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Abstract

Over the last ten years, the interest in network phenomena and the potential for a global pandemic
have produced a tremendous volume of research exploring the consequences of human interaction
patterns for disease propagation. The research often focuses on a single question: will an emerg-
ing infection become an epidemic? This thesis clarifies the relationships among different epidemic
threshold criteria in deterministic disease models, and discusses the role and meaning of the basic
reproductive ratio, R0. We quantify the incorporation of population structure into this general
framework, and identify conditions under which interaction topology and infection characteristics
can be decoupled in the computation of threshold functions, which generalizes many existing results
in the literature. This decoupling allows us to focus on the impact of network topology via the
spectral radius of the adjacency matrix of the network.

It is rare, however, that one has complete information about every potential disease-transmitting
interaction; this uncertainty in the network structure is often ignored in deterministic models. Ne-
glecting this uncertainty can lead to an underestimate of R0, an unacceptable outcome for public
health planning. Is it possible to make guarantees and approximations regarding disease spread when
only partial information about the routes of transmission is known? We present methods for making
predictions about disease spread over uncertain networks, including approximation techniques and
bounding results obtained via spectral graph theory, and illustrate these results on several data sets.
We also approach this problem by using simulation and analytical work to characterize the spectral
radii that arise from members of the exponential random graph family, commonly used to model
empirical networks in quantitative sociology. Finally, we explore several issues in the spatiotemporal
patterns of epidemic propagation through a network, focusing on the behavior of the contact process
and the influence model.

Thesis Supervisor: George Verghese
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Mathematical epidemiology and networks

THIS chapter will motivate the work of this thesis by considering the history of mathematical

modeling of disease, its central modeling approaches, and the critical importance of network

methods to public health in a globalized world. We’ll conclude by outlining the contributions of this

thesis to this body of research.

1.1 Early history

In the Western world, the first attempts to quantify and predict the extent of disease outbreaks were

restricted to a posteriori statistical analyses of the demographics of infections. One of the earliest

of these Western statistical demographers was John Graunt (1620-1674), a London merchant who

published his analysis of the city’s mortality records in 1665. A page from Graunt’s Natural and

Political Observations made upon the Bills of Mortality is depicted in Figure 1.1. The extent to which

plague devastated the city of London in that year is evident; of the 5568 recorded deaths, 4237 were

attributed to plague. Another milestone in Western disease demography was William Farr’s 1840

report as the Registrar-General of England and Wales, in which Farr fitted parameterized curves to

outbreaks of smallpox and rinderpest in cattle [1].

An interesting exception to the absence of dynamic models for disease transmission before the

twentieth century was Daniel Bernoulli’s differential equations model of smallpox dynamics, pub-

lished in 1766 as Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des

avantages de l’inoculation pour la prévenir. Bernoulli (1700-1782) was interested in quantifying the

benefits of variolation, the inoculation of healthy individuals with small amounts of the smallpox

virus in order to confer immunity from the disease. Bernoulli’s model assumed that infection of

healthy individuals occurred at a constant rate independent of the number of infected individuals

in the population, and thus did not utilize an explicit model of disease transmission. For a more

complete historical account of Bernoulli’s work and its contributions, see [3].

1.2 Compartmental models

Importantly, Bernoulli’s model was the first compartmental model in mathematical epidemiology,

those in which individuals are classified by their disease state. A short list of common disease states

is given in Table 1.1. For example, most individuals repeatedly contract the common cold, never

achieving a state of permanent immunity. This type of illness is modeled as an SIS infectious process,

9



Figure 1.1. Bills of Mortality for London, August 15-22, 1665, taken from John Graunt’s Nat-
ural and Political Observations made upon the Bills of Mortality. For a modern interpretation
of the disease names, see [2].

since individuals can transition from being susceptible to infected and then back to susceptible again.

For infections which confer immunity, like the chicken pox, an SIR model is more appropriate, in

which infected individuals transition to the removed state and remain there. The simple SIS and

SIR models are the most common in the literature, but any number and combination of states is

possible. Modeling the dynamics of transitions between compartments, however, was stymied by

the absence of a coherent understanding of how infection was acquired and transmitted; it wasn’t

until the acceptance of the germ theory of disease in the nineteenth century that mathematical

epidemiology was able to grow. Scientists like Lous Pasteur illuminated the mechanisms of the

underlying biology, which enabled researchers to postulate mathematical models for the dynamics

of transitions between compartments.
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Table 1.1. Four of the most common compartments in infectious disease modeling.

compartment description

susceptible able to contract an infection

latent contracted the disease but are not yet able to in-
fect anyone else

infectious able to infect others, symptomatic or not

removed no longer able to transmit infection to anyone else
(possibly via immunity or death)

1.3 Deterministic and stochastic models

Let us begin our discussion of disease models with a simple example: a non-lethal SIS infection

moving through a well-mixed population. The dynamics of transitions between compartments is

illustrated in Figure 1.2 and is described by the following variables and parameters:

I

S

βγ

b d

d

Figure 1.2. An illustration of a susceptible-infected-susceptible (SIS) disease model.

S - the number of susceptible individuals in the population

I - the number of infected individuals

β - the infectious transmission rate of interactions between susceptible and infected

individuals

γ - the recovery rate of infected individuals

b - the birth rate (entirely to the susceptible class)

d - the death rate (equal for both susceptible and infected individuals)

N - b/d

How might we translate these ideas into a mathematical model? Most work in this area involves

the construction and analysis of deterministic differential equations to describe infection spread.

Indeed, the foundations of modern epidemic theory are often traced to the deterministic model of

disease propagation formulated by W.O. Kermack and A.G. McKendrick in 1927 [4].1 This approach

1Interestingly, a more general model was proposed and thoroughly explored by Ronald Ross, a British army
physician, in a series of papers published 1916-1917 [5] [6] [7].
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assumes that the populations under study undergo changes in state continuously in time and are

large enough that the aggregate behavior of the population behaves deterministically (i.e., individual

random effects can be ignored). Let us propose the following set of dynamical equations for the state

of the total population, x(t) = (I(t), S(t)):





dI
dt = βS I

S+I − γI − dI
dS
dt = −βS I

S+I + γI + b− dS.
(1.1)

The most interesting feature of this model is that new infections arise at rate βS I
S+I ; the fraction of

each susceptible’s interactions that are with an infected individual is given by I
S+I , while β measures

the rate of new infections per each infected-susceptible contact.

While this differential equation has plausible features, it is lacking in realism. Observe that this

model is not constrained to yield integer values of S and I, and thus assumes an infinitesimally-

divisible population. Because disease transmission is fundamentally an individual-individual phe-

nomenon, it is much more naturally modeled stochastically, rather than as a deterministic process

defined on the aggregate population. Let us construct another continuous-time model that is the

stochastic counterpart to System 1.1 by defining a Markov process for x(t). We assume that only one

transition is possible in a small unit of time, ∆t, and can write the probabilities of state transitions

(infection, recovery, birth and death) as follows:





P {x(t+ ∆t) = (i+ 1, s− 1)|x(t) = (i, s)} = βs i
s+i−1∆t+ o(∆t)

P {x(t+ ∆t) = (i− 1, s+ 1)|x(t) = (i, s)} = γi∆t+ o(∆t)

P {x(t+ ∆t) = (i, s+ 1)|x(t) = (i, s)} = b∆t+ o(∆t)

P {x(t+ ∆t) = (i, s− 1)|x(t) = (i, s)} = ds∆t+ o(∆t)

P {x(t+ ∆t) = (i− 1, s)|x(t) = (i, s)} = di∆t+ o(∆t)

P {x(t+ ∆t) = (s+ k, i+ j)|x(t) = (i, s)} = o(∆t) for all other transitions.

(1.2)

Taking the limit as ∆t→ 0, we obtain a system of differential equations for pis(t), the probability

that x(t) = (i, s):

dpis(t)
dt = β

[
(s+ 1) (i−1)

s+i−1pi−1,s+1 − s i
s+i−1pis

]

+b [pi,s−1 − pis] + d [(i+ 1)pi+1,s − ipis + (s+ 1)pi,s+1 − spis] .
(1.3)

The infinite system of differential equations represented by Eqn. 1.3 is clearly a great deal

more complicated than its deterministic counterpart. Is the extra realism embedded in System 1.2

worth the additional complexity? Since the two models aim to mimic the same phenomena, we

might hypothesize a relationship between them. In fact, in the limit of large population size, the

expected value of the random state vector x(t) in the stochastic model approaches the value of x(t)

12



in the deterministic model. This result is due to Kurtz [8], [9]. In Theorem 1.3.1, we present the

restatement of Kurtz’ result by Jacquez and Simon [10].

Theorem 1.3.1. Kurtz approximation theorem. Let XN (t) be a one-parameter family of continuous-
time Markov processes defined on the m-dimensional integer lattice Z

m. Suppose that there is a
continuous function f : R

m × Z
m → R that satisfies

P {XN (t+ ∆t) = x+ k|XN (t) = x} = Nf
( x
N
, k
)

∆t+ o(∆t)

for all positive integers N and all positions x and increments k in Z
m. Define F : R

m → R
m by

F (x) =
∑

k

kf(x, k) = E(∆XN |XN = x),

the expected change in XN from x. Suppose that there exists an open set S in R
m and a constant

M such that

1. |F (x)− F (y)| ≤M |x− y| for all x, y ∈ S;

2. supx∈S

∑
k |k|f(x, k) <∞;

3. limd→∞ supx∈S

∑
|k|>d |k|f(x, k) = 0.

Let Z(t;x0) be the solution of the (deterministic) initial value problem

dZ

dt
= F (Z), Z(0) = x0.

Suppose that Z(t;x0) ∈ S for all t ≤ T , and that limN→∞ [XN (0)/N ] = x0 for the original family
of Markov processes. Then, for every ǫ > 0,

lim
N→∞

P

{
sup
t≤T

∣∣∣∣
1

N
XN (t)− Z(t;x0)

∣∣∣∣ > ǫ

}
= 0.

Do the models of Systems 1.1 and 1.2 meet the criteria of Theorem 1.3.1? Taking the population

size to infinity in System 1.2 is equivalent to taking the birth rate b to infinity, so b will serve as the

parameter for our family of models. We can satisfy the conditions on f(·, ·) by defining

f ((i, s), (1,−1)) = βs
i

s+ i− 1

f ((i, s), (−1, 1)) = γi

f ((i, s), (0, 1)) = 1

f ((i, s), (0,−1)) = ds

f ((i, s), (−1, 0)) = di.

The existence of the open set S is guaranteed by the boundedness of the right-hand side of Systems

1.1 and 1.2 over any open interval in the positive quadrant. Thus, in the limit of large population

13



size, the expected value of the state vector x = (I, S) will be well-approximated by

dx

dt
=




dI
dt

dS
dt


 = F (x) =


 βS I

S+I − γI − dI
−βS I

S+I + γI + b− dS


 ,

precisely the deterministic model of System 1.1.

Practically, for what values of N is this approximation valid? The answer depends upon the

behavior and time-scales of interest, but models similar to System 1.2 have agreed satisfactorily

with the deterministic predictions for fewer than 100 individuals in a population; for some examples

of such comparisons in the literature, see [11], [12] and [13].

Although models based on differential equations have been the principal methodology in mathe-

matical epidemiology, deterministic discrete-time formulations (in the form of difference equations)

are a natural modeling paradigm for many applications and are more readily applicable to data

sampled periodically. Kurtz’ theorem compares the behavior of deterministic and stochastic models

in continuous-time; do such results hold for discrete-time models as well? The answer is yes, but the

proof is omitted: see [14] and [15] for a discussion, and [16] for simulation results. In Chapter 2, we

will present a general framework for infection dynamics which can be implemented in continuous-

time or discrete-time, and throughout this thesis, we will use examples of both kinds of models. For

more examples of deterministic and stochastic modeling approaches, Appendix A contains a quick

survey of some of the recent literature.

1.4 Model predictions and thresholds

The objective of mathematical epidemiology is to serve public health interests by modeling the

essential characteristics of disease transmission. When preparing for a potential epidemic, public

health officials face a number of questions:

⊲ What kinds of policies might inhibit disease transmission?

⊲ Can a vaccination campaign prevent an epidemic? What kind of vaccination strategy should

be employed?

⊲ Is quarantining necessary, or more more mild social regulations be just as effective?

⊲ Are there preventative measures that will make an epidemic unlikely?

Thus, when formulating a mathematical model for disease transmission, one often has two sets of

issues in mind: the testable hypotheses generated by the model, and the opportunities for active

control of the model dynamics. Some common questions to ask and answer are:

⊲ Will the disease become an epidemic?

14



⊲ What percentage of the population will be affected? What percentage will die? What types

of individuals are most at risk?

⊲ How long will the disease persist?

⊲ What parameters of disease transmission have the greatest impact on the epidemic outcome?

⊲ Can we estimate the variability in the predictions of the model?

Of all of these predictive questions, “will the disease become an epidemic?” has been the focus

of most of the work in mathematical epidemiology to date. Naturally, the answer to this question

depends upon what one means by ‘epidemic’, which is often loosely defined as “any upward fluc-

tuation in disease incidence or prevalence” [17]. This is a context-specific definition, necessarily

designed to serve the public health officer and not the mathematician. Often, researchers refer to

a disease progression as an epidemic if a small initial infective population can grow in size, while

others associate an epidemic with the establishment of an endemic presence, i.e., a sustained positive

level of infection.

In general, each of the various notions of epidemic behavior in both stochastic and deterministic

models is associated with a function X of the model parameters, along with a threshold value c

(which can be chosen as 1 without loss of generality) such that a disease will be an epidemic if and

only if X > c. For example, inspection of System 1.1 reveals that there exists an endemic equilibrium

(Ie, Se) =

((
1− γ + d

β

)
N,

γ + d

β
N

)
.

if and only if β
γ+d > 1. This equilibrium is also a global attractor in this parameter regime, so all

initial conditions will eventually reach this value. One could say, then, that the value of β
γ+d serves

as a threshold for this model: whether it is greater than or less than one determines whether or not

the disease will establish an endemic presence.

In contrast to the deterministic model, the stochastic model of System 1.2 has a single absorbing

state, (I, S) = (0, N), independent of the values of the parameters. This observation is one of the key

differences between stochastic and deterministic disease models. This is not to say, however, that

the parameters of System 1.2 have no bearing on the stochastic dynamics. In particular, Jacquez

and Simon find that if β
γ+d > N

N−1 , the mean number of infected individuals will always increase

from its initial value. If β
γ+d <

N
N−1 , the mean will decrease monotonically to zero. This observation

suggests that the value of β
γ+d serves as a threshold for the stochastic model as well. We will return

to a discussion of thresholds in Chapter 2.
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1.5 Mathematical models and network science

Tractable models like Systems 1.1 and 1.2 provide a tremendously valuable foundation, but typically

rely on the assumption that each individual is equally likely to come into contact with every other

individual in the population. Tools developed in the 1960s and 1970s, like computer simulations

and percolation theory, however, opened up the range of testable hypotheses and, for the first time,

allowed the modeling of an essential feature of human epidemics: the inherent locality of person-

to-person disease transmission. These tools have enabled researchers to make more sophisticated

predictions about key questions: which population density patterns encourage the spread of disease,

and which inhibit epidemic formation? How quickly will a disease progress through a population?

Will certain spatial patterns of vaccination halt or slow disease spread?

One fascinating area of research combines traditional epidemiologic models with the mathematics

of network theory and dynamic systems to study the human-environment relationships that enable

the emergence and spread of infectious disease. Gretchen Daily and Paul Ehrlich of the Center

for Conservation Biology at Stanford have referred to these relationships as the ‘epidemiological

environment’, a term that includes the biology of pathogenic parasites, the physical environment of

parasite development and the human social patterns through which disease propagates [18].

Regarding the global re-emergence of malaria, Pim Martens and Lisbeth Hall of Maastricht

University have noted that “as people move, they can increase their risk for acquiring the disease

through the ways in which they change the environment and through the technology they introduce”

[19]. The difficulty of modeling these kinds of interactions has led to public health policies that are

often, in retrospect, short-sighted. The emergence of Lyme disease in the 1970s, for example, can be

traced to the reforestation of the eastern U.S. after farmers relocated to the Midwest [20]. One 2005

assessment of the progress of the UN Millennium Project task force on environmental sustainability

addressed the public health lessons of Lyme disease, among others, and noted with regret that

“responses to the disease are still focused on individual treatment rather than better land use and

wildlife management policies that might stem the spread of Lyme and possibly other new pathogens”

[21].

Another element in the modeling of human epidemics concerns interactions between individuals

that enable the spread and persistence of infection. Given the variety of ways in which modern

individuals interact, the interactions which are critical to disease transmission can occur on vastly

different scales. In one large-scale example, a recent article in The Lancet discussed the potential

of the hajj, the yearly pilgrimage of over 2.5 million Muslims to Mecca in the 12th month of the

Islamic calendar, as a potential epidemiological ground zero for many communicable diseases [22].

On a smaller scale, social epidemiologists focus on quantifying the impact of social networks on

individual and local population health. Human-human contact is not simply a vehicle for disease

transmission; one study found that the more diverse an individual’s social network (defined by the
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number of different types of social interactions), the greater his or her resistance to the common

cold [23]. The ability of social networks to both inhibit and promote the spread of infectious disease

is just one of many interesting modeling challenges.

Not surprisingly, the interest in network science that arose in the 1990s has found exciting

applications in mathematical epidemiology. Over the past ten years, interdisciplinary collaborations

have revealed that the network structures seen by biologists, physicists, sociologists and ecologists

often have the same interesting and peculiar features, as do the dynamic processes that take place

within these networks. The parallels between the transmission of SARS, the propagation of a

computer virus, and the techniques of viral marketing have generated an enormous amount of interest

in the fundamental theory. Additionally, infectious diseases propagate over networks of many scales:

from continent to continent via the air transportation network, from neighborhood to neighborhood

via subway lines and bus routes, and from person to person via social contacts. The volume of

work in the last few years on the dynamics of infection processes on networks is vast, but there is

consensus on a single principle: the topology of a network can have critical consequences for the

spread of infection.

1.6 Graph and matrix theory preliminaries

If we are to include these interaction patterns in our mathematical models, it is most natural to

represent such networks as a graph. A graph A = G(NA, EA) consists of a set of nodes, NA, and a set

of edges, EA ⊆ N ×N . A graph may be directed or undirected ; if A is undirected, then (u, v) ∈ EA
implies that (v, u) ∈ EA for u, v ∈ NA. In Chapter 5, we will also use Auv to denote (u, v) ∈ EA.

Two pictorial examples of graphs are given in Figures 1.3 and 1.4.

1

2

3

4

Figure 1.3. An undirected graph, Au.

1

2

3

4

Figure 1.4. A directed graph, Ad.

Every node i in a graph has an out-degree and an in-degree, the former being the number of edges

that begin at i and the latter the number of edges that terminate at i. Note that in an undirected

graph, the out-degree and in-degree of a node are equal. A simple graph is one which has no self-

loops (an edge from a node to itself) or multiple edges. An undirected, connected graph is one which

has a path between any two nodes i and j. A tree is a connected graph without any cycles, i.e.
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paths from a vertex back to itself in which no edge is repeated. For an undirected graph, we’ll also

define the notion of a clique S, which is a set of vertices such that every vertex in S is connected

to every other vertex in S. One measure of a graph’s global structure is the degree distribution, a

histogram of the degrees of each of its nodes; for a directed graph, there exist distributions of both

in- and out-degrees.

We can also define subgraphs of a given graph by specifying subsets of NA and EA. Two types

of subgraphs will be useful to us:

⊲ node-induced subgraphs - for a subset NS ⊆ NA, an edge in EA is contained in ES if and only

if that edge connects two nodes in NS ;

⊲ edge-induced subgraphs - for a subset ES ⊆ EA, a node in NA is contained in NS if and only if

that node appears at the end of one of the edges in ES .

In a graph representing a social network, connections between individuals are rarely best de-

scribed as ‘1’s and ‘0’s; it is useful to be able to distinguish between a strong friendship and a weak

acquaintanceship. This naturally leads to a notion of weighted edges, in which each edge i of a graph

has a weight wi (often restricted to the interval [0, 1]).

It is also possible to associates weights or attributes to the nodes in a graph: one could imagine

a scenario in which the weight of a node indicated that node’s relative importance to the graph,

perhaps in modeling the hierarchy in a corporation. A higher-level approach to weighting nodes and

edges in graphs is to label each node and/or edge with a vector of attributes. Attributes could be

drawn from any class of descriptors; these could simply be weights as discussed previously, or they

could be text strings or even functions.

A convenient way to represent a graph is a node-node adjacency matrix (also referred to simply

as an adjacency matrix ). If the cardinality of NA is nA, then the adjacency matrix A of this graph

is an nA × nA matrix in which entry [A]ij is equal to 1 if and only if (i, j) ∈ EA, and is equal to

0 otherwise. Observe that the adjacency matrix of an undirected graph will always be symmetric.

The adjacency matrices of the graphs in Figures 1.3 and 1.4 are given below.

Table 1.2. Adjacency matrix of Au.

Au =




0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 1




Table 1.3. Adjacency matrix of Ad.

Ad =




0 0 0 1
0 0 1 0
0 1 1 0
0 0 1 0




We can extend the node-node adjacency matrix to graphs with weighted edges by allowing the

ijth entry of A to take the value of the weight of edge (i, j). An weighted, nonnegative adjacency

matrix is also a useful way of representing the volume of flow between nodes, e.g. the number
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of passengers traveling between two airports. Observe that the out- and in-degrees of each node

can be found by simply summing over the rows and columns of the node-node adjacency matrix,

respectively.

The identification of a graph with an adjacency matrix allows us to apply the tools of linear

algebra to the study of graph properties. In particular, we will be interested in the ways that

network structures influence the set of eigenvalues and eigenvectors of the adjacency matrix, a

field known as spectral graph theory. Because an adjacency matrix is nonnegative, we will find the

following fundamental results of Perron and Frobenius useful, where ρ(A) is the spectral radius of

A, the magnitude of the eigenvalue of A with largest magnitude [24].

⊲ If λ(A) is an eigenvalue of a real matrix A, then λ(A) is also an eigenvalue of A⊤.

⊲ If A is an n× n matrix with nonnegative entries, then ρ(A) is an eigenvalue of A and there is

a nonnegative vector x ≥ 0, x 6= 0, such that Ax = ρ(A)x.

⊲ An n×n nonnegative matrix A is irreducible if and only if (I +A)n−1 has all positive entries.

⊲ If A is n × n, irreducible, nonnegative matrix, then ρ(A) is positive and is an algebraically

simple eigenvalue of A.

In Chapter 3, we will make extensive use of the Kronecker product of two matrices C and D,

which we’ll denote by C ⊗D. If C = {cij} is an c1× c2 matrix, and D = {dij} is an d1× d2 matrix,

then C ⊗D is the c1d1 × c2d2 matrix defined by

C ⊗D =




c11D c12D · · · c1c2
D

...
...

. . .
...

cc11D cc12D · · · cc1c2
D


 .

The Kronecker product C ⊗ D simply repeats the matrix D at each element of C. One useful

property of the Kronecker product is that for matrices A, B, C, and D of compatible dimensions,

(A⊗B)(C ⊗D) = AC ⊗BD. Additionally, ρ(C ⊗D) = ρ(C)ρ(D).
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Chapter 2

Epidemic thresholds and a general

deterministic framework

CHAPER 1 introduced the idea of compartmental disease models; Appendix A contains a sam-

ple of the enormous volume of literature on different kinds of compartmental models, both

deterministic and stochastic, in discrete time and continuous time, and for populations of varying

heterogeneity. We also introduced the idea of an epidemic: a particular set of criteria by which an

infection outbreak is assessed to be especially severe and noteworthy.

In stochastic models, one is often interested in the time scales over which the disease is likely to

be present; Sections 1.4, 4.1 and A touch on different notions of “epidemic” in stochastic models.

For example, Ganesh et al. identify sufficient conditions for the expected time to extinction of an

SIS infection to be of order log(n) (fast die-out, no epidemic) on a network of n nodes, or of order

exp(nα), α > 0 (slow die-out, or effectively endemic) [25].

Although the spread of infection is ideally modeled stochastically, as an individual-to-individual

phenomenon, stochastic models can quickly become analytically intractable. Indeed, many results

for these models are derived in the large-population limit, at which point the stochastic behavior is

well-approximated by a corresponding deterministic model, as discussed in Section 1.3. This chapter

(and Chapter 3) will explicitly focus on deterministic models, but the results of Chapters 4 and 5

are useful in both deterministic and stochastic settings.

Even within the collection of deterministic models, definitions of epidemics and, correspondingly,

the associated threshold tests, vary a great deal. Two of the most common epidemic definitions

respectively track

⊲ the generation-to-generation growth in the number of infected individuals;

⊲ the temporal growth in the number of infected individuals;

⊲ whether the disease will establish a sustained presence in a community.

Mathematically, these definitions respectively correspond to the following threshold tests:

⊲ the basic reproductive ratio, R0, exceeds the threshold 1, where R0 is canonically defined as

“the expected number of secondary cases produced by a typical infected individual during its
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entire period of infectiousness in a completely susceptible population” [26] and is a measure of

the asymptotic per-generation growth factor of an infection;

⊲ a disease-free equilibrium (DFE) of the model is locally unstable, as determined by a threshold

test on the eigenvalues of a linearized model describing the time-evolution of small initial

deviations from this equilibrium.

⊲ the model exhibits a stable and/or attracting endemic equilibrium, one in which there is a

positive level of infection.

Table 2.1 presents a summary of the appearance of these different notions of epidemic in deter-

ministic models in the recent literature.

Table 2.1. Approaches taken to computing an epidemic threshold in a sample of the literature.

Approach Reference

next-generation operator Diekmann & Heesterbeek, 1990 [26], Becker & Di-
etz, 1995 [27], Fulford et al., 2002 [28]; Fraser et
al., 2004 [29]

local stability of disease-free equlibrium Boguna & Pastor-Satorras, 2002 [30]; Hill &
Longini, 2003 [31]; Wang et al., 2003 [32]; Hyman
& Li, 2000 [33]; Alexander & Moghadas, 2005 [34];
Kiss et al., 2006 [35]; Keeling, 1999 [36]; Hyman
& Li, 2006 [37]

existence of an endemic equilibrium Anderson & May, 1991 [38]; Pastor-Satorras &
Vespignani, 2001 [39]; Masuda & Konno, 2006 [40]

multiple criteria Blyuss & Kyrychko, 2005 [41]; Hyman & Li, 2005
[42]; Salmani & van den Driessche, 2006 [43];
Arino & van den Driessche 2003 [44]

The existence of multiple threshold criteria can create confusion when different criteria are er-

roneously assumed to be equivalent, e.g., using the existence of an endemic equilibrium to conclude

that R0 > 1. This issue has been raised by several authors, among them Heffernan et al. [45] and

van den Driessche and Watmough [46]. To give a sense of where this confusion can arise, consider

the simple deterministic SIS infection model presented in Chapter 1:

dS

dt
= −βS I

S + I
+ γI + b− dS

dI

dt
= βS

I

S + I
− γI − dI.
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In Chapter 1, we observed that an endemic equilibrium exists if and only if β/(γ + d) > 1. The

model has a second, disease-free, equilibrium,

(Idf , Sdf ) = (0, N),

which always exists but which is locally asymptotically stable if and only if β/(γ + d) < 1 (Section

2.2 gives an extended discussion of this stability condition). Thus, the existence of an endemic equi-

librium and the stability of the disease-free equilibrium coincide as threshold tests in the parameter

space of the model. Furthermore, a single infective individual in an otherwise susceptible population

can infect β individuals/time unit and remains infectious for 1/(γ+d) time units, so the value of R0

associated with this model is β/(γ + d) (a detailed discussion of the calculation of R0 is deferred to

Section 2.3). For this simple model, we see that all three threshold criteria are identical, occurring

as β/(γ + d) changes relative to 1. However, this is rarely the case in more detailed disease mod-

els, which often exhibit multiple equilibria with complex stability requirements. Here, we assemble

many results and case studies from the literature to address the following question: what do these

threshold criteria mean, and when do they yield the same predictions for disease behavior?

2.1 A general compartmental framework

An excellent general framework for infection modeling in structured populations was put forth by van

den Driessche and Watmough in [46]. Here, we will extend their continuous-time results to discrete-

time models, and will adopt their notation throughout this thesis. Although models based on

ordinary differential equations have been the principal methodology in mathematical epidemiology,

discrete-time formulations (in the form of difference equations) are a natural modeling paradigm for

many applications and are more readily applicable to data sampled periodically.

Define a population (or state) vector x = (x1, . . . , xn) that measures the number of individuals

in each of n disease compartments, and let the first m of these compartments correspond to infected

conditions (e.g., two different infected compartments might represent latent and symptomatic stages

of an illness). Any heterogeneity in the population or in the disease stages that one would like to

model should be mapped to a different compartment. Next, let

⊲ Fi(x) represent the rate of appearance of new infections in compartment i,

⊲ V+
i (x) represent the rate of movement of individuals into compartment i by means other than

infection,

⊲ V−
i (x) represent the rate of removal of individuals from compartment i by any means.
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Note that the distinction between terms included in Fi(x) and V+
i (x) is not mathematical, but

biological; this distinction impacts the computation of R0, as we’ll see in the example of Section 2.5.

For the discrete-time model, the rates are measured as changes per time step. We can formulate

differential and difference equation models, respectively, of this process:

ẋi = hi(x) = Fi(x) + V+
i (x)− V−

i (x) = Fi(x)− Vi(x) (2.1)

xi ← hi(x) = xi + Fi(x) + V+
i (x)− V−

i (x) = xi + Fi(x)− Vi(x) (2.2)

The left arrow ← in Eq. 2.2 denotes a time-step update. Although the use of some of the same

symbols for the continuous- and discrete-time formulations might seem confusing, it is useful for

highlighting the relationships between the two models, and the appropriate meaning should be clear

from the context. The only restrictions placed on the form of the functions Fi, V+
i and V−

i are given

by the following assumptions, suitably adapted for the discrete-time case from those given in [46]:

(A1) If x ≥ 0, then Fi,V+
i ,V−

i ≥ 0 for i = 1, . . . , n; all flows between compartments are nonnegative.

(A2) For continuous-time models, if xi = 0, then V−
i (x) = 0, while for discrete-time models, V−

i (x) ≤
xi; no more individuals can leave a compartment than currently occupy it.

(A3) Fi = 0 for i > m; no new infections can arise in non-infected compartments.

(A4) If xi = 0 for i = 1, . . . ,m, then Fi(x) = 0 and V+
i (x) = 0 for i = 1, . . . ,m; when there are

no infectives currently in the population, then no new infectives can arise, nor will there be
any transitions into infected compartments, so the disease-free state is an invariant manifold
in the dynamic model.

Assumptions (A1)-(A4) impose biologically reasonable restrictions on the behavior of any physically-

based disease model, but put no limits on the functional forms that Fi and Vi can take. Additionally,

we will take the entries of x to be real rather than integer; this approximation is routinely made in

the literature and is appropriate for large population sizes.

A population vector x will be called a disease-free equilibrium (DFE) if

⊲ the first m components of x are zero (corresponding to the absence of infected individuals);

⊲ x is an equilibrium of Eq. 2.2, i.e., x = h(x);

⊲ all of the eigenvalues of the Jacobian matrix of the function −V at the equilibrium x, denoted

by J = −DV(x), have modulus less than one (in discrete-time), or have real part less than

zero (in continuous-time), ensuring the disease-free population dynamics (represented by the

Vi(x)) is locally stable within the disease-free invariant manifold, i.e., the equilibrium is stable

to small perturbations that displace the state within this invariant manifold.

Assumptions (A1)-(A4) impose biologically reasonable restrictions on the behavior of any physically-

based disease model, but put no limits on the functional forms that Fi and Vi can take. We will

see, however, that strong conclusions can still be drawn within this very general framework.
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To illustrate the utility of this approach, we can write the deterministic SIS model of Chapter 1

in this notation. Here, x = (x1, x2) = (I, S), so m = 1. Then

dx1

dt = βx2
x1

x1 + x2︸ ︷︷ ︸
F1

− (γx1 + dx1)︸ ︷︷ ︸
V−

1

dx2

dt = b+ γx1︸ ︷︷ ︸
V+

2

−βx2
x1

x1 + x2
+ dx2

︸ ︷︷ ︸
V−

2

.
(2.3)

2.2 Local asymptotic stability of the DFE

In dynamic systems theory, the condition of local asymptotic stability dictates whether a small

perturbation away from an equilibrium will grow or if the system will return to the equilibrium

point. This has a natural implication for the dynamics of an emerging infection; here, a “perturba-

tion” amounts to introducing a small number of infective individuals into a disease-free population.

Mathematically, the criterion for local asymptotic stability of an equilibrium is a condition on the

eigenvalues of the Jacobian matrix of the system, evaluated at the equilibrium. In continuous-time

systems, if the real part of each of the eigenvalues is negative, then the equilibrium is stable. In

discrete-time systems, all eigenvalues must have modulus less than one for local stability. How does

this criterion translate to conditions on the general model of Eqs. 2.1 and 2.2?

We will consider the discrete-time case in detail; the continous-time results follow analogously.

If x is a DFE, then the Jacobian matrix of the discrete-time system around the DFE takes the

following form:

I +DF(x)−DV(x) = I +


F 0

0 0


−


V 0

J3 J4


 (2.4)

The partitions of DF(x) and DV(x) are a consequence of assumptions (A2)-(A4). Additionally,

the matrix F is nonnegative; this follows from assumptions (A1) and (A4), and the argument can

be found in the proof of Lemma 1 in [46]. Local asymptotic stability of the DFE requires that all

eigenvalues of the linearization given in Eq. 2.4 fall within the unit circle. Given the partitioning

of the linearization, the eigenvalues of the linearized system are the union of the eigenvalues of the

matrices I+F −V and I−J4. The set of eigenvalues of DV(x) is the union of the set of eigenvalues

of V and J4; by the definition of a DFE, these are all assumed to be within the unit circle. Thus,

the eigenvalues of I − J4 are contained within the unit circle, so the condition for local asymptotic

stability of the DFE is ρ(I + F − V ) < 1.

In continuous time, the requirement for the stability of a DFE is that ρ(F − V ) < 0, where F

and V are defined identically as above. In the deterministic SIS model of Eq. 2.3, the DFE is given
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by x = (0, N); we can readily compute that F and V are the following m×m = 1× 1 matrices

F = β, V = γ + d,

so the condition for the local asymptotic stability of the DFE is

β − (γ + d) < 0 ⇔ β

γ + d
< 1.

Section 2.5 will present an example of this threshold test for a discrete-time model.

2.3 R0: its calculation and interpretation

Historically, the parameter that has received the most attention as the determining function for an

epidemic threshold is R0, the basic reproductive ratio, which is canonically defined as “the expected

number of secondary cases produced by a typical infected individual during its entire period of

infectiousness in a completely susceptible population” [26]. The history of the adoption of the

parameter R0 over the course of the 20th century is a complex and interesting story that weaves

together developments in epidemiology and population ecology; the term as it is now understood was

introduced by George MacDonald in 1952, rediscovered and used by Klaus Dietz in the 1970s, then

canonized by Anderson and May in the early 1980s [47]. May et al. provide a heuristic description of

the elements of R0 and its relevance to epidemiology in [48]. Intuitively, if R0 is greater than 1, then

it is likely that the number of infected individuals in a population will increase after the introduction

of an initial infective, and unlikely otherwise. Estimates for the R0 value of some common diseases

are given in Table 2.2.

Table 2.2. Ranges of R0 for some well-known diseases, assuming homogeneous mixing with
standard incidence [49].

AIDS 2− 5
smallpox 3− 5
measles 16− 18
malaria > 100

The canonical methodology for determining R0 for any type of deterministic infection dynam-

ics utilizes the next-generation operator as defined by Diekmann et al. [26]. The next-generation

operator is defined by the structure of the population (i.e., its relevant types or distinct subpopu-

lations), the steady-state distribution of individuals in the disease-free equilibrium, and the number

of infected individuals of each type produced by an infected individual of each type. The operator

takes in a density that represents the likelihood of the initially infectious individual being of each
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type, and outputs the expected number of direct secondary infections caused by this individual over

the course of the individual’s lifetime within each of the different types. When the population is

partitioned among only a finite number of static compartments, the next-generation operator can

be written simply as a matrix, K, whose ijth element is the average number of direct infections

of individuals of type i from an initial infective of type j. It is important to observe that R0 is

only defined in [26] for deterministic models; the “expected numbers” of individuals that comprise

the entries of K are population averages, the value of that entry weighted by the fraction of the

population corresponding to that value. Diekmann et al. propose that the appropriate measure for

R0 is the spectral radius, ρ(K), of the matrix K. In this context, R0 corresponds to the asymptotic

per generation growth factor of the epidemic, assuming that new infections are replaced with fresh

susceptibles. For nonnegative matrices like K, the spectral radius is also the largest, or dominant,

eigenvalue.

How does the spectral radius arise in this context? Let us begin with an initial distribution of

individuals in infected compartments 1, . . . ,m defined by a vector ψ (with sum of entries denoted

‖ψ‖). Note that R0 is computed under the assumption that infected individuals operate in a com-

pletely susceptible population, i.e. there exists a never-ending supply of fresh susceptibles to take

the place of those infected by the initial class. If the population of susceptible individuals is not

depleted between generations, the next generation will produce ‖Kψ‖ new infections, the second

generation ‖K2ψ‖, and so on. Define ‖K‖ as the maximum value of ‖Kψ‖ for all ψ with ‖ψ‖ = 1;

this is a definition of a matrix norm. The per generation growth rate, then, is ‖Kn‖1/n, a geometric

mean. If we take the limit as n→∞, ‖Kn‖1/n = ρ(K), the largest eigenvalue of K.1

How does this mathematical definition of R0 correlate with the “word” definition given previ-

ously? Let us explore this question through a series of examples.

First, consider a host-vector disease. The dominant mode of transmission of malaria, for ex-

ample, is back and forth between human and mosquito; in order for a human infection to cause

another human infection, the disease must first pass through a mosquito. For this disease, the two

sub-populations are human and mosquito (with only one infected compartment each, so the next

generation matrix K will be 2× 2), and it will only have off-diagonal entries since there can be no

direct infections of a human by a human or a mosquito by a mosquito. If we use RHM to denote

the average number of secondary infections in the mosquito population caused by a single infective

human in a completely susceptible mosquito population over the course of the human’s lifetime,

and RMH to denote the analogous quantity caused by a single infective mosquito in the human

population, then K is given by

K =


 0 RHM

RMH 0


 .

1This result is called Gelfand’s formula, and is true for any matrix norm.
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What is the value of R0 for this disease? Without referring to next-generation matrix arguments,

a reasonable answer to this question is
√
RHMRMH . Certainly, our answer should depend both

on RHM and RMH : the disease can’t spread if both of those quantities is less than one. But it

could spread, for example, if RHM > 1 and RMH < 1, depending on whether RHMRMH > 1. This

is the key condition, but RHMRMH itself is a “two-step” measure, and does not have the right

units to be the number of secondary infections. If one would like a measure of the per generation

growth factor, the geometric mean
√
RHMRMH provides the right result (which is > 1 if and only

if RHMRMH > 1). The largest eigenvalue of K is indeed
√
RHMRMH .

Now, consider an example of the type formulated by Larson in [50], in which an infected individual

is equally likely to cause either 2 or 6 secondary infections. How do we interpret the phrase “equally

likely” in the context of the deterministic models that we’ve been discussing? A naive approach

might be to eliminate the randomness by assuming that all infected individuals cause the mean

number of infections, 4; then R0 = 4. Instead, what if you assume that half of the population infects

6 others and the other half infects 2? Call the former group N6, and the latter group N2. If an

individual of N6 has no preference for interacting with individuals of N6 or N2, then the number of

new infections caused by an individual in Ni within the population Nj is given by ij/(i + j) (for

more discussion of this calculation, see Section 3.3.1); thus, the next-generation matrix K is

K =


36/8 12/8

12/8 4/8


 ,

where ρ(K) = 5. This is larger than the “homogeneous mixing assumption” - see Chapter 3 for

more on this phenomenon. Taking this one step further, what if individuals in Ni only interacted

with other individuals in Ni? Then

K =


6 0

0 4




and ρ(K) = 6.

What is happening in these examples? First, we see that the use of the phrases “average number

of secondary infections” and “typical infectious individual” can be misleading; in the first and

second examples, different mathematical interpretations of these phrases lead to different numerical

outcomes for R0. Additionally, from our last example, we see that even though half the population

only infects 4 other individuals, the value of R0 given by the mathematical definition is 6! In light

of these observations, consider an alternative ‘word’ definition of the basic reproductive ratio: R0 is

the asymptotic per generation growth factor of the infection. Here, a generation refers to the time

elapsed between the initial infection of an individual and that individual’s removal from the infected

class. If there are multiple types of individuals who may be simultaneously infected, generations

may begin asynchronously, but can be interpreted as “waves” of infection. To determine whether
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a disease will grow or die, we want a measure of the maximum number of infections that could be

produced in each generation; the infection will die out if this number if less than one.

For our general compartmental model, how do we compute the elements of K? An element Kij

in the next-generation matrix should represent the total number of secondary (direct) infections in

compartment j caused by an infective introduced in compartment i over its entire infectious period.

Note that this definition does not include a counting of the infections that occur at the tertiary

stage and beyond. To find Kij , we allow each initially infected individual to cause new infections

according to F for every time step in an infected compartment, but do not allow the newly infected

individuals to influence the dynamics. If only a small number of infectives are introduced into a

stable disease-free population x, then the inter-compartmental movement is well-described by the

linearized system

x← (I −DV(x))(x− x). (2.5)

Since we are interested in the dynamics when x is perturbed by the introduction of a few individuals

into the infected compartments i = 1, . . . ,m, we only need to follow the dynamics of the first m

elements of the vector x. Denote these first m elements at time n by the vector ψ(n); we require

that ψ(n) satisfy Eq. 2.5, and thus by the partitioning of Eq. 2.4

ψ(n+ 1) = (I − V )ψ(n). (2.6)

The unique solution to Eq. 2.6 is given by ψ(n) = (I − V )nψ(0), which counts the number of

individuals in compartment i at time n for i = 1, . . .m, given an initial distribution. Every individual

in this compartment is capable of transmitting infection, and in a mostly susceptible population

with a small number of infectives, the number of infections caused by ψ(n) is well-approximated by

Fψ(n). Observe that this approximation assumes that the susceptible population is not depleted as

new infections occur, a key assumption in the computation of R0. The total number of secondary

infections in each compartment caused by the initial infective population is then given by

∞∑

i=0

Fψ(i) =

∞∑

i=0

F (I − V )iψ(0) = FV −1ψ(0).

We have already observed that the definition of a DFE requires that all eigenvalues of I − DV(x)

have modulus less than one, which is equivalent to all eigenvalues of DV(x) being contained within

the unit circle centered at 1. Thus, all eigenvalues of DV(x) have positive real parts, and V is

invertible. The next-generation matrix, then, is K = FV −1, a product of nonnegative matrices, and

R0 is defined to be its spectral radius, ρ(FV −1). Since FV −1 is nonnegative, R0 is an eigenvalue of

K.

29



As presented in [46], an analogous argument holds for the determination of K in continuous-time,

with an identical result: K = FV −1. For the deterministic continuous-time SIS model represented

by Eq. 2.3, we computed F and V in Section 2.2: K is a 1× 1 matrix, which means that

R0 = ρ(K) = K =
β

γ + d
.

2.4 Equivalence of threshold on R0 and DFE stability

Thus far, this chapter has established two results on the behavior of the general compartmental

model in discrete-time:

⊲ The DFE is locally asymptotically stable if and only if ρ(I + F − V ) < 1.

⊲ R0 is given by ρ(FV −1).

What kind of relationship should we expect between the criteria for stability of the DFE and

R0 < 1? Stability of the DFE invokes an approximation in time: if we replaced the system by its

linearization around the DFE, an unstable DFE implies that the number of infected individuals will

initially grow. More precisely, the size of the infected population cannot be kept arbitrarily small for

all time, no matter how small the initial level of infection. Given a system described by the general

model, which predicts the population x[n] at time n, we can imagine constructing a related system

g[k] that counts themnumber of infected individuals in each new generation k of the disease. The

condition on R0 is exactly the condition for the local stability of the system g[k]: R0 > 1 implies

that the number of infected individuals per generation will initially grow. This idea is depicted in

Figure 2.1. It should not be surprising, then, that the conditions for the stability of the DFE in time

and by generation are identical in the parameter space of the model: the two are simply measures

in different units of progression. The following theorem (for the discrete-time case, built on the

continuous-time result in [46]) establishes this relationship.

Theorem 2.4.1. Let x be a DFE and define the m×m matrices F = {fij} and V = {vij} as:

fij =
dFi

dxj

∥∥∥∥
x

, vij =
dVi

dxj

∥∥∥∥
x

for infected compartments i, j = 1, . . . ,m

The next-generation matrix K is given by K = FV −1, so R0 = ρ(FV −1). The DFE x is locally

asymptotically stable if and only if the spectral radius of the Jacobian I + F − V , ρ(I + F − V ), is

less than 1, which occurs if and only if ρ(FV −1) = R0 is less than 1.

Proof. Note that the initial perturbations for which local stability is tested in Theorem 2.4.1 are no

longer constrained to lie within the disease-free manifold. This proof follows that presented in [46].
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Figure 2.1. Schematic of new infections v. time (a) and generation (b).

First, we observe that V is an M-matrix ; it is non-singular and has nonpositive off-diagonal entries

(see the proof of Lemma 1 in [46]).

The matrix I + F − V is nonnegative; to see this, expand V into its two components V − − V +

and observe that assumption (A2) implies that the diagonal entries of V − are in the interval [0, 1].

Since V is an M-matrix, its off-diagonal entries are nonpositive. Combining these observations with

the nonnegativity of F demonstrates the nonnegativity of I + F − V .

Now, we make an intermediate observation: if A is a nonnegative matrix, then I − A is an

M-matrix if and only if ρ(A) < 1. To see this, note that if I − A is an M-matrix, then all of its

eigenvalues are in the right-half plane, which in turn implies that all of the eigenvalues of A have

real part less than one. Since A is nonnegative, ρ(A) must be one of the eigenvalues of A, and

thus ρ(A) < 1. Conversely, assume that ρ(A) < 1. Then all of the eigenvalues of I − A are in the

right-half plane. Since A is nonnegative, I − A has nonpositive off-diagonal entries. Thus, I − A is

an M-matrix.

We complete the proof by demonstrating that ρ(I + F − V ) < 1 if and only if ρ(FV −1) < 1.

Since FV −1 is nonnegative, ρ(FV −1) < 1 if and only if I − FV −1 is an M-matrix. Since V is an

M-matrix, by Lemma 5 of [46], I−FV −1 is an M-matrix if and only if V −F is an M-matrix. We’ve

observed that I + F − V is nonnegative; by our intermediate result, I − (I + F − V ) = V − F is an

M-matrix if and only if ρ(I + F − V ) < 1.

For the continous-time result, see [46], Lemma 1 and Theorem 2.

Theorem 2.4.1 establishes the equivalence of the thresholds obtained by the next generation

matrix and local stability analysis. We stress, however, that the expressions for R0 and the spectral

radius of the Jacobian (in terms of model parameters) are not, in general, the same. This distinction

is analogous to the observation that for a > 0, f(a) = a2 > 1 if and only if g(a) = a > 1, but f(a) 6=
g(a). We will see this explicitly in the discrete-time SIS model presented in Section 2.5. In particular,
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the correct computation of R0 requires distinguishing between new infections and other types of

transfers into infected compartments (as represented by the F and V+ functions, respectively). The

following section presents a discrete-time example which illustrates this distinction.

2.5 Example: a discrete-time SIS model with arbitrarily-

distributed infectious period

In many discrete-time SIS compartmental models, the proportion of infected individuals who transi-

tion back into the susceptible state per unit time is a constant, δ. This implies a geometric infectious

period distribution over the population, with mean 1/δ (analogous to the exponential distribution in

continuous-time models). As Wearing et al. have pointed out, the assumption of an exponentially-

distributed infectious period can lead to erroneous results in prediction [51]. They (and others)

have proposed a gamma distribution for the infectious period, as this has a tuning parameter that

‘interpolates’ between an exponential distribution and a fixed infectious period. In this section, we

develop a model with an arbitrarily-distributed infectious period, a very general formalism.

Let the infectious period be given by the discrete random variable X, which takes its values on

the positive integers with P (X = i) = qi. The range of values of X need not be finite, as long as X

has a well-defined mean X =
∑∞

i=1 iqi, but for ease of presentation we’ll assume that X can only

take values from 1 to M . An individual, once infected, remains infected for exactly j time steps

(which we shall refer to as being infected with duration j) with probability qj . At the end of the j

time steps, the individual is susceptible once again.

In order to incorporate this phenomenon into a deterministic disease model, we’ll interpret qj as

the proportion of infected individuals with an infectious period of exactly j time steps. Let Ijk[t]

denote the number of individuals at time t who are infected with duration j and in the kth time

step of their infection (k ≤ j). Let S[t] denote the number of susceptible individuals at time t.

We’ll assume the simplest stable population dynamics: at each time step, a fixed number b of new

susceptibles is born and a fraction d of individuals in all compartments die. These dynamics have

the unique DFE at a total of N = b/d individuals. We’ll also define a transmission parameter β

which measures the proportion of interactions between susceptible and infected individuals which

result in new infections. A set of difference equations that describes this system is as follows:
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



S[t+ 1] = b+ (1− d)




S[t]︸︷︷︸
susceptibles

− S[t]
β

N

M∑

j=1

j∑

k=1

Ijk[t]

︸ ︷︷ ︸
new infections

+

M∑

j=1

Ijj [t]

︸ ︷︷ ︸
recovered infectives




Ij1[t+ 1] = (1− d) qjS[t]
β

N

M∑

j=1

j∑

k=1

Ijk[t]

︸ ︷︷ ︸
fraction of infectives with duration j

Ijk[t+ 1] = (1− d) Ij(k−1)[t]︸ ︷︷ ︸
transitions of infectives

for 1 < k ≤ j

(2.7)

Observe that the only new infections are those that arise in the j1 compartments for j = 1, . . . ,M ,

while flow through the rest of the infected compartments represents transitions of already infected

individuals. Ordering the compartment populations in the vector x, defined as

x =
[
I11 I21 I22 I31 · · · IMM S

]⊤
, (2.8)

we readily determine that F and V as defined in Theorem 2.4.1 are the M(M +1)/2×M(M +1)/2

matrices

F = β(1− d)




q1 q1 · · · q1

q2 q2 · · · q2

0 0 · · · 0

q3 q3 · · · q3

0 0 · · · 0

0 0 · · · 0

q4 q4 · · · q4
...

... · · ·
...




= β(1− d)




q1

q2

0

q3

0

0

q4
...




[
1 1 1 1 1 1 1 · · ·

]

V =




V1

V2

V3

. . .




where V is a block diagonal matrix with M blocks and the Vi are i× i matrices with entries of 1 on

the diagonal and −(1− d) on the first subdiagonal. To compute R0, we seek the largest eigenvalue

of FV −1. Since V is block diagonal with blocks Vi, its inverse will be block diagonal with blocks

V −1
i ; the V −1

i are lower triangular matrices with entries of 1 on the diagonal, (1 − d) on the first
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subdiagonal, (1 − d)2 on the second subdiagonal, and so on. Since F is a rank-one matrix, the

product FV −1 is also rank-one:

FV −1 = β(1− d)




q1

q2

0

q3

0

0

q4
...




[
1 1 1 1 1 1 1 · · ·

]




V −1
1

V −1
2

V −1
3

. . .

V −1
M




= β(1− d)




q1

q2

0

q3

0

0

q4
...




[
d̃0 d̃1 d̃0 d̃2 d̃1 d̃0 d̃3 d̃2 d̃1 d̃0 · · ·

]

where d̃i =
∑i−1

j=0(1− d)j . The largest eigenvalue of this rank-one matrix is the inner product of the

two component vectors; thus,

R0 = ρ(FV −1) = β(1− d)
M∑

i=1

qi

i−1∑

j=0

(1− d)j =
β(1− d)

d

M∑

i=1

qi(1− (1− d)i).

Observe that if the death rate is slow (i.e. 0 < d << 1), then

R0 ≈ β
M∑

i=1

qii = βX

where X is the mean of the infectious period distribution.

By Theorem 2.4.1, the condition that R0 < 1 is equivalent to the condition that the disease-free

equilibrium is locally asymptotically stable. For the simple case of M = 2, where the probability

of being infected with duration 1 is given by p and the probability of being infected with duration

2 is 1 − p, we can plot the spectral radius of the Jacobian, J , versus the largest eigenvalue of

the next-generation operator; the result is given in Figure 2.2. Note that R0 < 1 if and only if

ρ(J) < 1, even though the two are different functions of p. It is clear that the results of using either
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statistic for a threshold test are equivalent, but the threshold tests themselves are not identical.

This is epidemiologically important; using the largest eigenvalue of the Jacobian will either under

or overestimate the basic reproductive ratio of the infection.
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Figure 2.2. A comparison of the value of R0 and the spectral radius of the Jacobian for the
discrete-time SIS model discussed in Section 2.5 (β = 2/3 and d = 0).

Additionally, it is not difficult to demonstrate that this system has an endemic equilibrium, which

exists as long as R0 > 1. The number of susceptible individuals at this equilibrium is given by

S∗ =
N

R0
. (2.9)

For R0 < 1, then, the system will asymptotically converge to the disease-free equilibrium; for R0 > 1,

the system will converge to the endemic equilibrium. This behavior is depicted in Figure 2.3.

2.6 Equivalence with the existence of an endemic equilibrium

Is the condition R0 > 1 equivalent to the existence of an endemic equilibrium in every infection

model? Or are the conditions on local asymptotic stability and endemicity equivalent? Let us define

a variable I =
∑m

i=1 xi, which counts the total number of occupants in all infected compartments.

We can begin to address this question by performing a bifurcation analysis of I, which determines

the equilibrium values of I as a function of the parameters of the system. Section 2.4 demonstrated

that the disease-free equilibrium I = 0 exists for all values of R0 and changes from locally stable to

unstable as R0 increases past one, but in general, these conditions do not provide any information

about the existence of endemic equilibria.

First, consider the bifurcation diagram in a region close to the DFE and to the point R0 = 1.
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Figure 2.3. The behavior of System 2.7 for a initial introduction of 18 infectives into a
population of N = 80 individuals with infectious period distribution q = [1/3, 1/3, 1/3]. The
endemic equilibrium of Eq. 2.9 is represented by the dotted black line.
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Figure 2.4. A forward bifurcation (a) and a backward bifurcation (b).

Figure 2.4 depicts two possible types of local behavior. In Figure 2.4(a), a stable endemic equilibrium

is ‘born’ as R0 increases past one, and is referred to as a forward bifurcation. In Figure 2.4(b),

a backward bifurcation occurs. Here, a stable endemic equilibrium exists for a parameter range

that overlaps with the interval R0 < 1, with the dividing line of the basins of attraction of both

stable equilibria demarcated by an unstable endemic equilibrium. In this case, the number of initial

infectives introduced into the population is important; if that number is large, then the infection will

reach the stable endemic equilibrium instead of dying out, for ranges of Rc < R0 < 1. Additionally,

if R0 is initially greater than 1 when an infection spreads within a population, then the public health

measures necessary to eliminate the disease from the population must push R0 < Rc, requiring more

effort than simply decreasing R0 to below one.

In general, it can be difficult to obtain analytical solutions for the number and stability type of
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endemic equilibria, but there exists a class of methods from the theory of nonlinear dynamics that

allows one to explore the behavior of equilibrium solutions in a small region around a bifurcation

point; these methods utilize center manifold theory and the concept of normal forms. Recall that

the DFE becomes locally unstable when one or more of its eigenvalues crosses a threshold curve:

the imaginary axis in continuous-time systems, or the unit circle in discrete-time systems. This

occurs when R0 = 1. At that point, a certain number of the eigenvalues are on the threshold, with

the remaining eigenvalues strictly within the stable region. Center manifold theory allows us to

restrict our attention to the dynamics on a submanifold of the state-space that corresponds to the

eigenvalues on the threshold. Putting the system into a normal form via a change of coordinates

then classifies the type of local bifurcation. Indeed, in their development of the general framework

that we’ve explored in this chapter, van den Driessche and Watmough obtain results on the existence

of endemic equilibria via center manifold theory, but their results are fairly restrictive and difficult

to interpret [46]. For a special case, Alexander and Moghadas perform a detailed local bifurcation

analysis of a SIRS model using these methods in [34]. For an excellent discussion of the application

of center manifold theory and normal forms to disease models, as well as many examples, see the

work of Kribs-Zaleta [52]. For a more general exposition of the theory, see the work of Wiggins [53].

If the system is known to exhibit a unique forward bifurcation, then one can conclude the

equivalence of R0 > 1 and the existence of an endemic equilibrium. Backwards bifurcations are also

common: some examples include an SIS model with imperfect vaccination [54], models of recurrent

immuno-suppressive infections [55], malaria [56], and diseases that prompt a change in interaction

patterns [57].

The global behavior of disease models is certainly not limited to the forwards and backwards

bifurcations depicted in Figure 2.4; more complex dynamics are possible. Even when a center

manifold analysis reveals a forward bifurcation at R0 = 1, it is still possible for the system to exhibit

a stable endemic equilibrium when R0 < 1; Kribs-Zaleta describes an STD model that exhibits

multiple endemic equilibria for R0 < 1 and R0 > 1 [52]. There do exist models that permit an

analytical global analysis using other tools of dynamical systems theory. In [58], for example, Simon

and Jacquez use Lyapunov functions to explore the stability of equilibria of an SI model.

In general, relating local stability of a fixed point to global stability is a nontrivial task, and

there are few general results. For example, Reluga et al. provide sufficient conditions that preclude

a backwards bifurcation in a continuous-time infection model with acquired immunity [59]. In [60],

Castillo-Chavez et al. present a criterion in continuous time that guarantees the global asymptotic

stability of the DFE when R0 < 1, thereby precluding the existence of an endemic fixed point or

limit cycle. We present their result in the following theorem.
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Theorem 2.6.1. Let ψ indicate the vector formed from the first m components of the vector x in

system (2.1), corresponding to the infected compartments. If the DFE x is a globally asymptotically

stable fixed point of System (2.1) when F is set to zero, and if the dynamics of ψ can be represented

by
dψ

dt
= (F − V )ψ − g(x)

where V − F is an M-matrix and g(x) ≥ 0 for all x ≥ 0, then x is globally asymptotically stable.

2.7 Additional observations

As demonstrated in the host-vector example of Section 2.3, the value of R0 calculated for a vector-

bourne disease represents the average number of new infections in both vectors and their hosts, per

generation. For public health decisions regarding diseases that alternate between two populations,

one is often only interested in the behavior of the epidemic in just one of the subpopulations, so the

even or odd powers of the next-generation matrix is a more appropriate tool. Roberts and Heester-

beek [61] suggest the use of an alternate statistic, T0, also derived from the next-generation operator,

which may be more useful when control measures can only be applied to a single subpopulation.

Our attention in this chapter has been limited to discussion of the stability of equilibria of the in-

fection model, but any epidemiologist can point to many examples of diseases occurring periodically.

Many disease models exhibit oscillatory behavior, either at a natural frequency or in response to

periodic forcing. For example, Wearing and Rohani observe that both seasonal variation and hetero-

geneity in infectivity are required to explain the observed oscillations in the prevalence of dengue in

Thailand [62]. Additionally, we have only addressed the relationship between a threshold on R0 and

the stability of a disease-free population equilibrium; what might happen if the population under

study is in a stable disease-free limit cycle when an infection is introduced? In discrete time, analysis

of T -periodic behavior requires examining the stability of fixed points of the map h(x) composed

with itself T times; in [63], Franke and Yakubu analyze such a discrete-time SIS model in a periodic

environment.
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Chapter 3

Network effects on thresholds

Chapter 2 presented a general framework capable of incorporating both demographic and topological

heterogeneity in a population. This chapter, and the remainder of the thesis, will focus on the

case in which the population X can be broken into subpopulations X1, . . . ,Xn that interact in

some constrained fashion. More specifically, we assume that all individuals have identical biology,

i.e., each subpopulation moves through the same disease stages in the same manner, but that the

subpopulations differ in their interaction patterns. We’ll begin by exploring some of the common

types of models for the mixing of two subpopulations to gain some intuition for their impact on the

computation of R0, then look at the effects of interaction patterns on the general model of Chapter

2.

3.1 Population mixing and structure

The most common assumption underlying both deterministic and stochastic models of infection

is the homogeneous mixing of individuals. As defined by Daley and Gani, “if the individuals in a

population mix homogeneously, the rate of interaction between two different subsets of the population

is proportional to the product of the numbers in each of the subsets concerned” [64]. The validity of

this assumption is certainly context-dependent. For example, it may make sense to assume that the

passengers in a subway car mix homogeneously with respect to an airborne influenza. For sexually-

transmitted diseases, however, infections propagate along well-defined pathways from individual to

individual within a social network and are thus poorly approximated by homogeneous mixing.

Mathematically, there are two common types of homogeneous mixing invoked in the literature.

The first type of homogeneous mixing is referred to as standard incidence, and assumes that the rate

of interaction between subpopulations of size A and B is α AB
A+B ; this type of mixing was invoked in

the deterministic and stochastic SIS models first presented in Chapter 1. The second, mass action

incidence, is rooted in the law of mass action, a principle from physical chemistry that describes the

dynamics of well-mixed chemical reactions. Mass action incidence asserts that the rate of a reaction

between two molecules which are present in quantities A and B is αAB for a constant α. As the size

of one of the subpopulations under study grows large (e.g. A→∞), mass action incidence predicts

a perpetually increasing rate of reaction, while the reaction rate under standard incidence remains

bounded for fixed B.
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How do these mixing assumptions impact the disease dynamics? To address this question,

consider a single city with N = b/d individuals who mix according to standard incidence, precisely

the SIS model of System 1.1 in Chapter 1. Recall from our development in Section 2.3 that we can

apply the formalism of the general model to obtain

R0 =
β

γ + d
,

with no dependence on population size N . Now, imagine that we take our N individuals and divide

them between two cities with populations N1 = b1/d and N2 = b2/d (with N1 +N2 = N), and allow

half of each city’s population to travel to the other city continuously, regardless of their infection

status. How might this change R0? Both the numerator and denominator of the mixing term will

decrease, so we might anticipate that the subdivision will have no effect on R0. Our mathematical

model now has 4 compartments, S1, S2, I1 and I2, corresponding to the susceptible and infected

individuals in each city, and the dynamic model will have the following form (the equations for S1

and S2 are not shown):

dI1
dt

= β
S1

2
I1

2
S1+I1

2

+ β
S1

2
I2

2
S1+I2

2

− γI1 − dI1

dI2
dt

= β
S2

2
I1

2
S2+I1

2

+ β
S2

2
I2

2
S2+I2

2

− γI2 − dI2.

F =




β
2

β
2

β
2

β
2




V =


γ 0

0 γ + d




R0 = ρ(K) = ρ(FV −1) =
β

γ + d
.

Here, we see no difference in the value of R0 computed for the subdivided population, because

standard incidence has removed the impact of smaller population size. What if we repeat this

example, but assume that the populations interact according to mass action incidence? With only

one population of size N , our dynamic equations will take the following form:

dS

dt
= −βSI + γI + b− dS (3.1)

dI

dt
= βSI − γI − dI. (3.2)

It is not difficult to see that

R0 = FV −1 =
βN

γ + d
, (3.3)
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which increases with the population size N . What will happen if we subdivide the population? We

have effectively reduced the size of the population in which an individual mixes, so we’d expect the

rate of new infections, and consequently R0, to decrease. Applying the subdivision, we obtain the

following model:
dI1
dt

= β
S1

2

I1
2

+ β
S1

2

I2
2
− γI1 − dI1

dI2
dt

= β
S2

2

I1
2

+ β
S2

2

I2
2
− γI2 − dI2.

The F and V matrices for this system are given by

F =


β

N1

4 βN1

4

βN2

4 βN2

4




V =


γ + d 0

0 γ + d


 ,

which yields

K = FV −1 =
β

4(γ + d)


N1 N1

N2 N2


 ,

which has largest eigenvalue

R0 = ρ(K) =
β

4(γ + d)
(N1 +N2) =

βN

4(γ + d)
.

This result confirms our intuition: by subdividing the population, we’ve decreased the total number

of interactions, and thus slowed the potential growth of the epidemic.

Which is more correct? The type of interaction underlying one’s model must depend on the

infection under study. In mass action mixing, larger populations mean more infection opportunities;

if the size of Boston doubles, then an infective can infect twice as many people as he could before the

change. While this feature may be grossly incorrect for many kinds of interactions (e.g., sexually-

transmitted diseases), such an assumption does have a place in certain kinds of infections. For

example, consider a highly transmissible respiratory infection that only requires passing contact.

There are roughly 14 times as many people in New York City as there are in Boston, and thus a

tourist from Boston visiting New York may casually pass 14 times as many people in a given day as

she would in Boston (e.g., on the subway or at large events). For a casually-transmissible infection,

then, we’d like to see growth in the infection rate as population size increases. Indeed, any infection

whose spread worsens in areas of high population density requires some measure of this effect.

Instead, we might want to model a situation in which the number of individuals that we interact

with is limited to some maximum possible number; for a fixed number of infectives, as the size of the
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population increases to infinity, the rate of new infections will increase only to this limit. Standard

incidence has this feature. Effectively, the parameter β is rescaled to β/N , where N is the total

population. In our example, dividing one city into two smaller cities does not impact R0 because

the infection rate has been rescaled to decrease with the size of the mixing subpopulations. This

subdivision simultaneously decreased the mixing pool and increased the infection rate so that R0

remained the same. Similarly, connecting two cities that didn’t previously interact would not change

R0 under standard incidence, because the mixing pool is increasing simultaneously with a decrease

in the infection rate.

Choosing the right type of functional form for the mixing between subpopulations, then, has

critical ramifications on the value of the basic reproductive ratio. In order for restricted interactions

of subpopulations to impact the ability of a newly-introduced infection to spread, these interactions

must change the speed with which the infection propagates from its nominal speed in a fully-mixed

population. For this to appear in our predictions, we must choose a mathematical model with this

property.1 Throughout this thesis, we will often use mass action incidence as a proxy for any general

form of mixing function which exhibits this behavior, but our general conclusions are not restricted

by this specific form. The following section considers a second aspect of the choice of mixing function.

3.2 General incidence functions

Certainly, acceptable modeling simplifications are highly dependent on the nature of the infection

under study, and there is a need for models which interpolate between extreme assumptions. Over

the last several decades, researchers have considered many different mathematical forms for the rate

of new infections as a function of the size of the populations within each compartment. The general

model described in Chapter 2 puts no constraints on the precise form that the rate of new infections

can take, beyond the biologically-required assumptions (A1)-(A5). However, there are functional

forms that yield degenerate expressions for F : the all-zeros matrix, or a matrix whose entries are

not all finite. For example, one family of models represents mixing with terms proportional to SpIq

for some constants p and q [65].2 If we replace SI in Eqs. 3.1-3.2 by SpIq, and compute the matrix

F , we find that

F = qβSpIq−1
∣∣
(S,I)=(N,0)

. (3.4)

For q < 1, F = ∞, which leads to R0 = ∞. For q > 1, F = 0 and R0 = 0. These values of R0

arise solely from the functional form chosen and have no dependence on the parameters of disease

1It is important to observe that although network topology does not change the value of R0 under standard
incidence, it certainly does impact the dynamics of the model! As we observed in Chapter 2, R0 is a measure of
an initial growth rate, and does not provide information about other phenomena of interest, including longer-term
behavior or the spatial patterns of spread.

2These models have been invoked as natural generalizations of the bilinear form SI and justified as a way to
incorporate population heterogeneities [66], but have not found wide application. In [65], the authors acknowledge
that such functional forms would be difficult to distinguish from a bilinear form in empirical data.
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transmission, which is both intuitively and mathematically problematic. Is it possible to classify

the models which will yield non-degenerate expressions for R0? Note that this definition of non-

degeneracy for R0 does not imply that R0 itself cannot be zero, as long as that value does not arise

from degeneracies in F or V −1. The following definition characterizes such models.

Definition 3.2.1. The general model described in Chapter 2 will yield a non-degenerate R0 if and

only if the matrix F has finite entries and is not identically zero.

Remark 3.2.2. In Chapter 2, we observed that V −1 is a nonnegative matrix. Its invertibility

guarantees that the entries of V −1 are finite and the columns of V −1 form a linearly independent

set. We also observed that F is a nonnegative matrix. Since V −1 is invertible, FV −1 is the zero

matrix if and only if F itself is the zero matrix. Additionally, assume that ρ(K) = ∞. Since V −1

has finite entries, this occurs if and only if the F has at least one infinite entry.

Throughout the remainder of this thesis, we will restrict our attention to models that produce

non-degenerate R0, i.e. those that satisfy the conditions of Definition 3.2.1.

3.3 Identical individuals interacting via a network

As stated at the start of this chapter, we’d like to focus on a special case of heterogeneity in which

a population X can be broken into subpopulations X1, . . . ,Xn such that

⊲ all individuals across subpopulations have identical biology, i.e. individuals in each subpopu-

lation move through the same disease stages once infected,

⊲ but differ in their interaction patterns, i.e. the level to which subpopulation Xj mixes with

subpopulation Xi.

This idea is illustrated in Figure 3.1, which depicts two subpopulations undergoing simple

susceptible-infected-susceptible (SIS) dynamics (appropriate for a non-lethal infection that can be

repeatedly acquired). The dashed arrow from A to B indicates that disease can be transmitted from

infected individuals in subpopulation A to susceptible individuals in subpopulation B (but not vice

versa in this example).

The state vector x will require one element for each disease stage within each subpopulation:

x = (x1, x2, x3, x4) = (I1, I2, S1, S2). Note that the dimension of x is the product of the number

of disease stages and the number of subpopulations. Assuming mass action incidence, our infection

model might take the following form:
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x1 x2

x3 x4

I

S

I

S

A B

βγ βγ

β

b d

d

b d

d

Figure 3.1. X1 and X2 represent two different subpopulations of individuals, S and the I
represent susceptible and infected compartments within each subpopulation.





x1 ← x1 + βx1x3︸ ︷︷ ︸
F1

− (γx1 + dx1)︸ ︷︷ ︸
V−

1

x2 ← x2 + βx2x4 + βx1x4︸ ︷︷ ︸
F2

− (γx2 + dx2)︸ ︷︷ ︸
V−

2

x3 ← x3 + b+ γx1︸ ︷︷ ︸
V+

3

− (βx1x3 + dx3)︸ ︷︷ ︸
V−

3

x4 ← x4 + b+ γx2︸ ︷︷ ︸
V+

4

− (βx2x4 + βx1x4 + dx4)︸ ︷︷ ︸
V−

4

(3.5)

Here b is the birthrate; β controls the rate of infection; 0 < γ < 1 and 0 < d < 1 respectively

represent the fractions of the corresponding compartment populations that recover or die at each

time step. The only potential DFE for this model is given by x = (x1, x2, x3, x4) = (0, 0, b/d, b/d),

so each subpopulation size is N = b/d at equilibrium. Note that the Jacobian matrix that governs

small perturbations away from x within the disease-free invariant manifold is given by

J =


1− d 0

0 1− d




and indeed has all eigenvalues of modulus less than one, thus satisfying the definition of a DFE.

As discussed in Chapter 1, it is natural to describe the structure of these interactions by an

adjacency matrix A, which has a ‘1’ entry in the ijth position if infected individuals in subpopulation

i can infect susceptible individuals in subpopulation j; for the example in Figure 3.1,

A =


1 1

0 1


 .
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How does the structure of the interaction between the subpopulations impact the matrices F

and V ? For System 3.5, we find that

F = βN


1 0

1 1


 = βNA⊤ and V = (δ + d)


1 0

0 1


 .

which implies that

R0 = ρ(FV −1) = ρ

(
β

δ + d
NA⊤

)
=

β

δ + d
Nρ(A⊤). (3.6)

Observe that β
δ+dN is the value of R0 obtained for a single population of size N in Eq. 3.3. Denote

this value by Rh. When the subpopulations are connected according to the adjacency matrix A, the

value of R0 changes by a factor of ρ(A⊤). It is not difficult to extend System 3.5 to more than two

subpopulations with different interaction patterns; the general forms of F and V will remain the

same. The expression for R0 in Eq. 3.6 has decoupled the biology of the infection (the progression

through disease stages, summarized by Rh) and the impact of the population topology (summarized

by ρ(A⊤)).

For a more complex model with more disease stages, the assumption of identical biology allows

us to generalize the factoring of R0 in Eq. 3.6 using the Kronecker product (discussed in Section 1.6).

For any model in which the “identical biology” assumption holds, the matrix F can be expressed as

F = Fh ⊗A⊤, where:

⊲ Fh is a square m×m matrix, where m is the number of infected stages, and the ijth entry of

Fh is the Jacobian at the DFE of the rate of new infections arising in infection stage i from

individuals in infection stage j;

⊲ A is a weighted adjacency matrix whose pqth entry is a scaling factor between subpopulations

p and q which allows the rate of infection to vary from its nominal value in Fh due to factors

like population size and interaction strength. When all pairs of interacting subpopulations

have the same interaction strength (as in the example of Figure 1), A can be written as a 0–1

matrix. More generally, A will be a nonnegative matrix.

The Kronecker product Fh ⊗ A⊤, in effect, repeats the matrix A⊤ at each element of Fh. This

operation restricts individuals in infection stage j to creating new infections in stage i only in those

subpopulations that interact along the edges (i.e., the non-zero entries) of A. In the context of our

subpopulations with identical biology, this corresponds to each subpopulation having its own set of

the same disease stages through which individuals can progress; we simply repeat these stages for

each subpopulation.

If we make the additional assumption that the movement between infected disease stages after

initial infection is not a function of the state of neighboring subpopulations, then V can be factored
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as Vh ⊗ I, where:

⊲ Vh is the square m ×m matrix whose ijth entry represents the Jacobian around the DFE of
the net rate of transitions out of infection stage i arising from individuals in infection stage j;

⊲ I is the n× n identity matrix.

This assumption is standard to most infection models; after infection, the progression through the

remaining disease stages is an individual phenomenon and is not affected by social contacts.3

Recall that for matrices A, B, C, and D of compatible dimensions, (A ⊗ B)(C ⊗D) = (AC) ⊗
(BD), and that ρ(C ⊗ D) = ρ(C)ρ(D). These properties allow us to write the next-generation

matrix K as

K = (Fh ⊗A⊤)(Vh ⊗ I)−1 = FhV
−1
h ⊗A⊤ (3.7)

and

R0 = ρ(K) = ρ(FhV
−1
h ⊗A⊤) = Rhρ(A

⊤) = Rhρ(A). (3.8)

where Rh = ρ(FhV
−1
h ). The expression for R0 in Eq. 3.8 has decoupled the biology of the infection

(the progression through disease stages, summarized by Rh) and the impact of the subpopulation

interaction topology (summarized by ρ(A⊤)). This decoupling allows us to focus separately on

biological dynamics and interaction pattern issues in estimating R0, by separately considering the

disease-specific Rh and the interaction-specific ρ(A). We will take advantage of the decoupling of

biology and topology represented in Eqs. 3.7 and 3.3 throughout the remainder of this thesis. In

light of this observation, many past and recent results regarding epidemics on complex networks can

be seen as simple consequences. We conclude this chapter with a sampling of these results.

3.3.1 Examples from the literature

Anderson and May, 1991

Anderson and May explore a population model in which Ni individuals have i contacts with

other individuals for i = 1, . . . ,M [38]. The number of contacts of any individual is not correlated

with the number of contacts of its neighbor, and thus the average number of contacts between an

i-type individual and a j-type individual is given by

ij∑
k kNk

.

3Observe that these assumptions do not imply that there can be only one disease stage into which new infections
can occur, only that new infections arise via interactions between subpopulations, while all other movements through
disease stages do not.
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Thus, A is the rank-one matrix given by the following vector product, which has Ni entries of i

for every i:

A =
1∑

k kNk




1
...

1

2
...

2
...

M
...

M




[
1 · · · 1 2 · · · 2 · · · M · · · M

]
(3.9)

It is not difficult to show that the largest eigenvalue of this matrix is given by:

ρ(A) =

∑
k k

2Nk∑
k kNk

=
〈k2〉
〈k〉

where 〈·〉 indicates the average value. This observation corresponds to the threshold condition

derived in [38].

Pastor-Satorras and Vespignani, 2001

In [39], Pastor-Satorras and Vespignani formulate mean-field equations for an SIS process on

two different types of networks. The first type is referred to as exponential networks, which are

characterized by a degree distribution that is sharply peaked at its average value 〈k〉 and decays

exponentially fast on either side of 〈k〉. The authors mention the Watts-Strogatz “lattice rewiring”

graph as an example of an exponential network. Mathematically, the peak of the degree distribution

at 〈k〉 leads the authors to the approximation that all nodes have degree 〈k〉. For an N -node network,

this yields the following N ×N matrix A:

A =




〈k〉
N

〈k〉
N

...

〈k〉
N




[
1 1 · · · 1

]
(3.10)

Clearly, the largest eigenvalue of thisA is simply 〈k〉, which corresponds to the threshold condition

determined in [39] for exponential networks.
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The second type of network modeled in [39] are those with power-law degree distributions, with

uncorrelated degrees. The authors cite the Barabasi-Albert (BA) model of preferential attachment

as an example of this type of graph, but BA do models typically exhibit degree correlations (see

Section 4.2.2 for a demonstration of this phenomenon). The power-law degree distribution is given

by a probability density over the degree of a node, and is formalized in [39] as P (k) = 2m2k−3, where

m is the minimum degree of a node in the network. This distribution is not clustered about its mean

(which leads to the alternate term ‘scale-free’), so the authors choose their dynamic variables to be

the fraction of nodes of degree-k which are infected. One might observe that this construction is

identical to that presented by Anderson and May in [38], and thus it should be no surprise that the

threshold condition observed in [39] is dictated by the value of 〈k2〉
〈k〉 . For infinitely large power-law

networks that have exponent ≥ 3, the quantity 〈k2〉 will not converge, and thus the authors conclude

that there is no epidemic threshold for such graphs: any infection can propagate indefinitely.

Boguna and Pastor-Satorras, 2002

In [30], the authors address the possibility of degree correlations among the nodes in the network.

Specifically, they focus on the case of Markovian dependencies between the degrees of adjacent

nodes, in which the network structure is defined by the degree distribution P (k) and the conditional

distribution P (k′|k), where the latter quantity denotes the probability that a neighbor of a degree-k

node will have degree k′. They define a matrix C whose (k, k′) entry is given by kP (k′|k). This

matrix C is the weighted adjacency matrix for an appropriately-defined network, so it is intuitive

that the threshold condition observed by the authors is dictated by the largest eigenvalue of C.

48



Chapter 4

Approximating and bounding thresholds

THIS thesis focuses on the dynamic behavior of mathematical models of infection processes

through structured populations. As in the previous chapters, we’ll focus on the structure that

arises via interaction constraints for a population of otherwise identical individuals. We conclude

this chapter with a discussion of generalizations of R0 that are appropriate for systems in which the

interaction patterns are uncertain or changing with time.

4.1 Uncertainty in interaction patterns

There is no shortage of deterministic and stochastic models (in both continuous and discrete time)

that have been proposed for various infections (biological, social and technological), and all of them

have a common feature: the population structure is assumed to be completely known. Even in

stochastic models, the population structure is rarely modeled as a random phenomenon. However,

what if the population structure is unknown? It is rare that one has complete information about the

connectivity of a network, especially when one is also required to estimate edge weights. Consider

the following partial information scenarios.

1. A subgraph (or collection of subgraphs) is known. In social network analysis, for example, it

is often the case that only local information is gathered (i.e., the neighborhood of individual

network nodes), or that a subgraph of the complete population is mapped out via contact

tracing (e.g., with tuberculosis diagnoses) or snowball sampling [67]. Similarly, web crawlers

that attempt to map the structure of the WWW follow the outgoing links of an initial set

of pages (and tend to exhibit biases in the structure they detect [68]). Certainly, different

sampling methods produce different pictures of the population under study (and are often

accompanied by errors), and all are necessarily incomplete.

2. A generation/evolution mechanism for the network can be hypothesized. The prevalence of

power-law degree distributions in nature has inspired an enormous amount of interest in the

network growth mechanisms that would generate such a distribution; among the most refer-

enced explanations are Barabási and Albert’s preferential attachment model [69] and Chung’s

duplication model [70]. A researcher might have knowledge of how the nodes connect with

each other, which provides information about the resulting network structure.
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3. Ranges for certain network parameters can be estimated. Common sense or empirical ob-

servations can bound the possible choices for some important network statistics. As a naive

example, in a family tree, we can assume that no person has more than twenty children, which

provides an upper bound on the maximum outdegree of a node.

All of these types of partial information suggest modeling the network as a probabilistic ensemble

of all graphs that satisfy the known conditions. Perhaps this distribution arises out of some random

network generation process, like preferential attachment, or perhaps it is a single snapshot of a

network whose edges reflect the preferences of the individual nodes.

In general, let us consider a sample space, Ω, such that for each ω ∈ Ω, A(ω) is one possible

realization of the network. We will assume that a valid probability distribution P (·) is given over

this sample space, which associates to each ω a probability that realization ω is seen. The graph A
can be completely specified by the collection of random elements {N, {Ni}, E} where

⊲ N is the number of nodes in the graph,

⊲ Ni is the set of attributes associated with node i (possibly vector-valued),

⊲ Aij ∈ E indicates the strength or nature of a connection between nodes i and j (again, possibly

vector-valued).

Our graph generation process, then, could be thought of a function associating each A(ω) with a

set {N(ω), {Ni(ω)}, E(ω)}, where A(ω) occurs with probability P (ω). It is rare, however, that this

much generality is necessary or useful! There are many possible ways of defining an ensemble of

random graphs and assigning probabilities to its realizations. In Chapter 5, we consider a particular

family of random graph distributions known as the exponential or p∗ random graphs, which are used

extensively in social network analysis.

How do we incorporate this randomness into infection models? For stochastic models, we must

include an initial step of choosing a particular network from the ensemble before applying the

stochastic infection process. If the ensemble comprises networks whose edges are determined with

some degree of independence, then we may be able to embed the randomness of the network structure

within the process of infection spread; if edges are correlated, however, this extra step might destroy

whatever tractability we began with. In deterministic models, which typically use differential or

difference equations to model infection spread, incorporating random structure amounts to including

random variables in our equations. For a difference equation, this implies that the state vector x, a

random vector, evolves according to the update

x← h(x, ψ,A)

50



where ψ is a known vector of parameters and A is the random adjacency matrix of the underlying

network, A. This is a stochastic differential equation, in which every realization of the random

matrix A yields a different trajectory x[n]. In general, determining the properties of the ensemble

of possible trajectories x(t) is difficult. Most deterministic models implicitly replace the random

matrix A with its expected value E[A], yielding a deterministic differential equation; in general,

however,

E [x[n+ 1]] 6= h(E [x[n]] , ψ,E[A]).

so even tracking E[A] is challenging. This seems like a desperate situation! However, instead of

considering the full dynamics of these processes, what if we restrict our attention to computing

the most widespread parameter in mathematical epidemiology, R0? If A is random, then so is the

next-generation matrix K, and therefore so is R0 = ρ(K). In general, the next-generation matrix

K = FV−1 is a nonlinear function of A, as both F and V are functions of A. However, in the case

of the specially-structured populations described in the previous chapter, Eq. 3.7 shows that K is a

linear function of A and therefore more amenable to analysis; in this case,

R0 = Rhρ(A).

The value of Rh is determined by the biology of infection; here, we’ll assume that this is a known

quantity. If we’re interested in how R0 is distributed, then, we can go directly from information

about the distribution of the spectral radius of A to a distribution on R0.

Note that we have only defined R0 for deterministic dynamic models; how might the structure

of the population impact the computation of stochastic thresholds? As discussed in Chapter 2, the

definition of R0 was given by Diekmann et al. as the expected number of secondary infections caused

by a single infected individual in a completely susceptible population, but the “expectation” that this

definition refers to is a population average over an infinitesimally divisible collection of individuals,

not the expectation of a random variable [26]. One might naively guess that in stochastic models,

the related quantity is the true “expectation” of an inherently random next-generation matrix K,

and indeed, E[K] often dictates threshold results. In [71], the authors present a continuous-time

stochastic model in which individuals are of different classes, which define their infectious period and

mixing patterns, and are also partitioned into households, with a higher frequency of contact within

households (local) than across households (global). If the type of an infected household is the class

to which its first infected individual belongs, the authors use a branching process approximation

to determine that “a global epidemic occurs with non-zero probability if and only if” the spectral

radius of a matrix M is greater than one, where “Mij is the mean number of class-j global contacts

that emanate from a typical type-i infected household” [71]. In order to obtain this result, however,
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the authors take the limit as the population size approaches infinity; this allows them to apply a

branching process approximation to determine whether or not the infection will reach a finite fraction

of the population before extinction. In most stochastic models, however, the population structure

is assumed to be known. For example, Draief et al. describe a Reed-Frost model of infection over a

deterministic network and find that ρ(A) determines whether an outbreak will be “large” or “small”

in a probabilistic sense [72]. Similarly, Ganesh et al. define a continuous-time Markov process for

infection propagating through a deterministic network and find that ρ(A) serves as a threshold for

the expected duration of an epidemic [25].

Regardless of the modeling approach one uses, assuming that the network structure is drawn from

some distribution of adjacency matrices gives you a distribution of the threshold parameter, rather

than a single value. What if, to avoid this entire issue, we simply replaced the unknown population

structure A with some kind of guess? A reasonable one might be the expected adjacency matrix

of the entire ensemble, which we’ll denote E[A]. Is the value of ρ(E[A]) an appropriate summary

measure of the distribution of ρ(A)? In general, the answer is no. If we assume that contacts between

individuals are symmetric, then the underlying network is undirected and the adjacency matrix of

the network is symmetric. A nonnegative symmetric matrix is Hermitian, which has eigenvalues

that are purely real, and we reference the following theorem from Horn and Johnson [24].

Theorem 4.1.1. Let X and Y be n× n Hermitian matrices whose eigenvalues are given by λi(X)

and λi(Y ), respectively, and let the λi be arranged in increasing order from i = 1, . . . , n. Then

λk(X) + λ1(Y ) ≤ λk(X + Y ) ≤ λk(X) + λn(Y ).

A corollary quickly follows.

Corollary 4.1.2. If A is the adjacency matrix of a random undirected graph on n nodes, then

ρ(E[A]) ≤ E[ρ(A)].

Proof. Since the set of all possible n × n adjacency matrices is bounded, E[A] exists and can be

represented as

E[A] =

2n∑

i=1

piAi

where Ai is a possible realization of A and pi its associated probability. Since all of the Ai and E[A]

are nonnegative and symmetric, they are Hermitian, and Theorem 4.1.1 implies that

ρ(E[A]) = ρ

(
2n∑

i=1

piAi

)
≤

2n∑

i=1

piρ(Ai) = E[ρ(A)].
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Thus, using E[A] can lead us to underestimate the mean of the distribution of eigenvalues, which

is problematic; it means that we’re underestimating the epidemic potential of the infection. For

directed graphs, it is possible for either ρ(E[A]) or E[ρ(A)] to be the larger of the two. Additionally,

there are several relevant parameters one could use to describe the distribution of the spectral radius

(e.g., its mode, its maximum, an upper bound on its support); certainly E[ρ(A)] is not necessarily

the unique and best summary of the distribution. This is especially revealing when ρ(E[A]) and

E[ρ(A)] diverge from each other as the number of subpopulations n grows; Chung et al. have

identified conditions under which this divergence occurs, and present an example of a family of

undirected random graphs for which this happens [73].

Given a value of Rh, if it is possible to upper bound the spectral radii of all possible realizations

of A by a constant c, then we use cRh as an upper bound on R0; if this bound is less than one,

we can conclude the local stability of the disease-free equilibrium, even in the face of uncertainty.

Lower bounds on the spectral radii can similarly produce a condition for guaranteed local instability.

Indeed, one may have only partial information about the structure via some of the following statistics

and observations:

⊲ total number of nodes and edges in the network;

⊲ maximum or minimum degree, network girth (the length of the shortest cycle), or network

diameter (the length of the longest path);

⊲ average degree and variance, degree distribution, possibly accompanied by degree correlations;

⊲ a collection of subgraphs (obtained, perhaps, by some network sampling method);

⊲ parameters related to the growth mechanism underlying the creation and evolution of the

network.

If we are purely interested in determinining whether or not R0 > 1, partial information may

allow us to make this assessment. For example, if we know that ρ(A) < 2 and R0,h < 0.25, then

R0,hρ(A) < 0.5 < 1 and an epidemic cannot occur. We can determine bounds on the spectral radius

of the adjacency matrix using structural information via the tools of spectral graph theory, the focus

of the following section.

4.2 Bounding and approximating ρ(A)

The literature of spectral graph theory is rich with bounds on the spectrum of adjacency matrices,

given as functions of structural information. Determining such bounds using the structural properties
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of the network is one of the tasks of spectral graph theory. In Tables 4.1 and 4.2, a selection of upper

and lower bounds is listed for the spectral radii of graphs that are simple (no self-loops or multiple

edges) and connected. Tables 4.1 and 4.2 provide guaranteed bounds on the value of ρ(A). We

also present bounding results for the spectral radius of nonnegative matrices, which form the more

general class of weighted adjacency matrices; these results are presented in Table 4.3. Finally, we

summarize some results that bound the elements of the eigenvector associated with the largest

eigenvalue in Table 4.4. Observe that most of these results are upper bounds; the literature on

useful lower bounds for ρ(A) is much more sparse. To see where the difficulty might arise, Theorem

4.1.1 allows us only to conclude that ρ(E[A]) ≥ E[λmin(A)], but λmin is often negative. Since we

know that ρ(A) > 0, this bound does not provide any new information.1

Table 4.1. Upper bounds on ρ(A) for simple, connected graphs. Structural properties are
number of nodes (n), number of edges (e), maximum degree (∆), minimum degree (δ), girth
(G), diameter (D), degree of node i (di), and average degree of the neighbors of node i (mi).

structural information upper bound on ρ(A) reference

{e}, self-loops allowed
√

2e [75]

{e} −1+
√

1+8e
2 [76]

{n, δ, e} (δ−1)+
√

(δ+1)2+4(2e−δn)

2 [77]

{mi} max{√mimj |(i, j) ∈ E} [74]

{di,mi} max{
√
dimj |(i, j) ∈ E} [78]

{n, e, δ,∆}
√

2e− (n− 1)δ + (δ − 1)∆ [74]

{n,D,∆, δ} ∆− ∆+δ−2
√

∆δ
Dn∆ [79]

{di} min1≤i≤n
di−1+

√
(di+1)2+4(i−1)(d1−di)

2 [80]

G ≥ 5, {n,∆} min(∆,
√
n− 1) [81]

G ≥ 5, {n,∆} −1+
√

4n+4∆−3
2 [82]

Tables 4.1-4.3 presented bounds that can be rigorously established for the largest eigenvalue

of the adjacency matrix of a graph for which only partial information is known. To obtain an

approximation, on the other hand, one can simply augment the known properties with additional

assumptions that pin down the network structure.

We now present some examples illuminating the application of the ideas we have described.

4.2.1 Example 1: Imposing structure

Our first example explores the impact on ρ(E[A]) of assuming various levels of structure. Suppose

that only the total numbers of nodes n and edges e in the network are known. If we assume that

1See the survey of Das and Kumar [74] for several negative lower bounds.
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Table 4.2. Lower bounds on ρ(A). Structural properties are number of nodes (n), number of
edges (e), maximum degree (∆), minimum degree (δ), girth (G), diameter (D), node degrees
listed in descending order (di ≥ dj for i < j), and average degree of the neighbors of node i
(mi).

structural information lower bound on ρ(A) reference

{n}, connected 2 cos π
n+1 [83]

{∆}, simple
√

∆ [78]

{n, e}, no multiple edges 2e
n [75]

{n, di}, simple
√

1
n

∑
i d

2
i [78]

{n, di}, simple 1
e

∑
(i,j)∈E

√
didj [78]

Table 4.3. Bounds on ρ(A) for A a non-negative matrix. Matrix information includes the
dimension (n), sum of the entries of the ith row (di), the minimum and maximum over these
sums (δ and ∆, respectively), the minimum entry of A (b), the trace of A (t1), the trace of
A2 (t2).

matrix information bounds on ρ(A) reference

{δ,∆} δ ≤ ρ(A) ≤ ∆ [84]

positive A, {δ,∆, b}
δ + b(h− 1) ≤ ρ(A) ≤ ∆− b(1− 1/g)

[85]
g =

∆−2b+
√

∆2−4b(∆−δ)

2(δ−b)

h =
−δ+2b+

√
δ2+4b(∆−δ)

2b

{n, t1, t2} ρ(A) ≥ t1
n +

√
1

n(n−1)

(
t2 − t21

n

)
[86]

Table 4.4. Bounds on the elements of the maximal eigenvector v of A. Matrix information
includes the dimension (n), sum of the entries of the ith row (di), the minimum and maximum
over these sums (δ and ∆, respectively), the minimum diagonal entry of A (ad).

matrix information bounds on elements of v reference

δ,∆, {Aij}
√

∆
δ ≤ maxi,j

vi

vj
≤ maxj,s,t

asj

atj
[84]

δ,∆, ad, A > 0 maxi,j
vi

vj
=
√

∆−ad

δ−ad
[84]
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the structure of the network is completely homogeneous, then the expected adjacency matrix will

be the n× n matrix

E[A] =




2e
n2 · · · 2e

n2

...
. . .

...

2e
n2 · · · 2e

n2


 .

The largest (and only nonzero) eigenvalue of this rank-one matrix is 2e/n. This is the average degree

of a node, which we’ll denote as 〈k〉.

Suppose we assume instead that the network is known to have Nk nodes of degree k, and that the

degrees of nodes are uncorrelated (i.e., the probability that nodes of degrees k1 and k2 are connected

is proportional to k1k2). The expected adjacency matrix will be the rank-one matrix given by the

following outer product, where each vector has Nk entries of k for every k:

E[A] =
1∑

k kNk




1
...

1

2
...

2
...

M
...

M




[
1 · · · 1 2 · · · 2 · · · M · · · M

]
. (4.1)

Note that we require
∑

k Nk = n and
∑

k kNk = 2e. The largest (and only nonzero) eigenvalue of

this matrix is ∑
k k

2Nk∑
k kNk

=
〈k2〉
〈k〉 , (4.2)

where 〈·〉 indicates the average value. Comparing 〈k2〉
〈k〉 to 1 is the threshold test derived by Anderson

and May [38], then rederived by Pastor-Satorras and Vespignani [87]. Observe that 〈k2〉
〈k〉 ≥ 〈k〉,

which illustrates a more general trend: adding heterogeneity to the interaction patterns within a

population increases the value of R0.

Thus, by supplementing known structural information with additional assumptions on interaction

patterns, we can obtain an approximation of ρ(A). The following subsections consider two further

examples of bounding and approximating the largest eigenvalue of random graphs. These examples

are not meant to provide definitive conclusions about the particular networks under study, but to

simply illustrate the application of new tools to this task.
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Figure 4.1. (a) The mean (± std. dev.) of the spectral radius of the adjacency matrix of a
simple preferential attachment model on n nodes (n − 1 edges), taken over 100 trials; (b) an
upper bound on ρ(A) obtained using the number of edges [76] (coincides with [82]); (c) an up-
per bound obtained using the number of nodes, edges, minimum degree and maximum degree
[74] (coincides with [81]); (d) approximation assuming a degree distribution ∼ k−3, corre-
sponding to preferential attachment, without degree correlations; (e) approximation assuming
a homogeneous network on n nodes with n− 1 edges distributed identically.

4.2.2 Example 2: preferential attachment

Consider a network generated by a simple preferential attachment mechanism, slightly modified

from the one described by Barabási and Albert [69]. A network is seeded with two nodes that have

one edge between them; at each subsequent time step, a new node is added that connects to one

existing node, with the probability of connection to any existing node being proportional to the

existing node’s degree. The procedure is terminated once the network reaches n nodes, which yields

a simple, undirected network with n − 1 edges on n nodes, i.e., a tree. We can upper bound the

maximum degree of any node in the network by n − 1 and can certify that the minimum degree is

1. It is known that as n→∞, the degree distribution of a preferential attachment graph follows a

power law, in which the probability that a node has degree k is proportional to k−3 [69]. Figure 4.1

compares some theoretical upper bounds and approximations with simulation results. Curves (d)

and (e) are the approximations described in Example 1; as observed in Eq. 4.2, making assumptions

like these that reduce the heterogeneity of the network causes us to underestimate an infection’s

spreading potential.

4.2.3 Example 3: egocentric network data from Houston study

In 1997 and 1998, the U.S. National Institute on Drug Abuse sponsored a study of both drug-using

and non-drug-using individuals in a low-income section of Houston, TX; this study was undertaken
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by Affiliated Systems Corporation and is described in [88], [89], and [90]. As part of the survey,

participants named up to 6 other individuals who were a part of their social network and assessed

whether these individuals knew each other, which illuminates local subgraphs of the larger social

network of this community. For a more complete description of this data source, refer to Appendix

B.3.

From this data, we are able to measure three network properties:

1. Assuming that the participants in the network were drawn from the population without regard

to their number of social contacts, we can construct a histogram of the number of contacts

listed by each participant as an approximation of the degree distribution of the network.

2. Counting the number of edges between contacts listed by participant i is a measure of the local

clustering Ci, defined as

Ci =
2{ejk}i
ki(ki − 1)

where ki is the degree of participant i and {ejk}i is the number of edges between neighbors of

participant i. Note that Ci is only defined if participant i listed more than one contact; let V ′

denote the set of such vertices. Following [91], we’ll define the average clustering coefficient to

be

C =
1

|V ′|
∑

i∈V ′

Ci.

3. The joint distribution of degree and clustering coefficient: see Appendix B.3 for a discussion

of this property.

Figure 4.2 depicts the first network property, and we can compute the average clustering coefficient

to be C = 0.312 over the participants in the study. The mean degree of participants who listed at

least one contact is d = 2.925. Participants who listed no contacts become isolated nodes in the

social network, and consequently add a zero row and column to the matrix A, which does not alter

ρ(A). Consequently, we will ignore these individuals and focus on the network formed by those

with at least one contact. Can this information be used to estimate a value of ρ(A) for the network

from which this data was drawn? First, a population size must be assumed, the choice of which will

depend upon the population of interest; in order to illustrate these approximation techniques, we

fix n = 1000 individuals with at least one contact. From the degree distribution, then, it is possible

to estimate several parameters:

δ = 1,∆ = 6, e =
dn

2
= 1463,

which we can use in the bounds presented in Section 4.2. Observe that these results will no longer

be bounds on the support of ρ(A), because we have made structural assumptions to guess the
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Figure 4.2. The degree distribution of the social network described by the Houston data set.

parameter. We can make additional structural assumptions to obtain other approximations of ρ(A);

if we assume that the degrees of adjacent nodes are uncorrelated, for example, then the expression

for ρ(A) provided by Eq. 4.2 is an approximation. We summarize the results of these various

computations, as well as others described below, in Figure 4.4.

Another approach to approximating ρ(A) begins with the given degree distribution and average

clustering coefficient, and asks what types of networks are possible? If it were possible to generate

a set of networks with the observed degree distribution and clustering coefficient, a histogram could

be constructed of the spectral radii of the adjacency matrices to get a sense for where ρ(A) might

fall. A procedure for doing precisely this is given by an algorithm developed by Volz in [92]. We

used this algorithm to generate 100 networks with degree distributions and clustering coefficients

close to those observed in the Houston data, obtained the associated adjacency matrices Ai, and

recorded the mean and standard deviation of the values of ρ(Ai).

Another technique for inferring global structure from local statistics chooses the parameters of

a family of random graphs such that the observed graph is maximally likely; we can then use this

“tuned” family to generate additional graphs that may have the same structural features. Here, we

use the exponential random graph family of probability distributions (also called the ERGM or p∗

family), which assumes that the probability of a given graph is an exponential function of a linear

combination of relevant graph statistics.2 Mathematically, this requires that the probability of a

2This family of random graphs will be the focus of Chapter 5; also see [93] and [94].

59



graph, denoted by a, takes the following form:

P (a) =
1

κ
exp

(
∑

k

θkzk(a)

)
(4.3)

where zk(a) is a particular graph statistic, θk ∈ ℜ is a constant coefficient, and κ is a normalizing

constant to ensure that P (·) is a valid probability distribution. In general, the statistics zi(a) can be

any functions of the information that one has about the network, including both structural properties

(like the strength and directionality of edges) and node identity properties (such as the gender or

age of the individual represented by the node). We apply the exponential random graph structure

to the Houston data to generate two different approximations, which differ in their choice of network

statistics:

⊲ ERGM-A - zk(a) comprise the number of edges and the number of triangles;

⊲ ERGM-B - zk(a) comprise the number of edges, number of triangles, and degree distribution
of the observed data.

To determine the optimal θk associated with each of these statistics within each of these models

and then to generate draws from the resulting distribution, we use the statnet package for the

R programming language [95]. This freely-available package utilizes Markov Chain Monte Carlo

simulation techniques to produce pseudo-maximum-likelihood estimates of the θk; more details can

be found in a recent special volume of the Journal of Statistical Software [96].

For the Volz and ERGM approximations, histograms of the resulting values of ρ(A) are depicted

in Figure 4.3. The means of these respective histograms, along with the bounds and approximations

described earlier, are summarized in Figure 4.4. Using the degree distribution allows us to come

quite close to the Volz algorithm simulations. This figure suggests that it is likely the spectral radius

of the unknown adjacency matrix is much closer to the approximate lower bounds than the upper

bounds; the reverse situation will be seen in the following section.

4.2.4 Example 4: airline traffic data

The Bureau of Transportation Statistics, an organization under the U.S. Department of Trans-

portation, makes publicly available detailed data on domestic airline flights, among other modes of

transportation. This section focuses on passenger flow between U.S. cities over the month of January

2007; for that month, we have an estimate of the number of passengers flying between 9986 directed

pairs of U.S. cities. For more information regarding the collection and processing of this data, see

Appendix B.1.

What is the appropriate ‘adjacency matrix’ to assemble from this data? If we are interested

in the spread of a winter illness, like the flu or a common cold, then we might hypothesize that

the rate at which such an infection spreads increases with the passenger volume and population of
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Figure 4.3. Histograms of the values of ρ(A) observed over 100 graphs drawn from each of
the three simulation methods.

2 the estimated number of non-isolated nodes [83]

2.4495 largest degree 6 [78]

2.925 the expected degree of non-isolated nodes with nonzero degree [75]

4.1893 the degree distribution of non-isolated nodes [78]

54.083 estimated number of edges [75]

53.586 estimated number of edges [76]

43.886 estimated number of edges, number of non-isolated nodes, minimum degree 1 [77]

5.1623 using degree distribution [80]

× 3.9274 approximation assuming degree distribution and no degree correlations of Eq. 4.2

4.741 mean value (±σ = 0.159) of Volz algorithm graphs

6.069 mean value (±σ = 0.109) of ERGM-B graphs

7.779 mean value (±σ = 0.133) of ERGM-A graphs

Figure 4.4. Bounds, approximations and simulation results for ρ(A) based on the Houston
data degree distribution and clustering statistics. Upper bounds are indicated by the convex
curves, lower bounds by the concave curves, approximations by × and simulation results by a
horizontal line.
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the destination cities. This kind of increase is appropriately modeled with mass action mixing (as

described in Section 3.1). Thus, an expression for the rate of creation of newly-infected individuals

in city j might take the following form:

Fj =
n∑

i=1

βajiSj
Ii
Ni

where Sj is the number of susceptible individuals in city j, Ni is the population of city i, β is a

biologically-determined infection parameter and aji is the number of passengers traveling from city

i to city j. The appropriate value for ajj , then, is the population Nj . If we assemble all of these

aji into a matrix A such that {A}ij = aij , and assemble all of the city populations into a diagonal

matrix N , the matrix F in the computation of R0 can be represented by

F = βNA⊤N−1.

If we make the assumption of “identical biology” discussed in Section 3.3, the quantity of interest

in determining R0 will be ρ(F ). Since β is not known, we set it to 1 for the remainder of this analysis

of ρ(F ); the choice of scale factor will not impact the qualitative results we seek here.

One of the features of disease transmission that we can investigate with this data set is how the

inclusion of new routes of traffic changes the value of ρ(F ) from a nominal value. Our approach to

answering this question is as follows: begin with the highest volume air traffic route in the U.S., and

sequentially add additional routes in descending order of traffic until a desired number of cities have

been included. If we then fill in the remaining traffic volumes between these cities, we’ve constructed

a subgraph of the larger air transportation network that includes the highest volume routes for a

given number of cities. If we adjust the number of cities that we consider, we can observe how ρ(F ),

and thus R0 increases. Analytical results of this procedure for subnetworks with five to fifty cities,

along with upper and lower bounds, are given in Figures 4.5 and 4.6.

We see that adding new air routes does not dramatically change the value of ρ(F ), which appears

to level out at roughly 822500 for more than twenty cities. The upper bounds of Figure 4.5 are much

tighter than the lower bounds of Figure 4.6, and are certainly of the correct order of magnitude.

The bound of [84] only requires knowledge of ∆, the largest row sum of F , which is simply the city

with the most incoming traffic (scaled by origin population). This is certainly an easier quantity to

estimate than the details of the full traffic pattern.

Importantly, this example also illustrates a critique of the reliance of epidemiologists on R0.

To determine whether this statistic is greater than or equal to 1 for a network of this size, one

needs extremely precise estimates of the biological parameters in this system. If these parameters

are determined experimentally, its possible for the estimated range for R0 (determined by the error

bounds on the experimental estimates and the error bounds on the network structure) to contain 1.
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Figure 4.5. Upper bounds on ρ(F ) obtained via the results in Table 4.3. The matrix infor-
mation required for each bound is indicated.

4.2.5 Example 5: Reality Mining proximity data

In 2004, the MIT Media Laboratory sponsored the Reality Mining Project, in which researchers

distributed 100 Bluetooth-enabled Nokia 6600 smartphones to members of the MIT community.

These phones contained software that, among other things, recorded all instances in which another

Bluetooth-enabled device was detected within 5m, including the smartphones carried by other study

participants. These proximity detections between study participants establish a time-dependent

network of these users’ (potential) physical interactions. Proximity data is very useful for predicting

the spread of infections like the common cold, which can be transmitted by common handling of

the same object (like a doorknob or public computer) or via inhalation of airborne droplets. To

sample the interaction patterns of the study participants, we extracted a week’s worth of data of

this naturally time-varying social network (from a total of nine months of record-keeping). For more

information on this data set and our processing techniques, see Appendix B.2.

A fundamentally time-varying network provides another source of uncertainty in modeling. The

ability of an infection to become an epidemic might depend on not just where, but when the first

infection arises. Seasonality has always been acknowledged as an important element in disease

spread; as an example, there exists a strong correlation between November passenger volume on

U.S. domestic flights and the severity of the annual flu season [97]. Periodicity like this occurs
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Figure 4.6. Lower bounds on ρ(F ) obtained via the results in Table 4.3. The matrix infor-
mation required for each bound is indicated. For more than 10 cities, the matrix F has zero
entries, and thus the lower bound of [85] could not be applied directly; instead, this bound was
applied to the matrix F 2 to yield the bound on F .
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naturally in the Reality Mining proximity data; if we aggregate the contacts over 12-hour periods as

represented in Figures 4.7 and 4.8, we see distinct ‘night’ and ’day’ interaction patterns. Aggregating

over smaller time periods reveals additional periodicities.

If one is to approximate a periodically-varying network with a static network for use in an

epidemic model, what is the most appropriate time scale over which to aggregate the data? The

answer certainly depends on the nature of the infection under study. Consider a simple SIR model,

one in which an individual passes permanently into a recovered class after an infectious period. The

duration of the infectious period will have some distribution, likely with a characteristic time-scale

(e.g., the average infectious period duration). In this case, one should aggregate the network over at

least the duration of the infectious period in order to obtain a conservative estimate that includes

all possible transmission paths. To assess the effects of choosing a time-scale for aggregation, Figure

4.9 examines the number of participants who made at least one proximity detection with another

participant from midnight on November 15, 2004 through the following week, as well as the value of

ρ(A) obtained for the network continually aggregated through the week. This figure illustrates that

by the end of the day on Monday, individuals have already been in contact with the majority of

distinct participants that they will interact with throughout the week. However, the new interactions

that continue to accumulate push ρ(A) from ∼ 20 on Monday evening up to ∼ 30 by Sunday evening.

If we examine these same statistics for the networks achieved by aggregating over 24- and 12-hour

periods, a different perspective emerges; these results are depicted in Figures 4.10 and 4.11. The

weekday values of ρ(A) are consistently ∼ 20, while the weeknight values are considerably smaller.

Recall that the basic reproductive ratio is a measure of the initial growth rate of an infection, before

saturation effects are seen. If the infectious period is on the order of a day or two, a reasonable proxy

for the time-varying network is the snapshot taken over a single weekday. If the infectious period

is longer, then the extra contacts made over the course of the week (which cause a 50% increase in

ρ(A)) become relevant.

Rather than summarizing a naturally time-varying network by a single aggregate network through

windowing, it is worthwhile to consider generalizations of R0 that can accommodate changes in

network structure over time. Although we don’t develop the connections here, Appendix C outlines

several possible generalizations of the notion of spectral radius that might be interesting to explore

in pursuit of a definition of R0 more appropriate for time-varying networks.
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Figure 4.7. An example of the ‘day’ proximity network. The two clusters correspond to the
two different groups included in the study: Media Lab affiliates and Sloan School of Business
affiliates.
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Figure 4.8. An example of the ‘night’ proximity network.
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Figure 4.9. The number of individuals and ρ(A) in the proximity network aggregated from
midnight on Monday morning through the date indicated by the x-axis.
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Figure 4.10. The number of individuals and ρ(A) in proximity networks aggregated over 24
hour spans.
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Figure 4.11. The number of individuals and ρ(A) in proximity networks aggregated over 12
hour spans. The ‘day’ period runs from 8 AM to 8 PM, and the ‘night’ period runs from 8 PM
to 8 AM. The dashed lines in the figure connect day periods to day periods, and night periods
to night periods.
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Chapter 5

Characterizing the spectral radii of

exponential random graph models

THIS chapter begins with an introduction to exponential random graph models, a particular

family of probability distributions over networks. We will focus on models that are defined

by simple structural graph statistics and build intuition regarding the parameters that characterize

these models. We’ll also present preliminary results to characterize the spectral radii of these models

as functions of the parameters, providing a link between static network characterization and the

dynamic processes that occur on these networks.

5.1 Probability distributions over graphs

In Chapter 4, we began to think of an uncertain network as a realization of an underlying random

ensemble of graphs, and suggested that there are many ways of defining the probabilities over a set of

such graphs. Let’s begin by considering one particular distribution with a single degree of freedom.

The Erdös-Rényi (ER) random graph (also called a Bernoulli random graph in the sociology and

statistics literature) begins with a fixed number n of nodes and considers only the existence of edges

[94]. IfA is an ER graph, each undirected edge exists (i.e. Aij = 1) with probability p, independently

of the existence of all other edges, and no self-loops are allowed. Formally, these conditions can be

written as

Pr(Aij |Akl for all k 6= i, l 6= j) = P (Aij),

where P (Aij = 1) = p for i 6= j and P (Aii = 1) = 0 for all i. The independence of edges is very

attractive from an analysis standpoint, and much work has been done to characterize the structure

of the ensemble of resulting graphs as a function of the parameter p. This model, however, is not

especially useful for situations in which edges between nodes do have some kind of dependence.

A first step towards relaxing the independence assumption is given by the Markov random graph.

Again, we begin with a fixed number n of nodes; however, now we assume a conditional independence

between Aij and all non-adjacent edges:

Pr(Aij ,Akl|Aij,kl, {i, j} ∩ {k, l} = ∅) = Pr(Aij |Aij,kl)Pr(Akl|Aij,kl)
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Figure 5.1. A Markov random graph (a) and its associated dependence graph when regarded
as a Markov random field (b).

where ∅ denotes the null set and Aij,kl denotes the set of all edges excluding Aij and Akl [98]. That

is, the dependence of Aij on the other edges of the graph is limited to those which are adjacent to

either node i or node j.

Markov random graphs are a special case of a more general structure called a Markov random

field. A Markov random field is a collection of variables V = {V1, . . . ,Vm} that serve as the vertices

of a dependence graph D, which has an edge Dij connecting Vi and Vj if and only if Vi and Vj are not

conditionally independent, given the state of the rest of the vertices [99]. Translating the Markov

random field structure to the special case of our Markov random graph A, the nodes of the associated

dependence graph are the edges Aij , with Aij connected to Akl if and only if {i, j} ∩ {k, l} 6= ∅.
This is illustrated in Figure 5.1 for a graph on four nodes.

5.2 The Hammersley-Clifford theorem

We introduced the Markov random graph as a more general structure than the Erdös-Rényi random

graph, but how analytically tractable is this new structure? The key result underlying Markov ran-

dom field computations is known as the Hammersley-Clifford theorem1 and is presented in Theorem

5.2.1.

Theorem 5.2.1. Let V = {V1, . . . ,Vm} be a collection of discrete random variables such that

⊲ for any collection of realized values v = {v1, . . . , vm} for which Pr(Vi = vi) > 0 for every i,
P (v) ≡ Pr(V = v) = Pr(V1 = v1, . . . ,Vm = vm) > 0, and

⊲ the all-zeros state is possible: P (0) = Pr(V1 = 0, . . . ,Vm = 0) > 0.

Define Q(v) = ln{P (v)/P (0)}. Then

P (v) =
exp{Q(v)}∑
v exp{Q(v)}

1This result was first stated (but not published) by Hammersley and Clifford in the early 1970s, but a more elegant
proof was devised by Besag in 1974; the original authors preferred Besag’s method, and never published the theorem
themselves. Our statement of the theorem is summarized from Besag’s work [99].

70



1 2 3

2

3

4

i

j

Aij

(a)

A12
1 2

3 4

A24

A34

A13

A14

A23

(b)

Figure 5.2. A clique in the dependence graph of Figure 5.1 (a) and its associated triangle in
the Markov random graph (b).

and Q(v) can be uniquely expanded into

Q(v) =
∑

1≤i≤m

viGi(vi) +
∑ ∑

1≤i<j≤m

vivjGi,j(vi, vj) + · · ·+ v1v2 · · · vmG1,2,...,m(v1, v2, . . . , vm)

where for any 1 ≤ i < j < · · · < s ≤ m, the function Gi,j,...,s can be arbitrarily chosen to be
any nonzero value if and only if the variables Vi,Vj , . . . ,Vs form a clique in the dependence graph;
otherwise, Gi,j,...,s = 0.

Recall that a clique is defined as a group of vertices such that every vertex in the group is

connected to every other vertex in this group, i.e., the vertices of the clique form a complete sub-

graph. The Hammersley-Clifford theorem states that the probability of any particular realization of

V1, . . . ,Vm can be written as a function of the realized values of only the cliques in the dependence

graph; the joint realization of an arbitrary collection of Vi is not necessary.

What is the consequence of this theorem for Markov random graphs? In this case, each random

variable Aij can only take the values 0 and 1, and we have imposed a “nearest-neighbor” dependence

assumption. In [98], Frank and Strauss observed that each clique in the dependence graph associated

with a Markov random graph corresponds to either a star or a triangle in the Markov random graph

itself. Figure 5.2 illustrates this idea for the dependence clique {A12,A13,A23}, which corresponds

to a triangle in the Markov random graph. This observation leads to the following result.

Theorem 5.2.2. Any undirected Markov graph A on n nodes has probability

Pr(A = a) =
1

κ
exp

{
∑ n−1∑

k=1

1

k!
σu0u1···uk

(a) +
∑

τuvw(a)

}

where

⊲ σu0u1···uk
(a) is nonzero if and only if node u0 is the center of a k-star connected to nodes

u1, . . . , uk in graph a, and

⊲ τuvw(a) is nonzero if and only if a triangle connects node u, v and w in a, and

⊲ κ is a normalizing constant.
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If we impose an additional homogeneity requirement that any two isomorphic graphs should have

the same probability, i.e., the labeling of the nodes does not affect the probability of the realization,

then this result simplifies even further; now, we need only count the number of triangles and each

type of star.

Theorem 5.2.3. Any homogeneous undirected Markov graph A on n nodes has probability

Pr(A = a) =
1

κ
exp

{
n−1∑

k=1

θkSk(a) + τT1(a)

}

where

⊲ Sk(a) is the number of k-stars in a, i.e. the number of distinct combinations of a single node
and k adjacent edges,

⊲ T1(a) is the number of triangles in a, and

⊲ κ is a normalizing constant.

5.3 The exponential random graph family

The exponential random graph family of probability distributions (also called the p∗ family or

ERGMs) generalizes the analytical structure of Markov random graph probabilities by assuming

that the probability of a given graph is an exponential function of a linear combination of relevant

graph statistics. Mathematically, this requires that the probability of a graph takes the following

form:

Pr(A = a) ≡ P (a) =
1

κ
exp

(
∑

k

θkzk(a)

)
(5.1)

where zk(a) is a particular graph statistic, θk ∈ ℜ is a constant coefficient, and κ is a normalizing

constant to ensure that P (·) is a valid probability distribution. In general, the statistics zi(a) can be

any functions of the information that one has about the network, including both structural properties

(which nodes are connected to which nodes), the strength and directionality of these connections,

and node identity properties (such as the gender or age of the individual represented by the node).

Some of the most commonly used structural properties are:

⊲ Dk(a) - the number of nodes in a with degree k.

⊲ Sk(a) - the number of k-stars in a, i.e. the number of distinct combinations of a single node

and k adjacent edges.

⊲ Tk(a) - the number of k-triangles in a, i.e. the number of k distinct triangles that share a

common edge.

As pointed out by Anderson et al., this analytical form corresponds to an autologistic regression

model, one in which the log odds of the probability of a particular network is a linear combination of
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functions of the variables in the network [100]. One attractive feature of this family of graphs is that

they serve as the entropy-maximizing distribution given the expected values of the statistics zk [101].

That is, if E[zk] = µk for the ERGM family represented by Eq. 5.1, then all other distributions

with these same statistics have a smaller entropy H(·), where the entropy of a distribution P (·) is

defined as

H(P ) = −
∑

a

P (a) lnP (a).

In a sense, then, the ERGM family over a given set of statistics is maximally general. These models

are the foundation of much of quantitative sociology, where they are used to extract information

about the processes relevant to the structure of empirically-observed networks. To do this, one begins

by generating a list of all possible network statistics that might be relevant to the formation of the

network (e.g., homophily, the tendency of nodes with similar attributes to connect) or are evident

in its structure (e.g., many triangles in a social network). Next, one would like to compute the

maximum-likelihood estimate (MLE) of the values of the coefficients θk given an observed network.

However, evaluating the normalizing factor κ typically requires enumerating all of the possible graphs

in the ensemble; this is a prohibitively large number for graphs much larger than thirty nodes.

As a consequence, approximations to the ML estimator are often used, most often the maximum

pseudolikelihood estimator developed by Strauss and Ikea (discussed in [102]). More recently, a

family of approximate MLE methods based on Markov chain Monte Carlo (MCMC) techniques

have been developed; see [103] and [94]. Estimates of the θk are returned along with confidence

intervals, from which a sociologist can identify the most important statistics in the structure of the

observed network, then draw conclusions or refine the model and repeat the process.

There are two issues that complicate the practical utility of the p∗ family. The first is referred

to as model degeneracy ; for certain combinations of statistics and parameter ranges, the ensemble of

graphs has the bulk of the probability density on a very small subset of the total set, often on only

the fully-connected graph. An illustration of model degeneracy is given in Figure 5.3, reproduced

from [102]. This figure considers a 7-node two-statistic ERGM family that uses both the S1 and

S2 statistics, and plots the probability that an ERGM with the parameters θ1 and θ2 will produce

the empty graph (a) and the complete graph (b). One might say that a parameter combination

yields a degenerate distribution if the probability of producing the fully-connnected or the fully-

disconnected graph is sufficiently close to one; Figure 5.3 demonstrates that degeneracy exists for

a wide range of parameter combinations (θ1, θ2), and that the transition from a degenerate to a

non-degenerate set of parameters is often very abrupt. This observation leads directly to the second

problematic issue, inferential degeneracy, which occurs when the MLE or pseudo-MLE does not

converge to finite values, or when the estimates have very wide confidence intervals corresponding to

sensitive dependence on the network data. When we’re looking for robust features of the network,
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non-convergence or sensitive dependence indicate that the model is poorly chosen; see [102] for a

detailed treatment of these issues.

Figure 5.3. The probability of obtaining the empty graph (a) or the complete graph (b) in
an ERGM on 7 nodes with S1 and S2 parameters. The degree of shading is proportional to
the probability. This figure appears as Figure 2 in [102].

Even when degeneracies such as those represented by Figure 5.3 do not occur, the shape of

the densities of ERGMs can often lead to undesirable behavior in simulations. For example, there

exist parameter ranges for which the distribution is multi-model over different graph densities; an

MCMC simulation algorithm might spend millions of iterations in one “regime” before transitioning

to another qualitatively different “regime” (examples of this phenomenon are presented in [103]).

Alternatively, there may exist a “potential barrier” in the landscape over which the MCMC algorithm

operates, such that the algorithm will spend most of its time in one regime before permanently

transitioning into another. Burda et al. have explored this phenomenon for ERGMs that use a

triangle statistic, T1(·) [104]. In these cases, the model does not represent a useful ensemble of

graphs.

In spite of these complications, we can still derive many useful results from simulations of this

family, as long as we remain tuned for the presence of some of these unattractive behaviors.

5.4 Spectra of ERGMs

Much of this thesis explores the ways in which the topology of a network influences the spread of

infection among its nodes, and in particular, on the dynamic information conveyed by the largest

eigenvalue of the adjacency matrix of the network. Since ERGMs are the dominant network modeling

paradigm in the social sciences, considering the spectra of this family is a natural first step in

exploring the dynamic processes that occur through these networks. This is an area that has yet to
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be explored by researchers in sociology, epidemiology or dynamic systems. In the remainder of this

chapter, we’ll focus on the effects of the inclusion of purely structural statistics and their coefficients

on the spectral radii of the adjacency matrices of the resulting undirected networks.

Most analytical results for complex network spectra are achieved asymptotically as the number

of nodes goes to infinity. For real social networks, which involve a finite (and often small) number

of individuals, an asymptotic analysis is often inappropriate. Therefore, we begin our investigation

empirically, by generating many realizations of ERGMs from a fixed distribution and recording the

spectral radius ρ(A) of their adjacency matrices A. Our goals for this preliminary analysis are

modest: to characterize the mean and variance of ρ(A) as a function of the number of nodes in the

network and the coefficients θk for the graph statistics included in the model. To generate many

draws from an ERGM distribution, we use the statnet package for the R programming environment.

R is a language designed for statistical analysis, and is freely available via the R Project for Statistical

Computing.2 The statnet package was developed by Mark Handcock at the Center for Statistics

and the Social Sciences at the University of Washington, and is an excellent tool for simulation

and parameter estimation of ERGMs.3 In particular, statnet provides a convenient interface for

performing MCMC simulations of a model, using the Metropolis-Hastings update step. The package

allows a user to specify many of the MCMC settings, such as the burn-in and sampling intervals,

and returns an adjacency matrix that can be exported to a text file for analysis in any software

package.

We would also like to make confidence estimates of the means and standard deviations that we

observe. Throughout the remainder of this chapter, the error bars at each data point indicate the

95% confidence intervals. For calculations of the mean, these confidence intervals are obtained as an

estimate of the mean of a distribution whose variance is unknown; with probability 0.95, the true

mean of the distribution is contained within the interval ρ̄± b where ρ̄ is the sample mean and

b =
ts

N

where

⊲ N is the number of sample points,

⊲ t is the value of Student’s t-distribution for N − 1 degrees of freedom at 95% confidence, and

⊲ s is the unbiased sample standard deviation

s =

√√√√ 1

N − 1

N∑

i=1

(ρi − ρ̄)2.

2http://www.r-project.org/
3The authors maintain a useful web resource for statnet users: http://csde.washington.edu/statnet/.
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A pragmatic way to construct confidence intervals on the standard deviation of an unknown

distribution is to assume the underlying distribution is Gaussian, with unknown mean and variance.

In this case, σ can be bounded with 95% confidence by

√
(N − 1)s2

χ2
R

< σ <

√
(N − 1)s2

χ2
L

where χ2
R is the value of the chi-squared distribution such that the area to its right is (1− 0.95)/2 =

0.025 and χ2
L is the value of the chi-squared distribution such that the area to its left is (1+0.95)/2 =

0.975 [105].

5.5 The S1 statistic

Let’s return to the Erdös-Rényi random graph model discussed at the beginning of the chapter, in

which each undirected edge exists with probability p, independently of the existence of all other

edges. This is certainly a special case of a homogeneous Markov random graph; here, the associated

dependence graph has no edges at all. The statistic S1(a) measures the number of 1-stars (i.e.,

edges) in graph a, and simple algebra allows us to readily see this case as an example of Theorem

5.2.3:

P (a) = pS1(a)(1− p)(
n(n−1)

2 −S1(a)) = (1− p)n(n−1)
2 eln ( p

1−p )
S

1
(a) =

1

κ
eθ1S1(a),

where κ = (1 − p)−n(n−1)
2 and θ1 = ln p

1−p . As p varies from 0 to 1, θ1 varies from −∞ to ∞. For

this case, asymptotic analytical results predict that the distribution of the largest eigenvalue will be

Gaussian with mean (n− 1)p+ (1− p) and variance 2p(1− p) [106]. These analytical results can be

compared to simulation results to validate our approach before attempting more complex ERGMs.

Simulation results are presented in Figures 5.4 and 5.5. Figure 5.4(a) presents the average value

ρ̄(A) obtained over 100 trials for the indicated values of n and p, while Figure 5.4(b) plots the same

results versus the parameter θ1. These results align well with the asymptotic prediction. Figure 5.5

presents the estimates of standard deviation obtained via the simulations. That these results (for

small values of n) demonstrate the same behavior as the asymptotic predictions provides validation

that the simulations are indeed constructing the family of random graphs that we desire.

Additionally, we can correlate our simulation results with the qualitative predictions of Figure

5.3. The ER graph corresponds to the slice of Figure 5.3 taken at θ2 = 0. The figure indicates

two symmetric transitions: a decrease in the probability of the empty graph (in the figure, around

θ1 ≈ −5) and an increase in the probability of the complete graph (around θ1 ≈ 5).
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Figure 5.4. Simulation results using the statnet package of the mean of the largest eigenvalue
of an ERGM with graph statistic S1, plotted versus p in (a) and θ1 in (b). The analytical pre-
diction is given by the dotted lines, which appear to exactly interpolate the experimental data.
95% confidence intervals are indicated by the error bars; in this plot, they are indistinguishable
from the data points.
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Figure 5.5. Simulation results using the statnet package of the standard deviation of the
largest eigenvalue of an ERGM with graph statistic S1, plotted versus p in (a) and θ1 in (b).
The asymptotic analytical prediction is given by the solid black line. 95% confidence intervals
are indicated by the error bars.
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5.6 The S2 statistic

The S2 statistic counts the number of 2-stars in the graph, i.e., pairs of edges connected by a central

node. In this section, we consider the family of ERGMs parameterized solely by the coefficient θ2

associated with the S2 statistic, i.e., the probability of a graph a is given by

P (a) ∝ exp{θ2S2(a)}.

Let’s begin by considering some limiting cases, which we can use as a “sanity check” for our

simulations. As θ2 → ∞, graphs with large numbers of 2-stars are weighted increasingly heavily.

Since adding additional edges can only increase this number, we’d expect the limiting distribution to

place the bulk of the probability density on the complete graph, which implies that ρ(A)→ (n− 1).

As θ2 → −∞, graphs with large numbers of 2-stars are increasingly penalized. In the limit, we’d

expect that the only graphs with positive probability will be those with no 2-stars at all. What

does a graph in this set look like? A graph with no 2-stars permits node degrees of 0 and 1. Such

a graph is a collection of components of size 2 (i.e. connected pairs) and components of size 1 (i.e.

isolated nodes). A procedure that is equally likely to generate any such graph is as follows. First, we

divide the nodes into sets N0 and N1 by assigning each of the n nodes to one or the other with equal

probability. The set N1 will correspond to nodes with degree 1, while N0 corresponds to singletons.

Since each realization of this procedure is equally likely, the mean degree of a node in this assignment

scheme is 1 1
2 + 0 1

2 = 1
2 . Recalling that the mean degree is often a good first approximation to ρ(A),

we might hypothesize that as θ2 → −∞, ρ(A)→ 1
2 , independent of n.

Graphs based on the S2 statistic alone are a special case of those studied analytically by Newman

and Park in [93], who applied tools from statistical mechanics to the ERGM family parameterized by

both 1- and 2-star statistics (with coefficients θ1 and θ2, respectively). Park and Newman present

first and second order approximations to the mean degree and the mean squared-degree of the

resulting ensemble of graphs as a function of the number of nodes and the parameters θ1 and θ2.
4

To begin, define the parameters J and B as

J =
1

2
(n− 1)θ2,

B =
1

2
(θ1 − θ2)

and define φ0 as the solution to

φ0 =
1

2
(tanh[2Jφ0 +B] + 1) . (5.2)

4In [93], the authors use θi where we’ve been using −θi. The notation in this section is consistent with our usage.
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For the remainder of this section, we will continue to use the notation of J , B and φ0, but will

additionally assume that θ1 = 0. With this assumption, Eq. 5.2 has a unique solution for all

values of θ2 except for those in a tiny range around θ2 = 0, which becomes increasingly small as n

increases. In this narrow range, there exist two additional solutions to Eq. 5.2. Since our interest is

in qualitative changes in the type of network produced by these ERGMs that are relatively robust to

small parameter changes, we will not explore this small intermediate regime further. The behavior

of the solution to Eq. 5.2 is depicted in Figure 5.6 for a graph on 20 nodes. As θ2 → ∞, φ0 → 1

very quickly as θ2 increases from zero; as θ2 → −∞, φ0 → 1/(2n − 2) (much more slowly than for

θ2 > 0).
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θ
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n = 20

Figure 5.6. Solutions to Eq. 5.2 for n = 20.

From an analytical expression, Park and Newman develop two levels of approximation. First, a

mean-field approximation is made, which assumes that all nodes are identical with degree equal to

the mean degree 〈k〉1 (the subscript notation denotes the level of approximation), which is given by

〈k〉1 = (n− 1)φ0. (5.3)

This assumption also implies that the expected value of the squared-degree 〈k2〉1 is equal to 〈k〉21.
The second level of approximation allows fluctuations in degree about the mean, but assumes no

degree correlations, i.e. an edge connected to a node of a given degree is equally likely to have its

other end connected to a node of any other degree. Park and Newman then obtain the following
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results for 〈k〉2 and 〈k2〉2:

〈k〉2 = 〈k〉1 +
2Jφ0(1− φ0)(1− 2φ0)

[1− 4Jφ0(1− φ0)][1− 2Jφ0(1− φ0)]
(5.4)

〈k2〉2 = 〈k〉21 +
(n− 1)φ0(1− φ0)(1− 4Jφ2

0)

[1− 4Jφ0(1− φ0)][1− 2Jφ0(1− φ0)]
. (5.5)

Because of the rapid transition to a fully-connected graph that occurs when θ2 > 0, we will focus

on comparing the analytical predictions with simulation results for θ2 < 0. Figure 5.7 compares the

mean degree approximations 〈k〉1 and 〈k〉2 with simulation results for graphs on 50 and 250 nodes,

with the average degree taken over 100 trials for each value of θ2. It is clear that the approximation

〈k〉2 is closer to the experimental values than 〈k〉1 and that both approximations are better for 250

v. 50 nodes.

Figure 5.8 depicts experimental results for 〈k2〉, taken over 100 trials at the specified values of

θ2 for graphs on 50 and 250 nodes. Again, we see that the analytical approximations hold very well

for the larger graph.

Our primary interest, however, is in obtaining expressions for ρ(A), not 〈k〉 or 〈k2〉; can we use

this information to obtain an analytical approximation for ρ(A) as a function of n and θ? Recall

that 〈k〉1 was obtained by making the mean-field assumption that all nodes are identical with degree

〈k〉1. As addressed in Eq. 3.10 of Section 3.3.1, this assumption implies the first approximation

ρ1(A) = 〈k〉1. (5.6)

Correspondingly, the second level approximation of Park and Newman is identical to the development

of Eq. 3.9, which implies a second approximation for ρ(A):

ρ2(A) =
〈k2〉2
〈k〉2

. (5.7)

Observe that both of these approximations demonstrate the limiting behavior that we predicted

at the start of this section:

⊲ as θ2 →∞, φ0 → 1, and thus ρ1(A) = 〈k〉1 → n− 1 and

ρ2(A) =
〈k2〉2
〈k〉2

→ 〈k〉
2
1

〈k〉1
= 〈k〉1 = n− 1;

⊲ as θ2 → −∞, φ0 → 1/(2n− 2) and J → −∞ and thus ρ1(A) = 〈k〉1 → n−1
2n−2 = 1

2

ρ2(A) =
〈k2〉2
〈k〉2

→ 〈k〉
2
1

〈k〉1
= 〈k〉1 =

1

2
.
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Figure 5.7. Comparing the analytical approximations of [93] and simulation results on the
mean of the degree of nodes with given θ2 in graphs of (a) 50 and (b) 250 nodes (averaged over
100 trials, with 95% confidence intervals indicated).
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Figure 5.8. Comparing the analytical approximations of [93] and simulation results on the
mean of the squared-degree of nodes with given θ2 in graphs of (a) 50 and (b) 250 nodes
(averaged over 100 trials, with 95% confidence intervals indicated).
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Figures 5.9 and 5.10 present experimental results for the mean and standard deviation, respec-

tively, of the largest eigenvalue of graphs realized from the ERGM family with the single parameter

S2. These results confirm the very narrow transition region for ρ(A) as a function of θ2. For positive

values of θ2, the resulting graphs are all fully-connected, with ρ(A) = n−1. As θ2 decreases through

large negative values, ρ(A) appears to approach a constant, non-zero value for each n. Returning

to the degeneracy illustration of Figure 5.3 and examining its predictions for θ1 = 0, we expect

to see one sharp transition in the experimental data corresponding to the sharp transition in the

probability of a complete graph in Figure 5.3 (b) (corresponding to the vertical line θ1 = 0). Figure

5.10 indicates that the widest distribution of ρ(A) occurs when θ2 = 0, which corresponds to the

Erdös-Rényi random graph with edge probability 1/2. Figure 5.11 presents sample draws from the

distribution at varying values of θ2, and Figure 5.12 depicts the degree distributions of sample draws

at various values of θ2.
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Figure 5.9. Simulation results using the statnet package of the mean of the largest eigenvalue
of an ERGM with graph statistic S2, plotted versus θ2. 95% confidence intervals are indicated
by the error bars; in this plot, they are indistinguishable from the data points.

Figure 5.13 compares the approximations ρ1 and ρ2 with the simulation results for θ2 < 0 on the

50- and 250-node graphs. Certainly, the trend is correct, but the approximations fail in precisely the

way we should expect: additional heterogeneities beyond the second-order approximation increase

the value of ρ(A). The S2 ERGM specification will result in degree correlations that are not included

in the approximations, so they will necessarily underestimate ρ(A).
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Figure 5.10. Simulation results using the statnet package of the standard deviation of the
largest eigenvalue of an ERGM with graph statistic S2, plotted versus θ2. 95% confidence
intervals are indicated by the error bars.

5.7 The T1 statistic

A third statistic that often appears in ERGM specifications is T1, the total number of triangles in the

graph. Triangles are especially relevant to social network researchers, since they signal the presence

of clustering in a network, which occurs when “friends of mine are friends with each other”. Again,

let us begin by considering some limiting cases of the following distribution:

P (a) ∝ exp{τT1(a)}.

As τ →∞, graphs with large numbers of triangles are increasingly rewarded; as in the S2 case,

the density will center on the complete graph and ρ(A)→ n− 1. As τ → −∞, the only graphs with

positive probability will be those without triangles. How can we characterize this set? A first guess

is that this is the set of all bipartite graphs, but such a set also unnecessarily excludes graphs with

any odd-length cycles, not just triangles. This set is, however, a good approximation to the one we

desire, and in fact, in the limit of large n, the difference between these sets is a vanishingly small

fraction of their size (a result demonstrated by Erdös, Kleitman and Rothschild in [107]). If we’d

like a procedure that is equally likely to generate any bipartite graph, we can first divide the n nodes

into two sets of size A and B by assigning node x to one or the other set with equal probability. Let

nA and nB be the number of vertices in each of the sets A and B; these are each binomial random
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Figure 5.11. From left to right then top to bottom, samples of an ERGM using the S2

statistic, with θ2 increasing from -2 to 0.2 in increments of 0.2.
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Figure 5.12. A vertical view of the degree distributions of a sample of the ERGM using the
S2 statistic with the corresponding θ2. The corresponding ρ(A) and the mean degree are also
plotted.

variables on n trials. For every pair of nodes x ∈ A and y ∈ B, connect x to y with probability 1/2.

Conditioned on the value of nA, the expected degree of a node in set B is nA/2, so the expected

degree of a node in set B is E[nA/2] = n/4. The argument for a node in set A is identical, so

the expected degree of any node in the graph is n/4. Thus, we might anticipate that as τ → −∞,

ρ(A)→ n/4.

To confirm these analytical predictions and explore the behavior of this family of ERGMs in

intermediate ranges of τ , we conducted statnet simulations in the typical fashion; these results are

depicted in Figure 5.14 for each fixed value of n and τ , with a burn-in period of 500,000 iterations

and a sampling interval of 50,000 iterations of the MCMC procedure. Our asymptotic predictions

are born out (Figure 5.15 demonstrates this for τ → −∞), but for larger numbers of nodes, an

interesting phenomenon arose: there appears to be a dip in ρ(A) in the interval τ ∈ [−1.5, 0] before

reaching its asymptotic value as τ → −∞ and its known value at τ = 0.

Is this a genuine feature of the distribution or a simulation artifact? To investigate, we allowed

the simulations to run for longer burn-in periods and collected a single data point at the end of the

burn-in. The results are depicted in Figure 5.16, and seem to suggest that the MCMC algorithm

remains in a quasi-stationary state for indefinitely long periods of time (whose duration increases

as τ → 0 from below). This is one of the types of degeneracy discussed in Section 5.3 that often

plague ERGM families, and may or may not represent the existence of two separate regions of high

87



−9 −8 −7 −6 −5 −4 −3 −2 −1 0
0.5

1

1.5

2

2.5

3

3.5

4

θ
2

ex
pe

ct
ed

 v
al

ue
 o

f ρ
(A

)

 

 
ρ

1

ρ
2

n = 50

(a)

−9 −8 −7 −6 −5 −4 −3 −2 −1 0
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

θ
2

ex
pe

ct
ed

 v
al

ue
 o

f ρ
(A

)

 

 
ρ

1

ρ
2

n = 250

(b)

Figure 5.13. Comparing the analytical approximations ρ1 and ρ2 of ρ(A), as described in
Eqs. 5.6-5.7 for graphs of (a) 50 and (b) 250 nodes, with simulation results (95% confidence
intervals on the mean are shown).
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Figure 5.14. Mean (a) and standard deviation (b) of ρ(A) for 25 trials of the ERGM family
based on the T1 statistic for varying values of n and τ .
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Figure 5.15. A detailed view of the behavior of ρ(A) as τ → −∞, confirming our asymptotic
prediction of n/4.

probability density, i.e. a bimodal distribution. The structure of the graphs generated in these two

regions are very different; Figure 5.17 depicts sample degree distributions for a 150 node graph with

τ = −1.32 at iterations 5× 106 and 5.5× 107.

5.8 The GWD statistic

A relatively new addition to the set of common ERGM statistics is the geometrically-weighted degree

(GWD) statistic, defined on a graph a as

u(a; dg) = edg

n−1∑

i=1

[
1−

(
1− d−dg

)i]
Di(a)

where Di(a) counts the number of nodes of degree i in graph a and dg is a fixed parameter. The

GWD statistic was described by Hunter in [108] as a more intuitive alternative to the alternating

k-star statistic proposed by Snijders et al. in [109]. Both of these statistics involve measuring

several structural properties of the graph (like degree distributions) and combining them via the

fixed proportions set by the functional form, and both are suggested as statistics that have better

convergence and degeneracy properties than standard statistics (like T1).

This section will considering the family of ERGMs that depend on the GWD statistic. Unlike

the single-parameter families that we’ve discussed so far, this family is parameterized by two values:
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Figure 5.16. Taking a sample of ρ(A) produced by the MCMC procedure at varying burn-in
periods.

the coefficient θg and the weight parameter dg, i.e.

P (a) ∝ exp{θgu(a; dg)}.

As in previous sections, let us consider some limiting cases of these parameters to get a sense of

the characteristics of this family of graphs. First, fix θg. As dg →∞, the term

edg

[
1−

(
1− d−dg

)i]→ i,

so that

lim
dg→∞

u(a; dg)→
n−1∑

i=1

iDi(a) = n〈k〉 = 2S1(a),

where 〈k〉 is the mean degree of nodes in a and S1(a) is the number of edges. Then

P (a) ∝ exp{2θgS1(a)}

and the model reduces to the S1 family described in Section 5.5 with parameter θ1 = 2θg. In this

family, as θg → ∞, we obtain the complete graph and ρ(A) = n − 1; as θg → −∞, we obtain the

empty graph and ρ(A) = 0.
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Figure 5.17. Two graphs from the ERGM family parameterized by the T1 statistic and
generated by statnet ’s simulate function at iterations (a) 5×106 and (b) 5.5×107, representing
samples drawn before and after transition to the higher density state in the MCMC routine.
The degree distributions of these graphs (100 nodes with τ = −1.32) are compared in (c).
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At dg = 0, the GWD statistic reduces to

u(a; 0) =

n−1∑

i=1

Di(a) = n− s,

where s is the number of singleton (isolated) nodes in a. Thus, all graphs on n nodes with the same

number of singletons have the same probability. What fraction of the graphs on n nodes have at

least one singleton node? The total number of graphs on n nodes is given by

2
n(n−1)

2 ,

while the number of graphs with at least one singleton is

n
(
2

(n−1)(n−2)
2

)
.

The ratio of these two quantities is 2n/2n, a number that progresses rapidly to zero with increasing

n. Thus, the bulk of the graphs with positive probability at dg = 0 are those with no singletons,

which each have the same probability

P (a) ∝ exp{θgn}.

This distribution of graphs is very close to the Erdös-Rényi distribution on n nodes with edge

probability 1/2, in the sense that all graphs in the ensemble have roughly the same probaiblity. The

difference is in the ensembles, which for the Erdös-Rényi construction includes graphs with isolated

vertices. Again, however, these graphs form a vanishingly small fraction of the total number of

graphs, so one might reasonably approximate the GWD-induced distribution at dg = 0 with an ER

graph with edge probability 1/2, and expect that ρ(A) will be well-approximated by (n− 1)/2.

What might happen as dg → −∞? The quantity edg

[
1−

(
1− d−dg

)i]
is large and positive for

i odd, and large and negative for i even. Observe that when dg = d∗g = − ln(2) = −0.6931, the

quantity 1−
(
1− d−dg

)i
is zero when i is even, and thus

u(a; d∗g) =
∑

i odd

1

2
Di(a) =

nodd

2

where nodd is the number of odd-degree nodes. For dg < d∗g, the preference will be for odd-degree

nodes when θg is positive, and for even-degree nodes when θg is negative.

Simulation results are presented in Figures 5.18 and 5.19 for negative and positive values of θg,

respectively. Observe that our asymptotic predictions are confirmed, and that we indeed see critical

behavior at dg = d∗g.
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Figure 5.18. Simulation results using the statnet package of the mean (a) and standard
deviation (b) of the largest eigenvalue of an ERGM with the geometrically weighted degree
(GWD) statistic. 95% confidence intervals are indicated by the error bars.
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Figure 5.19. Simulation results using the statnet package of the mean (a) and standard
deviation (b) of the largest eigenvalue of an ERGM with the geometrically weighted degree
(GWD) statistic. 95% confidence intervals are indicated by the error bars.
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Figures 5.20 and 5.21 confirm the Erdös-Rényi behavior that we expected for dg = 0 and dg = 10,

respectively.
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Figure 5.20. Mean values of ρ(A) obtained when dg = 0.

Additionally, Figures 5.22 and 5.23 depict sample degree distributions for random draws from

the GWD-based ERGM family. In Figure 5.22, for which θg > 0, dg → −∞, the black bands at 1,

3 and 5 indicates the preference for odd-degree nodes occurring at dg = d∗g; similarly, Figure 5.23

shows the preference for even-degree nodes when θg < 0 as dg → −∞.

We’ve made many observations of the types of networks that result when using the GWD statistic

in an ERGM model; how is the GWD statistic used and interpreted in the social networks com-

munity? Hunter et al. demonstrate some of its properties by considering how the probability of a

particular graph changes when a single edge is added [108]. Suppose this edge connects two nodes of

degree k and l, respectively. Then the ratio of the probabilities of the “after” and “before” graphs

is given by
pafter

pbefore
= exp{θg(φ

k + φl)}

where φ = 1 − exp{−dg}. As dg increases from 0 to ∞, φ increases from 0 to 1. When θg > 0,

the terms φk and φl then can be interpreted as having an “anti-preferential attachment” effect; the

increase in probability that arises from adding an edge decreases with the degree of the nodes to

which the edge connects. For θg < 0, the preference is for having fewer edges. Interestingly, the

case of dg < 0 is explicitly avoided in the literature, likely because its consequent even/odd favoring

doesn’t have a ready sociological interpretation.
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Figure 5.21. Mean values of ρ(A) obtained when dg = 10 (a) and comparing the results with
the predicted behavior (b).
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Figure 5.22. Degree distributions of sample GWD graphs at varying values of dg, for θg = 1;
the frequency of a given degree is proportional to the intensity of the shading.
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Figure 5.23. Degree distributions of sample GWD graphs at varying values of dg, for θg = −1;
the frequency of a given degree is proportional to the intensity of the shading.
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5.9 Relevance to public health

Our discussion of the exponential random graph family of probabilistic distributions over networks

was motivated by a desire to link static descriptions of topology and the dynamic processes that

occur on top of these topologies, and there are ready public health consequences for the kinds of

observations we’ve made in this chapter. For example, consider the following (simplistic) example:

in order to contain the spread of infection in a hospital, all patients are isolated from one another,

and medical personnel are instructed to only interact with patients and not with each other. Since

the individuals in the population can be partitioned into two sets (patients and medical personnel),

each of which only interact with members of the other set, the resulting interaction network will be

bipartite and contain no triangles. In Section 5.7, we observed that if a network’s structure depends

only upon minimizing the appearance of transitive relationships (i.e., choosing a very negative value

of τ , the parameter associated with the triangle statistic T1), then ρ(A) can only be decreased to its

minimum possible value of n/4, where n is the population size. If a further decrease is required to

ensure that R0 < 1 (i.e., if the biological factor Rh is larger than n/4), another social policy must

be put in place or the value of Rh must be driven down by pharmaceutical means. Alternately, one

can imagine a cost associated with changing each of the θ parameters that underlies the formation

of any given network; knowing the functional dependence of ρ(A) on the values of θ allows one to

evaluate the cost of potential policies versus their benefit in reducing R0.
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Chapter 6

Spatiotemporal characteristics of

outbreaks

AFTER looking at the relationship between network topology and epidemic thresholds, a nat-

ural next step is to explore the patterns of infection propagation through networks, on either

side of the epidemic threshold. Classical problems in ecology, including infection spread, have been

well-studied as diffusion phenomena in continuous time and space, while relevant results for popu-

lations that interact along a network structure have arisen in bursts over the last several decades

and from very disparate academic communities. We begin this chapter by considering spatial results

for deterministic and stochastic models in turn. Our focus then shifts to the contact process, a

continuous-time stochastic model for the spread of SIS infections; we’ll explore the behavior of this

process on several different topologies to improve our understanding of the mechanisms underlying

the extinction behavior. This chapter will conclude with a comparison between the contact process

and an analogous influence model for infection spread.

6.1 Special topologies

Before we begin a discussion of spatial phenomena, we will highlight and define several important

undirected network topologies that will arise as examples and special cases throughout this chapter.

⊲ the complete graph on n vertices: every vertex is connected to every other vertex (but no

self-connections are made).

⊲ the hypercube on n = 2m vertices: each vertex corresponds to a binary string of length

m = log2(n); two nodes are adjacent when the Hamming distance between their string rep-

resentations is 1, i.e., the strings differ in only one entry. This graph is also referred to as

the m − cube, e.g. the 5-cube has 32 nodes. We will use 0 and 1 to denote the vertices

corresponding to the strings 00 · · · 0 and 11 · · · 1, respectively.

⊲ the star with n leaves: a graph with n+ 1 vertices, in which each of the n edges joins to one

of the n remaining vertices a common vertex (called the “center” or “hub”).

⊲ the infinite d-dimensional lattice, Z
d: each vertex corresponds to a d-tuple x = (x1, x2, . . . , xd)

where xi ∈ Z; two vertices x and y are adjacent if their Euclidean distance is 1, i.e. the
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entries differ in only one position, and only by ±1. The vertex corresponding to the d-tuple

(0, 0, . . . , 0) will be called the “origin”, and will be denoted by 0.

⊲ the torus: a graph constructed by excising a square portion of Z
2, then connecting “opposite

sides” of the square. The torus can also be thought of as a “window” of Z
2 with periodic

boundary conditions.

⊲ the infinite homogeneous tree, Td: for d ≥ 2, a tree in which all vertices have degree d + 1,

except for a single “root” vertex which has degree d. Td is also called a Bethe lattice, denoted

Bd+1.

6.2 Deterministic models

This section will highlight several deterministic compartmental models whose results go beyond

identifying a threshold to making predictions about the patterns of infection.

Rass and Radcliffe, 2003

In [110], Rass and Radcliffe present an integro-differential equation model of an SIR infection,

which is general enough to allow an individual’s infectivity (i.e., ability to cause new infections)

to vary over the course of the infectious period. More importantly in the context of networks,

their formulation includes multiple types of individuals who mix heterogeneously, along with the

possibility of introducing infection exogeneously to a native population at a single point in time.

This model assumes a closed population, one in which no births or deaths occur. Let xi(t) denote

the proportion of type-i individuals who are susceptible at time t; then

dxi

dt
(t) = −xi(t)




n∑

j=1

σj

∫ t

0

Ij(t, τ)λij(τ)dτ +

m∑

k=1

∫ ∞

0

σλ∗ik(t+ τ)ǫk(τ)dτ




I(t, τ) = I(t− τ, 0)

where

⊲ σj is the number of type-j individuals and σ =
∑n

j=1 σj is the total population size,

⊲ Ij(t, τ) is the proportion (of σ) of type-j individuals who were infected in the time interval

(t− τ − dτ, t− τ),

⊲ λij(τ) is the rate of infection of a type-i susceptible by a type-j infected who was infected τ

time units ago (similarly for λ∗ik(τ), with the infections caused by individuals from exogeneous

type k),1

1The units of λij are the number of contacts that transmit infectious material per unit time per infected individual.
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⊲ ǫk(τ) is the proportion (of σ) of outside individuals of type k who are introduced into the

population at time 0 and were infected in the time interval (−τ − dτ,−τ) (observe that ǫk(τ)

could be greater than 1).

Additionally, define

ǫj =

∫ ∞

0

ǫj(τ)dτ,

and similarly,

γij(τ) = σjλij(τ), γij =

∫ ∞

0

σjλij(τ)dτ

with γ∗ij(τ) and γ∗ij defined analogously. These functions γij(τ) and γ∗ij(τ) are required to be bounded

with continuous, bounded derivatives. Define a matrix Γ that has as its ijth entry γij . Rass and

Radcliffe say that an “epidemic” has occurred if the asymptotic size of the infected population is

nonzero (i.e., the infection is endemic), and present the following result on the conditions for such a

situation and the final epidemic size.

Theorem 6.2.1. Theorem 2.3 of [110]. Define the fraction of type-i individuals ultimately affected
by the infection by

vi = 1− lim
t→∞

xi(t)

and let v denote the vector of these fractions. Denote the vector of ǫj by ǫ.

1. If ρ(Γ) ≤ 1, v → 0 as ǫ→ 0.

2. If ρ(Γ) > 1,

(i) when ρ(Γ) is finite, then v ≥ η component-wise and v → η as ǫ → 0, where η is the
unique positive solution to

− log(1− η) = Γη.

(ii) when Γ has at least one infinite element in each row, v = 1.

(iii) when Γ can be partitioned into

Γ =

[
Γ11 Γ12

Γ21 Γ22

]

where Γ11 and Γ12 are finite and [Γ21 Γ22] has at least one infinite element in each row,
partition v and a similarly as v′ = [v′

1 v′
2] and a′ = [a′

1 a′
2]; then v2 = 1 and v1 → η as

ǫ→ 0 where η is the unique solution to

− log(1− η) = Γ11η + Γ121.

How do these results compare to the general model discussed in Chapter 2? Recall that the

definition of R0 is a measure of the rate of initial growth of an infection, while the results of

Theorem 6.2.1 refer to the final size of the epidemic. Additionally, the Rass/Radcliffe model has an

uncountably infinite number of infected types, distinguished by their time of infection; our general

model requires a countable number of infective compartments. However, at any time t, the only

infected compartments whose membership is increasing due to new infections are the Ij(t, 0) for

j = 1, . . . , n, with the increase occuring at rate −dxj

dt . Additionally, the only way for individuals to
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transfer into these compartments is via new infection. Thus, we can compute an n×n next-generation

matrix K that counts the number of new infected individuals of each of the n types generated by all

infectives of each of the other types. If we are interested in the spread of the epidemic when infection

arises in the native population (i.e., no exogeneous infectives are introduced), the next-generation

matrix is given by

{K}ij = σj

∫ ∞

0

λij(τ)dτ = γij

and thus K = Γ. Returning to Theorem 6.2.1, we see that the criteria for local asymptotic stability

and the existence of an endemic equilibrium coincide for this class of models.

These results are derived for any type of heterogeneity, and can be interpreted as spatial results

when applied to the case in which each “type” corresponds to a different node in a network (as was

discussed in Chapter 3).

Barthélemy et al., 2004

In a second example, Barthélemy et al. work with an SI model operating on a network and write

the following set of differential equations for the infection density at time t for nodes of degree k,

assuming that the degrees of adjacent nodes are uncorrelated:

dik
dt

(t) = λk[1− ik(t)]θ(t)

where θ(t) is the density of infected neighbors [111]. They linearize this system, then obtain an

expression for the time constant τ that governs the initial exponential growth of the total number of

infected nodes; this τ is proportional to 〈k〉/〈k2〉 where 〈·〉 denotes the average value. Additionally,

for a given initial condition and pair of degrees k > k′, there exists a time t∗ such that the number

of susceptible nodes of degree k is less than the number of susceptible nodes of degree k′ for t > t∗;

the authors interpret this statement as a prediction that the nodes with the highest degree will be

the first infected.

To confirm their analytical results, Barthélemy et al. conduct simulations to confirm this “hier-

archical” spread on Barabási-Albert (BA) preferential attachment graphs in which each new node

connects to m existing nodes.2 These results are presented in Figure 6.1, which depicts two statis-

tics. The first is the average degree of newly infected nodes as a function of time. The second is a

measure called the inverse participation ratio, Y2(t), which measures the heterogeneity of the degrees

of infected nodes and is defined by

Y2(t) =
∑

k

(
ik(t)

i(t)

)2

2This is a natural generalization of the preferential attachment mechanism described in Section 4.2.2.
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where i(t) =
∑

k ik(t). If the infection is concentrated on a single degree class, then Y2 achieves its

maximum value of 1; Y2 decreases as infectives are spread more uniformly among the degree classes.

Figure 6.1. Figure 2 from [111]. The caption reads “(a) Time behavior of the average degree
of the newly infected nodes for SI outbreaks in BA networks of size N = 104. Time is rescaled
by τ . Reference lines are drawn at the asymptotic values 〈k2〉/〈k〉 for t << τ and m for t >> τ .
The two curves are for m = 4 (bottom) and m = 14 (top). (b) Inverse participation ratio Y2

versus time for BA network of size N = 104 with minimum degree m = 4, 6, 8, 10, 12, 14 and
20, from top to bottom. Time is rescaled with τ . The reference line indicates the minimum of
Y2 around t/τ ≈ 6.5.”

In Figure 6.1(a), we certainly see evidence of a progression of infection from high- to low-degree

nodes, but the patterns of outbreak are unclear and certainly depend on the particular structure of

BA graphs. For other networks with a power-law degree distribution not generated by the preferential

attachment mechanism, will the shape of this curve be different? This question is even more relevant

in interpreting the results of Figure 6.1(b); the preferential attachment mechanism necessarily puts

the low-degree nodes at the “fringes” of the network, whereas a network of individuals organized

into communities, linked by long-distance connections, might not have the same strictly degree-

hierarchical spread.

Canright and Engø-Munson, 2006

In a final example, Canright and Engø-Munson examine a discrete-time SI model in which sus-

ceptible nodes are infected by each of their infected neighbors independently at each time step with

probability p = 0.05 [112]. They begin by presenting a heuristic argument for why the centrality of

a node (as measured by the entries of the dominant eigenvector of the network’s adjacency matrix)

should be relevant to epidemic spread. They argue that a network can be uniquely decomposed

into regions by considering the centrality scores as “heights” above the plane of the network, and

grouping nodes by identifying the “peak” to which a steepest-ascent algorithm converges (when

constrained to move along the edges of the graph). All nodes whose steepest paths converge to the

same “peak” are identified as a region.

Additionally, they argue that each of these regions introduces its own S-shaped curve into a plot

of the total number of infected nodes v. time; infection enters a region via a node of low centrality, at

105



which point the rate of infection begins to accelerate until a “peak” node is reached. The infection

then slows down as it spread through the remaining (lower centrality) nodes in the region. The

authors acknowledge that a first approximation to a node’s centrality is its degree; their hypothesis,

then, refines the observations of Barthélemy et al. in [111].

To test their hypothesis, Canright and Engø-Munson performed simulations on several real net-

works (snapshots of the Gnutella network, a student social network, and two collaboration networks)

and discussed “typical” results (number of infected nodes v. time and average centrality of newly

infected nodes v. time). Figure 6.2 presents their results on a collaboration graph of the researchers

at the Santa Fe Institute, a graph in which three regions were identified. The three lower curves in

(a) represent the number of infected individuals in each of the three regions, and the circles repre-

sent the infection times of the “peak” node in each region; in (b), µ(EV C) is the mean eigenvector

centrality of all infected nodes. The authors conclude by discussing several mathematical models

whose predictions reduce to the centrality measure under enough simplifying approximations.

Figure 6.2. Figure 6 from [112].

This argument certainly has intuitive appeal. Returning to the Rass and Radcliffe model de-

scribed at the beginning of this section, consider the case of ρ(K) = 1 + ǫ for some small ǫ > 0.

Then the steady-state vector of affected individuals will be small, so one might reasonably invoke

106



Theorem 6.2.1 to approximate v as

Γv = −log(1− v) ≈ v,

which implies that v is close to the dominant eigenvector of Γ = K. This, however, is not the

argument of Canright and Enø-Munson, and not all of the simulations in [112] demonstrate the

straightforward relationship between eigenvector centrality and the S-curves as those depicted in

Figure 6.2. Part of Canright and Engø-Munson’s explanation for why the eigenvector centrality may

not work well is that it implicitly allows a node to influence itself via closed walks from the node

back to itself. If one seeks to quantify the ability of a node i to infect another node j by counting

and weighting the numbers of routes between them, one would not want to include any routes from

i to j that have an intermediate stop at j; in graph theory terms, one would rather count only paths,

not all walks.

6.3 Stochastic models

We explore in this section some of the literature on stochastic spatial infection spread, addressing

three of the major approaches which can be interpreted as SI, SIR and SIS models, respectively. Much

of this work originated in the statistical physics community, and its main results concern asymptotic

behavior in both time and the size of the systems under study. It is perhaps not surprising, then, that

this work (though treating processes highly akin to infection spread) has yet to be fully integrated

into the practical mathematical epidemiology toolbox. Some of the more recent results, however,

have made analytical predictions on finite networks; we’ll see several such examples. Throughout

this section, let In denote the set of infected nodes at time n in discrete-time (respectively I(t) for

continuous-time). If A is the set of infected nodes at time 0, we shall denote the subsequent number

of infectives at time n by IA
n (respectively, IA(t)). Additionally, denote the set of neighbors of node

xi by N (xi).

6.3.1 SI

The first stochastic model we’ll consider is the SI discrete-time Markov model known as Richardson’s

model, in which each infected neighbor of a susceptible node xi successfully infects xi with probability

p, independently of all other neighbors [113]. Thus, state transitions occur according to

Pr(xi ∈ In+1|xi ∈ In) = 1

Pr(xi /∈ In+1|xi /∈ In) = (1− p)|N (xi)∩In|,
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where |B| denotes the cardinality of set B. Given enough time, every site in the network will become

infected with probability 1; is it possible to characterize the likely patterns of spread? The spatial

evolution of Richardson’s model on the d-dimensional lattice Z
d has been studied, and in particular,

the following “shape theorem” has been established. Let 0 denote the node at the origin of the

lattice.

Theorem 6.3.1. Theorem 1 of [113]. There is a convex set D such that for any ǫ > 0

n(1− ǫ)D ∩ Z
d ⊂ I{0}n ⊂ n(1 + ǫ)D

for all n sufficiently large.

Theorem 6.3.1 demonstrates that the asymptotic growth rate of the radius of the infected cluster

on the lattice is linear. Additionally, Durrett has demonstrated that for values of p above a certain

threshold pc, the convex set D has “flat edges” in the sense that the intersection of the boundary

of I
{0}
n with the line {x|x1 + x2 = n} is a non-empty interval; see [114] for details.3 Some variants

of Richardson’s model, as well as variants of the SIR and SIS models discussed in the following

sections, have also been explored by the pattern recognition community; for an example, see the

work of Thompson and Rosenfeld [117]. A continuous-time version of Richardson’s model, in which

directed edges are “activated” at exponentially-distributed times (with mean 1), has been studied

by Fill et al. for the hypercube [118]. Starting with the single infected vertex 0, the following upper

and lower bounds hold for the time until the entire hypercube is infected.

Theorem 6.3.2. Corollary 6.3 and Theorem 6.4 of [118]. Consider the hypercube on n = 2m nodes,
and let the infection time along any directed edge be independently realized from an exponential
distribution with mean 1. Denote the vertex set by Vm. For any ǫ > 0,

Pr
(
I{0}

(
4 ln(4 + 2

√
3) + 6 + ǫ

)
= Vm

)
→ 1

as m→∞. Also, for any ǫ > 0,

Pr
(
I{0}

(
ln(2 +

√
5)/2 + ln 2− ǫ

)
= Vm

)
→ 0

as m→∞.

6.3.2 SIR

Next, consider a simple continuous-time Markov process model for an SIR infection. The instanta-

neous rate of transition for a susceptible node xi to the infected state is given by λ|I(t) ∩ N (xi)|;
once xi is infected, it spends a random amount of time (realized independently per the distribution

F ) in the infected state before permanently transitioning to a recovered state, at which point it no

longer participates in infection propagation.

3Richardson’s model has also been used to study the spatial dynamics of competition between two exclusive
species. In this case, a node is either empty or occupied by one of the two species, each of which has its own infection
probability. For results of this model, see the work of Deijfen et al., [115] and [116].
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What kinds of questions have typically been asked about this process? Most work has built upon

the connection to a classical model in statistical physics, bond percolation, in which each edge in a

network is independently “open” with probability p or “closed” with probability 1− p. One is then

interested in the characteristics of the subgraphs induced by the open edges, e.g., in the induced

graph, how large is the component containing a given node? What is the probability of an open

path existing between two given nodes, or a given node and set of nodes?

To take advantage of bond percolation theory in analyzing the SIR model, we can construct a

unique mapping between the steady-state behavior of the infection process and the bond percolation

formulation. Consider an equivalent characterization of the process: each infected node emits a

“germ” at rate λ to each of its neighbors. In order for another node to be infected along a given

edge, a germ must be transmitted along that edge before the infected node recovers (and ceases to

emit germs). For any t, the probability that a germ is transmitted within t time units is simply

1− e−λt. Then each edge in the network will successfully transmit infection (given the opportunity)

independently with probability

p =

∫ ∞

0

(1− e−λt)F (t)dt.

Thus, the steady-state behavior of the infection process can be analyzed by looking at the equivalent

bond percolation model with probability p.

Most analytical results on bond percolation focus on graphs with an infinite number of nodes

and with p close to a critical probability pc; when p > pc, there exists an infinitely large connected

component of the graph induced by the “open” edges.4 In the infection process, we might define pc

(equivalently, λc) as

pc = inf
{
p | Pr(|I{0}(∞)| =∞) > 0

}
.

On the infinite 2-D lattice, pc = 1/2, and for this case, Cox and Durrett used the bond percolation

equivalence to develop the following shape theorem for the continuous-time model.

Theorem 6.3.3. Theorem 1 of [119]. Assume that the second moment of the distribution of F is
finite and that λ > λc where λc is a critical rate derived from pc. Let I{0}(∞) denote the set of

sites that will ever become infected when only the origin is initially infected, R
{0}
t denote the set of

recovered sites at time t, and I
{0}
t denote the set of infected sites at time t. Then there is a convex

set D such that for any ǫ > 0,

Pr
(
I{0}(∞) ∩ t(1− ǫ)D ⊂ R{0}

t ⊂ t(1 + ǫ)D
)

= 1

and
Pr
(
I
{0}
t ⊂ t(1 + ǫ)D − t(1− ǫ)D

)
= 1

for all sufficiently large t.

4The exact definition of pc depends upon the phenomenon of interest, and is also defined differently when finite
graphs are considered.
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This theorem tells us that the diameter of the set of recovered individuals grows from the origin

linearly in time, and that the “front” of active infection is a convex curve that follows the boundary

of the convex set D (the set difference t(1+ ǫ)D− t(1− ǫ)D). In another example, Braga et al. have

studied bond percolation on the infinite homogeneous tree, Td; they find that pc = 1/d [120]. Fill

and Pemantle present the following result of the probability of directed percolation on the hypercube.

Theorem 6.3.4. Theorem 3.2 of [118]. Let each directed edge of the hypercube on n = 2m nodes be
independently open with probability p = c/m. Then Pr(0 is connected to 1 by an oriented open path )
converges to a limit as m→∞. The limit is 0 if c < e and is (1− x(c))2 if c ≥ e, where x(c) is the
solution in (0, 1) to x = ec(x−1).

There are fewer results on finite deterministic graphs, like subsets of Z
d. Sander et al. begin with

a similar model in discrete-time; the infection probability between every pair of nodes is drawn inde-

pendently and identically from an arbitrary distribution, and recovery occurs after a fixed interval

[121]; this model can also be mapped to simple bond percolation, and the authors perform simula-

tions to determine under what conditions an “epidemic” will occur, defined as reaching the edge of

the 200 × 200 lattice with an initial infective at the origin. They also explore a different statistic;

the length of the path that the infection took to each ultimately-infected node. The idea behind

tracking this quantity is that it can be readily compared to the phylogenetic distance between two

infectious microbes. Assuming that there is a correlation between the number of genetic mutations

an infection has undergone and the number of hosts through which it has passed, one can extract

information about the patterns of transmission from a biological analysis of active strains. Some

simulation results from [121] are given in Figure 6.3, with the distribution of infection probabilities

X given by

fX(x) =
1

15x
, e−15 ≤ x ≤ 1.

Borgs et al. take an analytical approach to percolation on a finite window of the 2-D lattice Z
2,

and explore how the size of the largest component in the graph induced by the open edges within

that window scales with the size of the window as a function of the edge probability [122]. Let WN

be the size of the largest connected component in the induced graph in a window of Z
2 centered at

the origin with side length N . Then with probability one,

WN ≍





logN p < pc

N2−(1/ρ) p = pc

N2 p > pc

where f(p) ≍ g(p) means that there exist positive constants c1 and c2 such that c1g(N) ≤ f(N) ≤
c2g(N), and where ρ is a constant. Moreover, there exists a range of p around pc such that within

this range, all of the clusters scale as N2−1/ρ; above this range, there is one dominant cluster.
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Figure 6.3. Figure 4 from [121]. The critical threshold was varied by adjusting τ , the fixed
infectious period. The caption reads “The frequency of occurrence of path distances from a
recovered site through its infectors back to the origin averaged over 1000 simulations on a
200 × 200 lattice. Note that the overall number of paths is larger well above threshold; near
threshold there are many bottlenecks in the spread of the epidemic.”
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Interestingly, there is a substantial body of literature on percolation on finite random graphs;

here, tractability increases from the deterministic case when the probabilistic nature of the existence

of an edge can be coupled into questions regarding the openness of that edge. For graphs whose

node degrees are drawn independently from an arbitrary degree distribution, Callaway et al. develop

expressions for the generating function associated with the distribution of cluster sizes under bond

percolation [123], using the generating function methodology described by Newman, Strogatz and

Watts in [124]. A quick sketch of this approach is useful. Assume that a graph is generated

by choosing node degrees independently from an arbitrary distribution; once all nodes have been

assigned degrees, one of the networks consistent with this degree distribution is chosen uniformly

at random.5 If pk is the probability that a node has degree k, then one can define the moment-

generating function of this distribution as

G0(x) =
∑

k

pkx
k.

Now, let us consider a bond percolation model on this random graph. If an edge is open with

probability T , then the moment-generating function G0(x;T ) for the number of open edges attached

to a vertex is given by

G0(x;T ) = G0(1 + (x− 1)T ).

Similarly, one can build moment-generating functions for other quantities, like the distribution of

cluster sizes. These functions must satisfy certain self-consistency properties, and numerical methods

can be used to solve for quantities like the mean cluster size. Newman extends these results to more

general infection processes in [126]. Kalisky and Cohen also use generating function methods to

examine the form of the survivability function, S(p, l), the probability that, under a bond percolation

model with probability p and starting from a randomly-chosen node in a cluster, there exists at least

one node at distance l in that same cluster [127]. Around the critical probability p = pc, they find

that this probability is exponential in l.

In [128], Ferrari et al. apply simulations and the generating function approach of Newman et al.

to a discrete-time stochastic SIR model to explore how removal of nodes via immunity influences

the susceptibility of a network to future epidemics. At each time step, a susceptible node xi is

infected with probability 1−e−λ|I∩N (xi)|, and an infected node recovers with probability γ; in [128],

the authors use fixed values of λ = 0.05 and γ = 0.1.6 Three types of networks are simulated: a

Watts-Strogatz small-world network7, a BA network (also called a “scale-free” network), and an

5This construction is often called the “configuration model”; see [125].
6The authors report varying λ from 0.01 to 0.05 without a qualitative difference in their results, but do not address

the critical behavior that might arise from the interaction of β, γ and the network topology.
7A Watts-Strogatz network on n nodes begins with a ring graph on n nodes, with edges connecting each node to

d of its nearest neighbors. Edges are then rewired uniformly at random with some probability. This yields a graph
with high local clustering and short path lengths between any two randomly chosen nodes: see [129].
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ER network (defined in Section 5.1), each of which had 1000 nodes and a mean degree of 10. For

each type of network, an infection is seeded and allowed to spread, then the removed individuals

are subtracted from the network (to form a residual network) and new degrees are calculated for

each node. Comparing the original and new degrees allows the authors to compare the impact of

immunity from two different possible mechanisms: as a consequence of previous infection and as a

consequence of random vaccination programs. They define two measures, frailty φ and interference

θ as follows:

φ =
〈k〉 − 〈k〉r
〈k〉

θ =
〈k〉r − 〈kr〉r
〈k〉

where 〈k〉 is the mean original degree, 〈k〉r is the mean original degree of nodes which remain in

the residual network, and 〈kr〉r is the mean residual degree. Frailty, then, measures the preferential

immunity that an epidemic might give to nodes of different degree, while interference measures how

the removal of immunized nodes changes the distribution. An example of these results is given in

Figure 6.4.

Figure 6.4. Figure 2 from [128]. The caption reads “Mean original degree and mean residual
degree (scaled to 〈k〉 = 1) of the active epidemic network (susceptible and infectious nodes) for
100 simulated network epidemics and analytical predictions for (a) small-world, (b) Poisson
and (c) scale-free networks of 1000 nodes. Each epidemic was simulated on a separate network
with β = 0.05. The dashed curve gives the mean original degree of nodes across all the networks
and the solid curve gives the mean residual degree across time. Points indicate the simulated
trajectories. The solid diamond indicates the predicted final mean original degree, 〈k〉r, and
the solid circle indicates the predicted mean residual degree, 〈kr〉r. The solid vertical bar
indicates the predicted frailty and the dashed bar indicates the predicted interference.”
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In this figure, it is striking how the analytical predictions for the small-world network diverge from

the simulation results. This, however, is to be expected; the generating function methodology allows

one to assume an arbitrary degree distribution, but assumes that node connections are uncorrelated.

This kind of assumption destroys the local clustering that is critical to the structure of a small-world

network, and also explains why these approaches are inappropriate for similarly-clustered graphs like

Z
2.

To remedy this gap, Serrano and Boguna have developed a generating function methodology

for dealing with random graphs with degree correlations and clustering (the tendency of the neigh-

borhoods of two connected nodes to overlap) [130] [131]. To do this, the authors define a set of

probability densities g(s|k), which denotes the probability that a vertex can reach s other vertices

given that it is connected to a vertex v of degree k and that it cannot visit either v or the neighbor-

hood of v. By looking at solutions for the generating function of this distribution

ĝ(z|k) =
∑

s

zsg(s|k)

given the constraints that it must satisfy, Serrano and Boguna find that the expected number of

reachable nodes diverges for every k (i.e., a giant component forms) when the largest eigenvalue of

the following matrix is greater than 1:

(k′ − 1−mkk′)P (k′|k)

where

⊲ mkk′ is the average number of triangles in which an edge connecting nodes of degree k and k′

participates, and

⊲ P (k′|k) is the probability that an edge with one end at a degree k node has its other end at a

degree k′ node.

6.4 The contact process

A third class of probabilistic model that has received a great deal of attention is the continuous-time

contact process, appropriate for SIS infections. In this model, a susceptible node xi becomes infected

at rate λ|It ∩N (xi)| (just as in the previous section). However, once infected, a node returns to the

susceptible state at rate 1 and can be infected again [113]. Like the SI and SIR models discussed in

previous sections, most research on the contact process aims to identify important values of λ that

separate different regimes of behavior for networks with an infinite number of nodes. In particular,

two interesting thresholds on λ are often studied. The first is the lower critical value (also called the
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global survival critical value), λ1, defined as the smallest value of λ such that the infection survives

indefinitely with positive probability. The upper critical value λ2 is the smallest value of λ such

that an arbitrary node will be infected infinitely often with positive probability; when λ > λ2, the

infection is said to survive strongly. In [132], Liggett demonstrates that in Z
d, λ1(d) = λ2(d) = λc(d).

The value of λc(d) is bounded by
1

2d− 1
≤ λc(d) ≤

2

d
,

and for some choices of d, more exact bounds are known [133]. Durrett has also proven a shape

theorem for the contact process in Z
d, analogous to those for the SI and SIR processes, which

demonstrates that, among other results, the infection front grows linearly from an initial infective

at the origin and that it is contained in a convex set: see [134].

On the infinite homogeneous tree Td, λ1(d) is strictly less than λ2(d); these values are bounded

as follows [132]:
1

d+ 1
≤ λ1(d) ≤

1

d− 1
,

2−
√

2 ≤ lim inf
d→∞

√
dλ2(d) ≤ lim sup

d→∞

√
dλ2(d) ≤ 1.

6.4.1 Finite graphs

For finite graphs, the all-susceptible state is the unique absorbing state of the contact process, and

will be reached eventually with probability 1. However, the results on finite and infinite graphs are

not unrelated. For example, the same λc(d) that determines different regimes of behavior in Z
d also

has relevance for finite d-dimensional “windows” of Z
d in terms of how the time to extinction, a

random variable denoted by τN , scales with the window side length N .8 In particular, the process

is called subcritical when λ < λc(d), because in this range

τN
logN

→ d

γ−(λ)
(6.1)

in probability as N → ∞, where γ−(λ) is a positive, decreasing function with γ−(0) = 1 and the

initial condition is the all-infected state.9 By contrast, when the process is supercritical, λ > λc(d),

log(τN )

Nd
→ γ+(λ)

8This is simply a generalization of the square windows of Z
2 discussed earlier in the chapter.

9For the special case of λ = 0, in which no new infections arise, we can observe this result directly. Suppose that
a fraction α of the Nd nodes in the window are initially infected. Then τN can be written as

τN = X0→1 + X1→2 + · · · + XαNd
−1→αNd

where Xi→j is the random variable that represents the time elapsed between the ith recovered node and the jth
recovered node. Because each of the nodes is recovering independently at rate 1, the random variable Xi→j will be
exponentially distributed with parameter λi→j = αNd − i (the number of nodes that are still infected after i have
recovered). Moreover, the memorylessness of the recovery process implies that the Xi→j form a mutually independent
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in probability as N →∞, where γ+(λ) is positive and decreasing [132].

For finite regular trees of depth h, Stacey has demonstrated the following results for τ0
h , the time

until extinction given a single inital infective at the root:

Theorem 6.4.1. Proposition 1.2, Theorem 1.3 and Theorem 1.4 of [137]. Consider a finite regular

tree with degree d whose depth from the root is h. Let λ1(d) and λ2(d) be the critical values for the

infinite homogeneous tree Td. Then

1. when λ < λ1(d), there exists a γ such that for any h,

Pr(τ0
h > t) ≤ e−γt; (6.2)

2. when λ1(d) < λ < λ2(d), there exists a function r(h, d) > 0 such that for s < r(h, d),

lim inf
h→∞

Pr(τ0
h > sh) > 0

and for s > r(h, d)

lim
h→∞

Pr(τ0
h > sh) = 0;

3. when λ2(d) < λ, and for ℵ < 1, there exist c, ǫ > 0, Υ > 1 such that for any h

Pr
(
τ0
h ≥ cΥ(dℵ)h

)
≥ ǫ.

set. We can compute the expectation and variance of τN to be

E[τN ] = E[X0→1] + E[X1→2] + · · · + E[XαNd
−1→αNd ]

=
1

αNd
+

1

αNd − 1
+ · · ·

1

1

=
αNd∑

i=1

1

i

var(τN ) = var(X0→1) + var(X1→2) + · · · + var(XαNd
−1→αNd )

=
1

(αNd)2
+

1

(αNd − 1)2
+ · · ·

1

(1)2

=

αNd∑

i=1

1

i2
.

As N → ∞, the variance summation converges to π2/6 (a fact demonstrated by Euler in 1736 [135]). The expectation
summation does not converge, but approaches a function of N ,

E[τN ] = log(αNd) + γ = d log(N) + log(α) + γ,

where γ is the Euler-Mascheroni constant, roughly 0.577 [136]. If we consider the scaled random variable τN/ log(N),
then as N → ∞,

E

[
τN

log(N)

]
→ d

var

(
τN

log(N)

)
→ 0

and the relationship of Eq. 6.1 holds.
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One of the consequences of Eq. 6.2 is that the cumulative density function (CDF) of the extinction

time τ0
h is lower bounded by the CDF of an exponential random variable with parameter γ:

Pr(τ0
h < t) = 1− Pr(τ0

h > t) ≥ 1− e−γt.

Thus, E[τ0
h ] is upper bounded by 1/γ, a fixed value independent of h and d. This implies that when

λ < λ1(d), the expected extinction time from a single initial infective cannot grow without bound as

n→∞; this is distinctly different from the time to extinction for finite windows of Z
d, which grows

as log(n). However, when λ < λ2(d), starting from the all-infected state leads to linear growth of

the extinction time as n→∞; see [137] for the details of this result.

There is one topology that is amenable to direct analysis: the complete graph. Since every pair

of nodes is joined by an edge, the infection rates for all nodes are the same, and are proportional to

the number of infected nodes. Analytically, one can write:





P (In(t+ dt) = i+ 1|In(t) = i) = λi(n− i)dt+ o(dt)

P (In(t+ dt) = i− 1|In(t) = i) = idt+ o(dt)
(6.3)

where In(t) denotes the total number of infected individuals at time t. The model of System 6.3 is

referred to the stochastic logistic epidemic, and has been studied by many researchers; in particular,

Anderson and Djehiche present results on the asymptotic distribution of τn:

Theorem 6.4.2. From Theorem 1 of [138]. The time to extinction τn has the following asymptotic
properties:

1. If nλ < 1 and a nonzero fraction ā of the population is initially infected, then the following
convergence in distribution occurs:

(1− nλ(1− ā))τn − log n− log ā− log(1− nλ(1− ā))→W

where W has the extreme value distribution

P (W ≤ w) = exp{−e−w}.

2. If nλ > 1 and a nonzero fraction ā of the population is initially infected, then τn/E[τn] → Z
in distribution, where Z is exponentially distributed with parameter 1 and

E[τn] ≍
√

2π

n

nλ

(nλ− 1)2
enV

where V = log(nλ)− 1 + 1/(nλ).

The expected value of the random variable W in Thm. 6.4.2 is γ, the Euler-Mascheroni constant.

Thus, when nλ > 1, E[τn] grows exponentially as n → ∞; when nλ < 1, E[τn] has the following

behavior, which is O(log n):

E[τn]→ γ + log n+ log ā+ log(1− nλ(1− ā))
(1− nλ(1− ā)) .
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6.5 Arbitrary topologies

In [25], Ganesh et al. look at the contact process on a finite graph with arbitrary topology (repre-

sented by the undirected adjacency matrix A) and explore the behavior of E[τ ]; in particular, they

seek conditions under which E[τ ] grows as the logarithm of n versus exponentially in n (as seen on

either side of λc for windows of Z
d). Stacey’s results and others tell us that these two regimes are

not collectively exhaustive, so we should not expect to find a single threshold dividing the regimes

for an arbitrary topology. Ganesh et al. achieve the following sufficient conditions.

Theorem 6.5.1. Theorem 3.1 of [25]. If λ < 1/ρ(A), then

E[τ ] ≤ log(n) + 1

1− λρ(A)
.

Theorem 6.5.2. Corollary 4.1 of [25]. Define η(G,m), the generalized isoperimetric constant10 of
the graph G, as

η(G,m) = inf
S⊂{1,...,n},|S|≤m

E(S, S)

|S| , 0 < m < ⌊n/2⌋,

where E(S, S) counts the number of edges connecting vertices in set S to vertices in S. Define

r(G,m) =
1

λη(G,m)
.

For a sequence of graphs Gn indexed by n, suppose there exists an a > 0 and a sequence mn = Θ(na)
such that r(Gn,mn) < 1 uniformly in n. Then log(E[τ ]) = Ω(na).11

In short, Ganesh et al. observe fast die-off when λ < 1/ρ(A) (i.e., E[τ ] = O(log(n))) and slow

die-off when λ > 1/η(G,m) (i.e., log(E[τ ]) = Ω(na)). Observe that Theorem 6.5.2 gives a bound on

the rate of growth of E[τ ] as a function of n that is related to the rate of growth of λ as a function

of n. In general, the two threshold values in these theorems do not coincide. However, Ganesh et al.

consider several special topologies and improve the conditions from Theorems 6.5.1 and 6.5.2; for

example, the gap between the two regimes is “closed” for the hypercube and the complete graph.

As an additional example, let us apply Theorems 6.5.1 and 6.5.2 to one particular topology: the

torus on n nodes. All nodes in this graph have the same degree, 4, so ρ(A) = 4 and Theorem 6.5.1

tells us that the extinction time will grow as O(log n) for λ < 1/4. To determine a sufficient condition

for slow die-off via Theorem 6.5.2, we must determine the generalized isoperimetric constant. For

any subset S of nodes with cardinality |S|, the smallest value of E(S, S) that can be obtained occurs

when the |S| nodes are arranged in the closest approximation to an
√
|S| ×

√
|S| square. In this

10When m = ⌊n/2⌋, this quantity is known as the isoperimetric constant, the edge-isoperimetric constant, Cheeger’s
constant or the edge expansion of G.

11We will use the following order notation conventions throughout this chapter, where g(n) is a positive function:

⊲ f(n) = O(g(n)) if there exist c, N > 0 such that f(n) ≤ cg(n) for all n > N .

⊲ f(n) = Θ(g(n)) if there exist c, d, N > 0 such that cg(n) ≤ f(n) ≤ dg(n) for all n > N .

⊲ f(n) = Ω(g(n)) if there exist c, N > 0 such that f(n) ≥ cg(n) for all n > N .
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case, the number of edges between nodes in S and nodes in S is 4
√
|S|, which yields

E(S, S)

|S| =
4
√
|S|
|S| =

4√
|S|

.

This quantity is minimized when |S| is chosen to be as large as possible; thus, for any m, η(G,m) ≈
4/
√
m. In order to apply Theorem 6.5.2, we must be able to construct a sequence mn such that

r(mn) < 1 for all n. If mn = Θ(na) for a ∈ (0, 1), then there exists a constant c and a positive

integer N such that mn > cna for all n > N . This implies that for n > N ,

1 > r(mn) =
1

λη(G,mn)
=

√
mn

4λ
>

√
cna

4λ
=

√
c

4λ
na/2.

For this condition to be satisfied, λ must grow faster than na/2; if this occurs, then log(E[τ ]) will

be Ω(na).

6.5.1 Simulating the contact process

To begin to get a handle on this behavior, we began by verifying Theorems 6.5.1 and 6.5.2 empirically

for four topologies: the star, the hypercube, the complete graph and the torus. The first three of

these topologies are treated in detail in [25]. Table 6.1 summarizes the critical ranges of λ for these

topologies on n nodes. Observe the agreement of the threshold for the complete graph (in the large

n limit) with the results of Andersson and Djehiche in Theorem 6.4.2.

Table 6.1. Extinction regimes for the contact process on n-node graphs, [25].

topology E[τ ] = O(log n) log(E[τ ]) = Θ(na)

star λ < C√
n
, C > 0 λ > na−1/2, a ∈ (0, 1)

hypercube λ < 1
log2(n) λ > 1

(1−a) log2(n) , a ∈ (0, 1)

complete graph λ < 1
n−1 λ > 1

n−na , a ∈ (0, 1)

torus λ < 1
4 λ > 1

4n
a/2, a ∈ (0, 1)

Figures 6.5 and 6.6 depict the time to extinction for these topologies for various values of n for

both λ below and above the thresholds listed in Table 6.1. The values of λ used in each of these

simulations is given in Table 6.2, as is the number of trials over which sample means and standard

deviations were computed. The number of trials conducted above threshold is often smaller than

the number conducted below threshold because of the simulation time required. Each node in each

network was initially infected with probability 1/4; for the star, the center node was always initially

infected.
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Table 6.2. Values of λ used in simulations of Section 6.5.1. The number of trials for each
simulation is given in parentheses.

topology below threshold above threshold

star 1
2

1√
n

(500) n−1/4 (500)

hypercube 1
2

1
log2(n) (500) 3

2
1

log2(n) (300)

complete graph 1
2

1
n−1 (500) λ > 1

0.7n (300)

torus λ < 1
5 (500) 1

4n
1/8 (300)
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Figure 6.5. Mean and standard deviation of the time to extinction for the star and the
hypercube. Each node in each network was initially infected with probability 1/4. The range
of number of nodes considered is smaller for λ > λc because of the amount of simulation time
required.
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Figure 6.6. Mean and standard deviation of the time to extinction for the complete graph
and the torus. Each node in each network was initially infected with probability 1/4. The
range of number of nodes considered is smaller for λ > λc because of the amount of simulation
time required.
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Indeed, we see the behavior predicted by Theorems 6.5.1 and 6.5.2. The “log(n)” curves result

from a least-squares fit of the data to a function c1 log(n). The “exponential” curves correspond to

a least-squares fit to c1 exp(c2x
a) where a represents the growth rate of λ as a function of n: see

Table 6.2. For the complete graph, we’ve fitted the data to the curves predicted by Andersson and

Djehiche in Theorem 6.4.2, but note that the growth rates predicted by the theorem are asymptotic

for large n.

We can also look at the mean number of transitions, i.e., changes in state, as a function of n; these

are depicted in Figures 6.7 and 6.8. It is interesting to note that in the regime below threshold, the

number of transitions to extinction appears to grow linearly with n, with a slope not much less than

1. This suggests that nodes are not becoming infected repeatedly before extinction, an observation

we’ll make again in Section 6.5.3.

6.5.2 Extinction time distributions

What change in distribution of the extinction time underlies this change in expected value? Figure

6.9 presents histograms of the time to extinction for the star topology, below and above the threshold.

The shapes of these distributions are very evocative of those described in Thm. 6.4.2 (exponential

and extreme-value shapes), even though the star and complete graph topologies are quite different!

To test this observation, each histogram was fitted to the appropriate distribution, using maximum-

likelihood methods to estimate the parameters. The resulting fit was then evaluated using a χ2

goodness-of-fit test with significance level α = 0.05. The results are given in Figures 6.10 and 6.11,

with the resulting p-values indicated, as well as whether or not p > α.

Interestingly, the torus is the only topology that fails the goodness-of-fit tests, below and above

threshold. What makes the torus different from the other topologies? Observe that the torus is the

only topology whose maximum degree does not grow with the size of the graph. Additionally, the

maximum possible path length on the torus with n nodes is
√
n/2; in the hypercube on n nodes (the

only other topology in which this length increases as the number of nodes increases), the maximum

path length is log2(n), a much slower rate of growth. This is one possible explanation for the longer

extinction times on the hypercube; the rate of spread is limited by local clustering and thus the peak

of infection is delayed.

6.5.3 Analyzing cluster sizes

The histograms of extinction time in Section 6.5.2 give us some physical feeling for the two regimes of

behavior, but focusing on extinction time alone provides a very narrow window into the underlying

phenomena. Our interest in spatial behavior suggests that we extend our investigation to the patterns

traced as an infection “cluster” progresses through the network. In epidemiology, a cluster is often

loosely defined as a set of epidemiological events that are related to each other, typically a group
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Figure 6.7. Mean and standard deviation of the number of transitions until extinction for
the star and the hypercube. Each node in each network was initially infected with probability
1/4. The range of number of nodes considered is smaller when log(E[τ ]) = Ω(na) because of
the amount of simulation time required.
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Figure 6.8. Mean and standard deviation of the number of transitions until extinction for
the complete graph and the torus. Each node in each network was initially infected with
probability 1/4. The range of number of nodes considered is smaller when log(E[τ ]) = Ω(na)
because of the amount of simulation time required.
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Figure 6.9. Normalized histogram of times to extinction for the contact process on the star.

of new infections that can be traced to a single source. For our purposes, we’ll define an infection

cluster to be a connected set of simultaneously infected nodes.

To investigate the distribution of these clusters as the infection progresses, the following analysis

was performed on the simulations discussed in the previous sections. At each instant of time, we

measured the number and size of the connected components comprising the subgraph induced by

only the infected nodes. This gives us a histogram at each moment of time of the size of the infected

clusters; for each of these histograms, the mean number of clusters, the maximum cluster size,

and the total number of infected individuals was recorded. To compare different trials within the

same topology, the time scale of each trial was normalized so that extinction occured at time 1;

we then computed the average and standard deviation of the recorded statistics across all of the

trials. We performed this analysis for each of the four topologies, above and below the extinction

time threshold, for the largest graphs simulated of each type. We have excluded the complete graph

from the results on mean number of clusters and mean cluster size; since all nodes are connected

to all others, these statistics are identical to the total number of infected nodes and 1, respectively.

Clustering results on the star must be interpreted carefully; if the center node is infected, there is

only one cluster, and otherwise, there are as many clusters as there are infected leaves.

Figure 6.12 depicts the mean number of clusters, while Figure 6.13 depicts the mean cluster

size, both versus the normalized time. The results in these figures for the hypercube provide some

intuition for the idea of a “quasi-stationary” state, a level of endemic infection that persists for

an extended time before the infection is ultimately driven from the system. Below threshold, the

system quickly fragments into many smaller infected clusters as nodes recover (the initial increase in

the number of clusters), then these clusters disappear steadily. Above threshold, the initial infected

mass coalesces into a stable pattern, which persists until a rapid transition to extinction. The torus
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Figure 6.10. Normalized cumulative histogram of the time until extinction for the star and
the hypercube.
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Figure 6.11. Normalized cumulative histogram of the time until extinction for the complete
graph and the torus.
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displays a similar quasi-statationary state above threshold. With the star, the number of clusters

increases as extinction approaches because infected leaves are all that remain.

Figures 6.14 and 6.15 depict the total number of infected nodes. These results suggest several

possible analytical threshold tests that might have the same behavior as a test on the extinction

time; for example, one might be able to test for the existence of an inflection point in the mean

number of infectives.

6.6 The binary influence model

We shift our focus to a more general model that can be applied to infection processes. The influence

model, a probabilistic framework proposed and analyzed by Asavathiratham et al. in [139], [140],

which provides both a point of comparison for the contact process and is an interesting and tractable

model in its own right. We’ll introduce the influence model by way of a simple infection scenario

through a weighted, directed network on n nodes.

Assume that each node can either be infected (status ‘1’) or susceptible to infection (status ‘0’).

At each time step, a node j chooses one of its in-neighbors i with probability cij , and copies the

status of node i with probability p, and otherwise retains its current state. The sum of the weights

of incoming edges to a single node is 1, i.e.,
∑

i cij = 1 Note that self-loops in the network allow a

node to be its own influencer, retaining its current state for another time step.

Let si[k] denote the status of node i at time k, and assemble all of these statuses into a single

status vector s[k]; we’ll call the collection of statuses of the sites the state of the network. Define

the matrix C such that {C}ij = cij (so C is column-stochastic). Using slightly different notation

than [139], we can represent the conditional probability of the state at the next time step, given the

current state, as

E[s[k + 1]|s[k]] = pC⊤s[k]

which implies that

E[s[k + 1]] = pC⊤E[s[k]]. (6.4)

Since the entries of s[k] are indicator random variables, E[s[k + 1]] yields the probability that each

node is in status 1. Eq. 6.4 provides a simple linear update for the expected state of the network

and allows us to connect the topology of the network and the dynamics of the influence process.

Throughout these notes, we will consider matrices C⊤ that can be decomposed into the following

form

C⊤ = dI + (1− d)A,

for d ∈ [0, 1] and where A is a row-stochastic matrix with zero diagonal entries. This decomposition

allows us to isolate the effects of a universal self-influence parameter d from the effects of the rest
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Figure 6.12. Mean and standard deviation of the number of infected clusters until extinction
for the star, hypercube and torus.
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Figure 6.13. Mean and standard deviation of the size of infected clusters until extinction for
the star, hypercube and torus.

130



−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

16

18

20
Mean total number of infectives − 70−node star, below threshold

time normalized to extinction

(a)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25
Mean total number of infectives − 70−node star, above threshold

time normalized to extinction

(b)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50

60

70
Mean total number of infectives − 256−node n−cube, below threshold

time normalized to extinction

(c)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25
Mean total number of infectives − 64−node n−cube, above threshold

time normalized to extinction

(d)

Figure 6.14. Mean and standard deviation of the total number of infectives for the star and
the hypercube.
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Figure 6.15. Mean and standard deviation of the total number of infectives for the complete
graph and the torus.
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of the topology, represented by A. (Note that our notation differs slightly from that in [139], for

better comparison to the contact process.)

Eq. 6.4 is a linear propagation rule for the expected value of the statuses of sites in the network,

and is thus amenable to all of the tools of linear dynamical systems theory.

6.6.1 Comparing the influence model and the contact process

Given the analytical intractability of the contact process on an arbitrary network topology, it is

tempting to use the influence model as an approximation to the contact process. What kinds of

parameter regimes and conditions might make this a reasonable comparison? The influence model

evolves in discrete time, and allows all nodes to change their state at each time step, while the contact

process evolves continuously with negligible probability of two transitions occuring simultaneously.

However, one can consider a discrete-time version of the contact process in which the system is

sampled at the transition times; in this sampled contact process, one node changes state per time

step.

Consider the binary influence model on an arbitrary topology, but assume that each node is

equally likely to choose any of its neighbors. If Ij denotes the number of infected neighbors of node

j, then the probability that j is infected at the next time step is given by pIj/mj , where mj is the

degree of node j.

Now, let us consider the contact process from the perspective of a fixed node j. This node

registers arrivals from a Poisson process with rate λ from each of its infected neighbors, so a “germ”

arrives at rate λIj . At the same time, the “antidote” arrives at rate 1. The probability that the

next arrival for node j is infectious material is simply

λIj
λIj + 1

.

This is a rather loose connection, but one might be tempted to say that the influence model and

the contact process may well mimic each other under the condition that these infection probabilities

are equal:
λIj

λIj + 1
= p

Ij
mj

.

If λIj ≪ 1, then this condition becomes

λIj ≈ p
Ij
mj

=⇒ p ≈ λmj . (6.5)

If all nodes in the network have the same degree kj = m, then ρ(A) = m and this condition

requires that

p < 1 =⇒ λ <
1

m
=

1

ρ(A)
,
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the condition required to apply Theorem 6.5.1. This suggests that the influence model might have

some relevance in describing the dynamics of the contact process in the subcritical regime. To

explore this, we’ll look at the relaxation behavior of the total number of infected individuals in the

contact process and influence model, starting from the all-infected state.12 Results are given for the

hypercube in Figure 6.16 and the torus in Figure 6.17, for different values of p. In these figures, the

time axes are normalized so that extinction occurs at time 1; for the discrete-time influence model,

a linear interpolation of the number of infected individuals was performed on each trial before the

results were averaged. For both the hypercube and the torus, the results are slightly counterintuitive,

at least in light of the loose argument that led to the approximation of Eq. 6.5; in Figures 6.16 and

6.17, we see that the mean and standard deviation of the total number of infected individuals in the

influence model matches most closely (and rather well) for intermediate values of p, p ≈ 0.5, rather

than small values.

6.6.2 Some future explorations of spatiotemporal patterns

The ideas discussed in this chapter are only an introduction to the array of interesting questions

regarding spatial patterns of infection spread. In particular, the connection between the influence

model and other probabilistic infection processes is worth careful consideration; leveraging the in-

fluence model’s tractability might yield very valuable approximations of important quantities in the

contact process and others. Here, we shall discuss one of these connections.

Given our interest in spatial patterns and our previous discussion of clustering, it would be useful

to be able to track the node status correlations E[si[k]sj [k]]. Assemble these products into a matrix

{Mk}ij = si[k]sj [k], and define E[sk+1|sk] ≡ pk+1. Then, conditioned on the current state,

E[Mk+1|sk] = (pk+11
⊤)◦ I+(pk+1p

⊤
k+1)◦ (1M − I) = (1⊤D⊤sk)◦ I+(D⊤sks

⊤
k D)◦ (1M − I) (6.6)

where 1 is a vector of all ones, 1M is the matrix of all ones whose dimensions are identical to those

of M and ◦ denotes the Hadamard, or entrywise, matrix product. Observe that this decomposition

into two terms arises from the distinction between the diagonal entries of E[Mk], which are terms

of the form E[s2i [k]|sk] = E[si[k]|sk] 6= p2
i [k]. Observe that (v1⊤) ◦ I = diag(v), where diag(v) is the

diagonal matrix whose entries are the elements of the vector v. Indeed, let us represent Mk as

Mk ≡ Nk +Qk ≡ I ◦Mk + (1M − I) ◦Mk.

12This is simply one of many comparisons that could be made between the contact process and the influence model;
other important comparisons include the existence of different extinction time regimes in the influence model and
cluster distribution and persistence.
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Figure 6.16. Mean and standard deviation of the number of infected nodes for the 128-node
hypercube in the influence model and the contact process. The value of p for the influence
model is fixed, and λ = p/m, where m is the degree of all nodes (here, m = 7).

If we take the expectation of Eq. 6.6, we obtain

E[Mk+1] = (1⊤D⊤(I ◦ E[Mk])1) ◦ I + (D⊤E[Mk]⊤D) ◦ (1M − I).

This implies the following expressions for E[Nk+1] and E[Qk+1]

E[Nk+1] = I ◦ E[Mk+1] = I ◦ (D⊤(I ◦ E[Mk])11⊤) = I ◦ (D⊤E[Nk]11⊤)

E[Qk+1] = (1− I) ◦ E[Mk+1] = (1M − I) ◦ (D⊤(I ◦ E[Mk] + (1M − I) ◦ E[Mk])D)

= (1M − I) ◦ (D⊤E[Nk +Qk]D).

(6.7)
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Figure 6.17. Mean number of infected nodes for the 100-node torus in the influence model
and the contact process. The value of p for the influence model is fixed, and λ = p/m, where
m is the degree of all nodes (here, m = 4).

If we apply the vec(·) operation to both sides of Eqs. 6.7, we obtain

vec(E[Nk+1]) = vec(I) ◦ ((1M ⊗D)vec(E[Nk])) = diag(vec(I))(1M ⊗D)vec(E[Nk])

vec(E[Qk+1]) = vec(1M − I) ◦ ((D⊤ ⊗D⊤)(vec(E[Nk]) + vec(E[Qk])))

= diag(vec(1M − I))(D⊤ ⊗D⊤)(vec(E[Nk]) + vec(E[Qk]))

To simplify the notation, denote Iv = diag(vec(I)) and I
v

= diag(vec(1M − I)). Observe

that Iv + I
v

= I and that IvI
v

= 0. Recalling that vec(Mk) = vec(Nk) + vec(Qk), and that
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vec(Nk) = Ivvec(Mk), we have

vec(E[Mk+1]) = [Iv(1m ⊗D)Iv + I
v
(D⊤ ⊗D⊤)]vec(E[Mk]) ≡Wvec(E[Mk]). (6.8)

As a simple example, consider the model depicted in Figure 6.18, known as the “evil rain”

scenario [139]. The evil rain node, denoted by 1, is permanently infected and has the ability to

infect any node that it influences. Similarly, there is a “recovery” node, denoted by 0. The presence

of these special nodes ensures that the system will not reach a consensus state.

s1

s2 s3

1 0

a 1 − a

1 d

1 − d

Figure 6.18. An “evil rain” influence model.

For this model,

D⊤ =




1 0 0 0 0

0 1 0 0 0

a 1− a 0 0 0

0 0 1 0 0

0 1− d d 0 0




.

In [139], Asavathiratham computes an analytical solution for the steady-state E[s] for evil rain

models, yielding

E[s] =




1

0

a

a

da




which appears on the diagonal in the steady-state solution for E[M ] given by Eq. 6.8:
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E[M ] =




1 0 a a ad

0 0 0 0 0

a 0 a a2 a2d

a 0 a2 a ad

ad 0 a2d ad ad




.

Correlation results can reveal useful relationships between the node statuses; for example, nodes

s3 and s1 are less correlated than nodes s3 and s2, even though s1 is the only influencer of s3.

Independently of its relationship with the contact process, the influence model has many potential

applications in the public health setting. For example, tracking correlations might be very useful

for food supply chain management and traceability. If a particular node (a transportation center,

producer, restaurant, etc.) tests positive for some contaminant, which other nodes in the network

are likely to be simultaneously contaminated? To answer this, we could apply a simple hypothesis

testing framework. If we observe that site i has status 1 at time k (denoted by si[k] = 1), let H0

denote the hypothesis that site j has status 0 (sj [k] = 0), and H1 denote the hypothesis that site j

is in status 1 (sj [k] = 1). The MAP rule tell us that we should choose H0 if E[si[k]] is greater than

2E[si[k]sj [k]], and choose H1 otherwise. Knowing the correlations between sites allows us to make

this prediction.
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Chapter 7

Conclusions

THIS thesis has explored several interesting issues in the mathematical modeling of infection

processes; here, we shall summarize our work, highlight what we see as the key contributions,

and suggest directions for future research.

7.1 Summary

Chapter 1 briefly surveyed the history of Western mathematical epidemiology, and introduced the

compartmental model of disease transmission. As an example, we presented a related set of deter-

ministic and stochastic models for the spread of a susceptible-infected-susceptible (SIS) disease, and

noted the link between the two in the large-population limit. Chapter 1 also introduced the notion

of a threshold test for whether a disease will become an epidemic, then considered the convergence

of interest in epidemic prevention with research in network science to control the spread of disease

through structured populations.

Chapter 2 established a general deterministic framework for infection modeling, based on the

work of van den Driessche and Watmough [46], and explored the relationship between two of the

most common threshold tests: whether the basic reproductive ratio, R0 is greater than 1, and whether

a disease-free equilibrium is locally asymptotically stable. We concluded that although these tests

are equivalent in their epidemic predictions, they do not involve identical functions of the parameters

of the model. Chapter 2 also compared these threshold tests with a third common test, the existence

of an endemic equilibrium, using results from the literature to demonstrate different phenomena.

Chapter 3 began by considering how the choice of different mathematical functions to represent

the mixing of two subpopulations can have a dramatic impact on the computation of R0, then

broadened the discussion to consider the central topic of the thesis: the computation of R0 for

populations that can be broken into smaller subgroups restricted to interact over the edges of a

network. Under a common set of simplifying assumptions, we proved that R0 can be expressed

as the product of two factors: a “biology-based” factor Rh, and a “topology-based” factor ρ(A),

where A is the adjacency matrix representation of the network structure. The chapter concluded

by demonstrating that many results in the literature (both canonical and more recent) are special

cases of this decoupling of the biology of infection from the topology governing its spread.
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Invoking the decoupling result of Chapter 3, Chapter 4 focused on the impact of topology via

ρ(A) and asked “What can be concluded about R0 when the network structure is not completely

known?” We showed that simply replacing an inherently random adjacency matrix A by its expected

value E[A], can lead to underestimating the value of R0, a problematic outcome in public health. For

different types of partial information (e.g., a generation mechanism for the network, or a collection

of network statistics), we presented two approaches for dealing with uncertainty: identifying bounds

on ρ(A) using spectral graph theory; and approximating ρ(A) by making assumptions to fill in the

missing information. These approaches were illustrated on several data sets, including preferential

attachment graphs, the results of an egocentric social survey in a Houston community, the U.S.

airline transportation network, and proximity detections from the Reality Mining project.

Continuing with the theme of a random A, Chapter 5 considered a particular family of distri-

butions that is widely used in quantitative sociology: the exponential random graphs. This chapter

combined simulation and analytical work to explore the distribution of ρ(A) for some of the most

used members of this family, those that are parameterized by simple network statistics.

Finally, Chapter 6 moved beyond the focus on threshold tests for epidemics on networks to

consider the spatiotemporal patterns of infection spread through these networks, on either side of

the threshold. After surveying the literature on deterministic and stochastic models, we focused

on two stochastic process: the contact process and the influence model. Through simulation and

analytical approximations, we explored several spatial statistics, like number and size of infected

clusters, which complement existing results to illuminate the underlying mechanisms of spread.

7.2 Contributions of thesis

Some highlights of our work are listed below:

⊲ extends van den Driessche and Watmough’s continuous-time framework [46] to discrete time

models via difference equations;

⊲ demonstrates the disconnect between the canonical “word” and “mathematical” definitions of

R0, and presents a better “word” definition (the asymptotic per generation growth rate);

⊲ provides a clear interpretation of the relationship between R0 and local asymptotic stability

of the disease-free equilibrium;

⊲ as an example, presents a new mathematical model for incorporating an arbitrarily-distributed

infectious period;

⊲ establishes the possibility of decoupling “biology” and “interaction patterns” in the compu-

tation of R0 for a large class of models, thereby connecting several disparate results in the

literature as special cases;
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⊲ clarifies the ways in which uncertainty has been implicitly embedded in deterministic models,

and addresses the potential faults of these unstated assumptions;

⊲ presents new tools for dealing with uncertainty in network structure via approximations and

bounding, using spectral graph theory, and illustrates these techniques on four data sets;

⊲ characterizes several members of the exponential random graph family by their spectral ra-

dius, via simulation and analytical work, thereby providing a first link between static network

descriptions and the dynamic processes that unfold on the networks;

⊲ investigates the spatiotemporal patterns of the contact process on several topologies, in the

“slow die-off” and “fast die-off” regimes, via clustering statistics.

7.3 Directions for future work

Throughout the thesis, we have suggested additional areas of potential research and interesting open

questions; we assemble these and additional thoughts here.

⊲ Application to a case study. This thesis has focused on a very general class of infection models,

but applying its results in a useful way to any particular disease could be of substantial public

health benefit. Simply identifying the appropriate “network” on which an infection spreads is

a non-trivial task, particularly when a population is partitioned into groups of varying contact

levels, susceptibility and transmissibility.

⊲ Generalizing R0. In Appendix C, we suggest additional mathematical criteria that generalize

the notion of “spectral radius”; in particular, these alternatives are useful when a population’s

interaction pattern varies over time. One does not have to look far for examples of this kind of

phenomenon: the Reality Mining data set is a ready candidate. Exploring the utility of these

generalizations to infection progression, both through analytical approximations and simula-

tion work with time-varying data sets, would be an entirely new contribution to mathematical

epidemiology.

⊲ Identifying “better” summary statistics of the distribution of R0. As a first step in character-

izing the distribution of the ρ(A) that arise from members of the exponential random graph

family in Chapter 5, we focused on calculating the mean and variance. As we argued in Chap-

ter 4, however, the mean of the distribution of ρ(A) (and more generally, the mean of R0)

might not be the most epidemiologically useful summary statistic. For example, in estimation

problems, means naturally arise when one is interested in minimizing a mean-square-error cri-

terion, but medians arise when the minimum absolute error is to be minimized. It would be
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interesting to investigate, through analytical and simulation work, the information conveyed

by other summary statistics on the behavior of infection spread.

⊲ Exploring the issue of degeneracy in ERGM models by looking at the distribution of ρ(A).

In Chapter 5, our characterization of ρ(A) was limited to the study of means and standard

deviations, but as we’ve just discussed, these are limited summary statistics. Exploring how the

shape of the distribution of the spectral radius changes as the parameters change might shed

light on the fundamental mechanisms behind the graph ensembles, particularly in parameter

ranges around the onset of degenerate behavior.

⊲ Relating classical stochastic models of infection and the analogous influence model. The

tractability of the influence model, discussed in Chapter 6, suggests that it might be a useful

approximation for the behavior of some of the canonical stochastic models of infection (e.g.,

the contact process) on finite graphs. For example, an “evil rain” model like the one described

in Section 6.6.2 has a steady state with a non-zero level of infection that could be compared

to the quasi-stationary state seen in the contact process in the “slow die-off” regime.

⊲ Uncovering the limitations of R0 through spatial analysis. As demonstrated in Chapter 2, a

threshold test on R0 only provides information about the growth factor of the infection in a

completely susceptible population. This does not mean that two networks with the same ρ(A)

will exhibit identical infection trajectories, even in the initial phases of spread! Constructing a

collection of non-isomorphic graphs with the same ρ(A) and exploring the differences in their

spatial patterns of infection would provide particularly useful information about the range of

possible behaviors that can be exhibited by systems whose R0 value is identical.
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Appendix A

Approaches in mathematical modeling of

infection processes

SECTIONS A.1 and A.2 will describe the most common approaches to the mathematical mod-

eling of infection and will highlight some recent results in the field for both deterministic and

stochastic models. Section A.3 will consider particular results for models that operate on an under-

lying contact network.

A.1 Deterministic approaches

The canonical text by Anderson and May presents a tremendous number of permutations of the

deterministic differential equations model presented in Chapter 1, including extensions that incor-

porate the age structure and demographic details of a population [38]. Lloyd [141], Wearing et al.

[51] and Keeling and Grenfell [142] (among others) address the assumption that recovery from infec-

tion is ‘memoryless,’ which leads to an exponentially-distributed infectious period. These authors

explore the consequences of more realistic assumptions on the duration of the infectious period.

Dodds and Watts present what they call a “threshold model,” in which an individual receives a dose

of infection from each contact and maintains a finite-length memory of such doses; if the sum of all

doses received in the memory window exceed a threshold amount, that individual becomes infected

[143]. Fraser et al. construct an infection model that allows the time variation of the infectiousness

of an individual and that individual’s likelihood to exhibit symptoms, measured since the onset of

infection [29]. They use this model to explore the efficacy of contact tracing as a public health in-

tervention. Significantly, they introduce a parameter θ that represents the proportion of secondary

infections caused by an initial infective before the onset of symptoms. The larger this fraction θ, the

more difficult it is for public health officials to identify and treat affected individuals before they’ve

spread the disease.

For an extensive and thorough survey of deterministic epidemic models, see Hethcote [144].
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A.2 Stochastic approaches

Most stochastic models of disease transmission fall into one of two categories. The first are those

that approximate the spread of infection as a branching process, one in which new “branches” of a

tree are created for each new infected individual (in a manner similar to Figure 2.1). One of the

earliest stochastic models of disease spread was the chain-binomial model, first presented in a series

of lectures by Lowell Reed and Wade Hampton Frost at Johns Hopkins University in 1928, which

operates on a finite population in discrete time units representing generations of infection (see the

discussion by Daley and Gani in [64]). At each time step, a susceptible individual has probability β

of being infected by any given infective individual. These infections occur independently with each

susceptible-infective pair. At the end of the time step, the current infectives are removed from the

population and the new infectives emerge to infect a new generation of susceptibles. If there are Sk

susceptibles and Ik infectives at time step k, then the number of infectives at time step k + 1 is a

binomial random variable over Sk trials with probability of success 1− (1− β)Ik . Some closed-form

results can be obtained for this type of model, but its behavior when the number of infectives is small

compared to the number of susceptibles is most often approximated by a discrete-time branching

process; see Andersson and Britton for more detail regarding this approach [145].

The second category of stochastic model comprises continuous-time Markov processes, similar

to the SIS example presented in Section 1.3. As suggested in Chapter 1, these models can exhibit

behaviors that their deterministic counterparts cannot. In simulations, it is often seen that the

number of infected individuals will fluctuate around the endemic equilibrium of its deterministic

counterpart for a long period of time before the infection dies out. This behavior is referred to as

the quasi-stationary state of the system, and is quantified by examining the behavior of the Markov

process X(t) conditioned on non-absorption in the all-susceptible state. This conditioned Markov

process, X̃(t), cannot be solved in closed form, so several approximations are commonly used. The

first is to modify the process X(t) by eliminating the possibility of transitioning from one infected

individual to zero infected individuals. As the population size N →∞, the equilibrium distribution

of this new Markov process converges to the equilibrium distribution of the conditioned process

X̃(t), and is sharply peaked at I = (1− γ/β)N , the deterministic endemic equilibrium [10]. N̊asell

discusses another method of approximation: the modification of the process X(t) to maintain one

permanently infected individual [146] (much like the “evil rain” influence model discussed in Section

6.6.2). N̊asell then goes on to approximate this modified process by a normal distribution when

R0 is distinctly larger than 1 (centered at the deterministic endemic equilibrium) and a geometric

distribution when R0 is distinctly less than 1. N̊asell also identifies a transition region for R0 between

the two types of behaviors, which shrinks as N →∞. Srivastava presents simulation results of these

dynamics for a model of virus systems [147].
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In Chapter 1, we invoked Kurtz’ theorem to approximate the expected value of the state variables

by the deterministic predictions. However, if we choose to write down the differential equation for

the mean of X(t), we find that the nonlinear terms required by the standard incidence model (e.g.,

the product SI) introduce second moments into the expression. Similarly, any dynamic equation

for second moments will involve third moments, and so on. Thus, it is impossible to construct a

closed system of equations for any of the moments. One technique for dealing with this phenomenon

is the use of moment-closure methods. These methods assume a priori a type of distribution for

the moments, and use the moment properties of the distribution to specify higher-order moments

in terms of lower-order moments, thus closing the system of equations. For example, if one assumes

that S and I are distributed as a multivariate Gaussian, then the third-order central moments are

zero, allowing one to close the equations at second-order [148]. Keeling et al. have proposed the

use of multiplicative moments [149]: for example, the multiplicative second moment V̂ of a random

variable X is defined by

E[X2] = E[X]2 + E[(X − E[X])2] ≡ E[X]2V̂ .

Keeling et al. demonstrate that the assumption that all third-order and higher multiplicative

moments are 1 is equivalent to assuming that the random variable follows a log-normal distribution,

which has a non-negative support. Krishnarajah et al. suggest a beta-binomial distribution, which

has both a non-negative support and an upper bound [150]. The authors also employ a mixed

distribution with a non-zero probability mass at zero infectives to model the probability of extinction

of the disease, plus a probability distribution on the positive integers to model the quasi-stationary

state.

Isham’s 2004 survey provides an excellent overview of the state of stochastic epidemic modeling

[151]. For additional interpretations of “epidemic” in stochastic models, see the work of Newman

[126] and Miller [152].

A.3 Network models

We concluded Chapter 3 by discussing some threshold results from the literature on network epi-

demiology and continued this discussion in Chapter 6. This section will highlight some of the other

contemporary work in this field.

Barthelemy et al. make a significant contribution to the literature by building upon the scale-

free network results of Pastor-Satorras and Vespignani discussed in Section 3.3.1 to explore the time

scales over which an epidemic will occur [153]. Using an SI model, the authors find that the time

scale of epidemic outbreak is inversely proportional to the skewness of the degree distribution (i.e.,

the magnitude of <k2>
<k> ). The authors also observe a characteristic pattern to disease spread in
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scale-free networks, from high-degree nodes to low-degree nodes after an initial transient period that

depends on where the infection originates.

As discussed in Section A.2, differential equations for the moments of the distribution of the

number of infected individuals in stochastic models require the knowledge of higher-order moments.

In order to close a finite number of these equations, some approximation technique must be applied.

When the population under study has a network structure, one can include information about the

network topology by observing the ‘moments’ of the connection pattern: counting the number of

connected pairs of nodes for each combination of disease states. Note that these are still deterministic

models; the moments here are those that describe the degree distributions and correlations for

different disease states. Let [Si] denote the number of susceptible individuals with i connections to

other individuals (i.e., the number of nodes of degree i), and let [SiIm] denote the the number of

connected pairs of degree-i susceptible individuals with degree-m infected individuals. A common

formulation of this problem is given by Roy and Pascual in [66]:

d[Si]

dt
= −β

∑

m

[SiIm] + γ[Im] (A.1)

In [66], the authors approximate the [SiIm] terms using powers of [Si] and [Im]. Keeling et al.

close their set of differential equations at third order with a single parameter that measures the

proportion of complete triangles in the network [154]. Sharkey et al. present a more complicated

moment-closure approximation that applies to directed networks [155].

Read and Keeling address a different phase of infection dynamics in [156]; how will the char-

acteristics of an infection change if it is allowed to evolve as it progresses through a structured

population? The authors perform simulations on several different types of networks and observe

evolutionary trends in the disease parameters (infectivity and duration of infectious period).

In a final example, Watts et al. model the population as a set of subgroups that interact with

each other stochastically via a ‘metapopulation’ structure [157]. The researchers use simulations to

demonstrate that this kind of model can produce the kind of periodic re-emergence of disease that

is seen in many populations, and can provide an intuitive way of structuring a population that is

suitable for large-scale simulations.
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Appendix B

Network data sets

TO validate an epidemiological model, one needs empirical data. While data collection in any

field presents challenges, acquiring data on networks of actors compounds these challenges.

Occasionally, network data is readily available from a governing agency or central data source;

for example, one can assemble networks of corporate board members from tax disclosures. Social

networks, however, are not as easily observed; to record relationship patterns in a community,

one needs to either interview individuals about their behavior, or extensively monitor interactions.

Many different approaches to studying social networks via individual surveys have been proposed

and explored in the literature; for a comprehensive overview, see [67].

In order to explore the applications and limitations of the techniques discussed in this thesis, we

have assembled network data sets representing several different kinds of data acquisition methods.

1. The volume of passenger flow through the U.S. airline transportation network in January 2007.

2. Proximity relationships of individuals participating in the MIT Media Lab Reality Mining

study of 2004.

3. Self-reports of local social networks from a community in Houston.

The remainder of this appendix will describe how these data sets were acquired and processed.

B.1 U.S. airline transportation snapshot

The Bureau of Transportation Statistics, an organization under the U.S. Department of Transporta-

tion, is charged with the regular collection of data on many modes of transportation, including

aviation, maritime, highway, public transit, rail and pedestrian/bike traffic. Much of this data has

been made available to the public at http://www.transtats.bts.gov, and can be aggregated and

exported for individual use.

In this study, we focus on domestic airline flights, as reported by both domestic and international

carriers in the Air Carrier Statistics database via the T-100 reporting form. In particular, we examine

the volume of passenger flow between U.S. cities over the month of January in 2007.1 The raw data

obtained from BTS consisted of 21633 records for the specified period (in the rows of a CSV file),

each of which contained:
1The smallest time resolution available from this data set is 1 month.
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⊲ the origin airport code and city (name and number)

⊲ the destination airport code and city (name and number)

⊲ the number of passengers recorded from the origin to the destination airport aggregated over

the specified period

Since multiple airlines service any given pair of cities, the data typically contained several entries for

each airport pair, each reported by a different airline. The first step in processing this data was to

combine the reports from different airlines to obtain total flow volumes for each airport pair, which

was accomplished using the ‘roll-up’ command offered in the DigDB set of add-in tools for Microsoft

Excel.2 The roll-up command was applied a second time to combine multiple airports within a single

city. Finally, all of the city pairs with zero recorded passenger traffic were removed from the data

set, leaving 9986 directed city pairs with nonzero flow.

To accompany this data, we also assembled population statistics for many of the cities in the

data set. We began by sorting the city pairs by descending traffic volume, and filled in population

information until the top 100 cities had been identified. Most of these cities were listed in the U.S.

Census Bureau’s Annual Estimates of the Population for Incorporated Places Over 100,000, Ranked

by July 1 2006, Population: April 1, 2000 to July 1, 2006. Matching the cities described in this

document to the cities described in the air traffic data required some manual tuning: for example,

the Census Bureau’s entries for ‘Minneapolis’ and ‘St. Paul’ were combined to match the airline

joint designation ‘Minneapolis/St. Paul’. To fill in the remaining cities, we selected the most recent

population statistics from each city’s Wikipedia entry (typically from U.S. or state projections).

In a final step of data processing, we removed an interesting anomaly from the air traffic data:

one of the highest volume routes in the U.S., which connects Kahului and Honolulu, HI. Because

of the volume of tourists using this route to move between Hawaiian islands, its total flow over the

month of January was several times the populations of both cities combined. Clearly, any disease

model which incorporates mixing the between the passengers moving between cities and the city

populations themselves would have to address this kind of mixing distinctly from a city like New

York or Chicago, and thus we chose to remove these cities from the larger data set.

A sample of the data from the highest volume routes is given in Table B.1.

B.2 Reality Mining proximity data

The Reality Mining Project is the product of a collaboration between Nathan Eagle and Alex Pent-

land at the MIT Media Laboratory. In 2004, the researchers distributed 100 Nokia 6600 smartphones

to members of the MIT community, each of which was able to detect and record:

2DigDB provides many useful extensions to Excel functionality: see http://www.digdb.com.
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Table B.1. Top 5 U.S. cities with most total inter-city air traffic over January 2007. The ijth

entry corresponds to air traffic from city i to city j. The diagonal entries of the matrix are the
city populations.

New York, NY Chicago, IL Orlando, FL Atlanta, GA Ft. Lauderdale, FL

New York, NY 8214426 125833 80336 93778 111792

Chicago, IL 124729 3849378 70582 76853 40681

Orlando, FL 81825 74127 2833321 121363 20140

Atlanta, GA 96252 81528 114146 2144491 82491

Ft. Lauderdale, FL 114889 41065 21775 87334 1512986

⊲ phone calls - start and end times, the other participant in the call, and the ID of the cell tower

through which the call was routed;

⊲ phone activity - on/off status and application usage;

⊲ Bluetooth devices within 5-10 m - time of detection and a Bluetooth ID for the detected device.

These detections were recorded and sent to a central server over the nine-month course of the

study. While any active Bluetooth device could be detected, we are particularly interested in de-

tecting the proximity of the phones of other study participants; these proximity detections establish

a time-dependent network of these users’ (potential) physical interactions. Proximity data is very

useful for predicting the spread of infections that can be transmitted by common handling of the

same object (like a doorknob or public computer) or via inhalation of airborne droplets. For exam-

ple, the infectious period for the common cold (a designation that comprises many particular viral

infections, including rhinovirus, coronavirus and influenza) begins roughly one day prior to the onset

of symptoms and continues for roughly 5 days after symptom onset (see the entry for “respiratory

disease, acute viral” in [158]). During this roughly weeklong period, an infectious individual could

infect anyone that he or she came into contact with. Thus, for this analysis, we extracted a week’s

worth of data on this naturally time-varying social network.
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select s.starttime, s.person_oid, v.person_oid

from devicespan s inner join device v

on v.oid = s.device_oid

where v.person_oid > 0

and s.starttime > ‘2004-11-15 00:00:00’

and s.endtime < ‘2004-11-22 00:00:00’

into outfile ‘week1115.txt’

Figure B.1. A SQL query of the Reality Mining data set.

The data set is packaged as an SQL database, whose organizational structure is described in

[159].3 To extract information from the database, we installed MySQL Server 5.0 on a personal

computer, loaded the database, and ran queries via a terminal window. A sample query is given in

Figure B.1, which performs the following task:

1. compares the two database tables that

⊲ associate users with devices

⊲ associate Bluetooth detections with devices

2. matches the unique device ID numbers between the two, then

3. extracts all of those devices which

⊲ belong to a study participant and

⊲ represent interactions between November 15, 2004 and November 22, 2004.

This particular week of data was chosen to follow an initial period of difficulty with the memory

storage on some of the phones in the study, which resulted in a loss of data from several users during

the months of September and October. As Eagle and Pentland note, this proximity data is certainly

not a perfect representation of the interaction patterns of study participants. Since the RF Bluetooth

signals are able to penetrate walls, false proximity detections are likely recorded. Additionally, to

conserve battery life, Bluetooth device scans were performed only once every five minutes, rather than

continuously. Additionally, there are certainly interactions that went unrecorded when participants

turned their phones off during certain activities, allowed the batteries to run down, or forgot to

bring their phones with them [160].

B.3 Social contacts in a Houston community

In 1997 and 1998, the U.S. National Institute on Drug Abuse sponsored a study of both drug-using

and non-drug-using individuals in a low-income section of Houston, TX; this study was undertaken

3The complete data set is available to the public at http://reality.media.mit.edu/.
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Table B.2. A summary of the participant reports of social contacts in the Houston data set.

884 records





237 empty
7 asymmetric

640 symmetric & non-empty





166 listed ≤ 1 contact

444 listed ≥ 2 contacts





152 listed 2 contacts
112 listed 3 contacts
72 listed 4 contacts
50 listed 5 contacts
88 listed 6 contacts

by Affiliated Systems Corporation and is described in [88], [89], and [90]. As part of the survey,

participants were asked to name up to 18 other individuals who were a part of their social network,

and describe the nature of their relationships. The participants were also asked to assess whether

these individuals knew each other, which illuminates local subgraphs of the larger social network

of this community. The researchers then attempted to link up these disconnected networks by

matching named individuals who were mentioned by multiple participants, or who were participants

themselves (the ‘partner identification’ step).

Dr. Isaac Montoya of Affiliated Systems Corp. provided us with SPSS files of the data collected

during intake and followup interviews with participants. SPSS is a proprietary software package

used primarily in the social sciences for aggregating and analyzing experimental results, and stores

variables which includes a participant ID number as well as answers to all of the survey questions. To

extract the relevant data, we used SPSS 16.0 to export the social network information to an Excel

spreadsheet. Unfortunately, the accompanying documentation which describes the details of the

data collection procedure are missing, as are the partner identifications that connect participants to

each other. As a result, we are limited to analyzing the local networks of study participants, which

allows us to test out disease prediction strategies that are limited to local network data information.

The data files identified 884 records of participants, six of which have the same identification

number and which may represent the same individual or an error in number assignment. Although

participants were asked to name up to 18 members of their social network (in three groups of six),

most of the participants named fewer than six (and 237 of the participants listed none). Therefore, we

restricted our attention to the first six individuals identified by each participant and the connections

between them. For any pair of named individuals A and B, participants were asked whether A know

B and whether B knew A; the 7 records whose relationships were asymmetric were removed from

the set. A brief breakdown of the data set is provided in Table B.2.
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To aggregate the 640 non-trivial participant records, the following procedure was implemented

in MATLAB:

1. Read in participant i’s local network description.

2. Convert the description into an adjacency matrix Ai between named individuals.

3. Check the graph G(Ai) for isomorphism against a list of graphs that have already been

recorded, {G1, . . . , Gm}. If G(Ai) is a previously unseen structure, add it to this list as

Gm+1 and set countm+1 = 1 . If G(Ai) is isomorphic to Gj , then increment countj .

The results of this procedure are presented in Table B.3.

Table B.3. The list of local contact networks reported in the Houston data set.

local network structure number of nodes number of edges frequency in data set

1

1 0 166 (25.9%)

1

2 2 0 91 (14.2%)

1

2

3

3 0 54 (8.4%)

continued on next page
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continued from previous page

local network structure number of nodes number of edges frequency in data set

1

2

3

4 4 0 34 (5.3%)

1

2

3

4

5

5 0 26 (4.1%)

1

2

3

4

5

6 6 0 30 (4.7%)

1

2 2 1 61 (9.5%)

1

2

3

3 1 24 (3.8%)

continued on next page
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continued from previous page

local network structure number of nodes number of edges frequency in data set

1

2

3 3 3 34 (5.3%)

1

2

3

4

4 1 20 (3.1%)

1

2

3

4

4 3 8 (1.3%)

1

2

3

4

4 4 1 (0.2%)

1

2

3

4

4 6 9 (1.4%)

continued on next page
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continued from previous page

local network structure number of nodes number of edges frequency in data set

1

2

3

4

5

5 1 7 (1.1%)

1

2

3

4

5

5 3 9 (1.4%)

1

2

3

4

5

5 6 5 (0.8%)

1

2

3

4

5

5 10 3 (0.5%)

1

2

3

4

56

6 1 17 (2.7%)

continued on next page
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continued from previous page

local network structure number of nodes number of edges frequency in data set

1

2

3

4

5

6 6 2 1 (0.2%)

1

2

3

4

5

6

6 3 21 (3.3%)

1

2

3

4

5

6

6 6 8 (1.3%)

1

2

3

4

5 6

6 10 3 (0.5%)

1

2

3

4

5

6

6 15 8 (1.3%)
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B.3.1 Generating clustered random graphs

The data from the Houston study discussed in the previous section provides local information regard-

ing the structure of the social network in the community. Constructing a histogram of the number

of contacts listed by each participant provides a measure of the degree distribution of the network,

while counting the number of edges between contacts is a measure of clustering (the likelihood that

two of a node’s neighbors are connected to each other). There are several measures of clustering

common in the literature: the first is the clustering coefficient, given by

C∆ =
3N∆

NT

where N∆ is the number of triangles in the graph and NT is the number of transitive triads or 2-

paths. If C∆ = 1, then every pair of nodes with a common neighbor is itself connected, while C∆ = 0

implies that there are no triangles in the graph at all. A related measure is the local clustering Ci,

defined as

Ci =
2|ejk|i

ki(ki − 1)

where ki is the degree of participant i and |ejk|i is the number of edges between neighbors of

participant i. Note that Ci is only defined if participant i listed more than one contact; let V ′ denote

the set of such participant vertices. Following [91], we’ll define the average clustering coefficient to

be

C =
1

|V ′|
∑

i∈V ′

Ci.

Local information like that provided in the Houston data set allows us to compute C = 0.3124 over

the participants in the study. These local measures are necessarily imperfect; participants were only

able to list up to six contacts and had to make their best guesses about the relationships between

them, but using them as approximations to the real network allows us to make some predictions.

In particular, given a degree distribution and an average clustering coefficient, what types of

complete networks are possible? The generation of random graphs with specified properties has

been a very active field of research over the last several years. One proposed method for producing

a graph with a general degree distribution and clustering coefficient was developed by Volz in [92].

This algorithm begins by generating the desired number of nodes, and attaching to node i a number

ki of “stubs”, where ki is the desired degree of node i. Volz’ algorithm then begins to connect stubs

between nodes while maintaining the desired clustering coefficient, Cinput. To generate a list of the

desired degrees of the nodes in the network from a distribution, a Matlab script was written to

repeatedly and independently sample node degrees from this distribution until the desired number

of nodes had been generated: all of these degrees were compiled into a list, which could then be
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Figure B.2. Average clustering coefficient C v. Cinput for the degree distribution of the
Houston data set. Means and standard deviations were taken over 10 trials.

imported into a Java implementation of the Volz algorithm.4

Interestingly, Volz’ algorithm appears to be able to generate networks of a specified degree

distribution for any fixed C ∈ [0, 1] (or C∆), but achieving this C might require specifying a different

Cinput. For example, the Houston data set has the degree distribution given by the blue bars in

Figure B.3; when this degree distribution is provided to Volz’ algorithm for a 1000 node network,

the resulting C v. Cinput is given in Figure B.2. This is a nonlinear, but bijective map, and is similar

to the results for a Poisson random network that Volz documents in [92].

To obtain an average clustering coefficient of C = 0.3124 (the Houston data value), then, it

appears that we should choose Cinput ∼ 0.2375. The red curves in Figure B.3 give the degree dis-

tributions of 50 random networks generated by RandomClusteringNetwork.jar, a Java executable.

This program was run via the MS-DOS command line, and a sample command is given in Figure

B.4. Some summary results for the remaining trials are presented in Table B.4.

4The author has made this executable available at http://www.people.cornell.edu/pages/emv7/clustering/.
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Figure B.3. Empirically-observed degree distribution in the Houston data set, and the result-
ing degree distributions of 50 networks generated via the Volz algorithm with Cinput = 0.2375.

for /L %j in (1,1,50) do java -jar RandomClusteringNetwork.jar

degrees%j.txt 1000 0.3 edgelist%j.txt

Figure B.4. MS-DOS command line execution of the RandomClusteringNetwork.jar exe-
cutable. Here, degrees%j.txt is a tab-delimited file containing the desired degrees of each of
the nodes in the network, 1000 is the number of nodes, 0.3 is the input clustering parameter
Cinput and edgelist%j.txt is a text file to which the edge list will be written. This code
increments %j from 1 to 50 in increments (the middle argument) of 1.
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Table B.4. Summary statistics for the 88 random graphs generated on 1000 nodes with the
degree distribution and clustering observed in the Houston data set. 100 graphs were generated,
but 12 of these resulted in nodes with degree greater than six, and were discarded.

statistic value

max. C 0.395
min. C 0.292
C ± σC 0.338± 0.0245

max. number of edges, E 1545
min. E 137
E ± σE 1460± 39.964

max. ρ(A) 5.211
min.ρ(A) 4.373

ρ(A)± σρ(A) 4.741± 0.159

max. degree 6
min. degree 1

Our fundamental goal is to generate a distribution of random graphs from which the Houston

data may have arisen. Are there any ways of validating whether or not the Volz algorithm produces

such graphs? It would be useful if we had a third statistic, besides degree distribution and clustering

coefficient, which we could compare between the Houston data and the Volz graphs; if these statistics

matched, we’d be more confident that the Volz graphs were good approximations of the network

from which the Houston data was derived. Indeed, we have such a statistic: the joint distribution

of degree and local clustering coefficient. For each node of degree i > 1, the Houston data yields a

histogram of the observed local clustering coefficient. We can compute such histograms for sample

random graphs generated by the Volz distribution, and see if the two produce the same kind of

behavior. A comparison of the Houston data and three sample Volz graphs is given in Figure B.5.

The three Volz graphs have qualitatively similar distributions: a decreasing correlation between node

degree and local clustering. The Houston data, however, seems to have the bulk of its probability

density distributed over two separate regions: low and high local clustering for all degrees. In

the context of how the Houston data was collected, this has an intuitive explanation; the contacts

named by a participant are likely to have been randomly selected from that participant’s social

group (and thus not necessarily aware of each other) or they may all have been drawn from one

group (where there are many interrelationships). Since the degree distribution decreases quickly

after two contacts, participants may have not been especially motivated to give full accounts of their

social relationships, which is a likely explanation for the bulk of the distribution in the region of low

clustering.
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Figure B.5. Joint distribution of degree and clustering coefficient, in the original data set (a)
and in three different simulations using the Volz algorithm (b)-(d). The (discrete) data has
been interpolated to make trends easier to identify; black areas correspond to high probability
regions, while white corresponds to low probability regions.
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Appendix C

Possible generalizations of R0

IN Section 2.3, we defined R0 = ρ(K), where K is the next-generation matrix, and observed that

ρ(K) = limn→∞ ‖Kn‖1/n for any matrix norm ‖ · ‖. We interpreted multiplication of the initial

distribution of infectives φ by the matrix K as the creation of a new “generation” with infectives

distributed as Kφ; thus, this model assumes that each new generation grows according to the same

rules as the previous generation (i.e., by repeated left-multiplication with K). Continuing to explore

the theme of uncertainty, it is likely that the population dynamics undergo some inherent jitter, such

that Ki and Ki+1 are slightly different as a result of stochastic phenomena. We can also imagine

that K changes from generation to generation as individuals adjust their behavior seasonally, or in

response to news of an impending epidemic. Is it possible to guarantee performance on threshold

tests under these scenarios?

One might conjecture that as long as ρ(Ki) < 1 for every i, then lims→∞ ρ (
∏s

i=0Ki) < 1 and

there will be no epidemic. Unfortunately, this statement is not true in general. However, Hartfiel

has demonstrated that if each ρ(Ki) < 1 and the matrices Ki do not change too quickly from one

generation to the next, then the desired decay can be achieved [161].

Theorem C.0.1. From Theorem 12.1 of [161]. Let φi denote the ith generation of new infections,

and thus φi+1 = Kiφi. If there exists a matrix norm ‖ · ‖ and M1,M2 > 0 such that ‖Ki‖ ≤M1 and

ρ(Ki) ≤M2 < 1 for all i ≥ 0, then there exists an ǫ > 0 such that if

‖Ki+1 −Ki‖ ≤ ǫ

for all i, then

lim
i→∞

φi → 0.

Next, consider a more general model of uncertainty. Let Σ denote a bounded set of matrices, i.e.,

there exists a constant M such that for some matrix norm ‖·‖ we have ‖A‖ ≤M for all A ∈ Σ. What

if the Ki are pulled at random from Σ; can we bound the R0 of the result? What are the best- and

worst-case scenarios? To explore this question, we’ll begin by considering a possible generalization

of the spectral radius. Define

ρk(Σ) = sup

{
ρ

(
k∏

i=1

Ai

)
| Ai ∈ Σ

}
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and

ρ(Σ) = lim
k→∞

sup
(
ρk(Σ)1/k

)
.

The quantity ρ(Σ) is called the generalized spectral radius of the set Σ; it represents a “worst-case”

value of R0 [162].

Recall that for a fixed K, ρ(K) has an equivalent characterization: ρ(K) = limn→∞ ‖Kn‖1/n.

Might this provide a second generalization of the spectral radius? Define the joint spectral radius,

ρ̂(Σ), by

ρ̂k(Σ) = sup

{∥∥∥∥∥

k∏

i=1

Ai

∥∥∥∥∥ | Ai ∈ Σ

}

and

ρ̂(Σ) = lim
k→∞

sup
(
ρ̂k(Σ)1/k

)
.1

In [162], Berger and Wang demonstrate that these two generalizations are, in fact, equal.

There exist a number of bounds on this “worst-case” quantity; Hartfiel provides that

ρ̂(Σ) ≤ sup
A∈Σ
‖A‖.

If Σ is a finite set, e.g. Σ = {A1, . . . , As}, Blondel and Nesterov obtain that

1

s
ρ(A1 + . . .+As) ≤ ρ̂(Σ) ≤ ρ(A1 + . . .+As)

and obtain another characterization of the joint spectral radius:

ρ̂(Σ) = lim
i→∞

ρ(A⊗i
1 + . . .+A⊗i

s )1/i,

where A⊗i denotes the ith Kronecker power of A [163]. Computationally, computing the joint

spectral radius of a set of matrices is difficult, but many approximation algorithms exist (although

it has been shown that unless P = NP , no polynomial-time approximations exist [164]). Since we

are only interested in assessing whether or not R0 < 1, is our task any easier? In fact, it is unknown

whether determining if ρ̂(Σ) < 1 is a decidable problem, and Blondel and Tsitsiklis have shown that

assessing whether ρ̂(Σ) ≤ 1 is undecidable [165].2

Finally, it is interesting to consider the “best-case” value of R0 when the next-generation matrices

Ki are chosen from a bounded set Σ; what is the smallest value of R0 that can be obtained? Define

1In [161], Hartfiel proves that this quantity does not depend on the particular matrix norm chosen, so we omit it
from the notation.

2A problem is decidable if there exists an algorithm to solve it that is guaranteed to halt in a finite number of
steps for all possible inputs.
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the generalized spectral subradius as

ρ∗(Σ) = lim
k→∞

inf
(
ρk(Σ)1/k

)

and the joint spectral subradius as

ρ̂∗(Σ) = lim
k→∞

inf
(
ρ̂k(Σ)1/k

)
.

Czornik has demonstrated that ρ∗(Σ) = ρ̂∗(Σ) [166].
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