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Abstract
In this thesis, we study three problems related to various algorithmic and game-theoretic
aspects of scheduling.

First, we apply ideas from cooperative game theory to study situations in which a set of
agents faces supermodular costs. These situations appear in a variety of scheduling contexts,
as well as in some settings related to facility location and network design. Although coopera-
tion is unlikely when costs are supermodular, in some situations, the failure to cooperate may
give rise to negative externalities. We study the least core value of a cooperative game—the
minimum penalty we need to charge a coalition for acting independently that ensures the
existence of an efficient and stable cost allocation—as a means of encouraging cooperation.
We show that computing the least core value of supermodular cost cooperative games is
strongly NP-hard, and design an approximation framework for this problem that in the end,
yields a .3C �/-approximation algorithm. We also apply our approximation framework to
obtain better results for two special cases of supermodular cost cooperative games that arise
from scheduling and matroid optimization.

Second, we focus on the classic precedence-constrained single-machine scheduling
problem with the weighted sum of completion times objective. We focus on so-called 0-1
bipartite instances of this problem, a deceptively simple class of instances that has virtually
the same approximability behavior as arbitrary instances. In the hope of improving our
understanding of these instances, we use models from random graph theory to look at these
instances with a probabilistic lens. First, we show that for almost all 0-1 bipartite instances,
the decomposition technique of Sidney (1975) does not yield a non-trivial decomposition.
Second, for almost all 0-1 bipartite instances, we give a lower bound on the integrality gap
of various linear programming relaxations of this problem. Finally, we show that for almost
all 0-1 bipartite instances, all feasible schedules are arbitrarily close to optimal.

Finally, we consider the problem of minimizing the sum of weighted completion times
in a concurrent open shop environment. We present some interesting properties of various
linear programming relaxations for this problem, and give a combinatorial primal-dual
2-approximation algorithm.

Thesis Supervisor: Andreas S. Schulz
Title: Associate Professor of Mathematics of Operations Research
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Chapter 1

Introduction

In the field of scheduling, we are concerned with the problem of effectively allocating
limited resources to tasks over time. Scheduling problems are found everywhere: examples
include manufacturing, project management, computer operating system design, compiler
optimization, and Internet advertising. Many scheduling problems, however, are extremely
difficult to solve. The study of scheduling problems from a mathematical perspective
has often triggered the development of innovative ideas in the theory and practice of
mathematical programming and combinatorial optimization.

This thesis focuses on both algorithmic and game-theoretic problems in scheduling. We
offer a detailed preview of the contributions of this thesis below. Each chapter in this thesis
considers a different problem related to scheduling, and is designed to be self-contained.
We assume the reader is familiar with the basic concepts of linear and integer programming,
combinatorial optimization, approximation algorithms and the scheduling classification
of Graham et al. (1979). In Appendix A, we provide a brief review of the most essential
definitions common to the subsequent chapters, as well as some pointers to useful references.

Encouraging cooperation in scheduling. In Chapter 2, we apply ideas from cooperative
game theory, mathematical programming, and combinatorial optimization to study settings
in which agents face supermodular, or increasing marginal costs. These situations appear in
a variety of scheduling contexts, as well as in some settings related to facility location and
network design.

Intuitively, cooperation amongst rational agents who face supermodular costs is unlikely:
the cost of adding a particular agent increases as the number of players increases, dimin-
ishing the appeal of cooperation. However, the failure to cooperate may lead to negative
externalities. For example, a set of agents may need to process its jobs on a type of machine
that generates excessive amounts of pollution; the agents may have the opportunity to share
the cost of processing their jobs on an existing single machine, but the cost of processing
their jobs is such that it is cheaper for each agent to open their own machine, and as a
result, generate more pollution. An authority may be interested in methods of encouraging
cooperation in these types of situations. One approach would be to directly incorporate
the cost of the externalities into the processing costs; however, these externality costs may
sometimes be hard to precisely define. Instead one might ask, “how much do we need to
penalize a subset of agents for acting independently in order to encourage all the agents
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to cooperate?” This notion is captured in the least core value of a cooperative game. The
least core value of a cooperative game is the minimum penalty we need to charge a coalition
for acting independently that ensures the existence of an efficient and stable cost allocation.
The set of all such cost allocations is called the least core.

We study the computational complexity and algorithmic aspects of computing the least
core value of supermodular cost cooperative games. To motivate the study of these games, we
show that a particular class of optimization problems has supermodular optimal costs. This
class includes a variety of problems in combinatorial optimization, especially in machine
scheduling. We show that computing the least core value of supermodular cost cooperative
games is strongly NP-hard, and build a framework to approximate the least core value of
these games. With recent work on maximizing submodular functions, our framework yields
a .3C �/-approximation algorithm for computing the least core value of supermodular cost
cooperative games.

We also apply our approximation framework to two particular classes of supermodular
cost cooperative games: scheduling games and matroid profit games. Scheduling games
are cooperative games in which the cost to a coalition is derived from the minimum sum
of weighted completion times on a single machine. By specializing some of the results for
arbitrary supermodular cost cooperative games, we are able to show that the Shapley value
is a cost allocation in the least core of scheduling games, and design a fully polynomial-time
approximation scheme for computing the least core value of these games. Matroid profit
games are cooperative games with submodular profits: the profit to a coalition arises from
the maximum weight of an independent set of a matroid. We show that a cost allocation in
the least core and the least core value of matroid profit games can be computed in polynomial
time.

This chapter is based on joint work with Andreas S. Schulz. A preliminary version of
some of the results in this chapter has appeared in Schulz and Uhan (2007).

Probabilistic analysis of precedence-constrained scheduling. The classic precedence-
constrained single-machine scheduling problem with the weighted sum of completion
times objective has intrigued researchers for a long time. Researchers have devoted much
attention to the approximability of this problem, taking inspiration from its mathematical
programming formulations, structural properties, and relationships with other combinatorial
optimization problems. Currently, the best approximation algorithms all have a performance
guarantee of 2, and this problem has been strongly conjectured to be inapproximable within
a factor of 2 � � for any � > 0, unless P = NP.

In Chapter 3, we focus on 0-1 bipartite instances, in which precedence constraints are
represented by a bipartite partial order, with minimal jobs having unit processing time and
zero weight, and maximal jobs having zero processing time and unit weight. These instances
are appealing because of their simple combinatorial structure. More importantly, it turns
out that these simple instances capture the inherent difficulty of the problem: Woeginger
(2003) showed that a �-approximation algorithm for 0-1 bipartite instances implies a .�C�/-
approximation algorithm for arbitrary instances. In other words, the approximability
behavior of 0-1 bipartite instances and arbitrary instances are virtually identical. As a result,
in order to obtain better approximation algorithms for this scheduling problem, it suffices to
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consider the family of 0-1 bipartite instances.
In an effort to better understand the properties of this simple but important class of

instances, we study these instances from a probabilistic lens. One appealing feature of
0-1 bipartite instances is that they are completely defined by their precedence constraints.
Since precedence relations in bipartite partial orders are independent, we can apply the
Erdös-Rényi model often used in random graph theory to obtain random models of 0-1
bipartite instances. Our analysis of these random 0-1 bipartite instances yields various
“almost all”-type results. First, we show that for almost all 0-1 bipartite instances, the
decomposition technique of Sidney (1975) does not yield a non-trivial decomposition.
Second, for almost all 0-1 bipartite instances, we give a lower bound on the integrality gap of
various linear programming relaxations for this scheduling problem. For the random models
of 0-1 bipartite instances that we study, this lower bound approaches 2 as the precedence
constraints become sparser in expectation. Finally, we show that for almost all 0-1 bipartite
instances, all feasible schedules are arbitrarily close to optimal. The first two results confirm
that 0-1 bipartite instances are the “right” instances to study: it is known that in order to
design approximation algorithms with a performance guarantee better than 2, it suffices to
consider non-Sidney-decomposable instances, and that it does not suffice to consider existing
linear programming relaxations. The last result offers an interesting paradox, especially in
light of the difficulty of obtaining an approximation algorithm with performance guarantee
better than 2.

This chapter is based on joint work with Andreas S. Schulz.

Scheduling in concurrent open shop environments. In the concurrent open shop model,
we are given a set of jobs, where each job consists of different components to be processed
on a specific machine. Components are independent of each other: in particular, compo-
nents from the same job can be processed in parallel. A job is completed when all its
components are completed. This model has a variety of applications, such as make-to-order
manufacturing, airplane maintenance and repair, and distributed computing.

In Chapter 4, we consider the problem of minimizing the sum of weighted completion
times in a concurrent open shop environment. We present some interesting properties of
various linear programming relaxations for this problem. In addition, we give a simple
combinatorial primal-dual 2-approximation algorithm. Although there exist approximation
algorithms that achieve the same performance guarantee, these algorithms require the
solution of a linear program. Our algorithm, on the other hand, runs in O.n.mC n// time,
where n is the number of jobs and m is the number of machines.

This chapter is based on ongoing joint work with Monaldo Mastrolilli, Maurice
Queyranne, and Andreas S. Schulz.
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Chapter 2

Encouraging Cooperation In Sharing
Supermodular Costs

2.1 Introduction

Consider a situation in which a set of agents has the option of sharing the cost of their
joint actions. For example, a set of agents, each with a job that needs to be processed by a
particular machine, may decide to share the cost of optimally processing their jobs on a single
machine. In these situations, the agents may or may not be motivated to cooperate together,
depending on the structure of their costs. Cooperative game theory offers a mathematical
framework to study the cooperative behavior of the parties involved. A cooperative game is
a pair .N; v/ where N D f1; : : : ; ng represents a set of agents, and v.S/ represents the cost
to a subset of agents S � N .

In this chapter, we are concerned with situations in which agents face supermodular
costs. A set function v W 2N 7! R is supermodular if

v.S [ fj g/ � v.S/ � v.S [ fj; kg/ � v.S [ fkg/ for all S � N n fj; kg: (2.1.1)

In words, supermodularity captures the notion of increasing marginal costs. We study
cooperative games .N; v/ where v is nonnegative, supermodular, and v.;/ D 0. We call
such games supermodular cost cooperative games. Supermodularity often naturally arises
in situations in which the costs are intimately tied with congestion effects. It has been shown
that several variants of the facility location problem have supermodular costs (Nemhauser
et al. 1978), and as we will show later, various problems from scheduling and network
design also exhibit supermodular costs.

Intuitively, cooperation amongst rational agents who face supermodular costs is unlikely:
as the size of a coalition grows, the marginal cost associated with adding a particular agent
increases, diminishing the appeal of cooperation. Various solution concepts from cooperative
game theory help us formalize this intuition. Suppose x 2 RN is a cost allocation vector:
for all i 2 N , xi represents the cost allocated to agent i . (For notational convenience, for
any vector x we define x.S/ D

P
i2S xi for any S � N .) The prominent solution concept

for cooperative games is the core (Gillies 1959). The core of a cooperative game .N; v/ is
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the set of all cost allocations x such that

x.N / D v.N /; (2.1.2)
x.S/ � v.S/ for all S � N: (2.1.3)

The condition (2.1.2) requires that a cost allocation in the core is efficient: the total cost
allocated to all agents, x.N /, is equal to the cost of all agents cooperating, v.N /. The
conditions (2.1.3) guarantee that a cost allocation in the core is stable: no subset of agents, or
coalition, would be better off by abandoning the rest of the agents and acting on its own. The
existence of an efficient and stable cost allocation—in other words, a non-empty core—can
be seen as a rudimentary indication that cooperation is attainable. It is well-known that
when costs are submodular1, the core is non-empty (Shapley 1971). On the other hand, it
is straightforward to see that for supermodular cost cooperative games, the core is in fact
empty (as long as costs are not modular2).

In certain situations, the failure to cooperate may give rise to negative externalities.
Consider the following example. A set of agents needs to process its jobs on a machine
that generates an excessive amount of pollution. The agents have the opportunity to share
the cost of processing their jobs on an existing single machine, but the cost of processing
their jobs is such that it is cheaper for each agent to open their own machine, and as a
result, generate more pollution. An authority may be interested in reducing such negative
externalities. One approach would be to incorporate the cost of the pollution externalities
directly into the processing costs; however, these externality costs may be hard to precisely
define. Instead, one might ask, “How much do we need to charge for opening an additional
machine in order to encourage all agents to share a single machine?” For an arbitrary
cooperative game, the analogous question is, “How much do we need to penalize a coalition
for acting independently in order to encourage all the agents to cooperate?” This notion is
captured in the least core value of a cooperative game. The least core of a cooperative game
.N; v/ is the set of cost allocations x that are optimal solutions to the linear optimization
problem

´� D minimize ´

subject to x.N / D v.N /;

x.S/ � v.S/C ´ for all S � N; S ¤ ;; N
(LC)

(Shapley and Shubik 1966; Maschler et al. 1979). The optimal value ´� of (LC) is the least
core value3 of the game .N; v/. In words, the least core value ´� is the minimum penalty
we need to charge a coalition for acting independently that ensures a basic prerequisite for
cooperation is satisfied: the existence of an efficient and stable cost allocation. Note that the

1A function v is submodular if �v is supermodular.
2A set function is modular if it is both submodular and supermodular.
3Adding the inequalities xi � v.fig/ C ´ for all i 2 N and using the equality x.N / D v.N /, we can

bound ´� below by .v.N / �
P
i2N v.fig//=jN j. So as long as costs are finite, the least core value is well

defined. Moreover, if v is supermodular and v.;/ D 0, then ´� � 0.

16



linear optimization problem (LC) is in fact equivalent to the optimization problem

´� D min
xWx.N/Dv.N/

max
S�N
S¤;;N

e.x; S/;

where e.x; S/ D x.S/ � v.S/ for all S � N . The quantity e.x; S/ is the dissatisfaction of
a subset of agents S under a cost allocation x: it is the extra cost that S pays when costs
are allocated according to x.4 A cost allocation in the least core therefore minimizes the
maximum dissatisfaction of any subset of agents.

2.1.1 Previous related work
Cooperative games whose costs are determined by various problems in operations research
and computer science have been studied before. A short and necessarily incomplete list of
examples includes assignment games (Shapley and Shubik 1971), linear production games
(Owen 1975), minimum-cost spanning tree games (Granot and Huberman 1981), traveling
salesman games (Potters et al. 1991), scheduling-related games (Curiel et al. 1989; Maniquet
2003; Mishra and Rangarajan 2005), facility location games (Goemans and Skutella 2004),
newsvendor games and inventory centralization games (Gerchak and Gupta 1991; Hartman
et al. 2000), and economic lot-sizing games (van den Heuvel et al. 2005; Chen and Zhang
2006). The textbook by Peleg and Sudhölter (2007) is a good introduction to cooperative
game theory.

A fair amount of attention has been devoted to the least core of various cooperative
games in the economics and game theory literature (e.g. Peleg and Rosenmüller 1992;
Reijnierse et al. 1996; Einy et al. 1998, 1999; Lehrer 2002). In addition, the computational
complexity of computing an element in the least core has been studied previously in several
contexts. Faigle et al. (2000) showed that computing an element in the least core of
minimum-cost spanning tree games is NP-hard. Kern and Paulusma (2003) presented a
polynomial description of the linear optimization problem (LC) for cardinality matching
games. Faigle et al. (2001) showed that by using the ellipsoid method, a so-called pre-kernel
element in the least core of a cooperative game can be efficiently computed if the maximum
dissatisfaction can be efficiently computed for any given efficient cost allocation. Properties
of the least core value, on the other hand, seem to have been largely ignored.

2.1.2 Contributions of this work
In this chapter, we study the computational complexity and approximability of the least core
value of supermodular cost cooperative games. In Section 2.2, we motivate the interest in
supermodular cost cooperative games by providing a class of optimization problems whose
optimal costs are supermodular. This class of optimization problems includes a variety
of classical scheduling and network design problems. Then, in Section 2.3, we show that
finding the least core value of supermodular cost cooperative games is NP-hard, and design
approximation algorithms for computing the least core value of these games, using oracles

4This quantity is sometimes referred to as the excess of a coalition of agents in the cooperative game theory
literature.
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that approximately determine maximally violated constraints. As a by-product, we also
show how to compute accompanying approximate least core cost allocations.

In Sections 2.4 and 2.5, we apply our results to two special cases of supermodular cost
cooperative games that arise from scheduling and matroid optimization. In Section 2.4,
we study scheduling games, or cooperative games in which the costs are derived from the
minimum sum of weighted completion times on a single machine. By improving on some
of the results for general supermodular cost cooperative games, we are able to give an
explicit formula for an element of the least core of scheduling games, and design a fully
polynomial time approximation scheme for computing the least core value of these games.
Finally, in Section 2.5, we consider a cooperative game with submodular profits: matroid
profit games. Matroid profit games are cooperative games in which the profit to a coalition
arises from the maximum weight of an independent set of a matroid. Some scheduling
and network design problems have been shown to be special cases of finding a maximum
weight independent set of a matroid. Using the framework established in Section 2.3 with
the appropriate natural modifications, we show that the least core value of these games can
be computed in polynomial time.

2.2 A class of optimization problems with supermodular
optimal costs

We begin by providing some motivation for looking at cooperative games with supermodular
costs. The problem of minimizing a linear function over a supermodular polyhedron—a
polyhedron of the form fx 2 RN W x.S/ � u.S/ for all S � N g, where u W 2N 7! R is
supermodular—arises in many areas of combinatorial optimization, especially in scheduling.
For example, Wolsey (1985) and Queyranne (1993) showed that the convex hull of feasible
completion time vectors on a single machine is a supermodular polyhedron. Queyranne
and Schulz (1995) showed that the convex hull of feasible completion time vectors for
unit jobs on parallel machines with nonstationary speeds is a supermodular polyhedron.
The scheduling problem they considered includes various classical scheduling problems as
special cases. Goemans et al. (2002) showed that for a scheduling environment consisting
of a single machine and jobs with release dates, the convex hull of mean busy time vectors
of preemptive schedules is a supermodular polyhedron.

In this section, we show that the optimal cost of minimizing a linear function over a
supermodular polyhedron is a supermodular function. As a result, by studying supermodular
cost cooperative games, we are able to gain insight into the sharing of optimal costs for a
wide range of situations.

Theorem 2.2.1. Let N be a finite set, and let u W 2N 7! R be a supermodular function. If
fj � 0 for all j 2 N , then the function v W 2N 7! R defined by

v.S/ D min
�X
j2S

fjxj W x.A/ � u.A/ for all A � S
�

for all S � N (2.2.1)

is supermodular on N .
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Proof. Let S be a subset of N with s elements. Without loss of generality, we assume that

S D f1; : : : ; j � 1; j; j C 1; : : : ; k � 1; k; k C 1; : : : ; sg;

and that the associated costs are nonincreasing: f1 � � � � � fs. Define S i D f1; : : : ; ig for
i D 1; : : : ; s and S0 D ;.

It is well known that minimizing a linear function over a supermodular polyhedron can
be achieved by a greedy procedure (Edmonds 1970). In particular, the value of v.S/ is

v.S/ D

sX
iD1

fi
�
u.S i/ � u.S i�1/

�
D

sX
iD1

fiu.S
i/ �

s�1X
iD0

fiC1u.S
i/

D

s�1X
iD1

.fi � fiC1/u.S
i/C fsu.S

s/ � f1u.S
0/:

Similarly, we have that

v.S n fj g/ D

j�2X
iD1

.fi � fiC1/u.S
i/C .fj�1 � fjC1/u.S

j�1/

C

s�1X
iDjC1

.fi � fiC1/u.S
i
n fj g/C fsu.S

s
n fj g/ � f1u.S

0/;

v.S n fkg/ D

k�2X
iD1

.fi � fiC1/u.S
i/C .fk�1 � fkC1/u.S

k�1/

C

s�1X
iDkC1

.fi � fiC1/u.S
i
n fkg/C fsu.S

s
n fkg/ � f1u.S

0/;

v.S n fj; kg/ D

j�2X
iD1

.fi � fiC1/u.S
i/C .fj�1 � fjC1/u.S

j�1/

C

k�2X
iDjC1

.fi � fiC1/u.S
i
n fj g/C .fk�1 � fkC1/u.S

k�1
n fj g/

C

s�1X
iDkC1

.fi � fiC1/u.S
i
n fj; kg/C fsu.S

s
n fj; kg/ � f1u.S

0/:

For any l 2 N and A � N n flg, we define �.A; l/ to be the marginal value of adding l to
A; that is, �.A; l/ D u.A [ flg/ � u.A/. Therefore,

v.S n fj g/ � v.S n fj; kg/
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D .fk�1 � fk/u.S
k�1
n fj g/C .fk � fkC1/u.S

k
n fj g/

� .fk�1 � fkC1/u.S
k�1
n fj g/C

s�1X
iDkC1

.fi � fiC1/
�
u.S i n fj g � u.S i n fj; kg/

�
C fs

�
u.S s n fj g/ � u.S s n fj; kg/

�
D .fk � fkC1/�.S

k�1
n fj g; k/C

sX
iDkC1

.fi � fiC1/�.S
i
n fj; kg; k/

C fs�.S
s
n fj; kg; k/:

Similar to above, we consider the effects of adding k to S n fkg:

v.S/ � v.S n fkg/

D .fk�1 � fk/u.S
k�1/C .fk � fkC1/u.S

k/ � .fk�1 � fkC1/u.S
k�1/

C

s�1X
iDkC1

.fi � fiC1/
�
u.S i/ � u.S i n fkg/

�
C fs

�
u.S s/ � u.S s n fkg/

�
D .fk � fkC1/�.S

k�1; k/C

s�1X
iDkC1

.fi � fiC1/�.S
i
n fkg; k/C fs�.S

s
n fkg; k/:

By the supermodularity of u, we have that �.A; k/ � �.B; k/ for any A � B � N n fkg.
This, in addition with the fact that fi �fiC1 � 0 for all i D 1; : : : ; s�1 and fs � 0, implies
that

v.S/ � v.S n fkg/

D .fk � fkC1/�.S
k�1; k/C

s�1X
iDkC1

.fi � fiC1/�.S
i
n fkg; k/C fs�.S

s
n fkg; k/

� .fk � fkC1/�.S
k�1
n fj g; k/C

sX
iDkC1

.fi � fiC1/�.S
i
n fj; kg; k/

C fs�.S
s
n fj; kg; k/

D v.S n fj g/ � v.S n fj; kg/:

Therefore, v is supermodular.

As mentioned above, the problem of minimizing a linear function over a supermodular
polyhedron models a variety of scheduling problems. As a result, we have the following
corollary of Theorem 2.2.1.

Corollary 2.2.2. If for all S � N , v.S/ is the objective value of optimally
scheduling jobs in S for the problem (a) 1 j j

P
wjCj , (b) Q jpj D 1 j

P
wjCj ,

(c) P jpj D 1; rj integral j
P
wjCj , (d) P j j

P
Cj , or (e) 1 j rj ; pmtn j

P
wjMj , then v is

supermodular.
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Proof. The work of Wolsey (1985) and Queyranne (1993) implies (a). The work of
Queyranne and Schulz (1995) implies (b)-(d); in particular, (d) follows since the prob-
lem P j j

P
Cj can be equivalently cast as the problem P jpj D 1 j

P
wjCj . Finally, the

work of Goemans et al. (2002) implies (e).

Unfortunately, Corollary 2.2.2(d) does not extend to the case with arbitrary weights and
processing times, as shown in Example 2.C.1. In addition, one can show that the scheduling
problems 1 j rj j

P
Cj and 1 j prec j

P
Cj do not have supermodular optimal costs, as can

be seen in Example 2.C.2 and Example 2.C.3, respectively.
Using almost identical techniques to those in the proof of Theorem 2.2.1, we can also

show that maximizing a nonnegative linear function over a submodular polyhedron—a
polyhedron of the form fx 2 RN W x.S/ � u.S/ for all S � N g where u W 2N 7! R is
submodular—has submodular optimal values.

Theorem 2.2.3. Let N be a finite set, and let u W 2N 7! R be a submodular function. If
fj � 0 for all j 2 N , then the function v W 2N 7! R defined by

v.S/ D max
�X
j2S

fjxj W x.A/ � u.A/ for all A � S
�

for all S � N

is submodular on N .

An important example of maximizing a nonnegative linear function over a submodular
polyhedron is finding a maximum weight independent set of a matroid; in fact, a version of
Theorem 2.2.3 has been mentioned in the literature for this special case (see Nemhauser and
Wolsey 1988, page 715). One example of finding a maximum weight independent set of
matroid is finding a maximum weight forest in an undirected graph (Birkhoff 1935; Whitney
1935). Later, in Section 2.5, we study a cooperative game in which the profit to a coalition
arises from the maximum weight of an independent set of a matroid.

2.3 Complexity and approximation
We now turn our attention to the computational complexity and approximability of comput-
ing the least core value of an arbitrary supermodular cost cooperative game .N; v/. Note
that an arbitrary supermodular function v may not be compactly encoded. Therefore, for the
remainder of this section we assume that we have a value-giving oracle for v. In addition,
for the remainder of this chapter, we assume that there are at least two agents (n � 2).

2.3.1 Computational complexity
Theorem 2.3.1. Computing the least core value of supermodular cost cooperative games is
strongly NP-hard.

Proof. We show that any instance of the strongly NP-hard maximum cut problem on an
undirected graph (Garey et al. 1976) can be reduced to an instance of computing the least
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core value of a supermodular cost cooperative game. Consider an arbitrary undirected graph
G D .N;E/. Let � W 2N 7! R be the cut function of G; that is,

�.S/ D
ˇ̌̌˚
fi; j g 2 E W i 2 S; j 2 N n S

	ˇ̌̌
:

Also, let the function � W 2N 7! R be defined as

�.S/ D
ˇ̌̌˚
fi; j g 2 E W i 2 S; j 2 S

	ˇ̌̌
:

Clearly, � is nonnegative. Using the increasing marginal cost characterization of supermodu-
larity (2.1.1), it is straightforward to see that � is supermodular. Using counting arguments,
it is also straightforward to show that

�.S/C �.N n S/C �.S/ D �.N /

for any S � N .
Now consider the supermodular cost cooperative game .N; v/, where v.S/ D 2�.S/

for all S � N . For each player i 2 N , we define the cost allocation xi D deg.i/, where
deg.i/ denotes the degree of node i in G. In addition, let ´ D maxS�N;S¤;;N �.S/. Note
that x.N / D

P
i2N deg.i/ D v.N /, and for all S � N , S ¤ ;; N ,

´ � �.S/ D .2�.S/C �.S// � 2�.S/ D x.S/ � v.S/:

Therefore, .x; ´/ is a feasible solution to (LC). Now suppose .x�; ´�/ is an optimal solution
to (LC). Adding the inequalities x�.S/ � v.S/C ´� and x�.N n S/ � v.N n S/C ´� for
any S � N , S ¤ ;; N , and using the equality x�.N / D v.N /, we have that

2´� � v.N / � v.S/ � v.N n S/ D 2�.S/ for all S � N;S ¤ ;; N:

Therefore, ´� � ´. It follows that ´� D ´ D maxS�N;S¤;;N �.S/. In other words,
finding the least core value of .N; v/ is equivalent to finding the value of a maximum cut in
G D .N;E/.

In our proof of the above theorem, we show that for any instance of the maximum cut
problem on an undirected graph, there exists a supermodular cost cooperative game whose
least core value is exactly equal to the value of the maximum cut. Since the maximum
cut problem is not approximable within a factor of 1.0624 (Håstad 2001), we immediately
obtain the following inapproximability result:

Corollary 2.3.2. There is no �-approximation algorithm for computing the least core value
of supermodular cost cooperative games, where � < 1:0624, unless P = NP.

2.3.2 Approximation by fixing a cost allocation
The above negative results indicate that it is rather unlikely that we will be able to compute
the least core value of supermodular cost cooperative games exactly in polynomial time. In
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fact, the proof of Theorem 2.3.1 indicates that this may be difficult, even if an element of
the least core is known. This motivates us to design methods with polynomial running time
that approximate the least core value of these games.

As a first attempt at approximation, we fix a cost allocation x such that x.N / D v.N /,
and then try to determine the minimum value of ´ such that .x; ´/ is feasible in the least
core optimization problem (LC). Recall that the dissatisfaction of a subset of agents S under
a cost allocation x is defined as e.x; S/ D x.S/ � v.S/. For any cooperative game .N; v/,
we define the following problem:

x-maximum dissatisfaction problem for cooperative game .N; v/ (x-MD).
For a given cost allocation x such that x.N / D v.N /, find a subset of agents S�

whose dissatisfaction is maximum:
e.x; S�/ D max

S�N
S¤;;N

e.x; S/ D max
S�N
S¤;;N

˚
x.S/ � v.S/

	
:

We want to find a value ´ that is as close to e.x; S�/ as possible, but larger than e.x; S�/,
since .x; ´/ is feasible if and only if ´ � e.x; S�/. Note that an algorithm for the x-MD
problem acts as a separation oracle for the vector .x; ´/ to the linear optimization problem
(LC): if ´ � e.x; S�/, then .x; ´/ is feasible in (LC); otherwise, we have ´ < e.x; S�/,
which implies that x.S�/ � v.S�/C ´ is a constraint violated by .x; ´/.

How should we fix x? We would like to ensure that the cost allocation x we choose
is at least in the vicinity of the least core of .N; v/, so that we do not prematurely weaken
the resulting approximation to the least core value. Suppose ´� is the least core value of
.N; v/. For any � � 1, we define the �-approximate least core of .N; v/ as the set of all cost
allocations x such that

x.N / D v.N /;

x.S/ � v.S/C �´� for all S � N;S ¤ ;; N;

or equivalently,
x.N / D v.N /; max

S�N
S¤;;N

e.x; S/ � �´�:

Note that under a cost allocation in the �-approximate least core of .N; v/, the maximum
dissatisfaction of a coalition is at most a factor � away from the least core value ´�–the
minimum possible maximum dissatisfaction of a coalition under any efficient cost allocation.

For any set function v W 2N 7! R, we define the polytope

Bv D
˚
x 2 RN W x.N / D v.N /; x.S/ � v.S/ for all S � N

	
:

For an arbitrary set function v, computing an element of Bv may require an exponential
number of oracle calls, or Bv may be empty. Fortunately, when v is supermodular, the
vertices ofBv are computable in polynomial time, and even have explicit formulas (Edmonds
1970). It turns out that any cost allocation x in Bv is an element of the 2-approximate least
core of .N; v/.
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Theorem 2.3.3. Suppose .N; v/ is a supermodular cost cooperative game, and x is a cost
allocation in Bv. Let e.x; S�/ be the optimal value of the x-maximum dissatisfaction
problem for .N; v/, and let ´� be the least core value of .N; v/. Then, x is an element of the
2-approximate least core of .N; v/, or equivalently, e.x; S�/ � 2´�.

Proof. Let .x�; ´�/ be an optimal solution to (LC). As in the proof of Theorem 2.3.1, we
have that

2´� � v.N / � v.S/ � v.N n S/ for all S � N;S ¤ ;; N:

Since x 2 Bv, we can deduce that for any S � N , S ¤ ;; N ,

2´� � v.N / � v.S/ � v.N n S/ D x.S/ � v.S/C x.N n S/ � v.N n S/ � e.x; S/:

Since the above lower bound on 2´� holds for any S � N , S ¤ ;; N , it follows that
2´� � e.x; S�/.

We use this observation, in conjunction with a �-approximation algorithm for the x-
maximum dissatisfaction problem for .N; v/, to approximate the least core value of .N; v/.

Theorem 2.3.4. Suppose .N; v/ is a supermodular cost cooperative game, and x is a
cost allocation in Bv. If there exists a �-approximation algorithm for the x-maximum
dissatisfaction problem for .N; v/, then there exists a 2�-approximation algorithm for
computing the least core value of .N; v/.

Proof. Let NS be the output from a �-approximation algorithm for the x-maximum dis-
satisfaction problem for .N; v/, and let ´ D �e.x; NS/. We show that .x; ´/ is a fea-
sible solution to the optimization problem (LC), and that ´ is within a factor of 2�
of ´�, the least core value of .N; v/. Since x 2 Bv, we have that x.N / D v.N /.
Since NS is output from a �-approximation algorithm for the x-maximum dissatisfaction
problem for .N; v/, it follows that ´ D �e.x; NS/ � e.x; S�/ � x.S/ � v.S/ for all
S � N; S ¤ ;; N . So .x; ´/ is a feasible solution to (LC). By Theorem 2.3.3, it follows
that ´ D �e.x; NS/ � �e.x; S�/ � 2�´�.

Note that the x-maximum dissatisfaction problem for a supermodular cost cooperative
game is an instance of submodular function maximization. In addition, for any x 2 Bv, the
objective function e.x; �/ of the x-maximum dissatisfaction problem is nonnegative. Feige
et al. (2007) gave a 5=2-approximation algorithm for maximizing nonnegative submodular
functions. With Theorem 2.3.4, this immediately implies the following corollary.

Corollary 2.3.5. Suppose .N; v/ is a supermodular cost cooperative game. Then, there
exists a 5-approximation algorithm for computing the least core value .N; v/.

2.3.3 Approximation without fixing a cost allocation
Until now, we have considered approximating the least core value of a supermodular cost
cooperative game .N; v/ by fixing a cost allocation x and then finding ´ such that .x; ´/ is
feasible in the least core optimization problem (LC). Suppose that, instead of fixing a cost
allocation in advance, we compute a cost allocation along with an approximation to the least
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core value. Let us assume that we have a �-approximation algorithm for the x-maximum
dissatisfaction problem for .N; v/, for every x such that x.N / D v.N /.5 By using the
ellipsoid method with binary search, we can establish one of the main results of this work:

Theorem 2.3.6. Suppose .N; v/ is a supermodular cost cooperative game, and there exists
a �-approximation algorithm for the x-maximum dissatisfaction problem for .N; v/, for
every cost allocation x such that x.N / D v.N /. Let ´� be the least core value of .N; v/.
Then,

(a) there exists a �-approximation algorithm for computing the least core value of .N; v/,
and

(b) there exists a polynomial-time algorithm for computing a cost allocation in the �-
approximate least core of .N; v/.

Using an approximate separation oracle in conjunction with the ellipsoid method to
achieve approximate optimization has been studied previously for a variety of problems (e.g.
Jansen 2003; Jain et al. 2003; Fleischer et al. 2006). The proofs for these results all depend
on the structure of the constraints describing the polytope of the problem. This is the case
here as well.

With Theorem 2.3.6 in hand, it remains to show how to solve the x-maximum dissatis-
faction problem for a supermodular cost cooperative game .N; v/, for every cost allocation x
such that x.N / D v.N /. As we noted in Section 2.3.2, the x-maximum dissatisfaction prob-
lem for a supermodular cost cooperative game .N; v/ is an instance of submodular function
maximization. Unlike in Section 2.3.2, however, the objective functions for the instances of
the x-maximum dissatisfaction problem that need to be solved for Theorem 2.3.6 are not
necessarily nonnegative. Feige et al. (2007) designed a local-search based approximation al-
gorithm for maximizing a submodular function f W 2N 7! R with f .;/ � 0 and f .N / � 0,
that has a performance guarantee of .3C �/ for any � > 0. Since e.x;;/ D e.x;N / D 0
for any cost allocation x such that x.N / D v.N /, we obtain the following corollary.

Corollary 2.3.7. Suppose .N; v/ is a supermodular cost cooperative game. Then for any
� > 0,

(a) there exists a .3C �/-approximation algorithm for computing the least core value of
.N; v/, and

(b) there exists a polynomial-time algorithm for computing a cost allocation in the .3C�/-
approximate least core of .N; v/.

By computing a cost allocation on the fly using the ellipsoid method, we are able to
design an approximation algorithm for computing the least core value of a supermodular
cost cooperative game with a worst-case performance guarantee of .3C �/, which compares
favorably to the worst-case performance guarantee of 5 for the fixed-cost-allocation-based
approximation algorithm designed in Section 2.3.2. Interestingly, however, the comparison
for the accompanying cost allocations of these approximation algorithms is reversed: the

5Note that since v is supermodular and v.;/ D 0, for any x such that x.N / D v.N /, we have thatP
i2N .xi � v.fig// �

P
i2N xi � v.N / D 0. Therefore, there must exist i 2 N such that xi � v.fig/ � 0,

and so maxS�N;S¤;;N e.x; S/ � 0. This ensures that the notion of a �-approximation algorithm for the
x-maximum dissatisfaction problem is sensible, for any given cost allocation x such that x.N / D v.N /.
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cost allocation that is computed by the ellipsoid-method-based approximation algorithm
is guaranteed to be in the .3C �/-approximate least core, while the cost allocation used
in the fixed-cost-allocation-based approximation algorithm is guaranteed to be in the 2-
approximate least core.

Before proving Theorem 2.3.6, we first need to establish some definitions and intermedi-
ate results. To simplify the exposition, for the remainder of this subsection, we assume that
v is integer-valued. Suppose K � Rn is a polyhedron, and ' and � are positive integers. We
say thatK has facet complexity at most ' if there exists a system of inequalities with rational
coefficients that has solution set K and such that the encoding length of each inequality of
the system is at most '. We say that K has vertex complexity at most � if there exist finite
sets V , E of rational vectors such that K D conv.V /C cone.E/ and such that each of the
vectors in V and E has encoding length at most �. We will use the following well-known
lemma that relates the facet complexity and the vertex complexity of a polyhedron.

Lemma 2.3.8 (Grötschel et al. 1988, 6.2.4). Let K � Rn be a polyhedron.
(a) If K has facet complexity at most ', then K has vertex complexity at most 4n2'.
(b) If K has vertex complexity at most �, then K has facet complexity at most 3n2�.

We define Q to be the feasible region of the optimization problem (LC):

Q D fx 2 RN ; ´ 2 R W x.N / D v.N /; x.S/ � v.S/C ´ for all S � N;S ¤ ;; N g:

In addition, for any fixed 
 � 0, let

Q
 D fx 2 RN W x.N / D v.N /; x.S/ � v.S/C 
 for all S � N;S ¤ ;; N g:

We define the strong approximate separation problem and approximate non-emptiness
problem for Q
 using Q�
 as its “approximation:”

Strong approximate separation problem for Q
 (S-APP-SEP-Q
 ).
Given x 2 QN such that x.N / D v.N /, either

(i) assert x 2 Q�
 or
(ii) find a hyperplane separating x and Q
 .

Approximate non-emptiness problem for Q
 (APP-NEMPT-Q
 ).
Either

(i) find x 2 Q�
 or
(ii) assert Q
 is empty.

Using techniques from Grötschel et al. (1988) and Jansen (2003), we can show the
following theorem. We provide the proof in Appendix 2.A.

Theorem 2.3.9. Fix 
 so that its encoding length is polynomially bounded by n and log v.N /.
Suppose S-APP-SEP-Q
 can be solved in time polynomial in n and log v.N /. Then APP-
NEMPT-Q
 can be solved in time polynomial in n and log v.N /.
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The following lemma is a consequence of Theorem 2.3.9 and the fact that an approx-
imation algorithm for the x-maximum dissatisfaction problem can be used to solve the
approximate separation problem for x and Q
 .

Lemma 2.3.10. Fix 
 so that its encoding length is polynomially bounded by n and log v.N /.
Suppose .N; v/ is a cooperative game, and there exists a �-approximation algorithm for
the x-maximum dissatisfaction problem for .N; v/, for all cost allocations x such that
x.N / D v.N /. Then APP-NEMPT-Q
 can be solved in time polynomial in n and log v.N /.

Proof. Fix some cost allocation x such that x.N / D v.N /. Suppose we run a �-
approximation algorithm for the x-maximum dissatisfaction problem for .N; v/, and it
outputs NS . If e.x; NS/ � 
 , then for all S � N;S ¤ ;; N , we have that

x.S/ � v.S/ � max
S�N
S¤;;N

e.x; S/ � �e.x; NS/ � �
;

and therefore x 2 Q�
 . Otherwise, e.x; NS/ > 
 , and for all y 2 Q
 we have that

x. NS/ � v. NS/ > 
 � y. NS/ � v. NS/:

So using a �-approximation algorithm for the x-maximum dissatisfaction problem for
.N; v/ allows us to solve S-APP-SEP-Q
 in time polynomial in n and log v.N /, which by
Theorem 2.3.9, allows us to solve APP-NEMPT-Q
 in time polynomial in n and log v.N /.

Finally, we are ready to prove Theorem 2.3.6. We do this by showing that using a
polynomial-time algorithm for APP-NEMPT-Q
 in conjunction with binary search yields
an appropriate cost allocation and approximation to the least core value of .N; v/.

Proof of Theorem 2.3.6. Suppose that .N; v/ is a supermodular cost cooperative game, and
A is an algorithm that solves APP-NEMPT-Q
 in time polynomial in n and log v.N / for
every 
 � 0 whose encoding length is polynomially bounded by n and log v.N /. Since we
assume that a �-approximation algorithm for the x-maximum dissatisfaction problem for
.N; v/ exists for every cost allocation x such that x.N / D v.N /, by Lemma 2.3.10, such
an algorithm A exists.

Consider the following algorithm:

Input: supermodular cost cooperative game .N; v/ with v integer-valued; al-
gorithm A that solves APP-NEMPT-Q
 for every 
 � 0 whose encoding
length is polynomially bounded by n and log v.N /.

Output: a feasible solution .x; ´/ to the least core optimization problem (LC)
for .N; v/.

1. Set the following values:

m D 4.nC 1/2.2.nC 1/C dlog.v.N /C 1/e C 1/; (2.3.1a)
M D 2m; (2.3.1b)

� D .2M/�2: (2.3.1c)

27



2. Using A, find N
 2 Q by binary search on Œ0; v.N /� such that Q N
�� is
empty, but Q� N
 is non-empty. Denote the vector that A finds in Q� N
 by Nx.

3. Find p; q 2 Z such that

1 � q � 2M and
ˇ̌̌
N
 �

p

q

ˇ̌̌
<

1

2Mq
: (2.3.2)

Use A to solve APP-NEMPT-Qp=q. If A finds a vector in Q�p=q, denote
that vector by Ox.

4. Output:
� If A finds a vector Ox 2 Q�p=q in Step 3, and p=q < N
 , then output
.x; ´/ D . Ox; �p=q/.
� Otherwise, output .x; ´/ D . Nx; � N
/.

First, we establish that the above algorithm is well-defined, by proving the following
claims:

1. The binary search interval prescribed in Step 2 is valid. Consider the uniform cost
allocation x where xi D v.N /=n for all i 2 N . Since v is nonnegative, .x; v.N //
is feasible for (LC): for any S � N , S ¤ ;; N , we have that v.S/ C v.N / �
jS jv.N /=n D x.S/. Therefore, ´� � v.N /. Since v is supermodular and v.;/ D 0,
it follows that ´� � 0. So, the least core value of .N; v/ lies in the interval Œ0; v.N /�.

2. Every trial value of N
 in the binary search of Step 2 has encoding length polynomially
bounded by n and log v.N /. Since the binary search of Step 2 is on the interval
Œ0; v.N /�, the numerator and denominator of any trial value of N
 is nonnegative. In
addition, the binary search of Step 2 undergoes dlog v.N/

�
eC 1 iterations. This implies

that the denominator of any trial value of N
 is at most

2dlog v.N/
�
eC1
� 22Clog v.N/

� D
4v.N /

�
:

Since the binary search is performed on the interval Œ0; v.N /�, the numerator of any
trial value of N
 is at most 4v.N /2=�. By (2.3.1a)-(2.3.1c), the claim follows.

3. The integers p and q computed in Step 3 have encoding lengths polynomially bounded
by n and log v.N /. By (2.3.2), and since M � 1 and N
 2 Œ0; v.N /�, we have that

p < N
q C
1

2M
� 2Mv.N/C 1;

p > N
q �
1

2M
� �

1

2
:

Therefore, jpj < 2Mv.N/ C 1. Since jqj � 2M , the claim follows by (2.3.1a)-
(2.3.1c).

Next, we analyze the running time of the above algorithm. The algorithm makes a total
of O.log v.N/

�
/ calls to A, which runs in time polynomial in n and log v.N / each time it

is called. It follows by (2.3.1a)-(2.3.1c) that the total running time of A throughout the
algorithm is polynomial in n and log v.N /. By using the method of continued fractions
(Grötschel et al. 1988, pp. 134-137), finding integers p and q to satisfy (2.3.2) in Step 3
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of the algorithm can be done in time polynomial in n and log v.N /. Therefore, the above
algorithm runs in time polynomial in n and log v.N /.

Finally, we analyze the quality of the solution returned by the above algorithm. We start
by showing that minfp=q; N
g � ´� by considering two cases:

1. N
 � � < ´� < N
 . Consider p; q computed in Step 3 of the algorithm. Since v is
integer-valued, nonnegative, and supermodular with v.;/ D 0, ´� D r=s for some
r 2 Z�0 and s 2 Z>0. Note that since v is nonnegative, supermodular, and v.;/ D 0,
the facet complexity ofQ is at most ' D 2.nC1/Cdlog.v.N /C1/eC1. Therefore,
the vertex complexity of Q is at most m D 4.nC 1/2', and so s 2 .0; 2m/ D .0;M/.
Since

N
 �
r

s
D N
 � ´� < � D

1

.2M/2
�

1

2Mq
;

it follows thatˇ̌̌̌
p

q
� ´�

ˇ̌̌̌
D

ˇ̌̌̌
p

q
�
r

s

ˇ̌̌̌
�

ˇ̌̌̌
p

q
� N


ˇ̌̌̌
C

ˇ̌̌
N
 �

r

s

ˇ̌̌
<

1

Mq
<
1

sq
:

Therefore, ´� D p

q
. It follows that minfp=q; N
g � ´�.

2. ´� � N
 . Clearly, minfp=q; N
g � ´�.
With this fact in hand, we now show that the solution .x; ´/ computed in Step 4 of the above
algorithm is feasible in the optimization problem (LC), and that ´ � �´�. We consider the
following cases:

1. p=q < N
 . In this case, we have that p=q � ´�. Consider the output of A in Step 3 of
the algorithm:

(a) A finds Ox 2 Q�p=q. Therefore, .x; ´/ D . Ox; �p=q/ is feasible in (LC), and
´ D �p=q � �´�.

(b) A asserts thatQp=q is empty. Therefore, ´� > p=q. By the arguments above, we
have that ´� � N
 . So, .x; ´/ D . Nx; � N
/ is feasible in (LC), and ´ D � N
 � �´�.

2. p=q � N
 . In this case, we have that ´� � N
 . So, .x; ´/ D . Nx; � N
/ is feasible in (LC),
and ´ � �´�.

2.4 A special case from single-machine scheduling

In this section, we study a particular supermodular cost cooperative game that arises from
scheduling situations. Consider a setting where agents each have a job that needs to be
processed on a machine, and any coalition of agents can potentially open their own machine.
Suppose each agent i 2 N has a job whose processing time is pi 2 R>0 and weight is
wi 2 R�0. Jobs are independent, and are scheduled non-preemptively on a single machine,
which can process at most one job at a time. A scheduling game is a cooperative game
.N; v/ where the cost v.S/ to a coalition S is the minimum sum of weighted completion
times of jobs in S . If weight wi is interpreted as agent i’s per-unit-time waiting cost, then
v.S/ can be seen as the minimum total waiting cost for agents in S . The least core value of
scheduling games has a natural interpretation: it is the minimum amount we need to charge
any coalition for opening a new machine in order to encourage cooperation.
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Various cooperative games that arise from scheduling situations have been studied
previously. In sequencing games (e.g. Curiel et al. 1989), agents—each with a job that needs
to be processed—start with a feasible schedule on a fixed number of machines, and the
profit assigned to a coalition of agents is the maximal cost savings the coalition can achieve
by rearranging themselves. Scheduling games have received somewhat limited attention in
the past; several authors have developed axiomatic characterizations of various cost sharing
rules for these games (Maniquet 2003; Mishra and Rangarajan 2005).

From Corollary 2.2.2, it follows that scheduling games are indeed supermodular cost
cooperative games, and the results from Section 2.3 apply. We will apply the results of
Section 2.3.2, in which approximation is based on fixing a cost allocation, to finding the
least core value of scheduling games. Before doing so, however, we establish some useful
and interesting properties of the least core of scheduling games. These properties will
in turn help us determine the computational complexity of this special case, and choose
a specific cost allocation Nx in Bv with especially nice features. In particular, we will be
able to design approximation algorithms for the Nx-maximum dissatisfaction problem for
scheduling games, as well as show a stronger translation between the approximability of the
Nx-maximum dissatisfaction problem and the approximability of the least core value of these
games.

2.4.1 Key properties of the least core of scheduling games

The structure of the cost function for scheduling games allows us to explicitly express an
element of the least core of scheduling games and recast the least core optimization problem
as the maximization of a set function defined solely in terms of the cost function v.

Smith (1956) showed that scheduling jobs in nonincreasing order of wj=pj minimizes
the sum of weighted completion times on a single machine. To simplify the analysis, for the
remainder of this section we assume without loss of generality that

w1

p1
� � � � �

wn

pn
:

We consider the cost allocation Nx defined as follows:

Nxi D
1

2

�
v.S i/ � v.S i�1/

�
C
1

2

�
v.N n S i�1/ � v.N n S i/

�
(2.4.1)

D
1

2
wi

iX
jD1

pj C
1

2
pi

nX
jDi

wj (2.4.2)

for i D 1; : : : ; n, where S i D f1; : : : ; ig and S0 D ;. It is straightforward to show that
Nx 2 Bv; in fact, it is a convex combination of two vertices of Bv. Since Nx 2 Bv, we have
that Nx.S/ � v.S/ for all S � N . As it turns out, for scheduling games, we are able to show
a more precise relationship between the cost allocation Nx.S/ of a coalition S and its cost
v.S/.

Lemma 2.4.1. Suppose .N; v/ is a scheduling game. Then, the cost allocation Nx as defined
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in (2.4.2) satisfies

Nx.S/ � v.S/ D
1

2

�
v.N / � v.S/ � v.N n S/

�
for all S � N .

Proof. Since jobs are assumed to be indexed according to nonincreasing weight-to-
processing time ratio, by Smith’s rule we know that for any S � N ,

v.S/ D
X
i2S

iX
jD1
j2S

wipj :

Therefore,

2
�
Nx.S/ � v.S/

�
D

X
i2S

iX
jD1

wipj C
X
i2S

nX
jDi

piwj � 2
X
i2S

iX
jD1
j2S

wipj

D

X
i2S

iX
jD1

wipj C
X
i2S

nX
jDi

piwj �
X
i2S

iX
jD1
j2S

wipj �
X
i2S

nX
jDi
j2S

piwj

D

X
i2S

iX
jD1
j2NnS

wipj C
X
i2S

nX
jDi

j2NnS

piwj (2.4.3)

D

X
i2S

iX
jD1
j2NnS

wipj C
X
i2NnS

iX
jD1
j2S

wipj

D

X
i2N

iX
jD1

wipj �
X
i2S

iX
jD1

wipj �
X
i2NnS

iX
jD1

wipj

C

X
i2S

iX
jD1
j2NnS

wipj C
X
i2NnS

iX
jD1
j2S

wipj

D

X
i2N

iX
jD1

wipj �
X
i2S

iX
jD1
j2S

wipj �
X
i2NnS

iX
jD1
j2NnS

wipj

D v.N / � v.S/ � v.N n S/:

With this lemma in hand, we can show the following key properties of the least core of
scheduling games.

Theorem 2.4.2. Suppose .N; v/ is a scheduling game.
(a) The cost allocation Nx as defined in (2.4.2) is an element of the least core of .N; v/.
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(b) The least core value of .N; v/ is

´� D
1

2
max
S�N
S¤;;N

˚
v.N / � v.S/ � v.N n S/

	
: (2.4.4)

Proof. Let Ń be the value of the right-hand side of (2.4.4). First, we show that . Nx; Ń/ is
a feasible solution to (LC). By Lemma 2.4.1, we have that Nx.N / D v.N /, and for any
S � N , S ¤ ;; N ,

Ń �
1

2

�
v.N / � v.S/ � v.N n S/

�
D Nx.S/ � v.S/:

Now suppose .x�; ´�/ is an optimal solution to (LC). As in the proof of Theorem 2.3.1,
we obtain the following lower bound on 2´�:

2´� � v.N / � v.S/ � v.N n S/ for all S � N;S ¤ ;; N:

Therefore, ´� � Ń . It follows that Nx is an element of the least core of .N; v/, and the least
core value of .N; v/ is Ń .

In addition to being an element of the least core, it happens that the cost allocation Nx as
defined in (2.4.2) is the Shapley value6 of scheduling games (Mishra and Rangarajan 2005).
This is quite special: for a supermodular cost cooperative game .N; v/, the Shapley value is
not necessarily an element of the least core of .N; v/. Example 2.4.3 illustrates this point.

One might wonder if the cost allocation Nx as defined in (2.4.1) is an element of the
least core for general supermodular cost cooperative games. Note that the definition of Nx
in (2.4.1) depends on the ordering of N . For a given permutation � W N 7! N where �.i/
denotes the position of player i 2 N , we define the cost allocation Nx� as follows:

Nx�
��1.i/

D
1

2

�
v.S i/ � v.S i�1/

�
C
1

2

�
v.N n S i�1/ � v.N n S i/

�
for i D 1; : : : ; n, where S i D f��1.1/; : : : ; ��1.i/g, and S0 D ;. The cooperative game
.N; v/ defined in Example 2.4.3 is an instance of a supermodular cost cooperative game
(in particular, v is of the form (2.2.1)) for which the cost allocation Nx� is not a least core
element of .N; v/, for all permutations � of N . We can also show that when .N; v/ is a
scheduling game, not every cost allocation in Bv is necessarily an element of the least core
of .N; v/.

6The Shapley value (Shapley 1953) of a cooperative game .N; v/ is the cost allocation �, where

�i D
X

S�Nnfig

jS jŠ.jN j � jS j � 1/Š

jN jŠ

�
v.S [ fig/ � v.S/

�
for all agents i 2 N:

In words, the Shapley value of each agent i reflects agent i ’s average marginal contribution to the coalition N .
The Shapley value is one of the most important solution concepts in cooperative game theory; for example, see
Roth (1988).
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Example 2.4.3. Consider the cooperative game .N; v/ defined as follows. There are four
players: N D f1; 2; 3; 4g. Each agent i 2 N has a processing time pi D i . The cost v.S/ to
a coalition S is the optimal value of the scheduling problem P2 j j

P
Cj , restricted to jobs in

S . By Corollary 2.2.2, v is supermodular. The Shapley value of this game is �1 D 3=2, �2 D
17=6, �3 D 23=6, and �4 D 29=6, and the optimal value of the �-maximum dissatisfaction
problem for this game is maxS�N;S¤;;N e.�; S/ D 5=3. However, the least core value of
this game is 3=2. It is also straightforward to check that maxS�N;S¤;;N e. Nx� ; S/ D 2 for
all permutations � of N .

2.4.2 Computational complexity
Although computing the least core value of supermodular cost cooperative games is strongly
NP-hard, it is still unclear if this remains the case for scheduling games. In the previous
subsection, we showed that we can efficiently compute an element of the least core of
scheduling games. In fact, we have an explicit formula for a least core element. Computing
the least core value of scheduling games, however, remains NP-hard.

Theorem 2.4.4. Computing the least core value of scheduling games is NP-hard, even when
wj D pj for all j 2 N .

Proof. By Theorem 2.4.2, the least core value of scheduling games is

´� D
1

2
max
S�N
S¤;;N

˚
v.N / � v.S/ � v.N n S/

	
D
1

2
v.N / �

1

2
min
S�N
S¤;;N

˚
v.S/C v.N n S/

	
:

Note that the minimization problem above is equivalent to the problem of minimizing the
sum of weighted completion times of jobs in N , with weight wj and processing time pj for
each job j 2 N , on two identical parallel machines. Bruno et al. (1974) showed that this
two-machine problem is NP-hard, even when wj D pj for all jobs j 2 N .

The above result is in stark contrast to the underlying problem defining the costs in
scheduling games—minimizing the sum of weighted completion times on a single machine—
for which any order is optimal when each job has its weight equal to its processing time.

2.4.3 Tighter bounds on approximation based on fixing a cost alloca-
tion

In Section 2.3.2, we showed that for any supermodular cost cooperative game .N; v/ and
a cost allocation x in Bv, a �-approximation algorithm for the x-maximum dissatisfaction
problem implies a 2�-approximation algorithm for computing the least core value of .N; v/.
It is reasonable to believe, though, that for scheduling games, we may be in a position to do
better, since the cost allocation Nx as defined in (2.4.2) is in Bv, and is in fact an element of
the least core. This is indeed the case: from Theorem 2.4.2, it follows that

´� D max
S�N
S¤;;N

˚
Nx.S/ � v.S/

	
D max

S�N
S¤;;N

e. Nx; S/:
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This is exactly the Nx-maximum dissatisfaction problem for scheduling games! Therefore,
we obtain the following strengthening of Theorem 2.3.4.

Theorem 2.4.5. Suppose there exists a �-approximation algorithm for the Nx-maximum
dissatisfaction problem for scheduling games, where the cost allocation Nx is as defined in
(2.4.2). Then there exists a �-approximation algorithm for computing the least core value of
scheduling games.

Some of the proofs from the previous subsections give us insight into how to design
oracles that approximately solve Nx-MD for scheduling games. By carefully looking at the
proof of Lemma 2.4.1, we can show that Nx-MD for scheduling games is actually a special
case of finding a maximum weighted cut in a complete undirected graph. In the proof of
Theorem 2.4.4, we see that Nx-MD for scheduling games is actually equivalent (with respect
to optimization) to the scheduling problem P2 j j

P
wjCj , implying that we might be able

to use or modify existing algorithms to approximately solve Nx-MD.

A maximum-cut based approximate oracle for Nx-MD

By (2.4.3), we have that

e. Nx; S�/ D
1

2
max
S�N
S¤;;N

X
j2S

X
i2NnS

�ij where �ij D

(
wjpi if i < j
wipj if i > j

for all i ¤ j . Observe that �ij D �j i . So e. Nx; S�/ is proportional to the value of the
maximum cut on a complete undirected graph with node set N and capacity �ij for arc
fi; j g. Therefore, if we have a �-approximation algorithm for the maximum cut problem,
then by Theorem 2.4.5, we have a �-approximation algorithm for finding the least core value
of scheduling games. For example, using the approximation algorithm of Goemans and
Williamson (1995) based on a semidefinite relaxation of the maximum cut problem yields
a 1:1382-approximation algorithm for finding the least core value of scheduling games.
However, using the algorithm of Goemans and Williamson does not exploit the special
structure of this particular maximum cut problem, since their method applies for maximum
cut problems on general undirected graphs.

Relationships between certain scheduling problems and maximum cut problems have
been observed previously. For example, Skutella (2001) showed that for any � � 1, a
�-approximation algorithm for MAXmCUT translates into an approximation algorithm for
Pm j j

P
wjCj with performance guarantee .1Cm.� � 1//=�.

A fully polynomial-time approximation scheme for Nx-MD based on two-machine
scheduling

In this subsection, we provide a fully polynomial time approximation scheme (FPTAS) for
the Nx-maximum dissatisfaction problem for scheduling games. By Theorem 2.4.2, we know
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that Nx-MD is in fact

max
S�N
S¤;;N

e. Nx; S/ D
1

2
max
S�N
S¤;;N

˚
v.N / � v.S/ � v.N n S/

	
:

For simplicity of exposition, we consider maximizing g.S/ D 2e. Nx; S/ for the remainder
of this subsection.

As mentioned earlier, maximizing g.S/ is equivalent to minimizing the sum of weighted
completion times of jobs inN on two identical parallel machines. This problem is denoted by
P2 j j

P
wjCj in the notation of Graham et al. (1979). P2 j j

P
wjCj is NP-complete (Bruno

et al. 1974), and has an FPTAS (Sahni 1976). Although the two problems are equivalent
from the optimization perspective, as is often the case with equivalent minimization and
maximization problems, it is not immediately obvious if they are equivalent in terms of
approximability; Example 2.C.4 shows why an FPTAS for P2 j j

P
wjCj does not imply

an FPTAS for the Nx-MD problem. We present a dynamic program that solves Nx-MD for
scheduling games exactly in pseudopolynomial time, and then convert this dynamic program
into an FPTAS. This development is inspired by the FPTAS for P2 j j

P
wjCj by Sahni

(1976). The analysis is similar to the analysis of the FPTAS for P2 j jCmax by Schuurman
and Woeginger.

We think of determining the maximizer S� by scheduling the jobs inN on two machines:
the jobs scheduled on machine 1 will form S�, and the jobs scheduled on machine 2 will
formN nS�. As usual, we consider the jobs in order of nonincreasing weight-to-processing-
time ratios (i.e. 1; : : : ; n). We can partition the jobs into S� andN nS� sequentially using the
following dynamic program. The state spaceE is partitioned into n disjoint sets,E1; : : : ; En.
A schedule � for jobs f1; : : : ; kg on two machines corresponds to a state .a; b; c/ 2 Ek.
The first coordinate a is the sum of processing times of all jobs scheduled by � on machine
1. The second coordinate b is the sum of processing times of all jobs scheduled by � on
machine 2. The third coordinate c is the running objective value: v.f1; : : : ; kg/ minus the
sum of weighted completion times on two machines for � .

Suppose jobs 1; : : : ; k�1 have already been scheduled, and job k is under consideration.
If job k is scheduled on machine 1, then the running objective value increases by wk.aC
b C pk/ � wk.a C pk/ D wkb. If job k is scheduled on machine 2, then the running
objective value increases by wk.a C b C pk/ � wk.b C pk/ D wka. This suggests the
following dynamic programming algorithm.

Algorithm 2.4.6. (Exact dynamic program)

Input: scheduling game .N; v/ with weights wi , processing times pi for all
i 2 N .

Output: the optimal value of Nx-MD for scheduling games, e. Nx; S�/.

E1 D f.p1; 0; 0/; .0; p1; 0/g

For k D 2; : : : ; n
For every vector .a; b; c/ 2 Ek�1

Put .aC pk; b; c C wkb/ and .a; b C pk; c C wka/ in Ek
Find .a; b; c/ 2 En with maximum c value, c�
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Return e. Nx; S�/ D 1
2
g.S�/ D 1

2
c�

Let P D
Pn
iD1 pi and W D

Pn
iD1wi . Each state corresponds to a point in f.a; b; c/ 2

Z3 W 0 � a � P; 0 � b � P; 0 � c � WP g. Note that for any state .a; b; c/ 2 Ek for a
given k D 1; : : : ; n, if a is known, b is already determined, and vice versa. Therefore, the
running time of this dynamic program is O.nWP 2/.

Let ı D .1 C �=.2n//�1 for some 0 < � < 1. Note that ı 2 .0; 1/. In addition,
define L D dlog1=ı P e and M D dlog1=ı WP e. Consider the grid formed by the points
.ı�r ; ı�s; ı�t/, r D 1; : : : ; L, s D 1; : : : ; L, t D 1; : : : ;M . We divide each of the state sets
Ek, k D 1; : : : ; n, into the boxes formed by the grid:

B.r; s; t/ D f.a; b; c/ 2 R3 W ı�rC1 � a � ı�r ; ı�sC1 � b � ı�s; ı�tC1 � c � ı�tg
r D 1; : : : ; L; s D 1; : : : ; L; t D 1; : : : ;M:

Observe that if .a1; b1; c1/ and .a2; b2; c2/ are in the same box,

ıa1 � a2 �
a1

ı
; ıb1 � b2 �

b1

ı
; ıc1 � c2 �

c1

ı
: (2.4.5)

We simplify the state sets Ek by using a single point in each box as a representative for
all vectors in the same box. We denote these simplified state sets by Eı

k
. The “trimmed”

dynamic program is as follows.

Algorithm 2.4.7. (Dynamic program with “trimmed” state space)

Input: scheduling game .N; v/ with weights wi , processing times pi for all
i 2 N .

Output: an approximation to the optimal value of Nx-MD for scheduling games,
e. Nx; NS/.

Pick � 2 .0; 1/, calculate ı
Eı1 D f.p1; 0; 0/; .0; p1; 0/g

For k D 2; : : : ; n
For every vector .a; b; c/ 2 Eı

k�1

Put corresponding representatives of .a C pk; b; c C wkb/ and .a; b C
pk; c C wka/ in Eı

k

Find .a; b; c/ 2 Eın with maximum c value, Nc
Return e. Nx; NS/ D 1

2
g. NS/ D 1

2
Nc

The key property of the “trimmed” state space used in Algorithm 2.4.7 is that every
element in the original state space has an element in the “trimmed” state space that is
relatively close. In particular,

Lemma 2.4.8. For every .a; b; c/ 2 Ek, there exists a vector .a0; b0; c0/ 2 Eı
k

such that

a0 � ıka; b0 � ıkb; c0 � ıkc:

Proof. By induction. The base case k D 1 holds by (2.4.5). Assume the induction hypothe-
sis holds for 1; : : : ; k � 1. Consider an arbitrary .a; b; c/ 2 Ek . The exact dynamic program
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puts .a; b; c/ 2 Ek when it schedules job k. Therefore, .a; b; c/ D .˛ C pk; ˇ; 
 Cwkˇ/
or .a; b; c/ D .˛; ˇ C pk; 
 C wk˛/ for some .˛; ˇ; 
/ 2 Ek�1.

Suppose .a; b; c/ D .˛Cpk; ˇ; 
 Cwkˇ/ for some .˛; ˇ; 
/ 2 Ek�1. By the induction
hypothesis, there exists a vector .˛0; ˇ0; 
 0/ 2 Eı

k�1
such that ˛0 � ık�1˛, ˇ0 � ık�1ˇ, and


 0 � ık�1
 . In the kth phase, the trimmed dynamic program puts a state .a0; b0; c0/ in Eı
k

that is in the same box as .˛0 C pk; ˇ0; 
 0 C wkˇ0/. Therefore, since ı 2 .0; 1/, there exists
a vector .a0; b0; c0/ 2 Eı

k
such that

a0 � ı.˛0 C pk/ � ı
k˛ C ıpk � ı

k.˛ C pk/ D ı
ka

b0 � ıˇ0 � ıkˇ D ıkb

c0 � ı.
 0 C wkˇ
0/ � ık
 C ıkwkˇ D ı

k.
 C wkˇ/ D ı
kc:

The case where .a; b; c/ D .˛; ˇ C pk; 
 C wk˛/ for some .˛; ˇ; 
/ 2 Ek�1 follows
similarly. Therefore, the induction step is complete.

Finally, we analyze the performance and running time of the trimmed dynamic program-
ming algorithm.

Theorem 2.4.9. Algorithm 2.4.7 is a fully polynomial time approximation scheme for the
Nx-maximum dissatisfaction problem for scheduling games.

Proof. Note that each Eı
k

has at most one point from each box, or O.L2M/ points. There-
fore, the running time of this algorithm is O.nL2M/. Since log ´ � .´ � 1/=´ for any
´ 2 .0; 1�, we can bound L and M as follows:

L D

�
logP

log 1=ı

�
�

��
1C

2n

�

�
logP

�
;

M D

�
logWP
log 1=ı

�
�

��
1C

2n

�

�
.logW C logP /

�
:

Therefore, the running time of this algorithm is polynomial in n, logW , logP , and 1=�.
Now we analyze the performance of this algorithm. Let c� D g.S�/, the optimal value

of g. Note that there exists a vector .a�; b�; c�/ 2 En. By Lemma 2.4.8, there exists a vector
.a0; b0; c0/ 2 Eın such that c0 � ınc�. Recall that ı D .1C �=.2n//�1 for some 0 < � < 1.
Since .1C �=.2n//n � 1C �, we have that c0 � .1C �=.2n//�nc� � .1C �/�1c�.

Combining Theorem 2.4.5 and Theorem 2.4.9, gives us the following result.

Theorem 2.4.10. There exists a fully polynomial time approximation scheme for computing
the least core value of scheduling games.

2.5 Submodular profits and a special case from matroid
optimization

Up to this point, we have only considered cooperative games in which agents are assigned a
cost for their joint actions. But what about cooperative games in which agents act together
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to collect a reward, or profit? Consider a cooperative game .N; v/ where v.S/ represents
the profit allocated to the agents in S . For these games, solution concepts should reflect the
rationality of a profit allocation; for example, the core for a profit cooperative game .N; v/
is defined as the set of all profit allocations x such that

x.N / D v.N /;

x.S/ � v.S/ for all S � N:

The least core for a profit cooperative game .N; v/ is defined in a similar manner: it is the
set of all profit allocations x that are optimal for the problem

´� D minimize ´

subject to x.N / D v.N /

x.S/ � v.S/ � ´ for all S � N;S ¤ ;; N:
(LC-profit)

The least core value of .N; v/ is the optimal value ´� to this optimization problem. Note
that it still reflects the minimum penalty to a coalition needed to ensure the existence of an
efficient and stable profit allocation.

If v is nonnegative, submodular and v.;/ D 0, we call .N; v/ a submodular profit
cooperative game. It is straightforward to see that all the results established for supermodular
cost cooperative games in Section 2.3 also hold true for submodular profit cooperative
games, with the following natural modifications. For a cooperative game .N; v/ with v
representing profits, the dissatisfaction for any subset of agents S under a profit allocation
x is defined as e.x; S/ D v.S/ � x.S/. We define the polytope Bv as fx 2 Rn W x.N / D
v.N /; x.S/ � v.S/ for all S � N g. The x-maximum dissatisfaction problem for a
cooperative game .N; v/ with v representing profits is still to find a subset S� such that
e.x; S�/ D maxS�N;S¤;;N e.x; S/.

2.5.1 Matroid profit games

Consider the cooperative game .N; v/, defined as follows. Each agent i 2 N has a job
with unit processing time and a deadline di 2 Z>0. In addition, each agent i 2 N has an
associated profit wi 2 R�0, which is earned if agent i’s job is completed by its deadline.
The profit v.S/ to any subset of agents S is the maximum profit attainable by scheduling
jobs in S on a single machine. It turns out that if we define

I D fS � N W every job in S can be completed by its deadlineg;

then .N; I/ is a matroid (Gabow and Tarjan 1984). For any family of sets I, define
IjS D fT 2 I W T � Sg. In this cooperative game, v.S/ is the maximum w-weight of an
independent set in .S; IjS/ for any subset of agents S .

In this section, we study the following generalization of the cooperative game described
above. Let .N; I/ be a matroid with weights wi 2 R�0 for each i 2 N . We define v.S/ as
the maximumw-weight of an independent set in .S; IjS/, for every subset of agents S � N .
Then .N; v/ defines a cooperative game where the profits to a coalition S is represented
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by v.S/. We call such games matroid profit games. Cooperative games that arise from
matroid optimization have been considered previously. Nagamochi et al. (1997) studied the
computational complexity of various solution concepts for minimum base games, in which
for a given matroid .N; I/, the cost v.S/ to a coalition S is the minimum weight of a basis
in .S; IjS/. In these games, the costs to a coalition are not necessarily supermodular, and
so the results of Section 2.3 do not apply.

By Theorem 2.2.3, matroid profit games are submodular profit cooperative games. It
turns out that the x-maximum dissatisfaction problem for matroid profit games is quite
tractable: we show that it can be solved exactly in polynomial time for any profit allocation
x such that x.N / D v.N /.

Theorem 2.5.1. Suppose .N; v/ is a matroid profit game. Then for any profit allocation x
such that x.N / D v.N /, the x-maximum dissatisfaction problem for .N; v/ can be solved
in polynomial time.

Proof. Fix some profit allocation x such that x.N / D v.N /, and let A D fi 2 N W xi < 0g.
Consider the following algorithm for the x-maximum dissatisfaction problem for .N; v/:

Input: matroid profit game .N; v/ with matroid .N; I/ and weights wi 2 R�0
for all i 2 N .

Output: an optimal solution NS to x-MD for .N; v/.

1. Compute a maximum Nw-weight independent set T � of .N; I/, where

Nwi D

(
wi if i 2 A
wi � xi if i 2 N n A:

2. Let NT D T � [ .A n T �/.
� If NT ¤ ;; N , output NS D NT .
� Otherwise, output NS D arg maxfe.x; S/ W S 2 fT;N n T gg for an

arbitrary T � N; T ¤ ;; N .

First, note that any optimal solution of the following relaxation of the x-maximum
dissatisfaction problem

max
S�N

e.x; S/ D max
S�N

˚
v.S/ � x.S/

	
(2.5.1)

must contain all elements of A, since v is nondecreasing. Since A is fixed, the problem
(2.5.1) is equivalent to

max
S�N

˚
v.S/ � x.S n A/

	
: (2.5.2)

We show that the independent set T � computed in Step 1 of the above algorithm is
an optimal solution to (2.5.2). Let S� be an optimal solution to (2.5.2), and suppose that
v.S�/ � x.S� n A/ > v.T �/ � x.T � n A/. Note that without loss of generality, S� is an
independent set of .N; I/. Otherwise, there exists some i 2 S� that is not in a maximum
weight independent set of .S�; IjS�/. If xi � 0, then i 2 S� n A, and can be removed
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without decreasing the objective value of (2.5.2); if xi < 0, then i 2 A, and removing it
does not affect the objective value of (2.5.2). Therefore,

Nw.S�/ D w.S�/ � x.S� n A/

D v.S�/ � x.S� n A/

> v.T �/ � x.T � n A/

D w.T �/ � x.T � n A/

D Nw.T �/;

which contradicts the assumption that T � is a maximum Nw-weight independent set of .N; I/.
So T � is an optimal solution to (2.5.2).

Using this fact, we show that the output of the above algorithm is correct. Note that

max
S�N
S¤;;N

e.x; S/ � max
S�N

e.x; S/ (2.5.3a)

D max
S�N

˚
v.S/ � x.S n A/

	
� x.A/ (2.5.3b)

D v.T �/ � x.T � n A/ � x.A/ (2.5.3c)

� v. NT / � x. NT / (2.5.3d)

D e.x; NT /: (2.5.3e)

We consider two cases.
1. NT ¤ ;; N . By (2.5.3a)-(2.5.3e), it follows that NT is an optimal solution to x-MD for
.N; v/.

2. NT D ; or NT D N . In this case, e.x; NT / D 0. Fix some T � N; T ¤ ;; N . Since v
is submodular and v.;/ D 0, we have that

e.x; T /C e.x;N n T / D v.T /C v.N n T / � v.N / � 0:

Therefore, we must have e.x; T / � 0, or e.x;N n T / � 0, or both. Without loss of
generality, suppose e.x; T / � 0. It follows from (2.5.3a)-(2.5.3e) that

max
S�N
S¤;;N

e.x; S/ � 0 � e.x; T /:

Therefore, arg maxfe.x; S/ W S 2 fT;N n T gg for any given T � N; T ¤ ;; N is an
optimal solution to x-MD for .N; v/.

Since a maximum weight independent set of a matroid can be found in polynomial time
(Rado 1957; Edmonds 1971), it follows that the above algorithm solves the x-maximum
dissatisfaction problem for a matroid profit game .N; v/ in polynomial time.

By the discussion earlier in this section, if .N; v/ is a submodular profit cooperative
game and we have a �-approximation algorithm for the x-maximum dissatisfaction problem
for .N; v/ for any given profit allocation x such that x.N / D v.N /, then we have a �-
approximation algorithm for computing the least core value of .N; v/. This translation in
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approximability is accomplished by using the ellipsoid method to find feasible solutions to
(LC-profit), with the x-maximum dissatisfaction problem as a separation oracle. Therefore,
by Theorem 2.5.1, we immediately obtain the following theorem:

Theorem 2.5.2. Suppose .N; v/ is a matroid profit game. Then there exists a polynomial-
time algorithm for

(a) computing the least core value of .N; v/, and
(b) computing a cost allocation in the least core of .N; v/.

2.6 Conclusion
In a cooperative game with supermodular costs, cooperation amongst agents is unlikely: as
a coalition grows, the cost of adding a particular agent increases, making the prospect of
cooperation less appealing. As we showed, these situations arise when sharing the optimal
costs of a variety of combinatorial optimization problems, especially in machine scheduling.
In circumstances where the failure to cooperate can cause negative externalities, one may be
interested in methods of encouraging cooperation. In this chapter, we considered one way of
encouraging cooperation in these situations: the least core value of a cooperative game, or
the minimum penalty we need to charge a coalition for acting independently that ensures the
existence of an efficient and stable cost allocation. We showed that computing the least core
value of supermodular cost cooperative games is strongly NP-hard, and provided a general
framework for approximating the least core value of these games. This framework, with
the appropriate natural modifications, can also be used to approximate the least core value
of submodular profit cooperative games. Using this framework with the approximation
algorithms for submodular function maximization of Feige et al. (2007), we obtained a
.3C �/-approximation algorithm for computing the least core value of both supermodular
cost cooperative games and submodular profit cooperative games. In addition, we used
this framework to design a fully polynomial-time approximation scheme for computing the
least core value of scheduling games, as well as an exact polynomial-time algorithm for
computing the least core value of matroid profit games.

There are several interesting directions for future research that extend from this work.
For example, Faigle et al. (2000) proposed the following generalization of the least core of a
cooperative game .N; v/. Consider the linear optimization problem

´� D minimize ´

subject to x.N / D v.N /;

x.S/ � v.S/C ´f .S/ for all S � N; S ¤ ;; N
(f-LC)

for some priority function f W 2N 7! R. The set of all optimal cost allocations x to (f-LC)
is called the f -least core of .N; v/. Several priority functions have been considered in the
literature for various cooperative games. Of course, when f .S/ D 1 for all S � N;S ¤
;; N , the f -least core of .N; v/ is simply the least core of .N; v/. Shapley and Shubik
(1966) proposed the f -least core with f .S/ D jS j. Faigle and Kern (1993) proposed the
f -least core with f .S/ D v.S/ for all S � N;S ¤ ;; N . This case has been studied for
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a variety of games including traveling salesman games (Faigle et al. 1998), bin-packing
games (Faigle and Kern 1998), and matching games (Faigle and Kern 1993), as well as
in the context of finding group strategyproof cost sharing mechanisms for a variety of
cooperative games arising from combinatorial optimization problems (Immorlica et al. 2005;
Pál and Tardos 2003). It would be interesting to study the f -least core for supermodular cost
cooperative games, for various forms of f , as it provides a natural way to model different
penalties for acting independently for different coalitions.

Another interesting direction of research related to this work is to study the nucleolus
of supermodular cost cooperative games. Given a cost allocation x, the excess vector
�.x/ is the 2N � 2 dimensional vector whose components are e.x; S/ for all S � N;S ¤
;; N in nonincreasing order. The nucleolus (Schmeidler 1969) is the cost allocation that
lexicographically minimizes the excess vector �.x/. The nucleolus of a cooperative game
always exists and is unique. In addition, the nucleolus is contained in the least core, and
can be computed by a polynomial number of least core computations. One line of research
would be to study the size of the least core of various supermodular cost cooperative games:
for example, does it coincide with nucleolus, and is therefore unique? The computational
complexity of computing the nucleolus of supermodular cost cooperative games is also
open. It would also be interesting to investigate whether our framework for least core
approximation can be used in a fruitful manner to compute cost allocations that approximate
the nucleolus of supermodular cost cooperative games.

Last, but not least, the computational complexity of computing an element of the least
core of supermodular cost cooperative games remains open.

42



2.A Proof of Theorem 2.3.9
In this appendix, we establish a result that generalizes Theorem 2.3.9: an approximate
separation oracle for a given polytope, in conjunction with the ellipsoid method, can be
used to either find an element in an “approximation” of that polytope, or determine that
the polytope is empty. The ideas here closely follow the analyses found in Grötschel et al.
(1988) and Jansen (2003).

2.A.1 Preliminaries
A well-described polyhedron is a triple .KIn; '/ where K � Rn is a polyhedron with facet
complexity at most '. The encoding length of a well-described polyhedron .KIn; '/ is
' C n.

For a symmetric matrix A 2 Rn�n, we denote the spectral norm of A as

kAk D max
˚
j�j W � is an eigenvalue of A

	
D max

˚
jxTAxj W kxk D 1

	
:

Finally, we define for any vector a 2 Rn and positive definite matrix A, the ellipsoid

E.A; a/ D
˚
x 2 Rn W .x � a/TA�1.x � a/ � 1

	
:

2.A.2 Approximate separation and non-emptiness
For this subsection, we assume that .KIn; '/ is a bounded, rational, well-described polyhe-
dron in Rn. In other words, K � Rn is a rational polytope with facet complexity at most '.
Let NK be an “approximation” to K. Consider the following problem:

Strong approximate separation problem (S-APP-SEP).
Given y 2 Qn, either

(a) assert y 2 NK, or
(b) find a hyperplane that separates y from K: find c 2 Qn such that cTy > cTx

for all x 2 K and kck1 D 1.

Suppose we have an oracle for S-APP-SEP. We use this approximate separation oracle
in the ellipsoid method as follows.

Algorithm 2.A.1 (Central-cut ellipsoid method with approximate separation oracle (AP-
P-ELL)).

Input: � 2 Q such that � 2 .0; 1/, bounded rational polyhedronK � Rn given
by an oracle for S-APP-SEP, R 2 Q such that K � E.R2I; 0/ (where I
denotes the identity matrix).

Output: either
1. y 2 NK, or
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2. positive definite A 2 Qn�n, a 2 Qn such that K � E.A; a/ and
vol.E.A; a// � �.

1. Set the following values:

N D d5nj log �j C 5n2j log 2Rje (2.A.1)
p D 8N (2.A.2)

2. Generate the sequence of ellipsoids
E.A0; a0/; E.A1; a1/; : : : ; E.AN ; aN / as follows:
� Initialize the sequence:

a0 D 0 (2.A.3)

A0 D R
2I (2.A.4)

� For k D 0; : : : ; N � 1, call S-APP-SEP oracle for K with input
y D ak.
� If the S-APP-SEP oracle asserts ak 2 NK, return ak . Stop.
� If the S-APP-SEP oracle returns ck 2 Qn such that

kckk1 D 1 (2.A.5)

cT
k ak > c

T
k x for all x 2 K (2.A.6)

then compute

akC1 � ak �
1

nC 1

Akckq
cT
k
Akck

(2.A.7)

AkC1 �
2n2 C 3

2n2

�
Ak �

2

nC 1

Akckc
T
k
Ak

cT
k
Akck

�
(2.A.8)

where “�” means the computations are done with p digits after the
binary point.
� If k D N , return aN , AN . Stop.

To prove the correctness of the algorithm, we need the following lemma.

Lemma 2.A.2 (Grötschel et al. 1988, 3.2.8-3.2.10). Let K � Rn be a convex set
such that K � E.R2I; 0/. Let N , p be defined as in (2.A.1)-(2.A.2). Suppose Ak
and ak (k D 0; 1; : : : ; N / are defined as in (2.A.3)-(2.A.4) and (2.A.7)-(2.A.8), and
ck (k D 0; 1; : : : ; N / satisfy (2.A.5)-(2.A.6). Then, the following statements hold for
k D 0; 1; : : : ; N :

(a) Ak is positive definite.
(b) kakk � R2k, kAkk � R22k, and kA�1

k
k � R�24k .

(c) K � E.Ak; ak/.
(d) vol.E.AkC1; akC1// � e�

1
5nvol.E.Ak; ak//.

Using the above lemma, we can show:
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Theorem 2.A.3. Algorithm 2.A.1 (APP-ELL) is correct.

Proof. Lemma 2.A.2 immediately implies that Ak and ak (k D 0; 1; : : : ; N / as defined in
(2.A.3)-(2.A.4) and (2.A.7)-(2.A.8) are well-defined and have polynomial encoding lengths.

If the algorithm stops with k < N , the algorithm terminates correctly by construction.
If the algorithm returns aN and AN , then Lemma 2.A.2 implies that K � E.AN ; aN / and

vol.E.AN ; aN // � e�
N
5nvol.E.A0; a0//

� e�
N
5n .2R/n

< 2�
N
5n .2R/n

� �:

So if k D N , the algorithm terminates correctly.

Now consider the following problem:

Approximate non-emptiness problem (APP-NEMPT).
Either

(i) find a vector y 2 NK or
(ii) assert K is empty.

We can use APP-ELL (Algorithm 2.A.1) in conjunction with an oracle for S-APP-SEP
to solve APP-NEMPT. To show this, we need the following lemma.

Lemma 2.A.4 (Grötschel et al. 1988, pp. 175-176). Let .KIn; '/ be a well-described
polyhedron. In addition, let � D 2�48n

5' . Suppose K � E.A; a/ where vol.E.A; a// � �.
Then there exists f 2 Zn and g 2 Z>0 such that f ¤ 0 and K � fx 2 Rn W f Tx D gg.
Moreover, f and g can be found in time polynomial in n, ', and the encoding length of
A�1.

Finally, we are ready to show the main result of this appendix.

Theorem 2.A.5. Suppose there exists an algorithm that can solve S-APP-SEP in time
polynomial in n and '. Then, there exists an algorithm that can solve APP-NEMPT in time
polynomial in n and '.

Proof. By assumption, K has facet complexity at most '. Therefore, by Lemma 2.3.8,
K has vertex complexity at most 4n2'. Apply APP-ELL (Algorithm 2.A.1) to K with
R D 24n

2' and � D 2�48n
5' . If APP-ELL returns a vector y 2 NK, then we have solved

APP-NEMPT, and we can stop. Otherwise, APP-ELL returns an ellipsoid E � Rn such that
K � E and vol.E/ � �. Then, by Lemma 2.A.4, we can find f 1 2 Zn and g1 2 Z>0 such
that f 1 ¤ 0 and K � fx 2 Rn W .f 1/Tx D g1g. Without loss of generality, assume that
f 11 ¤ 0.
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Suppose that we have found k linearly independent vectors f 1; : : : ; f k 2 Zn and
g1; : : : ; gk 2 Z>0 such that f i ¤ 0 for i D 1; : : : ; k and

K �
˚
x 2 Rn W .F1 F2/ x D g

	
where F1 2 Zk�k is upper triangular with non-zero diagonal entries and F2 2 Zk�.n�k/
such that

.F1 F2/ D

�
.f 1/T

:::

.f k/T

�

and g D

�
g1

:::

gk

�

:

We show how to find f kC1 2 Zn, gkC1 2 Z>0 such that f 1; : : : ; f k; f kC1 are linearly
independent, f kC1 ¤ 0, and

K �
˚
x 2 Rn W .f 1/Tx D g1; : : : ; .f k/Tx D gk; .f kC1/Tx D gkC1

	
:

Let

Kk D

�
u 2 Rn�k W 9 ´ 2 Rk such that

�
´

u

�
2 K

�
:

Therefore, w 2 Kk if and only if�
´

w

�
2 K �

˚
x 2 Rn W .F1 F2/ x D g

	
for some ´ 2 Rk, which happens if and only if 

F �11 g � F �11 F2w

w

!
2 K:

Note that for any vertex u� of Kk , there exists ´� 2 Rk such that
�
´�

u�

�
is a vertex of K.

Therefore, since K has vertex complexity at most 4n2', Kk has vertex complexity at most
4n2'. This implies that Kk has facet complexity at most ' 0 D 3n2.4n2'/. Apply APP-
ELL to Kk with R D 24n

2'0 and � D 2�48n
5'0 , using the following modified approximate

separation oracle for Kk:

Input: w 2 Rn�k.
Output: either

1. assert y 2 NK, where

y D

 
F �11 g � F �11 F2w

w

!

2. find Nc 2 Qn�k such that k Nck1 D 1 and NcTw > NcTu for all u 2 Kk .
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1. Apply S-APP-SEP oracle for K on

y D

 
F �11 g � F �11 F2w

w

!

2. If the S-APP-SEP oracle asserts y 2 NK, then assert y 2 NK. Stop.
3. Otherwise, the S-APP-SEP oracle returns c 2 Qn such that cTy > cTx

for all x 2 K. Let c1 2 Qk and c2 2 Qn�k such that

c D

�
c1

c2

�
Therefore,

.c1/T.F �11 g�F �11 F2w/C .c
2/Tw > .c1/T.F �11 g�F �11 F2u/C .c

2/Tu

for all u 2 Kk . Or equivalently,

..c2/T � .c1/TF �11 F2/w > ..c
2/T � .c1/TF �11 F2/u

for all u 2 Kk . Return

Nc D
c2 � .F �11 F2/

Tc1

kc2 � .F �11 F2/Tc1k1

as the vector representing a hyperplane that separates w and Kk . Stop.

If APP-ELL returns a vector y 2 NK, then we have solved APP-NEMPT and we are
done. Otherwise, APP-ELL returns an ellipsoid Ek � Rn�k such that Kk � Ek and
vol.Ek/ � �. Therefore, by Lemma 2.A.4 we can find Nf kC1 2 Zn�k and gkC1 2 Z>0 such
that Kk � fy 2 Rn�k W Nf kC1y D gkC1g. Without loss of generality, let Nf kC11 ¤ 0. Let
f kC1 2 Zn such that

f kC1 D

˙
0
:::

0
Nf kC1

�

:

It follows that K � fx 2 Rn W .f kC1/Tx D gkC1g. By the induction hypothesis,

K � fx 2 Rn W .f 1/Tx D g1; : : : ; .f k/Tx D gk; .f kC1/Tx D gkC1g

and f 1; : : : ; f k; f kC1 are linearly independent.
When k D n, we have that

K � fx 2 Rn W .f 1/Tx D g1; : : : ; .f n/Tx D gng:

Since f 1; : : : ; f n are linearly independent, K must be equal to the unique vector y in
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fx 2 Rn W .f 1/Tx D g1; : : : ; .f n/Tx D gng, or empty. Running the S-APP-SEP oracle for
K on y, we either determine that y 2 NK or K is empty.

By Lemma 2.A.2(b) and Lemma 2.A.4, we can find the vectors f 1; : : : ; f n and the
scalars g1; : : : ; gn in time polynomial in n and '. In addition, the inputs � and R defined
above imply that the calls to APP-ELL above run in time polynomially bounded by n, ',
and the running time of the S-APP-SEP oracle (which is assumed to be polynomial in n
and '). Since at most n calls to APP-ELL are made, the prescribed method above solves
APP-NEMPT in time polynomial in n and '.

Note that Theorem 2.A.5 implies Theorem 2.3.9, since the facet complexity of Q
 is
polynomially bounded by n and the encoding length of v.N /C 
 .
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2.B Maximizing non-monotone submodular functions
Feige et al. (2007) gave a 3-approximation algorithm for maximizing nonnegative submod-
ular functions. We provide the proof here, for the reader’s convenience. In addition, we
show that some simple observations prove that their algorithm works for any submodular
function f W 2N 7! R with f .;/ � 0 and f .N / � 0. We use their algorithm under these
weaker conditions in Corollary 2.3.7. Note that these weaker conditions still guarantee that
the maximum value of the function f is nonnegative.

As usual, we assume N D f1; : : : ; ng. For a given set function f W 2N 7! R and some
˛ 2 R>0, a set S � N is called a .1C ˛/-approximate local optimum if .1C ˛/f .S/ �
f .S n fig/ for all i 2 S , and .1C ˛/f .S/ � f .S [ fig/ for all i … S .

We consider the following local search algorithm.

Algorithm 2.B.1. Local search algorithm for maximizing submodular functions.

Input: submodular function f W 2N 7! R with f .;/ D 0 and f .N / D 0, given by a
value oracle; precision parameter � > 0.

Output: approximate solution NS .

1. (Initialization) S  fag, where f .fag/ D maxi2N f .fig/.
2. (Local search)

(a) If there exists an element i 2 N nS such that f .S [fig/ > .1C �
n2
/f .S/, then

S  S [ fig, and go to Step 2.
(b) If there exists an element i 2 S such that f .S n fig/ > .1 C �

n2
/f .S/, then

S  S n fig, and go to Step 2.

3. Return NS D arg maxff .S/; f .N n S/g.

If Algorithm 2.B.1 terminates, the set S that it ends with is clearly a .1C �
n2
/-approximate

local optimum of f . In addition, under our assumption that f .;/ � 0 and f .N / � 0, we
observe that f .S/ is nonnegative. The algorithm starts with fag, and f .fag/ � 0, since by
submodularity,

n � f .fag/ �
X
i2N

f .fig/ � f .N /C .n � 1/f .;/ � 0:

At each iteration of the algorithm, the function value increases by a factor of at least .1C �
n2
/,

so it follows that f .S/ is also nonnegative.
Next, we show a nice property of nonnegative .1 C ˛/-approximate local optima of

submodular functions.

Lemma 2.B.2. Let S � N be a .1 C ˛/-approximate local optimum of a submodular
function f with f .S/ � 0. Then, for any subset I � N such that I � S or I � S , we
have f .I / � .1C n˛/f .S/.

Proof. Fix some I � S , and let I D T1 � T2 � � � � � Tk D S be a chain of sets, where
Ti n Ti�1 D faig for i D 2; : : : ; k. By submodularity and approximate local optimality, we
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have that

f .Ti/ � f .Ti�1/ � f .S/ � f .S n faig/ � � f̨ .S/ for i D 2; : : : ; k:

Summing these inequalities, we obtain f .S/ � f .I / � �.k � 1/ f̨ .S/. Since f .S/ � 0,
we have that f .I / � .1C .k � 1/˛/f .S/ � .1C n˛/f .S/.

The proof for I � S works the same way.

Now we are ready to analyze the performance guarantee and running time of the local
search algorithm.

Theorem 2.B.3. Algorithm 2.B.1 is a .3C 2�
n
/-approximation algorithm for maximizing

submodular functions f W 2N 7! R with f .;/ � 0 and f .N / � 0.

Proof. Suppose S� is an optimal solution, and let a be an element of N such that f .fag/ D
maxi2N f .fig/ (as computed as in Step 1 of the algorithm). Above, we observed that
f .fag/ � 0. We also have that f .S�/ � nf .fag/, since

n � f .fag/ � jS�jf .fag/ � jS�jmax
i2S�

f .fig/

�

X
i2S�

f .fig/ � f .S�/C .jS�j � 1/f .;/ � f .S�/:

After each iteration, the value of the function increases by a factor of at least .1 C �
n2
/,

so after k iterations, f .S/ � .1C �
n2
/kf .fag/. It follows that the number of iterations is

O.1
�
n2 logn/, and the number of queries to the value oracle of f is O.1

�
n3 logn/.

Let S be the .1C �
n2
/-approximate local optimum that the algorithm computes. By the

observation above, f .S/ � 0. Therefore, by Lemma 2.B.2, we have that

f .S \ S�/ �
�
1C

�

n

�
f .S/ and f .S [ S�/ �

�
1C

�

n

�
f .S/:

By submodularity,

f .S [ S�/C f .N n S/ � f .S� n S/C f .N /;

f .S \ S�/C f .S� n S/ � f .S�/C f .;/:

Combining the above with the assumption that f .;/ � 0 and f .N / � 0, we have that�
3C

2�

n

�
f . NS/ D

�
3C

2�

n

�
maxff .S/; f .N n S/g

� 2
�
1C

�

n

�
f .S/C f .N n S/

� f .S \ S�/C f .S [ S�/C f .N n S/

� f .S \ S�/C f .S� n S/C f .N /

� f .S�/C f .;/C f .N /

� f .S�/:
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2.C Additional Examples
Example 2.C.1. Suppose we have a set of jobsN D f1; : : : ; ng, each of which has a weight
wi and processing time pi . Let v.S/ be the optimal value of P2 j j

P
wjCj for jobs in

S . This example shows that v.S/ is not supermodular on all subsets of N . Consider the
following instance of P2 j j

P
wjCj with 5 jobs:

i 1 2 3 4 5
wi 1 5 2 4 2
pi 1 1 5 5 4

It is straightforward to show that v.f3; 4; 5g/ D 46, v.f1; 3; 4; 5g/ D 51, v.f2; 3; 4; 5g/ D
55, and v.f1; 2; 3; 4; 5g/ D 59. Therefore, we have that

v.f1; 3; 4; 5g/C v.f2; 3; 4; 5g/ D 106 > 105 D v.f1; 2; 3; 4; 5g/C v.f3; 4; 5g/:

So v is not supermodular.

Example 2.C.2. Suppose we have a set of jobs N D f1; : : : ; ng, each of which has a
weight wi , processing time pi , and release date ri . Let v.S/ be the optimal value of
1 j rj j

P
wjCj for jobs in S . This example shows that v.S/ is not supermodular on all

subsets of N . Consider the following instance of 1 j rj j
P
wjCj with 4 jobs. Let w1 D

w2 D w3 D w4 D 1, and let the processing times and release dates are as follows:

i 1 2 3 4
pi 2 3 5 2
ri 0 2 3 5

It is straightforward to show that v.f1; 3g/ D 10, v.f1; 2; 3g/ D 17, v.f1; 3; 4g/ D 20, and
v.f1; 2; 3; 4g/ D 26. Therefore,

v.f1; 2; 3g/ � v.f1; 3g/ D 7 > 6 D v.f1; 2; 3; 4g/ � v.f1; 3; 4g/:

So v is not supermodular.

Example 2.C.3. Suppose we have a set of jobsN D f1; : : : ; ng, each of which has a weight
wi , and a processing time pi . There are precedence constraints between the jobs defined
by a transitively closed, acyclic directed graph G D .N; P /. Job i must precede job j if
.i; j / 2 P . Let v.S/ be the minimum sum of weighted completion times of jobs in S � N .

An initial set I � N is a set of jobs with the following property: if j 2 I and .i; j / 2 P ,
then i 2 I . One can show that if I and J are initial sets of N , then I [ J and I \ J are
initial sets of N .

This example shows that v.S/ is not supermodular on initial sets of N . Consider the
following instance of 1 j prec j

P
wjCjwith 5 jobs. Let w1 D w2 D � � � D w5 D 1, and let

the processing times be as follows:

i 1 2 3 4 5
pi 6 1 5 1 4
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Figure 2-1: Precedence constraints for Example 2.C.3

The precedence constraints are shown in Figure 2-1. It is straightforward to show that
v.f1; 2; 3; 4; 5g/ D 55, v.f1; 3; 4; 5g/ D 44, v.f1; 2; 3; 5g/ D 40, and v.f1; 3; 5g/ D 28.
Therefore,

v.f1; 2; 3; 5g/C v.f1; 3; 4; 5g/ D 84 > 83 D v.f1; 2; 3; 4; 5g/C v.f1; 3; 5g/

So v is not supermodular.

Example 2.C.4. In this example, we show why a “straightforward” approach to an FPTAS
for the Nx-MD problem for scheduling games does not work.

Fix some � > 0, and let �0 D ı�
1�ı

. Suppose NS is output from an FPTAS with precision �0

for the two-machine scheduling problem, and S� is an optimal solution to the two-machine
scheduling problem (and the Nx-MD problem). Then, by definition,

v. NS/C v.N n NS/ � .1C �0/.v.S�/C v.N n S�//

Suppose that we could show that

v.N / � v.S�/ � v.N n S�/ � ıv.N / (2.C.1)

for some ı > 0. Then, we have that

2e. Nx; NS/ D v.N / � v. NS/ � v.N n NS/

� v.N / � .1C �0/.v.S�/C v.N n S�//

D .1C �0/.v.N / � v.S�/ � v.N n S�// � �0v.N /

� .1C �0/.v.N / � v.S�/ � v.N n S�// �
�0

ı
.v.N / � v.S�/ � v.N n S�//

D

�
1 � �0

�
1

ı
� 1

��
� 2e. Nx; S�/

D .1 � �/ � 2e. Nx; S�/:

Therefore, NS is a .1 � �/-approximation for the Nx-MD problem.
However, there is a caveat: in order to show that this approach yields an FPTAS for
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the Nx-MD problem, we need to show that 1�ı
ı

is a polynomial in the input size and 1=�.
Unfortunately, this is not always the case. Consider the following instance:

w1 D 2
nC1; w2 D � � � D wn D 1;

p1 D 2
n; p2 D � � � D pn D 1:

Note that the input size for this instance is polynomial in n. The optimal sequence for the
single-machine problem is .1; : : : ; n/, and so

v.N / D .2nC1/.2n/C .n � 1/2n C
n.n � 1/

2
:

An optimal schedule for the two-machine problem is to put job 1 on one machine, and jobs
2; : : : ; n on the other, so

v.S�/C v.N n S�/ D .2nC1/.2n/C
n.n � 1/

2
:

Therefore,

v.N /

v.N / � v.S�/ � v.N n S�/
D
.2nC1/.2n/C .n � 1/2n C n.n�1/

2

.n � 1/2n

D
2nC1

n � 1
C 1C

n

2nC1
:

So any ı that satisfies (2.C.1) must satisfy

1 � ı

ı
�
2nC1

n � 1
C

n

2nC1
;

which is not polynomial in the input size.
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Chapter 3

Scheduling Meets Random Graphs: A
Probabilistic Analysis of
Precedence-Constrained Scheduling

3.1 Introduction

We consider the following classic scheduling problem. We have a set of jobsN D f1; : : : ; ng
that needs to be scheduled nonpreemptively on a single machine, which can process at most
one job at a time. Each job i 2 N has a processing time pi 2 R�0 and weight wi 2 R�0.
Precedence constraints are represented by an acyclic, transitively closed directed graph
G D .N;A/: if .i; j / 2 A, then job i must be processed before job j . The objective is to
schedule these jobs in a way that respects the precedence constraints and minimizes the
sum of weighted completion times. In the notation of Graham et al. (1979), this problem is
denoted as 1 j prec j

P
wjCj . Lawler (1978) and Lenstra and Rinnooy Kan (1978) showed

that this problem is strongly NP-hard.
Researchers have devoted much attention to the approximability of 1 j prec j

P
wjCj ,

taking inspiration from its mathematical programming formulations, structural properties,
and relationships with other combinatorial optimization problems. For example, linear
programming relaxations were pivotal in the design of the first constant-factor approximation
algorithms for this problem. One class of linear programming relaxations that has been
studied extensively is based on variables describing the underlying linear ordering polytope
of the problem. Schulz (1996) showed that a linear programming relaxation in these
variables, originally proposed by Potts (1980), can be used to obtain a 2-approximation
algorithm. Chudak and Hochbaum (1999) proved that a further relaxation of Potts’s linear
relaxation also yields a 2-approximation algorithm. Furthermore, they showed that their
linear programming relaxation can be solved using one minimum-cut computation, making
their algorithm combinatorial.

Another stream of literature has focused on structural properties of 1 j prec j
P
wjCj

as a means to approximation. Sidney (1975) introduced a way to decompose an instance
of 1 j prec j

P
wjCj into smaller, so-called stiff instances, so that the concatenation of

optimal schedules for the smaller parts yields an optimal schedule for the entire instance.
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Sidney’s decomposition theory has been crucial in the design and analysis of approximation
algorithms for this scheduling problem. Independently, Chekuri and Motwani (1999) and
Margot et al. (2003) showed that any feasible schedule consistent with Sidney’s decom-
position is a 2-approximate schedule. Goemans and Williamson (2000) provided a nice
geometric proof of this result, using the two-dimensional Gantt charts of Eastman et al.
(1964). Queyranne and Schulz (2006) showed that for the same problem, but on identical
parallel machines, stiff instances can be approximated within a factor of 3 (the currently
best known approximation algorithm for arbitrary instances of this problem is also due to
Queyranne and Schulz (2006), and has a performance guarantee of 4).

Recently, it was shown that the scheduling problem 1 j prec j
P
wjCj is in fact a special

case of the minimum vertex cover problem (Correa and Schulz 2005; Ambühl and Mastrolilli
2006). Although these two problems seem quite different at a first glance, they share
some striking similarities. For instance, both problems have several 2-approximation
algorithms, and both problems have been strongly conjectured to be inapproximable within
a factor of .2 � �/ for any � > 0 (Hochbaum 1983; Schuurman and Woeginger 1999).
In addition, like Sidney’s decomposition theory for 1 j prec j

P
wjCj , the vertex cover

problem admits a so-called persistency property: a structural characterization of optimal
vertex covers that implies a straightforward 2-approximation algorithm (Nemhauser and
Trotter 1975; Hochbaum 1983). Ambühl et al. (2006) and Ambühl et al. (2007a) exploit
this relationship between the two problems to obtain approximation algorithms for instances
of 1 j prec j

P
wjCj with special types of precedence constraints. This relationship has

also yielded some inapproximability results for 1 j prec j
P
wjCj : Ambühl et al. (2007b)

showed that the approximability of 1 j prec j
P
wjCj (without fixed costs implied by the

precedence constraints) is equivalent to the approximability of the minimum vertex cover
problem, which is inapproximable within a factor of 2 � � for any � > 0, assuming the
Unique Games Conjecture holds (Khot and Regev 2003).

3.1.1 Contributions of this work
In this work, we focus on 0-1 bipartite instances, in which precedence constraints are
represented by a bipartite partial order, with minimal jobs having unit processing time
and zero weight, and maximal jobs having zero processing time and unit weight. These
instances are quite appealing because of their simple combinatorial structure. Moreover, it
turns out that these simple instances capture the inherent difficulty of the problem. Chekuri
and Motwani (1999) used a class of 0-1 bipartite instances to show that Potts’s linear
programming relaxation has an integrality gap of 2. Woeginger (2003) showed that a
�-approximation algorithm for 0-1 bipartite instances of 1 j prec j

P
wjCj implies a .�C�/-

approximation algorithm for arbitrary instances of 1 j prec j
P
wjCj : the approximability

behavior of 0-1 bipartite instances and arbitrary instances are virtually identical. As a
result, in order to obtain better approximation algorithms for 1 j prec j

P
wjCj , it suffices

to consider the family of 0-1 bipartite instances.
In an effort to better understand the properties of this important class of instances, we

study these instances of the precedence-constrained scheduling problem from a probabilistic
lens. One appealing feature of 0-1 bipartite instances is that they are completely defined
by their precedence constraints. Since precedence relations in bipartite partial orders are
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independent, we can apply the Erdös-Rényi model often used in random graph theory to
obtain random models of 0-1 bipartite instances (for an extensive treatment of random graph
theory, see the textbook by Bollobás (2001)). Our analysis of these random 0-1 bipartite
instances yields several “almost all”-type results that lead to some intriguing insights.

� After introducing the necessary background in Section 3.2, we show that almost all 0-1
bipartite instances are non-Sidney-decomposable in Section 3.3. Despite the influence
of Sidney’s decomposition technique on the design of approximation algorithms for
this problem, our result implies that for 0-1 bipartite instances, the decomposition
technique of Sidney will almost never be of any help. This result also strengthens
the connection between 1 j prec j

P
wjCj and the vertex cover problem: Pulleyblank

(1979) analogously showed that for almost all graphs under the random graph model in
which an edge appears independently with constant probability, the associated vertex
cover problem cannot be decomposed using the persistency property. Finally, together
with the work of Chekuri and Motwani (1999), Margot et al. (2003), and Goemans and
Williamson (2000), this result also implies that for almost all 0-1 bipartite instances,
any feasible schedule is a 2-approximation. However, as we will see below, it turns
out something much stronger can be shown.

� In Section 3.4, by studying the geometric properties of two-dimensional Gantt charts
for random 0-1 bipartite instances, we show that for almost all 0-1 bipartite instances,
all feasible schedules are arbitrarily close to optimal. This result offers an interesting
paradox: despite the apparent difficulty of obtaining an approximation algorithm with
a performance guarantee better than 2, for any given � > 0, any feasible schedule is a
.1C �/-approximation for almost all 0-1 bipartite instances, when the number of jobs
is sufficiently large.

� Finally, for almost all 0-1 bipartite instances, we give a lower bound on the integrality
gap of various linear programming relaxations of 1 j prec j

P
wjCj . For the random

models of 0-1 bipartite instances that we study, this lower bound approaches 2 as
the precedence constraints become sparser in expectation. This result confirms that
the class of 0-1 bipartite instances is especially impervious to approaches for better
approximation algorithms based on existing linear programming relaxations.

3.2 Definitions and background

3.2.1 Sidney’s decomposition theory
Sidney (1975) introduced a very useful characterization of optimal schedules to
1 j prec j

P
wjCj . We define

�.S/ D

(P
j2S wj=

P
j2S pj for any subset of jobs S � N such that

P
j2S pj > 0;

C1 otherwise:

A set of jobs I � N is called initial if j 2 I and .i; j / 2 A imply i 2 I . An initial set I �

is said to be �-maximal if I � D arg maxf�.I / W I is a nonempty initial setg.
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Sidney showed that there exists an optimal schedule in which all jobs in a �-maximal
initial set S� are scheduled before those in N n S�. By recursively applying this result,
we naturally obtain a partition of jobs .S1; : : : ; Sk/ with �.S1/ � � � � � �.Sk/. This
partition is called a Sidney decomposition. Sidney’s decomposition theory can be seen as
a generalization of Smith’s (1956) rule for the problem without precedence constraints.
Lawler (1978) showed how to compute Sidney’s decomposition efficiently using minimum
cut computations. An instance of 1 j prec j

P
wjCj is non-Sidney-decomposable if the

only �-maximal initial set is N ; otherwise the instance is called Sidney-decomposable. An
instance is called stiff if �.N / � �.I / for all nonempty initial sets I ; note that stiffness
is a necessary condition for an instance to be non-Sidney-decomposable. Independently,
Chekuri and Motwani (1999) and Margot et al. (2003) showed that for stiff instances, any
feasible schedule is a 2-approximation.

3.2.2 IP formulations, LP relaxations and the minimum vertex cover
problem

Several linear programming relaxations have been studied for 1 j prec j
P
wjCj . Potts

(1980) proposed an integer programming formulation based on linear ordering variables.
Define the decision variables ı as follows: for all i; j 2 N , ıij is equal to 1 if job i is
processed before job j , and 0 otherwise. Then 1 j prec j

P
wjCj can be formulated as

[P] minimize
X
j2N

pjwj C
X
i;j2N

piwj ıij (3.2.1a)

subject to ıij C ıj i D 1 for all i; j 2 N W i ¤ j; (3.2.1b)
ıij C ıjk C ıki � 2 for all i; j; k 2 N W i ¤ j ¤ k ¤ i; (3.2.1c)
ıij D 1 for all .i; j / 2 A; (3.2.1d)
ıij 2 f0; 1g for all i; j 2 N W i ¤ j: (3.2.1e)

The inequalities (3.2.1b) model the fact that either job i must be scheduled before job j , or
vice versa. The inequalities (3.2.1c) capture the transitivity property: if job i is scheduled
before job j , and job j is scheduled before job k, then job i must be scheduled before job k.
The inequalities (3.2.1d) enforce the precedence constraints. It is straightforward to check
that [P] is a correct formulation of 1 j prec j

P
wjCj .

Chudak and Hochbaum (1999) suggested relaxing the formulation [P] by including only
the transitivity constraints (3.2.1c) in which two jobs are already precedence constrained:

[CH] minimize (3.2.1a)
subject to (3.2.1b); (3.2.1d); (3.2.1e);

ıjk C ıki � 1 for all .i; j / 2 A; k 2 N W i ¤ j ¤ k ¤ i:

Correa and Schulz (2005) proposed the following relaxation of [P]:

[CS] minimize
X
j2N

pjwj C
X
.i;j /2A

piwj C
X

i;j2N Wikj

piwj ıij
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subject to ıij C ıj i � 1 for all i; j 2 N W i k j;
ıik C ıkj � 1 for all .i; j / 2 A; k 2 N W i k k; k k j;
ıil C ıkj � 1 for all .i; j /; .k; l/ 2 A W i k l; j k k;
ıij 2 f0; 1g for all i; j 2 N W i k j;

where i jjj means that i ¤ j and neither .i; j / 2 A nor .j; i/ 2 A. We denote the
LP relaxations of [P], [CH] and [CS], obtained by replacing the binary constraints with
the nonnegativity constraints ıij � 0 for all i; j 2 N , by [P-LP], [CH-LP] and [CS-LP],
respectively.

The formulation [CS] represents a minimum vertex cover problem, on what is called
the graph of incomparable pairs of .N;A/. This graph has been studied extensively in
the dimension theory of partially ordered sets (for example, see Trotter 1992). Correa and
Schulz (2005) showed that the optimal solutions to [CS] and [CH] coincide, and Ambühl
and Mastrolilli (2006) showed that any solution to [CH] can be transformed in polynomial
time into a feasible solution to [P] with no increase in objective value (analogous results
were shown for [P-LP], [CH-LP], and [CS-LP] as well). As a result, the scheduling problem
1 j prec j

P
wjCj is in fact a special case of the minimum vertex cover problem.

In terms of approximability, one important difference between the scheduling prob-
lem 1 j prec j

P
wjCj and its corresponding vertex cover problem is the fixed costP

j2N pjwj C
P
.i;j /2A piwj . In particular, because of this fixed cost, it is not imme-

diately clear whether the approximability behavior for the vertex cover problem translates
to the scheduling problem. For example, for stiff instances, all feasible schedules are
no longer 2-approximations for the problem without fixed costs (see Example 3.A.1). It
has been shown that approximating 1 j prec j

P
wjCj without the fixed costs is as hard as

approximating the minimum vertex cover problem (Ambühl et al. 2007b).
One of the striking similarities between the scheduling problem and the vertex cover

problem is the existence of a structural decomposition for optimal solutions. Nemhauser
and Trotter (1975) considered the following linear programming relaxation of the minimum
vertex cover problem on an undirected graph G D .V;E/:

minimize
X
i2V

wixi (3.2.2a)

subject to xi C xj � 1 for all fi; j g 2 E; (3.2.2b)
xi � 0 for all i 2 V: (3.2.2c)

They showed that the formulation (3.2.2a)-(3.2.2c) is half-integral, and that its optimal
solutions satisfy a so-called persistency property: if x is an optimal solution to (3.2.2a)-
(3.2.2c), then there exists an optimal vertex cover that contains fi 2 V W xi D 1g and does
not contain fi 2 V W xi D 0g. Hochbaum (1983) showed that if the “all 1/2” solution—
xi D 1=2 for all i 2 V—is an optimal solution to (3.2.2a)-(3.2.2c), then any feasible vertex
cover is a 2-approximation. These features of the persistency property are very similar to
those of Sidney’s decomposition theory. A result of Correa and Schulz (2005) implies that
if the “all 1=2” solution is an optimal solution to [P-LP], [CH-LP], or [CS-LP], then the
instance must be non-Sidney-decomposable. However, it turns out that the converse is not
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true, as shown in Example 3.A.2.
Another linear programming relaxation that has been often studied in the literature uses

completion time variables (Queyranne and Wang 1991; Hall et al. 1997).

[QW-LP] minimize
X
j2N

wjCj (3.2.3a)

subject to
X
j2S

pjCj �
1

2

X
j2S

p2j C
1

2

�X
j2S

pj

�2
for all S � N; (3.2.3b)

Cj � Ci � pj for all .i; j / 2 A:
(3.2.3c)

The inequalities (3.2.3b) are known as the parallel inequalities; they suffice to describe the
convex hull of feasible completion time vectors on a single machine without precedence
constraints (Wolsey 1985; Queyranne 1993). The inequalities (3.2.3c) model the precedence
constraints.

3.2.3 0-1 bipartite instances

A 0-1 bipartite instance B D .N1; N2; A/ of 1 j prec j
P
wjCj consists of a set of jobs

N1 [ N2 D f1; : : : ; ng with N1 \ N2 D ;, and precedence constraints that take the form
of a directed bipartite graph .N1 [ N2; A/, where .i; j / 2 A implies i 2 N1 and j 2 N2.
The jobs in N1 have unit processing time and zero weight, and the jobs in N2 have zero
processing time and unit weight. Note that a 0-1 bipartite instance is entirely defined by the
directed bipartite graph that defines its precedence constraints.

Although 0-1 bipartite instances seem rather simple, as it turns out, they are as hard
to approximate as arbitrary instances of 1 j prec j

P
wjCj . Woeginger (2003) showed that

an arbitrary instance I D .N;A; .pi/i2N ; .wi/i2N / with pi 2 Z>0 and wi 2 Z>0 for all
i 2 N , can be converted to a 0-1 bipartite instance BI D .N1; N2; NA/ with equal optimal
objective value. Woeginger also showed that any feasible schedule for I can be mapped to a
feasible schedule for BI , and vice versa. The transformation works as follows. First, we
construct the job setsN1 andN2. For each job i 2 N from the instance I , we create two sets
of jobs, i 0 and i 00. The set i 0 consists of pi jobs with unit processing time and zero weight,
and the set i 00 consists of wi jobs with zero processing time and unit weight. The set N1
consists of all jobs in i 0 for all i 2 N , and the set N2 consists of all jobs in i 00 for all i 2 N .
Next, we construct the precedence constraints .N1 [ N2; NA/. For every job i 2 N , every
job in i 0 precedes every job in i 00. In addition, for all .i; j / 2 A, every job in i 0 precedes
every job in j 00. Note that for every .i; j / 2 NA, we have that i 2 N1 and j 2 N2, so this
transformation does create a 0-1 bipartite instance.

Note that this transformation may not be polynomial if weights and processing times are
not polynomially bounded. However, by using appropriate rounding techniques, Woeginger
(2003) showed that if there is a �-approximation algorithm for 0-1 bipartite instances of
1 j prec j

P
wjCj , then there exists a .�C�/-approximation algorithm for arbitrary instances

of 1 j prec j
P
wjCj , for any � > 0.
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Models for random 0-1 bipartite instances

One of the nice properties of 0-1 bipartite instances is that they are completely defined by
their precedence constraints. Since precedence relations in bipartite precedence constraints
are independent of each other, we can apply the model of Erdös and Rényi (1959) from
random graph theory to define the following model of random 0-1 bipartite instances. For
any n1; n2 2 Z>0 and q 2 .0; 1/, we define B.n1; n2I q/ as the probability space of 0-1
bipartite instances with

� jobs N1 [N2 where N1 D f1; : : : ; n1g and N2 D fn1 C 1; : : : ; n1 C n2g, such that
– for every j 2 N1, pj D 1 and wj D 0,
– for every j 2 N2, pj D 0 and wj D 1,

� precedence constraints that take the form of a directed bipartite graph G D .N1 [

N2; A/ where .i; j / 2 A implies i 2 N1 and j 2 N2.

Each edge .i; j / 2 N1 �N2 appears in A independently and with probability q. Note that in
any instance of B.n1; n2I q/, jN1j D n1 and jN2j D n2. In addition, labels in N1 and labels
in N2 are fixed for all instances in B.n1; n2I q/: jobs in N1 are always labeled 1; : : : ; n1,
and jobs in N2 are always labeled n1 C 1; : : : ; n1 C n2.

We can generalize B.n1; n2I q/ so that the jobs in N1 and N2 are not fixed. For any
n 2 Z>0 and q 2 .0; 1/, we define B.nI q/ as the probability space of 0-1 bipartite instances
with

� jobs N D f1; : : : ; ng partitioned into disjoint sets N1 and N2 such that
– for every j 2 N1, pj D 1 and wj D 0,
– for every j 2 N2, pj D 0 and wj D 1,

� precedence constraints that take the form of a directed bipartite graph G D .N1 [

N2; A/ where .i; j / 2 A implies i 2 N1 and j 2 N2.

Each job i 2 N D f1; : : : ; ng is assigned to N1 with probability 1=2, and assigned to N2
with probability 1=2. Then, in the resulting bipartition, an arc .i; j / 2 N1 �N2 appears in
A with probability q. Note that B.nI 1=2/ is the uniform distribution over all labeled 0-1
bipartite instances.

3.3 Sidney-decomposability and 0-1 bipartite instances
In this section, we show that almost all 0-1 bipartite instances are non-Sidney-decomposable.
We begin by giving the following characterization of Sidney-decomposability for 0-1 bipar-
tite instances. For any directed graph .N;A/ and any subset of vertices X � N , we define
�.X/ D fi 2 N nX W .i; j / 2 A or .j; i/ 2 A for some j 2 Xg; in words, �.X/ is the set
of neighbors of X .

Theorem 3.3.1. A 0-1 bipartite instance of 1 j prec j
P
wjCj with jN1j D n1 and jN2j D

n2 is Sidney-decomposable if and only if one of the following conditions hold:
(SD1) n1 D 0.
(SD2) n2 D 0.
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(SD3) There exists a nonempty subset Y � N2 such that (i) Y ¤ N2 and n2j�.Y /j �
n1jY j, or (ii) Y D N2 and j�.N2/j � n1 � 1.

Proof. First, note that a 0-1 bipartite instance with n1 D 0 or n2 D 0 is Sidney-
decomposable, since any nonempty subset of jobs I is initial and satisfies �.I / D �.N /.

Now suppose a 0-1 bipartite instance with n1 > 0 and n2 > 0 is Sidney-decomposable.
By definition, this occurs if and only if

there exists a �-maximal initial set I ¤ N such that �.I / � n2=n1. (3.3.1)

Recall that by definition, a �-maximal initial set is nonempty. Suppose (3.3.1) is satisfied
with an initial set I such that I 6� N1. Since I is �-maximal, I D �.Y / [ Y for some
Y � N2 such that Y ¤ ;. We consider the following cases.

� If Y ¤ N2, then (3.3.1) holds if and only if jY j=j�.Y /j � n2=n1.
� Otherwise, we have Y D N2. In this case, (3.3.1) holds if and only if j�.N2/j �
n1 � 1.

Note that (3.3.1) cannot be satisfied if I � N1, since in this case, �.I / D 0 < n2=n1 D

�.N /.

Note that when n1 D n2, (SD3) is very similar to Hall’s (1935) characterization of
perfect matchings in a bipartite graph. We give an analogous characterization of Sidney-
decomposable 0-1 bipartite instances that considers subsets of N1 instead.

Theorem 3.3.2. The condition (SD3) in Theorem 3.3.1 holds if and only if
(SD30) There exists a nonempty subset X � N1 such that (i) X ¤ N1 and n1j�.X/j �

n2jX j, or (ii) X D N1 and j�.N1/j � n2 � 1.

Proof. We prove that (SD30) implies (SD3), by contradiction. Suppose that for all Y � N2
such that Y ¤ ;; N2, we have n1jY j < n2j�.Y /j, and that j�.N2/j D n1. Take some
arbitrary X � N1 such that X ¤ ;; N1. Let NY D N2 n �.X/. Note that this implies that
�. NY / � N1 nX . Therefore, j NY j D n2 � j�.X/j, and j�. NY /j � n1 � jX j. We consider the
following cases:

� NY ¤ ;; N2. In this case, we have that n1.n2�j�.X/j/ < n2.n1�jX j/, or equivalently,
n1j�.X/j > n2jX j.
� NY D ;. In this case, we have that �.X/ D N2. Since X ¤ N1, it follows that
n1j�.X/j D n1n2 > n2jX j.
� NY D N2. This is impossible, since in this case, �.X/ D ;, which implies �.N2/ ¤
N1, or j�.N2/j ¤ n1.

Putting this all together implies that for all X � N1 such that X ¤ ;; N1, we have
n1j�.X/j > n2jX j. In addition, since j�.N2/j D n1, we have that j�.N1/j D n2. There-
fore, we have a contradiction.

Showing the reverse direction works in a similar manner.

62



3.3.1 Almost all 0-1 bipartite instances are non-Sidney-decomposable

Using the characterization of Sidney-decomposability in Theorem 3.3.2, we can show
that almost all 0-1 bipartite instances are non-Sidney-decomposable, under the probability
models B.n1; n2; I q/ and B.nI q/. Before proceeding, we establish the following identity.

Lemma 3.3.3. For any a 2 .0; 1� and s 2 Z>0 such that as 2 Z>0 and k D 1; : : : ; s, 
as

bakc

!
�

 
s

k

!
:

Proof. We have for any x D 1; : : : ; n, 
n

x

!
�

 
n � 1

x � 1

!
(3.3.2)

and  
n

x

!
�

 
n � 1

x

!
: (3.3.3)

By repeatedly applying the identity (3.3.2), we obtain 
s

k

!
�

 
s � k C bakc

bakc

!
:

Note that

s � k C bakc D s � k C bas � a.s � k/c

� s � k C bas � .s � k/c

D s � k C as � .s � k/

D as:

This fact, in combination with repeated application of (3.3.3), proves the claim.

First, we consider the model of random 0-1 bipartite instances B.n1; n2I q/.

Theorem 3.3.4. For any fixed c; d 2 Z>0 and q 2 .0; 1/,

lim
t!1

P
�
B 2 B.ct; dt I q/ is non-Sidney-decomposable

�
D 1:

Proof. Let B D .N1; N2; A/ be a random 0-1 bipartite instance from B.ct; dt I q/. By
Theorem 3.3.1, an instance in B.ct; dt I q/ is Sidney-decomposable if and only if (SD3)
holds. We show that the probability that (SD3) holds goes to zero as t goes to infinity.

Any bipartite graph .N1 [N2; A/ with a subset Y of N2 of size k such that j�.Y /j �
ck=d can be constructed as follows. Choose a subset Y of N2 of size k, and a subset X of
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N1 of size bck=dc, and then forbid all edges between Y and N1 nX . Therefore,

P
�
B 2 B.ct; dt I q/ satisfies (SD3)

�
�

dt�1X
kD1

P
�
9Y � N2 W jY j D k; j�.Y /j � bck=dc

�
C P

�
j�.N2/j � ct � 1

�
�

dt�1X
kD1

 
dt

k

! 
ct

bck=dc

!
.1 � q/k.ct�bck=dc/ C ct.1 � q/dt : (3.3.4)

Note that we can bound the probability that B 2 B.ct; dt I q/ satisfies (SD30) in a similar
manner:

P
�
B 2 B.ct; dt I q/ satisfies (SD30)

�
�

ct�1X
kD1

 
ct

k

! 
dt

bdk=cc

!
.1 � q/k.dt�bdk=cc/ C dt.1 � q/ct : (3.3.5)

When c < d , then let a D c=d and s D dt , and consider the bound given in (3.3.4). When
c � d , let a D d=c and s D ct , and consider the bound given in (3.3.5). Since (SD3) and
(SD30) are equivalent,

P
�
B 2 B.ct; dt I q/ satisfies (SD3)

�
�

s�1X
kD1

 
s

k

! 
as

bakc

!
.1 � q/k.as�bakc/ C as.1 � q/s:

So, without loss of generality, for the remainder of this proof, we let s D ct , and assume
a D d=c � 1.

Define

Fk D

 
s

k

!2
.1 � q/ak.s�k/ k D 1; : : : ; s � 1:

Note that Fk D Fs�k for k D 1; : : : ; b.s � 1/=2c. By Lemma 3.3.3, we have

P
�
B 2 B.ct; dt I q/ satisfies (SD30)

�
�

s�1X
kD1

Fk C as.1 � q/
s:

Let r D .1 � q/�1, and fix some scalar Ma;r such that a.s � 3/ � 2 logr..s � 1/=2/ for
all s �Ma;r (clearly such an Ma;r exists since the logarithm grows slower than the linear
function). Note that r > 1.

We would like to show that Fk � FkC1 for k D 1; : : : ; b.s � 1/=2c and s � Ma;r , or
equivalently,

2 logr
s � k

k C 1
� a.s � 2k � 1/ for k D 1; : : : ; b.s � 1/=2c and s �Ma;r : (3.3.6)
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Define
�.x/ D a.s � 2x � 1/ � 2 logr.s � x/C 2 logr.x C 1/:

Taking derivatives, we obtain

@�

@x
D �2aC

2

log r

�
1

s � x
C

1

x C 1

�
;

@2�

@x2
D

2

log r

�
1

.s � x/2
�

1

.x C 1/2

�
:

Note that for x 2 Œ1; .s�1/=2�, we have that @2�=@x2 � 0, so�.x/ is concave on Œ1; s=2�:
Evaluating �.x/ at x D 1 and x D s=2 yields

�.1/ D a.s � 3/ � 2 logr..s � 1/=2/ �..s � 1/=2/ D 0:

We have that �.1/ � 0 for all s � Ma;r by construction. Since �.x/ is concave on
Œ1; .s � 1/=2�, it follows that when s � Ma;r , �.x/ � 0 for all x 2 Œ1; .s � 1/=2�,
which establishes the identity (3.3.6). Therefore, when s � Ma;r , Fk � FkC1 for k D
1; : : : ; b.s � 1/=2c.

Since Fk D Fs�k for k D 1; : : : ; b.s � 1/=2c, it follows that F1 � Fk for k D
1; : : : ; s � 1. As a result, when t D s=c �Ma;r=c DMd=c;.1�q/�1=c,

P
�
B 2 B.ct; dt I q/ satisfies (SD3)

�
�

s�1X
kD1

Fk C as.1 � q/
s

� sF1 C as.1 � q/
s

D s � s.1 � q/as�a C as.1 � q/s

D c2t2.1 � q/dt�d=c C dt.1 � q/ct :

Putting this all together, we have

P
�
B 2 B.ct; dt I q/ is Sidney-decomposable

�
D P

�
B 2 B.ct; dt I q/ satisfies (SD3)

�
� .1 � q/cdt

2

C c2t2.1 � q/dt�d=c C dt.1 � q/ct :

Therefore, we can conclude that limt!1 P.B 2 B.ct; dt I q/ is Sidney-decomposable/ D
0.

Note that in Theorem 3.3.4, we required that the number of jobs in N1 and the number
of jobs in N2 “grow together” as the instance size grows. This is crucial. To illustrate this,
consider the class of instances B.1; n � 1I q/: the class of instances in which N1 consists
of one job, and N2 consists of n � 1 jobs. In this case, an instance B 2 B.1; n � 1I q/ is
non-Sidney-decomposable if and only if the job in N1 must precede all jobs in N2. This
occurs with probability qn�1, which goes to zero as the instance size n grows. We can get
around this if these problematic instances do not occur “too often.” With some techniques
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from the proof of Theorem 3.3.4 and some additional work, we can show that almost all
instances in B.nI q/ are non-Sidney-decomposable for this probability model.

Theorem 3.3.5. For any fixed q 2 .0; 1/,

lim
n!1

P
�
B 2 B.nI q/ is non-Sidney-decomposable

�
D 1:

Proof. Let B D .N1; N2; A/ be an random 0-1 bipartite instance from B.nI q/. We show
that the probability that any of the conditions (SD1)-(SD3) hold goes to zero as n approaches
infinity.

First, we consider (SD1). We have that

P
�
B 2 B.nI q/ satisfies (SD1)

�
D P

�
B 2 B.nI q/ has n1 D 0

�
D

�
1

2

�n
;

and so limn!1 P.B 2 B.nI q/ satisfies (SD1)/ D 0. Similarly, for (SD2), we have that

P
�
B 2 B.nI q/ satisfies (SD2)

�
D P

�
B 2 B.nI q/ has n2 D 0

�
D

�
1

2

�n
;

and therefore limn!1 P.B 2 B.nI q/ satisfies (SD2)/ D 0.
Now we consider (SD3). Note that the conditional probabilities B 2 B.nI q/ satisfying

(SD3) are symmetric, in the sense that

P
�
B 2 B.nI q/ satisfies (SD3) j jN1j D s; jN2j D n � s

�
D P

�
B 2 B.nI q/ satisfies (SD30) j jN1j D n � s; jN2j D s

�
D P

�
B 2 B.nI q/ satisfies (SD3) j jN1j D n � s; jN2j D s

�
:

Therefore, we only need to consider instances when s � n � s. Observe that any bipartite
graph .N1 [N2; A/ with jN1j D s and jN2j D n � s with a subset X of N1 of size k such
that j�.X/j � n�s

s
k can be constructed as follows. Choose a subset X of N1 of size k, and

a subset Y of N2 of size bn�s
s
kc, and forbid all edges between X and N2 n Y . Therefore, by

conditioning on the size of N1 and N2, we have

P
�
B 2 B.nI q/ satisfies (SD3/

�
D

n�1X
sD1

 
n

s

!�
1

2

�n
P
�
B 2 B.nI q/ satisfies (SD30) j jN1j D s; jN2j D n � s

�
� 2

n�1X
sDdn=2e

 
n

s

!�
1

2

�n
P
�
B 2 B.nI q/ satisfies (SD30) j jN1j D s; jN2j D n � s

�
� 2

n�1X
sDdn=2e

 
n

s

!�
1

2

�n  s�1X
kD1

 
s

k

! 
n � s

b
n�s
s
kc

!
.1 � q/k.n�s�b

n�s
s
kc/
C .n � s/.1 � q/s

!
:

For the remainder of this proof, let r D .1 � q/�1, and �.n/ D 2 logr..n � 1/=2/C 3.
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Note that r > 1. We define

Es D

 
n

s

!�
1

2

�n s�1X
kD1

 
s

k

! 
n � s

b
n�s
s
kc

!
.1 � q/k.n�s�b

n�s
s
kc/

for s D dn=2e; : : : ; n. We consider the expression Es for two cases: (i) s D dn=2e; : : : ; n�
�.n/, and (ii) s D n � �.n/C 1; : : : ; n � 1.

First, let us consider Es in the regime s D dn=2e; : : : ; n � �.n/. For all s D
dn=2e; : : : ; n � �.n/ and k D 1; : : : ; s � 1, define

Fs;k D

 
s

k

!2
.1 � q/

n�s
s
k.s�k/;

and note that Fs;k D Fs;s�k. We would like to show that Fs;k � Fs;kC1 for all s D
dn=2e; : : : ; n � �.n/ and k D 1; : : : ; b.s � 1/=2c, or equivalently,

2 logr
s � k

k C 1
�
n � s

s
.s�2k�1/ for k D 1; : : : ; b.s�1/=2c and s D dn=2e; : : : ; n��.n/:

(3.3.7)
Define

�.x/ D
n � s

s
.s � 2x � 1/ � 2 logr.s � x/C 2 logr.x C 1/:

As in the proof of Theorem 3.3.4, we can show that �.x/ is concave on Œ1; .s � 1/=2�: We
have that �.1/ � 0 for all s D dn=2e; : : : ; n � �.n/, since

�.1/ D
n � s

s
.s � 3/ � 2 logr.s � 1/C 2 logr 2

D n � s �
3n

s
C 3 � 2 logr

s � 1

2

� n � s � 3 � 2 logr
s � 1

2
.since s � n=2/

� n � s � 3 � 2 logr
n � 1

2
.since s � n/

� 0 .since s � n � �.n//:

In addition, we have that �..s � 1/=2/ D 0. Since �.x/ is concave on Œ1; .s � 1/=2�,
it follows that when s D dn=2e; : : : ; n � �.n/, �.x/ � 0 for all x 2 Œ1; s=2�, which
establishes the identity (3.3.7). Therefore, Fs;k � Fs;kC1 for s D dn=2e; : : : ; n � �.n/ and
k D 1; : : : ; bs=2c.

Since Fs;k D Fs;s�k, it follows that Fs;1 � Fs;k for s D dn=2e; : : : ; n � �.n/ and
k D 1; : : : ; s. By Lemma 3.3.3 (letting a D n�s

s
), for all s D dn=2e; : : : ; n � �.n/ and

k D 1; : : : ; s, we have that  
n � s

b
n�s
s
kc

!
�

 
s

k

!
:
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It follows that for s D dn=2e; : : : ; n � �.n/,

Es �

 
n

s

!�
1

2

�n s�1X
kD1

 
s

k

!2
.1 � q/

n�s
s
k.s�k/

D

 
n

s

!�
1

2

�n s�1X
kD1

Fs;k

�

 
n

s

!�
1

2

�n
sFs;1

D

 
n

s

!�
1

2

�n
s3.1 � q/

n�s
s
.s�1/:

Therefore, for sufficiently large n,

n��.n/X
sDdn=2e

Es �

n��.n/X
sDdn=2e

 
n

s

!�
1

2

�n
s3.1 � q/

n�s
s
.s�1/

�

�
1

2

�n
.n � �.n//3

n��.n/X
sDdn=2e

 
n

s

!
.1 � q/

n�s
2 (since s�1

s
�

1
2

for all s � 2)

D

�
1

2

�n
.n � �.n//3

n��.n/X
sDdn=2e

 
n

n � s

!�p
1 � q

�n�s
�

�
1

2

�n
.n � �.n//3

�
1C

p
1 � q

�n
D
.n � �.n//3�

2

1C
p
1�q

�n

Now we consider the regime s D n � �.n/C 1; : : : ; n � 1. Note that

Es D

 
n

s

!�
1

2

�n s�1X
kD1

 
s

k

! 
n � s

b
n�s
s
kc

!
.1 � q/

n�s
s
k.s�k/

�

 
n

s

!�
1

2

�n
2n�s

s�1X
kD1

 
s

k

!
.1 � q/k

�

 
n

s

!�
1

2

�s �
1

2

�n�s
2n�s.1C .1 � q//s

D

 
n

s

!�
1 �

q

2

�s
:
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It follows that

n�1X
sDn��.n/C1

Es �

n�1X
sDn��.n/C1

 
n

s

!�
1 �

q

2

�s
D

�.n/�1X
tD1

 
n

n � t

!�
1 �

q

2

�n�t
D

�
1 �

q

2

�n �.n/�1X
tD1

 
n

t

!�
2

2 � q

�t

�

�
1 �

q

2

�n �.n/�1X
tD1

nt

t Š

�
2

2 � q

�t

D

�
1 �

q

2

�n �.n/�1X
tD1

1

tŠ

�
2n

2 � q

�t
:

Let Ht D
1
tŠ

�
2n
2�q

�t
. Then, for t D 1; : : : ; �.n/ � 1, we have

HtC1

Ht

D
t Š

.t C 1/Š

�
2n

2 � q

�tC1 �
2 � q

2n

�t
D

2n

.2 � q/.t C 1/

�
2n

.2 � q/�.n/

D
2n

.2 � q/.2 logr..n � 1/=2/C 3/
� 1 for all sufficiently large n:

Therefore, for sufficiently large n,

n�1X
sDn��.n/C1

Es �
�
1 �

q

2

�n �.n/�1X
tD1

1

tŠ

�
2n

2 � q

�t

�

�
1 �

q

2

�n
.�.n/ � 1/

1

.�.n/ � 1/Š

�
2n

2 � q

��.n/�1

D

�
2n
2�q

��.n/�1
.�.n/ � 2/Š

�
2
2�q

�n :
Putting all of this together implies that for n sufficiently large,

P
�
B 2 B.nI q/ satisfies (SD3)

�
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2�q
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�2 logr
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2
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�
2 logr

n�1
2
C 1

�
Š
�

2
2�q

�n C n2

2
.1 � q/n=2;

and therefore limn!1 P.B 2 B.nI q/ satisfies (SD3)/ D 0.
Finally, we put all the pieces together:

lim
n!1

P
�
B 2 B.nI q/ is Sidney decomposable

�
D lim

n!1
P
�
B 2 B.nI q/ satisfies (SD1/

�
C lim
n!1

P
�
B 2 B.nI q/ satisfies (SD2/

�
C lim
n!1

P
�
B 2 B.nI q/ satisfies (SD3/

�
D 0:

One interesting corollary of Theorem 3.3.4 and Theorem 3.3.5 is that for almost all
0-1 bipartite instances, under either B.n1; n2I q/ or B.nI q/, every feasible schedule is a
2-approximation. This result is quite interesting. However, as we are about to see in the next
section, we can show something stronger.

3.4 Two-dimensional Gantt charts and 0-1 bipartite in-
stances

Two-dimensional (2D) Gantt charts provide an elegant, geometric way of understanding
single-machine completion-time-objective scheduling problems. They were initially intro-
duced by Eastman et al. (1964), and recently revived by Goemans and Williamson (2000)
to give alternate proofs for various results related to 1 j prec j

P
wjCj , including Lawler’s

(1978) algorithm for 1 j prec j
P
wjCj with series-parallel precedence constraints.

In a traditional Gantt chart, the horizontal axis corresponds to processing time. In
a 2D Gantt chart, the horizontal axis corresponds to processing time, and the vertical
axis corresponds to weight. Suppose we have an instance .N;A; .pi/i2N ; .wi/i2N / of
1 j j

P
wjCj . The 2D Gantt chart is constructed for a permutation schedule .1; : : : ; n/ as

follows. Each job j 2 N is represented by a rectangle of width pj and height wj , whose
position in the chart is defined by a startpoint and an endpoint. The startpoint of the first job
(job 1) in the schedule is .0;

P
j2N wj /, and its endpoint is .p1;

P
j2N wj � w1/. For all

subsequent jobs in the schedule, the startpoint .t; w/ of job j is the endpoint of the previous

70



job j �1, and its endpoint is .tCpj ; w�wj /. The completion time of a job in this schedule
is the time component of its endpoint. See Figure 3-1 for an example.

processing time

weight

Job 1

Job 2

Job 3

w1

p1

w2

p2 w3

p3

work curve W.t/

Figure 3-1: An example of a two-dimensional Gantt chart.

The work curve W.t/ formed by the upper side of each rectangle (the bold line in
Figure 3-1) is the total weight of jobs that have not been completed at time t . The area
under the work curve is equal to the sum of weighted completion times for the schedule
represented by the 2D Gantt chart.

Interestingly, it turns out that when q is fixed, the area under the work curve of random
0-1 bipartite graphs under B.n1; n2I q/ and B.nI q/ is “large.” We formalize this notion
now. Consider the 2D Gantt chart for an optimal schedule of a 0-1 bipartite instance B
with jN1j D n1 and jN2j D n2. Note that any 2D Gantt chart for such an instance starts at
.0; n2/ and ends at .n1; 0/. Also observe that all jobs in N1 are represented by a horizontal
line segment of length 1, and that all jobs in N2 are represented by a vertical line segment
of length 1. Define RB to be the region between the optimal work curve and the frontier
formed by the lines f.t; w/ W t D n1g and f.t; w/ W w D n2g (see Figure 3-2). Also, define
the following parameterized condition on a 0-1 bipartite instance B , for any ˛ 2 .0; 1/:

(R-˛) A rectangle of width ˛n1 and height ˛n2 cannot fit in RB .

We now show that for any fixed ˛ 2 .0; 1/, the condition (R-˛) is satisfied for almost all
0-1 bipartite instances.

Theorem 3.4.1.
(a) For any fixed c; d 2 Z>0, ˛ 2 .0; 1/ and q 2 .0; 1/,

lim
t!1

P
�
B 2 B.ct; dt I q/ satisfies (R-˛)

�
D 1:

(b) For any fixed ˛ 2 .0; 1/ and q 2 .0; 1/,

lim
n!1

P
�
B 2 B.nI q/ satisfies (R-˛)

�
D 1:
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processing time

weight

n2

n1

work curve

RB

˛n1

˛n2

Figure 3-2: 2D Gantt chart depicting region RB .

Proof. Fix a 0-1 bipartite instance B D .N1; N2; A/ with jN1j D n1 and jN2j D n2. If B
does not satisfy (R-˛), that is, a rectangle of width ˛n1 and height ˛n2 can fit in RB , then
there exists a set of d˛n2e jobs from N2 that has at most n1 � d˛n1e predecessors in N1. In
other words, if a rectangle of width ˛n1 and height ˛n2 can fit in RB , then there exists a
set of d˛n2e jobs from N2 and a set of d˛n1e jobs from N1 with no precedence constraints
between them.

Applying the above discussion to B.ct; dt I q/, we have that

P
�
B 2 B.ct; dt I q/ does not satisfy (R-˛)

�
� P

�
9X � N1; Y � N2 W

jX j D d˛cte; jY j D d˛dte;

no precedence constraints between X and Y

�
�

 
ct

d˛cte

! 
dt

d˛dte

!
.1 � q/d˛cted˛dte

�

�
ect

d˛cte

�d˛cte �
edt

d˛dte

�d˛dte
.1 � q/d˛cted˛dte

�

�
ect

˛ct

�˛ctC1 �
edt

˛dt

�˛dtC1
.1 � q/˛

2cdt2

D

� e
˛

�˛.cCd/tC2
.1 � q/˛

2cdt2 :

Therefore, limt!1 P.B 2 B.ct; dt I q/ does not satisfy (R-˛)/ D 0, which establishes (a).
Now, we turn to proving (b). Again, applying the above discussion to B.nI q/, we have

that

P
�
B 2 B.nI q/ does not satisfy (R-˛) j jN1j D k; jN2j D n � k

�
� P

�
9X � N1; Y � N2;

jN1j D k; jN2j D n � k
W

jX j D d˛ke; jY j D d˛.n � k/e;

no precedence constraints between X and Y

�
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k

d˛ke

! 
n � k

d˛.n � k/e

!
.1 � q/d˛ked˛.n�k/e

�

 
k

d˛ke

! 
n � k

d˛.n � k/e

!
.1 � q/˛

2k.n�k/:

Therefore, by conditioning on the size of N1 and N2,

P
�
B 2 B.nI q/ does not satisfy (R-˛)

�
D

n�1X
kD1

P
�

B 2 B.nI q/
does not satisfy (R-˛)

ˇ̌̌̌
jN1j D k; jN2j D n � k

�
P
�
jN1j D k;

jN2j D n � k
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kD1
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! 
n � k

d˛.n � k/e

!
.1 � q/˛

2k.n�k/
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n�1X
kD1
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�k  
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d˛ke

!�
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�n�k  
n � k

d˛.n � k/e

!
.1 � q/˛

2k.n�k/

�

n�1X
kD1

 
n

k

!
.1 � q/˛

2k.n�k/:

Let r D .1�q/�1, and letM˛;r be some constant such that ˛2.n�3/� logr..n�1/=2/ � 0
for all n �M˛;r . Define

Dk D

 
n

k

!
.1 � q/˛

2k.n�k/ k D 1; : : : ; n � 1:

We would like to show that Dk � DkC1 for k D 1; : : : ; b.n � 1/=2c and n � M˛;r , or
equivalently,

logr
n � k

k C 1
� ˛2.n � 2k � 1/ for k D 1; : : : ; b.n � 1/=2c and n �M˛;r :

Define the function

�.x/ D ˛2.n � 2x � 1/ � logr.n � x/C logr.x C 1/:

As in the proof of Theorem 3.3.4, we can show that �.x/ is concave on Œ1; .n � 1/=2�.
Evaluating �.x/ at x D 1 and x D .n � 1/=2 yields

�.1/ D ˛2.n � 3/ � logr
n � 1

2
�

�
n � 1

2

�
D 0:

So �.1/ � 0 when n � M˛;r , and so �.x/ � 0 for all x 2 Œ1; .n � 1/=2� when n � M˛;r .
Therefore, we have that Dk � DkC1 for k D 1; : : : ; b.n � 1/=2c, for all n �Ma;r .

Since Dk D Dn�k for all k D 1; : : : ; b.n � 1/=2c, it follows that D1 � Dk for all
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k D 1; : : : ; n � 1, when n �M˛;r . Therefore, for n �M˛;r ,

P
�
B 2 B.nI q/ does not satisfy (R-˛)

�
�

n�1X
kD1

Dk � nD1 D n
2.1 � q/˛

2.n�1/:

It follows that limn!1 P.B 2 B.nI q/ does not satisfy (R-˛)/ D 0, which establishes
(b).

3.4.1 Almost all 0-1 bipartite instances have all schedules almost opti-
mal

Having the geometric property (R-˛) satisfied by the 2D Gantt charts for almost all 0-
1 bipartite instances translates into some interesting consequences. For example, with
Theorem 3.4.1 in hand, we can show the following. Let OPT.B/ denote the optimal value
of instance B , and let val.B; S/ denote the objective value of (feasible) schedule S for
instance B .

Theorem 3.4.2.
(a) For any fixed c; d 2 Z>0, ˛ 2 .0; 1/, and q 2 .0; 1/,

lim
t!1

P
�
B 2 B.ct; dt I q/ satisfies

val.B; S/
OPT.B/

� .1 � ˛/�2
for all feasible

schedules S

�
D 1:

(b) For any fixed ˛ 2 .0; 1/ and q 2 .0; 1/,

lim
n!1

P
�
B 2 B.nI q/ satisfies

val.B; S/
OPT.B/

� .1 � ˛/�2
for all feasible

schedules S

�
D 1:

Proof. Consider some 0-1 bipartite instance B with jN1j D n1 and jN2j D n2. By the 2D
Gantt chart in Figure 3-3, we see that if (R-˛) is satisfied—that is, if a rectangle of width
˛n1 and height ˛n2 cannot fit in the region RB—then OPT.B/ > n1n2.1 � ˛/2. Since the
objective value of any feasible schedule of an instance B is at most n1n2, this implies that if
(R-˛) is satisfied,

val.B; S/
OPT.B/

�
n1n2

n1n2.1 � ˛/2
D .1 � ˛/�2;

which implies the claim.

So, for 0-1 bipartite instances, almost always, all feasible schedules are arbitrarily close
to optimal! This seems especially paradoxical in light of the difficulty of obtaining an
approximation algorithm with performance guarantee better than 2: for a given � > 0,
when n is sufficiently large, the naı̈ve algorithm—take any feasible schedule—yields a
.1C �/-approximate schedule with high probability.

74



processing time

weight

n2

n1

˛n1

˛n2

Figure 3-3: 2D Gantt chart that satisfies (R-˛) with the smallest area under its work curve.

3.4.2 A lower bound on integrality gaps for almost all 0-1 bipartite
instances

The asymptotic behavior of the 2D Gantt charts of random 0-1 bipartite instances also
has some interesting consequences regarding the integrality gap of various LP relaxations
of 1 j prec j

P
wjCj . Let LP.B/ denote the optimal value of the LP relaxation [P-LP],

[CH-LP], or [CS-LP]. Before proceeding, we need the following version of the Chernoff
bound.

Lemma 3.4.3 (Chernoff bound). Let X1; : : : ; Xn be independent random variables such
that for i D 1; : : : ; n, P.Xi D 1/ D q and P.Xi D 0/ D 1 � q with q 2 .0; 1/. Then for
S D

Pn
iD1Xi , � D E.S/ D qn, and any ı > 0,

P
�
S > .1C ı/�

�
<

�
eı

.1C ı/.1Cı/

��
:

Chekuri and Motwani (1999) showed that the integrality gap of [P-LP] is 2, using a
family of 0-1 bipartite instances with jN1j D jN2j. In the following, we show that almost all
0-1 bipartite instances have integrality gap 2=.1C q/, under both B.n1; n2I q/ and B.nI q/.

Theorem 3.4.4.
(a) For any fixed c; d 2 Z>0, ˛ 2 .0; 1/ and ı > 0,

lim
t!1

P
�
B 2 B.ct; dt I q/ satisfies

OPT.B/
LP.B/

�
2.1 � ˛/2

1C .1C ı/q

�
D 1:

(b) For any fixed ˛ 2 .0; 1/ and ı > 0,

lim
n!1

P
�
B 2 B.nI q/ satisfies

OPT.B/
LP.B/

�
2.1 � ˛/2

1C .1C ı/q

�
D 1:
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Proof. Consider a 0-1 bipartite instance B D .N1; N2; A/ with jN1j D n1 and jN2j D n2.
It is straightforward to show that

ıij D

(
1 if .i; j / 2 A
1
2

otherwise

is a feasible solution to [P-LP], [CH-LP], and [CS-LP], and that this solution has objective
value 1

2
.n1n2 C jAj/. Therefore, LP.B/ � 1

2
.n1n2 C jAj/. By similar arguments to those

in the proof of Theorem 3.4.2, if B satisfies (R-˛) and jAj � .1C ı/qn1n2, then

OPT.B/
LP.B/

>
n1n2.1 � ˛/

2

1
2
.n1n2 C jAj/

�
n1n2.1 � ˛/

2

1
2
.n1n2 C .1C ı/qn1n2/

D
2.1 � ˛/2

1C .1C ı/q
:

First, we show (a). By the Chernoff bound in Lemma 3.4.3, we have that

P
�
B 2 B.ct; dt I q/ satisfies jAj > .1C ı/q.ct/.dt/

�
<

�
eı

.1C ı/.1Cı/

�q.ct/.dt/
:

Since ı > 0, we have that eı < .1C ı/.1Cı/. Therefore,

lim
t!1

P
�
B 2 B.ct; dt I q/ satisfies jAj > .1C ı/qcdt2

�
D 0:

By the above discussion, we have that

P
�
B 2 B.ct; dt I q/ satisfies

OPT.B/
LP.B/

<
2.1 � ˛/2

1C .1C ı/q

�
� P

�
B 2 B.ct; dt I q/ does not satisfy (R-˛)

�
C P

�
B 2 B.ct; dt I q/ satisfies jAj > .1C ı/qcdt2

�
;

and so

lim
t!1

P
�
B 2 B.ct; dt I q/ satisfies

OPT.B/
LP.B/

<
2.1 � ˛/2

1C .1C ı/q

�
D 0:

Now, we show (b). By conditioning on the size of N1 and N2, using the Chernoff bound
from Lemma 3.4.3, and observing that eı < .1C ı/.1Cı/ for any ı > 0, we obtain

P
�
B 2 B.nI q/ satisfies jAj > .1C ı/qn1n2

�
D

nX
kD1

P
�
B 2 B.nI q/ satisfies
jAj > .1C ı/qn1n2

ˇ̌̌̌
n1 D k; n2 D n � k

�
P.n1 D k; n2 D n � k/

<

nX
kD1

 
n

k

!�
1

2

�n �
eı

.1C ı/.1Cı/

�qk.n�k/
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nX
kD1

�
eı

.1C ı/.1Cı/

�qk.n�k/

� n

�
eı

.1C ı/.1Cı/

�q.n�1/
:

Therefore,
lim
n!1

P
�
B 2 B.nI q/ satisfies jAj > .1C ı/qn1n2

�
D 0:

By the above discussion, we have that

P
�
B 2 B.nI q/ satisfies

OPT.B/
LP.B/

<
2.1 � ˛/2

1C .1C ı/q

�
� P

�
B 2 B.nI q/ does not satisfy (R-˛)

�
C P

�
B 2 B.nI q/ satisfies jAj > .1C ı/qcdt2

�
;

and so

lim
n!1

P
�
B 2 B.nI q/ satisfies

OPT.B/
LP.B/

<
2.1 � ˛/2

1C .1C ı/q

�
D 0:

It is known that the linear programming relaxation in completion time variables [QW-LP]
is weaker than [P-LP] (Schulz 1996); as a result, the analogue of Theorem 3.4.4 for [QW-LP]
also holds.

3.5 Conclusion
In this work, we studied 0-1 bipartite instances of the scheduling problem 1 j prec j

P
wjCj .

Although this class of instances appears rather restricted, it has been shown that in fact, the
approximability of these restricted instances is virtually identical to the approximability
of arbitrary instances. Therefore, in order to design better approximation algorithms for
arbitrary instances of 1 j prec j

P
wjCj , it suffices to restrict our attention to these simple

0-1 bipartite instances. In an effort to gain a better understanding of these instances,
we study them from a probabilistic point of view. We showed that under probability
distributions typically considered in random graph theory, almost all 0-1 bipartite instances
of 1 j prec j

P
wjCj are non-Sidney-decomposable, and as a corollary, for almost all 0-1

bipartite instances, any feasible schedule is a 2-approximation. In fact, using the two-
dimensional Gantt charts of Eastman et al. (1964), we can show something stronger: for
almost all 0-1 bipartite instances, all feasible schedules are arbitrarily close to optimal. In
addition, for almost all 0-1 bipartite instances, we give a lower bound on the integrality gap
of the linear ordering LP relaxations of 1 j prec j

P
wjCj due to Potts (1980), Chudak and

Hochbaum (1999), and Correa and Schulz (2005). This lower bound approaches 2 as the
precedence constraints become sparser in expectation.

One natural direction for future research would be to investigate the behavior of other
models of random 0-1 bipartite instances. In this work, we studied the models B.n1; n2I q/
and B.nI q/ where q is a constant independent of n; it would be interesting, for instance,
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to see what happens when q D c=n for some constant c. It would also be interesting to
see what happens under the random instance model B.nI q/ when the probability of a job
being in N1 is not equal to the probability of a job being in N2. Another natural direction
for future research would be to consider models for random instances with arbitrary weights,
processing times, and precedence constraints.
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3.A Examples
Example 3.A.1. The following example gives a stiff 0-1 bipartite instance of
1 j prec j

P
wjCj without fixed costs that has a feasible schedule whose objective value

is more than a factor of 2 away from the optimal objective value. Consider the following
instance of 1 j prec j

P
wjCj with jobs N D f1; 2; 3; 4g. The processing times and weights

are as follows:

i 1 2 3 4
pi 1 1 0 0
wi 0 0 1 1

The precedence constraints are displayed in Figure 3-4. Consider the sequence .1; 2; 3; 4/.

2

1

4

3

Figure 3-4: Precedence constraints for the instance in Example 3.A.1.

The objective value for this sequence is

p1w2ı12 C p2w1ı21 C p2w3ı23 C p3w2ı32 C p3w4ı34 C p4w3ı43

D .0 � 1/C .0 � 0/C .1 � 1/C .0 � 0/C .0 � 1/C .0 � 0/

D 1:

The objective value for the sequence .1; 3; 2; 4/ is

p1w2ı12 C p2w1ı21 C p2w3ı23 C p3w2ı32 C p3w4ı34 C p4w3ı43

D .0 � 1/C .0 � 0/C .1 � 0/C .0 � 1/C .0 � 1/C .0 � 0/

D 0

Therefore, the maximum relative gap between the optimal value and any feasible schedule
is unbounded.

Example 3.A.2. The following example shows that there exists a 0-1 bipartite instance
of 1 j prec j

P
wjCj that is non-Sidney-decomposable, for which the “all 1=2” solution

is not LP-optimal. Consider the following instance of 1 j prec j
P
wjCj with jobs N D

f1; 2; 3; 4; 5g. The weights and processing times are shown in the table below.

i 1 2 3 4 5
pi 1 1 0 0 0
wi 0 0 1 1 1
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2

1

5

4

3

Figure 3-5: Precedence constraints for the instance in Example 3.A.2.

The precedence constraints are displayed in Figure 3-5. There are ten ordered pairs of
incomparable jobs: .1; 2/, .2; 1/, .3; 4/, .4; 3/, .4; 5/, .5; 4/, .3; 5/, .5; 3/, .2; 3/, .3; 2/.
The linear program [CS-LP] for this instance is

minimize 5C ı23

subject to ı12 C ı21 � 1

ı34 C ı43 � 1

ı45 C ı54 � 1

ı35 C ı53 � 1

ı23 C ı32 � 1

ı12 C ı23 � 1

ı23 C ı34 � 1

ı23 C ı35 � 1

ıij � 0 for all i; j 2 N W i k j:

An optimal solution to this linear program is

ı12 D 1 ı34 D 1 ı45 D 1 ı35 D 1 ı23 D 0

ı21 D 0 ı43 D 0 ı54 D 0 ı53 D 0 ı32 D 1;

and the optimal objective value is 5. However, the “all 1=2” solution has an objective value
of 5:5.
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Chapter 4

Scheduling in concurrent open shop
environments

4.1 Introduction

Consider the following scheduling setting, sometimes known as the concurrent open shop
model, or the order scheduling model. We have a set of machines M D f1; : : : ; mg,
with each machine capable of processing one component type. We have a set of jobs
N D f1; : : : ; ng, with each job requiring specific quantities of processing for each of the m
component types. Each job j 2 N has a weight wj 2 R�0, and the processing time that
job j requires on machine i is pij 2 R�0. Components are independent of each other: in
particular, components from the same job can be processed in parallel. A job is completed
when all its components are completed. In this chapter, we focus on minimizing the sum of
weighted completion times in a concurrent open shop. Following the notation of Leung et al.
(2005), we denote this problem by PD j j

P
wjCj in the standard classification scheme of

Graham et al. (1979).
The concurrent open shop model can be considered as a variant of the classical open

shop model in which operations belonging to the same job can be processed concurrently.
This model has a variety of applications in manufacturing, including automobile and airplane
maintenance and repair (Yang 1998), and orders with multiple components in manufacturing
environments (Sung and Yoon 1998). This model also has applications in distributed
computing (Garg et al. 2007).

The problem PD j j
P
wjCj was first studied by Ahmadi and Bagchi (1990). A number

of authors have since shown that various special cases of this problem are NP-hard (Ahmadi
and Bagchi 1990; Sung and Yoon 1998; Chen and Hall 2001; Leung et al. 2005); it turns out
that this problem is strongly NP-hard, even when all jobs have unit weight, and the number
of machines m is fixed to be 2 (Roemer 2006). Recently, Garg et al. (2007) showed that
PD j j

P
wjCj is APX-hard, even when all jobs have unit weight and either zero or unit

processing time. It is also known that this problem is inapproximable within a factor of
4=3 � � if the Unique Games Conjecture holds (see Appendix 4.A).

Quite a bit of attention has been devoted to designing heuristics for this problem. For
example, Sung and Yoon (1998), Wang and Cheng (2003), and Leung et al. (2005) have
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proposed various priority rules for this problem; all of the priority rules they studied were
shown to either have a performance guarantee of m, or have an unbounded performance
guarantee. Ahmadi et al. (2005) also proposed various heuristics for this problem and showed
that they all have a performance guarantee of m. Wang and Cheng (2003) used a time-
indexed linear programming formulation of this problem to obtain a 5:83-approximation
algorithm. Finally, several groups of authors have independently observed that a linear
programming relaxation of this problem in completion time variables with the parallel
inequalities of Wolsey (1985) and Queyranne (1993), combined with a result of Schulz
(1996), yields a 2-approximation algorithm (Chen and Hall 2001; Garg et al. 2007; Leung
et al. 2007). Note that when m D 1, or when each job consists of components all with equal
processing time, PD j j

P
wjCj reduces to the classic problem of minimizing the sum of

weighted completion times on a single machine.

4.1.1 Contributions of this work
We begin in Section 4.2 by presenting some interesting properties of various linear program-
ming relaxations for this concurrent open shop problem. Then in Section 4.3, we present a
simple combinatorial primal-dual approximation algorithm that has a performance guarantee
of 2. Although the approximation algorithm independently discovered by Chen and Hall
(2001), Garg et al. (2007), and Leung et al. (2007) achieves the same performance guarantee,
their algorithm requires solving a linear program. Our algorithm, on the other hand, runs in
O.n.mC n// time. Finally, we conclude in Section 4.4 by mentioning some directions for
future research.

4.2 Mathematical programming formulations and relax-
ations

The existing integer programming formulations and linear programming relaxations for
various machine scheduling problems provide natural starting points for modeling the
problem of minimizing the sum of weighed completion times in a concurrent open shop.
We present two types of mathematical programming formulations for PD j j

P
wjCj , one

based on completion time variables, and the other based on linear ordering variables.

4.2.1 Completion time variables
Chen and Hall (2001) proposed the following linear programming relaxation of
PD j j

P
wjCj :

[CT-1] minimize
X
j2N

wjCj (4.2.1a)

subject to
X
j2S

pijCij � fi.S/ for all i 2M;S � N; (4.2.1b)

Cj � Cij for all i 2M; j 2 N; (4.2.1c)
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where Cij represents the completion time of job j ’s component on machine i , Cj represents
the completion time of job j , and

fi.S/ D
1

2

X
j2S

p2ij C
1

2

�X
j2S

pij

�2
for all i 2M;S � N:

The constraints (4.2.1b) are the so-called parallel inequalities (Wolsey 1985; Queyranne
1993) for each of themmachines. These inequalities are known to be valid for the completion
time vectors of jobs on a single machine; in fact, they are sufficient to describe the convex
hull of completion time vectors for jobs on a single machine. It immediately follows that
[CT-1] is a valid relaxation for this scheduling problem.

By substituting the constraints (4.2.1c) into the constraints (4.2.1b), we obtain a further
relaxation of PD j j

P
wjCj in fewer completion time variables:

[CT-2] minimize
X
j2N

wjCj (4.2.2a)

subject to
X
j2S

pijCj � fi.S/ for all i 2M;S � N: (4.2.2b)

The relaxation [CT-2] will serve as the basis of our analysis for the algorithm presented in
Section 4.3.

For any optimal solution C D .Cj /j2N to [CT-2], we denote its family of tight sets as

�.C / D

�
S � N W

X
j2S

pijCj D fi.S/ for some i 2M
�
:

One interesting feature of [CT-2] is that when pij > 0 for all i 2 M and j 2 N , its tight
sets are nested. This is a generalization of a result known for supermodular polyhedra
(Edmonds 1970), and has been observed for completion-time-variable LP relaxations of
some scheduling problems (e.g. Margot et al. 2003). To show this, we make use of the
following lemma from Margot et al. (2003).

Lemma 4.2.1 (Margot et al. 2003). Suppose pij > 0 for all i 2 M and j 2 N . Let
C D .Cj /j2N be an optimal solution to [CT-2], and let i 2 M and S � N such thatP
j2S pijCj D fi.S/. Then,

.a/ Ck �
X
j2S

pij for all k 2 S; .b/ Ck �
X
j2S

pij C pik for all k … S:

Proof. Suppose k 2 S . Then,

fi.S/ � fi.S n fkg/ D
1

2
pik

 
2
X

j2Snfkg

pij C pik

!
C
1

2
p2ik D pik

X
j2S

pij :
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Therefore,

pikCk D fi.S/ �
X

j2Snfkg

pijCj � fi.S/ � fi.S n fkg/ D pik
X
j2S

pij ;

which establishes (a). Now suppose k … S . Then,

fi.S [ fkg/ � fi.S/ D
1

2
pik

 
2
X
j2S

pij C pik

!
C
1

2
p2ik D pik

 X
j2S

pij C pik

!
:

Therefore,

pikCk � fi.S [ fkg/ �
X
j2S

pijCj D fi.S [ fkg/ � fi.S/ D pik

 X
j2S

pij C pik

!
;

which establishes (b).

Lemma 4.2.2. Suppose pij > 0 for all i 2M and j 2 N . Let C D .Cj /j2N be an optimal
solution to [CT-2]. Then the tight sets of C are nested: for any two distinct sets S; T 2 �.C /,
either S � T , or T � S .

Proof. For the purpose of finding a contradiction, suppose that for some pair of tight sets
S; T 2 �.C /, we have that S n T ¤ ; and T n S ¤ ;. Suppose S is tight for machine
h—that is,

P
j2S phjCj D fh.S/—and suppose T is tight for machine i . In addition, let k

be some element in S n T , and let l be some element in T n S . By repeated application of
Lemma 4.2.1, we have that

Ck �
X
j2S

phj <
X
j2S

phj C phl � Cl �
X
j2T

pij <
X
j2T

pij C pik � Ck;

which is a contradiction.

When m D 1, Lemma 4.2.2 implies that the tight sets of a basic feasible solution to
[CT-2] are properly nested: that is, there are n tight sets, fS1; : : : ; Sng where jSi j D i for
i D 1; : : : ; n. When m � 2, however, this no longer applies, as seen in the following
example.

Example 4.2.3. In this example, we show for an optimal solution to [CT-2], the sets that
are tight may correspond to multiple machines. Consider the following instance with m D 2
and n D 2:

j 1 2
wj 1 1
p1j 3 1
p2j 1 3

An optimal solution to [CT-2] is C LP
1 D 3:25, C LP

2 D 3:25. It is straightforward to check
that the only tight set for .C LP

1 ; C
LP
2 / is N D f1; 2g, for both machines 1 and 2.
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4.2.2 Linear ordering variables

Instead of explicitly modeling the completion times of each job on each machine, we can
model the order in which the jobs are processed on each machine. For every machine
i 2 M , we define the decision variables ıi

jk
, where ıi

jk
D 1 if job j precedes job k on

machine i , and ıi
jk
D 0 if job k precedes job j on machine i . These variables are known

as linear ordering variables. Consider the following integer programming formulation for
PD j j

P
wjCj :

minimize
X
j2N

wjCj (4.2.3a)

subject to ıijk C ı
i
kj D 1 for all i 2M; j; k 2 N W j ¤ k; (4.2.3b)

ıijk C ı
i
kl C ı

i
lj � 2 for all i 2M;

j; k; l 2 N W j ¤ k ¤ l ¤ j; (4.2.3c)

ıijk 2 f0; 1g for all i 2M; j; k 2 N W j ¤ k; (4.2.3d)

Cij �
X

k2N Wk¤j

pikı
i
kj C pij for all i 2M; j 2 N; (4.2.3e)

Cj � Cij for all i 2M; j 2 N: (4.2.3f)

For a given machine i , the set of vectors defined by the constraints (4.2.3b)-(4.2.3d) is
known to define all permutations of N as described by these ı-variables (the convex hull
of this set is known as the linear ordering polytope). It follows that the integer program
(4.2.3a)-(4.2.3f) is a correct formulation of PD j j

P
wjCj .

Wagneur and Sriskandarajah (1993) showed that for PD j j
P
wjCj , there always exists

an optimal schedule in which each machine processes the jobs in the same order. This
kind of schedule is known as a permutation schedule. Therefore, we only need to find one
common ordering of the jobs to find an optimal solution. As we did before, let us define
the decision variables ıjk, where ıjk D 1 if job j precedes job k, and ıjk D 0 otherwise.
Consider the following integer programming formulation for PD j j

P
wjCj , now with only

one set of linear ordering constraints:

minimize
X
j2N

wjCj (4.2.4a)

subject to ıjk C ıkj D 1 for all j; k 2 N W j ¤ k; (4.2.4b)
ıjk C ıkl C ılj � 2 for all j; k; l 2 N W j ¤ k ¤ l ¤ j; (4.2.4c)
ıjk 2 f0; 1g for all j; k 2 N W j ¤ k; (4.2.4d)

Cj �
X

k2N Wk¤j

pikıkj C pij for all i 2M; j 2 N: (4.2.4e)

By the observation of Wagneur and Sriskandarajah (1993), it follows that the above integer
programming formulation is also valid for PD j j

P
wjCj .

We consider the following linear programming relaxation of the integer program (4.2.3a)-
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(4.2.3f), obtained by replacing the binary constraints with nonnegativity constraints:

[LO-1] minimize (4.2.3a)
subject to (4.2.3b); (4.2.3c); (4.2.3e); (4.2.3f);

ıijk � 0 for all i 2M and j; k 2 N W j ¤ k:

We also consider the following linear programming relaxation of (4.2.4a)-(4.2.4e), obtained
similarly:

[LO-2] minimize (4.2.4a)
subject to (4.2.4b); (4.2.4c); (4.2.4e);

ıjk � 0 for all j; k 2 N W j ¤ k:

4.2.3 Relative strength of LP relaxations
For any linear programming relaxation [X] of PD j j

P
wjCj , let LPŒX� be the optimal

value of [X]. We show the following statement on the relative strength of the four linear
programming relaxations presented above.

Lemma 4.2.4. For any given instance of PD j j
P
wjCj , we have that

LPŒCT�1� D LPŒCT�2� � LPŒLO�1� � LPŒLO�2�:

Proof. Fix an instance of PD j j
P
wjCj . Let ..Cij /i2M;j2N ; .Cj /j2N / be an optimal so-

lution to [CT-1], and let .C 0j /j2N be an optimal solution to [CT-2]. Clearly, .Cj /j2N is
feasible in [CT-2], and so LPŒCT�2� � LPŒCT�1�. Now define C 0ij D C 0j for all i 2 M and
j 2 N . Clearly, ..C 0ij /i2M;j2N ; .C

0
j /j2N / is feasible in [CT-1], and so LPŒCT�1� � LPŒCT�2�.

Therefore, LPŒCT�1� D LPŒCT�2�.
Now suppose .. Nıi

jk
/i2M;j;k2N Wj¤k; . NCij /i2M;j2N ; . NCj /j2N / is an optimal solution to

[LO-1]. Using techniques from Schulz (1996), it is straightforward to show that . NCj /j2N is
feasible in [CT-2], and so LPŒCT�2� � LPŒLO�1�.

Finally, suppose .. Oıjk/j;k2N Wj¤k; . OCj /j2N ) is an optimal solution to [LO-2]. Define
Oıi
jk
D Oıjk for all i 2M and j; k 2 N such that j ¤ k. Also, define OCij D OCj for all i 2M

and j 2 N . Clearly, .. Oıi
jk
/i2M;j;k2N Wj¤k; . OCij /i2M;j2N ; . OCj /j2N / is a feasible solution to

[LO-1], and so LPŒLO�1� � LPŒLO�2�.

The following example shows that the last inequality in Lemma 4.2.4 can be strict.

Example 4.2.5. In this example, we provide an instance for which LPŒLO�1� < LPŒLO�2�.
Consider the following instance with m D 2 and n D 2:

j 1 2
wj 1 1
p1j 1 4
p2j 2 2
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The optimal objective value of [LO-1] is 6:75, and the optimal objective value of [LO-2]
is 7.

4.2.4 Integrality gaps for LP relaxations

Chen and Hall (2001), Leung et al. (2007), and Garg et al. (2007) independently observed
that scheduling jobs in order of nondecreasing optimal Cj to the linear program [CT-1] is
a 2-approximation algorithm for the problem PD j j

P
wjCj . The proof technique used

to show this implies that [CT-1] is in fact a 2-relaxation of PD j j
P
wjCj ; that is, the

integrality gap1 of [CT-1] is at most 2. Similar proof techniques also show that scheduling
jobs in order of nondecreasing optimal Cj to the linear programs [CT-2], [LO-1], and [LO-2]
are also 2-approximation algorithms, and that these linear programs are all 2-relaxations. In
this subsection, we present a proof showing that the analyses of these LP relaxations are
tight: the integrality gap is 2 for [CT-1], [CT-2], [LO-1], and [LO-2].

Theorem 4.2.6 (Mastrolilli 2008). The integrality gap is 2 for the following linear program-
ming relaxations: [CT-1], [CT-2], [LO-1] and [LO-2].

Proof. We show that the integrality gap of [CT-1], [CT-2], [LO-1], and [LO-2] is at least 2.
Let .N;E/ be a complete r-uniform hypergraph on N (in other words, let E the family

of all
�
n

r

�
subsets of N with cardinality r). We construct an instance of PD j j

P
wjCj as

follows. Each node j 2 N corresponds to a job. Each hyperedge i 2 E corresponds to a
machine, so m D

�
n

r

�
. The processing times are

pij D

(
1 if j 2 hyperedge i;
0 otherwise

for all i 2M , j 2 N .

All jobs have unit weight. Note that every machine needs to process jobs for exactly r time
units.

We first show that in any feasible schedule without idle time, there are at least n� r C 1
jobs that complete at time r . We consider two cases.

1. There are at most r � 2 jobs that complete at or before time r � 1. Therefore, at least
n � r C 2 jobs complete at time r , which directly implies the claim.

2. There are at least r � 1 jobs that complete at or before time r � 1. Let A be a set
of r � 1 jobs that completes at or before time r � 1. Since .N;E/ is a complete
r-uniform hypergraph, for any job j 2 N nA, we have that A[ fj g is a hyperedge in
.N;E/. Since there are r � 1 jobs in A, this implies that every job j 2 N n A cannot
complete until at least time r on the machine corresponding to the hyperedge A[ fj g.
Since jN n Aj D n � r C 1, there are at least n � r C 1 jobs that complete at time r .

1In this chapter, we slightly abuse terminology: for a minimization problem …, let OPT.I / denote the
optimal value of the problem … under instance I , and let OPTR.I / denote the optimal value of the relaxation
R of problem … under instance I . We say that the integrality gap of the relaxation R of problem … is
supfOPT.I /=OPTR.I / W I is an instance of …g.
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Let OPT denote the optimal value of this instance. It follows from the above observation
that OPT � r.n � r C 1/. Now consider the following solution to [LO-2]:

ıjk D 1=2 for all j; k 2 N W j ¤ k;

Cj D max
i2M

� X
k2N Wk¤j

pikıkj C pij

�
for all j 2 N:

It is straightforward to show that this solution is feasible. Also, note that Cj � .r�1/=2C1,
and so LPŒLO�2� � n.r C 1/=2. Letting r D n3=4, we have that

OPT
LPŒLO�2�

�
2n3=4.n � n3=4 C 1/

n.n3=4 C 1/
;

which approaches 2 as n goes to infinity.
By Lemma 4.2.4, the result follows for the other three LP relaxations.

4.3 A combinatorial primal-dual 2-approximation algo-
rithm

In this section, we present a simple primal-dual 2-approximation algorithm for
PD j j

P
wjCj . Independently, Queyranne (2008) proposed essentially the same algo-

rithm, framed as a greedy algorithm, and also showed that it has a performance guarantee of
2. Unlike the LP-based approximation algorithms discussed in Section 4.2.4, our algorithm
does not require the solution of a linear program; in fact, our algorithm runs inO.n.mCn//
time. Although it does not require solving the linear program [CT-2], we use this linear
program and its dual in the analysis of our algorithm. Note that the dual of [CT-2] is

maximize
X
i2M

X
S�N

fi.S/y.i; S/ (4.3.1a)

subject to
X
i2M

pij
X

S�N Wj2S

y.i; S/ D wj for all j 2 N; (4.3.1b)

y.i; S/ � 0 for all i 2M;S � N: (4.3.1c)

Our algorithm works as follows. We find a permutation schedule by working in reverse. We
determine the last job to be scheduled by observing that its completion time is achieved on
the machine with the maximum load when all jobs are scheduled; we choose the job with
the minimum weight-to-processing time ratio on that machine. We adjust the dual variables
as well as the weights of the jobs, and we proceed in determining the next-to-last job in a
similar manner. A full description of the algorithm is below.

Algorithm 4.3.1. Primal-dual algorithm for PD j j
P
wjCj

Input: instance of PD j j
P
wjCj : number of jobs n; number of machinesm; processing

times pij for all i 2M and j 2 N ; weights wj for all j 2 N .
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Output: permutation schedule of jobs � W f1; : : : ; ng 7! N .

1. Initialize:

Cj  C1 for all j 2 N , (completion times)
y.i; S/ 0 for all i 2M , S � N , (dual variables)

Sk  N for all k D 1; : : : ; n, (unscheduled jobs at iteration k)

Lki  
X
j2N

pij for all k D 1; : : : ; n, i 2M , (load of machine i at iteration k)

Nwkj  wj for all k D 1; : : : ; n, j 2 N . (adjusted weights)

2. For k D n; n � 1; : : : ; 2; 1 :

�.k/ arg max
i2M

Lki
(determine the machine on

which job �.k/ completes)

�.k/ arg min
j2Sk

Nwkj

p�.k/;j
(determine job �.k/)

C�.k/  Lk�.k/ (completion time of job �.k/)

y.�.k/; Sk/ 
Nwk
�.k/

p�.k/;�.k/
(update dual variables)

Sk�1  Sk n f�.k/g (update unscheduled jobs)

for all i 2M : Lk�1i  Lki � pi;�.k/ (update machine loads)

for all j 2 Sk�1: Nwk�1j  Nwkj � p�.k/;jy.�.k/; S
k/ (adjust weights)

When computing �.k/ and �.k/, break ties arbitrarily.

To show the performance guarantee of Algorithm 4.3.1, we need the following useful
property of the set function fi , first proved by Schulz (1996) in the context of completion-
time-variable LP relaxations for other scheduling problems.

Lemma 4.3.2 (Schulz 1996). For any i 2M , and S � N , we have that�X
j2S

pij

�2
�

�
2 �

2

nC 1

�
fi.S/:

Proof. Note that�X
j2S

pij

�2
D 2

 
1

2

�X
j2S

pij

�2
C
1

2

X
j2S

p2ij

!
�

X
j2S

p2ij

D 2fi.S/ �
2
P
j2S p

2
ij�P

j2S pij
�2
C
P
j2S p

2
ij

fi.S/
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�

�
2 �

2

jS j C 1

�
fi.S/

�

�
2 �

2

nC 1

�
fi.S/;

which proves the claim.

Now we show the main result of this section.

Theorem 4.3.3. Algorithm 4.3.1 is a
�
2 � 2

nC1

�
-approximation algorithm for

PD j j
P
wjCj .

Proof. First, we show that the vector y D .y.i; S//i2M;S�N computed by the algorithm
is a feasible solution to the dual linear program (4.3.1a)-(4.3.1c). Note that the algorithm
assigns non-zero values to at most n components of y: y.�.k/; Sk/ for k D 1; : : : ; n. Since
�.k/ 2 Sk � SkC1 for k D 1; : : : ; n � 1, we have

Nwk�.k/ D Nw
kC1
�.k/
� p�.kC1/;�.k/y.�.k C 1/; S

kC1/

D NwkC1
�.k/
� p�.kC1/;�.k/ min

j2SkC1

NwkC1j

p�.kC1/;j

� 0

for k D 1; : : : ; n � 1. We also have that Nwn
�.n/
D w�.n/ � 0. It follows that y.i; S/ � 0 for

all i 2M and S � N . In addition, constraints (4.3.1b) are satisfied: for job �.k/, we have

X
i2M

pi;�.k/
X

S�N W�.k/2S

y.i; S/ D

nX
lDk

p�.l/;�.k/y.�.l/; S
l/

D

nX
lDkC1

p�.l/;�.k/y.�.l/; S
l/C p�.k/;�.k/y.�.k/; S

k/

D w�.k/ � Nw
k
�.k/ C Nw

k
�.k/

D w�.k/:

Next, note that by how �.k/ is chosen for k D 1; : : : ; n, we know that .Cj /j2N is the
completion time vector of the jobs scheduled according to the permutation � computed by
the algorithm.

We now show that the schedule constructed by the algorithm is a .2 � 2=.n C 1//-
approximation. Note that by construction, Lki D

P
j2Sk pij for all k D 1; : : : ; n and i 2M .

For the remainder of this proof, we assume without loss of generality that �.k/ D k for
k D 1; : : : ; n. By this assumption, we have that Sk D f1; : : : ; kg for k D 1; : : : ; n, and
C1 � C2 � � � � � Cn. Let .C LP

j /j2N be an optimal solution to [CT-2], and let .C �j /j2N be
an optimal completion time vector. We have that

nX
jD1

wjCj D

nX
jD1

�X
i2M

pij
X

S�N Wj2S

y.i; S/

�
Cj
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D

X
i2M

X
S�N

y.i; S/
X
j2S

pijCj

D

nX
kD1

y.�.k/; Sk/
X
j2Sk

p�.k/;jCj

D

nX
kD1

y.�.k/; Sk/

kX
jD1

p�.k/;jCj

�

nX
kD1

y.�.k/; Sk/

�
Ck

kX
jD1

p�.k/;j

�
(since Ck � Cj

for all j D 1; : : : ; k)

D

nX
kD1

y.�.k/; Sk/

� kX
jD1

p�.k/;j

�2
(since Ck D Lk�.k/ D

Pk
jD1 p�.k/;j )

�

�
2 �

2

nC 1

� nX
kD1

y.�.k/; Sk/f�.k/.S
k/

�

�
2 �

2

nC 1

� nX
jD1

wjC
LP
j (since y is dual feasible)

�

�
2 �

2

nC 1

� nX
jD1

wjC
�
j :

Finally, we analyze the running time of the algorithm. First, as mentioned above, note
that we only need to keep track of n of the dual variables .y.i; S//i2M;S�N ; the exponential
representation of the dual variables in the algorithm is for presentation’s sake. Also, note
that throughout the algorithm, we only need to keep track of the unscheduled jobs, machine
loads, and adjusted weights of the current iteration. In other words, in the description of
Algorithm 4.3.1, the variables .Sk/kD1;:::;n can be replaced by a single variable S ; for each
i 2M , the variables .Lki /kD1;:::;n can be replaced by a single variable Li ; for all j 2 N , the
variables . Nwkj /kD1;:::;n can be replaced by a single variable Nwj . The algorithm runs through
an initialization and n iterations. With the modifications mentioned above, each step in
the initialization of the algorithm takes at most nm operations. Each step in each iteration
of the algorithm takes either at most m operations or at most n operations. Therefore, the
algorithm runs in O.n.mC n// time.

The above analysis of Algorithm 4.3.1 is tight, as the following example shows.

Example 4.3.4. In this example, we show that Algorithm 4.3.1 has a performance guarantee
of at least 2 � 2=.nC 1/.

Consider the following instance, with m D n, and

pij D

(
n
i

if j � i ,
0 otherwise

for all i D 1; : : : ; n and j D 1; : : : ; n.
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All jobs have unit weights. Note that when all jobs are scheduled, the load on all machines
is n.

Consider the permutation schedule .n; n� 1; : : : ; 2; 1/. In this case, the completion time
of job j on machine i is:

Cij D

(
0 if j � i C 1,�
n
i

�
.i � j C 1/ otherwise.

It is straightforward to show that the completion time of job j under the permutation
schedule .n; n � 1; : : : ; 2; 1/ is

Cj D max
iD1;:::;n

Cij D max
iDj;:::;n

�n
i

�
.i � j C 1/ D n � j C 1:

Therefore, the total completion time under the permutation schedule .n; n � 1; : : : ; 2; 1/ is
n.nC1/

2
.

Suppose that when computing �.k/ and �.k/, the algorithm breaks ties by always
choosing the machine or job with the highest index. We show that when using this tiebreaking
rule, at iteration k:

� Sk D f1; : : : ; kg.
� The load of machine i is

Lki D
X
j2Sk

pij

(
D n if i D 1; : : : ; k
< n if i D k C 1; : : : ; n

) �.k/ D k.
� p�.k/;j D pk;j D n=k for all jobs j 2 Sk) �.k/ D k.
� Nwk�1j D 0 for all jobs j 2 Sk�1.

It is straightforward to check that these conditions hold at iteration n; in particular, we
have that

y.�.n/; Sn/ D
w�.n/

p�.n/;�.n/
D
wn

pnn
D 1

) Nwn�1j D wj � pnjy.�.n/; S
n/ D 1 � 1 � 1 D 0 for all j 2 Sn�1:

Now suppose that these conditions hold at iteration k. What happens at iteration k � 1?

� Since �.k/ D k (job k is scheduled at iteration k), we have that the set of unscheduled
jobs at iteration k � 1 is Sk�1 D f1; : : : ; k � 1g.
� We consider three cases.

– Consider machine i 2 f1; : : : ; k � 1g. Since the load of machine i at iteration
k is

P
j2Sk pij D n and pik D 0 (since i � k � 1), it follows that the load of

machine i at iteration k � 1 is
P
j2Sk�1 pij D n.

– Now, consider machine i 2 fk C 1; : : : ; ng. Since the load of machine i at
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iteration k is
P
j2Sk pij < n, clearly then the load of machine i at iteration

k � 1 is
P
j2Sk�1 pij < n.

– Finally, consider machine k. The load of machine k at iteration k isP
j2Sk pkj D n. Since pkk > 0, the load of machine k at iteration k � 1

is
P
j2Sk�1 pkj < n.

It follows from above that the tiebreaking rule chooses �.k � 1/ D k � 1.
� By definition, p�.k�1/;j D pk�1;j D n=.k�1/ for all jobs j 2 Sk�1 D f1; : : : ; k�1g.

In addition, all jobs j 2 Sk�1 have weight Nwk�1j D 0. Therefore, �.k � 1/ D k � 1.
� The algorithm computes:

y.�.k � 1/; Sk�1/ D
Nwk�1
�.k�1/

p�.k�1/;�.k�1/

D
Nwk�1
k�1

pk�1;k�1

D 0

) Nwk�2j D Nwk�1j � pk�1;jy.�.k � 1/; S
k�1/

D 0 � pk�1;j � 0

D 0 for all j 2 Sk�2:

It follows that the permutation schedule Algorithm 4.3.1 constructs is .1; : : : ; n/. Since
the maximum load of any machine is n at each iteration, it follows that the total completion
time under the permutation schedule .1; : : : ; n/ constructed by the modified greedy algorithm
is n2. As a result, using the objective value of the permutation schedule .n; n � 1; : : : ; 2; 1/
as an upper bound on the optimal value, the performance guarantee of Algorithm 4.3.1 is at
least 2 � 2=.nC 1/.

The instance used above can be modified so that all processing times are strictly positive.
In particular, changing the instance so the processing times are

pij D

(
n��.n�i/

i
if j � i ,

� otherwise
for all i D 1; : : : ; n and j D 1; : : : ; n

for some sufficiently small � > 0 will still induce similar behavior.

4.4 Conclusion
In this chapter, we studied the problem of minimizing the sum of weighted completion
times in a concurrent open shop environment. We presented some interesting properties of
various linear programming relaxations for this problem. We also showed how to obtain
a primal-dual 2-approximation algorithm. Although the performance guarantee of our
algorithm matches the performance guarantee of the currently best known approximation
algorithms for this problem, our algorithm does not require solving a linear program; in fact,
it can be viewed as a greedy algorithm.
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There are many interesting potential directions for future research that extend from
this work. The most natural direction would be to design an approximation algorithm for
PD j j

P
wjCj with a performance guarantee better than 2. It also seems plausible that we

can design approximation algorithms with performance guarantees better than 2 when the
number of machines m is fixed. However, no such results are currently known. One idea is
as follows: observe that when m D 2, the polyhedron of the linear program [CT-2], on the
surface, has some similarities with the intersection of two polymatroids, for which a great
deal is known. This gives us some indication that we might be able to uncover a richer theory
behind the structure of these polyhedra, which may in turn lead to better approximation
algorithms for the case m D 2. Along these lines, it stands to reason that we should be able
to design an approximation algorithm whose performance guarantee depends on m as well
as n, as in some algorithms for other parallel machine scheduling problems. Of course, it
may be the case that we actually need to prove stronger inapproximability results for this
problem.

Another interesting direction for future research would be to establish structural charac-
terizations of optimal solutions to this problem. Taking inspiration from a result by Correa
and Schulz (2005), one may be tempted to conjecture that the tight sets of an optimal LP
solution to [CT-2] yield a decomposition of optimal schedules, much like Sidney’s (1975)
decomposition for 1 j prec j

P
wjCj . For example, if the tight sets of some optimal solution

are S1 � S2 � � � � � Sk , then one might conjecture that there exists an optimal schedule in
which jobs in SiC1 n Si come before SiC2 n SiC1. However, Example 4.B.1 shows that this
is not necessarily the case.
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4.A Hardness of approximation
The hardness of approximation results for PD j j

P
wjCj in this appendix were communi-

cated to us by Ola Svensson, and are due to Uriel Feige and some unknown co-authors.

Using the Unique Games Conjecture2, Khot and Regev (2003) proved the following
theorem on the inapproximability of the maximum cardinality independent set problem.

Theorem 4.A.1 (Khot and Regev 2003). Assuming the Unique Games Conjecture is true, for
any ı 2 .0; 1=2/ the following problem is NP-hard: given an undirected graph G D .N;E/,
decide whether

(i) G contains an independent set of size .1
2
� ı/jN j, or

(ii) all independent sets of G have size strictly less than ıjN j.

Using the above result, we can show the following.

Theorem 4.A.2. Assuming the Unique Games Conjecture is true, PD j j
P
wjCj is hard to

approximate within a factor of 4=3 � � for any � > 0, unless P D NP.

Proof. Let G D .N;E/ be an undirected graph. We construct an instance of PD j j
P
wjCj

as follows. Each node j 2 N corresponds to a job. Each edge i 2 E corresponds to a
machine. The processing times are

pij D

(
1 if edge i 2 E is incident to vertex j 2 N;
0 otherwise

for all i 2M , j 2 N .

Note that each machine needs to process jobs for exactly 2 time units.
This is the key observation. Suppose that I � N is an independent set in G. Then, each

job in I can have all its components processed simultaneously. Therefore, all jobs in I can
be completed by time 1.

Let OPT denote the optimal value of this instance of PD j j
P
wjCj . Suppose that con-

dition (i) holds from Theorem 4.A.1. Let I be such an independent set. By the observation
in the previous paragraph, we know that all jobs in I can be completed by time 1, and
that all the remaining jobs N n I can be completed by time 2. Therefore, in this case,
OPT � 1 � .1=2�ı/jN jC2 � .1=2Cı/jN j D .3=2Cı/jN j. Now suppose that condition (ii)
holds from Theorem 4.A.1. This implies that in any schedule, at least .1� ı/jN j jobs are

2The Unique Games Conjecture (Khot 2002) is a statement on the hardness of the Unique Label Cover
problem. In the Unique Label Cover problem, we are given a bipartite graph .V [W;E/ with V \W D ;,
a set of allowed labels f1; : : : ;M g, and bijective maps �v;w W f1; : : : ;M g 7! f1; : : : ;M g for every edge
fv;wg 2 E. A labeling assigns one label to every vertex of V [W . A labeling satisfies an edge fv;wg 2 E if
�v;w.label.w// D label.v/. The objective is to find a labeling that maximizes the fraction of edges that are
satisfied. The Unique Games Conjecture asserts that this problem is hard.

Conjecture (Unique Games Conjecture (Khot 2002)). For any �; 
 2 R>0, there exists a constant M D
M.�; 
/ such that it is NP-hard to decide whether the Unique Label Cover problem with label set f1; : : : ;M g
has optimum at least 1 � � or at most 
 .

The Unique Games Conjecture has been used to obtain inapproximability results for several problems (e.g.
Khot 2002; Khot and Regev 2003; Khot et al. 2007).
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forced to be completed at time 2. Therefore, in this case, OPT � 2.1 � ı/jN j. It follows
that a .4=3� �/-approximation algorithm for PD j j

P
wjCj can solve the decision problem

in Theorem 4.A.1.

Dinur and Safra (2002) showed the following hardness of approximation result for the
independent set problem, which does not assume the Unique Games Conjecture is true.

Theorem 4.A.3 (Dinur and Safra 2002). For any ı > 0, the following problem is NP-hard:
given an undirected graph G D .N;E/, decide whether

(i) G contains an independent set of size strictly greater .1
3
� ı/jN j, or

(ii) all independent sets of G have size strictly less than .1
9
C ı/jN j.

Using the ideas mentioned in the proof of Theorem 4.A.2 in conjunction with Theorem
4.A.3, one can show the following theorem.

Theorem 4.A.4. PD j j
P
wjCj is hard to approximate within a factor of 16=15 � � for

any � > 0, unless P D NP.
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4.B Additional Examples
Example 4.B.1. In this example, we show that the tight sets of an optimal solution to [CT-2]
do not necessarily yield an optimal sequence decomposition of jobs. Consider the following
instance with m D 2 and n D 2:

j 1 2
wj 2 7
p1j 1 4
p2j 2 2

The optimal objective value of [CT-2] is 37:25. The unique optimal solution to [CT-2] is
C LP
1 D 2, C LP

2 D 4:75. The optimal objective value of this instance is 38, which can be
achieved by the permutation schedule .2; 1/. However, the tight sets of .C LP

1 ; C
LP
2 / imply

the permutation schedule .1; 2/, which has an objective value of 39.

Example 4.B.2. In this example, we show that the simple greedy algorithm (Algo-
rithm 4.B.3, below) has a performance guarantee of at least 2.

The simple greedy algorithm works similarly to the primal-dual algorithm presented in
Section 4.3 (Algorithm 4.3.1), except that the job weights are not modified to compute a
dual-feasible solution.

Algorithm 4.B.3. Simple greedy algorithm

Input: instance of PD j j
P
wjCj : number of jobs n; number of machines

m; processing times pij for all i 2 M and j 2 N ; weights wj for all
j 2 N .

Output: permutation schedule of jobs � W f1; : : : ; ng 7! N .

1. Initialize:

Cj  C1 for all j 2 N , (completion times)

Sk  N for all k D 1; : : : ; n, (unscheduled jobs at iteration k)

Lki  
X
j2N

pij for all k D 1; : : : ; n, i 2M . (load of machine i at iteration k)

2. For k D n; n � 1; : : : ; 2; 1:

�.k/ arg max
i2M

Lki
(determine the machine on

which job �.k/ completes)

�.k/ arg min
j2Sk

wj

p�.k/;j
(determine job �.k/)

C�.k/  Lk�.k/ (completion time of job �.k/)

Sk�1  Sk n f�.k/g (update unscheduled jobs)

for all i 2M : Lk�1i  Lki � pi;�.k/ (update machine loads)

When computing �.k/ and �.k/, break ties arbitrarily.
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Consider the instance in Example 4.3.4. What does the simple greedy algorithm do with
this instance? Suppose that when computing �.k/ and �.k/, the algorithm breaks ties by
always choosing the machine or job with the highest index. Using techniques similar to
those in Example 4.3.4, we can show that using this tiebreaking rule, that at iteration k:

� Sk D f1; : : : ; kg.
� The load of machine i is

Lki D
X
j2Sk

pij

(
D n if i D 1; : : : ; k
< n if i D k C 1; : : : ; n

) �.k/ D k.
� p�.k/;j D pk;j D n=k for all jobs j 2 Sk) �.k/ D k.

It follows that the permutation schedule the simple greedy algorithm constructs is
.1; : : : ; n/. Since the maximum load of any machine is n at each iteration, it follows that the
total completion time under the permutation schedule .1; : : : ; n/ constructed by the simple
greedy algorithm is n2. As a result, using the objective value of the permutation schedule
.n; n � 1; : : : ; 2; 1/ as an upper bound on the optimal value, the performance guarantee of
the simple greedy algorithm is at least 2 � 2=.nC 1/.

Example 4.B.4. In this example, we show that the m-WSPT algorithm (Algorithm 4.B.5,
below) has a performance guarantee of at least 2.

In the m-WSPT algorithm, we consider the m permutation schedules that correspond
to the m permutations determined by WSPT (order the jobs according to nonincreasing
weight-to-processing-time ratio) on each of the m machines.

Algorithm 4.B.5. m-WSPT algorithm.

Input: instance of PD j j
P
wjCj : number of jobs n; number of machines

m; processing times pij for all i 2 M and j 2 N ; weights wj for all
j 2 N .

Output: permutation schedule of jobs � W f1; : : : ; ng 7! N .

1. Compute m permutations, determined by nonincreasing wj=pij for each
machine i D 1; : : : ; m. Break ties arbitrarily.

2. Construct m permutation schedules, each based on one of the m permu-
tations computed in the previous step. Output the permutation schedule
with the best objective value.

Consider the following instance, with r 2 Z>0, n D rm, and

pij D

(
p if j � i .mod m/,
1 otherwise,

for all i D 1; : : : ; m and j D 1; : : : ; n.

where p � 1. All jobs have unit weight.
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Consider the permutation schedule .1; : : : ; m;mC1; : : : ; 2m; : : : ; .r�1/mC1; : : : ; rm/.
We use the objective value of this permutation schedule as an upper bound on the objective
value of optimal schedule. The total completion time of this schedule is

p C .p C 1/C � � � C .p Cm � 1/

C.p Cm � 1/m Cp C .p C 1/C � � � C .p Cm � 1/

C2.p Cm � 1/m Cp C .p C 1/C � � � C .p Cm � 1/

:::

C.r � 1/.p Cm � 1/m Cp C .p C 1/C � � � C .p Cm � 1/

D
r.r � 1/

2
� .p Cm � 1/m Cr

�
pmC

m.m � 1/

2

�
: (4.B.1)

For i D 1; : : : ; m, let Ni D fj 2 N W pij D pg. Note that jNi j D r for all i D
1; : : : ; m, and that the sets fNi W i D 1; : : : ; mg form a partition of the jobs in N . Fix
some machine i , and consider a schedule that is consistent with the ordered partition
.NiC1; : : : ; Nm; N1; : : : ; Ni/. Note that this is a WSPT schedule for machine i . In the
corresponding permutation schedule, the total completion time of jobs on machine i C 1 (or
machine 1, if i D m) is�
p C 2p C � � � C rp

�
C
�
rp � r.m � 1/C 1C � � � C r.m � 1/

�
D
pr.r C 1/

2
C pr2.m � 1/C

r.m � 1/
�
r.m � 1/C 1

�
2

: (4.B.2)

Therefore, the total completion time of the permutation schedule output by the m-WSPT
algorithm using the WSPT sequences prescribed above is at least (4.B.2).

Setting p D r D m2, we have that the performance ratio of the m-WSPT algorithm is at
least

m7 �m5 Cm4 C 1
2
m3 � 1

2
m2

1
2
m7 C 1

2
m6

;

which approaches 2 as m tends to infinity.
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Appendix A

Review of Essential Background

In this appendix, we point out some references that may be useful to the reader, and review
some basic terminology related to approximation algorithms and machine scheduling that is
used throughout this thesis.

We refer the reader to the textbooks by Schrijver (1986), Nemhauser and Wolsey (1988),
Grötschel et al. (1988), Bertsimas and Tsitsiklis (1997), Korte and Vygen (2002), and
Schrijver (2003) for comprehensive treatments of topics in linear and integer programming
and combinatorial optimization. Garey and Johnson (1978) and Ausiello et al. (1999) provide
useful introductions to computational complexity and the theory of NP-completeness.

A.1 Approximation algorithms

For NP-hard optimization problems, it is unlikely that we can design exact algorithms that
run in polynomial time. In this light, a natural question that arises is whether we can obtain
approximately good solutions in polynomial time. We define some terms from the literature
on approximation algorithms; for an in-depth survey of this topic, see Hochbaum (1997),
Ausiello et al. (1999), or Vazirani (2001).

A �-approximation algorithm (� � 1) for an optimization problem … is an algorithm
that finds a solution whose objective value is within a factor of � of the optimal value, and
whose running time is polynomial in the size of the input to …. That is, if OPT.I / is the
optimal value of the problem … under instance I , and if A.I / is the value of the solution
returned by a �-approximation algorithm for … under instance I , then,

A.I / � � � OPT.I / for minimization problems, or

A.I / �
1

�
� OPT.I / for maximization problems:

The parameter � is called the performance guarantee of the algorithm. The closer the
performance guarantee is to 1, the better the algorithm.

A polynomial-time approximation scheme (PTAS) for an optimization problem … is an
algorithm that, for any given � > 0, finds a solution whose objective value is within a factor
.1C �/ of the optimal value, and whose running time is polynomial in the size of the input
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to …. Note that the running time of a PTAS can be exponential in 1=�.
A fully polynomial-time approximation scheme (FPTAS) for an optimization problem …

is an algorithm that, for any given � > 0, finds a solution whose objective value is within a
factor .1C �/ of the optimal value, and whose running time is polynomial in the size of the
input to …, and 1=�.

A.2 Notation for machine scheduling
The number of different types of machine scheduling problems that have been studied in the
literature is tremendous. As such, it is convenient to describe machine scheduling problems
using the three-field notation of Graham et al. (1979), in which the features of a scheduling
problem is captured in the three-field abbreviation ˛ jˇ j 
 .

� The field ˛ represents the machine environment. Some common examples include

1 for a single machine.

P for identical parallel machines.

Pm for m identical parallel machines, where m is fixed.

Q for uniform parallel machines: job j has processing requirement pj
and machine i has speed si ; the processing time of job j on machine
i is pj=si .

PD for concurrent open shop environments: m parallel machines, each
dedicated to one component type; jobs consist of processing require-
ments for each of the m component types, which can be performed
in parallel.

� The field ˇ describes job characteristics. For instance,

pj D 1 indicates that all jobs have unit processing time.

rj indicates that jobs have release dates.

pmtn indicates that preemption of jobs is allowed.

prec indicates that there are precedence constraints between jobs.

� The field 
 denotes the objective function to be minimized. For example,P
wjCj refers to the sum of weighted completion times objective.P
Cj refers to the sum of completion times (unit weights) objective.P
wjMj refers to the sum of weighted mean busy times objective.

Cmax refers to the makespan objective.

So for example, P j rj ; prec j
P
wjCj is the problem of minimizing the sum of weighted

completion times on identical parallel machines, subject to release dates and precedence
constraints.

102



Bibliography

R. H. Ahmadi, U. Bagchi. 1990. Scheduling of multi-job customer orders in multi-machine
environments. ORSA/TIMS, Philadelphia.

R. H. Ahmadi, U. Bagchi, T. Roemer. 2005. Coordinated scheduling of customer orders for
quick response. Naval Research Logistics 52:493–512.
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U. Feige, V. Mirrokni, J. Vondrák. 2007. Maximizing non-monotone submodular functions.
In Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2007), pp. 461–471.

L. Fleischer, M. X. Goemans, V. S. Mirrokni, M. Sviridenko. 2006. Tight approximation
algorithms for maximum general assignment problems. In Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pp. 611–620.

H. Gabow, R. Tarjan. 1984. Efficient algorithms for a family of matroid intersection
problems. Journal of Algorithms 5:80–131.

M. R. Garey, D. S. Johnson. 1978. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, New York, N.Y.

M. R. Garey, D. S. Johnson, L. Stockmeyer. 1976. Some simplified NP-complete graph
problems. Theoretical Computer Science 1:237–267.

N. Garg, A. Kumar, V. Pandit. 2007. Order scheduling models: hardness and algorithms. In
V. Arvind, S. Prasad, eds., Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2007), vol. 4855 of Lecture Notes in Computer Science, pp. 96–107.
Springer, Berlin.

Y. Gerchak, D. Gupta. 1991. On apportioning costs to customers in centralized continuous
review inventory systems. Journal of Operations Management 10:546–551.

D. B. Gillies. 1959. Solutions to general non-zero-sum games. In A. W. Tucker, R. D. Luce,
eds., Contributions to the Theory of Games, Volume IV, vol. 40 of Annals of Mathematics
Studies, pp. 47–85. Princeton University Press, Princeton.

M. X. Goemans, M. Queyranne, A. S. Schulz, M. Skutella, Y. Wang. 2002. Single machine
scheduling with release dates. SIAM Journal on Discrete Mathematics 15:165–192.

M. X. Goemans, M. Skutella. 2004. Cooperative facility location games. Journal of
Algorithms 50:194–214.

M. X. Goemans, D. P. Williamson. 1995. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM
42:1115–1145.

105



M. X. Goemans, D. P. Williamson. 2000. Two-dimensional Gantt charts and a scheduling
algorithm of Lawler. SIAM Journal on Discrete Mathematics 13:281–294.

R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan. 1979. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics 5:287–326.

D. Granot, G. Huberman. 1981. Minimum cost spanning tree games. Mathematical
Programming 21:1–18.

M. Grötschel, L. Lovász, A. Schrijver. 1988. Geometric Algorithms and Combinatorial
Optimization. Springer.

L. A. Hall, A. S. Schulz, D. B. Shmoys, J. Wein. 1997. Scheduling to minimize average com-
pletion time: off-line and on-line approximation algorithms. Mathematics of Operations
Research 22:513–544.

P. Hall. 1935. On representatives of subsets. Journal of the London Mathematical Society
10:26–30.

B. Hartman, M. Dror, M. Shaked. 2000. Cores of inventory centralization games. Games
and Economic Behavior 31:26–49.
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