDB with VAs, which bear an inverse relationship

to longevities as compared to the GWB. Risk management can try to balance the

issuance of various products so as to reduce the company’s overall exposure to popu-

lation mortalities. They can get even better hedging performance, if these securities

with opposing mortality sensitivities can be marketed to the same client.

As analysis in Section 5.4 suggests, the product valuation itself is sensitive to the

choice of pricing model. Hedging strategies recommended by these models will also

be different. We also observed that the liabilities due to the GWB guarantees can

vary depending on how investors take their withdrawals as well as realized mortality

rates in the client population.

All these difficulties indicate that there is a significant level of “unhedgeable” risk

involved in underwriting the GWB.

From an execution point of view, it is also important to consider the effect of

non-linearities that arise due to the step-up feature. To illustrate this point, consider

again the example of hedging the GWB under the BSM model described in Section

5.2. Figure 5.5 shows the variation of the delta of GWB value or its sensitivity to

the return Rs
T over time on one particular sample path for a cohort aged 60 years

at start and with 50% exposure to equities. Note that this delta is the same as the

magnitude of the offsetting exposure that the company needs to take in a correlated

index to hedge this risk.

We see large discontinuities near contract anniversaries. This is because close to

the contract anniversary, the GWB acts like a knock-in put option if a step-up is

imminent and has a “barrier” like feature.

Remark 5.3. To understand this “barrier” nature of the GWB product first consider

a simplified scenario, when the GWB has only two more years to go and we are close

to the penultimate anniversary. In practice, the insurance company can never know

this apriori, but we only seek to illustrate the problems with delta hedging here. We

also assume that the contract and benefit values are such that a step-up is almost

certain. Note that, after the last but one anniversary the GWB product will be like a

(deep-out-of-the-money) put option. The strike of this put option will however be set

on the coming anniversary in accordance with the step-up rule. Then, just before the

anniversary, if the VA fund appreciates, the strike of the unset put option is pushed

higher - this in effect increases the cost of the GWB product. Thus, just before the last
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Figure 5-5: Variation of hedging exposure with time for delta hedging under the BSM
model.

but one anniversary, the product will have a positive delta with respect to returns on

St. However, once the anniversary has passed and the step-up registered, the product

will behave like an ordinary put option and have a negative delta. As a result, the

delta of the GWB is typically discontinuous near the product epochs when a step-up

is imminent. GWB, in this respect, is not unlike the exotic barrier options, see Carr

[30]. This discontinuity in the “delta” of GWB value poses a challenge for hedging.

The discontinuities at different points in time suggest that hedges are unlikely to

be effective at these points. Also readjusting them will need flipping large positions

and thus entail high transaction costs.

The insurance companies can mitigate this non-linearities at product-epochs to

some extent by spreading out these epochs for different investors over different dates.

This will also make the overall product less sensitive to jump risks or risks due to large

market movements. Another alternative is to use options with maturities coinciding

with GWB epochs as hedging instruments.

On the whole hedging is likely to be at best partially successful in the case of

GWB for life.
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5.6 Summary and Closing Remarks

In this chapter, we examined the GWB for life product in a realistic setting. While,

such products are exciting innovations and can be very useful for individuals and

households in planning their retirements, they pose substantial risks for the companies

that offer them. We observed that

1. On the whole, a fee of 65 basis points appears enough to cover the cost of the

guarantee, though this rests on assumptions about the distribution of investor

profiles.

2. There is insufficient price discrimination and GWB for life can be priced at below

par value for the riskiest of segments i.e., customers with imminent retirement

and choosing an aggressive investment portfolio. The product has to be either

re-engineered or priced differently for different age groups and investment styles

to avoid the risk of adverse selection.

3. Accounting for interest rate volatility and using models that imply fatter tails

for the fund returns can substantially increase the cost of the GWB for the

company.

4. Valuation of GWB has a high level of dependence on model choice. All three

models considered here - BSM, SILN and SISV can be considered in principle as

reasonable models for pricing GWB, especially since there are no comparable

securities of such duration traded in the markets. Choosing one model over

other can change valuation by more than 2% of sales, or for a typical insurance

company selling $10 billion of VAs annually, by about $200 million a year. Note

that the actual value of the product will not be realized for decades. This pricing

ambiguity poses a difficulty for investors. For regulators too, the magnitudes

of financial risk suggested by different models can be substantially different

and correspondingly lead to different requirements of ideal capitalization levels.

Hence, we believe that it is important for regulatory and accounting bodies to

recommend a standardized model for pricing GWB like guarantees.

5. Step-up feature and indexing of fees to the benefit base are effective in making

the overall product value less sensitive to investor behavior.

6. Hedging GWB is challenging because of model risk and many assumptions that

a valuation must make about investor behavior. Also, there are not enough
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liquid instruments that can be used to hedge against all the risk factors that

the GWB is exposed to.

A mitigating factor for insurance companies with respect to price differentiation

is that individuals who choose less aggressive asset mixes are likely to be more risk

averse and hence possibly also more willing to pay a risk-premium for the GWB like

guarantees. The same argument may also be used for investors who buy the GWB for

life guarantees much before their retirement and effectively pay a higher fee compared

to those who buy the same later. However this argument does not apply to investors

who enter such scheme at latter years and are seen to pay a fee much higher than the

fair amount. Moreover, the insuree’s willingness to pay is unlikely to be a determinant

of prices in the long run as the VA product space is highly competitive. Also, we find

that for the most aggressive investors, the “fair value” of the guarantees is in fact

more than the price tag in most cases and this cannot be sustainable.

There are many directions of future research with respect to the GWB to address

or quantify the issues that we described above. In particular, robust strategies to

hedge GWB, in presence of an ambiguity over value will be an interesting line of

research both theoretically as well as practically. Another interesting area of research

will be to consider the impact of a business cycle risk, where high interest rates

and bull markets are followed by bear markets and low interest rates for the GWB.

Product design or restructuring so that it has a more manageable level of risk, while

still being useful to the investors is another useful direction of investigation.
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Chapter 6

Dynamic Consistency and Dynamic

Risk and Asset Management

6.1 Introduction

Many decisions in finance involve solving Sequential Decision Problems (SDPs) under

uncertainty and require contingency planning over a multi-period horizon. In such

problems, the decision making agent is required to apply controls one at a time and

at each step more information that is previously unknown is revealed. SDPs, in

fact, also occur in a wide variety of applications outside the field of finance and are

an important subject matter of the decision and control theory. Examples include

inventory problems, adaptive control for air traffic etc.

A basic conceptual framework used to solve an SDP with uncertainty is the notion

of contingent-planning. A contingent-planning framework has the decision maker

(DM) deciding not only on the current course of action, but also on a “contingent

plan” or a schedule of decisions that will be taken in response to uncertain1 events

or information. In fact, the assertion about the “optimality” of the DM’s immediate

action rests on the assumption of her carrying through the contingent plan. If it

so turns out that as the events unfold, the DM would no longer find the initially

planned course of action optimal (or sometimes even feasible), then this leads to

a consistency issue. SDPs in which the DM can deviate from a planned course of

action are commonly referred to as “dynamically inconsistent” or sometimes “time

inconsistent”.

1But not unanticipated. When the uncertainty is revealed, it should not come as a surprise to
the DM. This means that the sample space of the uncertainty is known to the DM.
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This is referred to as an “inconsistency” because although there is uncertainty in

the system, there is no real “surprise” or unanticipated information. In that sense,

the propensity to deviate is entirely foreseeable by the DM and could have been

avoided. The issue is non-trivial because an arbitrary SDP need not be “dynamically

consistent”. In particular, in finance, as we shall discuss in Sections 6.2 and 6.4

commonly used financial metrics such as variance, Value at Risk (VaR), Conditional

Value at Risk (CVaR), when employed in a multi-period setting without due-care, can

result in dynamically inconsistent SDPs. For finance applications, as these metrics

are often linked to material provisions such as capital or ratings, dynamic consistency

has implications beyond normative or philosophical considerations.

6.1.1 Related Work

The problem of dynamic consistency has been studied in a variety of contexts. For

example, in preference theory, that traditionally deals with an agent’s preferences

between lotteries over random outcomes, the property of dynamic consistency has

been discussed extensively and a good review of some of the key concepts can be

found in Lotito [88]. Strotz [112] gives one of the first examples of dynamic incon-

sistency. Axiomatic frameworks for dynamic consistency of preferences have been

extensively studied (for example, Hammond [64], Weller [118], Cubitt [45], Karni and

Schmeidler [79], Volij [114]). These frameworks reveal that dynamic consistency of

preferences is closely connected to a Bayesian update of probabilities by the agent

and the independence axiom. These properties, with few additional assumptions,

imply that agent’s preferences have a von-Neumann Morgenstern Expected Utility

representation2. Machina [89] pointed out that, an implicit assumption in coming to

these conclusions is that past events that did not happen do not affect the agent’s

future preferences. This assumption is known as “Consequentialism”. An entirely

new axiomatic framework, which showed that non-expected utility preferences can

also be dynamically consistent in the presence of ambiguity was proposed by Ep-

stein and Schneider, [53]. In this framework, the agent has multiple priors about the

uncertainty in the system and seeks to maximize a robust (worst-case) measure of

expected utility. If the priors satisfy a certain property3, then the agent’s preferences

in this setting will also be dynamically consistent. Such preferences have typically

2See however Johnsen and Donaldson [76] for a different treatment.
3The set of priors that the agent considers should be closed under a “pasting” operation of

marginal and conditional probability laws at any time step. This property has been variously
referred to as stability, consistency, rectangularity etc.
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been suggested as a model for ambiguity aversion, see Epstein and Schneider [53],

Sarin and Wakker [107], Ozdenoren and Peck [99].

In game theory, the notion of a sub-game perfect equilibrium, also sometimes

to referred as “credible threats” is somewhat analogous to dynamic consistency. A

sub-game perfect equilibrium implies that players have no incentives to deviate from

their respective optimal strategies. See Fudenberg and Tirol [58], and Gibbons [60]

for further details.

Finally, in the context of finance, considerable work has recently been devoted

to the subject matter of risk-measures. Artzner et al. [4], Follmer and Scheid [56]

introduced a framework for respectively “coherent” and convex measures of risk, to

characterize sound decision rules for deciding whether an uncertain financial position

should be deemed acceptable or not. There has been substantial recent activity in the

literature focused that seeks to extend this notion to a multi-period setting. See for

example, Reidel, [102], Artzner et al. [5], Roorda and Schumacher [106], Frittelli and

Scandolo [57], Wang [116]. Korkmaz [81] provides a survey of the work in this field.

Since risk measures are in essence inverted preferences, it is not surprising that there

are many parallels between the notions of dynamic consistency in the context of risk

measures and the same in the context of preferences. There are also two bi-furcations

in the literature in so far as the treatment of risk - measures is concerned. The more

common “coherent risk measures”, approach as followed by Reidel [102], Artzner et al.

[5] define risk measures to be functionals on random variables or processes and then

propose criteria for dynamic consistency in terms of these functionals. They show

that the dynamically consistent risk measures are equivalent to a robust (worst-case)

expectation under a family of priors that satisfy the same rectangularity condition as

was stated in the context of preferences under ambiguity by Epstein and Schneider

[53]. In contrast, Weber [117] proposes a new paradigm of “distribution-invariant

risk measures” where risk measures are treated as functionals on distributions or

probability laws. Notice the similarity with the preference theory which is concerned

with ranking of “lotteries” or distributions. Weber [117] defines a notion of dynamic

consistency in this context and shows that it is, under additional technical restrictions,

equivalent to an expected utility based criterion.

6.1.2 Contributions

Although the notions of dynamic consistency in various contexts are analogous, they

are not strictly identical. An interesting link that connects all the notions of dynamic
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consistencies, is that they in some sense legitimize the use of backward induction or

the Bellman principle of optimality for dynamic programs, see Bertsekas, [14]. In

this chapter, we examine the problem of dynamic consistency in the context of SDPs,

i.e., we are interested in dynamic consistency of “strategies” or “plans”. See Sarin

and Wakker, [107] and Hazen, [65] for a similar point of view. Moreover, we will

motivate our discussion and framework in the context of applications in finance. In

this chapter, we will assume, that there is no ambiguity, i.e., the uncertainty in the

problem is anticipated and its distributional properties are known to the DM. Our

key contributions are:

1. We show that many natural extensions of standard one-period decision prob-

lems in finance to a multi-period setting can lead to dynamically inconsistent

SDPs. We also highlight how dynamic consistency for risk measures does not

necessarily translate to dynamic consistency for the implied strategies, when

they are used as strictly an acceptability criteria.

2. Applicability of Bellman’s dynamic programming principle or backward induc-

tion is sometimes considered to be an equivalent assertion of Dynamic Consis-

tency, see Boda and Filar [19], Sarin and Wakker[107]. We provide examples to

illustrate that dynamic consistency is actually a weaker property. Also, even for

SDPs that can be solved by backward induction, the objective V need not have

a dynamic programming representation. However, we show that in this case,

the resultant strategies can also be recovered as solutions to an SDP with a sur-

rogate objective function Ṽ that is sum-decomposable across time and mutually

exclusive events and thus has a dynamic programming representation.

3. For financial applications, we suggest ways to address some of the dynamic

inconsistency related issues. In particular, we propose a new dynamically con-

sistent objective function for risk management. We also point out cases, with

concrete examples, where using a pre-commitment solution (or taking a non-

consequentialist approach) becomes appropriate.

6.1.3 Chapter Layout

In Section 6.2, we illustrate the issue of dynamic inconsistency in the context of

finance problems. In Section 6.3, we describe a formal model for an SDP and explore

the connection between the notions of dynamic consistency, backward induction and

dynamic programming. We also provide an equivalent representation for dynamically
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consistent objectives. In Section 6.4, we further discuss how dynamic inconsistency

can be mitigated for some SDPs that arise in finance. We conclude with a summary

and suggestions for future work in Section 6.5.

We now motivate the issue of dynamic inconsistency in SDPs with specific exam-

ples of problems in the finance domain.

6.2 Examples of Dynamically Inconsistent Formu-

lations

We first provide a non-technical definition of the notion of dynamic inconsistency.

We say that the formulation is dynamically inconsistent if there exist some chain A

of events with the following property. Suppose a DM solves an SDP at time 0 and

as a result obtains a plan, which gives her amongst other things a course of action

to be followed in the case event A happens, say at time t > 0. Now suppose at

time t > 0, the event A actually happens. The DM updates her SDP to reflect this

new information (e.g., by updating probabilities of future outcomes by their values

conditional on A.) and resolves the updated SDP and finds that the course of action

planned at time 0 to be taken in event A happening is no longer feasible or optimal

for the updated SDP.

We will provide a more formal definition in Section 6.3, but for the current dis-

cussion and examples in this section, this intuitive notion of dynamic inconsistency

should suffice.

Most financial problems involve investment and consumption strategies, subject to

certain risk-averseness constraints. A typical static or one-period problem, in general

may-be written as

max
y

f(W,P) ;

s.t. W = y′ · z ,

φ(W,P) ≤ α ,

s.t. y ∈ Y .

Here, for example, z could denote returns in a stock (that are random) and P, the

distribution of these returns. y the amount that the investor can invest in the stock

subject to fixed constraints represented by the set Y. Thus, W is the resulting payoff

of the strategy. The investor’s goal is to optimize a “performance -metric” functional
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f(·, ·) on the random variable W given the probability distribution P on z. The

investor must take care that the functional φ(W,P) which represents a risk-metric

does not exceed a pre-specified level α. For example, in the standard risk-reward

trade-off proposed by Markowitz [90], we have f(·, ·) ≡ E[W ] and φ(W,P) ≡ var(W ),

where both the mean and variance are taken with respect to the probability law P on

random return z.

Now, a “natural” extension of this one-period problem, in a multi-period setting

with T periods, where the DM is only interested in end-of-horizon wealth WT is

max
{ys:0≤s<T}

f(W,P) ;

s.t. W =
T−1∑
i=0

y′t · zt+1 ,

φ(W,P) ≤ α,

{y0, y1, . . . , yT} ∈ Y ,

yt is adapted. (6.1)

P now denotes the probability law for the discrete time process z1, z2, . . . zT . Also,

the optimal solution yt is now a policy adapted to the filtration on the zt process.

(6.1) is representative of a typical SDP in finance.

For most common risk metrics, including dynamic risk measures, the formulation

in (6.1) is dynamically inconsistent.

We illustrate this with the expectation operator under the probability law, a trivial

risk measure, but one that is valid as both a coherent dynamic risk measure as well

as a distribution invariant dynamic risk measure. For concreteness, we consider the

following two-stage problem and suppose there are two possible outcomes for z1: u

and d with equal probabilities 1
2

at t = 1.

max
{yo,y1}

E[exp(−W2)]

s.t. W2 =
1∑
i=0

y′t · zt+1,

E[−W ] ≤ α,

yt is adapted. (6.2)

Suppose, the optimal strategy S is such that the constraint E[−W ] = α is tight with

E[−W |x1 = u] = α −∆ and E[−W |x1 = d] = α + ∆, ∆ > 0. Then if the DM tries
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to solve (6.1) again, using the Bayes rule updated probabilities at t = 1 in the event

z1 = d, the she will find this strategy to be actually infeasible. Such inconsistency

will arise, in general with any risk measure including variance, VaR, CVaR, other

commonly used static risk measures. As, we elaborate in Section 6.3, the reason

for this can be traced to a “coupling” of mutually exclusive sub-strategies that the

risk-measure constraint causes.

Remark 6.1. So-called dynamic risk measures can lead to dynamically inconsistent

strategies for SDPs because for both coherent and distribution invariant risk-measures,

dynamic consistency of risk measures is defined in a sense similar to dynamic con-

sistency of preferences over time (see Reidel[102], Artzner et al [5] and Weber [117]

for details). These conditions do not turn out to be strong enough for dynamic con-

sistency in the context of SDP strategies. For example, Reidel [102] defines dynamic

consistency for coherent risk measures so as to ensure acceptance and rejection con-

sistency, i.e., if a random variable will be accepted (respectively rejected) at t + 1 in

all possible states of the world, then it should also be acceptable at time t. Dynamic

consistency requirements for distribution invariant risk measures as defined in [117]

are also identical and are equivalent to the following property - if a family of dis-

tributions is acceptable(rejectable), then any convex combination of the same is also

acceptable(rejectable). This is a version of the “sure thing” principle and ensures

consistency only going back in time. For SDP formulations based on dynamic risk

measure constraints, to ensure that an optimal strategy is at-least not rendered infea-

sible, one also needs to guarantee that a strategy that is acceptable at t, will also be

“acceptable” at t+ 1, in all states of the world.

The inconsistency issues in the problem (6.1), might appear obvious, but neverthe-

less are important and often overlooked. For example, Basak and Shapiro [12] solve a

version of the SDP (6.1), using VaR as the risk metric and draw conclusions based on

the optimal strategy, without recognising the essential dynamic inconsistency of the

original formulation. See Cuoco He and Issaenko [46] for further details. An implicit

assumption that can justify solving such an SDP, is that the DM would pre-commit

to the initially deviced strategy. As we discussion in Section 6.4, this assumption is

justifiable only in specific contexts. In practice, as stressed in Cuoco, He and Issaenko

[46] VaR and CVaR metrics are meant and used by institutions to manage risk in a

static context. Nonetheless, it will be useful to have corresponding risk metrics in a

dynamic setting.

A possible, resolution to the dynamic inconsistency is to avoid any risk-metric
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based constraints, and instead consider an alternate formulation where we add a

penalty term involving the risk measure to the performance metric objective4, i.e.,

we use a risk-adjusted performance metric as our objective functional.

max
{ys:1≤s≤T}

f(W,P)− λφ(W,P)α ;

s.t. W =
T∑
i=0

y′t · zt+1 ,

{y1, y2, . . . , yT} ∈ Y ,

yt is adapted . (6.3)

If one holds the level of penalty term constant over time, it can be verified that

the version in (6.3) is dynamically consistent and the “Lagrangian” transformation

does remove the inconsistency arising in the specific case of (6.2). Unfortunately,

this approach does not work, if the performance metric is derived from any of the

commonly used non-trivial risk-metrics such as variance, VaR and CVaR.

Consider, for example, the Lagrangian version of the multi-period mean-variance

problem. Markowitz [90] proposed the one period mean-variance framework for port-

folio selection in 1950. It provides an intuitive and tractable way for risk management.

The multi-period version is easily formulated as

max E[WT ]− λ

2
var[WT ] ;

s.t. WT =
T∑
t=1

y′t · xt+1 . (6.4)

(6.4) can also be considered as a quadratic utility maximization problem.

This formulation is in general dynamically inconsistent. We illustrate this through

a very simple two-period example.

Example 6.1. Dynamic inconsistency from Variance based objectives

Consider the following simple 2 period mean- variance optimization problem. Sup-

pose the investment opportunity set consists 2 assets and there are no short-selling

constraints. Asset 1 is riskless and offers no returns. Asset 2 offers a return r1 in

period 1 and r2 in period 2. We assume z1 and z2 are independent and are either u or

d, each with equal probability (1
2
). Suppose y∗0 denotes the optimal time 0 investment

in the risky asset while y∗(z1) denotes the same for time 2. Note that y∗(z1) can

4This can also be viewed as a Lagrangian transformation of the original problem.
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depend on the new information available at time 1, that is the risky asset return for

the period. It should follow that period t wealth Wt is given by

W1 = W0 + y∗0 · z1 ;

W2 = W1 + y∗1(z1) · z2

= W0 + y∗0 · z1 + y∗1(z1) · z2 .

Thus, our problem is to

max
y∗0 ,y

∗
1

E[W2]− λ

2
var(W2) ≡ max

y∗0

(
max
y∗1

E[W2]− λ

2
var(W2)

)
.

We note that

W2 = W0 + y∗0 · (z1) + y∗1(u) · 1{z1=u} · (y2) + y∗1(d) · 1{z1=d} · (z2) .

It can be verified that the optimal solution to the above problem is

y∗0 =
4(u2 + d2)(u+ d)

λ(u− d)4

y∗1(u) = −4d(u+ d)

λ(u− d)3
(6.5)

y∗1(d) =
4u(u+ d)

λ(u− d)3
(6.6)

Note that, for the SDP to be consistent then at time step 1, we must choose control

given by (6.5) if the previous period risky return was u and that by (6.6) otherwise.

Let us now solve directly for what optimal investment policy should be at time 1.

Suppose W1 is the wealth at time 1. Then,

W2 = W1 + y∗1z2 .

It can be easily verified that the objective E[W2]− λ
2
var(W2) is optimized by setting

y∗1 =
2(u+ d)

λ(u− d)2
. (6.7)

and is independent of the wealth W1. The value given by (6.7) is different from

that implied by (6.5) or (6.6). Thus, multi-period mean-variance optimization is

dynamically inconsistent.
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Unlike (6.2), dynamic inconsistency in the SDP in (6.4) occurs because the objec-

tive Vt itself becomes coupling due to the presence of the variance term. Note,

Vt
4
= E[WT |Ft]−

λ

2
var(WT |Ft)

Hence, Vt−1 = E[Vt|Ft−1]− λ

2
var(E[WT |Ft]|Ft−1)

where we have used the standard notation Ft, to denote information known at time

t. The component var(E[WT |Ft]|Ft−1) couples together sub-strategies corresponding

to mutually exclusive events, and as we discuss in Section 6.3 makes the problem

dynamically inconsistent. It is interesting to note that versions of the basic multi-

period mean variance problem in (6.4) have been widely considered and/or solved

- for example, Chen, Jen and Zionts, [33], Li and Ng, [87], Leippold, Trojani and

Vanini, [85], Bajeux-Besnainou and Portait, [6], Basak and Chabakauri, [11]. Only the

recent paper by Basak and Chabakauri, [11], remarks on the dynamic inconsistency

issue in the underlying problem and seeks to address it by recursively defining the

mean-variance based objective function. However, the reformulated problem is not

truly dynamically consistent, but rather forced to become so by an imposition of the

requirement that optimal policies be obtained by backward induction5.

Li and Ng [87] and Leippold, Trojani and Vanini [85] actually solve a surrogate

problem, that is equivalent to the actual problem at time t = 0. The objective

function

E[WT ]− λ′

2
E[W 2

T ]

in the surrogate problem is dynamically consistent. The assumption implicit in the

solution so obtained is that of “Resolute Choice” or pre-commitment, also discussed

in Section 6.4.

Apart from normative issues, a dynamically inconsistent SDP also poses computa-

tional challenges. This is because the backward induction method, a natural “divide

and conquer” style algorithm for SDPs, cannot be used to solve a dynamically incon-

sistent SDPs. As a result even when the DM is willing to “pre-commit”, the optimal

strategy cannot be derived using backward induction.

We illustrate this link using another commonly used risk measure, the CVaR, as

an objective. CVaR ( also known as Tail Conditional Expectation, TCE) is a coherent

risk measure and satisfies certain desirable properties for a static or one-period risk

5This is equivalent to the assumption of ‘Sophisticated Choice’, that we elaborate in Section 6.4.
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metric, see Brown, [25]. CVaR is usually used in risk management in a static sense

by enforcing a constraint of the form that CVaR at a given (say 5 %) level of a

portfolio under management should stay above a recommended level. In a dynamic

setting, using a constraint that involves CVaR in an SDP will lead to the same issues

as we observed for (6.2). CVaR, however, cannot be incorporated as a penalty term

in the SDP objective either without making it dynamaically inconsistent. We again

illustrate the problems with using CVaR with a simple 2- period setting.

Example 6.2. Dynamic inconsitency from Variance based objectives Con-

sider a two period SDP with two assets one risk-free and the other risky. The agent

is free to borrow or lend and the interest rate is zero. Returns on the risky asset in

the two periods, denoted by z1 and z2, are independent and identically distributed with

the following density function f(z) :

f(z) =

{
4 . . .− 1

8
≤ z ≤ 0 ,

1
4

. . . 0 < z ≤ 2
.

The DM’s objective is to choose y0 and y1, amounts to be invested in the risky security

in periods one and two so as to maximize CVaR0.5(W2). Her SDP is given by:

max
y0,y1

CVaR0.5(W2) ;

s.t. W2 = y0 · z1 + y1 · z2 ,

|y0|, |y1| ≤ 2 .

To make the problem bounded, we have imposed a limit on the size of the position in

the risky asset that the DM can take in either period. Recall that CVaRα(W ) is defined

as E[W |W < F−1
W (α)], where FW (·) denotes the cumulative density function or CDF

of W . In our example thus, the CVaR0.5 of one period return, for an investment Y

is −Y
8

, if 0 < Y ≤ 2 and −|Y | if −2 ≤ Y ≤ 0. Thus at time t = 1, as CVaR0.5

is linear, the optimal decision is to not invest irrespective of the outcome z1. By

backward induction then, the optimal decision at time 0 should also be not to invest

at all in the risky security, Thus the optimal value of CVaR0.5, obtained by backward

induction is 0. However, it is easy to construct a contingent plan that beats this
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objective. Consider the following strategy:

y0 = 2

y1 =

{
0 . . . z1 ≥ 0 ,

1 . . . z1 < 0 ,

Thus,

W2 = 2 · z1 + 1{z1<0} · z2 .

For this strategy, after somewhat tedious calculations, it can be verified that P(W2 ≤
15
16

) = 1
2

and CVaR0.5(W2) > 0. Thus backward induction fails to produce the optimal

strategy for SDPs involving CVaR.

Using similar arguments, it can be shown that Value at Risk (VaR), another risk-

metric, which is more commonly used than CVaR, also suffers from the same problem

in a dynamic setting. A somewhat complex example to illustrate this is given by Boda

and Filar [19]. While, VaR and CVaR are mostly used by financial institutions to

report short-term or myopic (typically daily) risk exposures and maybe appropriate

in this context, it is clear that a long term risk-management strategy targeting VaR,

CVaR or variance is fraught with fundamental conceptual difficulties.

To recap, so-called dynamic risk measures cannot be used as an acceptability

criterion for strategies in an SDP context. Also, if the objective function comprises

common risk-metrics such as variance, VaR and CVaR, the resultant SDP again

becomes dynamically inconsistent. Our goal for the remainder of this chapter is

to characterize objective functions that will lead to a consistent SDP. For this, we

describe a formal framework for SDPs in the next section.

6.3 Conditions for Dynamic Consistency

Over the horizon of an SDP, the DM actually solves a series of sub-problems. If an

SDP is dynamically inconsistent, then this inconsistency maybe traced to either

• An explicit change in the problem itself OR

• An implied change, through the update of probability laws.

We mainly focus on the case, where there is no explicit change to the problem,

as this can also be interpreted as a change of taste. We find that when explicit
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change is ruled out, the property of dynamic consistency is strongly connected but

not strictly equivalent to the SDP being a dynamic program. We first establish a

formal framework to describe SDPs.

6.3.1 Framework

We consider a discrete time framework with periods 1, 2, . . . , T . Decisions are made at

times 0, 1, . . . , T . Decision at time t is made after observing the information released

at time t. Mathematically, the revelation of information is modeled by a random

process adapted to a filtration Ft. Although information is new, it is not “unantici-

pated”, i.e., the sample-space or the set of all possible outcomes for the information

process is known to the DM. Also, the DM has a probability distribution on the set of

all possible outcomes. We now elaborate on each component of the formal framework.

• Randomness

– Randomness or Information in the system is denoted by the discrete pro-

cess zt, with 1 ≤ t ≤ T .

– We use Zs:t to denote the sub-sequence (zs, zs+1, . . . zt), with Z = Z1:T .

– Ft and Ωt denote the filtrations and sample spaces associated with Z1:t

respectively.

– For simplicity, it is assumed that Ω
4
= ΩT is finite and |Ω| = N . Also,

we enforce an order among outcomes to simplify notation. Thus Ω is an

ordered set {Z1, Z2, . . . , ZN}. For any subset A of Ω, the elements in A

are considered as per their relative order in Ω.

• Probability law

– The probability law considered by the agent at time t is denoted by Pt.
Since Ω is assumed to finite, Pt is specified if pit

4
= Pt(Z = Zi) is specified

∀i : 1 ≤ i ≤ N .

– If A is any event then the conditional probability law, which we denote by

AP is defined in the standard way:

Ap
i =

{
pi

P(A)
, Zi ∈ A

0 , Zi /∈ A
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Probability Update rules: Probability laws themselves evolve over time as

they are updated as new information is revealed. However, an update rule that

will yield Pt, given Pt−1 and zt is specified a-priori. The most common way to

do this is using Bayesian updates. This means

Pt+1(Zi) =
Pt(Zi, Z1:t)∑N
j=1 Pt(Zj, Z1:t)

=
Pt−1(Zi, Z1:t)∑N
j=1 Pt−1(Zj, Z1:t)

=
P0(Zi, Z1:t)∑N
j=1 P0(Zj, Z1:t)

.

Thus,

Pt ≡ Z1:tP0 (6.8)

Remark 6.2. Bayesian updates implicitly assume the principle of Consequen-

tialism (see Machina [89], Hammond [64]), which basically states that the out-

comes that cannot occur should not influence decisions or preferences. In our

setting this is equivalent to assigning zero probabilities to the events ruled out

by zt. An alternative is the non-consequentialist approach, that Machina [89]

argues can be considered as appropriate in some settings. Under the non-

consequentialist approach, probability laws are effectively never updated. As dy-

namic consistency follows trivially in this case, we consider only the Bayesian

update rule for probabilities.

• Controls

– At time t a control yt is applied after observing zt.

– yt is chosen from (a possibly infinite) domain Yt that is non-stochastic.

– Ys:t denotes the sequence (ys, ys+1, . . . , yt) with Y
4
= Y0:T .

– yt must be Ft measureable. For notational ease, we will define Y i as the

complete control sequence applied corresponding to the sample path Zi.

• Strategy

– A strategy S is a sequence of mappings from Ωt to Yt for t = 0, 1, . . . , T .

Thus, a strategy gives a recipe for applying controls adapted to Ft.
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– A strategy can be partitioned along both time and event space. Given

indices j, k and an event A ∈ Fj, a sub-strategy ASj :k is a sequence of

mappings from Ωt ∩ A to Yt for t = j, j + 1, . . . , k that agrees with S on

its domain.

– Given individual strategies S 1 , S 2 , S 3 , and an event A ∈ Ft and its comple-

ment Ac, one can construct a compound strategy {S 1
0 :t−1 , AS 2

t :T ∪ AcS 3
t :T},

in the obvious way.

– S (Z1 :t) denotes the entire control sequence response to Z1:t, i.e., the se-

quence of controls (S (·), S (Z1 :1 ), . . . , S (Z1 :t)).

– Si :j |A, will be used to denote a partial strategy, which is essentially a se-

quence of mappings from Ωt ∩ A to Yt for t = i, i + 1 . . . , j. Again, the

default value for j will be T and A must be Fi measureable.

• Objective function: At any time t, the agents objective function is given by

V (Z1, Y 1, p1
t , Z

2, Y 2, p2
t , . . . , Z

N , Y N , pNt |Z1:t, Y0:t−1) (6.9)

or more compactly denoted as

V (Ω, S ,Pt |Z1 :t ,Y0 :t−1 )

The “conditioning” notation in (6.9) and (6.10) is used as a short-hand to denote

the constraint that S0 :t−1 is no longer under control and is pinned to Y0:t−1 and

that the law Pt has been updated to reflect the occurrence of Z1:t. Also,

– We constrain the Objective function V to remain the same in nature over

time. This avoids the agent from having time-varying tastes, which can

trivially lead to dynamic inconsistency.

– Without loss of generality, we require that outcomes Zi and corresponding

decisions Y i, that have been assigned pit = 0 probability, cannot influence

V (· · · ) and may be dropped without any consequence.

Remark 6.3. The model presented above has the following restrictions:

• The domain of allowed control variates does not “evolve” or change stochasti-

cally and is assumed to be fixed. (i.e., there are no stochastically changing con-

straints). A general SDP may include a constraint of the form f(Z, Y,Pt) < b.
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We do not consider this case here as we seek to characterize structural proper-

ties of V for dynamic consistency. Also, as we saw in examples in Section 6.2,

such constraints typically lead to dynamic inconsistency. Our-set up is actually

general enough to include “deterministic” constraints of the nature f(Z, Y ) < b,

provided they are non-coupling or “rectangular” in nature. By this we mean that

the same constraint cannot involve two controls that have a zero probability of

being applied together. We use the more restricted setting to retain focus on the

key properties.

• The control variables yt cannot influence the evolution of uncertainty Z in our

model. This condition can be restrictive in some cases. In Dynamic Choice and

Preference theory for example, the agent’s decision problem is posed as that of

a choice between two distributions of outcomes. The proposed framework, in

general will be unsuitable to model problems of this nature6.

• The reference to an explicit information process Z may appear superfluous as

one can redefine the SDP with probability laws defined on a standardized sample

space. However, we prefer this formulation involving Z to highlight that it has a

physical significance in our setting and is used to refer to the finest measureable

sample-space. Also, it serves to easily identify information known at time t.

We now provide a formal definition of dynamic consistency in our setting.

Definition 6.1. We say a solution strategy S ∗ is an optimal dynamically consistent

policy if

• It optimizes V (Ω, S ,P0 ).

• and remains optimal at all t, no matter what the outcome so far i.e., Z1:t has

been and thus also maximizes V (Ω, S ,Pt |Z1 :t , S
∗(Z1 :t−1 )) for all t and Z1:t.

We say that the SDP formulation is dynamically consistent if all strategies that are

optimal at time 0 are also dynamically consistent as defined above for any specification

of initial probability law P0.

This definition of dynamic consistency formalizes the notion that once the DM

has solved her problem at time 0 and found an optimal strategy, she will not have

6Such a decision between lotteries maybe modeled by using an elevated uncertainty dimension.
But, in order to ensure equivalence, certain additional linearity-like properties must be imposed on
the pseudo-probabilities. See for example the Simple Reduction axiom in Lotito, [88].

168



any incentive to deviate from the same. This requirement is in a similar spirit as

the notion of a sub-game perfect equilibrium in game theory. The following thought

experiment makes the analogy clearer:

• Suppose, different DMs are in charge of exercising controls at different stages of

the SDP. Figure 6-1 illustrates this schematic for a two period problem, where

there are two possible random outcomes, u and d at each stage.

Figure 6-1: Illustration of Co-ordination between DMs for Dynamic Consistency

• We refer to the DM which exercises the control at time 0 as the principal DM

or DM0. DM0 devices the optimal strategy or plan for the SDP. She then

exercises the control y0 to be applied at time 0 and instructs the DMs in charge

of implementing the subsequent controls (DM1u and DM1d, in the example of

Figure 6-1.), trusting them to follow her instructions.

• When new information is revealed, the DM that becomes active (DM1u if Z1 =

u and DM1d if Z1 = d in the example) solves her own version of the SDP

that is derived by appropriately updating the principal agent’s SDP. Dynamic

consistency then means that this DM will not have any incentive to deviate

from the principal agent’s instructions.

For dynamic consistency, then the objectives of different DMs must be aligned.

Note that, in this version of dynamic consistency, the principal DM, DM0 is allowed

to communicate “instructions” to the future DMs and co-ordinate their actions. We

can also define the following stronger notion of dynamic consistency, which does not

allow for such co-ordination.
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Definition 6.2. The SDP formulation is “strongly dynamically consistent” if the fol-

lowing property holds: Let S ∗ be an optimal strategy for the problem at time 0. Let

S ′t :T |Z1 :t
, be an arbitrary optimal partial-strategy maximizing V (Ω, S ,Pt |Z1 :t , S

∗(Z1 :t−1 )).

Then the compound strategy {S ∗0 :t−1 ,Z c
1 :t

S ∗t :T ∪S ′t :T |Z1 :t
} is also optimal for the problem

at time 0. Morevoer this holds for any values of t > 0 and Z1:t.

Strong dynamic consistency implies (ordinary or regular) dynamic consistency.

In the thought experiment, if the SDP is strongly dynamically consistent, then even

when the principal DM, i.e., DM0 cannot leave any instructions to the future DMs

about what controls they should apply, these DMs would choose the right controls on

their own accord, obtained by solving their version of the SDP. The following two-

period example illustrates that one can have SDPs that are dynamically consistent

without being strongly dynamically consistent.

Example 6.3. Suppose DM at t for t = 0, 1 solves the SDP,

Vt = −Et[(|Y1| − Z1)2] + vart(Y1).

Where, the sample space for Z1 is {1,−1} and Y0,Y1 = [−1, 1]. This formulation,

while dynamically consistent is not strongly dynamically consistent7.

Remark 6.4. For a strongly dynamically consistent formulation, at any stage, it is

sufficient to find any optimal sub-strategy and roll it back to construct an optimal

dynamically consistent strategy. Thus backward induction works in a straightforward

manner. For a formulation that is dynamically consistent but not strongly dynamically

consistent, backward induction can be used to solve for the optimal strategy, provided

one finds and considers all the optimal sub-strategies discovered during the process of

rolling back. The distinction between the two becomes moot if uniqueness of optimal

strategies can be guaranteed at all stages, i.e., there is no degeneracy.

6.3.2 Examples of Dynamically Consistent Formulations

Before, formally proceeding with an investigation of properties for dynamic consis-

tency, we examine the type of SDPs that are known to be actually dynamic consistent.

Two commonly used formulations that lead to dynamically consistent plans are:

7Note that in this example, any optimal partial strategy at t = 1 is part of some optimal strategy.
However not all combinations of optimal partial strategies are optimal.
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• Expected Utility formulation: In the framework described here, the DM’s objec-

tive function takes the form:

V (Z1, Y 1, p1
t , Z

2, Y 2, p2
t , . . . , Z

N , Y N , pNt ) =
N∑
i=1

pitU(Zi, Y i) (6.10)

for some function U(·). Note that the Bayesian update of probabilities is crucial

for the Expected Utility formulation to be consistent. Weller [118] formally

shows this in the context of preference theory.

• Worst Case/ Best Case formulation: Here, the agent’s objective function takes

the form:

V (Z1, Y 1, p1
t , Z

2, Y 2, p2
t , . . . , Z

N , Y N , pNt ) = min
i:pit>0

U(Zi, Y i) ; (6.11)

V (Z1, Y 1, p1
t , Z

2, Y 2, p2
t , . . . , Z

N , Y N , pNt ) = max
i:pit>0

U(Zi, Y i) (6.12)

These formulations will be in fact dynamically consistent for any probability

update rule that continues to assign non-zero probabilities to events that are

not ruled out by zt.

Interestingly, while worst-case (or best-case) objective based measures lead to

dynamically consistent formulations, objectives which seek to maximize the 2nd

worst-case (or 2nd best-case) do not. These formulations suffer from the same

issues as problems with VaR based metrics in dynamic settings.

In some sense, the worst-case or best-case formulations are not too different

from the expected utility formulations and can be viewed as limiting cases of

the same. For example, the worst-case formulation in (6.11) will lead the same

actions as an SDP with the objective

V (Z1, Y 1, p1
t , Z

2, Y 2, p2
t , . . . , Z

N , Y N , pNt ) = lim
m→−∞

(
N∑
i=1

pit(U(Zi, Y i))m

) 1
m

which is similar to the formulation in (6.10).
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6.3.3 Structural Properties of the Objective for Dynamic

Consistency

As probability laws are updated according to the Bayes rule, it is the nature of the

objective function V that will determine if the SDP is dynamically consistent. We

find that the key property for V is separability which is defined as follows:

Definition 6.3. Strong Separability: The SDP is strongly separable if the fol-

lowing condition if it satisfies the following condition: Fix Z1:t and Y0:t−1. Then the

optimizing partial sub-strategy S ∗t |Z1 :t ,Y0 :t−1
is independent of pi, Zi, i /∈ {Z1:t}.

An SDP satisfying the strong separability condition can be solved by backward

induction and hence will be strongly dynamically consistent. Thus strong separability

is a sufficient condition for strong dynamic consistency. However, as the following

example illustrates, it is not a necessary condition.

Example 6.4. Suppose the DM seeks to optimize the following objective at time 0.

V = −E[(Y1 − Z1)2] + |Y0| · var(Y1) .

where, the sample space for Z1 is {1,−1} and Y0,Y1 = [−1, 1] This formulation

is not strongly separable as for y0 < 0 the optimal control y1 that should be applied

in the event Z1 = 1 is not independent of the control that should be applied when

Z1 = −1. The SDP however is strongly dynamically consistent.

Strong separability is a stronger condition than strong dynamic consistency as the

latter will hold under the following weaker condition:

Suppose the partial strategy S†0:t−1 is known to be optimal. Then optimizing sub-

strategy S ∗
t |Z1 :t ,S

†
0 :t−1 (Z1 :t )

is independent of pi, Zi, i /∈ {Z1:t}.
Thus for dynamic consistency, independence between optimizing sub-strategies corre-

sponding to two mutually exclusive events need only hold for optimal control paths.

This makes a characterization of dynamically consistent SDPs difficult, as the

above condition is difficult to verify in practice. However, as we now show, a converse

characterization which shows that all strongly dynamically consistent SDPs are in

some sense equivalent to SDPs that have strongly separable objective functions is

possible. In fact, any dynamically consistent strategy can be thought of as arising

from an SDP that can be solved by a dynamic program.
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6.3.4 Dynamic Consistency and Decomposability

Generalization of the exact structure of the objective functions that lead to Dynamic

consistency is difficult8. The following theorem however shows that nevertheless there

exists a canonical representation for objective functions that lead to strongly dynam-

ically consistent SDPs under Bayesian updates.

Theorem 6.1. Let an SDP with the objective V (· · · ) lead to strongly dynamically con-

sistent SDPs under Bayes rules for probability updates. Then, the strategies generated

by V (· · · ) are identical to those generated by optimizing an SDP with the objective

function Ṽ which has the specific canonical form described below:

Let |Ωt| = Nt and Zi
1:t, 1 ≤ i ≤ Nt denote the singleton elements of Ωt. Also define

Ωi
t

4
= Ω ∩ {Zi

1:t}. Then,

V (Ω, S ,P0 ) ≡ Ṽ (Ω, S ,P0) =
T∑
t=0

Nt∑
i=1

Vt(Z
i
1:t, Y

i
0:t,Ω

i
t, Ωit

P0) . (6.13)

Moreover,

max
S1 :T

Ṽ (Ω, {y0, S1 :T}) = max
S1 :T

V (Ω, {y0, S1 :T}) .

and hence the two SDPs attain the same optimal value.

Proof. Before we proceed with the proof, note that the above decomposable rep-

resentation follows the familiar dynamic programming setting. Xt = {Z1:t, Y0:t−1}
can be interpreted as the “state” (or history) of the system at time t and Ut =

{Z1:t∩Ω, Z1:tP0}, as the future or prospects. Thus we have a recursive value function

definition for the objective function as.

JT (XT , yT ) = VT (Z1:T , Y1:T ,P0(Z1:T ))

Jt(Xt, Ut) = max
yt

(
gt(Xt, yt, Ut) +

Nt+1∑
i=1

Jt+1(X i
t+1, U

i
t+1)

)
(6.14)

for some functions VT (·) and gt(·).
We prove the theorem using a direct construction and induction on T . Recall

Ωjt
St :T denotes a substrategy derived from S . It is easy to see that the theorem holds

for T = 1, with Ṽ = V . Suppose that the theorem holds for T = k for some k > 1.

8For example, any monotonic transformation of the objective function will preserve Dynamic
Consistency.
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We will show that it holds when T = k + 1. Consider the functions V̄ (· · · ) and

V †(· · · ) defined as

V †(Ω, S0:T−1,P0)
4
= max

S ′T
V (Ω, {S0:T−1 S ′T},P0) ;

V̄ (Ω, S ,P0)
4
= V †(Ω, S0:T−1,P0) −

NT∑
i=1

max
S ′T

V (Ωi
T , {S0:T−1 S ′T}, ΩiT

P0)

+

NT∑
i=1

V (Ωi
T , S , ΩiT

P0)

= V †(Ω, S0:T−1,P0) −
NT∑
i=1

max
S ′T |Zi

V (Ωi
T , {S0:T−1(Zi

0:T−1) S ′T |Zi}, ΩiT
P0)

+

NT∑
i=1

V (Ωi
T , {S0:T−1(Zi

0:T−1) ST |Zi}, ΩiT
P0) . (6.15)

It then follows that

max
{S ′T }

V̄ (Ω, {S0:T−1 S ′T},P0) = max
{S ′T }

V (Ω, {S0:T−1 S ′T},P0)

= V †(Ω, S0:T−1,P0) . (6.16)

Hence, if one uses the objective V̄ in the SDP instead of V , then the set of optimal

partial strategies S ∗0 :T−1 does not change. If S ∗0 :T−1 denotes any such partial strategy,

then, from (6.15), {S ∗0 :T−1 SA
T } is optimal for the modified SDP if and only if SA

T solves

max
ST

V (Ωi
T , {S ∗0 :T−1 ST}, ΩiT

P0)

for all i. Because of the Bayesian update rule (6.8), and as outcomes with zero

probabilities do not impact V , this is exactly the same condition as each partition

component ΩiT
SA

T of SA
T solving

max
ST |Zi

V (Ω, {S ∗0 :T−1 ST |Z i},PT |Zi
1:T , S

∗
0 :T−1 (Zi

1:T−1))

for all i. Hence the composite strategy {S ∗0 :T−1 SA
T } is also optimal for the original

SDP because of strong dynamic consistency.

Thus SDPs with objectives V and V̄ have the same set of optimal policies and

take identical values at optimality.

Now if in (6.15), we replace V †(Ω, S0:T−1,P0) by another function, say, V †1 (Ω, S0:T−1,P0)
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such that they have common optimal partial strategies S0:T−1 and the same optimal

value, then it follows that the SDP obtained with the objective function

Ṽ (Ω, S,P0)
4
= V †1 (Ω, S0:T−1,P0) −

NT∑
i=1

max
S ′T

V (Ωi
T , {S0:T−1 S ′T}, ΩiT

P0)

+

NT∑
i=1

V (Ωi
T , S , ΩiT

P0) (6.17)

will also have the same set of optimal strategies and the same optimal value.

Now, note that the SDP with objective function

V †(Ω, S0:T−1,P0) = max
S ′T

V (Ω, {S0:T−1 S ′T},P0)

is itself a strongly dynamically consistent SDP with T−1 = k stages. From the induc-

tion hypothesis, then there exists a function V †1 (· · · ) such that V †1 (· · · ) and V †(· · · )
have the same set of optimal strategies and the same optimality value. Further, Ṽ1(·)
has the sum decomposable representation

V †1 (Ω, S0:T−1,P0) =
T−1∑
t=0

Nt∑
i=1

V †t (Zi
1:t, Y

i
0:t,Ω

i
t, Ωit

P0) ;

and

max
{S1 :T−1 }

V †1 (Ω, {y0 S1:T−1},P0) = max
{S1:T−1}

V (Ω, {y0 S1 :T−1},P0) . (6.18)

Using V †1 (· · · ) in (6.17), we get the following equivalent objective for the objective

Ṽ of the modified SDP

Ṽ (Ω, S,P0) =
T−1∑
t=0

Nt∑
i=1

V †t (Zi
1:t, Y

i
0:t,Ω

i
t, Ωit

P0) −
NT∑
i=1

max
{S ′T}

V (Ωi
T , {S0 :T−1 S ′T}, ΩiT

P0)

+

NT∑
i=1

V (Ωi
T , {S0:T−1S ′T}, ΩiT

P0)

=
T−1∑
t=0

Nt∑
i=1

V †t (Zi
1:t, Y

i
0:t,Ω

i
t, Ωit

P0)−
NT∑
i=1

max
Y iT

V (Zi
1:T , Y

i
1:T−1, Y

i
T , ΩiT

P0)

+

NT∑
i=1

V (Zi
1:T , Y

i
1:T , ΩiT

P0) ,
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which is of the desired form.

Also, from (6.16), (6.17) and (6.18), it follows that

max
S1 :T

Ṽ (Ω, {y0, S1 :T}) = max
S1 :T

V (Ω, {y0, S1 :T} ).

The formulation in (6.14) is strongly separable.

We have thus established that every dynamically consistent optimal strategy can

be thought of as to arise from a strongly separable formulation. Moreover, the for-

mulation has a sum decomposable representation as described in the statement of the

theorem.

The above result shows that there exists an interesting relationship between

strongly dynamically consistent formulations and formulations that can be solved

using Bellman’s principle and dynamic programming. Dynamic programming is ba-

sically an algorithmic trick that is used in deterministic problems as well, such as the

shortest path problem when the problem is decomposable.

The essential requirement for strong dynamic consistency over time is then that

optimal controls corresponding to mutually exclusive events can be obtained inde-

pendently of each other, thus negating the need for a “co-ordination” amongst DMs

at different stages. Note that in all the examples presented in Section 6.2 which suf-

fered from dynamic inconsistency, the principal DM needed to co-ordinate strategies

of the future DMs, even when these strategies would never be simultaneously exe-

cuted on any sample path. This happened because either the objective or some of

the constraints were “coupling”.

6.4 Dynamic Consistency and Dynamic Risk and

Asset Management

In the last section, we examined the problem of dynamic consistency for a general

SDP and the relationship between dynamic consistency and objective functions. The

dynamic inconsistency of commonly used financial metrics - variance, VaR, CVaR,

Sharpe Ratio, when used as or part of objective functions can thus be easily traced to

the fact that they are “non-separable” across disjoint events. Distribution invariant

dynamic Risk-measures are representable as expected value of shortfall risk and these

lead to dynamically consistent objectives. Dynamic coherent risk measures that are

not of the expected value type have been proposed by Hardy and Wirch [103], Roorda
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and Schumacher [105], Artzner et. al [5]. An example is the iterated CVaR (iCVaR).

These risk-measures do not have a simple representation however and can only be

defined recursively. The definition thus depends on the number of time-steps or

discretization level used.Note that the iterated VaR measure proposed in Cheridito

and Stadje [35] has similar drawbacks besides being not coherent. Expected utility

or expected shortfall then appear to be the most reasonable choices of performance

metrics if dynamic consistency of strategies is desired.

We propose another alternative - Use expectations with respect to a probability

law distorted in a dynamically consistent fashion e.g.,

V =
N∑
i=1

(pi)αU(Zi, Y i).

If α < 1, then effectively, this distorted measure will re-emphasize tail or extreme

events. The function U(·) maybe chosen so as to ensure that tail events with negative

risk are de-emphasized, e.g, by making it a shortfall function. It can be verified rela-

tively easily that this objective will lead to dynamically consistent SDPs with Bayesian

updates. Note, however this objective function is not “distribution-invariant” w.r.t.

to U(Zi, Y i) treated as a random variable. This does not create any difficulty in our

setting as each state has a distinct identity. Such a risk measure may also be defined

for an intermediate evaluation, on partial sequences Z1:t and Y0:t. Note the similarity

with and differences from the distortion idea introduced by Choquet, [37].

Practically speaking, however, that use of VaR and variance and Sharpe-ratio in

or as performance metrics is widespread in practice. We now consider how dynamic

inconsistency issues that may result from their use maybe dealt with. One approach

would be to use them in a static sense as indicated in Cuoco, He and Issaenko [46].

However, this would not help in modeling risks related to terminal positions.

We again use the DMs at different time and stages viewpoint in the following

discussion to emphasize the compromises that need to be made when faced with

dynamically inconsistent SDPs. Dynamic inconsistency essentially means that it is

impossible to satisfy all these DMs simultaneously and in all eventualities.

There are three possible courses of action when dealing with dynamic inconsis-

tency, (see Lotito, [88], Machina, [89], McClennen, [92]).

Myopic Choice: Ignore the fact that the SDP is dynamically inconsistent. Re-solve

the problem every time period and implement only the current strategy found

to be optimal for the period of interest. This is essentially the idea behind
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Rolling Horizon optimization and is often used in engineering. This is probably

most undesirable as the resulting strategy will be sub-optimal for all the DMs

in our setting.

Sophisticated Choice: Anticipate the dynamic inconsistency and implement cur-

rent controls in a way that compensates for future dynamic inconsistency that

is foreseeable. This effectively amounts to using Backward Induction to solve

the Sequential Decision Problem. In our setting, this is a game-theoretic or a

Nash-equilibrium solution between different DMs at different stages.

Resolute Choice: Forego solving the problem every period and commit to im-

plement the optimal strategy obtained initially in all periods without resolv-

ing the problem in subsequent periods. This is tantamount to taking a non-

consequentialist view point and to never update the pseudo-probability weights

initially assigned even in face of new information. See how γ-people behave as

in [89]. In this case the objective of DM at time 0, the principal agent takes

priority over all other DMs.

In the context of preference theory, Machina [89] presents normative arguments

and examples supporting the rationale for an agent to adopt a non-consequentialist

approach arguing that events that did not or cannot happen represent risk that has

been borne and must continue to be accounted for. We give a concrete and real life

example here adoption of such a non-consequentialist approach can be objectively

justified.

When is ignoring New Information appropriate?

The question whether to use a consequentialist(Bayesian) or non-consequentialist(none)

approach for probability updates depends on the actual objective that the SDP is a

model of. To illustrate let us take the example of an asset manager with a high turn-

over portfolio. The manager’s performance will be eventually judged by analysts by

a measurement of the Sharpe-ratio of her returns over several well-defined trading

horizons. The manager, who is aware of this criterion then should naturally seek to

optimize this Sharpe-ratio and can device a dynamic asset allocation strategy with

‘Sharpe-Ratio’ as the objective at the beginning of a trading horizon. While a legit-

imate modeling objective, it is relatively easy to check that the Sharpe-ratio which

is the ratio of expected annual return and its standard deviation is a non-separable

objective and hence will lead to dynamic inconsistency with Bayesian updates. The
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manager can use a surrogate objective that is dynamically consistent, but that will

be sub-optimal.

Suppose we also assume that the manager does not perceive liquidity or bankrupt-

cies related risk to be significant and thus can expect to be in business for a large

period and that the market performance over different trading horizons is indepen-

dent and identically distributed. We argue that in this case, it is appropriate for the

manager to take up as her objective, Sharpe-ratio of the return at the end of the

horizon, with a non-consequential approach for updating probabilities. Informally,

this resolute choice strategy chooses that distribution of end-of-period returns that

has the maximum Sharpe-ratio amongst all the feasible distributions. With large

number of independent samples, this will give the manager the optimal performance

metric.9

In this context, both Sophisticated Choice and Myopic Choice Strategies, insofar

as they are distinct from Resolute Choice will be “sub-optimal”. While the non-

consequentialist approach used here may also be interpreted as accounting for risk

already borne in the sense of [89], in essence what justifies this policy is the fact that

1. the objective is measured over well-defined time horizons and

2. there will be repeated trials of the same strategy

We believe that these two factors are key to validating a non-consequentialist or

disciplined approach of being committed to the original plan even in light of new

information, as the strategy is targeting a distribution profile.

Note that if returns corresponding to different trading periods were used to mea-

sure the manager’s performance then the measured Sharpe-ratio is likely to be much

worse than the blocks that were optimized for. 10 Also, we have only resolved the

issue of what problem the asset manager should seek to solve. Solving for optimal

dynamic strategy for a non-separable objective is a computationally challenging task

but not the subject-matter of discussion here.

Such a non-consequentialist approach cannot be considered appropriate however

for all dynamically inconsistent SDPs. Consider the modeling objective for risk man-

agement, which is to guard a firm against events that are likely to be catastrophic or

of end-game nature. Through risk management while recognizing that eliminating a

9Strictly speaking, the manager should seek to maximize the asymptotic statistical estimator of
Sharpe-ratio.

10This would mean that for an investor seeking to invest in the firm, the time of entry or exit into
the fund may now become relevant to its performance! This is more a criticism of the performance
metric used.
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severe risk scenario might be too expensive or impossible, the DM seeks to limit the

possibility of the same to a reasonable level. If such an undesirable event does occur,

it is likely to change the playing field for the DM completely. Thus the criterion of

repeated trials of a strategy fall through.

To illustrate this idea in the context of dynamic risk management, using VaR

limits, consider a hypothetical case of a day-trader devicing a strategy to maximize

returns over a horizon of T periods. The risk that the manager wants to guard herself

against is that of a large downward swing in the end-of-the day net value11. To keep

things simple, we assume that the manager can trade only once during a period in N

different assets. The period t gross return vector is denoted by Rt. Let Wt denote the

net value of the funds holdings at time t, while Xt the holdings in individual assets.

We assume no transaction costs. This problem is typically posed as

max
Xt:0≤t≤T−1

E[WT ] ;

s.t. Wt = X ′t−1Rt +Wt−1, 1 ≤ t ≤ T ,

VaRα(Wt) > W0(1− β) . (6.19)

Here VaRα(X) denotes the α percentile in the distribution of X, i.e., if FX(·) denotes

the CDF of X then VaRα(X) = infx{x : FX(x) ≥ α}. β denotes the maximum draw-

down and α a level of risk the manager is comfortable taking and is related to her

risk-averseness. The VaR related constraint, as it is coupling, will lead to dynamically

inconsistent solutions under Bayesian updates. Further, as we argued earlier taking

a non-consequentialist approach in this scenario is inappropriate. Also, as VaR, is

dynamically inconsistent as an objective, dualizing the constraint or penalizing it will

not solve the issue as well. A possible way to tackle this problem is to consider the

equivalent problem (6.21)

max
Xt:1≤t≤T

E[WT ] ;

s.t. Wt = X ′t−1Rt +Wt−1, 1 ≤ t ≤ T ,

Pr(WT < W0(1− β)) < α . (6.20)

and converting this constraint to a penalty as in a Lagrangian approach. The new

11For example, this might lead to a margin call
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problem can be posed as

max
Xt:1≤t≤T

E[WT ]− λE[1WT<W0(1−β)]

s.t. Wt = X ′t−1Rt +Wt−1, 1 ≤ t ≤ T . (6.21)

This formulation though dynamically consistent is not equivalent to the original,

but poses the manager’s problem much more transparently. The formulation raises

the question about what an appropriate value of multiplier λ should be. In principle,

answering this question should be no more difficult than choosing “sensible” values

of α. Indeed, if one had a target level of α available, then λ can be appropriately

tuned to attain those or better risks of draw-downs at optimum12. The penalty based

formulation also offers a much more straightforward interpretation. In this case it

should be simply interpreted as a trade-off between cost of excessive large draw-down

e.g., say a margin call or risk to credit perception, for a marginal increase in expected

gains. Note that, if risk related to intermediate positions is of concern, then it can

be addressed in a similar way.

Ideally, one would like to switch to a Dynamically Consistent Objective and for-

mulation whenever possible. Managers or DMs often do not control the performance

metrics on which they will be measured. It is in general difficult to promote or evan-

gelize a new industry standard because of legacy reasons. For example, expected

utility framework has been around for years but has never been a popular measure

to rate managers on asset or risk management.

6.5 Conclusion

In this chapter, we studied the issue of dynamic inconsistency for general Sequential

Decision Problems(SDPs). The issue is of particular importance in finance as many of

the commonly used performance as well as acceptability criteria, can lead to dynamic

inconsistency unless employed carefully. We provided several simple but illustrative

examples for the same.

We then studied the general SDP framework and investigated the conditions that

an objective function must satisfy in order to lead to a dynamically consistent for-

mulation. In this context, we noted that dynamic consistency is almost equivalent

to correctness of dynamic programming implied solutions. We also showed that any

12The strategy implemented in that case will be the same as the optimal pre-commitment strategy
for (6.19).
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dynamically consistent strategy can be thought of as arising from an objective that is

sum-decomposable over time and mutually exclusive events. Based on these insights,

we also proposed an alternate class of performance metrics based on shortfall expec-

tation with respect to probabilites distorted by a suitable power factor. These can be

used to emphasize tail events, the same rationale behind the VaR and CVaR metrics,

while being dynamically consistent.

We then discussed how a DM faced with dynamically inconsistent SDPs may

cope with this inconsistency. In certain cases, it may be reasonable for the DM to

take a non-consequentialist approach and follow a pre-committed strategy. Some

dynamically inconsistent formulations can be made consistent by rephrasing.

Many interesting directions are possible in this line of research. On the framework

side, corresponding conditions for dynamic consistency for an infinite sample space

would be an important extension of results. Another extension possible will be to

consider the effect of ambiguity in probability distributions over the set of states, as

in practice the probability distribution is almost never known precisely and the SDP

goal is to find that strategy that works reasonably well for all classes of probabil-

ity distributions in a family. If dynamic consistency, is a desirable property in this

setting, then it will be interesting to see, what additional conditions on the SDP fram-

ing (besides separability across mutually exclusive events) are needed to guarantee

dynamic consistency.
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Chapter 7

Summary and Closing Remarks

We examined three different topics in financial modeling. The topics, though diverse,

together illustrate the power as well as limitations of modeling, which is at the heart of

Operations Research and separates it from pure mathematics and computer science.

For Employee Stock Options, we noted that, by not considering an employee’s

stock option portfolio holistically, traditional models can leave out a significant de-

terminant of employee’s exercise policies and thus indirectly its cost to the employer.

Augmenting the models to incorporate this effect allows us to get an insight on the

nature of this impact. As we studied in Chapter 2, the impact is in general to make

the cost of a portfolio smaller than the sum of its parts. The models also show that

issuance of new ESOs, if unanticipated by the employee, can have the surprising ef-

fect of changing the costs associated with the unexercised ESOs that the employee

possesses. Though useful to generate these insights, the model is not very useful from

an implementation viewpoint.

A different approach, based on risk-management and portfolio optimization pre-

sented in Chapter 3, allowed us to jointly model exercise behavior of multiple ESOs

for an employee, while being amenable to computation. The risk-management based

model agrees at a basic level with traditional models in prioritizing options for exer-

cises and is based on an intuitive criterion of ranking options on the basis of a pseudo

Sharpe ratio. This suggests another related model for exercise behavior, which while

making option exercises independent, allows us to get closed-form bounds on their

cost to the company.

An interesting and useful direction of research in this context will be to explore

how exercise behavior predicted by these models compares to empirically observed

behavior and quantifying their impact on pricing. Further refinement of models and

strategies to hedge out the cost of ESO at the onset are other possible research
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directions.

We then analysed the GWB for life options in Chapters 4 and 5. Though, in wide

use in the Variable Annuity (VA) space, a systematic understanding of this implied

feature has only recently begun in the literature. We proposed and analysed a contin-

uous time version of this product, with simplifying assumptions on residual mortality

rates of the investor population in Chapter 4. The model, though cannot be used for

pricing such schemes in real-life, provided useful insights in the key determinants and

risk-factors for valuations. What is troubling for the GWB series of products, is that

the models typically used for pricing securities would tend to disagree significantly

on valuations as we saw in Chapter 5. The combination of this price ambiguity as

well as several un-hedgeable factors such as investor behavior, imply that even with

“hedging”, GWB for life products will entail significant risk. Also, we observed that

the product has insufficient price discrimination and is subject to adverse selection.

Our findings suggest that regulators and investors must lay down standards for

valuation of complex securities like GWB. It will be useful to have a sound and

practically useable framework to describe the risk in option pricing due to model

ambiguity. More specific to the GWB, interesting directions of research include how

one can possibly re-design the product to make it less prone to adverse selection as

well as adverse dynamic behavior by investors so that it is not “gamed”. Another

possible direction is applying revenue management ideas to this product and find the

right pricing premium for GWB given an individuals risk-averseness to financial and

longevity risks.

The issue of dynamic inconsistency, as discussed in Chapter 6 seems almost per-

vasive in finance. It appears that criteria beyond expected utilities, will either be

intractable or run into issues related to dynamic inconsistencies. We presented an

alternative family of criteria in terms of expectations with respect to distorted state

probabilities. These objectives emphasize extreme events while preserving dynamic

consistency. The dynamic consistency issue is more severe when dealing with “chance

guarantees”. In essence, chance guarantees are by and large inconsistent in a dynamic

setting, unless accompanied by a description of circumstances in which they will hold

or fail.

It will be interesting to extend and examine the results presented to settings with

infinite and uncountable sample-space. Effective risk and performance metrics in a

dynamic setting that are easy to use and implement in practice will be a great tool

in financial modeling but seem difficult to find.

From a broader perspective, although a general evaluation of modeling frame-
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works is difficult, the problems considered in this thesis highlight the importance of

“commonly accepted good modeling principles” - they should incorporate key de-

terminants of the problem, be solveable for real life use and be theoretically sound.

Often, for complex examples, it is difficult to find a single model that will account

for all nuances and complexities of the real-life problems and be still computationally

solveable. We believe a robust framework that will allow a decision maker to simulta-

neously consider actionable recommendations from a family of models and choose the

most desireable one, so as to minimize unpleasant surprises, will be useful in most ap-

plication settings. Development and analysis of the efficacy of such a “Robust Model

Optimization” framework in concrete settings will be an exciting and useful research

avenue in the field.
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Appendix A

Relative Order of ESO Exercises

In this appendix, we illustrate a simple example, where the order of exercise as stated

in Lemma 2.5 can be violated for a ‘consumption’ type utility model. The Employee’s

exercise problem is formulated in the same spirit as the model suggested in [75]. More

concretely, the exercise policy is obtained as a solution to the following optimization

problem.

max E

[
T∑
t=1

U(t, Pt)

]

Pt =
N∑
i=1

xi,t(St −Ki)
+ (A.1)

xi,t is Ft −measurable.
T∑
t=0

xi,t = αi . . . 1 ≤ i ≤ N

xi,t = 0 if t < Vi or t > Ti (A.2)

Now consider, the following simple instance of this problem, where the employee has

two types of ESOs, i.e., N = 2, with strikes K1 = 70, K2 = 90.Both options are

already vested and have common expiry T = 1. The grant size α1, α2 are each

100. The current stock price S0 = 100 and the employee believes that the stock

price at T = 1 could be either 80 or 120 with equal probability 1
2
. Also, we take

U(0, P ) = U(1, P ) = ln(10 + P ). The employee’s exercise problem for this case can

be written as

max ln(30x1 + 10x2 + 10) +
1

2
ln(10 + (100− x1)10) +

1

2
ln(10 + (100− x1)50 + (100− x2)30)

187



The optimal solution to this problem is x1 = 33.47, x2 = 100. Thus, in this

case all options with the highere strike i.e., strike 90, are in fact exercised before the

options with a lower strike 70 are exhausted.
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Appendix B

Supplementary Results for

Chapter 3

We will find it useful to employ the following property of normal distributions. The

property can be verified numerically, but for completion we provide a proof.

Lemma B.1. The function g(x)
4
= Φ(x)

N(x)
+ x is increasing in x.

Proof. Consider

g′(x) = 1−
(

Φ(x)

N(x)

)2

−
(

Φ(x)

N(x)

)
xΦ(x)

=
1

N2(x)

(
N2(x)− xN(x)Φ(x)− Φ2(x)

)
=

1

N2(x)
p(x) where,

p(x)
4
= N2(x)− xN(x)Φ(x)− Φ2(x) . (B.1)

⇒ p′(x) = N(x)Φ(x) + xΦ2(x) + x2N(x)Φ(x) (B.2)

= Φ(x)h(x), where,

h(x)
4
= N(x) + xΦ(x) + x2N(x) . (B.3)

⇒ h′(x) = 2Φ(x) + 2xN(x) (B.4)

⇒ h′′(x) = 2N(x) > 0 . (B.5)

Now from (B.4) and (B.3) respectively, limx→−∞ h
′(x) = 0 and limx→−∞ h(x) = 0.

Hence h(x) ≥ 0 and consequently p′(x) ≥ 0 using the definition in (B.3). Once again

we have limx→−∞ p(x) = 0. Thus p(x) ≥ 0 or equivalently g′(x) ≥ 0 ∀x using (B.1).

This completes the proof.
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Lemma B.2. The function C
σSδ

is increasing in S.

Proof. Note that,

C

Sδ
= 1− Ke−rTN(d− σ

√
T )

SN(d)

= 1− e
1
2
σ2T e

−σ
√
TdN(d− σ

√
T )

N(d)

where d as before is given by d =
ln S

K

σ
√
T

+ ( r
σ

+ σ
2
)
√
T . Since d is an increasing function

of S, it suffices to show that f(d) = e−σ
√
TdN(d−σ

√
T )

N(d)
is decreasing in d to prove the

lemma. Now

f ′(d) =
e−σ

√
Td

(N(d))2

(
N(d)Φ(d− σ

√
T )− σ

√
TN(d)N(d− σ

√
T )−N(d− σ

√
T )Φ(d)

)
=

e−σ
√
TdN(d− σ

√
T )

N(d)

((
Φ(d− σ

√
T )

N(d− σ
√
T )

+ (d− σ
√
T )

)
−
(

Φ(d)

N(d)
+ d

))

Here Φ(x) denotes the normal density function. Hence, to show that f(d) is

decreasing it suffices to show that the function g(x)
4
= Φ(x)

N(x)
+ x is increasing in x.

This was proved in Lemma B.1 in Appendix B

Corollary B.1. The delta-barrier function B(S,K, τ) = C−E
σSδ

achieves its peak at

S = K.

Proof. From Lemma 3.2, we know that B(S,K, τ) is decreasing in S for S > K. For

S < K, B(S,K, τ) = C
σSδ

and this function was shown to be increasing in S in Lemma

B.2. Hence it follows that the delta-barrier achieves its maxima at S = K.

Corollary B.2. The lower bound function to Cν, Cν− = (C − νσSδ)+ is increasing

in S.

Proof. We only consider the case when S is such that C − νσSδ ≥ 0, as the other
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case is trivial. Consider S ′ > S. By Lemma B.2

C(S ′, K, τ)

σS ′δ(S ′, K, τ)
≥ C(S,K, τ)

σSδ(S,K, τ)

⇒ C(S ′, K, τ)− νσS ′δ(S ′, K, τ)

σS ′δ(S ′, K, τ)
≥ C(S,K, τ)− νσSδ(S,K, τ)

σSδ(S,K, τ)

⇒ C(S ′, K, τ)− νσS ′δ(S ′, K, τ) > C(S,K, τ)− νσSδ(S,K, τ)

. . . since, ( C(S,K, τ)− νσSδ(S,K, τ) > 0

and S ′δ(S ′, K, τ) > Sδ(S,K, τ) > 0 )

Corollary B.3. At T ′ = T − TN , where T ′ is defined as in the proof of Lemma 3.4,

C − νσSδ > 0 ⇐⇒ S > K .

Proof. The property follows directly from Lemma B.2 and the fact that at T ′, C
σSδ

= ν

for S = K.

Lemma B.3. For T ′ = T − TN , where T’ is as defined in the proof of Lemma 3.4,

E[e−rT
′
(CT ′ − νσST ′δT ′)+]

= C0 − νσS0δ0

+Ke−rTN2

(
d(S0, K, T )− σ

√
T ,−d(S0, K, T

′) + σ
√
T ′,−

√
T ′

T

)

−(1− ν)S0N2

(
d(S0, K, T ),−d(S0, K, T

′),−
√
T ′

T

)
.

where, d(S,K, T ) =
ln( S

K
)

σ
√
T

+ ( r
σ

+ σ
2
)
√
T and N2(x, y, ρ) = Pr(X ≤ x, Y ≤ y), where

X, Y are two jointly normal random variables, with variances 1 and correlation ρ.

Proof. We know by definition that at , C(K,K, T − T ′) = νσKδ, at S = K. Using

191



the result proved in Corollary B.3 then,

E[e−rT
′
(CT ′ − νσST ′δT ′)+] = E[e−rT

′
(CT ′ − νσST ′δT ′);ST ′ ≥ K]

= E[e−rT
′
(CT ′ − νσST ′δT ′)] + E[e−rT

′
(νσST ′δT ′ − CT ′);ST ′ < K]

= C0 − νσS0δ0 + E[e−rT
′
e−rTNKN(d− σ

√
TN);ST ′ < K]

−(1− νσ)E[e−rT
′
ST ′N(d);ST ′ < K]

= C0 − νσS0δ0 +Ke−rTE[N(d− σ
√
TN);ST ′ < K]

−(1− νσ)E[e−rT
′
ST ′N(d);ST ′ < K] (B.6)

where, we use d = d(ST ′ , K, TN).Now,

Let us define z0, z1 as follows,

z0
4
=

ln(
ST ′
S0

)

σ
√
T ′
− (

r

σ
− σ

2
)
√
T ′

z1
4
=

ln( ST
ST ′

)

σ
√
TN
− (

r

σ
− σ

2
)
√
TN

Thus,

ST = S0e
(r− 1

2
σ2)T eσ

√
T ′z0+σ

√
TNz1 .

E[N(d− σ
√
TN);ST ′ < K]

= Pr(ST > K,ST ′ < K)

= Pr(σ
√
T ′z0 + σ

√
TNz1 > −ln

S0

K
− (r − 1

2
σ2)T, z0 ≤ −d(S0, K, T

′) + σ
√
T ′)

= Pr

(
−
√
T ′

T
z0 −

√
TN
T
z1 < d(S0, K, T )− σ

√
T , z0 ≤ −d(S0, K, T

′) + σ
√
T ′

)

= N2

(
d(S0, K, T )− σ

√
T ,−d(S0, K, T

′) + σ
√
T ′,−

√
T ′

T

)
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Now,

E[e−rT
′
ST ′N(d);ST ′ < K]

=

∫ −d(S0,K,T ′)+σ
√
T ′

−∞
e−rT

′
S0e

(r− 1
2
σ2)T ′+σ

√
T ′z0 ×

N

(
lnS0

K

σ
√
TN

+

√
T ′√
TN

z0 + (
r

σ
− σ

2
)
T ′√
TN

+ (
r

σ
+
σ

2
)
√
TN

)
Φ(z0)dz0

= S0

∫ −d(S0,K,T ′)+σ
√
T ′

−∞
N

(
lnS0

K

σ
√
T ′

+

√
T ′√
TN

z0 + (
r

σ
− σ

2
)
T ′√
TN

+ (
r

σ
+
σ

2
)
√
TN

)
Φ(z0 − σ

√
T ′)dz0

= S0

∫ −d(S0,K,T ′)

−∞
N

(
lnS0

K

σ
√
TN

+

√
T ′√
TN

z + (
r

σ
+
σ

2
)
T ′√
TN

+ (
r

σ
+
σ

2
)
√
TN

)
Φ(z)dz

= S0

∫ −d(S0,K,T ′)

−∞
N

(
lnS0

K

σ
√
TN

+

√
T ′√
TN

z + (
r

σ
+
σ

2
)
T√
TN

)
Φ(z)dz

= S0

∫ −d(S0,K,T ′)

−∞
Pr

(
Z −

√
T ′√
TN

z ≤
lnS0

K

σ
√
TN

+ (
r

σ
+
σ

2
)
T√
TN

)
Φ(z)dz

= S0

∫ −d(S0,K,T ′)

−∞
Pr

(√
TN√
T
Z −

√
T ′√
T
z ≤

lnS0

K

σ
√
T

+ (
r

σ
+
σ

2
)
√
T

)
Φ(z)dz

= S0N2

(
d(S0, K, T ),−d(S0, K, T

′),−
√
T ′

T

)

Hence, from (B.6),

E[e−rT
′
(CT ′ − νσST ′δT ′)+]

= C0 − νσS0δ0

+Ke−rTN2

(
d(S0, K, T )− σ

√
T ,−d(S0, K, T

′) + σ
√
T ′,−

√
T ′

T

)

−(1− νσ)S0N2

(
d(S0, K, T ),−d(S0, K, T

′),−
√
T ′

T

)
. (B.7)
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Appendix C

Illustration of GWB Product

Evolution

Table 4.5 shows the evolution of a GWB contract over the life of an individual in a

hypothetical scenario for the model described in Section 4.2 of Chapter 4. We take

the GWB parameters as follows - guaranteed withdrawal rate q = 6%, minimum

waiting period W = 3 years, retirement age AR = 65 years, and fee rate h = 0.65%.

In this example, the investor opened a VA account with GWB for life feature at the

age of 60 with an investment of 100,000. The investor could not take any withdrawals

before reaching age 65 or for a waiting period of 3 years whichever is later, which is

the first 5 years in this case. At each anniversary, the benefit base is stepped up

to the contract value if it falls below the same. The investor is guaranteed to be

able to withdraw upto 6% every year beginning the 6th anniversary. Withdrawals are

deducted from her VA account until it drops to zero, after which, the shortfall is met

by the company. If the withdrawals during any year exceed this amount then the

benefit base is reset. Fees amounting to 65 basis points of the benefit base are paid

(separately) to the insurance company by the investor every year.

In our example, the investor’s benefit base stepped up at contract anniversaries

1, 2, 3, 6, 7 and 9. During year 8, the investor took a withdrawal that exceeded the

contract limit and this caused the benefit base to reset. The withdrawal was less

than the year’s gain in contract value and hence did not incur a surrender charge.

The investor’s contract value dropped to 0 at the 25th anniversary. The insurance

company bore the shortfall in the guaranteed withdrawal level, which was 513 in year

25 and 6921 in year 26. The investor died during year 27. At the end of this year, the

company would have returned the residual contract value (NIL in our case) to the
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investor’s beneficiaries. Figure C-1 depicts how the Contract Value Cn and Benefit

Base Bn evolve with time for this particular example.

Figure C-1: Evolution of the GWB state variables with time for the example in Table
C.1
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Appendix D

Whittaker Functions and some

basic properties

The function WhM(k,m, z) can be defined in terms of hypergeometric function (see

Mathworld [91]) as

WhM(k,m, z) = exp(−z
2

)zm+ 1
2 1F1(

1

2
−m+ k, 1 + 2m, z) .

1F1(a, b, z) denotes a confluent hypergeometric function of the first kind. It has a

power series representation

1F1(a, b, z) = 1 +
a

b
z +

a(a+ 1)

b(b+ 1)

z2

2!
+ . . . (D.1)

and an integral representation

1F1(a, b, z) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0

exp(z.t)ta−1(1− t)b−a−1dt .

Note that,

d1F1(a, b, z)

dz
=

a

b
+
a(a+ 1)

b(b+ 1)
z +

a(a+ 1)(a+ 2)

b(b+ 1)(b+ 2)

z2

2!
+ . . .

=
a

b
1F1(a+ 1, b+ 1, z) .
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Proposition D.1. Let

f1(x)
4
= x−ke−

a
2xWhM

(
k,m,

a

x

)
,

where a > 0. Then,

lim
x→0+

f1(x) = a−k
Γ(1 + 2m)

Γ(1
2
− k +m)

; (D.2)

f ′1(x) = −
(

1

2
+ k +m

)
x−(k+1)e−

a
2xWhM

(
k + 1,m,

a

x

)
. (D.3)

Proof.

lim
x→0+

f1(x) = lim
x→0+

a−k
(a
x

) 1
2

+k+m
e−

a
x 1F1(

1
2
− k +m, 1 + 2m,

a

x
)

= a−k lim
z→∞

z
1
2

+k+me−z1F1(
1
2
− k +m, 1 + 2m, z)

= a−k lim
z→∞

z
1
2

+m+kez
Γ(1 + 2m)

Γ(1
2 − k +m)Γ(1

2 + k +m)
·
∫ 1

0
eztt−

1
2
−k+m(1− t)−

1
2

+k+mdt

= a−k
Γ(1 + 2m)

Γ(1
2 − k +m)Γ(1

2 + k +m)
·

lim
z→∞

∫ 1

0
e−z(1−t)t−

1
2
−k+m(1− t)−

1
2

+k+mzk+ 1
2

+mdt

= a−k
Γ(1 + 2m)

Γ(1
2 − k +m)Γ(1

2 + k +m)
lim
z→∞

∫ 1

0
e−ztt−

1
2

+k+m(1− t)−
1
2
−k+mzk+ 1

2
+mdt

= a−k
Γ(1 + 2m)

Γ(1
2 − k +m)Γ(1

2 + k +m)
lim
z→∞

∫ z

0
e−yy−

1
2

+k+m(1− y

z
)−

1
2
−k+mdy

= a−k
Γ(1 + 2m)

Γ(1
2 − k +m)Γ(1

2 + k +m)
lim
z→∞

∫ z

0
e−yy−

1
2

+k+mdy

= a−k
Γ(1 + 2m)

Γ(1
2 − k +m)

.

The property (D.3) was obtained by symbolic differentiation using Maple 9.

The function WhW(k,m, z) has the following integral representation (see Math-

world [91]):

WhW(k,m, z) =
e−

z
2

Γ(1
2
− k +m)

∫ ∞
0

t−
1
2
−k+m

(
1 +

t

z

)− 1
2

+k+m

e−tdt .

(D.4)
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Proposition D.2. Let

f2(x)
4
= x−ke−

a
2xWhW

(
k,m,

a

x

)
,

where a > 0. Then,

lim
x→0+

f2(x) = 0 ; (D.5)

f ′2(x) = x−(k+1)e−
a
2xWhW

(
k + 1,m,

a

x

)
. (D.6)

Proof.

lim
x→0+

f2(x) = lim
x→0+

a−k
(a
x
)2ke−

a
x

Γ(1
2
− k +m)

∫ ∞
0

t−
1
2
−k+m

(
1 +

tx

a

)− 1
2

+k+m

e−tdt

=
a−k

Γ(1
2
− k +m)

lim
z→∞

z2ke−z
∫ ∞

0

t−
1
2
−k+m

(
1 +

t

z

)− 1
2

+k+m

e−tdt

=
a−k

Γ(1
2
− k +m)

(
lim
z→∞

z2ke−z
)
·

(
lim
z→∞

∫ ∞
0

t−
1
2
−k+m

(
1 +

t

z

)− 1
2

+k+m

e−tdt

)
= 0 .

The property (D.6) was again obtained by symbolic differentiation using Maple 9.
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Appendix E

Joint distribution of Bt and Ct

Consider the following normalizations of the processs ct and bt defined in (4.26) and

(4.27):

yt =
ct
σ

=
1

σ
ln(Ct) ;

ut =
bt
σ

=
1

σ
ln(Bt) .

Applying Ito’s lemma to (4.3), we get

dyt =

(
r

σ
− 1

2
σ

)
dt+ dZQ

t ,

i.e., yt = ηt+ ZQ
t ,

where η =
r

σ
− 1

2
σ .

Then, by Girsanov’s theorem, yt is a Brownian Motion under the measure R whose

Radon-Nikodym derivative is given by

dR

dQ
= exp

(
−1

2
η2t− ηZQ

t

)
,

i.e.,
dQ

dR
= exp(ηyt −

1

2
η2t) . (E.1)

R is absolutely continuous with Q.

Since yt, is a Brownian motion under R and ut its supremum, using the well-known

refelction principle (see Karatzas and Shreve [78]), we get:
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PR(yt ≤ u− a, ut ≥ u) =


PR(yt ≥ u+ a) . . . , z ≥ 0 ;

P(ut ≥ u)− PR(yt > u− a, ut ≥ u)

= PR(ut ≥ u)− PR(yt > u− a) . . . , z < 0 .

i.e., PR(yt ≤ y, ut ≥ u) =


PR(yt ≥ 2u− y)

= N(2u−y√
t

) . . . , y ≤ u ;

P(ut ≥ u)− PR(yt > y, ut ≥ u)

= PR(ut ≥ u)− (1− N
(

y√
t
)
)

. . . , y > u .

Taking derivatives, we get:

fRyt|ut≥u(y)PR(ut ≥ u) =

{
1√
t
Φ(2u−y√

t
) . . . , y ≤ u ,

1√
t
Φ( y√

t
) . . . , y ≥ u ;

(E.2)

and fRyt,ut(y, u) =

{
2(2u−y)

t
1√
t
Φ(2u−y√

t
) . . . , y ≤ u ,

0 . . . , y ≥ u .
(E.3)

Then using the Radon-Nikodym derivative defined in (E.1) and doing a change of

measure to Q, we get:

fQyt|ut≥u(y)PQ(ut ≥ u) =


1√
t
Φ
(

2u−y√
t

)
exp

(
ηy − 1

2η
2t
)

. . . , y ≤ u ,
1√
t
Φ
(
y√
t

)
exp

(
ηy − 1

2η
2t
)

. . . , y > u ;
(E.4)

and fQyt,ut(y, u) =


2(2u−y)

t
1√
t
Φ
(

2u−y√
t

)
exp

(
ηy − 1

2η
2t
)

. . . , y ≤ u ,

0 . . . , y > u .
(E.5)

Using (E.5), we directly get,

fQct,bt(z,m) =


2(2m−z)
σ2t

1
σ
√
t
Φ
(

2m−z
σ
√
t

)
· exp

( η
σz −

1
2η

2t
)

. . . , z ≤ m ;

0 . . . , z > m .

This is the relation in (4.28), noting ν = ση.
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Also, using (E.4),

PQ(ut ≥ u) =
∫ u

−∞

1√
t
Φ
(

2u− y√
t

)
exp

(
ηy − 1

2
η2t

)
dy

+
∫ ∞
u

1√
t
Φ
(
y√
t

)
exp

(
ηy − 1

2
η2t

)
dy

= exp(2ηu)
∫ u

−∞

1√
t
Φ
(
y − 2u− ηt√

t

)
dy +

∫ ∞
u

1√
t
Φ
(
y − ηt√

t

)
dy

= exp(2ηu)N
(
−u− ηt√

t

)
+ 1−N

(
u− ηt√

t

)
.

Hence, fQut(u) =
1√
t
Φ
(
u− ηt√

t

)
+ exp(2ηu) · Φ

(
−u− ηt√

t

)
− 2ηexp(2ηu)N

(
−u− ηt√

t

)
= 2 · 1√

t
Φ
(
u− ηt√

t

)
− 2ηexp(2ηu) ·N

(
−u− ηt√

t

)
. (E.6)

Hence,

fQbt (m) = 2 · 1

σ
√
t
Φ

(
m− σηt
σ
√
t

)
− 2η

σ
exp

(
2ηm

σ

)
N

(
−m− σηt
σ
√
t

)
.

This is the same as in (4.29), as ν = ησ.
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Appendix F

Mortality Table

Table F.1: ERISA Section 4050 mortality rates for ages 49 and above (year

2008). Average residual life for each age is computed using the De-Moivre’s

approximation.

Age Mortality Rate (from table) Implied Hazard Rate
Average Residual Life (De-

Moivre’s approximation)

49 0.0013 0.0013 34.85

50 0.0014 0.0014 33.89

51 0.0015 0.0015 32.94

52 0.0017 0.0017 31.99

53 0.0020 0.0020 31.04

54 0.0022 0.0022 30.10

55 0.0025 0.0025 29.17

56 0.0029 0.0029 28.24

57 0.0034 0.0034 27.32

58 0.0039 0.0039 26.41

59 0.0044 0.0044 25.51

60 0.0050 0.0050 24.63

61 0.0058 0.0058 23.75

62 0.0066 0.0066 22.88

63 0.0076 0.0076 22.03

64 0.0086 0.0086 21.20

65 0.0097 0.0097 20.38

66 0.0110 0.0111 19.57

67 0.0122 0.0123 18.78

68 0.0132 0.0133 18.01

69 0.0144 0.0145 17.24

70 0.0154 0.0155 16.49

71 0.0167 0.0168 15.74

72 0.0183 0.0185 15.00

73 0.0200 0.0202 14.27

74 0.0220 0.0222 13.55

75 0.0243 0.0246 12.84

76 0.0269 0.0273 12.15

77 0.0306 0.0311 11.47

78 0.0346 0.0352 10.82

Continued on next page
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Table F.1 – continued from previous page

Age Mortality Rate (from table) Implied Hazard Rate
Average Residual Life (De-

Moivre’s approximation)

79 0.0391 0.0399 10.19

80 0.0441 0.0451 9.58

81 0.0497 0.0509 9.00

82 0.0558 0.0574 8.44

83 0.0615 0.0635 7.91

84 0.0684 0.0709 7.40

85 0.0757 0.0787 6.91

86 0.0840 0.0877 6.43

87 0.0949 0.0997 5.98

88 0.1063 0.1124 5.55

89 0.1188 0.1265 5.16

90 0.1328 0.1425 4.78

91 0.1461 0.1579 4.44

92 0.1622 0.1770 4.12

93 0.1791 0.1974 3.82

94 0.1954 0.2174 3.55

95 0.2151 0.2422 3.30

96 0.2327 0.2648 3.07

97 0.2530 0.2917 2.85

98 0.2745 0.3209 2.66

99 0.2929 0.3466 2.49

100 0.3116 0.3734 2.32

101 0.3388 0.4136 2.16

102 0.3588 0.4445 2.02

103 0.3807 0.4792 1.90

104 0.4044 0.5182 1.78

105 0.4279 0.5584 1.68

106 0.4491 0.5962 1.60

107 0.4660 0.6274 1.55

108 0.4786 0.6512 1.50

109 0.4881 0.6697 1.47

110 0.4948 0.6828 1.45

111 0.4987 0.6906 1.44

112 0.5000 0.6931 1.44

113 0.5000 0.6931 1.43

114 0.5000 0.6931 1.42

115 0.5000 0.6931 1.40

116 0.5000 0.6931 1.35

117 0.5000 0.6931 1.26

118 0.5000 0.6931 1.08

119 0.5000 0.6931 0.72

120 1.0000 Inf 0.00

208



Appendix G

Computational Methods for

Chapter 5

In this Appendix, we provide a brief description of the computational methods used

to value GWB under the different asset return models specified in Section 5.2 of

Chapter 5.

G.1 BSM Model

For numerical computations, for each n, we evaluate the values of ln(x) and gn(x) as

defined in (5.7) and (5.8) respectively, at M + 1 evenly spaced points in the interval

[0, 1] with M = 300. We then evaluate the integrals in (5.10) and (5.11) using

simple linear interpolation. Because asset returns have lognormal distributions, these

integrals can be evaluated easily. We describe in detail the procedure for evaluating

the function ln(·). An almost identical procedure with appropriate modifications

based on (5.11) is used for evaluating gn(·).
Let xi, 0 ≤ i ≤M denote the M + 1 points on the grid, with x0 = 0 and xM = 1.

For 0 ≤ i ≤ M + 1, let li,n
4
= ln(xi) denote the values that the function ln(·) takes

on the grid-points. Suppose these values are available for some n. We first find the

linear interpolation coefficients Ali,n, B
l
i,n; 0 ≤ i ≤M as follows:

Ali,n =
li+1,n − li,n
xi+1 − xi

;

Bl
i,n = li,n .

We use the following linear approximation for evaluating ln(x) at an arbitrary point
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x:

ln(x) ≈ Alj,n(x− xj) +Bl
j,n , (G.1)

where j is such that xj ≤ x < xj+1.

Using the approximation in (G.1) in (5.10), we get

ln−1(x) = e−(λAn+rn) ·

{
x ·
∫ ln( qnx )

−∞

(qn
x
− ez

)
· Φ (z;µn, σn) dz

+

∫ ln( 1+qn
x )

ln( qnx )
ln (xez − qn) · Φ (z;µn, σn) dz

+ x · ln(1) ·
∫ ∞

ln( 1+qn
x )

(
ez − qn

x

)
· Φ (z;µn, σn) dz

}

≈ e−(λAn+rn) ·

{∫ ln( qnx )

−∞
(qn − xez) · Φ (z;µn, σn) dz

+
M∑
i=1

∫ ln(xi+qnx )

ln
(
xi−1+qn

x

) (Ali−1(xez − qn) +Bl
i−1

)
· Φ (z;µn, σn) dz

+ ln(1) ·
∫ ∞

ln( 1+qn
x )

(xez − qn) · Φ (z;µn, σn) dz

}
. (G.2)

Now, ∫ y

−∞
Φ(z;µn, σn)dz = N

(
y − µn
σn

)
= N

(
y

σn
− rn
σn

+
σn
2

)
and∫ ∞

y

exp(z)Φ(z;µn, σn)dz = exp

(
µn +

1

2
σ2
n

)
N

(
−y
σn

+
r

σn
+
σn
2

)
= ern · N

(
−y
σn

+
rn
σn

+
σn
2

)
.
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Then, from (G.2),

ln−1(x) ≈ e−λ
A
n ·
{
qne
−rn ·N

(
−ln x

qn

σn
−
rn

σn
+
σn

2

)
− x ·N

(
−ln x

qn

σn
−
rn

σn
−
σn

2

)

+ x ·
M∑
i=1

Ali−1 ·
(

N

(
ln x
qn+xi−1

σn
+
rn

σn
+
σn

2

)
−N

(
ln x
qn+xi

σn
+
rn

σn
+
σn

2

))

+ e−rn
M∑
i=1

(Bli−1 −Ali−1qn) ·
(

N

(
ln x
qn+xi−1

σn
+
rn

σn
−
σn

2

)
−N

(
ln x
qn+xi

σn
+
rn

σn
−
σn

2

))

+ lM+1,n ·
(
x ·N

(
ln x
qn+1

σn
+
rn

σn
+
σn

2

)
− qne−rn ·N

(
ln x
qn+1

σn
+
rn

σn
−
σn

2

))}
.

(G.3)

From the boundary conditions in (5.12), the values of Aln and Bl
n for n = N are

known to be 0. Thus (G.3) can be used to successively evaluate ln(x) by backward

substitution.

For computational work, we use the BSM model with constant values of rn and

σn in (5.10) (and (5.11)). Also, the values of x at which (G.3) is evaluated are fixed

as the points xi, 0 ≤ i ≤ M on the grid. This allows us some further computational

speed-ups as many quantities in (G.3) can then be computed only once and stored

for use in successive iterations.

A similar formula can be obtained for evaluating gn(x). The method can also be

appropriately modified for valuing GWB under the alternate withdrawal strategy of

Section 5.3.

Finally, note that because moments of the normal distribution are available in a

closed form, in general, we can use any polynomial interpolation method for ln(·) and

gn(·) and still avoid evaluating any integrals numerically.

G.2 SILN Model

For the SILN model, we use the product dynamics as given by (5.1) (and (5.17) in

case of the alternate withdrawal strategy of Section 5.3) and Monte Carlo simulations

(with 10000 sample paths) for valuing GWB. We simulate only the randomness due

to the market risk factors. Mortality factors are accounted for directly in the spirit

of (5.4).

For simulations, we need to generate the risk-free rate rn and the excess return of

the VA fund over rn for each year. The excess return being log-normal and indepen-
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dent of rn in the SILN model can be generated in a straightforward way.

The generation of risk-free rate samples, from the two factor Gaussian process

is more involved. From the specification of the short-rate model as given in (5.13),

it is clear that we have two state variables at any time t, x1,t and x2,t. Under the

Gaussian model, as we shall show shortly, the state variables x1,T , x2,T and the factor

yT
4
=
∫ T

0
rsds, which corresponds to the effective interest rate for the period (0, T ] are

jointly normal. This then allows us to discretely sample the interest rate process and

use a time step as large as the epoch interval in our simulations and speeds up the

computations considerably. It is well known (see, for example, Oksendal [98]) that

the stochastic differential equation in (5.13) has the solution:

x1,t = x1,0exp(−κ1t) + σ1

∫ t

0

exp(−κ1(t− s))dZ1
s ;

x2,t = x2,0exp(−κ2t) + σ2

∫ t

0

exp(−κ2(t− s))dZ2
s . (G.4)

It then follows that,

yT =

∫ T

0

rtdt =

∫
0T
x1,tdt+

∫
0T
x2,tdt+

∫ T

0

b(t)dt

= x1,0

∫ T

0

exp(−κ1t)dt+ σ1

∫ T

0

∫ t

0

exp(−κ1(t− s))dZ1
sdt

+ x2,0

∫ T

0

exp(−κ2t)dt+ σ2

∫ T

0

∫ t

0

exp(−κ2(t− s))dZ2
sdt+B(T )

= x1,0f(κ1, T ) + σ1

∫ T

0

f(κ1, T − s)dZ1
s

+ x2,0f(κ2, T ) + σ2

∫ T

0

f(κ2, T − s)dZ2
s +B(T ) ; (G.5)

where,

B(T ) =

∫ T

0

b(t)dt ;

f(κ, t)
4
=

1− exp(−κt)
κ

.

From (G.4) and (G.5), it follows that x1,T , x2,T and yT should be jointly normal.

Further, using Ito isommetry,
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var(x1,T ) = σ2
1

∫ t

0

exp(−2κ1(t− s))ds

= σ2
1f(2κ1, T ) ;

var(x1,T ) = σ2
1f(2κ2, T ) ;

var(yT ) = σ2
1

∫ T

0

(f(κ1, T − s))2 ds+ σ2
2

∫ T

0

(f(κ2, T − s))2 ds

+ 2σ1σ2ρ

∫ T

0

f(κ1, T − s) · f(κ2, T − s)ds

=
σ2

1

κ2
1

(T − 2f(κ1, T ) + f(2κ1, T )) +
σ2

2

κ2
2

(T − 2f(κ2, T ) + f(2κ2, T ))

+ 2
σ1σ2ρ

κ1κ2

(T − f(κ1, T )− f(κ2, T ) + f(κ1 + κ2, T )) .

We can similarly find the covariances between the state variables and the effective

discount term as

cov(x1,T , x2,T ) = σ1σ2ρf(κ1 + κ2, T ) ;

cov(x1,T , yT ) =
σ2

1

κ1

(f(κ1, T )− f(2κ1, T )) +
σ1σ2ρ

κ2

(f(κ1, T )− f(κ1 + κ2, T )) ;

cov(x2,T , yT ) =
σ1σ2ρ

κ1

(f(κ2, T )− f(κ1 + κ2, T )) +
σ2

2

κ2

(f(κ2, T )− f(2κ2, T )) .

The expressions in (G.6) and (G.6) can be used to directly generate a sample of

the state variable (x1,n+1, x2,n+1) and the one year risk-free rate rn+1 from (x1,n, x2,n).

Finally, the function b(t) is adjusted so that the forward rates implied by the

short rate model match the market forward rates. Let γ0(t) denote the time t market

forward rate. Then, we must have

exp

(
−
∫ t

0

γ0(s)ds

)
= EQ[exp(−yt)] .

Using (G.5) and (G.6) and the fact that yT is Gaussian, we get
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exp

(
−
∫ t

0

γ0(s)ds

)
= exp

(
−x1,0f(κ1, t)− x2,0f(κ2, t)−B(t) +

1

2
var(yt)

)
.

Hence, b(t) = γ0(t) +
d

dt

(
−x1,0f(κ1, t)− x2,0f(κ2, T ) +

1

2
var(yt)

)
= γ0(t)− x1,0exp(−κ1t)− x2,0exp(−κ2t)

+
1

2

(
σ2

1 · (f(κ1, t))
2 + σ2

2 · (f(κ2, t))
2 + 2σ1σ2ρ · f(κ1, t)f(κ2, t)

)
.

G.3 SISV Model

Unlike the BSM and SILN models, the SISV model does not offer computational

short-cuts. Like the SILN model, we use Monte Carlo simulations, again with 10,000

sample paths, to value GWB liabilities and revenue streams. We again simulate only

the randomness coming from market factors, as the mortality related randomness can

be directly incorporated in the pricing formulae. We discretely sample the interest

rate process using the procedure described in Section G.2 for the SILN model.

To generate the excess VA fund returns, we first generate excess equity returns

for one year using a discretized version of (5.15) with a small time step ∆ = 1
250

years. This also gives us a sample of the other state variable in the system, i.e.,

Vn, or the instantaneous variance at the nth anniversary. The one year excess bond

return is obtained by directly sampling from a log-normal distribution with volatility

σb. The one year excess portfolio return, i.e., ln(Rs
n)− rn is then obtained by taking

a weighted combination of the excess equity and the excess bond returns, with the

weights selected in accordance with the composition chosen by the investor.

214



Bibliography

[1] http://www.econ.yale.edu/ shiller/data.htm.

[2] D. Aboody. Market valuation of Employee Stock Options. Journal of Accounting

and Economics, 22:357–391, 1996.

[3] V. V. Acharya, K. John, and R. K. Sundaram. On the optimality of resetting

executive stock options. Journal of Financial Economics, 57(1):65–101, July

2000.

[4] P. Artzner, F. Delbaen, J. Eber, and D. Heath. Coherent measures of risk.

Mathematical Finance, 9(3):203–228, July 1999.

[5] P. Artzner, F. Delbaen, J. Eber, D. Heath, and H. Ku. Coherent multiperiod

risk adjusted values and Bellmans principle. Annals of Operations Research,

152(1):5–22, July 2007.

[6] I. Bajeux-Besnainou and R. Portait. Dynamic Asset Allocation in a Mean-

Variance Framework. Management Science, 44(11):79–95, November 1998.

[7] G. Bakshi, C. Cao, and Z. Chen. Empirical Performance of Alternative Option

Pricing Models. The Journal of Finance, 52(5):2003–2049, December 1997.

[8] G. Bakshi, C. Cao, and Z. Chen. Pricing and hedging long-term options. Journal

of Econometrics, 94:277–318, 2000.

[9] L. Ballotta, G. Esposito, and S. Haberman. Modelling the Fair Value of Annu-

ities Contracts: The Impact of Interest Rate Risk and Mortality Risk . Available

at SSRN: http://ssrn.com/abstract=992211, December 2006.

[10] L. Ballotta and S. Haberman. Valuation of guaranteed annuity conversion op-

tions. Insurance: Mathematics and Economics, 33(1):87–108, August 2003.

215



[11] S. Basak and G. Chabakauri. Dynamic Mean-Variance Asset Allocation. Avail-

able at http://ssrn.com/abstract=965926, March 2008.

[12] S. Basak and A. Shapiro. Value-at-Risk Based Risk Management: Optimal

Policies and Asset Prices. Review of Financial Studies, 14(2):371–405, Summer

2001.

[13] D. Bauer, A. Kling, and J. Russ. A Universal Pricing Framework

for Guaranteed Minimum Benefits in Variable Annuities. Available at:

http://www.actuaries.org/AFIR/Colloquia/Stockholm/Bauer.pdf, 2006.

[14] R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming . Princeton

University Press, Princeton, 1st edition, 1962.

[15] J. C. Bettis, J. M. Bizjak, and M. L. Lemmon. Exercise behavior, valuation, and

the incentive effects of employee stock options. Journal of Financial Economics,

76(2):445–470, May 2005.

[16] E. Biffis. Affine processes for dynamic mortality and actuarial valuations. In-

surance: Mathematics and Economics, 37(3):443–468, December 2005.

[17] E. Biffis and P. Millossovich. The fair value of Guaranteed Annuity Options.

Scandinavian Actuarial Journal, 1:23–41, 2006.

[18] F. Black and M. Scholes. The Pricing of Options and Corporate Liabilities.

Journal of Political Economy, 81(3):637–654, May-June 1973.

[19] K. Boda and J. A. Filar. Time consistent dynamic risk measures. Mathematical

Methods of Operations Research, 63(1):169–186, January 2006.

[20] Z. Bodie. Common Stocks as a Hedge Against Inflation. The Journal of Finance,

31(2):459–470, May 1975.

[21] Z. Bodie, D. Ruffino, and J. Treussard. Contingent Claims Analysis and Life-

Cycle Finance. American Economic Review, 98(2):291–296, May 2008.

[22] P. P. Boyle and M. Hardy. Guaranteed Annuity Options. ASTIN Bulletin,

33(2):125–152, January 2003.

[23] P.P. Boyle and E. Schwartz. Equilibrium prices of guarantees under equity-

linked contracts. Journal of Risk and Insurance, 44(4):639–680, December 1977.

216



[24] M.J. Brennan and E. Schwartz. The pricing of equity-linked life insurance poli-

cies with an asset value guarantee. Journal of Financial Economics, 3(3):195–

213, June 1976.

[25] D. Brown. Risk and Robust Optimization. PhD thesis, Massachusetts Institute

of Technology, June 2006.

[26] G. W. Buetow. Ratchet Options. Journal of Financial and Strategic Decisions,

12(2):17–30, Fall 1999.

[27] J. Bulow and J. Shoven. Accounting for Stock Options. Journal of Economic

Perspectives, 19(4):115–134, Fall 2005.

[28] A.J.G. Cairns, D. Blake, and K. Dowd. A two-factor model for Stochastic

Mortaity with Parameter Uncertainty: Theory and Calibration. The Journal

of Risk and Insurance, 73(4):687–718, 2006.

[29] J. N. Carpenter. The Exercise and Valuation of Executive Stock Options. Jour-

nal of Financial Economics, 48(2):127–158, 1998.

[30] P. Carr. Hedging Complex Barrier Options. Master’s thesis, New York Uni-

veristy, Courant Institute, New York, NY 10012, June 2002.

[31] P. Carr and V. Linetsky. The Valuation of Executive Stock Options in an

Intensity- Based Framework. European Finance Review , 4(3):211–230, 2000.

[32] D. M. Chance. Expensing Executive Stock Options: Sorting out the

Issues. Available at SSRN: http://ssrn.com/abstract=590324 or DOI:

10.2139/ssrn.590324, September 2004.

[33] A. H. Y. Chen, F. C. Jen, and S. Zionts. The Optimal Portfolio Revision Policy.

The Journal of Business, 44(1):51–61, January 1971.

[34] Z. Chen, K. Vetzal, and P. A. Forsyth. The Effect of Modelling Parameters on

the Value of GMWB Guarantees. Forthcoming, Insurance: Mathematics and

Economics, December 2007.

[35] P. Cheridito and M. Stadje. Time-Inconsistency of VaR and Time-Consistent

Alternatives . Available at SSRN: http://ssrn.com/abstract=1098863, Novem-

ber 2007.

217



[36] K. C. Cheung and H. Yang. Optimal stopping behavior of equity-linked invest-

ment products with regime switching. Insurance: Mathematics and Economics,

37(3):599–614, December 2005.

[37] G. Choquet. Theory of Capacities. Annales de l’Institut Fourier, 5:131–295,

1953.

[38] C. C. Chu and Y. K. Kwok. Reset and withdrawal rights in dynamic fund

protection. Insurance: Mathematics and Economics, 34(2):273–295, 2004.

[39] C. C. Chu and Y. K. Kwok. Valuation of guaranteed annuity options in affine

term structure models. Available at SSRN: http://ssrn.com/abstract=644224,

January 2005.

[40] T. F. Coleman, Y. Kim, Y. Li, and M. Patron. Robustly Hedging Variable

Annuities with Guarantees Under Jump and Volatility Risks. Journal of Risk

& Insurance, 74(2):347–376, June 2007.

[41] T. F. Coleman, Y. Li, and M. Patron. Hedging guarantees in variable annu-

ities under both equity and interest rate risks. Insurance: Mathematics and

Economics, 38(2):215–228, April 2006.

[42] R. Cont. Model uncertainty and its impact on the pricing of derivative instru-

ments. Mathematical Finance, 16(3):519–547, July 2006.

[43] J. Core and W. Guay. Estimating the Value of Employee Stock Option Portfolios

and Their Sensitivities to Price and Volatility. Journal of Accounting Research,

40(3):613–630, June 2002.

[44] J. C. Cox, J. E. Ingersoll, and S. A. Ross. A Theory of the Term Structure of

Interest Rates. Econometrica, 53(2):385–407, March 1985.

[45] R. P. Cubitt. Rational Dynamic Choice and Expected Utility Theory. Oxford

Economic Papers, 48(1):1–19, January 1996.

[46] D. Cuoco, H. He, and S. Issaenko. Optimal Dynamic Trading Strategies with

Risk Limits. Available at SSRN: http://ssrn.com/abstract=563901, April 2001.

[47] J. Cvitanic, Z. Wiener, and F. Zapatero. Analytic Pricing of Employee Stock

Options. Review of Financial Studeis, 21(2):683–724, 2008.

218



[48] M. Dai, Y. K. Kwok, and J. Zong. Guaranteed Minimum Withdrawal Benefit

in Variable Annuities. Available at SSRN: http://ssrn.com/abstract=964083,

February 2007.

[49] J. Detemple and S. Sundaresan. Nontraded Asset Valuation with Portfolio

Constraints: a Binomial Approach. Review of Financial Studies, 12(4):835–

872, 1999.

[50] A. A. Dragulescu and V. M. Yakovenko. Probability distribution of returns in

the Heston model with stochastic volatility. Quantitative Finance, 2:443–453,

December 2002.

[51] D. Duffie. Dynamic Asset pricing Theory. Princeton University Press, third

edition, 2001.

[52] P. H. Dybvig and M. Lowenstein. Employee Reaload Options: Pricing, Hedging

and Optimal Exercise. Review of Financial Studies , 16(1):145–171, 2003.

[53] L. G. Epstein and M. Schneider. Recursive multiple-priors. Journal of Economic

Theory, 113(1):1–31, November 2003.

[54] Financial Accounting Standards Board. Proposed Statement of Fi-

nancial Accounting Standards. Share-Based Payment: an Amend-

ment of FASB Statements 123 and 95, March 2004. Available at:

http://www.fasb.org/draft/ed intropg share-based payment.shtml.

[55] Financial Accounting Standards Board. Statement of Financial Accounting

Standards No. 157 - Fair Value Measurements, September 2006. Available at:

http://www.fasb.org/pdf/fas157.pdf.

[56] H. Follmer and A. Schied. Convex measures of risk and trading constraints.

Finance and Stochastics, 6(4):429–447, 2002.

[57] M. Frittelli and G. Scandolo. Risk Measures And Capital Requirements For

Processes. Mathematical Finance, 16(4):589–612, October 2006.

[58] D. Fudenberg and J. Tirole. Game Theory. The MIT Press, 1st edition, 1991.

[59] P. Gaillardetz and X. S. Lin. Valuation of Equity-Linked Insurance and Annuity

Products with Binomial Models. North American Actuarial Journal, 10(4):117–

144, October 2006.

219



[60] R. Gibbons. Game Theory for Applied Economists. Princeton University Press,

1st edition, 1992.

[61] M. R. Grasselli. Nonlinearity, correlation and the valuation of employee stock

options. Available at: arXiv:math/0511234v1, November 2005.

[62] B. J. Hall and K. J. Murphy. Stock Options for Undiversified Executives.

Journal of Accounting and Economics, 33(1):3–42, February 2002.

[63] B. J. Hall and K. J. Murphy. The Trouble with Stock Options. Journal of

Economic Perspectives, 17(3):49–70, Summer 2003.

[64] P. J. Hammond. Consequentialist Foundations for Expected Utility. Theory

and Decision, 25(1):25–78, July 1988.

[65] G. B. Hazen. Does Rolling Back Decision Trees Really Require the Indepen-

dence Axiom? Management Science, 33(6):807–809, June 1987.

[66] T. Hemmer, Matsunaga S., and T. T. Shevlin. Optimal exercise and the cost of

granting employee stock options with a reload provision. Journal of Accounting

Research, 36(2):231–255, Autumn 1998.

[67] V. Henderson. The impact of the market portfolio on the valuation, incentives

and optimality of executive stock options. Quantitative Finance, 5(1):1–13,

February 2005.

[68] S. Heston. A closed-form solution for options with stochastic volatility with ap-

plications to bond and currency options. Review of Financial Studies, 6(2):327–

343, Summer 1993.

[69] D. Holz, A. Kling, and J. Rub. GMWB For Life: An anal-

ysis of Lifelong Withdrawal Guarantees. Presented at American

Risk and Insurance Association 2007 Annual Meeting. Available at

http://www.aria.org/meetings/2007papers/IE2007.

[70] S. Huddart. Employee Stock Options. Journal of Accounting and Economics,

18(2):207–231, September 1994.

[71] S. Huddart and M. Lang. Employee Stock Option Exercises: An Empirical

Analysis. Journal of Accounting and Economics, 21:5–43, 1996.

220



[72] J. Hull and A. White. How to Value Employee Stock Options. Financial

Analysts Journal, 60(1):114–119, January/Februay 2004.

[73] J. E. Ingersoll. The Subjective and Objective Evaluation of Incentive Stock

Options. The Journal of Business, 79(2):453–487, 2006.

[74] International Accounting Standards Board . International Financial Reporting

Standards 2, ”‘Share-Based Payment”, February 2004.

[75] A. Jain and A. Subramanian. The Inter-temporal Exercise and Valuation of

Employee Options. The Accounting Review, 79(3):705–743, July 2004.

[76] T. H. Johnsen and J. B. Donaldson. The Structure of Intertemporal Preferences

under Uncertainty and Time Consistent Plans. Econometrica, 53(6):1451–1458,

November 1985.

[77] A. Kadam, P. Lakner, and A. Srinivasan. Executive Stock Options:

Value to the Executive and Cost to the Firm. Available at SSRN:

http://ssrn.com/abstract=353422 or DOI: 10.2139/ssrn.353422, January 2007.

[78] I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus.

Springer, 2nd edition, 1991.

[79] E. Karni and D. Schmeidler. Atemporal dynamic consistency and expected

utility theory. Journal of Economic Theory, 54:401–408, 1991.

[80] M. Kijima and T. Wong. Pricing of Ratchet Equity-Indexed Annuities under

Stochastic Interest Rates. Insurance: Mathematics and Economics, 41(3):317–

338, November 2007.

[81] S. Korkmaz. Dynamic Coherent Risk Measures. Master’s thesis, The Middle

Esat Technical University, August 2006.

[82] N. Kulatilaka and A. J. Marcus. Valuing Employee Stock Options. Financial

Analysts Journal, 50(6):46–56, November-December 1994.

[83] R. A. Lambert, D. F. Larcker, and R. E. Verrechia. Portfolio Considerations in

Valuing Executive Compensation. Journal of Accounting Research, 29(1):129–

149, Spring 1991.

221



[84] J. H. Lee and D. R. Stock. Embedded options and interest rate risk for insurance

companies, banks and other financial institutions. The Quarterly Review of

Economics and Finance, 40(2):169–187, Summer 2000.

[85] M. Leippold, F. Trojani, and P. Vanini. A Geometric Approach To Multiperiod

Mean Variance Optimization of Assets and Liabilities. Journal of Economic

Dynamics and Control , 28(6):387–406, April 2004.

[86] T. Leung and R. Sircar. Accounting for Risk Aversion, Vesting, Job Termination

Risk and Multiple Exercises in Valuation of Employee Stock Options. To appear

in Mathematical Finance, August 2007.

[87] D. Li and W. Ng. Optimal dynamic portfolio selection: multi-period mean-

variance formulation. Mathematical Finance, 10(3):387–406, 2000.

[88] G. Lotito. Dynamic inconsistency and different mod-

els of dynamic choice - a review. Available online at:

http://polis.unipmn.it/pubbl/index.php?paper=1848, December 2006.

[89] M. J. Machina. Dynamic Consistency and Non-Expected Utility Models of

Choice Under Uncertainty. Journal of Economic Literature, 27(4):1622–1668,

December 1989.

[90] H. Markowitz. Portfolio Selection. Journal of Finance, 7:77–91, 1952.

[91] Mathworld. http://mathworld.wolfram.com/WhittakerDifferentialEquation.html.

Available at mathworld.wolfram.com.

[92] E. F. McClennen. Rationality and Dynamic Choice. Cambridge University

Press., 1st edition, 1990.

[93] M. A. Milevsky and S. E. Posner. The Titanic option: Valuation of the guar-

anteed minimum death benefit in variable annuities and mutual funds. Journal

of Risk and Insurance, 68(1):93–128, 2001.

[94] M. A. Milevsky, S. D. Promislow, and V. R. Young. Killing the Law of Large

Numbers: Mortality Risk Premiums and th Sharpe Ratio. The Journal of Risk

and Insurance, 73(4):673–686, 2006.

[95] M. A. Milevsky and T. S. Salisbury. Financial valuation of guaranteed mini-

mum withdrawal benefits. Insurance: Mathematics and Economics, 38(1):21–

38, 2006.

222



[96] N. Moodley. The heston model: A practical approach with matlab code. Mas-

ter’s thesis, University of the Witwatersrand, Johannesburg, South Africa, 2005.

[97] B. Mudavanhu and J. Zhuo. Valuing guaranteed minimum

death benefits in variable annuities and the option to lapse.

http://www.haas.berkeley.edu/MFE/download/student papers/mfe02 mudavanhu-

variable annuities.pdf, 2007.

[98] B. K. Oksendal. Stochastic Differential Equations: An Introduction with Appli-

cations. Springer, fifth edition, 1998.

[99] E. Ozdenoren and J. Peck. Ambiguity aversion, games against nature, and

dynamic consistency. Games and Economic Behavior, 62(1):106–115, January

2008.

[100] A. Pelsser. Pricing and hedging guaranteed annuity options via static option

replication. Insurance: Mathematics and Economics, 33(2):283–296, 2003.

[101] Pension Benefit Guaranty Corporation (PGBC). Erisa section 4050 mortality

rates (2008). http://www.pbgc.gov/practitioners/index.html.

[102] F. Reidel. Dynamic coherent risk measures. Stochastic Processes and their

Applications, 112(2):185–200, August 2004.

[103] M. R.Hardy and J. L. Wirch. The Iterated CTE: A Dynamic Risk Measure.

North American Actuarial Journal, 8(4):62–75, October 2004.

[104] L. C. G. Rogers and J. A.. Scheinkman. Optimal exercise of executive stock

options. Finance and Stochastics, 11(3):357–372, 2007.

[105] B. Roorda and J.M. Schumacher. Time consistency conditions for acceptability

measures, with an application to Tail Value at Risk. Insurance: Mathematics

and Economics, 40(2):209–230, March 2007.

[106] B. Roorda, J.M. Schumacher, and J. Engwerda. Coherent Acceptability Mea-

sures in Multiperiod Models. Mathematical Finance, 15(4):589–612, October

2005.

[107] R. Sarin and P. P. Wakker. Dynamic choice and nonexpected utility. Journal

of Risk and Uncertainty, 17(2):87–120, November 1998.

223



[108] Securities and Exchange Commission. Staff Accounting Bulletin No. 107, March

2005. Available at: http://www.sec.gov/interps/account/sab107.pdf.

[109] R. Sircar and W. Xiong. A general framework for valuating Incentive Options.

Journal of Economic Dynamics & Control, 31(7):2317–2349, July 2007.

[110] T. K. Siu. Financial fair valuation of participating policies with surrender op-

tions and regime switching. Insurance: Mathematics and Economics, 37(3):533–

552, December 2005.

[111] J. W. Snow. One Thing We Can All Agree On. The Wall Street Journal,

January 20, 2005.

[112] R. H. Strotz. Myopia and Inconsistency in Dynamic Utility Maximization. The

Review of Economic Studies, 23(3):165–180, 1955-1956.

[113] O. Vasicek. An equilibrium characterization of the term structure. Journal of

Financial Economics, 5(2):177–188, November 1977.

[114] O. Volij. Dynamic consistency, consequentialism and reduction of compound

lotteries. Econometric Letters, 46(2):121–129, October 1994.

[115] N. Wang, R. Gerrard, and S. Haberman. The premium and the risk of a life

policy in the presence of interest rate fluctuations. Insurance: Mathematics and

Economics, 35(3):537–551, December 2004.

[116] T. Wang. A Class of Dynamic Risk Measures. Working Paper, September 1999.

[117] S. Weber. Distribution-invariant dynamic risk measures. Mathematical Finance,

16(2):419–441, April 2006.

[118] P. Weller. Consistent Intertemporal Decision-Making under Uncertainty. The

Review of Economic Studies, 45(2):263–266, June 1978.

[119] J. E. Zhang and J. Shu. Pricing S&P 500 Index Options with Hestons Model.

In Proceedings. 2003 IEEE International Conference on Computational Intelli-

gence for Financial Engineering, pages 85–92, March 2003.

224


