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Abstract

In this thesis we develop algorithms for quantitative analysis of white matter fiber
tracts from diffusion MRI. The presented methods enable us to look at the variation of
a diffusion measure along a fiber tract in a single subject or a population, which allows
important clinical studies toward understanding the relation between the changes in
the diffusion measures and brain diseases, development, and aging. The proposed
quantitative analysis is performed on a group of fiber trajectories extracted from dif-
fusion MRI by a process called tractography. To enable the quantitative analysis
we first need to cluster similar trajectories into groups that correspond to anatomi-
cal bundles and to establish the point correspondence between these variable-length
trajectories. We propose a computationally-efficient approach to find the point corre-
spondence and the distance between each trajectory to the prototype center of each
bundle. Based on the computed distances we also develop a novel model-based clus-
tering of trajectories into anatomically-known fiber bundles. In order to cluster the
trajectories, we formulate an expectation maximization algorithm to infer the param-
eters of the gamma-mixture model that we built on the distances between trajectories
and cluster centers. We also extend the proposed clustering algorithm to incorporate
spatial anatomical information at different levels through hierarchical Bayesian mod-
eling. We demonstrate the effectiveness of the proposed methods in several clinical
applications. In particular, we present our findings in identifying localized group
differences in fiber tracts between normal and schizophrenic populations.
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Chapter 1

Introduction

The human brain is composed of processing units which are connected by millions

of neurons. The transfer of information in a neuron is done through its wire-like

part, called the axon, which carries the electric signals away from the neuron’s body

and enables communication with other neurons through synaptic processes. Bundles

of these axons, which are called fiber tracts, play an important role in the proper

functioning of the brain. Many neural diseases are hypothesised to be associated with

disruption and damage to these fiber tracts in the white matter. Understanding the

pattern of connectivity of fiber tracts, their properties in healthy subjects, and how

they are affected in each diseased population is of great interest to neuroscientists,

neurosurgeons, and the medical community in general. In vivo study of the white

matter fiber tracts was not possible by traditional imaging modalities, as they were

not able to capture the network of microscopic cellular wire-like structures. It is only

for the last decade that diffusion-weighted magnetic resonance imaging (DW-MRI),

and its variant Diffusion Tensor MRI (DT-MRI), have enabled us to reconstruct and

study these connecting paths in the brain.

Unlike conventional magnetic resonance imaging (MRI), which measures quanti-

ties related to tissue composition, DW-MRI measures the diffusivity of water. Given

that the human brain is an anisotropic medium, in which the water movement is

restricted in the direction perpendicular to the bundles of axons, diffusion MRI is

widely used to study the orientation and integrity of these bundles in vivo.
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(a)

A framework for clustering and quantitative analysis of fiber tracts

(b)

Figure 1-1: (a) A sagittal dissection of postmortem brain that shows white mat-
ter fiber tracts (From Virtual Hospital [98]). (b) An example of fiber trajectories
reconstructed from diffusion tensor images.

Figure 1-1(a) shows a sagittal view of a postmortem brain in which the fiber tracts

can be easily seen. Figure 1-1(b) depicts a set of three-dimensional curves, produced

from diffusion tensor MRI by a tractography scheme. Tractography methods trace

the trajectories of fiber tracts by following the direction of water diffusion and pro-

vide a powerful tool to visualize the extent and orientation of the fiber tracts and

to study brain connectivity. The extracted trajectories can also be used to study

brain integrity, as the local diffusion parameters and the shape of the trajectories are

affected by brain diseases and brain development and aging.

Due to the importance of this relatively new imaging modality and the inadequacy

of methods developed for conventional MRI to analyze diffusion MRI, there has been

an increasing number of methods proposed in recent years for processing diffusion

MRI data. This thesis presents a novel framework to perform quantitative analysis

along fiber trajectories and to include anatomical information in such an analysis at

different levels of abstraction.

Diffusion MRI has gained tremendous popularity in imaging of the white matter

of the brain. The extension of available technology will aid in the diagnosis and

subsequent treatment of disorders of the central nervous system and is likely to have

a major impact on assessment of white matter pathologies (e.g., multiple sclerosis),

quantification of abnormal white matter development, detection of stroke and trauma,

26



trauma at brain swelling, diffuse axonal injury, and spinal trauma, as well as a large

variety of brain tumors. In addition to direct clinical impact, the extension of available

diffusion MRI technology will also contribute to basic neurosciences, improving our

understanding of physiological white matter development, mature brain connectivity,

and aging.

1.1 Quantitative Analysis of Diffusion MRI and

Its Challenges

In the literature, to date, three major approaches have been pursued in analyzing

diffusion MRI data:

• Region of interest (ROI)-based methods,

• Voxel-based methods, and

• Tract-oriented methods.

ROI-based methods are by far the most popular in clinical studies. Parameters,

such as fractional anisotropy (FA), are measured in manually or semi-automatically

defined regions of interest and averaged over groups of healthy and diseased popula-

tions. The main advantage of ROI-based methods is that they provide an easy route

to examine hypotheses related to the role of a particular tract associated with a spe-

cific brain disorder. However, such ROI-based methods are not time-efficient as they

often require user interaction to specify the ROIs and their accuracy is limited by the

reliability of specifying the ROIs. Most studies use FA or structural images to specify

the ROIs. This would be very difficult and prone to significant errors for structures

that do not fall on an image plane or are located in the vicinity of other fiber tracts.

Even for structures where ROI placement is relatively easy, it has been shown that

ROI size, shape, number, and location not only affect the measured quantities, but

also influence the significance of the group analysis [47]. A review of diffusion MRI

studies in schizophrenia, for example, shows considerable variation in the results.
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While this might be partly due to sample size and group matching, variations in ROI

localization cannot be ruled out [47].

In voxel-based quantitative analysis, the data sets are registered into a common

coordinate system and then averaged and compared voxel-by-voxel. This is algo-

rithmically simple, but it is critical to obtain a good image alignment [47], which

otherwise directly translates to error in the quantitative analysis. The simplest ap-

proach is to register scalar fields, such as fractional anisotropy, where methods already

developed to register conventional MR images can be used. However, a scalar mea-

sure does not employ all of the information contained in the diffusion data and thus

would not provide the most accurate analysis. To use the full diffusion data in the

registration, non-linear warping of the tensor field [77] is required, which in turn

needs re-orientation of the tensors [2, 67]. The main advantage of voxel-based meth-

ods over ROI-based approaches is that they are, in principle, user-independent and

are suited for whole brain analysis. The latter is particularly advantageous when no

hypothesis regarding the location of brain changes is available a priori. However,

apart from the registration errors and partial volume effects, especially in the regions

with high anisotropy contrast, associating the observed differences to specific tracts

is difficult [47]. The data are often smoothed to ensure the validity of the statisti-

cal analysis. This results in an inherently low resolution map of the differences and

voxels exhibiting significant group differences do not necessarily lie within an anatom-

ical tract. Reference to an anatomical atlas is hindered by the low resolution of the

obtained difference map and by the limited resolution of the atlas itself [47].

An alternative approach is to compute the parameters of interest along fiber tra-

jectories. Even though tractography algorithms still suffer from several shortcomings

(e.g., cannot deal properly with fiber crossings), their clinical application is increasing.

Visualizing the fiber tracts as a collection of trajectories has attracted neuroscientists

as it provides an easy way to display the extent and direction of the underlying tracts.

Also, noise and image imperfections that are present in DT images are translated to

outlier trajectories that can be identified visually. We believe tract-oriented quanti-

tative analysis offers advantages over ROI-based methods since it is able to reveal the
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local variations of the fiber integrity, which are lost when the quantitative parame-

ters are averaged over the entire fiber tract in ROI-based methods. Tract-oriented

analysis is valuable especially if performed on a group of trajectories that correspond

to a single anatomical fiber tract. In doing so, first an algorithm is needed to group

fiber trajectories into clusters that correspond to anatomical bundles. The principal

benefit that clustering offers is that when comparing two subjects or populations, one

compares the same tracts. Observed differences are then due to differences in the

properties of the specific tracts rather than differences in the overall anatomy/shape

of the individual brains.

Despite the benefits and potential applications of tract-oriented analysis, many

challenges of this approach have not yet been addressed.

The input data for a tract-oriented quantitative analysis is a group of trajectories

generated by a tractography algorithm. Regardless of the nature of the tractography

method, whether deterministic or probabilistic, the output trajectories often have

discontinuities due to the presence of noise and image imperfections. Even with an

ideal tractography algorithm and elaborate preprocessing of the data to remove noise

and imperfections, brain abnormalities such as lesions may cause discontinuities in

the trajectories near the brain abnormality. As a result, the clustering algorithm

should be able to deal with variable-length input data.

Another issue in clustering is defining the similarity between the trajectories. In

general, the similarity between three-dimensional curves (trajectories) is not uniquely

defined and depends on the application. In our case, we require the similarity measure

to use both spatial and shape information from the whole trajectory. The common

approach in defining the similarity is to first find the correspondence between the

points on each curve. Since the number of trajectories is typically quite large, a com-

putationally efficient implementation is required. Three-dimensional curve matching

requires pairwise comparison of the trajectories (and their sub-segments) or compar-

ison between the trajectories and the cluster centers (and their sub-segments) and

thus it is not time-efficient. An alternative to uniform sampling of the trajectories

to establish the point correspondence is to use landmarks that contain most of the
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information about the shape and location of the trajectory. Such landmarks can

be defined, for example, through a minimum description length approach [26] or as

the local extrema of the curvature [29]. When dealing with trajectories that have

similar shape, such landmarks can be taken as the corresponding points. However,

adaptation of such approaches to define the point correspondence in our application,

where some features might be missing from the individual curves, requires extensions

of those algorithms.

Regardless of the defined similarity measure, an unsupervised algorithm is not

guaranteed to produce the clusters of interest for a given application. The user only

has control over the number of clusters and the algorithm could easily over-cluster or

under-cluster the input data. We believe that a supervised clustering algorithm that

benefits from anatomical information is needed. Once anatomical data is used in the

clustering step, the correspondence between clusters across different subjects, needed

for population studies, is automatically known. In this thesis we address the problem

of how to incorporate anatomical information in the clustering algorithm.

Once the trajectories are grouped into clusters, the aim of the quantitative anal-

ysis is to provide statistics of the desired quantitative parameters, such as different

diffusion anisotropy measures, for the trajectories that belong to a given cluster. A

tract-oriented quantitative analysis reports the average (and higher-order moments)

of the local parameters along the tracts. It thus requires that the statistical calcu-

lation is performed over trajectory points that correspond to each other. However,

since the trajectories that belong to a given cluster do not necessarily have the same

length (or their start points do not correspond to each other), point correspondence

between the trajectories first needs to be determined. Unlike the point correspon-

dence required in the clustering step, this is mandatory and should be calculated

carefully.

The framework presented in this thesis is based on trajectories estimated from dif-

fusion data by a tractography algorithm, along with the raw diffusion measurements

of each image. The algorithm can also use some anatomical information in the form

of a set of representative trajectories and/or soft assignment of the input trajecto-
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(a)

(b)

Figure 1-2: An example of tract-oriented quantitative analysis performed on one part
of the corpus callosum of a subject diagnosed with multiple sclerosis. (a) A group
of the fiber trajectories are colored based on the local fractional anisotropy (FA).
(b) FA variation along the trajectories (blue) along with mean (solid red), and mean
plus/minus standard deviation (dashed red) of the FA. The tract-oriented analysis
identifies the FA reduction in the vicinity of the lesion without prior knowledge of
where the lesion is located.
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ries to anatomical fiber bundles. The output is the probabilistic assignment of the

input trajectories to anatomically-known bundles of fiber tracts and the statistical

measurements of the quantitative parameters along the trajectories. The analysis

can be performed either on a single subject or over a group of subjects. Figure 1-2

shows an example of such analysis performed on one part of the corpus callosum in a

subject diagnosed with multiple sclerosis (MS). Part (a) of the figure shows a group

of fiber trajectories colored based on a local scalar measure of diffusivity called frac-

tional anisotropy, while part (b) shows the FA variation along the arc length of the

trajectories. By such a tract-oriented analysis, we are able to identify a significant

drop in fractional anisotropy in the vicinity of the lesion, without knowing where the

lesion is located a priori.

Figure 1-3 shows the analysis performed on the posterior part of the corpus cal-

losum, called the splenium, for a group of subjects. In (a) the trajectories extracted

by a tractography algorithm are shown, (b) and (c) illustrate the results of cluster-

ing those trajectories into the upper and lower parts of the splenium, in the sagittal

and axial view respectively, (d) shows the variation of FA along the lower bundle,

while the corresponding p-values (a measure of statistical significance) are shown in

part (e). A clustering procedure is often required to be performed on the output

of the tractography algorithms to group similar trajectories together, and to remove

outliers.

1.2 Objective and Contributions of The Thesis

We believe that the medical community has not yet fully benefited from what dif-

fusion imaging offers and this is in part due to the fact that well-established robust

quantitative methods for analysis of diffusion MRI data are largely missing. This

thesis proposes a framework to enable the quantitative analysis and in particular to

answer the following questions:

• How to obtain the point correspondence between the trajectories efficiently?
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Figure 1-3: An example of tract-oriented quantitative analysis on a population and
for the splenium parts of the corpus collasum. (a) Sagittal view of the trajectories
from all cases, registered into the atlas space, and colored with the local fractional
anisotropy. (b) Sagittal view of the trajectories in (a) that are clustered into the
upper and lower parts of the splenium. (c) Axial view of the trajectories shown in
(b). (d) Average fractional anisotropy along the tract arc length for the normal (blue)
and schizophrenia (red) cases, where a drop in FA is seen for diseased cases. (e) A
plot of the corresponding p-values which indicates that a significant drop in the FA
is only observed in the mid-portion of each side of the splenium.
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• How to define the similarity between 3-D trajectories?

• How to incorporate anatomical information in clustering of the trajectories?

• How to perform tract-oriented analysis over a population?

The answer to the last question is the ultimate goal of this thesis. It is worth

mentioning again that being able to perform such analysis is valuable since it enables

us to study the local changes of quantitative parameters along the fibers. This is

especially interesting for studying temporal changes of fiber tracts during brain de-

velopment and it also opens new possibilities to compare normal and pathological

subjects.

As an answer to the first question mentioned above, we propose a novel approach

for calculating the point correspondence between the trajectories by building a dis-

tance map and a Voronoi diagram on the same space. This provides a computationally

efficient alternative to curve matching algorithms when dealing with a large number

of curves (feature vectors) when performing population analysis. This enables us to

use the point correspondence in the clustering step. Since the number of trajectories

is quite high, other approaches sacrifice the accuracy of determining point correspon-

dence either by using a simple similarity measure or by using information from a

limited number of trajectory points.

Having the knowledge of point correspondences, we define a similarity measure in

which spatial information is used explicitly while shape similarity is included implic-

itly through penalty terms for missed and repeated point matches.

Theoretical models are also developed to include anatomical information from an

atlas of fiber tracts. We describe two levels for including the anatomical prior. In

the first approach, the priors are fixed and are given by an anatomical atlas. The

second approach uses a Dirichlet distribution to control the influence of the atlas. To

the best of our knowledge these are the first implementations in which anatomical

priors are used in a mathematically principled framework. By using an atlas, the

correspondence between clusters in different subjects is automatically known.
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To ensure robustness, quantitative analysis is performed probabilistically using

the membership weights (probabilities) assigned to each trajectory in the clustering

step. In the mixture model clustering implemented in this work, we develop the idea

of building the mixture model based on the distance between the trajectories and the

cluster centers to deal with the variable length of the trajectories. The output of clus-

tering is the probabilistic assignment of trajectories to anatomically-known bundles

of fiber tracts and the point correspondences between trajectories to the mean tra-

jectory of each cluster. This information is used to compute proper statistics on any

attribute feature vector, such as scalar diffusion measures, e.g., fractional anisotropy

and mean diffusivity, defined along the trajectories. In population studies, the tra-

jectories are first transformed to a common space, clustered, and the quantitative

parameters of interest are reported along the tracts.

As will be shown in Chapter 6, the proposed tract-oriented quantitative analysis

addresses the following clinical questions:

• To what extent and where on a white matter fiber tract the diffusion parameters

change between two time points during the brain development?

• Is there diffusion asymmetry between the two brain hemispheres and how are

such asymmetries affected by diseases?

• Is there any localized group difference in a given fiber tract between normal and

diseased populations?

As a byproduct of the proposed clustering method, a spatial model of the fiber

bundles represented by the mean trajectory and its spatial variation is also obtained.

This is shown in Figure 1-4 in which the abstract models of five fiber bundles are

visualized by their spatial mean and iso-surfaces corresponding to the mean plus

three standard deviations (3σ) of the 3-D coordinates calculated along the cluster

center. Such an abstract spatial model for fiber bundles could be used for neurosurgery

applications. It enables one to easily visualize the extent of the fiber tracts adjacent

to the brain lesions to help minimize the damage to the bundles when removing
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(a) (b)

Figure 1-4: (a) Trajectories of 5 different clusters: splenium (yellow), corticospinal
(red), corticobulbar (green), middle cerebellar peduncle (blue), and genu (magenta).
(b) A model representation of the bundles as the mean trajectory and the isosurfaces
corresponding to spatial variation of the clusters.

the lesion. Conventional DT-MRI-based approaches usually visualize a map of the

fractional anisotropy [50] or bundle segmentations based on the FA map. However,

such approaches are not accurate at fiber crossings where FA is low. An alternative

approach is to visualize the fiber trajectories [44], but rendering such a large dataset

can be confusing and not be efficient in real-time applications.

1.3 Organization of the Thesis

We provide the background on DT-MRI quantitative analysis in the next chapter.

Hypotheses that govern the relationship between the apparent water diffusivity mea-

sured by DT-MRI and the axonal density, orientation, and integrity are presented.

Then quantitative measures of diffusion are introduced, followed by a review of pre-

vious work on DT-MRI quantitative analysis.

In Chapter 3, we introduce a new method for efficiently calculating similarity

between 3D curves. Limitations of the methods commonly used by the DT-MRI

community for calculating the similarity between fiber trajectories are discussed and

then the proposed method is introduced.

Chapter 4 presents the probabilistic clustering method developed in this work
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to group white matter fiber trajectories into anatomically meaningful bundles. An

expectation-maximization algorithm is used to cluster the trajectories in a mixture-

model context. One contribution of our method is to perform the mixture modeling

on the distances between the trajectories and cluster centers as opposed to the coor-

dinates of trajectories. We demonstrate how this technique performs well on variable-

length feature vectors. We also demonstrate that unlike the Gaussian distribution

which is the common choice in density estimation, a gamma mixture model accurately

represents the nature of the distance of the 3-D trajectories from the cluster centers.

Chapter 5 extends the method presented in the preceding chapter to incorporate

anatomical information in clustering of the fiber trajectories, while the influence of

the prior on the clustering can be well-controlled by the user. To the best of our

knowledge, these are the first implementations in which an anatomical prior is used

in a mathematically principled framework.

Some applications and new findings of the proposed algorithms for clinical studies,

such as a group analysis on schizophrenia are introduced in Chapter 6.

Chapter 7 concludes the thesis by summarizing major contributions and findings.

Suggestions for future work are also discussed in this chapter.
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Chapter 2

Background on Diffusion MRI

Quantitative Analysis

Diffusion weighted MRI (DW-MRI) is an imaging modality that measures the local

diffusivity of water in vivo. Since water diffusion is restricted in the direction perpen-

dicular to neuronal axons, the diffusion tensor, as will be described below, provides

valuable information about the local density and orientation of the axons, axonal

damages, and myelin damages. Hence DW-MRI is a powerful tool for studying brain

organization, development, and diseases. This chapter provides background material

on quantitative analysis of diffusion images. It first presents the correlation between

the apparent diffusivity of water molecules measured by diffusion tensor MRI (DT-

MRI), a variant of DW-MRI, and the axonal organization of the brain white matter.

Then basics of DT-MRI through diffusion weighted MRI acquisition are presented.

Since three-dimensional tensor data are not easy to visualize, several scalar measures

have been introduced by the DT-MRI community and are reviewed in this chapter.

We also describe tractography, as a tool that to date has mostly been used in visu-

alizing diffusion MRI data. We discuss three major algorithms for tractography to

provide some background. However, it is worth mentioning that the algorithms we

introduce in this thesis for DT-MRI quantitative analysis take the output of the trac-

tography as their input and hence are independent of the details of the tractography.

We finish this chapter with a review of related work on quantitative analysis of white
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matter fiber tracts.

2.1 Diffusion Anisotropy in White Matter

When there is a concentration inhomogeneity of a substance, molecules of that sub-

stance move from regions of higher concentration to other areas through random

(Brownian) motion. This thermodynamic process is called diffusion and in a macro-

scopic scale is governed by Fick’s laws [34], which read

J = −D∇φ (2.1)

∂φ

∂t
= ∇ · (D∇φ) (2.2)

Fick’s first law relates the diffusion flux, J , to the gradient (∇) of the concentration φ

through the diffusion coefficient or diffusivity D, when the concentration within the

diffusion volume does not change, i.e., in steady-state diffusion. In the non-steady

state condition, the second law can be used to get the rate of the concentration change

by taking the divergence (∇·) of the diffusion flux. When the medium is isotropic,

i.e., diffusivity is independent of the direction, the probability to find a molecule at a

distance X from its initial location is given by a Gaussian distribution:

P (X, t) =
1√

4πtD
exp (− X2

4Dt
), (2.3)

where t is the diffusion time.

The macroscopic diffusion process described by Fick’s laws refers to the diffusion

of one substance in another. However, they can also be used to describe the random

motion of the molecules when there is only one type of substance. In this case, the

process is called self-diffusion and is described in terms of the probability of finding

a particle in a certain position and at a particular time. Suppose that a molecule is

initially at r0 and we are interested in the probability of finding the molecule at r at

a time t, P (r|r0, t). In the case of free self-diffusion, the probability is independent of

the initial position and can be applied to all molecules. The probability can thus be
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stated in terms of the relative displacement, R = r − r0, and is described by Fick’s

laws:
∂P

∂t
= ∇ · (D∇P (R, t)), (2.4)

where D is called the self-diffusion coefficient.

What makes diffusion imaging of the brain interesting is that the diffusivity of

water measured in the brain depends not only on the position, but also on the direc-

tion1.

Diffusion anisotropy is mostly due to the fact that in some regions of the white

matter, axons are highly aligned and form fiber bundles. Figure 2-1 shows a schematic

view of a myelinated axon. Myelin, the axonal membrane, microtubules, and neurofil-

aments are all oriented in the direction of the axon and could restrict water diffusion.

Hence, the diffusion coefficient perpendicular to the axon, D(⊥), will be smaller than

the one parallel to the axon, D(‖). It should be noted that millions of axons fit into

a voxel of the diffusion tensor images. Hence, diffusion imaging measures the local

diffusivity averaged over the volume of a voxel. In regions where axons are aligned

and form fiber bundles, a highly anisotropic diffusion coefficient is measured, while in

regions where axons are oriented in random directions or two or more fiber bundles

cross each other, the diffusion coefficient is less anisotropic.

Although many clinical studies correlate changes in diffusion anisotropy solely to

changes in myelination, several experiments indicate that in some cases this is not

a correct hypothesis. For example, studies of brain development demonstrate that

diffusion anisotropy is observed well before myelination [73]. Moreover, it has been

shown that axonal damage results in reduced diffusivity parallel to the axon [12]. The

break-down of the longitudinal axonal structure and the build-up of cellular debris

is responsible for reduced parallel diffusion. Hence, it is postulated that only when

reduced D(⊥) is accompanied by no change in D(‖), it can be interpreted as an

indication of myelin damage [83].

1Strictly speaking, what is measured by diffusion MRI is the apparent diffusion coefficient, ADC,
which is a function of the diffusion time, geometry of the local volume, and might also affected by
non-diffusive processes including tissue perfusion and fluid flow.
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despite the variety of fibre types and species. Further-
more, the anisotropy was significantly greater than that
observed in muscle. Some of the first studies recognized
the value of measures of diffusion anisotropy for
following brain maturation28,29 or mapping fibre orienta-
tion in the brain non-invasively.30 Reviews in 1991 by
two pioneers in the field of NMR measurements of water
diffusion in biological systems, Michael Moseley and
Denis Le Bihan, provide further details on the early views
of diffusion.1,31 As both authors pointed out, although
diffusion taking the path of least resistance along the
oriented fibres was an obvious and plausible explanation
for the observed anisotropy, the specific origin of
anisotropic water diffusion was still unknown and
unevaluated in the neural fibre tracts.
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Figure 2-1: A schematic view of a myelinated axon [12]. Myelin, the axonal mem-
brane, microtubules, and neurofilaments are all oriented in the direction of the axon
and could restrict water diffusion. Hence, the apparent diffusion coefficient perpen-
dicular to the axon, D(⊥), will be smaller than the one parallel to the axon, D(‖).

2.2 Diffusion Weighted MRI

Diffusion Weighted MRI is an imaging modality which utilizes the measurement of

Brownian motion of molecules. In diffusion-weighted images, instead of a homogenous

magnetic field, the field is varied linearly by a pulsed field gradient. Since precession

is proportional to the magnet strength, the protons begin to precess at different rates,

resulting in dispersion of the phase and signal loss. Another gradient pulse is applied

in the same direction but with opposite magnitude to refocus or rephase the spins.

The refocusing will not be perfect for protons that have moved during the time interval

between the pulses, and the signal measured by the MRI machine is reduced. This

reduction in signal due to the application of the pulse gradient can be related to the

amount of diffusion that is occurring through the Stejskal-Tanner equation [85].

With a gradient vector g, the image intensity, S, is given by [7]:

S = S0e
−bDg , (2.5)

where S0 is the image intensity in the absence of a diffusion-sensitizing gradient, Dg

is the diffusivity in the direction of g, and b is the diffusion weighting factor in s/mm2

and depends on the detail of the imaging sequence and the magnitude of the gradient

42



field:

b =

∫ ∆

0

γ2|g(t)|2t2dt, (2.6)

where γ is the proton gyromagnetic ratio (42 MHz/Tesla), |g| is the magnitude of

the diffusion sensitizing gradient, and ∆ is the time between the gradient pulses. It

follows that [97]:

b = γ2δ2
(
∆− δ

3

)
|g|2, (2.7)

where δ is the duration of the gradient pulses. In practice, S0 is usually acquired with

small b values, such as 5 s/mm2, while the diffusion weighted signal, S, is measured

with a b-value ranging from 500 to 1500 s/mm2. Simple calculations [25] show that in

the case of isotropic diffusion the best accuracy is obtained if the difference between

the b-factors of the two acquisition is roughly 1/D. For brain DW-MRI this translates

to a b-factor of 1000–1500 s/mm2. If more than two acquisitions are to be used, it is

shown that it is better to repeat the acquisitions at two b-factors instead of using a

range of different b-factors [25].

Figure 2-2 shows two baseline images, obtained by applying no gradient, and the

diffusion weighted images of a single axial slice.

2.3 Diffusion Tensor MRI

In an anisotropic media, such as brain white matter, the direction dependence of

the diffusivity can be, in most cases, described by a tensor2. The assumption that

the direction-dependence of the diffusivity can be described by a tensor is equivalent

to the assumption that the probability of the molecular displacement is given by a

multivariate Gaussian as described in [9]:

P (R|t) =
1√

4πt3|D|
exp

(
− RTD−1R

4t

)
(2.8)

2It has been shown that a single tensor does not describe the orientation dependence of the
diffusivity in some cases, e.g., at fiber crossings. Methods such as high angular resolution diffusion
imaging (HARDI) [90], diffusion spectrum imaging, or Q-ball imaging [89] have been proposed to
deal with such situations.
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Figure 2-2: Samples of diffusion weighted images acquired from human brain. The
first two images are baseline images taken with small b-factor, while the rest are
diffusion weighted images. The gradient direction is different for each image, resulting
in a different patterns of signal loss (dark areas) due to anisotropic diffusion [7].

where D is the diffusivity tensor and R is the displacement vector. In a three-

dimensional space, the diffusivity tensor is a positive definite 3×3 tensor and contains

6 independent components:

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 . (2.9)

So, at least 6 independent gradient directions are needed in DW-MRI to be able to

reconstruct the diffusion tensor from the Stejskal-Tanner equation:

logSk = logS0 − bĝTk Dĝk (2.10)

where ĝk is the unit vector in the direction of the kth gradient vector and Sk is the

corresponding DW image. When there are only 6 gradient directions, the diffusion

tensor at each voxel can be obtained by solving the above equation set analytically
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[97]. To enhance image quality, today’s image acquisitions often use a larger number

of gradient and baseline images, and an optimization method, such as least mean

square error, is then used to reconstruct the diffusion tensor [9]:

D = arg min
D

∑
k

(
ĝTk Dĝk + logSk − logS0

)2

. (2.11)

2.4 Tensor Visualization and Scalar Measures of

Diffusion

A tensor can be visualized as an ellipsoid with main axes aligned with the principal or

self directions of the tensor as shown in Figure 2-3. Mathematically, this is justified

by the fact that being a positive definite tensor, D can be diagonalized to produce

D = E−1


λ1 0 0

0 λ2 0

0 0 λ3

E, (2.12)

where λ1, λ2, and λ3 are the eigenvalues of the tensor and E is the matrix whose

columns are the corresponding eigenvectors, e1, e2, and e3.

An ellipsoid, in fact, represents the distance in space covered by molecules in a

given diffusion time Td. This follows from the fact that the solution to the Fick’s

equation is a Gaussian.

x′2

2λ1Td
+

y′2

2λ2Td
+

z′2

2λ3Td
= 1, (2.13)

where x′, y′, and z′ are the dimensions in the frame of the principal directions of the

tensor (its eigenvectors), and λ’s are the corresponding eigenvalues.

Such ellipsoids can be visualized at each voxel to represent the direction and mag-

nitude of the diffusivity [97]. However, since such representations are complex, often

scalar measures of diffusivity and diffusion anisotropy are calculated and visualized.

The most common scalar measures are: mean diffusivity, which characterizes the
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Figure 2-3: Representation of a tensor with an ellipsoid whose principal axes lie on
the principal directions of the tensor, e1, e2, and e3. The main axes are proportional
to the corresponding eigenvalues, λ1, λ2, and λ3.

overall mean-squared displacement of the molecules or the ellipsoid size; fractional

anisotropy, which shows the degree of orientation-dependence of the diffusivity; and

color-coding of the orientation. Such scalar measures allow the tensor data to be visu-

alized as grayscale or color images in the same manner used to visualize conventional

MRI data.

2.4.1 Mean Diffusivity

Mean diffusivity (MD) is a measure of the average diffusivity of the water in a voxel

and is invariant to orientation. Among several combinations of the tensor elements,

the trace of the diffusion tensor is such an invariant:

Tr(D) = Dxx +Dyy +Dzz. (2.14)

The mean diffusivity is defined as MD = Tr(D)/3 and can be re-written as:

MD =
λ1 + λ2 + λ3

3
(2.15)
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2.4.2 Anisotropy Measures

Invariant measures of the diffusivity anisotropy are made of combinations of the tensor

eignevalues. The most common measures are relative anisotropy (RA), fractional

anisotropy (FA), and volume ratio (VR), defined as:

RA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

√
2MD

=

√
3√
2

||D− Tr(D)I/3||
Tr(D)

(2.16)

FA =
1√
2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ2
1 + λ2

2 + λ2
3

=

√
3√
2

|D− Tr(D)I/3|
|D|

(2.17)

and

V R =
λ1λ2λ3

MD3

=
|D|
MD3

, (2.18)

where |.| denotes the Frobenius or tensor norm.

One advantage of these measures is that they can be calculated without first

calculating the eigenvalues of the tensor. As discussed in Section 2.1, myelination

diseases can cause a drop in the diffusion anisotropy. Hence, the above anisotropy

measures, especially FA (see Figure 2-4), are sometimes used in clinical studies to

diagnose diseases and assess the progress of the therapy.

2.4.3 Orientation Mapping

The idea that the main orientation of the diffusivity can be represented by the eigen-

vector that corresponds to the largest eigenvalue provides a powerful tool to visualize

the organization of the fiber tracts. Various methods have been proposed to display
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Figure 2-4: The fractional anisotropy map in axial and coronal views. The bright
regions (higher FA value) represent the regions with dense fibrous tissue as the water
diffusivity is highly restricted in the one direction that is parallel to the orientation
of fiber tracts in the brain.

the orientation on a voxel-by-voxel basis; color maps, ellipsoids, octahedra, and quiver

representations are among the most common approaches.

2.4.4 Geometrical Anisotropy Measures

Assuming that the three eignenvalues of the tensor are λ1 ≥ λ2 ≥ λ3, Westin et al.

showed that the tensor can be decomposed into three components of linear, planar,

and spherical diffusivity, Dl, Dp, and Ds, respectively [97]:

D = (λ1 − λ2)Dl + (λ2 − λ3)Dp + λ3Ds (2.19)

The following shape measures can then be defined by normalizing to the tensor’s

norm:

cl =
λ1 − λ2√
λ2

1 + λ2
2 + λ2

3

(2.20)

cp =
2(λ2 − λ3)√
λ2

1 + λ2
2 + λ2

3

(2.21)

cs =
3λ3√

λ2
1 + λ2

2 + λ2
3

(2.22)
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Figure 2-5: Ellipsoidal representation of a tensor with either linear, planar, or spher-
ical symmetry.
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Figure 2-6: A composite representation of a tensor decomposed to its linear, planar,
and spherical components.

which are linear, planar, and spherical measures, respectively. Figure 2-5 shows how

the ellipsoid representation of the tensor depends on the relative magnitude of the

eigenvalues. In the first case, λ1 is significantly larger than the other two eigenvalues.

The tensor is represented with a prolate ellipsoid, and cl � cp, cs. In the second

case, λ1 and λ2 have comparable magnitude, but λ3 is significantly smaller. This

is represented by a planar ellipsoid characterized by a large cp. Finally, when all

eigenvalues have comparable magnitude, the tensor can be represented by a sphere

and cs prevails. The above decomposition of the tensor provides a new visualization

method as depicted in Figure 2-6.

2.5 Tractography

Tractography is a popular procedure for constructing and visualizing the underlying

fiber organization by following the local orientation of the diffusivity tensor at each

point (See Fig. 2-7). Throughout this thesis, we call each of the paths generated
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Figure 2-7: Example of fiber trajectories extracted using a tractography algorithm
on the whole human brain. Tractography seed locations, colors, and transparencies
were manually chosen by a neuroanatomist. [63]

by a tractography algorithm a trajectory. Assuming that the fiber trajectory can be

described by a 3D curve, r(s), parametrized by the arc length, s, the evolution of the

curve is described by the Frenet’s equation:

dr(s)

ds
= t(s) (2.23)

where t(s) is the unit tangent vector. The key idea of the tractography algorithms

is to determine the tangent vector as a function of the local diffusivity at each point

so that it follows the orientation of the tensor and then solve the above differential

equation numerically with an initial condition r(0) = r0, which specifies the starting

(seed) point of the trajectory. The simplest way to integrate the above differential

equation is by using Euler’s method [8]:

r(s+ ∆s) = r(s) + ∆t(s) (2.24)

While Euler’s method is very easy to implement, it is susceptible to error accumu-
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lation and instability. Second-order or adaptive fourth-order Runge-Kutta methods

have been used by several groups to overcome these problems [8].

A significant amount of work has been invested in tractography in recent years.

As stated earlier, the focus of this thesis is not on tractography itself, but on how to

process and to extract information from the resulting trajectories, therefore we are

content to describe three major approaches and their properties.

2.5.1 Streamline Tractography

In regions with high diffusion anisotropy it is plausible to assume that the eigenvector

that corresponds to the largest eigenvalue of the diffusivity tensor is parallel to the

local orientation of the fiber tracts. Streamline tractography methods are based on

this assumption, i.e.,

t(s) = ê1(r(s)), (2.25)

where ê1(r(s)) is the unit eigenvector that corresponds to the largest eigenvalue of

the tensor at r(s) [8].

The main disadvantage of streamline tractography is that if the evolving trajec-

tory reaches a point in the space where anisotropy is small, further evolution of the

trajectory is susceptible to numerical errors in determining the largest eigenvalue and

the corresponding eigenvector. Usually a threshold on the minimum FA is specified as

a stopping criteria. However it is sometimes desired to bypass individual points where

anisotropy is locally small due to either image imperfections and noise, or where two

or more fiber tracts cross each other, for example the chiasm region in the optical

nerve.

Streamline tractography has been used for all of the experiments in this thesis.

The steps are summarized in Algorithm 2.1.

2.5.2 Diffusion Deflection Tractography

Diffusion deflection tractography [97] has been proposed to overcome the disadvantage

of streamline tractography when regions with low anisotropy are reached. In regions
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Algorithm 2.1:

Input: The diffusion tensor field and seed points.
Output: Trajectories of the fiber bundles that start from the seed points.
Take the seed points {ri(0)}Ni=11

foreach seed point do2

repeat /* stopping criteria. */3

foreach sign = ±1 do /* move in both directions. */4

ri(s+ ∆s) = ri(s) + sign∆sê1;5

s = s+ ∆s;6

end7

until FA(ri(s)) < 0.15;8

end9

with low anisotropy, such as fiber crossing regions, the direction of fastest diffusion

is not well defined. Diffusion deflection tractography uses the entire tensor to deflect

the propagation direction of the trajectory, i.e.,

t(s) = D(s)t(s−∆s) (2.26)

The propagation direction depends on the shape of the local tensor and the direction

of t(s−∆s) with respect to the tensor frame. For prolate, anisotropic tensors, with

a small angle between t(s −∆s) and the main eigenvector of D(s) the trajectory is

deflected toward this eigenvector. When anisotropy is low or when the angle between

t(s − ∆s) and the main eigenvector is large, the deflection is smaller. In a limiting

case where there is no anisotropy the propagation direction does not change.

It has been shown that this method is less sensitive to noise and image imperfec-

tions [51] but our experiments have shown that it does not perform well on extracting

curved tracts due to its tendency to preserve the previous direction at each step.

2.5.3 Stochastic Tractography

Both streamline and diffusion deflection methods are deterministic tractography ap-

proaches, i.e., the course of the extracted trajectories from a group of seed point is

determined solely by the diffusion tensor data. Various stochastic tractography meth-
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ods have been proposed to alleviate the shortcomings of deterministic approaches in

crossing regions by adding some randomness to the deterministic tractography [16].

These methods consider a probability model on the fiber orientation, instead of us-

ing either only the major eigenvector or the full tensor. Rather than producing one

trajectory from each seed point, multiple trajectories are produced by sampling the

probability model. Unlike the previous methods, these methods can deal with the

crossing problem as they allow branching, in the sense that many trajectories are

produced on a random basis so the total output can capture a branching structure.

The disadvantage of stochastic methods is the explosion of the generated data for

analysis or visualization since unlike streamline tractography, when a single highly

probable trajectory is generated, they can produce a huge number of trajectories, on

the order of 1,000, per seed point.

2.6 Related Work on Quantitative Analysis of White

Matter Fiber Tracts

A significant amount of work has been devoted to extracting information from diffu-

sion images to study brain changes related to development [42], aging [78], and dif-

ferent pathologies such as multiple sclerosis [96], schizophrenia [68], Parkinson’s [79],

and Alzheimer’s [15]. The ultimate goal of these studies is to understand the brain

connectivity and integrity and how they are affected by neural diseases through quan-

titative analysis of diffusion images. To this end, many algorithms have been proposed

in recent years to make such analysis possible.

To understand whether new algorithms are necessary for analysis of diffusion

images, we categorize the existing algorithms based on what is measured and where

it is being measured. The former determines whether specific procedures are needed

to extract the desired quantitative parameters from diffusion data and to perform

group averaging and comparison, while the latter tells us how to specify the location

where these parameters are extracted and how to make sure that in a population
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Table 2.1: Categorizing DT-MRI analysis studies based on the quantity being mea-
sured. In each case the required tools and the approaches taken to develop these tools
are listed.

Measured Quantity Required Tools Approach

Scalar parameters None
(such as FA)
Diffusion tensor Methods to average and Riemannian [35,53,70]

compare tensor data Log-Euclidean [6]
Geodesic-loxodrome [48]

Shape descriptors Methods to calculate Curvature and torsion [11,39,57]
shape descriptors

study these locations correspond to each other.

The easiest to measure and the most common quantitative parameters are scalar

diffusion parameters, such as FA or tensor eigenvalues. Such choices are also mo-

tivated by clinical applications where axon integrity is correlated to diffusion pa-

rameters, as discussed in Section 2.1. However, information about fiber orientation

encoded in the tensor data is often lost when using scalar diffusion measures. Changes

in fiber orientation can be seen, for example, in the vicinity of brain lesions. Hence,

another possibility for quantitative analysis is to compare orientation information or

the full tensor data. To enable this, algorithms have been proposed to average and

compare tensor data [6, 35, 48, 53, 70]. Finally, the last option is to measure shape

descriptors of the fiber bundles, for example curvature and torsion of the fiber trajec-

tories [11,39,57]. One particular application of these measures is to study changes in

the shape of the fiber tracts during brain development.

The above mentioned options and the required algorithms to deal with each option

are summarized in Table 2.1.

Table 2.2 lists major options to define the location where quantitative parameters

are measured, the required tools for each option, and the approaches proposed to

address these requirements. Voxel-based analysis, in principle, offers an excellent

spatial resolution when performing group averaging and identifying group differences,

but is sensitive to alignment errors. Registration algorithms are needed to map all
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Table 2.2: Categorization of DT-MRI analysis work based on where the quantitative
parameters are measured and compared. In each case the required tools specifying
the location and the approaches proposed to address these requirements are listed.

Measurement Required Tools Approach
location

Voxel-based DT-MRI registration Diffusion scalars [75]
Multi-channel (Orientation) [74]
Tensor [2, 20,21,72,100]
Tract-based [82,99,102]

ROI-based ROI specification Scalar segmentation
Tensor segmentation [45,54,76,93]
Tractography [46,47,69]

Tract-oriented Tractography [10,38,97]

Grouping (Clustering) Unsupervised [17,64,81,88]
Knowledge-based [41,58], [60, 61] (This thesis)

Point-Correspondence Land marks and Procrustes alg. [11,22]
Curve matching [30,56,66]
Distance map [59](This thesis)

subjects into a common space. Methods proposed to register conventional MRI can

be easily adopted by using scalar diffusion fields, such as FA or ADC. However, it

has been shown that the use of the directional information present in the diffusion

tensor elements significantly improves the accuracy of the registration results [74].

Algorithms have also been proposed to use the whole tensor field for registration

[2, 21, 72, 100], which in turn requires tensor re-orientation [2, 67]. Apart from the

sensitivity of the voxel-based method to registration process, the spatial resolution of

the method is often lost due to practical considerations [47]. The data is often over-

smoothed to ensure robust registration and significance of the statistical analysis.

Hence, it is difficult to establish correspondence between the voxel regions where

significant group difference has been observed and anatomical structures. Alternative

approaches include [82], where the skeleton of the FA volumes is extracted and aligned

to compute the registration matrix. Similar approaches have been proposed in [102],

where fiber trajectories are aligned to an atlas to obtain the transform parameters

and in [99], where the medial surface of fiber tracts is used for registration.
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ROI-based methods are currently the most popular approach in quantitative anal-

ysis of MRI. To avoid the manual delineation of ROIs and gain reliability and time

efficiency, algorithms have been proposed to segment the diffusion images, mostly

from the FA volumes and recently using the whole tensor information [45,54,76,93].

Tract-based approaches [46,47,69] have also been proposed in which the trajectories

extracted by a tractography algorithm form the ROI. Regardless of how the ROIs

are specified, local variation of the quantitative parameters is not captured in such

analysis.

In this thesis we focus on tract-oriented quantitative analysis, in the sense that

we are interested in the variation of diffusion parameters or shape descriptors along

the extracted trajectories that belong to an anatomical tract. Analogous to segmen-

tation in ROI-based analysis, clustering approaches have been proposed to group the

trajectories into bundles. Clustering ensures that the quantitative parameters are

measured only on trajectories that belong to a bundle. Hence, one would compare

the same tracts, when performing a group analysis and the observed differences will

be due to differences in the properties of the specific tracts rather than differences in

the overall anatomy/shape of the individual brains. In general, these algorithms all

share the common theme of first defining a similarity metric between the trajectories,

and then employing an algorithm for clustering based on the established similarity

measure [88].

The output of clustering methods is a set of labeled trajectories, each assigned

(probabilistically) to a cluster. In most studies, point-by-point correspondence be-

tween the trajectories of each cluster, however, is not determined rigorously. In one

of the early works on DT-MRI analysis, Ding, et al. [30] tackled the issue of quan-

tification of tracts by finding the corresponding segments, which they defined as the

portion of a trajectory that has point-wise correspondence to a portion of another

trajectory. They assumed that the seed points of the two trajectories to be compared

correspond to each other, which is not the case unless all trajectories are seeded from

a small ROI. The algorithm is thus inadequate for whole brain fiber analysis.

Batchelor, et al. [11] proposed different tools to quantify the shape of fiber tracts.
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They noted the problem of point correspondence but made the assumption that it is

approximately achieved by proper choice of the seed point and regularly sampling the

arc-length. With point correspondence roughly known, they applied the Procrustes

algorithm to register the trajectories. There is also a series of work by Gerig et al.

(c.f. [39]), which described methods and applications for tract-oriented quantitative

analysis. They dealt with the issue of correspondence by letting the user define a

common origin for the set of trajectories in each cluster, based on geometric criteria

or based on anatomical landmarks. In their latest work [22], they also proposed the

Procrustes algorithm for the registration of the trajectories to compute the average

tensor. Although their approach provides some valuable information about the fibers,

its applicability is limited by the need for manual intervention to set common start

points for all the trajectories in a cluster. Also, they assume all the trajectories in a

cluster have the same length, which is a reasonable assumption only if a small ROI is

considered for the tractography seed points and they end roughly in a common area.

Otherwise a thorough preprocessing is required.

In one of our earlier works [56], we used a string matching algorithm to align all

extracted trajectories with each cluster center at each iteration of our expectation-

maximization clustering. The accuracy of this approach was limited by the simple

curve matching algorithm used. In subsequent work [59], we presented the idea of

constructing a Voronoi diagram by building a distance map (as detailed in Chapter

3 of this thesis) to find the closest points on the cluster centers to the points on

the trajectories and so establishing the point correspondence in an efficient way. In

another work [66], a common coordinate system was constructed in a similar fashion

by matching each point on the prototype fiber (cluster center) to the closest point(s)

on other trajectories.

Most clustering approaches used to group fiber trajectories are unsupervised [17,

64, 81], and hence do not necessarily produce anatomically-meaningful clusters. We

believe that a supervised clustering, which benefits from anatomical information, not

only produces anatomically meaningful clusters, but also yields more robust results

that are less sensitive to the presence of outliers and imperfections in the DT-MRI
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data. It also facilitates the population studies by making the correspondence between

the bundles across subjects.

Based on the discussion above, the elements of tract-oriented analysis (as defined

here) are: (a) tractography, where many methods have been already proposed; (b)

clustering, where to our knowledge no method has been proposed in the past to incor-

porate anatomical information rigorously; and (c) determining point correspondence,

where proposed methods are in general too simplistic. The rest of this thesis provides

efficient methods to determine the point correspondence between trajectories and to

perform the clustering in a Bayesian framework, where anatomical information can

be used rigorously.
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Chapter 3

Point Correspondence and

Similarity Measures for 3-D Curves

As discussed in the previous chapter, clustering fiber trajectories into anatomically

known bundles and determining their point correspondence are two integral parts of

the tract-oriented quantitative analysis. The former requires a similarity measure of

3-D curves to discriminate the trajectories. Determining the point correspondence

between a pair of trajectories is not only essential for tract-oriented analysis, but also

reduces the calculation of the similarity measure to the calculation of the Euclidean

distance between corresponding points.

Determining the point correspondence between 3-D curves is not a trivial task.

Although many authors acknowledge that point-by-point correspondence of the tra-

jectories should be defined by a curve matching algorithm for accurate clustering and

quantitative analysis [11, 30, 39], to our knowledge this problem has not been solved

to date. The difficulty lies in the fact that the number of trajectories is usually very

large, especially when the analysis is performed on a population or on the whole

brain. This makes it computationally inefficient, if not impossible, to perform a rig-

orous curve matching algorithm on every pair of trajectories. In this chapter, we first

review popular methods for calculating the distance between curves, and then we list

the measures that have been used in DT-MRI analysis to date. We next propose a

novel approach that determines the point correspondence and defines the similarity
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measure at the same time and is computationally efficient and sufficiently robust to

be used for large groups of trajectories.

3.1 Similarity Measures for Curves

Many similarity measures are based on the Lp distance or the Minkowski distance

between two points [91]:

Lp(x,y) =
(∑

j

|xj − yj|p
)1/p

(3.1)

For p = 2 this yields the Euclidean distance and for p = 1 it reduces to the Manhattan

distance.

Different distance measures have been defined to show the dissimilarity between

two groups of points. This section reviews the most common choices.

3.1.1 Bottleneck Distance

For two point sets of equal size, the bottleneck distance is defined as the minimum

of the maximum point-to-point distance taken over all one-to-one correspondences

between the two sets [43]. Variations on the bottleneck distance are the minimum

weight distance, the most uniform distance, and the minimum deviation distance.

However, in many applications, including ours, the two point sets (3-D curves in our

work) do not have the same size.

3.1.2 Hausdorff Distance

The directed Hausdorff distance from one set of points to another set is defined as the

lowest upper bound (supremum) of the distance to the second set over all points in

the first set. The Hausdorff distance between the two sets is defined as the maximum

of the two directed Hausdorff distances.

The Hausdorff distance is very sensitive to noise: a single outlier can determine

the distance value [91]. For finite point sets, a similar measure that is not as sensitive
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is the partial Hausdorff distance. It is the maximum of the two directed partial

Hausdorff distances, defined as the k-th value in increasing order of the distance from

a point in the first set to the second set. Alternatively, the p-th order mean Hausdorff

distance has been defined, which is less sensitive to noise, but still not very robust [91].

3.1.3 Fréchet Distance

The Hausdorff distance does not consider the order of the points on the curve; for

all points on one curve the closest distance to the other curve is measured. However,

if we move along both curves simultaneously and measure the distance between the

corresponding points, the maximum of these distances may be larger. The Fréchet

distance takes care of the order of the points on the curves, by finding the maximum

distance between the two curves for each monotonic point correspondence and taking

the minimum over all point correspondences. Algorithms have been proposed to speed

up the search process, but this metric is still not easy to implement [3].

3.1.4 Nonlinear Elastic Matching Distance

For each pair of corresponding points taken from the two curves, the stretch is set

equal to 1 if either of the points have correspondence to the preceding point on the

other curves as well, and otherwise equal to zero. The nonlinear elastic matching

distance is the minimum over all correspondences of the sum of the stretches plus

the difference between the tangent angles at each pair of corresponding points [24].

It should be noted that the nonlinear elastic matching distance is not a metric. The

metric proposed in our work uses a concept similar to the stretch function we propose

in this chapter.

3.1.5 Turning Function Distance

For a 2-D curve, the cumulative angle function, or turning function gives the angle

between the counterclockwise tangent and the x-axis as a function of the arc length.

This function is invariant under translation, while rotation results in a shift in the

61



function. The distance between two 2-D curves can be defined as the integral of the

Lp distance between their turning function representation [5]. Extension of turning

function distance to 3-D curves is not straightforward. Moreover, in our application

the spatial distance between two curves is also important, so a translation-invariant

representation is not a good choice.

3.1.6 Reflection Distance

The reflection metric is an affine-invariant metric defined on finite unions of curves

on a plane or surface [91]. For each point on the plane the visibility star is defined

as the union of open line segments connecting points of the curve that are visible

from that point. The reflection star is defined by intersecting the visibility star

and its reflection with respect to the point. The reflection distance is calculated by

integrating the difference between the area of the reflection stars defined at each point

on the plane and with respect to the two curves. This metric is robust to deformation,

blur, crack, and noise occlusion, but computing the distance by explicitly constructing

the visibility stars is highly time consuming.

3.1.7 Transport Distance

The transport distance between two curves is the minimum amount of work needed

to transform one curve to the other [91]. The flow between each pair of points from

the curves is defined to satisfy several properties: (a) All flows are non-negative; (b)

For each point on the second curve, the inflow, i.e., sum of the flow from all points

on the first curve to that particular point, is not greater than one; (c) Similarly, the

out-flow from each point on the first curve is not greater than one; (d) The sum of

all flows is equal to the minimum number of points on the curves. The transport

distance is calculated by multiplying the flow by the distance between each pair of

points, summing up over all pairs, and finding the minimum possible over all choices

of the flow matrix.
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3.2 Similarity Measures Used in DTI Analysis

To get around the difficulty of performing a sophisticated curve matching algorithm,

many authors attempt to define simple, yet reasonable similarity measures. For ex-

ample, Brun et al. simply used the start and end points of the trajectories for clus-

tering [16] as their model is to match points on the cortex, and hence if connected,

it is less important to know exactly which path the tract took. In [17], they used a

9-D shape descriptor for each trajectory, including the mean and square root of the

covariance matrix of its points and then computed the pairwise Euclidean distance

of the descriptors in a spectral clustering scheme. The clustering proposed in [30]

defines the similarity measure based on the length ratio and the Euclidean distance

between the corresponding segments of each pair of trajectories. However, the cor-

responding segments are determined with the assumption that the seed points of all

the trajectories correspond to each other. In [81] a fuzzy c-means clustering algo-

rithm is proposed and various distance measures between the trajectories are used,

including the dot product of the corresponding tangents of the trajectories and the

average distance between points along them. Corouge, et al., [23] implemented sev-

eral distance measures such as closest point distance, mean distance of closest points

(symmetric chamfer distance), and the symmetric Hausdorff distance, and showed

that each distance metric has certain advantages and shortcomings. In a spectral

clustering approach, O’Donnel et al. [64] build an affinity matrix upon pairwise sym-

metric Hausdorff distances between trajectories. Leemans et al. [52] find the closest

subcurves in the curvature-torsion space and vary the length of the subcurves to deal

with the curve matching problem. They further use a scale-space method to construct

the space curves at different levels of detail. The spatial information is, however, not

utilized in their approach. Furthermore, the time-efficiency of their method for whole

brain clustering or population study is questionable as the complexity of their ap-

proach grows with the square of the number of subcurves. In [58], we used a B-spline

representations of trajectories to compare the trajectories extracted from the subject

to those from an atlas.
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From the discussion above, it is clear that there is no consensus in the DTI commu-

nity about the best similarity measure to compare fiber trajectories. The Hausdorff

distance perhaps is the most popular measure that is adequate to capture the local

relationship between two curves, however it is very sensitive to noise in a sense that

a single outlier can determine the distance value [91].

As stated earlier, apart from defining a similarity measure needed for clustering, we

also need to establish point correspondence between a pair of trajectories to perform

quantitative analysis along the fibers. We reviewed the related work on the calculation

of point-correspondence in the Table 2.2 in Chapter 2. In this chapter, we present

our novel approach for a stable and computationally efficient way to define similarity

and point-correspondence between the trajectories using the distance transform.

3.3 Our Proposed Approach: Distance Transforms

We treat each trajectory as a sampled 3-D curve, i.e., an ordered set of points, so the

ith trajectory is represented as ri = {rij}. As will be outlined in the next chapter, the

set of trajectories is clustered into a number of subsets by assigning a membership

probability pik to each trajectory, ri, to denote its membership in the kth cluster

(∀i,
∑

k pik = 1). For each cluster, a 3-D curve, µk = {µkj}, is defined as the cluster

center (prototype trajectory) where each point, µkj, is obtained as the average of

all of its corresponding points on the trajectories: µk =
∑

i pikr
(k)
i , where r

(k)
i is

the trajectory ri, re-parametrized to have point correspondence to cluster k, and the

summation is performed over all trajectories (See Figure 3-1).

Our space includes a set of 3-D curves and a number of cluster centers. From

each center, µk, we construct a Euclidean distance map, that is, for each point in the

space, x, its distance is given by:

Dk(x) = min
j
d(x,µkj) (3.2)
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9

• Trajectories are sampled uniformly.
• A 3D curve is defined as the cluster center

– Weighted average of all of its corresponding points on the 
trajectories.

• A re-indexed version of each trajectory is built to reflect 
its point correspondence with each cluster center. 

Basic definitions

ir

kμ

( )k
ir ith trajectory

kth cluster center

Figure 3-1: A schematic representation of a trajectory (rik) and a cluster center(µk).
They are equidistance sampled. The rkik represents the trajectory with its point-
correspondence to cluster k is determined.

and the nearest-neighbor transform, Lk, for each point in the space, is given by:

Lk(x) = arg min
j
d(x,µkj) (3.3)

where d(x,µkj) is the Euclidean distance from the point x in the space to the jth

point on the kth center. Each element of Lk will thus contain the linear index of

the nearest point of the center µk. Figure 3-2 shows the distance map and label

map constructed from a sample 2-D curve. The label map partitions the space into

Voronoi cells that each correspond to a point of the center. Now, for every curve,

ri = {rij} in the space, the distance to the center µk can be measured simply as:

dE(ri,µk) =
∑
j

Dk(rij), (3.4)

and by projecting the curve onto the label map, its point correspondence to the center

is readily achieved (See Figure 3-2).

We also note that a spatial distance by itself does not encode enough information

for measuring the pair-wise similarity. One obvious issue is the variable lengths of the

trajectories. Two examples are shown in the Figure 3-3: (a) shows the case where

the trajectory (marked by blue dots) has a very small distance to the cluster center

(marked by red dots), but is not similar in shape to it. So we want some penalty to

account for this shape dissimilarity. (b) shows another case in which the trajectory

has roughly the same distance to either of the cluster centers, but we prefer it to be
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(a) (b)

Figure 3-2: (a) Distance map from sample points on a cluster center and (b) the
point correspondence label map with the center overlaid. Each region in the label
map, displayed by a different color, consists of all of the points in the space that have
the minimum distance to a specific point on the cluster center. Therefore, projecting
any curve onto this label map determines the point correspondence of each of its
samples to the center based on which region that sample is located.

assigned to the left one.

Given that we have the knowledge of point-correspondence, we add a penalty for

each missing point, when a trajectory is shorter than the cluster center, as shown

in Figure 3-4(a). Another issue is whether the trajectory has one-to-one point cor-

respondence to the cluster center, which is the case when they are similar in shape.

Thus, any repeated or missing match represents shape dissimilarity. A penalty is

needed to be added if there are multiple points on the trajectory that correspond

to a single point on the cluster center, as in Figure 3-4(b). However, if multiple

correspondence is merely because the trajectory is longer than the cluster center no

penalty is added, since the trajectory is already penalized, as shown in Figure 3-4(c).

We add the penalty term, dpenalty as described above to the Euclidean distance and

normalize to the length of the fiber trajectory, Li. The normalization is to make the

distance independent of length of the trajectory. We denote the adjusted distance by

da(ri,µk):

dik = da(ri,µk) =
dE(ri,µk) + dpenalty(ri,µk)

Li
. (3.5)
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Shape dissimilarity

is not enough to measure the similarity

Figure 3-3: Schematic representation of cases where a penalty for shape dissimilarity
is required. (a) A trajectory (marked by blue dots) that has a very small distance
to the cluster center (marked by red dots), but is not similar in shape to it. (b) A
trajectory that has roughly the same distance to either of the cluster centers, but we
prefer it to be assigned to the left cluster center that has roughly the same length as
the trajectory.

where dpenalty is equal to the number of missing points times the average distance of

the matched points of the trajectory from the cluster center, dav. An efficient way of

implementing this in the algorithm is to set

dpenalty(ri,µk) = ((Lk − Li) + Number of repeated matches)× dav (3.6)

where Lk and Li are the length of the cluster center and the trajectory, respectively.

Note that this penalty term is similar to the stretch term used in the nonlinear

elastic matching distance, described earlier.

As an optional modification of the method, one can model the spread of the

trajectories in each cluster, by associating a covariance matrix with each point on the

cluster center 1. We denote the 3×3 covariance matrix attributed to the point µkj

on the kth cluster with Λkj. When computing the similarity of each trajectory to

the center, the variability of the covariance matrix along the center should be taken

into account, so that the trajectory points associated with a portion of the cluster

center that has larger covariance are penalized less. This is done by computing the

1The computation of covariance matrix is discussed in Chapter 4
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(a) (b) (c)

Figure 3-4: Adjustments made to the total distance between the trajectory (blue) and
the cluster center (red) calculated by Eq. (3.7). The penalty is equal to the number
of missing point times the average distance of the matched points, dav. This is imple-
mented more efficiently as dpenalty = ((Lk − Li) + Number of repeated points)× dav,
where Lk and Li are the length of the cluster center and the trajectory, respectively.
(a) dpenalty = 2dav, (b) dpenalty = 6dav, (c) dpenalty = 0.

Mahalanobis distance:

dM(ri,µk) =

√√√√ Li∑
j=1

(r
(k)
ij − µkj)TΛ−1

kj (r
(k)
ij − µkj) (3.7)

3.4 Discussion

As stated earlier, there is no fundamentally correct way to quantify the similarity

between two curves and hence it is not possible to mathematically assess the quality

of the distance measures introduced in this chapter. In Table 3.1, we qualitatively

compare our introduced distance measure with our judgment on what is expected

from a distance measure in our application. Comparison is also made with both

unidirectional and bidirectional Hausdorff distances. Note that in this comparison,

both the cluster center (marked with red dots) and the trajectory (marked with blue

dots) are uniformly sampled - with the same down-sampling ratio.

The first row in the table shows a pairing of trajectory-cluster center which is

very similar in shape. Assuming that the average distance between the corresponding

points is equal to unity, one expects the distance between the two to be equal to

one. In fact, all three distance measures yield a distance of one. The second row
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shows a pair where the trajectory is smaller than the center. Hence, once the point

correspondence from the trajectory to the center is determined, there are two points

on the center that do not have any corresponding points on the trajectory (two

missing points). Based on our judgment, the distance between the trajectory and the

center must be somewhat more than unity, but less than two, i.e., less than the case

where there is no missing point but the average distance of the corresponding points

is two. The penalty term in our distance measure satisfies this requirement. The

third row shows a case of the trajectory that is very close to the center for most of its

length, but fans out at one end. Such cases might occur, for example, in corticospinal

tracts. Both Hausdorff distances give a value of 2, while our measure gives a distance

less than one. Finally, the last row shows a case where the trajectory and center

are not similar at all, in spite of the fact that overall the trajectory is located close

to the center. The unidirectional Hausdorff distance clearly fails in this case, while

both bidirectional Hausdorff and our measure result in relatively high numbers, in

agreement with the fact that the two curves are not similar at all.

3.5 Summary

In this chapter we addressed the problem of defining a similarity measure between

3-D curves as a prerequisite of the clustering step. Since in our application we mainly

deal with a large number of trajectories (3-D curves), a pairwise computation of a

similarity measure and invoking a curve matching algorithm for finding the point

correspondences is not a computationally efficient method. In this chapter we took

advantage of the fact that although the number of trajectories is large, the number

of desired clusters is usually small. We therefore reduced the problem to finding

the distance and point correspondence of each trajectory to each cluster center (a

prototype trajectory). We proposed a novel method for measuring similarity and

establishing point correspondences between the trajectories and each of the cluster

centers by building a distance map and the corresponding Voronoi diagram for each

center. We demonstrated the computational efficiency of our approach in theory and
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Table 3.1: Comparison of the unidirectional and bidirectional Hausdorff distance with
the distance measure introduced in this work for typical trajectory-center pairs. Blue
points represent samples of the trajectory, while red points are samples of the cluster
center.

Trajectory-Center Unidirectional Bidirectional Our Measure Expected
Pair Hausdorff Hausdorff Dissimilarity

h=1
H=4

(4+12)/4 = 4

h=1
H=2

(5+2)/5 = 1.4

h=2
H=2

(4+0.6)/7 = 0.651 1 1 1
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h=2
H=2
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5
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h=1
H=4
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h=1
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h=2
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1 4 4+12
4

= 4 d� 1
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practice and qualitatively compared it with the most popular methods. In the next

chapter we present our mixture model clustering approach, in which the similarity

measure defined in this chapter is used and the cluster centers are iteratively updated.
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Chapter 4

Probabilistic Clustering of White

Matter Trajectories

In this chapter we propose a novel model-based method to cluster fiber trajectories

into groups on the basis of shape similarity and spatial proximity. We first briefly

describe possible clustering approaches and justify our choice of mixture model clus-

tering. The merit of such a model-based approach is contingent upon choosing an

accurate probability model, for which we propose a gamma distribution over the dis-

tances between the trajectories and cluster centers. Since in the next chapter we add

additional layers of probability models to incorporate anatomical knowledge, we will

begin with the use of graphical models to better understand the inference problem and

the relation between the variables involved. We then move to this chapter’s inference

problem, in which the gamma mixture parameters and therefore cluster assignments

are inferred from the observed data, i.e., the distance between the trajectories and

the cluster centers. The Expectation-Maximization (EM) algorithm is a powerful

approach for inferring unknown parameters. We provide an introduction to the EM

algorithm, followed by our clustering problem and the EM formulation used to solve

it. We conclude this chapter by presenting the results of applying the EM method on

some experimental data.
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4.1 Desired Features and Possible Solutions

As stated in Chapter 1, the two main features, which we desired in our application, are

probabilistic assignment of the trajectories to clusters and the flexibility to include

anatomical information in the clustering process. To understand which clustering

approaches can be adopted to satisfy these requirements, we first review the existing

methods.

Clustering methods can be very broadly categorized in different ways:

• Discriminative versus generative

• Deterministic versus probabilistic

• Partitional versus hierarchical

In discriminative or distance/similarity-based methods, such as the spectral clus-

tering approach, a distance or similarity measure between each pair of data points is

first calculated and then the data is clustered based on the similarity measure. For

data points that can be represented by a vector, i.e., when they have the same length

and correspondence between their components is predetermined, the most common

distance measures are Euclidean distance and Mahalanobis distance. For more com-

plex data types, for example variable-length sequences, a good similarity measure is

often application-dependent as discussed in the previous chapter. For large data sets,

such as the trajectories in our problem, pair-wise calculation of the similarity can be

computationally inefficient.

Generative or model-based methods, on the other hand, learn generative models

from the data, where each model represents a cluster. Contingent on proper selection

of the model, model parameters can correspond to meaningful parameters. For exam-

ple, in Gaussian mixture model clustering, model parameters represent the average

and spread of the data points in each cluster, while mixing weights give the prevalence

of each cluster. Naturally, it is straightforward to put some limits on each of these

parameters if prior information is available. In such approaches, the identification of

outliers is also straightforward.
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Partitional clustering methods (including mixture models) attempt to directly

divide the data set into a given number of clusters. Hierarchical methods, on the other

hand, proceed successively by either merging smaller clusters into larger ones (bottom-

up), or by splitting larger clusters into smaller ones (top-down). These algorithms give

a tree of clusters, called a dendrogram, which shows how clusters are related. The user

can decide where to cut the dendrogram, and thus the algorithm is immune to over-

or under- clustering, which is a common pitfall for partitional clustering methods.

In our application, however, the user specifies the initial cluster centers, which are

representative trajectories for each cluster, based on some anatomical information

and the desired degree of detail1. Hence, a partitional clustering method is also able

to find the desired clusters.

Clustering methods can also be categorized into deterministic and probabilistic

approaches. Deterministic clustering algorithms, such as k-means, assign each data

point to one and only one cluster. This may lead to biased estimators of the cluster

centers if the clusters overlap. A probabilistic clustering, on the contrary, deals with

the inherent uncertainty in assigning the data points to clusters. More importantly,

quantitative parameters can be estimated by a weighted averaging over cluster mem-

bers and thus more robust results, less sensitive to the presence of outliers, may be

obtained.

As stated earlier, another desired feature in our application is the ability to in-

clude anatomical knowledge in clustering. A Bayesian approach is a principled way

of combining prior knowledge that comes from an atlas in our application and the

information from the observed data (distances here). Our proposed model-based ap-

proach has the flexibility to benefit from prior information in different levels. Our

implementation of the clustering algorithm that includes spatial prior information is

discussed in the next chapter.

Based on the above discussion we opt to use mixture-model clustering in a Bayesian

1Note that specifying the initial cluster centers by the user is not a difficult task. As will be
shown later in this chapter, the final clustering results are not very sensitive to the initial cluster
centers as long as these centers represent the desired clusters. So, the user can for example pick
the trajectories that s/he feels are representatives of the clusters. Alternatively, these initial cluster
centers can be supplied by an Atlas if such data is available.
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15

Probabilistic clustering – mixture model

• We do the mixture modeling in the space of our defined 
distance metric, dik

r
i

Center k

d.k ~ Gamma(θk)

dik

Figure 4-1: In our approach the probabilistic model is constructed on the distances
between the trajectories (solid curves) and the cluster centers (dashed curves), not
on the point coordinates. For each pair of trajectory ri and cluster center µk, a
distance dik is calculated as explained in Chapter 3. As detailed in this chapter, we
further assume that the dik’s follow a gamma distribution parametrized with θk, i.e.,
dik ∼ Gamma(θk).

framework. In other words, the proposed clustering method will be a probabilistic,

model-based approach, where anatomical knowledge is included with a Bayesian for-

mulation. This novel approach is a central aspect of this thesis.

4.2 Probabilistic Model for Trajectories

All features of a probabilistic model-based approach are conditioned upon proper

modeling of the data. This section discusses our modeling choices.

4.2.1 Density Estimation

As discussed in the previous chapter, the variable-length 3-D curves are mapped into a

distance matrix, da(ri,µk) = {dik}N×K where N is the number of curves (trajectories)

and K is a user-defined number of clusters. The ultimate goal of this chapter is to

estimate the membership probability of each curve to each cluster based on the values

of dik’s (See Figure 4-1). Here, we aim to construct a probabilistic model for each

cluster.
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We propose to perform the modeling on distances instead of the actual point

coordinates. The reasons for this choice are:

• Calculating the probability density of the points on the curves is not straight-

forward as they are not statistically independent.

• We are dealing with variable-length data, as each trajectory has a different

length which leads to non-identical dimensionality between the probability modes,

if constructed in the space of point coordinates. Building the probability model

based on the distance to the cluster centers, introduced in the previous chapter,

deals with this problem effectively.

The Gaussian distribution is a common choice for the density functions of the data

points. However, a Gaussian distribution does not accurately represent the nature of

the distance of the 3-D trajectories from the cluster centers. In the simplest form,

the number of possible trajectories with a given distance from the center grows with

the distance, while the probability that they belong to that cluster decays exponen-

tially. Among the well-known distributions, the Gamma distribution captures this

combined behavior very well: the monomial term increases with the distance while

the exponential term decays. Given that the dik’s are non-negative, we assume that

distances for each cluster follow a Gamma distribution with shape and inverse scale

parameters αk and βk, respectively:

Gamma(d|αk, βk) = dαk−1β
αk
k e−βk d

Γ(αk)
for d ∈ [0,∞) (4.1)

where Γ(.) is the gamma function. As can be seen in Figure (4-2), the shape of the

Gamma distribution is controlled by parameter αk, which is indicative of distance

variation. For αk = 1 the distribution becomes an exponential distribution. When

αk > 1, the distribution is bell-shaped and in the case of αk < 1, the distribution is

highly skewed. The inverse scale parameter βk controls the decay rate.

Figure 4-3 shows the histogram of distances of the trajectories that belong to the

lower splenium (Figure 1.3) from the corresponding cluster center. A gamma distri-
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Figure 4-2: Gamma distribution function with different set of parameters that control
the shape of the distribution.

bution fits well with this histogram. Note that this is just a sample, and each cluster

can be fitted well with the gamma distribution with a different set of parameters.

4.2.2 Mixture Model

In mixture-model clustering, the data is modeled by a finite number of density func-

tions, where each cluster is represented by a parametric distribution:

p(x|Θ) =
K∑
k=1

wkfk(x|gk), (4.2)

where x is a feature vector (distances in this case), wk’s are mixing weights, fk is

the density function of cluster k parameterized by gk, and Θ = {wk,gk}Kk=1 is the

collection of parameters that define the mixture model. We define the mixture model

in the space of d, as follows:

p(di|Θ) =
K∑
k=1

wkfk(di|gk), (4.3)
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Figure 4-3: Histogram of the distances of the trajectories from the cluster center and
the fitted gamma distribution.

with the density functions given by:

fk(di|gk) = Gamma(dik; gk)
∏
j 6=k

U(dij; 0, d0), (4.4)

where gk is the parameter set of the Gamma distribution, {αk, βk}, for cluster k,

and trajectory i corresponds to cluster j, and U(x; 0, d0) is the uniform distribution

function over [0, d0] with d0 a large enough constant. The above equation means that

in constructing the probability model for cluster k, we only care about the distances

of trajectories to the cluster center k. The uniform distribution term is basically

added to make the definition of probability model on di complete in K dimensions.

In the current implementation, the wk’s are treated as unknown parameters, how-

ever they could be assumed as fixed values, taken from an anatomical prior as will

be discussed in the next chapter. The goal here is to infer Θ = {gk, wk} from the

observed data points, di’s.
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4.3 Graphical Model for Our Clustering Problem

Graphical models help us better understand the relationship between the variables in

an inference problem. Appendix A presents an introduction to graphical models.

zi

di

g zi ~ Multinomial(w)

i = 1, …, N

0

Gamma( )     
~

Uniform(0, )  
k i

ik
i

g k z
d

d k z

⎧ =⎪⎪⎪⎨⎪ ≠⎪⎪⎩

w

Figure 4-4: A graphical model of the clustering of fiber trajectories in the absence
of an anatomical prior. The observed variables, i.e., shaded node, are the distances
from each trajectory to cluster centers. zi is defined as the label of each trajectory
which takes on integer values. g is the collection of the parameters for the Gamma
distributions and w is the mixing weights.

Figure 4-4 shows the graphical model for clustering trajectories in the absence

of any anatomical spatial prior, which is the focus of this chapter. The observed

variables (shaded node) are the distances of each trajectory to each cluster center. Z

is an indicator variable to represent the hidden data, a collection of zi’s, and is defined

as the label of each trajectory, which takes on integer values and can be considered

as samples of a single-trial multinomial distribution:

zi ∼ Multinomial(w), (4.5)

where w = [w1...wK ] are the collection of the unknown mixing parameters and K is

the user-defined number of clusters. In other words, in the absence of any observation,

p(zi = k) is equal to the weight of cluster k. Note that
∑K

k=1 p(zi = k) =
∑K

k=1wk = 1.
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As stated earlier, we assume that each element of the vector di follows the distribution

dik ∼

Gamma(gk) k = zi

Uniform([0, d0]) k 6= zi

(4.6)

where gk is the parameter set of the Gamma distribution, {αk, βk}, for each cluster,

and U([0, d0]) is the uniform distribution function over [0, d0] with d0 a large enough

constant.

The goal is to estimate the unknown parameters, gk’s and wk’s, and the member-

ship likelihood of each trajectory to each cluster based on the values of the dik’s. Al-

though in simple cases it is possible to infer the hidden parameters by finding the exact

solutions of the Bayes net (defined later) using, for example, message-passing algo-

rithms, exact variable elimination, or junction-tree algorithms, approximate methods

are needed to deal with complex problems. The most common approaches are Monte

Carlo and variational inference methods. In this chapter, we use the expectation-

maximization algorithm to find the maximum likelihood (ML) solution in the ab-

sence of an atlas of white matter fiber tracts. In the next chapter, we adapt the

EM approach for maximum a posteriori (MAP) estimation of parameters when an

anatomical atlas is available.

4.4 Expectation-Maximization Algorithm

The Expectation-Maximization algorithm, first introduced by Dempster et al. [28],

iteratively estimates the local maximum of the log likelihood of the data to find the

maximum likelihood estimation of the unknown parameters:

Θ̂ = arg max
Θ

L(Θ), (4.7)

where L(Θ) = log p(D|Θ), Θ is the collection of the unknown parameters, and Θ̂

is an estimate for Θ. This maximization is done by defining a lower bound on the

incomplete log likelihood, L(Θ), as shown in Figure 4-5. Note that p(D|Θ) is called
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Lt

L

Figure 4-5: Schematic representation of procedure used by the EM algorithm to find
the local maximum of the log likelihood function, L(Θ). In the expectation step
the algorithm constructs a lower bound Lt(Θ) based on the current estimate of the
parameter, Θt, of the optimal solution, Θ̂. In the maximization step, the maximum
of the lower bound is calculated to obtain the updated parameter, Θt+1.

incomplete as it does not contain the hidden data, here the label of each trajectory,

and similarly p(D,Z|Θ) is called the complete data likelihood.

Very generally speaking, the EM algorithm has two steps: in the expectation step

(E-step), the algorithm defines a lower bound based on the current estimate, Θt, of

the optimal solution Θ̂, while in the maximization step (M-step) the maximum of the

lower bound is calculated to obtain the updated parameter, Θt+1. This procedure is

repeated until convergence is achieved.

To construct L(Θ), p(D|Θ) is marginalized over the hidden data, Z:

p(D|Θ) =
∑
Z

p(D,Z|Θ). (4.8)

Now, the maximization problem takes the following form:

Θ̂ = arg max
Θ

log
[∑

Z

p(D,Z|Θ)
]
. (4.9)

The essence of the EM algorithm [28] is that it re-defines the maximization problem

in (4.7) by considering the following objective function, instead of using the data log
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likelihood:

Lt(Θ)
.
= EZ|D,Θt

[
log

p(D,Z|Θ)

p(Z|D,Θt)

]
. (4.10)

It can be shown that this objective function has two main properties, as illustrated

in Figure 4-5 [14]:

• It defines a lower bound on the incomplete log likelihood, i.e., Lt(Θ) ≤ L(Θ).

• It touches the incomplete log likelihood at the current estimate of the parameter,

i.e., Lt(Θ
t) = L(Θt) and L′t(Θ

t) = L′(Θt).

And with the above properties, it is proved that the estimate of the parameters ap-

proaches the local maximum of the incomplete log likelihood at each iteration [14].

The EM algorithm proceeds in two steps:

Expectation Step: Construct the lower bound Lt(.) of the incomplete log like-

lihood, L(.), based on the current estimate of the parameter, Θt:

Lt(Θ) = EZ|D,Θt

[
log

p(D,Z|Θ)

p(Z|D,Θt)

]
. (4.11)

Maximization Step: Update the parameter estimate by maximizing the current

lower bound:

Θt+1 = arg max
Θ

Lt(Θ). (4.12)

From the two properties, stated above, it follows that the new estimate of the

parameter is a better estimate of the optimal Θ̂:

L(Θt+1) ≥ Lt(Θ
t+1) ≥ Lt(Θ

t) = L(Θt). (4.13)

This proves the convergence property of the EM algorithm if an upper bound on the

log likelihood exists.

Generally the objective function of the EM algorithm is defined as:

Lt(Θ) = EZ|D,Θt

[
log p(D,Z|Θ)

]
= EZ|D,ΘtLc(Θ), (4.14)
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where Lc(Θ) is the complete log likelihood. This objective function has the same max-

imum as the objective function defined by (4.11), since the denominator p(Z|D,Θt)

is constant with respect to Θ.

4.5 Implementation of Our Proposed Clustering

Approach

The procedure of our proposed clustering method is shown in Algorithm 4.1. At the

heart of this method is the EM algorithm to infer the membership probabilities and

cluster parameters. Once the EM algorithm converges, the outer loop updates the

cluster centers and re-computes the distance between trajectories and cluster centers.

The outer loop is repeated until the cluster centers converge.

Details of calculating the distance between the trajectories and cluster centers

(line 4 of the algorithm) were discussed in Chapter 3. Other steps are explained in

this section. We start by presenting our formulation of the EM algorithm to solve

the inference problem shown in the graphical model of Figure 4-4 (steps 6-14 of the

algorithm).

4.5.1 Application of EM to clustering of white matter tra-

jectories

We find the ML estimates of the parameter by maximizing the expectation of log

likelihood of the complete data at each iteration as follows.

Θt+1 = arg max
Θ

Ez|Θt,d

[
log p(z,d|Θ)

]
. (4.15)

where Θ = {g,w}, i.e., the collection of cluster parameters and mixing weights. We

then assume that we observe N samples of the data, d. It follows that:
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Algorithm 4.1: The algorithm used to cluster fiber trajectories in the absence
of an anatomical prior and to infer cluster parameters. At the heart of the
algorithm are the steps of EM which updates the membership probabilities and
cluster parameters. The outer loop re-calculates the cluster center once the EM
step is converged.

Input: Set of 3D trajectories. {ri}Ni=1 and initial centers {µk}Kk=1

Output: Probabilistic assignment of trajectories to clusters
repeat1

foreach trajectory ri do2

Compute the distances of the trajectory to all cluster centers di;3

end4

repeat /* expectation-maximization */5

foreach trajectory ri do /* E-step: */6

Calculate membership probabilities pik;7

Remove outliers;8

end9

foreach cluster k do /* M-step */10

Update parameters of the cluster model gk and mixing weights wk;11

end12

until convergence;13

foreach cluster k do14

Update cluster center µk;15

end16

until convergence ;17

Θt+1 = arg max
Θ

Ez|d,Θt

[
log

N∏
i=1

p(di, z|Θ)

]

= arg max
Θ

N∑
i=1

Ez|d,Θt [log p(di, z|Θ)]

= arg max
Θ

N∑
i=1

K∑
k=1

p(zi = k|di,Θt) log [p(di|zi = k,Θ)p(zi = k|Θ)] .

(4.16)

The last expression was obtained by expanding the expectation and applying Bayes

rule on p(di, z|Θ). Note that pik = p(zi = k|di,Θt) is calculated in the E-step and is
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independent of Θ. So we have:

Θt+1 = arg max
Θ

N∑
i=1

K∑
k=1

[
pik log p(di|zi = k,Θt) + pik log(p(zi = k|Θ))

]
. (4.17)

The above expression is solved in two alternating steps:

Membership probabilities assignment(E-Step)

Assuming that the parameters of the clusters are known, using Bayes’ rule, the prob-

ability that trajectory ri belongs to cluster k is

pik = Pr(zi = k|di,Θt) =
Pr(zi = k)p(di|zi = k,gk)∑
k Pr(zi = k)p(di|zi = k,gk)

, (4.18)

where p(di|zi = k,gk) = Gamma(dik|αk, βk).

Updating model parameters(M-Step)

In this step, parameter estimates are updated. We first decompose Θ into its elements,

g and w, to obtain the corresponding maximization expressions for each variable:

gt+1 = arg max
g

N∑
i=1

K∑
k=1

[
pik log p(di|zi = k,g,w) + pik log(p(zi = k|g,w))

]
= arg max

g

N∑
i=1

K∑
k=1

pik log p(di|zi = k,g) (4.19)

and

wt+1 = arg max
w

N∑
i=1

K∑
k=1

[
pik log p(di|zi = k,g,w) + pik log p(zi = k|g,w)

]
= arg max

w

N∑
i=1

K∑
k=1

pik log p(zi = k) (4.20)

Note that z and g are independent (unconditioned on the observed data, d).
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First let’s solve the maximization equation for g. Recall the likelihood function:

p(di|zi = k,g) = Gamma(dik; gk)
∏
j 6=k

U(dij; 0, d0), (4.21)

where gk = {αk, βk} is the collection of the parameters of the gamma distribution

function for cluster k. The maximization equations are obtained by differentiating

the following expression with respect to each parameter.

Q(g) =
N∑
i=1

K∑
k=1

pik

(
log Gamma(dik; gk) + log

∏
j 6=k

U(dij; 0, d0)

)
(4.22)

The inverse scale parameter is obtained by ∂Q(g)/∂βk = 0, which simply gives:

N∑
i=1

pik
(αk
βk
− dik

)
= 0 (4.23)

or

βk = αk

∑N
i=1 pik∑N

i=1 pikdik
. (4.24)

The shape parameter is given by ∂Q(g)/∂αk = 0, which gives:

N∑
i=1

pik

[
log dik + logαk + 1 + log

∑N
i=1 pik∑N

i=1 pikdik
− dik

∑N
i=1 pik∑N

i=1 pikdik
− ψ(αk)

]
= 0 (4.25)

where ψ(.) = Γ′(.)/Γ(.) is the digamma function. This gives:

logαk − ψ(αk) = − log

∑N
i=1 pik∑N

i=1 pikdik
−
∑N

i=1 pikdik∑N
i=1 pik

, (4.26)

which does not have a closed-form solution. However, good approximations can be

obtained by noting that

logαk − ψ(αk) ≈
1

αk

(1

2
+

1

12αk + 2

)
. (4.27)
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This gives:

αk ≈
3− x+

√
(x− 3)2 + 24x

12x
, (4.28)

where

x = log

(∑
i pikdik∑
i pik

)
−
∑

i pik log(dik)∑
i pik

. (4.29)

The maximization equation for the mixing weights, w is given by:

wt+1 = arg max
w

N∑
i=1

K∑
k=1

pik log p(zi = k) (4.30)

with the additional constraint that
∑K

k=1 p(zi = k) =
∑K

k=1wk = 1. To account for

this constraint we add the Lagrange multiplier to the RHS of the above equation:

wt+1 = arg max
w

N∑
i=1

K∑
k=1

pik logwk − λ
( K∑
k=1

wk − 1
)

(4.31)

where λ is the Lagrange multiplier, and take the derivative to obtain:

wk =

∑N
i=1 pik
λ

. (4.32)

The constraint
∑K

k=1 wk = 1 gives

λ =
K∑
k=1

N∑
i=1

pik = N. (4.33)

So the updated mixing weights are calculated as

wk =
1

N

N∑
i=1

pik. (4.34)
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4.5.2 Updating the Cluster Centers and Distance Matrix

When the EM algorithm has converged, the membership probabilities, pik’s, are used

to re-calculate the cluster centers, using the following seemingly simple expressions:

µk =

∑
i pikr

(k)
i∑

i pik
(4.35)

Λk =

∑
i pik(r

(k)
i − µk)(r

(k)
i − µk)T∑

i pik
(4.36)

where r
(k)
i is the trajectory ri re-parameterized to have point correspondence to cluster

k. In practice, we consider only trajectories that have a membership probability

higher than a positive threshold (in our implementation this threshold is set to 0.01).

Note that in computing covariance matrices, it is possible for trajectories to have

more than one point associated with a particular point on the cluster center. In that

case, the closest one is considered. Also, note that ideally points that correspond to

a particular point on the cluster center lie on the plane orthogonal to the curve at

this point. This would be consistent with the fact the natural variation space of the

points on the curve is only the orthogonal plane at each point. One could force the

tangential component of the r
(k)
i − µk to zero by subtracting it, i.e.,

Λk =

∑
i pik∆r

(k)
i ∆r

(k)T
i∑

i pik
, (4.37)

with

∆r
(k)
i = (r

(k)
i − µk)

(
1− (r

(k)
i − µk).µk

||(r(k)
i − µk).µk||

)
. (4.38)

The approach described above by itself does not allow the length of the initialized

centers to evolve during the EM iterations. In fact, the number of points on the cluster

center remains constant but the distance between successive points changes. We

desire, however, that the method be less dependent on the initial centers and flexible

enough so that the centers of clusters are able to grow or shrink in length. To achieve

this goal we perform a uniform re-sampling of the updated centers after the M-step at
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each iteration. In doing so, first the spline representation of centers is reconstructed

from their updated samples, and then the arc length of the reconstructed center is

uniformly sampled. This also ensures that cluster centers remain smooth.

4.5.3 Initialization

When starting the iterative EM algorithm with the E-step, all the parameters, Θ,

must be initialized. We set the shape parameter of the Gamma distribution equal to

one, i.e., α = 1, to have an exponential distribution which favors those trajectories

most similar to the initial center. The algorithm is not very sensitive to the initial

value of the inverse scale parameter, β, initialized to ten in our implementation.

However, one should be careful not to set it too small, otherwise many trajectories are

labeled as unclustered in the initial step. On the other hand, if β is set too large, the

likelihood would be very small even for trajectories very similar to the cluster center.

Figure 4-6 illustrates the evolution of the Gamma distribution for the clusters of the

first case shown in Figure 5-12. Convergence is achieved after just a few iterations

of the EM algorithm. As stated earlier, the Gamma distribution is initialized with

α = 1, corresponding to a exponential distribution, to value those trajectories that

have no distance to the initial cluster center. However, as the algorithm proceeds, the

Gamma distribution evolves from a very broad distribution to a narrow distribution

with small but non-zero mode.

In our implementation, we have a minimum threshold on the membership likeli-

hood to ensure the robustness of the algorithm, as discussed in the next subsection.

The cluster centers can be initialized manually by selecting a set of trajectories with

particular shapes from the data. As an alternative, the initial cluster centers can be

supplied by an atlas of fiber tracts, if available, such that the mean trajectories of

atlas clusters are employed after registration of the case and the atlas. Dependence

of the algorithm on the initial centers will be discussed in Section 4.6. The associated

covariance matrix of each center initially does not play a significant role so we set

it to the unity matrix. This reduces the computation of the Mahalanobis distance

to Euclidean distance through the similarity measurement, which is an acceptable
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Figure 4-6: Evolution of the Gamma distributions that characterizes the normalized
distance metric for the two clusters shown on the left in Figure 5-12. After just a few
iterations, the distribution converges to a narrow distribution with small but non-zero
mode.

approximation for the first iteration of the algorithm.

4.5.4 Handling Outliers

In mixture-model clustering, it is assumed that each data point is modeled by the

mixture of a finite number of component densities. However, in our case, there might

be trajectories resulting from the tractography which do not resemble any of the user-

or atlas-initialized cluster centers or are simply generated by noise and imperfections

in the data. These outliers will lead to increased variance of the density functions if

not properly handled. This would result in excessive spread of the bundles or even

instability of the algorithm. An outlier is identified by imposing a threshold on the

membership likelihoods. If the membership likelihood of a given trajectory in all clus-

ters is less than the specified threshold, that trajectory will be removed from further

data processing. In fact, with this threshold the heterogeneity within each cluster is

controlled. The larger the threshold is, the more compact are the resulting bundles,

and consequently the greater is the number of unclustered trajectories. Handling

outliers is not straightforward in previously proposed clustering schemes [17, 56, 64].
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Unlike those methods, we allow the distribution of each cluster to have a different set

of parameters (αk’s, βk’s), all inferred from the data by using the EM algorithm, and

hence the user needs to set only the mentioned threshold to effectively remove the

outliers.

4.6 Results

In this section we illustrate different aspects of our proposed approach, such as its fea-

tures for performing population studies, and its performance on probabilistic assign-

ments of trajectories to bundles and outlier rejection. We also discuss the sensitivity

of the output to the specified initial centers. We leave the results on quantitative

analysis and visualization of the fiber bundles to Chapter 6.

4.6.1 Impact of Initial Cluster Centers

To investigate the sensitivity of the clustering to the initial centers, we randomly

selected different sets of trajectories from each cluster shown in Figure 4-7(a). At each

run with one of the sets as the initial centers as shown in part (b), the final centers

obtained by the clustering algorithm are almost identical as shown in Figure 4-7(c).

This demonstrates the robustness of the algorithm with respect to the variations in

the initial centers within each cluster.

Note that although the sensitivity to cluster centers is not desired in the sense that

results depend on which trajectory is selected within the cluster, it is obvious that

the algorithm must be responsive to the selected initial centers as the representatives

of the expected clusters. Figure 4-8 shows a real clinical application in which the

clustering of trajectories into three bundles of Inferior Longitudinal Fasciculus (ILF),

Inferior Fronto-Occipital Fasciculus (IFO) and Uncinate Fasciculus (UF) is desired.

As shown in this figure, our method successfully clusters the spatially adjacent trajec-

tories into the mentioned bundles by selecting three initial centers, each representing

one of the expected clusters.
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(a)

(b) (c)

Figure 4-7: (a) Trajectories of 5 different clusters used for quantitative analysis: sple-
nium (yellow), corticospinal (red), corticobulbar (green), middle cerebellar peduncle
(blue), and genu (magenta). Robustness of the EM algorithm with respect to the
initial cluster centers is clearly seen. The algorithm was run 5 times with different
initial centers (b) to cluster the trajectories in (a). Final cluster centers collected in
(c) show little dependence on initial centers.

4.6.2 Outlier Rejection

As stated earlier in Section 4.5.4, outliers are identified by imposing a threshold on

the likelihood functions in the EM algorithm2. We define this threshold as a ratio

ranging between 0 and 1 in terms of the peak of the likelihood functions. Figure 4-9

shows the experimental results of clustering superior longitudinal fasciculus (SLF)

to arcuate fasciculus (the curved bundle) and the upper part of SLF, by manually

specifying two trajectories, one from each of the expected clusters, as the initial

cluster centers. Part (a) of the figure shows the unclustered trajectories, while part

(b) shows the trajectories colored based on their membership probability to each of

2Note that the outlier rejection cannot be done by thresholding the posterior probabilities as
those are being normalized.
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Figure 4-8: Clustering of the trajectories (colored based on the local FA value) shown
in (a) to Inferior Longitudinal Fasciculus (white), Inferior Fronto-Occipital Fasciculus
(red) and Uncinate Fasciculus (blue) clusters shown in (b).

the two clusters. Initial cluster centers are overlaid on this plot in white, while final

cluster centers are shown in yellow. Note that although the initial centers are not the

best possible choice, the algorithm has converged to the medial part of the clusters.

Trajectories are identified by setting a threshold of 0.2 on the likelihood function and

are shown in part (c). Most of the outliers identified by the algorithm are actually

part of another bundle called the short arcuate fibers [55].

Figure 4-10 shows how the spread and homogeneity of the fiber bundles is con-

trolled by the likelihood threshold. As expected, with the threshold of 0.6, shown

in part (b) of this figure, more compact bundles are achieved, compared to those

obtained with a threshold of 0.2, shown in (a). The choice of the threshold depends

on our knowledge from anatomy and the application. As will be discussed in the next

chapter, the use of an anatomical atlas specifies limits on the spatial spread of the

bundles and so makes the algorithm more robust with respect to specified parameters.

4.6.3 Whole Brain Analysis and Population Studies

The computation of the similarity measure is usually the most computationally ex-

pensive step in clustering algorithms used for fiber trajectories. As discussed in the

previous chapter, our approach which uses the distance map for similarity measure

calculation makes the computation time increase slightly with respect to an increase

in number of trajectories. This feature makes the analysis of a large number of tra-

jectories, which is encountered in whole brain or population studies, possible with the
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(a) (b) (c)

Figure 4-9: Demonstration of outlier rejection by imposing a threshold on the likeli-
hood function. (a) Unclustered trajectories from superior longitudinal fasciculus. (b)
Probabilistic assignment of these trajectories into arcuate fasciculus and the upper
portion of SLF. Initial cluster centers are shown in white, while final cluster centers
are shown in yellow. (c) Trajectories identified as outliers with a threshold of 0.2 on
the likelihood function.

same level of accuracy as for analysis of small data. Unlike other methods proposed

for clustering of fiber trajectories, no dimensionality/size reduction is needed.

Figure 4-11 shows the clustering results for roughly 3000 trajectories from corpus-

callosum, middle cerebellar peduncle, corticobulbar, and corticospinal tracts into 25

bundles. As the initial centers, 25 trajectories from the data were selected manually,

each representing an expected cluster 3. With a threshold equal to 0.2, 45 trajectories

remained unlabeled. Note that the trajectories in Figure 4-11 are colored based on

their maximum membership probabilities.

A more interesting example is clustering of a single bundle of interest in a popu-

lation of subjects. In this experiment we cluster the cingulum bundle, which is one of

the difficult bundles of fiber tracts to cluster. Even when seeded from a user-defined

ROI, the tractography step leads to a set of disordered trajectories, mostly short in

length because of low fractional anisotropy. Also, due to the adjacency to the corpus

callosum, many callosal trajectories are included, which adversely affects any further

analysis of the bundle. Figure 4-12 shows the ROIs corresponding to different fiber

3As will be discussed in the next chapter, the initial centers can also be specified by the use of
an anatomical atlas of fiber tracts.
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Figure 4-10: Control of the spread of the bundles with the likelihood threshold. With
a threshold of 0.6 more compact trajectories are obtained (b) compared to those
obtained with a threshold of 0.2 (a).

bundles. Cingulum bundles are the two narrow C-shaped structures on the top of the

U-shaped corpus collsum, colored in purple and light green.

The ROI is specified by an expert and streamline tractography is performed on

each case. All of roughly 5000 trajectories are then mapped into the same space by

applying the transformation matrix which has been calculated by registering the FA

volumes of the subjects by an affine transformation(See figure 4-13). We discuss the

registration process and the sensitivity of the method to errors in registration in the

next chapter. As shown in Figure 4-14 for eight subjects, our method is well capable

of clustering these trajectories into the desired bundles. Two arbitrary trajectories,

one from the superior and one from the posterior part of the cingulum were selected

as the initial cluster centers. Knowledge of the point correspondence and rigorous

calculation of the similarity measure is essential for clustering of such a disordered set

of trajectories. This example also shows the capability of the method in automating

the clustering on a population of subjects.

In terms of computational complexity, our approach is superior to computing the

bidirectional Hausdorff distance. The computation time of our algorithm is approxi-

mately equal to: I×K× (N×Tt+Tc+Tdm), where I is the number of EM iterations,

Tt is the processing time each trajectory requires to calculate its distance from a
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(a) (b)

(c) (d)

Figure 4-11: About 3000 trajectories clustered into 25 user-initialized bundles. Clus-
ters include different segments of the corpus callosum, tapetum, middle cerebellar
peduncle, corticobulbar and corticospinal tracts, and different portions of thalamic
radiation.

cluster center and the associated membership likelihood, Tc is the processing time

to update the cluster parameters, which grows linearly with N and Tdm is the com-

putation time of constructing a distance map from a given cluster enter. Note that

there exist fast methods to compute the Euclidean distance map in linear time with

respect to the number of voxels in the space that the distance map is constructed in.

The computational complexity in our algorithm increases linearly with the number

of trajectories, whereas performing a common curve matching technique or Hausdorff

distance is of the order of N2 as it would require pair-wise calculations. In terms of

memory consumption, although one distance map is computed for each cluster in our

approach, only one distance map is stored in the memory at a time.

To demonstrate the time efficiency of our method in handling a large number

of trajectories, we record the CPU time for clustering of around 21000 trajectories
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(a) (b)

Figure 4-12: Cingulum bundles are the two narrow C-shaped structures on the top of
the U-shaped corpus collsum, colored in purple and light green. Due to the adjacency
to the corpus callosum, many callosal trajectories are included in tractography of these
bundles that adversely affect any further analysis on them.

extracted for the left Uncinute Fasiculus in 44 subjects. This experiment is repeated

for a downsampled version of such data and the recorded processing times are shown

in Figure 4-15 in a logarithmic scale. All of the runs in this experiment are performed

with the outlier threshold of 0.2 and three iterations of EM. The recorded processing

times are shown with open squares as a function of the number of trajectories. For a

small number of trajectories, there is a fixed processing time, which is in fact equal

to the computation time of the distance map, roughly 10 seconds per iteration. The

filled triangles in the figure are the processing times minus 30 seconds required for

computing the distance map (three EM iterations multiplied by 10 seconds). These

data points lie on a line with a slope of approximately one in the log-log scale, which

demonstrates that the processing time grows linearly with the number of trajectories.

This experiment confirms the formulation for processing time, presented in Section

3.4.

4.7 Summary

In this chapter we developed an expectation maximization algorithm to cluster fiber

trajectories in a gamma mixture model context. The gamma distribution enabled
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Normal cases before registrationNormal cases after registration

Figure 4-13: Registration process performed on cingulum trajectories from 8 different
cases as a part of the pre-processing from clustering. Sagittal view of the trajectories
before (left) and after (right) registration.

us to effectively model the normalized distance of the trajectories from each cluster

center. A method was proposed to remove outlier trajectories by imposing a threshold

on the membership likelihoods. Experimental results demonstrate the effectiveness

of the proposed clustering method to group fiber trajectories into bundles based on

their shape similarity and spatial proximity. Some anatomical information is included

in the clustering in the form of the initial cluster centers. Hence unlike unsupervised

clustering methods, the clusters correspond to actual anatomical bundles. The next

chapter extends the EM algorithm developed in this chapter to include further prior

knowledge to guide the clustering algorithm.

99



Figure 4-14: Clustering performed on cingulum trajectories from 8 individual cases.
For each case the axial view of the trajectories before (top) and after (bottom) clus-
tering is shown. Trajectories are clustered into superior and anterior part of the
cingulum, shown in yellow and red, respectively. Note that the clustered bundles in
each subject have a similar thickness with a single specified threshold for the popu-
lation of trajectories.
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Figure 4-15: Processing time as a function of the number of trajectories measured for
clustering of the left uncinute fasiculus from 44 cases. Open squares show the whole
processing time, where its minimum is limited by the computation of the distance
maps. Filled triangles show the processing time minus the time required to compute
the distance map, demonstrating a linear dependence on the number of trajectories,
i.e., a slope of approximately one in a log-log scale.
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Chapter 5

Integration of Anatomical

Information into Clustering of

White Matter Trajectories

In this chapter we extend the clustering approach presented in the previous chapter to

include spatial anatomical information from an atlas of fiber tracts. We believe that

atlas-guided clustering that benefits from anatomical information not only produces

anatomically meaningful clusters, but also yields more robust results that are less

sensitive to the presence of outliers and imperfections in the DT-MRI data.

We propose two levels for integration of anatomical knowledge. In the first one, the

spatial priors are a set of fixed parameters taken from the atlas, whereas in the second

one, they are assumed to be random variables drawn from a Dirichlet distribution.

In the first implementation with the fixed-weight prior (FWP), the anatomical atlas

is imposed strongly on the clustering algorithm, whereas in the second approach

with the adjustable-weight prior (AWP), the influence of the atlas can be controlled

through a parameter. That weighting parameter can be set manually based on the

expected compatibility of the subject with the normal population whose data was

used to build the atlas. For instance, if the analysis is performed on a pathological

case where deviation of fiber bundles from normal brain anatomy is expected, the

weighting parameter needs to be set to the lowest possible. In the case that multiple
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atlases are available, as will be discussed in this chapter, the weighting parameter can

be set automatically based on the correlation between the atlases.

The atlas is not only used to guide the clustering algorithm here, but it also

provides the seed points for the tractography and the initial settings of the EM

algorithm. The proposed approaches provide a robust and automated tool for tract-

oriented analysis, both in a single subject and over a population.

In this chapter, we first describe the possibilities for encoding the anatomical in-

formation available for fiber bundles. Then we review earlier attempts to incorporate

anatomical knowledge, and finally present our formulation of the EM algorithm for

the two approaches mentioned above.

5.1 Representation of Anatomical Knowledge

Atlases are the common way of representing anatomical knowledge in MRI studies.

Such atlases are usually constructed by labeling regions of interest by an expert (or

semi-automatically by an algorithm) on a large number of subjects, followed by a

spatial normalization. And such an atlas is then used to label the same regions in

a novel subject. As an example of an atlas, in segmentation of the brain to white

matter, gray matter and CSF, each voxel of the atlas is associated with three numbers,

which represent the membership probability of that voxel to each of the three tissues.

Recently, atlas construction has attracted significant attention in DT-MRI analy-

sis. The level of representation is more varied in DTI compared to conventional MRI

as the orientation of the fiber bundles also can be encoded in addition to their spatial

position in the brain.

One way of representing an atlas of fiber tracts is to perform tractography on a set

of healthy subjects, map the trajectories into a common space, and manually label

them to represent their association to anatomical bundles [58]. Figure 5-1 illustrates

such an atlas in which each trajectory is colored based on the anatomical bundle

to which it belongs as defined by an expert. In an automatic atlas construction

approach presented in [65], the trajectories from multiple subjects are clustered in a
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Figure 5-1: The constructed atlas of fiber tracts shown for the obtained bundles in
the sagittal (a) and anterior coronal (b) view [58].

high-dimensional embedding space where each trajectory is represented by a point,

and the cluster centroids are labeled by an expert to serve as a high-dimensional

atlas. A similar atlas is constructed by simultaneously optimizing the parameters of

registration and clustering [101]. Multiple atlases of diffusion images of the human

brain have been constructed by Mori et al. at John Hopkins University. In the

ICBM-DTI-81 white-matter labels atlas, 50 white matter tract labels were created by

hand segmentation of a standard-space average of diffusion MRI tensor maps from

81 subjects with mean age of 39. In another JHU white-matter tractography atlas,

20 structures were identified probabilistically by averaging the results of running

deterministic tractography on 28 normal subjects with a mean age of 29.

Regardless of the method used to construct and represent the atlas, one can define

a rule to obtain a cluster membership probability for each trajectory, once the subject

is mapped into the atlas space, to represent its membership in each anatomical fiber

bundle. The methods that we present in this chapter are general in the sense that

they only require a probability vector for each trajectory that is obtained from the

atlas.
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5.2 Related Work

Recently, employing anatomical atlases of fiber tracts in DT-MRI processing and

analysis has attracted significant attention. Examples are atlas-guided tractography

[62] and clustering or classification of the fiber trajectories [58].

We believe that the first attempt to use anatomical information goes backs to

our earlier work [58]. In that work, the atlas was represented by a set of labeled

trajectories in a reference subject. The trajectories from a given subject were classified

based on the pairwise distance between their B-spline coefficients and those of all

trajectories from the atlas. This was done after spatial normalization of the baseline

images by applying the obtained affine transformation to map the trajectories of

the subject into the atlas space. The method is able to cluster the fiber tracts into

anatomically known bundles. The correspondence of clusters across different subjects

is also defined by default. Hence, unlike most clustering methods previously proposed,

no post-processing is required to determine the correspondence between the bundles.

However, this method relies solely on the atlas and ignores the variability among the

trajectories in a bundle, which makes the result very sensitive to the atlas.

In another work, a high dimensional atlas is constructed in [65] in an embedding

space. The atlas does not play any role in the clustering process and is used to

associate groups of fiber trajectories to anatomical structures after they are clustered

and mapped into an embedded space.

More recently, an atlas-based quantitative analysis of white matter fiber tracts

has been proposed in which a probabilistic parcellation map of the tracts is used

to obtain the weighted average of a set of parameters [41]. This approach relies

exclusively on the atlas data and hence does not take into account the coherence

among the trajectories in each bundle. Furthermore, the quantitative analysis is

limited to averages over the entire ROI or slices perpendicular to the main axes of

the atlas coordinate system since point correspondences between the trajectories are

not calculated.

In the previous chapter, we proposed a clustering framework in which the anatom-
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Figure 5-2: Visualization of some of the ROIs outlined by the atlas. These ROIs
correspond to the major anatomical fiber tracts.

ical knowledge is included through specifying a number of prototype trajectories as

the initial cluster centers. In this chapter, we extend our method to rigorously incor-

porate spatial anatomical information from an atlas of fiber tracts [92] in clustering

of trajectories.

5.3 Membership Assignments from the Atlas

In this thesis, we use the atlas created by Mori et al. (http://lbam.med.jhmi.edu),

which consists of 50 labeled regions that correspond to major anatomical bundles of

fiber tracts in the human brain. As mentioned earlier, this atlas has been constructed

by hand segmentation of a standard-space average of diffusion MRI tensor maps from

81 subjects with mean age of 39. This data is represented in MNI (Montreal Neuro-

logical Institute) space with 181× 217× 181 mm3 isotropic resolution. Visualization

of some of these regions in the 3D Slicer (www.slicer.org) is shown in Figure 5-2.

To allow a probabilistic assignment at the region boundaries, we apply a Gaussian

kernel with standard deviation of 2 within a 5× 5× 5 window to each region.

Trajectories are extracted for each subject using a streamline tractography method

[10] (see Algorithm 1 in Chapter 2) and mapped into the MNI atlas space. Note that

the streamline tractography needs seed point specification, which is usually done by

user interaction, to specify an ROI for each case. We use the ROIs from the atlas to

automate this process. We first map the ROIs from the atlas into each subject’s space
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Figure 5-3: Demonstration of the registration process for the trajectories of superior
cingulum in one of the subjects. Original trajectories (green) and trajectories mapped
into the atlas space with either an affine registration (red) or a congealing registration
to a common space for all subjects and then by an affine registration into the atlas
space (yellow) are shown. The spatial extent of the cingulum specified by the atlas
is also shown for comparison.

and perform a morphological dilation to ensure that the whole bundle is captured.

The size of the structure element to perform the dilation operation is set to 3 for small

bundles such as uncinate fasciculus and 1 for large bundles such as the splenium part

of the corpus callosum.

Registration is performed on the corresponding maps of the fractional anisotropy

(FA) 1 to normalize for brain geometry, and then the obtained transformation is ap-

plied to the trajectories. An affine registration based on mutual information (MI) [95]

usually gives satisfactory results as reflected in Figure 5-3. However, for population

studies we opted to first map the subjects into a common space using the congealing

algorithm [103] followed by affine registration to the MNI space. We decided to use

this approach, as opposed to a series of pair-wise subject-template registrations, in

order to avoid introducing bias in the population analysis. Figure 5-3 shows the re-

sults of registering the trajectories from the superior cingulum to the atlas space for

one of the subjects.

With the trajectories projected to the atlas space, the membership probability for

each trajectory, πik, is calculated by summing up the probabilities of its overlapping

voxels with the probability maps of the fiber tracts in the atlas, and normalizing with

1Registering the FA map does not produce the most accurate mapping as it does not use the
whole tensor information. We made the choice of registering an scalar map since robust algorithms
were available for that purpose and among the scalar maps, we chose FA as it is the most popular
parameter of interest in quantitative clinical studies.
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the volume of each tract in the atlas. The membership probabilities of each trajectory

are then normalized, so that ∀i,
∑K

j=1 πij = 1. Note that with this implementation,

the atlas ROIs provide the spatial prior, while the information about the shape and

orientation of the tracts are captured by a representative curve for each bundle, used

as the initial cluster center. Unlike a voxel-based method in which individual voxels

(of each trajectory) receive their own membership probability [41], in our approach the

probability is assigned to the entire trajectory and hence the method is less sensitive

to local errors in registration.

5.4 Fixed-Weight Prior (FWP)

In this section, we propose a Bayesian approach for incorporating spatial anatomical

information in the clustering of fiber trajectories. The essence of the approach is

similar to the method presented in the previous chapter. The difference is that here we

have access to prior information on the membership of each trajectory relative to each

cluster. We use the EM formulation to estimate this information probabilistically.

5.4.1 EM Formulation for FWP

As mentioned earlier, once the trajectories are extracted from the DT data, they are

mapped into the atlas coordinate system. Each trajectory ri then takes a membership

probability πi = [πi1, ..., πiK ], where each πik element denotes the atlas-specified

membership of ri relative to cluster k. Note that the vector πi is fixed through

out the iterations of the clustering algorithm. The number of clusters, K, is a subset

of anatomical bundles in the atlas. Initial cluster centers are provided by the atlas and

the distance vectors are computed as described in Chapter 3. In this setup, we have

two sources of information for inferring the labels of trajectories, one from the atlas

and one from the distance values to the cluster centers. The corresponding graphical

model is depicted in Figure 5-4. The goal is again to infer unknown parameters, Θ,
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Figure 5-4: A Bayesian network that describes the dependencies among different
variables. π: atlas prior, z: trajectory label, d: distance between trajectory and
cluster centers and g: parameters of the gamma distributions. Shaded nodes represent
the observed data.

where here Θ = g, i.e., only the collection of parameters of the gamma distributions:

Θ = arg max
θ
p(D,Z|Θ), (5.1)

where D denotes the distance values and Z represent the labels.

We employ Expectation-Maximization for the estimation of the parameters:

Expectation Step

In the expectation step, given the current estimates of the parameters, Θt, the

membership probabilities are calculated.

pik = Pr(zi = k|di,Θt) =
Pr(di|zi = k,Θt) Pr(zi = k|Θt)∑
j Pr(di|zi = j,Θt) Pr(zi = j|Θt)

.

Assuming that Z and Θt are independent, the class assignment is independent of the

model parameters:

Pr(zi = k|Θt) = Pr(zi = k) = πik,

which is supplied by the atlas (see the previous section). So,

pik = Pr(zi = k|di,Θt) =
Gamma(dik; Θt

j)πik∑K
j=1 Gamma(dij; Θt

j)πij
. (5.2)
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Maximization Step

The new estimates of the model parameters are updated in the maximization step:

Θt+1 = arg max
Θ

(
EZ|D,Θt [log p(D,Z|Θ)]

)
= arg max

Θ

(
EZ|D,Θt [log p(D|Z,Θ) + log p(Z|Θ)]

)
.

Since we assume Z to be independent of Θ, the last term can be eliminated from the

maximization. Also, the di’s are independent and each di only depends on zi. Hence,

Θt+1 = arg max
Θ

N∑
i=1

EZ|D,Θt [log p(di|Θ, zi)]

= arg max
Θ

N∑
i=1

J∑
j=1

Pr(zi = j|di,Θt) log p(di|Θ, zi = j),

(5.3)

where Pr(zi = k|di,Θt) is given by (5.2), calculated in the expectation step. The

maximization expression is similar to what we previously derived in the absence of

the atlas prior in Chapter 4, as the prior only appears in the expectation step. So, to

update the gamma parameters we have:

αk ≈
3− xj +

√
(xj − 3)2 + 24xj
12xj

, (5.4)

where

xk = log

(∑
i pikdik∑
i pik

)
−
∑

i pik log(dik)∑
i pik

, (5.5)

and

βk = αk
∑
i

pik/
∑
i

pikdik. (5.6)

Once the EM algorithm converges, we update the cluster centers and recompute the

distance vectors. The outliers are identified in the expectation step. If the member-

ship likelihoods of a trajectory in all clusters are less than a user-specified threshold,

that trajectory is identified as an outlier and is removed from further data processing.
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Figure 5-5 compares the clustering results obtained with and without incorpo-

rating the atlas prior for the superior cingulum. The trajectories are colored based

on their membership probability in each case. To emphasize the effect of the atlas,

a worst-case scenario is presented in which the parameters that control the extent

of the clusters are set such that the algorithm only excludes those trajectories that

receive very small membership probability. Without the atlas, the algorithm gives

moderate membership probability to those trajectories that are not very close to the

initial center. However, as the algorithm proceeds, the cluster center drifts as shown

in Figure 5-5 (a), so that these trajectories receive higher and higher membership

probabilities. Even though the clustering results might still be acceptable, the cluster

center is deformed, introducing significant error in the quantitative analysis. If the

parameters are set in the correct range, the extent of the cluster can be controlled in

order to prevent the inclusion of outliers and excessive drift of the cluster center. A

trade-off should be made between the homogeneity of the clustered trajectories and

the number of unclustered trajectories. With the atlas prior included, more robust

results are obtained, less sensitive to incorrect user settings.

5.5 Adjustable-Weight Prior (AWP)

The method with FWP employs spatial information from the atlas probabilistically.

However, there is no control over the strength of the atlas. In this section, we extend

our inference problem by considering a probability distribution over the atlas and then

inferring its unknown parameters. We believe that the flexibility that this method

offers on controlling the influence of the anatomical atlas has important applications

in clinical studies. One such application is in analyzing pathological cases where fiber

tracts might deviate significantly from normal cases and thus from an anatomical

atlas. Since cluster centers are able to evolve during the course of the EM algorithm,

the method is still able to cluster the fiber trajectories reasonably well when a small

weight is given to the atlas. On the contrary, the algorithm might fail if the atlas is

imposed strongly. So, the motivation here is to be able to control the strength of an
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Figure 5-5: A comparison of the clustering results without (top) and with (bottom)
an atlas. Axial and sagittal views are shown for superior cingulum. Trajectories are
colored by their assigned membership probability. The cluster centers at consecutive
EM iterations are shown in yellow, and dotted lines represent the initial centers.
Without the atlas, and with improper setting of the clustering parameters the cluster
centers drift and their extent increases as the algorithm proceeds. Less sensitivity to
parameter setting and greater robustness is achieved with the atlas incorporated.
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Figure 5-6: Graphical models for the coin flipping problem. (a) A coin is flipped
10 times and the probability of getting a Head, i.e., P (H) = θ is inferred from the
outcome. (b) The model is extended to add our prior knowledge that most probably
the coin is fair. The conjugate prior can be interpreted as some “fictitious data”, i.e.,
as if we had observed in the past that from FH + FT tosses FH came up Heads. (c)
The model is further extended to add a model selection level; whether the coin is fair
or not is also inferred from the coin tosses.

atlas by a single parameter. The influence of the anatomical prior in the proposed

model reflects confidence in its accuracy and relevance. It can either be defined by

the user or it can be inferred automatically, if multiple atlases are available. We first

provide some background on hierarchical Bayes schemes and the general approach

used to control the prior. Then, after a detailed description of our model for clustering,

we demonstrate its properties through a set of experiments.

5.5.1 Hierarchical Bayes and Conjugate Prior

The hierarchical Bayes modeling approach has become very popular in recent years.

It allows one to accommodate a richer class of models that can better capture the

statistical understanding of a problem. The basic idea in a hierarchical model is that

when we look at the likelihood function, and decide on the right priors, it may be

appropriate to use priors that themselves depend on other parameters not incorpo-

rated in the likelihood. These parameters will require priors, which themselves may

(or may not) depend on new parameters. Eventually the process terminates when we

no longer introduce new parameters.
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Let’s consider a simple coin-flip example: We draw a coin from our pocket, and

we want to estimate the probability of a Head after observing the outcome of ten

tosses. Figure 5-6(a) depicts the graphical model for this simple experiment, where θ

is the probability of Head in a single coin flip. If the observed data, D, is five heads

and five tails, the estimate for θ is 50%, which is the solution of maximum likelihood

estimation of the parameter θ:

θ̂ = arg max
θ
p(D|θ). (5.7)

Now suppose that we tossed the coin ten times and it came out four Heads and six

Tails. Our expectation is that the probability of a Head in the next toss is closer to

50% than 40%. After all, our intition is that most probably it is a fair coin and thus

P (H) = 0.5. Such prior knowledge can be integrated with the likelihood function, i.e.,

p(D|θ), using Bayes rule. For many standard distributions this can be done neatly

using the concept of a conjugate prior.

A prior p(θ) is conjugate to a likelihood function p(D|θ) if the posterior has

the same functional form as the prior. Different parameter values in the prior and

posterior reflect the impact of observed data. Parameter values in the prior can be

thought of as a summary of “fictitious observations” in some cases, which represent

the strength of the prior (Figure 5-6(b)). To clarify how the strength of the prior is

controlled, consider the coin tossing problem which has a binomial likelihood whose

conjugate prior is a Beta distribution. Now, consider two priors B(1000, 1000) and

B(5, 5), which both have an expected value of 0.5, while the former shows more

confidence in the fact that the coin is fair. We can interpret this prior as if in the past

we have tossed the coin 2000 times where Heads and Tails came up equally often.

In the above coin-flipping example, where out of 10 tosses 4 came up Heads, the

probability of the next toss to be a Head will be 1004/2010, which is very close to 0.5.

One can obtain the same result analytically by computing the posterior probability,

P (θ|D), and seeing that it is a new Beta distribution with the parameters equal to

the sum of the observed and the fictional counts of Heads.
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Now, suppose you flip a coin 10 times and get all heads. Most probably the coin

is not fair, but the model presented in Figure 5-6(b) cannot accommodate for proper

model selection based on the outcome of the flipping trial. Figure 5-6(c) shows an

extension of the graphical model where whether the coin is fair or not can be inferred

from the coin flipping experiment. Such an extension provides a balance between the

stability and flexibility of the model.

By this simple example, we aimed to provide an illustrative background on the

strength of hierarchical Bayes modeling. We provide a detailed mathematical deriva-

tion in the context of our real clustering problem in the next section, in which we use

a similar concept to control the effect of the atlas by using the Dirichlet distribution

as the conjugate prior for the multinomial distribution.

5.5.2 Basic Definitions for AWP Modeling

Figure 5-7 shows the directed graphical model of the problem setup. Unlike the coin

flipping example, we have a single trial experiment for each trajectory. We denote

the unknown label of each trajectory by zi, which is assumed to follow a single-trial

multinomial distribution,

zi ∼ Multinomial(πi), (5.8)

Pr(zi = k|πi) = πik, (5.9)

and πi, the parameters of the multinomial distribution on zi, follow a Dirichlet dis-

tribution, with parameters controlled by the atlas. Specifically,
∑K

k=1 πik = 1 and

πi ∼ Dirichlet(qi) =
Γ(qi0)∏K
j=1 Γ(qij)

K∏
k=1

π
(qik−1)
ik , (5.10)

where Γ(.) is the gamma function, and qi0 =
∑K

k=1 qik and qi is the parameter defined

by the atlas. To control the influence of the atlas to some extent, qi can be set as

qi = γq′i where γ > 0 is a weight factor and q′i = [q′i1, ..., q
′
iK ] is the membership

probability each trajectory takes from the atlas. Each q′ik element denotes the atlas-

specified membership of each trajectory i to cluster k. The membership probabilities
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i

qi

i ~ Dirichlet(qi)

Figure 5-7: A graphical model that shows the inference of the priors and cluster
parameters from the data when an atlas prior is available that describes the depen-
dencies between different variables. π: atlas prior, z: trajectory label, d: data and
g: parameters of gamma distributions.

of each trajectory are then normalized, so that ∀i,
∑K

k=1 q
′
ik = 1. The goal is to

estimate the membership likelihood of each trajectory to each cluster based on the

values of the dik’s and qik’s.

With such a setup, the expectation of the Dirichlet distribution for each trajectory

is determined by the value it gets from the atlas and is independent of γ:

E[π] =
qi
qi0

=
γq′i
γq′i0

=
q′i
q′i0

(5.11)

but the variance of the distribution is controlled by γ:

V ar[π] =
qi(qi0 − qi)
q2
i0(qi0 + 1)

=
q′i(q

′
i0 − q′i)

q′2i0(γqi0 + 1)
(5.12)

However, once the expectations, i.e., q′ik’s, are set, the variation of the Dirichlet

distribution with γ is limited as shown in Figure 5-8.

Since Dirichlet([1 1 ... 1]) is the uniform distribution, which translates to the

minimum confidence in the provided information, better control is achieved with an

alternative parameterization if a weighted average of the vector q′i and the unity

vector is used, i.e.,

qi = aγq′i + 1. (5.13)
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Figure 5-8: Control of the Dirichlet distribution with a weight factor. (a) With only a
multiplying factor, γ, the expectation of the distribution is kept constant and only its
standard deviation is varied. So, only a limited set of distributions can be used. (b)
With a weighted averaging with the unity vector as in (5.13) the distribution takes
any desired form from a uniform distribution (a = 0) to a highly peaked one (a� 1).

The weight, a, controls the degree of influence of the atlas on the clustering and can be

set by the user. In the limiting case when a = 0, the Dirichlet distribution becomes a

uniform distribution and hence the atlas does not have any control on the clustering.

When a = 1 the model reduces to πi ∼ Dirichlet(γq′i + 1), which is slightly different

from what we introduced earlier to guarantee that the parameters of the distribution

are larger than unity and avoid a U-shaped distribution.

Alternatively, the weight a can be inferred from the atlas data if multiple atlases

are available. One possible application of such a setting is to set the weight propor-

tional to the correlation between the atlases, i.e., set a close to 1 when all atlases

agree with each other and close to 0 when they disagree. Specifically, suppose that

M atlases, Q′(1), ..., Q′(M), are available, where Q′(m) = {q′i(m)}Mm=1. A plausible set-

ting for a can be obtained by forming the correlation matrix of Q(m)’s and taking the

average of its non-diagonal elements. The prior Q′ is calculated as:

q′i =

∑M
m=1 q

(m)
i

M
(5.14)

A more sophisticated possibility could combine multiple atlases, for example, if we
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had a collection of voxelwise labellings (perhaps generated by hand), we could use

STAPLE [94] to generate voxelwise label probabilities as input as described at the

beginning of this section. When STAPLE combines labellings, it weights them ac-

cording to how consistent they are with the others.

As detailed in Chapter 4, we assume that distances for each cluster follow a

Gamma distribution with shape, αk, and inverse scale parameters, βk and we assume

that each element of the vector di follows the distribution

dik ∼

Gamma(gk) k = zi

Uniform([0, d0]) k 6= zi

, (5.15)

where gk is the parameter set of the Gamma distribution, {αk, βk}, for each cluster

and U(x; 0, d0) is the uniform distribution function over [0, d0] with d0 a large enough

constant.

5.5.3 EM Formulation for AWP

As stated before, an EM approach is frequently used for inference with missing data

or parameters. Again Z represents the hidden data, where zi = k represents the

membership of the data point i in the cluster k. We denote the complete data

likelihood by p(D,Z|Θ) where Θ = {g,π}, i.e., the collection of the parameters

of the gamma distribution functions, g as well as parameters of the multinomial

distribution, π. The goal of our EM approach is to iteratively find the MAP estimates

of the parameter Θ by maximizing the expectation of the log posterior, or equivalently

the joint of the complete data at each iteration:

Θt+1 = arg max
Θ

EZ|D,Θt

[
log p(Z,D,Θ)

]
,
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where superscript t denotes the set of parameters at iteration t. The maximization

step takes the form:

Θt+1 = arg max
g,π

EZ|D,gt,πt

[
log p(Z,D,g,π; q)

]
= arg max

g,π
EZ|D,gt,πt

[
log p(D|Z,g) +

log p(Z|π; q) + log p(π; q) + log p(g)
]
.

(5.16)

We assume a uniform distribution over g, the parameters of the Gamma distribu-

tion, therefore the last term in the above equation is a constant and can be omitted

from the maximization expression. Then:

Θt+1 = arg max
g,π

EZ|D,gt,πt

[ N∑
i=1

log p(di|zi,g) +

N∑
i=1

log p(zi|π; q) + log p(π; q)]

= arg max
g,π

[
log p(π; q) +

N∑
i=1

K∑
k=1

pik
(

log p(di|zi = k,g) + logπik
)]
.

(5.17)

With the assumption of independence of πi’s, we write log p(π; q) =
∑K

k=1 log p(πi; qi)

where the πi’s follow a Dirichlet distribution as specified in Eq. (5.10).

Expectation Step

The pik’s are computed in the expectation step using Bayes rule as follows:

pik = p(zi = k|di,gtk,πti)

=
p(di|zi = k,gtk)p(zi = k|πti)∑K
j=1 p(di|zi = j,gtj)p(zi = j|πti)

=
p(di|zi = k,gtk)π

t
ik∑K

j=1 p(di|zi = j,gtj)π
t
ij

. (5.18)
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Maximization Step

Now we only look at the i’th component of Θ:

Θt+1
i = arg max

g,πi

( K∑
k=1

(qik − 1) log πik +

K∑
k=1

(
pik log p(di|zi = k,g) + pik log πik

))
,

(5.19)

where Θi is the collection of parameters of the multinomial distribution πi and pa-

rameters of the Gamma distribution g. We do the maximization with respect to each

parameter separately as follows:

Updating parameters of the multinomial distribution

In order to get the updated parameters of the multinomial distribution:

π
(t+1)
i = arg max

πi

K∑
k=1

(
(qik − 1) log πik + pik log πik

)
= arg max

πi

K∑
k=1

(
(qik + pik − 1) log πik

)
, (5.20)

under the constraint that
K∑
k=1

πik = 1 ∀i (5.21)

To do the maximization, we add the Lagrange multiplier, λ, to Equ.(5.20) and differ-

entiate with respect to πik

π
(t+1)
i = arg max

πi

K∑
k=1

(
(qik + pik − 1) log πik

)
−λ(

K∑
k=1

πik − 1) (5.22)
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or
qik − 1 + pik

πik
− λ = 0 (5.23)

This results in:

πik =
qik − 1 + pik

λ
. (5.24)

λ is obtained by summing up the Equ.(5.24) over the clusters:

λ =

∑K
k=1(qik − 1 + pik)∑K

k=1 πik
= qi0 −K + 1. (5.25)

Substituting the values from Equ. (5.13) for qik in the above equation results in the

following expression which explicitly shows the relation to the parameters controlling

atlas influence:

πik =
aγq′ik + pik
aγ + 1

. (5.26)

In the limiting case when a = 0, the above equation reduces to πik = pik, and when

aγ � 1 it becomes πik = q′ik.

Updating parameters of the gamma distribution

The updated cluster parameter g is obtained from:

gt+1 = arg max
g

N∑
i=1

K∑
k=1

pik log p(di|zi = k,g) (5.27)

The maximization equations are computed by differentiating the following expres-

sion from the EM formulation with respect to each parameter:

Q(g) =
N∑
i=1

K∑
k=1

pik

(
log Gamma(dik; gk)

+ log
∏
j 6=k

U(dij; 0, d0)
)
. (5.28)
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The inverse scale parameter is obtained by ∂Q(g)/∂βk = 0, which results in:

N∑
i=1

pik(
αk
βk
− dik) = 0 (5.29)

or

βk = αk

∑N
i=1 pik∑N

i=1 pikdik
. (5.30)

The shape parameter is given by ∂Q(g)/∂αk = 0, thus:

N∑
i=1

pik

[
log dik + logαk + 1 + log

∑N
i=1 pik∑N

i=1 pikdik
+

dik

∑N
i=1 pik∑N

i=1 pikdik
− ψ(αk)

]
= 0 (5.31)

where ψ(.) = Γ′(.)/Γ(.) is the digamma function. The resulting equation

logαk − ψ(αk) = − log

∑N
i=1 pik∑N

i=1 pikdik
−
∑N

i=1 pikdik∑N
i=1 pik

, (5.32)

does not have a closed-form solution. However, as previously, good approximations

can be obtained by noting that

logαk − ψ(αk) ≈
1

αk

(1

2
+

1

12αk + 2

)
. (5.33)

This gives:

αk ≈
3− x+

√
(x− 3)2 + 24x

12x
, (5.34)

where

x = log

(∑
i pikdik∑
i pik

)
−
∑

i pik log(dik)∑
i pik

. (5.35)

Similar to FWP, we update the cluster centers and recompute the distance vectors,

once the EM algorithm converges.
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(a) (b)

Figure 5-9: A comparison of the clustering results with two degrees of atlas influence
and with an atlas prior that agrees with the membership likelihood inferred from the
mixture model: (a) a = 0, i.e., no atlas, and (b) a = 1. Histograms of the membership
probability pik, are shown for synthetic data colored by the true cluster assignment.
The misclassification is indicated by the presence of red samples on the left side of
the histograms or blue samples on the right. The ratio of mis-clustered data points
decreases from 15% to less than 2% when the atlas is used. Note that the y-axis is
in logarithmic scale.

5.5.4 Results

To show that the proposed method is able to effectively control the influence of the

prior information on the clustering, we apply it to simulated data. For illustration

purposes, we consider two clusters and construct d by drawing samples from gamma

and uniform distributions as specified in (5.15). Two scenarios were examined: In

the first one, the atlas priors, q′iks, were drawn from a uniform distribution in the

[0.8, 1] range for each data point i that belongs to the kth cluster. This models a case

where the atlas prior is in agreement with the membership probability inferred from

the data only. In the second case, q′iks were drawn from a uniform distribution in the

[0, 0.2] range if the data point i belongs to the kth cluster, i.e. an extreme case where

the atlas priors oppose the membership probability inferred from the data.

Figure 5-9 shows a histogram of the posterior probabilities, colored based on

the true clustering and for the case where the atlas prior is in agreement with the

membership likelihood inferred from the data. Clustering results for two different

values of a = 0, i.e. no atlas, and a = 1, i.e. full atlas control are shown. The ideal
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(a) (b)

(c) (d)

Figure 5-10: A comparison of the clustering results with different degrees of atlas
influence, but with an atlas prior that disagrees with the membership likelihood in-
ferred from the mixture model: (a) a = 0, i.e., no atlas, (b) a = 0.25, (c) a = 0.5, and
(d) a = 1. Histograms of the membership probability, piks, are shown for synthetic
data colored by the true cluster assignment. Misclassification is indicated by the
presence of red samples on the left hand side of the histograms. The misclustering
ratio increases as the influence of the atlas is increased. Note that the y-axis is in
logarithmic scale.
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Figure 5-11: Effect of atlas weight, a, on the mis-clustering ratio and when the
atlas prior agrees (filled symbols) or disagrees (open symbols) with the membership
likelihood inferred from the mixture model.

clustering is defined as a case where all data points are assigned to their true clusters,

in other words when all data points from each cluster appear in either the upper or

lower half of the histogram. While without the atlas roughly 15% of the data points

are mis-clustered, only a few data points are mis-clustered once the atlas is used.

Figure 5-10 shows the case where the atlas disagrees with the membership like-

lihoods inferred from the data and for different values of the weight a. In this case

the number of mis-clustered data points increases as the atlas weight is increased.

Figure 5-11 summarizes the impact of the atlas weight on the number of the mis-

clustered data points. When the atlas agrees with the data, the mis-clustering ratio

decreases as the atlas weight is increased and when it disagrees with the atlas the

mis-clustering ratio increases.

To demonstrate the effectiveness of our method in successfully clustering the fiber

trajectories in such a case, Figure 5-12 shows the clustering results for trajectories

from the cingulum. When the atlas is imposed strongly some of the trajectories

that belong to cingulum, i.e., are similar in shape and are located close to other

trajectories, are rejected only because they do not have enough overlap with the atlas

ROI. With a proper choice of the atlas weight these trajectories are also included in

the results.
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(a) (b)

(c)

Figure 5-12: The influence of atlas weight on the clustering of cingulum trajectories:
(a) atlas-specified ROI for cingulum and clustering results with (b) a = 1 and (c)
a = 0.5. When the atlas is imposed strongly some of the trajectories that belong
to the cingulum are rejected only because they do not have enough overlap with the
atlas ROI.

5.6 Registration

In population studies and in particular in the approaches presented in this chapter

that use an anatomical atlas, spatial alignment of the data is an important step.

In this section we present the details on the steps of our registration approach and

investigate the sensitivity of clustering to errors in alignment of the data.

In the population studies carried out in this thesis, we first apply the stochastic

congealing method [104] on the corresponding FA volumes of the subjects, which

simultaneously aligns group of images to a template derived from the subjects so that

every member of the population approaches the central tendency of the collection at

the same time. This approach avoids introducing bias in creating the template image.

Figure 5-13 shows the mean volume before and after congealing of 44 subjects with

a 9-parameter transformation (translation, rotation, and scale).

The template FA volume produced by the congealing algorithm is then aligned

to the FA volume of the MNI atlas by running a 9-parameter affine registration [95].

Figure 5-14 illustrates the composite images of the FA volumes of the atlas with the

congealing output before and after running the pair-wise registration. Misalignments
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(a)

(b)

Figure 5-13: Demonstration of the performance of the congealing algorithm used
to align the FA volumes from 44 subjects to a common space. Axial slices of the
mean FA volumes are shown (a) before and (b) after registration. Note the improved
sharpness of the plots in (b).
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are shown in red in both plots. As can be seen in the figure, the registration works

quite well on the data.

Figure 5-15 shows the impact of registration error on the clustering results. A

comparison is made between our clustering algorithm with FWP and an algorithm

which assigns membership probabilities only based on the atlas information. The

mean square error (MSE) in membership probabilities is plotted as a function of

the translation and rotation errors in part (a) and (b) of the figure, respectively.

For both cases the clustering error grows almost quadratically with the registration

error. However, the clustering error for our algorithm is almost half of that from

the atlas-only method. This figure shows that our method is more robust to error in

registration compared to an approach where only the atlas is used.

Note that quantitative analysis of FA or any other feature along the trajectories

is only affected by the errors in computation of posterior membership probabilities,

as the FA values or other features of interest at each voxel of trajectories are stored

during the tractography phase, not after registration.

5.7 Summary

In this chapter, two novel methods were introduced to incorporate anatomical knowl-

edge in the clustering of white matter fiber trajectories.

In the first method, called FWP, we extended our expectation-maximization (EM)

clustering algorithm, presented in Chapter 4, to cluster the trajectories in which an

atlas served as the fixed prior on the labels. The atlas guides the clustering algorithm

and makes the resulting bundles anatomically meaningful. In addition, the atlas

provides the seed points for the tractography as well as the initial settings of the EM

algorithm.

In the second method, called AWP, we extended the FWP approach to be able

to weight the prior. The Dirichlet distribution as a conjugate to the multinomial

distribution was used to model the prior information so that influence of the atlas

can be controlled by a parameter. This parameter can be either set by the user
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(a)

(b)

Figure 5-14: Demonstration of the performance of the affine registration used to map
the output of the congealing algorithm to the MNI space. After overlapping the
images, misalignment is shown in red (a) before and (b) after applying the affine
registration.
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Figure 5-15: Sensitivity of the clustering results to registration errors. Mean square
error of the posterior probabilities are plotted as a function in the (a) translation and
(b) rotation error. Filled symbols are results of our algorithm, whereas open symbols
correspond to an atlas-only clustering method.

or inferred from the atlas information if more than one atlas is present to reflect

the degree of confidence in the prior knowledge. Results presented in this chapter

demonstrate the effectiveness of the proposed approach. To our knowledge this is the

first implementation which offers direct control over the strength of the anatomical

information for the clustering of fiber trajectories.
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Chapter 6

Experimental Results on Clinical

Data

This chapter presents some of the clinical applications of the methods developed in

the previous chapters. The first section presents the application of our model for

efficient 3-D visualization of fiber tracts in neurosurgery. The next section reports

preliminary results that demonstrate the capabilities of our clustering and quantita-

tive analysis method to study brain development. A significant portion of this chapter

is dedicated to the quantitative analysis that we performed on fiber bundles that are

hypothesized to be related to schizophrenia. These bundles include the splenium and

genu parts of the corpus callosum, uncinate fasciculus, inferior longitudinal fasciculus,

inferior occipito-frontal fasciculus, and cingulum. Some of the findings reported in

this chapter confirm previously published reports, whereas the rest of the findings are

new and revealed by our tract-oriented quantitative analysis.

6.1 Three-Dimensional Modeling and Visualization

of Bundles

Real-time visualization of fiber tracts is beneficial for neurosurgical applications to

minimize post-operative neurological deficits while maximizing tumor removal [87].
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Trajectories of the fiber tracts, which are extracted from DT-MRI data using a trac-

tography method, are being visualized along with anatomical data from structural

MRI for this purpose. Although this provides a viable representation of the underly-

ing connectivity between functional regions, the complexity of the structure limits the

usefulness of the method for surgical application. From a surgical point of view, the

spatial extent of specific fiber tracts would suffice in order to avoid damage during

resection. A hull that surrounds all fibers of a certain tract has been proposed to

represent the extent of the tract for this purpose [31, 33]. However, information en-

closed by individual trajectories is lost when constructing the hull. Such information

is valuable when registering pre-operative data onto intra-operative acquisitions or

when performing quantitative analysis during the post-operative course. In order to

preserve an aggregate of the information for each fiber tract, it is necessary to obtain

the point correspondence between individual trajectories that belong to that tract.

As discussed in Chapter 3, finding the point correspondence of 3-D curves in a large

dataset is not trivial and that is why this task has not been rigorously tackled in the

past.

As a byproduct of the proposed clustering method presented in Chapter 4, a

spatial model of the fiber bundles represented by the mean trajectory and its spatial

variation is also obtained. This is shown in Figure 6-1 in which the abstract models of

five fiber bundles are visualized by their spatial mean and iso-surfaces corresponding

to the mean plus three standard deviations (3σ) of the 3-D coordinates calculated

along the cluster center by the method presented in Section 4.5.2. Such an abstract

spatial model for fiber bundles could be used for neurosurgery applications.

Our models enable one to easily visualize the extent of the fiber tracts adjacent to

the brain lesions to minimize the damage to the bundles when removing the lesion.

Conventional DT-MRI-based approaches usually visualize a map of the fractional

anisotropy [50] or bundle segmentations based on the FA map. However, such ap-

proaches are not accurate at fiber crossings where FA is low. An alternative approach

is to visualize the fiber trajectories [44], but rendering such a large dataset may be

difficult in real-time applications.
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(a) (b)

Figure 6-1: (a) Trajectories of 5 different clusters used for quantitative analysis: sple-
nium (yellow), corticospinal (red), corticobulbar (green), middle cerebellar peduncle
(blue), and genu (magenta). (b) A model representation of the bundles as the mean
trajectory and the isosurfaces corresponding to spatial variation of the clusters.

Having the mean trajectory for each fiber tract allows us to study the shape of

the bundle which can be used to study either brain development or the changes that

occur in shape of the bundles because of diseases. As an example, the curvature

versus the normalized arc length of the cluster centers are plotted in Figure 6-2 for

each cluster shown in Figure 6-1. For a 3-D curve, r, parametrized as a function of

the arc length, the curvature and torsion are defined as:

κ =
‖r′ × r′′‖
‖r′‖3/2

(6.1)

and

τ =
(r′ × r′′).r′′′

‖r′ × r′′‖2
, (6.2)

respectively, where ′ denotes differentiation with respect to the arc length. The B-

spline representation of the fiber trajectories allows us to evaluate the derivatives

analytically and avoid further numerical errors.

135



0

0.3

0

0.3

0

0.3

0

0.3

0 0.5 1
0

0.3

Normalized Arc Length

C
ur

va
tu

re

(a)

(b)

(c)

(d)

(e)

Figure 6-2: Curvature of the cluster center along its normalized arc length for fiber
bundles shown in Figure 6-1: (a) splenium, (b) genu, (c) middle cerebellar peduncle,
(d) corticospinal, and (e) corticobulbar fiber tracts.

6.2 Investigation of Neonate Brain Development

Investigation of early brain development is of great scientific and clinical importance.

Prematurely born infants are vulnerable to brain injuries and early detection of ab-

normalities may help their treatment and care. Diffusion tensor MRI enables vi-

sualization and quantification of white matter pathways well before other imaging

techniques. However, studies performed so far have not fully benefited from the po-

tentials of this modality. Prior work on neonate DT-MRI analysis has been limited to

the comparison of scalar diffusion parameters, such as fractional anisotropy (FA), in

manually defined regions of interest (ROIs) [13, 42]. As discussed in Chapter 2, such

approaches are sensitive to the accuracy and reproducibility of the ROIs specified by

the experts. Errors in defining the ROIs are especially critical in analyzing neonate

DTI due to the limited resolution and SNR. More importantly, spatial patterns of the

tract maturation are lost in ROI-based quantitative analysis. Tract-oriented analysis,

wherein the fiber tract acts as a common coordinate system, enables unambiguous
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quantification of the spatial information. To our knowledge, this is the first tract-

oriented analysis of the neonate DTI data where mapping of the fiber pathways to

the common coordinate system is performed rigorously. Dubois et al. [32] proposed

a similar approach, wherein the quantitative parameters are either reported at man-

ually selected landmarks along the fiber pathways or averaged over the whole fiber

bundle.

6.2.1 Material and Method

Very low birth weight infants born before 30 weeks postmenstrual age underwent

structural and diffusion MRI at approximately 32 weeks and approximately 42 weeks

postmenstrual age. Imaging was carried out without sedation and with informed

consent utilizing a protocol approved by the institutional review board. Whole brain

DTI required 10 minutes of scanning time on 1.5 T GE scanner with 31 directions, 6

baseline images, and (0.7, 0.7, 1.5) mm resolution. Manual outlining of ROIs for trac-

tography was performed in 3D Slicer(www.slicer.org). The Expectation Maximization

algorithm method, presented in Chapter 4, was used to cluster the trajectories in our

mixture model framework and to obtain the point correspondence between the tra-

jectories in each cluster. The common coordinate system is obtained as proposed in

Chapter 3 by constructing a distance map from each cluster center. The parameters

of interest are averaged over all trajectories that belong to a cluster and plotted along

the common coordinate system.

6.2.2 Results

Clustered white matter trajectories for cortico-spinal, cingulum, and uncinate fasci-

culus are shown in Figure 6-3 (a)-(c) and (d)-(f) at two time points of 32 and 42 weeks

postmenstrual age for one of the subjects. FA-colored trajectories clearly show the

spatial patterns of the tract development, especially in the cortico-spinal tract. Box-

plots of the FA variation along the normalized tract arc length of the superior part

of the cingulum and at the above two time points are shown in Figure 6-4. As can
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Results:  
Clustered white matter trajectories for cortico-spinal, cingulum, and uncinate fasciculus are shown in Fig. 1 (a)-(c) and (d)-(f) at two time points of 32 and 42 weeks 
postmenstrual age for one of the subject. FA-colored trajectories clearly show the spatial patterns of the tract development, especially in the cortico-spinal tract. Box-
plots of the FA variation along the tract arc length of the superior part of the cingulum, which is proven to be a challenging tract in quantitative analyses [3], and at the 
above two time points are shown in Fig.2. As can be clearly seen, only the posterior part of the tract exhibits a significant increase in the fractional anisotropy. Whereas 
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Fig. 1 FA-colored trajectories from (a), (d) cortico-spinal, (b), (e) cingulum and Fig. 2 Box-plot of the FA variation along the tract arc length for the superior 
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Figure 6-3: FA-colored trajectories from (a), (d) cortico-spinal, (b), (e) cingulum
and (c), (f) uncinate fasciculus at 32-wk (up) and 42-wk (down) postmenstrual age.
Spatial patterns of the tract development are clearly seen.

be clearly seen, only the posterior part of the tract exhibits a significant increase in

the fractional anisotropy. Whereas tract-oriented analysis shows 76% increase in the

mean FA (from 0.17 to 0.30) in the posterior part of the superior cingulum, ROI-based

analysis on the entire superior cingulum shows only 18% FA increase (from 0.22 to

0.26). This observation signifies the importance of analyzing the spatial dependence

of the FA changes enabled by our tract-oriented approach.

6.3 DT-MRI Findings in Schizophrenia

Schizophrenia is one of the major disabling brain disorders. It has been hypothesized

that oligodendroglial dysfunction and subsequent myelin abnormalities contribute to

the schizophrenic syndrome [27]. Diffusion tensor MRI has been employed by several

groups in the past to investigate myelin integrity in patients with schizophrenia.

Reduced diffusion anisotropy has been reported in prefrontal cortex [18], cingulum

[86], uncinate fasciculus [19,49], corpus callosum [1,4,36], and arcuate facsiculus [19].

However, other studies find no significant difference in some of the above structures

[36, 37, 84, 86]. We believe that the inconsistency in experimental results is in part

due to the difference in specifying the regions over which the anisotropy is measured.

138



Investigation of Neonate Brain Development Enabled by Tract-Oriented Quantification 
 

M. Maddah1, A. U. Mewes2,3, H. Als2, G. McAnulty2, E. L. Grimson1, and S. K. Warfield2 
1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States, 2Computational Radiology 

Laboratory, Harvard Medical School and Children’s Hospital, Boston, MA, United States, 3Institute of Radiology, Charite, Berlin, Germany 
 

Introduction:  
Investigation of early brain development is of great scientific and clinical importance. Prematurely born infants are vulnerable to brain injuries and early detection of 
abnormalities may help their treatment and care. Diffusion tensor MRI enables visualization and quantification of white matter pathways well before other imaging 
techniques. However, studies performed so far have not fully benefited from the potentials of this modality. Prior work on neonate DTI analysis has been limited to the 
comparison of scalar diffusion parameters, such as fractional anisotropy (FA), in manually defined regions of interest (ROIs) [1, 2]. Such approaches are sensitive to the 
accuracy and reproducibility of specifying the ROI by the experts. Errors in defining the ROIs are especially important in analyzing neonate DTI due to the limited 
resolution and SNR. More importantly, spatial patterns of the tract maturation are lost in the quantitative analysis. Tract-oriented analysis, wherein the fiber tract acts as 
a common coordinate system, enables unambiguous quantification of the spatial information. To our knowledge, this is the first tract-oriented analysis of the neonate 
DTI data where mapping of the fiber pathways to the common coordinate system is performed rigorously. Dubios et al. [3] proposed a similar approach, wherein the 
quantitative parameters are either reported at manually selected landmarks along the fiber pathways or averaged over the whole fiber bundle.   

Material and Method:  
Very low birth weight infants born below 30 weeks postmenstrual age underwent structural and diffusion MRI at approximately 32 weeks and approximately 42 weeks 
postmenstrual age. Imaging was carried out without sedation and with informed consent utilizing a protocol approved by the institutional review board. Whole brain 
DTI required 10 minutes of scanning time on 1.5 T GE scanner with 31 directions, 6 baseline images, and (0.7, 0.7, 1.5) mm resolution. Manual outlining of ROIs for 
tractography was performed in 3D Slicer. An Expectation Maximization algorithm was used to cluster the trajectories in a mixture model framework and to obtain the 
point correspondence between the trajectories in each cluster. The common coordinate system is obtained as proposed in [4] by constructing a distance map from each 
cluster center. The parameters of interest are averaged over all trajectories that belong to a cluster and plotted along the common coordinate system.  

Results:  
Clustered white matter trajectories for cortico-spinal, cingulum, and uncinate fasciculus are shown in Fig. 1 (a)-(c) and (d)-(f) at two time points of 32 and 42 weeks 
postmenstrual age for one of the subject. FA-colored trajectories clearly show the spatial patterns of the tract development, especially in the cortico-spinal tract. Box-
plots of the FA variation along the tract arc length of the superior part of the cingulum, which is proven to be a challenging tract in quantitative analyses [3], and at the 
above two time points are shown in Fig.2. As can be clearly seen, only the posterior part of the tract exhibits a significant increase in the fractional anisotropy. Whereas 
tract-oriented analysis shows 76% increase in the mean FA (from 0.17 to 0.30) in the posterior part of the superior cingulum, ROI-based analysis on the entire superior 
cingulum shows only 18% FA increase (from 0.22 to 0.26).   

      

       

1
0

0.2

0.4
F

A

Arc Length  
 
Fig. 1 FA-colored trajectories from (a), (d) cortico-spinal, (b), (e) cingulum and Fig. 2 Box-plot of the FA variation along the tract arc length for the superior 
(c), (f) uncinate fasciculus at 32-wk (up) and 42-wk (down) postmenstrual age. part of the cingulum and at 32-wk (up) and 42-wk (down) postmenstrual age. 
Spatial patterns of the tract development are clearly seen.                                                    Only the posterior part shows a significant FA increase. ROI-based analysis 
                                                                                                                                                fails to detect such spatial dependencies. 
 
Conclusion:  
Tract-based quantitative analysis reveals developmental differences that are not identified by ROI-based methods. Spatial patterns of the tract development are clearly 
observed once the parameters of interest are plotted along the tract arc length. Comparison across different subjects or at different time points are easily achieved by 
mapping the corresponding cluster centers. The proposed approach opens new possibilities for more accurate analysis of neonate brain development. 

Acknowledgment: This work is supported in part by NIH grants P41 RR013218, U54 EB005149, U41 RR019703, P30 HD018655, R01 RR021885, R01 GM074068, 
R01 EB008015, R03 CA126466, and R01 HD046855, by NSF ITR 0426558 from CIMIT, and grant RG 3478A2/2 from the NMSS. 

References: 
[1] H. Huang, et al.White and gray matter development in human fetal, newborn, and pediatric brains, Neuroimage, 27-38, 2006. 
[2] J. Berman, et al. Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. Neuroimage, 862-871, 2005. 
[3] J. Dubios, et al. assessment of early organization and maturation of infants’ cerebral white matter fiber bundles: A feasibility study using quantitative diffusion  
tensor imaging and tractography, Neuroimage, 1121-1132 (2006).  
[4] M. Maddah, et al., Probabilistic clustering and quantitative analysis of white matter fiber tracts, IPMI, 372-383, 2007. 

1
0

0.2

0.4

F
A

 P A 

(a) (c)(b) 

(d) (e) (f) 

Figure 6-4: Box-plot of the FA variation along the tract arc length for the superior
part of the cingulum and at 32-wk (up) and 42-wk (down) postmenstrual age. Only
the posterior part shows a significant FA increase. ROI-based analysis fails to detect
such spatial dependencies.

Clinical studies in the past are mostly based on either averaging the quantitative

parameters over expert-specified regions of interest (ROIs) or using a voxel-by-voxel

comparison. As mentioned in Chapter 1, the former is sensitive to the accuracy of

specifying the ROI, while the latter is susceptible to registration errors.

Most recently, a tract-specific analysis has been proposed to more accurately de-

fine the measurement regions [46]. Jones et al. perform tractography to obtain the

pathways of each fiber tract and then report a single number by averaging the pa-

rameter of interest along all pathways that belong to a given tract. However, local

variation of the quantitative parameters is not captured in their analysis.

In this section, we present the result of our tract-oriented analysis in which pa-

rameters of interest are studied along the arc length of the tract. This allows us

to study local variations that are missed in an ROI-based analysis or in the study

performed in [46]. We apply the proposed procedure on a population of 18 patients

with chronic schizophrenia and 19 normal subjects, analyzing several fiber bundles

that have been indicated in schizophrenia research, and demonstrating the sensitivity

of our approach to identifying the group differences in diffusivity measures such as

fractional anisotropy (FA) and mean diffusivity (MD).
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6.3.1 Method

In this study, the probabilistic tract-oriented quantitative analysis described in Chap-

ter 5 is used. We use an atlas of fiber tracts [92], which is composed of a set of labeled

ROIs, each corresponding to an anatomically-known bundle of fiber tracts in the hu-

man brain. These ROIs are used to seed the tractography and to guide the clustering

algorithm. As mentioned earlier, we add prototype curves to the atlas to represent

the shape of the trajectories in each tract. This is a one-time process performed by

an expert, by manual selection of trajectories that are representative of the shape of

the tracts. These prototype curves are also used as the initial cluster centers in the

clustering algorithm. Fractional anisotropy maps calculated from DT-MRI data are

first mapped into a common coordinate system using a congealing registration [103]

and then into the atlas (MNI) space using an affine registration [95].

Atlas-specified regions corresponding to each fiber tract are mapped into the coor-

dinate system of each case using the mapping parameters obtained from registration.

These mapped regions are then dilated to ensure that they contain the fiber tract of

interest. These regions are used to seed a streamline tractography [10], as described

in Algorithm 2.1 (in Chapter 2). The quantitative parameters of interest, such as

fractional anisotropy and the diffusivity eigenvalues, are collected at each point on

the trajectories and stored for further quantitative analysis.

Trajectories obtained from the tractography algorithm in each case are then

mapped into the common MNI space, and then clustered using our EM algorithm

with the fixed-weight prior, presented in Section 5.4. We employ the atlas-specified

ROIs as the spatial prior information, while the prototype trajectories of the atlas are

used as the initial cluster centers for initializing the EM iteration. As described in

Section 5.4, the membership likelihood from the mixture model is combined with the

atlas prior in a Bayesian framework to determine the membership probability. The

output of the clustering algorithm is the probabilistic assignment of the trajectories

to each cluster, a set of cluster centers, and the point correspondence between the

trajectories and the cluster centers.
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(a) (b)

Figure 6-5: (a) Axial and (b) saggital view of the clustered trajectories from genu
and splenium parts of the corpus collasum. Trajectories from all cases are registered
into the atlas space, clustered, and colored with the local fractional anisotropy.

Tract-oriented quantitative analysis is performed by calculating the weighted av-

erages of the parameters of interest along the arc length of the cluster centers. By

doing so, trajectories with low membership probability contribute less to the quan-

titative analysis. Such analysis can be performed on a case-by-case basis or on all

cases that belong to a group. Analysis of variance (ANOVA) and permutation testing

(with 1000 permutations) are used for statistical group analysis.

6.3.2 Experiments and Results

Here, we present the results of our tract-oriented quantitative analysis performed on

a population of schizophrenia and control subjects. We examine corpus callosum

fiber tracts, left and right uncinate fasciculus, inferior longitudinal fasciculus, inferior

occipito-fronto fasciculus, and cinglum bundles.

For these experiments, we used DTI images acquired on a 3T GE system using an

echo planar imaging (EPI) DTI sequence. We used a double echo option to reduce

eddy-current related distortions, and an 8-Channel coil that allows us to perform

parallel imaging using ASSET (Array Spatial Sensitivity Encoding Techniques, GE)

with a SENSE-factor (speed-up) of 2 to reduce the impact of EPI spatial distortions.

Eighty-five axial slices parallel to the AC-PC line covering the whole brain were

acquired, with the following parameters: 51 directions with b = 900, 8 baseline scans

with b = 0, TR = 17000 ms, TE = 78 ms, FOV = 24 cm, 144×144 encoding steps,
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Figure 6-6: The variation of FA along the arc length, from left to right of the brain, for
genu (a), upper splenium (b) and lower splenium (c) for healthy (solid lines) and dis-
eased (dashed lines) subjects and the corresponding p-values. Significant differences
are observed on the left side of the genu and the lateral portion of the splenium.

and 1.7 mm slice thickness.

Corpus Callosum

Some of the schizophrenia symptoms are hypothesized to be related to the disrup-

tions of the inter-hemisphere connectivity, which makes study of the corpus callosum

of great interest. To analyze the corpus callosum in schizophrenia, we analyzed DTI

data from 19 control subjects and 18 chronic schizophrenics, matched on age, gen-

der and parental socioeconomic status. Figure 6-5 shows the clustered trajectories

from genu and splenium of the corpus callosum, colored based on the local fractional

anisotropy. Our method allows us to divide the splenium into its upper and lower

parts (tracts interconnecting parietal and occipital lobes respectively), as they have

different shapes. Figure 6-6 compares the fractional anisotropy in genu and upper

and lower splenium for healthy and schizophrenic subjects. Significant FA reduction
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Figure 6-7: Similar to Figure 6-6 but for mean diffusivity along the tract.

is observed in genu, which confirms earlier reports of similar observations [68]. More-

over, our analysis clearly indicates that FA reduction is primarily observed in the left

part of the genu, which is consistent with a few detailed voxel-based studies [68].

We also observed significant reduction of the fractional anisotropy in the splenium,

especially in its lower part. As can be seen in Figure 6-6, the FA reduction is seen

bilaterally, in the middle of each side. To our knowledge, only one voxelwise analysis

[4] was sensitive enough to observe such a bilateral FA reduction in the splenium.

Similar analysis is performed for mean diffusivity and the results are given in Figure

6-7. Increased mean diffusivity is significant only in small portions of the genu (in

the middle) and the splenium (in the left).

Uncinate Fasciculus(UF), Inferior Longitudinal Fasciculus (ILF), and In-

ferior Fronto-Occipito Fasciculus (IFO)

Besides corpus callosum, fronto-temporal connections are the second most frequently

indicated fiber tracts in pathophysiology of schizophrenia. In this work, we thus
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examine the uncinate fasciculus, which is the most prominent of all white matter

fiber tracts connecting the frontal and temporal lobes, and which has been implicated

in schizophrenia in several publications [19]. We also study the inferior longitudinal

fasciculus and inferior fronto-occipito fasciculus bundles. From this experiment on,

we used 44 subjects, 22 control subjects and 22 chronic schizophrenics, matched on

age, gender and parental socioeconomic status. Figure 6-8 shows the trajectories of

three bundles of UF, ILF and IFO in the atlas space and the successful separation

of these three bundles by our clustering algorithm. Note that in the second plot we

shifted the bundles spatially away from each other for a better visualization of the

bundles. In part (c) of the figure, the shifted bundles are colored by the FA values.

Regarding the Uncinate Fasciculus, as shown in Figure 6-9, an increase in FA is

significant for a small part at the middle of both left and right UF bundles. We do

not observe statistically significant differences in the mean diffusivity, the parallel or

perpendicular diffusivity. However, as shown in Figure 6-10 we observe a trend of

increase in parallel diffusivity for the left bundle and a trend of decrease in perpen-

dicular diffusivity for the right bundle. This observation suggests that two different

processes might be responsible for an increase in the FA value of the left and right

bundles. This observation, which has not been reported in the past, indicates that

FA alone is not enough for understanding what is changing in the brain. Although

the origins of increased parallel diffusivity are unknown and it opposes general views

of axonal damage, it should be noted that such an increase is not impossible. In

fact, increased parallel diffusivity has been reported previously for displaced fiber

tracts [80].

To study changes in brain asymmetry in schizophrenia, in Figure 6-11 we have

plotted the fractional anisotropy against the normalized arc length of the uncinate fas-

ciculus in control and schizophrenia subjects. In both groups, significant left-greater-

than-right asymmetry is observed in the inferior part of the uncinate fasciculus, while

the asymmetry is reversed in the superior part.

Similar analysis performed on the inferior longitudinal fasciculus (ILF), shown in

Figure 6-12, reveals that no significant change in the fractional anisotropy is observed
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(a)

(b)

(c)

Figure 6-8: (a)The trajectories of three bundles of UF, ILF and IFO in the atlas
space are clustered by our algorithm. These bundles are manually shifted in space
for better visualization in (b) and are colored by FA values in (c).
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Figure 6-9: Variation of fractional anisotropy along the tract arc length from inferior
to anterior for (a) left and (b) right uncinate fasciculus in healthy (solid lines) and
diseased (dashed lines) subjects and the corresponding p-values (c) and (d).
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Figure 6-10: Variation of (a) parallel diffusivity and (b) perpendicular diffusivity
along the tract arc length from inferior to anterior for (a) left and (b) right unci-
nate fasciculus in healthy (solid lines) and diseased (dashed lines) subjects and the
corresponding box plots (c) and (d).
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Figure 6-11: Comparison of the fractional anisotropy along the normalized arc length
of the left (solid lines) and right (dashed lines) UF and for the (a) control and (b)
schizophrenia cases. The corresponding p-values in (c) and (d) demonstrate statis-
tically significant left-greater-than-right asymmetry in the inferior part and right-
greater-than-left asymmetry in the superior part of the UF in both groups.
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Figure 6-12: Comparison of the fractional anisotropy for (a) left and (b) right ILF
for control (solid lines) and schizophrenia (dashed lines) groups, along with the cor-
responding p-values (c) and (d). No significant change in FA is observed for these
bundles.

in this structure. Reduced FA is observed in part of the left ILF, which is mainly

due to increased perpendicular diffusivity, as shown in Figure 6-13(a). There is some

evidence of decreased parallel diffusivity in the right ILF, as seen in Figure 6-13(b),

although these changes are not statistically significant. Further study of this struc-

ture, perhaps with a larger dataset, is needed to arrive at statistically meaningful

conclusions.

Figure 6-14 shows the fractional anisotropy along the arc length of the left and

right inferior occipito-fronto fasciculus (IFO) for the control and schizophrenia groups

as well as the corresponding p-values. Reduced FA is observed in two small parts of

the left IFO. Further analysis shows that this is mainly due to increased perpendicular

diffusivity at these two sites. On the other hand, a combination of increased FA (in one

site) and decreased FA (in two sites) of the right IFO is observed. Detailed analysis

presented in Figure 6-15 demonstrates that significant increase in the perpendicular

diffusivity is observed in the right IFO, but is not reflected fully in the FA analysis

since the parallel diffusivity is also increased in some portions of this structure. Again,
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Figure 6-13: Comparison of the (a) perpendicular diffusivity in the left ILF and (b)
parallel diffusivity in the right ILF for the healthy (solid lines) and schizophrenia
(dashed lines) groups, along with the corresponding p-values (c), (d).

this analysis demonstrates that a quantitative analysis based only on the changes in

FA does not completely capture changes in the white matter integrity.

In Figure 6-16 the samples of cluster centers for left and right UF, ILF and IFO

bundles are visualized. The size of each sample is proportional to the significance of

the difference between the FA value of the schizophrenics and controls at that point.

We colored the increase and decrease in FA with red and blue respectively.

Cingulum

The cingulum is a C-shaped fiber tract that is part of the limbic system and handles

functions related to memory and emotion. The cingulum bundle connects the cingu-

late gyrus to other regions in the limbic lobe, especially the hippocampus, which is

involved in memory formation. Based on its function, the cingulum fiber tract is of

great interest to schizophrenia studies.

Figure 6-17 illustrates the clustered left and right cingulum bundles in different

views. These bundles are colored by their local FA values. Figure 6-18 shows the

fractional anisotropy along the arc length of the superior part of the left and right
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Figure 6-14: Comparison of the fractional anisotropy for the (a) left and (b) right
IFO and for the healthy (solid lines) and schizophrenic (dashed lines) groups, plotted
against the normalized arc length of the bundle. The corresponding p-values are
shown in (c) and (d).

0 1
9

10

11

12

13

14

15
x 10-4

0 1
5

6

7

8
x 10

-4

0 1
0

0.1

0.2

0.3

0.4

0.5

0 1
0

0.1

0.2

0.3

0.4

0.5

Normalized Arc Length

P
ar

al
le

l D
iff

us
iv

ity

Normalized Arc Length

P
er

pe
nd

ic
ul

ar
 D

iff
us

iv
ity

Normalized Arc Length

D
pe

r p
-v

al
ue

Normalized Arc Length

D
pa

r p
-v

al
ue

(a) (b)

(c) (d)

Figure 6-15: Comparison of the (a) parallel and (b) perpendicular diffusivity for the
right IFO in healthy (solid lines) and schizophrenia (dashed lines) groups. Significant
increase in the perpendicular diffusivity is observed for a large portion of this bundle.
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(a)

(b)

Figure 6-16: Visualization of samples of cluster centers for (a) left and (b)right UF,
ILF and IFO bundles. The radius of each sample is proportional to the significance of
the difference between the FA value of the schizophrenics and controls at that point.
The increase and decrease in FA is highlighted in red and blue respectively.
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cingulum and the corresponding p-values. For the left cingulum, increased FA is ob-

served in the middle of the superior cingulum. Further analysis demonstrates that

this is due to a combination of increased parallel diffusivity and decreased perpen-

dicular diffusivity in schizophrenia cases. On the other hand, the right cingulum

exhibits reduced FA in its anterior part. As shown in Figure 6-19, both parallel and

perpendicular diffusivity increase in the anterior part of the right cingulum. Hence,

the FA plot in Figure 6-18 does not completely reflect changes in the right cingulum.

Figure 6-20 shows the left-right asymmetry of the fractional anisotropy in the

superior part of the cingulum in control and schizophrenia groups. In both cases

the FA is greater in the left cingulum and especially in the middle-toward-anterior

part of the bundle. This observation is consistent with earlier findings reported for

healthy subjects [68]. Another interesting observation is that the schizophrenia group

exhibits a stronger asymmetry between the left and right cingulum.

Finally, Figure 6-21 shows the 3-D visualization of the p-values associated with

the control vs. schizophrenia analysis of the FA values. The radius of the spheres at

each sample of the cluster center represents the significance of the group differences.

6.3.3 Discussion

As shown in the previous sections, our tract-oriented method is able to reveal the local

variations of the diffusion parameters. This approach is thus very sensitive compared

to ROI-based methods, where the differences might be lost when parameters (such as

FA) are being averaged over the entire tract and compared between groups. Although

voxel-based methods are potentially able to show the local variations, the results are

sensitive to registration errors.

Abnormalities within the genu of the corpus callosum are localized in the mid-

sagittal region, thus appear in the portion of the tract where the fibers of the tract

run in isolation, which suggests disruptions in tracts interconnecting frontal lobes.

On the other hand, changes observed in the schizophrenia group in the parasagittal,

but not midsagittal portion of the splenium of the corpus callosum are suggestive

of factors other than disruption of corpus callosum integrity, such as interfering and
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(a)

(b)

(c)

Figure 6-17: Clustered trajectories of (a) left and (b) right cingulum from 44 subjects
are shown in the atlas space. (c) shows these bundles from the axial view which each
voxel is colored based on its FA value.
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Figure 6-18: Comparison of the fractional anisotropy along the arc length of the supe-
rior part of the (a) left and (b) right cingulum in control (solid blue) and schizophrenia
(dashed red) cases and (c), (d) the corresponding p-values. Increased FA is observed
in the middle of left cingulum, while decreased FA is seen in the anterior part of the
right cingulum.
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Figure 6-19: Comparison of the (a) parallel and (b) perpendicular diffusivity along
the arc length of the superior part of the right cingulum in control (solid blue) and
schizophrenia (dashed red) cases and (c), (d) the corresponding p-values. The anterior
part of the bundle shows increased diffusivity in all directions. Hence the FA analysis
in Figure 6-18(b) does not completely reflect the changes in the right cingulum.
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Figure 6-20: Comparison of the fractional anisotropy along the normalized arc length
of the superior part of the left (solid lines) and right (dashed lines) cingulum and for
the (a) control and (b) schizophrenia cases. The corresponding p-values in (c) and
(d) demonstrates statistically significant left-greater-than-right asymmetry in both
groups. A more important observation is that the asymmetry is more pronounced in
the schizopherenic cases.

Figure 6-21: Three-dimensional visualization of the significance of the group analysis
performed for the FA values between the control and schizophrenia subjects.
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crossing fibers.

We would like to stress that a comprehensive DTI analysis requires examination

of both anisotropy measures, such as FA, and the diffusivity magnitude, e.g., MD,

or equivalently the parallel and perpendicular diffusivity eigenvalues [40]. The diffu-

sivity perpendicular to the fiber tract reflects changes in axonal membrane, myelin,

or extracellular space [71], whereas membrane disintegration and gliosis may create

diffusion barriers in the direction of the fiber tract and reduce the parallel diffusiv-

ity [71]. Axonal damage may also result in reduced diffusivity perpendicular to the

fiber tract [71]. Further studies, however, are still needed to understand better the

relationship between micropathology and diffusion measures. Specifically, the rela-

tionship between diffusion measures and brain anatomy, including influence of other

anatomical structures on anisotropy measures (as demonstrated on splenium as well

as UF), need to be better understood. The analysis performed on the uncinate fas-

ciculus clearly demonstrates the fact that fractional anisotropy alone is not sufficient

to study white matter integrity.

Another important issue, which is essential in group analysis and was discussed

in previous schizophrenia studies [46], is the age and/or disease-dependence of the

diffusion parameters. To illustrate this point, in Figure 6-22 we have plotted the

age-dependence of the fractional anisotropy in the mid-saggital point of the lower

splenium. While healthy subjects exhibit small age-dependence in the age range

studied, considerable reduction of FA is observed in schizophrenic cases upon aging.

6.4 Summary

In this chapter, we first showed that with our clustering approach, the fiber bundles

can be modeled by their mean trajectory and their spatial variation and can be

efficiently visualized in 3-D. Preliminary results on a brain development study enabled

by our tract-oriented quantitative analysis were also presented. We showed that the

changes in FA in a developing brain reveal themselves to be more significant locally

rather than when averaged over the whole ROI.
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Figure 6-22: Age-dependence of the fractional anisotropy in mid-saggital point of the
lower splenium for healthy (open squares) and schizophrenic (closed squares) subjects.

A tract-oriented quantitative analysis of genu, splenium, and left and right unci-

nate fasiculus, inferior longitudinal fasciculus, inferior fronto-occipito fasciculus and

cingulum to identify group differences in the schizophrenia group was presented. The

method is able to reveal the local variations of the fiber integrity, which are lost when

the quantitative parameters are averaged over the entire fiber tract in ROI-based

methods. Significant reduction in fractional anisotropy in the left part of the genu

and bilaterially in the middle of each side of the splenium was observed. The analysis

of uncinate fasiculus showed a statistically significant increase in FA and a trend of

increase in parallel diffusivity in the middle part of uncinate fasiculus as well as a

pattern of asymmetry between left and right. We also observed significant increase

in the perpendicular diffusivity for a large portion of the right inferior occipito-fronto

fasciculus. The analysis on the left and right cingulum bundles revealed an increased

FA in the middle of left cingulum, and decreased FA in the anterior part of the right

cingulum. It also showed statistically significant left-greater-than-right asymmetry

in both groups while this asymmetry was more pronounced in the schizopherenic

cases. Finally, it was shown that age-dependence of the diffusivity parameters is

an important factor when performing group analysis. Our findings presented in this

chapter demonstrated the strength of tract-oriented quantitative analysis in revealing

the group differences.
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Chapter 7

Conclusions

In this dissertation, we have proposed and implemented a novel framework for robust

clustering and quantitative analysis of cerebral white matter structures from diffu-

sion MRI data. Our method automatically labels the trajectories of white matter

pathways, extracted by a tractography algorithm, to anatomically known bundles of

white matter fiber tracts. As has been shown in this thesis, such label assignment

is done probabilistically. This approach addresses the uncertainty that exists in the

input data and provides a principled way for us to identify the outliers and control

the spread of the bundles.

By establishing point-correspondences between the trajectories in a cluster, our

method has allowed us to perform statistical analysis along those trajectories and

hence enabled us to quantify the local changes in diffusion properties of white matter

along the bundles of fiber tracts. The estimation of the mean trajectory and the

covariance matrix for each bundle has also let us construct three-dimensional abstract

models that are beneficial in neurosurgical applications.

In this thesis, we developed a mixture model clustering to group fiber trajectories

that are similar in shape and adjacent in spatial coordinates. To our knowledge, such

a technique had not been used in this context before. We performed the mixture

modeling on the distances between the trajectories as opposed to the coordinates of

trajectories, and demonstrated how this technique performs well on variable-length

feature vectors. We also demonstrated that a gamma mixture model accurately rep-
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resents the nature of the distance of the 3-D trajectories from the cluster centers.

We inferred the unknown parameters of the models in an Expectation Maximization

setup. We also introduced a robust and computationally efficient approach for calcu-

lating the similarity and point correspondence between the trajectories, by building a

distance map for each cluster center and a corresponding Voronoi diagram of labels.

We showed that the proposed framework has the flexibility to benefit from spatial

anatomical knowledge, provided by an atlas of white matter fiber tracts, as prior

information. We presented two Bayesian approaches that each incorporates anatom-

ical information in the clustering of the fiber trajectories, at different levels of the

Bayesian network. Integration of anatomical knowledge fully automates the process

of quantitative analysis from specifying the seed points for tractography, guiding the

clustering, to the labeling of the fiber tracts to anatomically known bundles. As

shown in this thesis, it also makes the results more robust and less sensitive to the

parameter settings.

To the best of our knowledge, our method represents the first implementation

in which an anatomical prior is used in a mathematically principled framework and

it is the first to identify group differences in diffusion properties of brain structures

between healthy and pathological cases along the bundles of fiber tracts. The data

analysis, especially our population study and findings on schizophrenia, demonstrated

the capability, efficiency, and importance of the presented method in this thesis for

clinical applications.
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Appendix A

Graphical Models

Graphical models are a powerful modeling tool for dealing with the complexity and

uncertainty of systems and are playing an important role in design and analysis of

machine learning algorithms. They provide an intuitive representation of the system

as a combination of smaller parts, where probability theory ensures the mathematical

consistency of the model and the proper interaction of the model and data.

Probabilistic graphical models are graphs in which random variables are repre-

sented by nodes connected by edges to represent conditional dependencies. In fact,

conditional dependence is the key to efficient probabilistic representation and compu-

tation and is expressed very clearly in graphical models. So, in addition to the graph

structure, the conditional probability distribution (CPD) at each node, conditioned

on its parents, must be specified. For discrete variables this can be shown by a table

(CPT), which lists the probability that the child node takes on each of its different

values for each combination of values of its parents.

Major types of graphical models include: directed, undirected (also called Markov

Random Fields (MRFs) or Markov Networks), and factor graphical models.

In this work we deal with directed graphical models, also known as Bayesian

Networks or Belief Networks (BNs). An example is shown in Figure A-1. The model

gives a factorization of the joint probability distribution over variables as a product
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of the probability distribution of each variable conditioned on its parents, i.e.,

p(x1, ..., xk) =
k∏
i=1

p(xi|Pa(Xi)), (A.1)

where Pa(Xi) is the set of parents of Xi. Major independences are:

• Markov Property: Every node is conditionally independent of its non-descendants,

given its parents.

• Each node is unconditionally (a priori) independent of any non-descendant non-

ancestor, unless they share a common ancestor.

• Each node is conditionally independent of all others given its Markov blanket,i.e.

set of its parents, children, and children’s parents.

The conditional independence are best be explained by means of the “Bayes Ball”

algorithm: Two (sets of) nodes A and B are conditionally independent (d-separated)

given a set C if and only if there is no way for a ball to get from A to B in the graph.

Before explaining the allowable movements, a distinction should be made between

hidden and observed nodes. Hidden nodes are nodes whose values are not known,

and are depicted as unshaded, while observed nodes are shaded.

Figure A-1 shows different situations where nodes X1 and X3 are either dependent

or independent, based on their connection to X2. In the first column X2 is a “leaf”,

i.e., a node with two parents. If X2 is hidden, its parents are marginally independent,

and hence the ball does not pass through. However, if X2 is observed, the parents

become dependent because of the explaining away phenomenon, i.e., the parents

“compete” to explain the observed node.

In the second column, X2 is a “root”, i.e., two edges diverge from X2. If X2 is

hidden, the children are dependent, because they have a hidden common cause. If

X2 is observed, its children are conditionally independent,

Finally, the third column shows a case, in which X2 has one incoming and one

outgoing arrow. The nodes upstream and downstream of X are dependent if and only

if X2 is hidden, because if X2 is observed, conditioning on this node breaks the graph.
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