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Abstract

Within the metaphor of the “mind as a computation device” that dominates cognitive
science, understanding human cognition means understanding learnability – not only
what (and how) the brain learns, but also what data is available to it from the world.
Ideal learnability arguments seek to characterize what knowledge is in theory possible
for an ideal reasoner to acquire, which illuminates the path towards understanding
what human reasoners actually do acquire. The goal of this thesis is to exploit
recent advances in machine learning to revisit three common learnability arguments
in language acquisition. By formalizing them in Bayesian terms and evaluating them
given realistic, real-world datasets, we achieve insight about what must be assumed
about a child’s representational capacity, learning mechanism, and cognitive biases.

Exploring learnability in the context of an ideal learner but realistic (rather than
ideal) datasets enables us to investigate what could be learned in practice rather
than noting what is impossible in theory. Understanding how higher-order inductive
constraints can themselves be learned permits us to reconsider inferences about innate
inductive constraints in a new light. And realizing how a learner who evaluates
theories based on a simplicity/goodness-of-fit tradeoff can handle sparse evidence may
lead to a new perspective on how humans reason based on the noisy and impoverished
data in the world. The learnability arguments I consider all ultimately stem from the
impoverishment of the input – either because it lacks negative evidence, it lacks a
certain essential kind of positive evidence, or it lacks sufficient quantity of evidence
necessary for choosing from an infinite set of possible generalizations. I focus on these
learnability arguments in the context of three major topics in language acquisition:
the acquisition of abstract linguistic knowledge about hierarchical phrase structure,
the acquisition of verb argument structures, and the acquisition of word leaning biases.

Thesis Supervisor: Joshua Tenenbaum
Title: Associate Professor of Cognitive Science
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Chapter 1

The problem of learnability

Cognitive science views the mind from a computational perspective: as a thinking

machine that, given some input, performs computations on it and produces a be-

havior. Within this paradigm, which is broadly accepted by almost every cognitive

scientist nowadays, the fundamental questions are centered on the nature of the data

in the world and the nature of the computations the mind can perform.

As a result, the subject of learnability is of fundamental importance. If we want

to understand what computations the mind performs, we must understand its depen-

dence on data – which means understanding both what data exists and how the mind

might be able to use and learn from it. This is difficult in part because both of these

unknowns are deeply enmeshed with each other: what data exists depends in part on

how the mind operates, and how the mind performs may depend to some extent on

what data it receives. Data depends on the mind because it is only available to the

extent that the brain is capable of perceiving and interpreting it: a newborn child

would not receive the same effective data as a newborn even if we could ensure that

every aspect of their environment was identical, since a three-year-old can understand

and use the input (e.g., the ambient language) in a way that a newborn cannot. Con-

versely, the mind depends on data in some ways. Every normal brain has the same

potential capacity, but exercising that capacity may require the correct input; a child

never exposed to English will not be able to produce or understand it.

These may look like trivial observations, but that is because they are focused on
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the extremes. Unfortunately for us, most of cognition does not operate at the extremes

– and that hazy middle ground is where it becomes difficult to tease apart which aspect

of behavior is due to the brain and which is due to the data. In some ways, in fact,

such a question verges on incoherence, since everything is cumulative: what the mind

is like at birth influences the effective data the brain receives, which in turn affects

what is learned, which then further shapes the effective data, and so on. The fact

that human cognition doesn’t appear to be highly sensitive to initial conditions in

the way that many feedback loops are doesn’t mean that cognitive scientists need not

worry about cumulative effects; it might simply imply that everyone’s brain and/or

environment are broadly comparable enough in the relevant respects that the feedback

loop operates quite similarly for all.

Another complication lies in the fact that learnability and representation are in-

timately intertwined. Whether something is learnable depends a great deal on what,

precisely, is thought to be learned: do children avoid certain ungrammatical construc-

tions because they have abstracted some form of structured syntactic knowledge, or

because they have implicitly learned associations involving unstructured representa-

tions? In general, as representational system grows in expressivity, it should be more

difficult to learn within that system, so more may need to be built in from the start.

But if what is built in is a powerful learning mechanism, does this count as “nature”

or “nurture”? And if the representation is quite expressive and powerful, does this

count as building in a lot (because it is so complicated) or a little (because the space

of unknowns is larger)?

Thus arises the perennial debates about nature and nurture. The simplistic view

that both nature and nurture are important is – however true – not very constructive

or explanatory from the scientific point of view. A major challenge in cognitive

science, therefore, is to move beyond both extremes as well as this glib middle ground.

We must work to elucidate exactly how innate biases and domain-general learning

might interact to guide development in different domains of knowledge.

The study of ideal learnability is a valuable means towards that end. Ideal learn-

ability arguments focus on the question of whether something is learnable in principle,
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given the data: that is, they are more focused on the nature of the input than on

the nature of the mind. The two cannot be completely disentangled for all of the

reasons we have already considered – and those issues often prove to be the rocks

against which the waves of disagreement break – but ideal learnability analyses at

least provide a path towards answering what looks like an otherwise nearly intractable

question.

What does it mean to be learnable in principle? After all, everything is learnable

in the sense that it is possible to make some machine that can “learn” it by simply

building it in. Learnability analysis attempt to avoid this intellectual vacuity by

describing the characteristics of an ideal learner and then evaluating whether it could

acquire the knowledge under consideration. This approach guides inquiry in a fruitful

direction by suggesting a series of precise, testable questions: do humans really have

the hypothesized characteristics? Are the assumptions made about the data accurate?

Do the ways in which the analysis departs from reality prove critically important?

If so, why? If not, why not? One value of learnability analyses is that they provide

a way of converting intractable, vague questions like “is it nature or nurture?” into

tractable, empirically resolvable ones.

That means, of course, that a learnability analysis is only as good as the as-

sumptions it makes about the data and the learner. Formal mathematical proofs

are valuable starting points but often have limited applicability because the assump-

tions they make in order to be mathematically tractable can be quite distant from

the characteristics of human learners. Non-mathematical analyses, by contrast, have

historically been somewhat constrained by technical limitations on their ability to

evaluate the behavior of a powerful learner on a complex real-world dataset. Because

of the difficulty in gathering and manipulating large datasets of realistic input, they

frequently involve educated but intuitive guesses about what data would be relevant

as well as how rich the data really is. Because they are often not formalized they

may either contain implicit suppositions about the nature of the postulated learning

mechanism, or draw vague or unjustified conclusions about what precisely must be

innate. And because they are seldom implemented and tested, it can be difficult to
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objectively evaluate what might actually be learned by given their assumptions.

Recent advances in machine learning and computer science provide a way to sur-

pass some of these limitations. In this thesis I exploit these advances to revisit three

of the most common learnability arguments in linguistics and cognitive science. The

Bayesian framework I use produces novel answers for some of the specific questions

to which these arguments have applied. More broadly, it yields insight about the

types of conclusions that can be drawn from this sort of argumentation, and why.

And in each case, it fulfills one of the primary goals of an ideal learnability analysis

– providing a set of precise, empirically testable questions and predictions.

In the subsequent sections I review each of the three common learnability argu-

ments this thesis is focused on. I describe the abstract logic of each with the goal of

clarifying what assumptions are made and what conclusions may be validly drawn. I

then discuss three areas in language acquisition, corresponding to Chapters 3, 5, and

4, where we see these learnability arguments play out. These chapters analyze the

learnability claims with respect to the specific examples and evaluate the implications

for other arguments with the same logical structure.

Three learnability problems

Problem #1: The Poverty of the Stimulus

Plato’s dialogue Meno introduces us to the sophistic paradox, also known as the

problem of knowledge: “man cannot enquire either about that which he knows, or

about that which he does not know; for if he knows, he has no need to enquire; and if

not, he cannot; for he does not know the very subject about which he is to enquire.”

Socrates’ solution to this dilemma is to suggest that all knowledge is in the soul from

eternity and simply forgotten at birth: learning is simply remembering what was

already innately present. His conclusion is based on one of the first Poverty of the

Stimulus (PoS) arguments, in which he demonstrates that a slave-boy who had never

been taught the fundamentals of geometry nevertheless grasps them.
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PoS arguments like this are used quite generally to infer the existence of some

innate knowledge, based on the apparent absence of data from which the knowledge

could have been learned. This style of reasoning is as old as the Western philosophical

tradition. Leibniz’ argument for an innate ability to understand necessary truths,

Hume’s argument for innate mechanisms of association, and Kant’s argument for an

innate spatiotemporal ordering of experience are all used to infer the prior existence of

mental capacities based on an apparent absence of support for acquiring them through

learning. Thus, the Poverty of the Stimulus is both a problem for the learner – how to

generalize based on limited or impoverished data – as well as a method for research:

identifying where data is impoverished can be a useful step toward identifying what

knowledge must be innate. The logical structure of the PoS argument is as follows:

1.1. (i) Children show a specific pattern of behavior B.

(ii) A particular generalization G must be grasped to produce behavior B.

(iii) It is impossible to reasonably induce G simply on the basis of the data D

that children receive.

(iv) ∴ Some abstract knowledge T , limiting which specific generalizations G are

possible, is necessary.

This form of the PoS argument is applicable to a variety of domains and datasets

both within and across linguistics. Unlike other standard treatments (Laurence &

Margolis, 2001; Pullum & Scholz, 2002), it makes explicit the distinction between mul-

tiple levels of knowledge – a distinction which we will see again and again throughout

this thesis. An advantage of this logical schema is to clarify that the correct conclu-

sion given the premises is not that the higher-level knowledge T is innate, only that

it is necessary. The following corollary is required to conclude that T is innate:

1.2. (i) (Conclusion from above) Some abstract knowledge T is necessary.

(ii) T could not itself be learned, or could not be learned before the specific

generalization G is known.

(iii) ∴ T must be innate.
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The problem of the Poverty of the Stimulus is the most general of the three learn-

ability problems discussed in this thesis; in fact, it would not be inaccurate to say that

the other two are simply special cases. Saying that the stimulus is impoverished with

respect to some generalization is synonymous with saying that the generalization is

not learnable without presuming that the learner has access to some specific abstract

knowledge T . Learnability arguments differ from one another based on how they an-

swer the question of precisely why or in what way the data is impoverished. Many PoS

arguments – including the classic one about hierarchical phrase structure in language,

which I discuss in Chapter 3 – focus on a lack of a certain kind of positive evidence,

which is otherwise perceived as necessary for ruling out incorrect generalizations or

hypotheses. This sort of PoS argument could apply even if only a finite amount of

data would otherwise be necessary: it is about the nature of the data, rather than

the amount of it.

By contrast, the No Negative Evidence and the Feature Relevance problems –

the other two problems addressed in this thesis – gain most of their logical force

because no human learner sees an infinite amount of data. In short, they are more

about quantity of data than quality (especially in the case of the Feature Relevance

problem). A lack of negative evidence would not be a problem, at least in the limit, if

a dataset were infinite in size,1 because a learner could simply assume that if certain

input is unattested, that is because it is not allowed. For a similar reason, the Feature

Relevance problem is only unresolvable in principle if there are an infinite number of

features that could possibly be relevant – otherwise, in theory at least, a learner could

simply eliminate the irrelevant features one-by-one.

Problem #2: No Negative Evidence

In a seminal 1967 paper, mathematician E. Mark Gold provided a mathematical anal-

ysis of learnability in the limit. His question was whether a learner with an infinite

amount of linguistic data would be able to converge on the correct language (that is,

1This is true assuming a hypothesis space that is infinite in size, which (as we will see later) is
the case with many interesting acquisition problems.
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eventually produce only grammatical strings of that language). Gold considered sev-

eral variations on the basic paradigm, but for our purposes, the relevant ones concern

differences how linguistic information is presented. In one variation, an informant

presents the learner with a list of strings and labels each as grammatical (positive

evidence) or ungrammatical (negative evidence). In the other variation, the learner

is simply shown a list of strings under the assumption that all are grammatical. Both

versions incorporate the constraint that each string occurs at least once, but no other

assumptions about the presentation are made.

The learning algorithm involves successively testing and eliminating candidate

grammars. After each string, the learner decides whether that string could have

been generated by its current grammar. If so, the grammar is retained; if not, it is

discarded, and a new one is chosen. Because the listener is assumed to have a perfect

memory, the new grammar will always be one that can generate not only the current

string, but also all of the previous strings that have been. In many ways, this learner

has more advantages than any human being: in addition to its perfect memory and

ability to match new grammars on the fly to all of the strings it has already seen, its

input contains no errors.

In spite of this, it turns out that only languages of finite cardinality are learnable

from positive evidence alone. The reason is that for any infinite language it is impos-

sible to determine how to generalize beyond the strings that have been seen. If the

learner were to select a grammar that produced all and only those strings, it might

miss a string that is in the language but has not yet appeared; but if it were to choose

a grammar that could produce some string(s) that had not been seen, they might not

be in the language after all. Only if the language is finite can the learner converge on

a grammar that produces all and only the strings in the language.

This poses a problem from the point of view of language acquisition in humans,

since human languages are not finite (Chomsky, 1959). If even a learner with a perfect

memory and errorless input can’t acquire the correct grammar, how do children do

it? One possibility might be that they receive both positive and negative evidence;

Gold’s analysis showed that under such conditions, the classes of languages that
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include English are all learnable. The problem is that there is little substantiation

for the idea that children actually receive much negative evidence (e.g., Brown &

Hanlon, 1970; Newport, Gleitman, & Gleitman, 1977; Pinker, 1989), and if they do,

not much indication that they notice or use it (McNeill, 1966; Braine, 1971). At most,

some studies suggest that there are slight differences in the frequency of parents’

corrections of well-formed vs. ill-formed utterances (e.g., Bohannon & Stanowicz,

1988; Chouinard & Clark, 2003), which – even if the child could use it to figure out

what aspect of the utterance was ill-formed – is still probably not sufficient to reject

all of the possible incorrect grammars (Gordon, 1990; Marcus, 1993).

In general, Gold’s theorem demonstrates that without some constraint on the

space of languages or the procedure used to learn them – or both – language ac-

quisition from positive-only evidence is impossible. What sort of constraints might

help? Gold shows that certain restrictions on the order of presentation can make even

recursively enumerable languages learnable. Unfortunately, these restrictions (which

require the presentation to be generated by a primitive recursive function) are implau-

sible when applied to human language learning. Theorists have explored many other

avenues, and I will give two in particular more detailed attention: allowing grammars

to be probabilistic, and incorporating a less stringent standard of learnability.2

There are many ways to incorporate a less stringent learnability standard (e.g.,

J. Feldman, 1972; Wharton, 1974), but one of the most well-developed and useful is

the Probably Approximately Correct (PAC) framework introduced by Valiant (1984).

The PAC approach translates the learnability problem into the language of statistical

learning theory, so that each language is associated with an indicator function that

maps each of the strings to a real number between 0 and 1 (where a 1 indicates that the

string belongs in the language). In order to be able to evaluate “how close” a language

is to the correct one, a distance metric is imposed on the space of languages – so that

instead of scoring 1 if the learner has guessed the correct language and 0 otherwise,

the learner “gets credit” for being close. A class of languages is learnable within this

framework only if it has finite VC dimension (Vapnik & Chervonenkis, 1971); this

2See (P. Niyogi, 2006) for an overview.
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implies, remarkably, that even finite languages (as well as regular and context-free

languages) are not learnable in the PAC setting. Although some languages are PAC

learnable but not Gold learnable, it does not seem as if we can rely on PAC learning

to solve the learnability problem.

What about allowing grammars to be probabilistic? It might seem that this would

facilitate learning, and indeed it does in certain special cases, but in the abstract it

actually makes the problem harder:3 rather than having to simply converge on the

correct set of grammatical rules (or the correct extension of sentences, as in Gold’s for-

mulation), the learner must now converge on the correct set of rules and probabilities.

In fact, if nothing is known a priori about the nature of the probability distribu-

tion on rules – call it µ – then making the languages stochastic does not expand the

class of learnable languages at all (Angluin, 1988; P. Niyogi, 2006). If, however, we

can make certain assumptions about µ, then the entire class of recursively enumer-

able languages – which includes human languages – becomes learnable (Osherson,

Stob, & Weinstein, 1986; Angluin, 1988). Are these assumptions plausible for human

language?

It is difficult to be certain, but many have argued that they are probably not.

The essential idea is that µ must be a member of a family of approximately uniformly

computable distributions (Angluin, 1988). A family of distributions is approximately

uniformly computable if the distribution on the strings so far can be approximated

within some error by every individual µi in the family. This imposes a fairly stringent

constraint: for instance, probability measures are obtained on context-free grammars

by tying the probabilities to context-free rules. This imposes an exponential-decay dis-

tribution in which longer strings are exponentially less frequent than shorter strings.

As a result, a learner who (correctly) assumes that the distribution is of this form will

converge to the correct context-free grammar (Horning, 1969), but a learner assuming

an arbitrary distribution may not.

3The same general point applies to the idea of jointly learning grammars (i.e., syntax) and
meanings (i.e., semantics) - this simply makes the space larger. It may be possible that syntax and
semantics might mutually constrain each other in such a way that it is easier to learn both, but this
is not obviously true.
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Horning’s work is interesting not only because it demonstrates a positive learn-

ability result for context-free grammars – albeit one that depends on the assumption

that individual strings follow a exponential-decay probability distribution – but also

because it incorporates notions from Bayesian probability theory, which is related to

research in information theory based on the notion of Minimum Description Length

(MDL). Both Bayesian and MDL approaches are based on the insight that incorpo-

rating a simplicity metric can provide a way to choose among all of the grammars (or,

more generically, hypotheses) that are consistent with the data. Indeed, a remarkable

proof by Solomonoff (1978) demonstrates that a learner that incorporates a certain

simplicity metric will be able to predict any computable sequence with an error that

approaches zero as the size of the dataset goes to infinity (see also Solomonoff, 1964;

Rissanen & Ristad, 1992; Chater & Vitànyi, 2007). This is in some sense the perfect

universal prediction algorithm. The drawback? It is not computable, meaning that it

would take an infinite amount of time to calculate. Thus, although it is reassuring in

an ideal sense, this says little about how children actually overcome the No Negative

Evidence problem.

A different idea, called the Subset Principle, suggests that children manage to

learn from positive-only evidence by ranking their hypothesis grammars in such a

way that they can be disconfirmed by positive examples (Berwick, 1985). Thus, they

would consider the narrowest languages first – i.e., grammars whose extensions are

strict subsets of all of the grammars later in the ordering – and only if those gram-

mars were disconfirmed would the next largest grammar be evaluated. According to

mathematical learning theory, the Subset Principle is both necessary and sufficient

for convergence to the correct language (at least in the limit). Problem solved? Un-

fortunately, no: it does not explain certain empirical phenomena of overgeneralization

in language – people simply do not seem to be conservative learners in the way that

a Subset Principle based learner would be. But how, then, do human learners solve

the No Negative Evidence problem?
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Problem #3: Feature Relevance

The problem of determining Feature Relevance, which is related but logically distinct

from the No Negative Evidence problem, was first explicated by early philosophers.

In one classic thought experience, Quine (1960) asked readers to imagine they were

an anthropologist visiting a remote tribe, trying to learn the language. One day he

sees a rabbit run by, and a one of the tribesman points to it, saying “gavagai.” Can

he infer that “gavagai” means rabbit? It certainly seems the natural conclusion, but

there are logically an infinite number of possible meanings: it might mean rabbit fur,

undetached rabbit parts, rabbit running on grass, soft furriness in motion, or even

the abstract concept of rabbits, as a species or general type, here represented by this

example. In fact, even if some meanings are ruled out by context, there will always

remain an infinite number of possibilities consistent with the observations so far.

Goodman (1955) discussed a similar issue in the context of the famous “grue”

problem. In this example, one problem of induction (determining the referent of

a word) is replaced by another (determining the extension of a predicate). Having

observed that all emeralds examined thus far are green, it is tempting to conclude

that all future emeralds will also be green, particularly as one observes more and

more green emeralds. Yet, as Goodman pointed out, it is equally true that every

emerald that has been observed is grue: emerald before time t, and ruby after time t

(assuming t has not yet occurred). Why, then, do we not conclude that emeralds are

grue rather than green?

Both of these classic problems of induction have the a similar flavor: how to

identify the correct hypothesis out of a potentially infinite set of possibilities. In

some ways, the No Negative Evidence problem grapples with a similar issue as these,

but it is important to note that it is logically distinct. The Feature Relevance problem

is about how one decides which of an infinite number of dimensions or features are

relevant to generalize along: Color? Color at time t? Color before and after time

t? Objecthood? Furriness? Grassiness? The No Negative Evidence problem, by

contrast, would apply even if there were only one feature: it is a question about how,
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and to what extent, one should generalize beyond that input in the feature(s) already

identified as relevant. This is an important distinction to keep in mind because the

two problems are often conflated, leading to confusion about what has and hasn’t

been resolved.

Overview

All three of these learnability problems are essentially Poverty of the Stimulus prob-

lems at root: they simply differ in terms of the way in which the data is impoverished.

The Feature Relevance problem arises from the fact that no finite dataset contains suf-

ficient quantity of input to rule out which of an infinite number of possible features

it should be generalized along. The No Negative Evidence problem arises because

without negative evidence,, a learner cannot decide among all of the hypotheses that

are consistent with the input. It differs from the Feature Relevance problem because

the issue is no longer in deciding which of an infinite number of possible features are

relevant; the issues is that, even given the feature (e.g., formal syntax in Gold’s origi-

nal formulation), it is impossible to logically eliminate hypotheses that overgeneralize

beyond the input. Both of the Feature Relevance problem and the No Negative Evi-

dence problem are PoS problems that depend critically on hypothesis spaces that are

infinite in size. Another kind of PoS problem emerges from the lack of a certain kind

of positive data, and would exist even if the hypothesis space were finite. Thus, al-

though each of the three learnability problems are related, they are also distinct, and

throughout this thesis we will see how these distinctions play out among particular

examples in acquisition.

One commonality among all of these learnability problems – indeed, all learnability

problems in general – is that they are simultaneously a problem and a method: a

problem confronting a learner, and a method for the scientist to infer what sort of

knowledge must be assumed in order to solve the problem. This knowledge takes the

form of higher-order constraints (T ) of some sort which, following Goodman (1955) I

will sometimes also refer to as overhypotheses. The logic of these learnability problems

requires only that some higher-order constraint exists, not that it be innate, although
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it can be difficult to imagine a way in which it might be learned (especially before the

lower-level knowledge it is meant to constrain).

Many types of higher-order constraints have been hypothesized in different do-

mains and for different learning problems. All that the logical of the argument re-

quires is that there be some constraint, not that it be domain-specific, nor even that

it be knowledge per se: constraints due to perception, memory, or attention would

also suffice. To choose a trivial example, no human categorizes objects according to

their color along the ultra-violet spectrum; this is a higher-order constraint that limits

which hypotheses about object categorization are considered, but it emerges because

our perceptual systems do not represent ultraviolet colors, not because of anything

cognitive or knowledge-based per se.

Of course, most of the time the natural response to these learnability problems

is to hypothesize higher-order constraints that are both innate and (often) domain-

specific. For instance, core systems of object representation (e.g., Carey & Spelke,

1996; Spelke & Kinzler, 2007) are theorized to explain why infants assume that objects

obey spatio-temporal principles of cohesion, continuity, and contact (Spelke, 1990;

Aguiar & Baillargeon, 1999). Core knowledge of psychology is used to explain why

babies believe that agents are distinct from objects in that they can move without

contact (Spelke, Phillips, & Woodward, 1995) and act in certain ways in response

to goals (Woodward, 1999; Gergely & Csibra, 2003). Higher-level constraints on

grammatical generalizations may be one aspect of, or play the role of, Universal

Grammar (Chomsky, 1965). Constraints may also be learning algorithms, as in the

Subset Principle (Berwick, 1985), or innate conceptual machinery, as in the case of

Pinker’s semantic bootstrapping hypothesis for verb learning (Pinker, 1989).

In the next section I will address three particular areas in language acquisition

and cognitive development, corresponding to Chapters 3, 4, and 5 respectively, where

we see these learnability problems play out in different ways.
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Learnability in acquisition and development

Auxiliary fronting: Learning abstract syntactic principles

One learnability problem that has been much debated in cognitive science and lin-

guistics concerns the phenomenon of auxiliary fronting in constructing English in-

terrogative sentences (Laurence & Margolis, 2001; Lewis & Elman, 2001; Legate &

Yang, 2002; Pullum & Scholz, 2002; Reali & Christiansen, 2005). This is an exam-

ple of a PoS problem that results from the lack of a certain kind of positive data,

namely, complex polar interrogatives. I consider this specific example with two larger

goals in mind: to begin an exploration of the logical structure of poverty of stimulus

arguments; and to address the general phenomenon of hierarchical phrase structure

in syntax more specifically – the phenomenon that has been argued to underlie the

learning of auxiliary fronting and many other specific rules.

At the core of modern linguistics is the insight that sentences, although they might

appear to be simply linear sequences of words or sounds, are built up in a hierarchical

fashion from nested phrase structures (Chomsky, 1965, 1980). The rules of syntax

are defined over linguistic elements corresponding to phrases that can be represented

hierarchically with respect to one another: for instance, a noun phrase might itself

contain a prepositional phrase. By contrast, in a language without hierarchical phrase

structure the rules of syntax might make reference only to the individual elements

of the sentence as they appear in a linear sequence. Henceforth, when I say that

“language has hierarchical phrase structure” I mean, more precisely, that the rules

of syntax are defined over hierarchical phrase-structure representations rather than a

linear sequence of words. Is the knowledge that language is organized in this way in-

nate? In other words, is it a part of the initial state of the language acquisition system

and a necessary feature of any possible hypothesis that the learner will consider?

Chomsky (1965, 1971, 1980) put forth several arguments for this position, most

famously one based on the phenomenon of auxiliary fronting in English. English

interrogatives such as “Is the man hungry?” correspond to declaratives with a fronted

main clause auxiliary like “The man is hungry”: the auxiliary is at the beginning of
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the interrogative appears to map to the is in the middle of the declarative. One might

consider two possible rules that could govern this correspondence between declarative

and interrogative forms:

1.3. (a) Linear: Form the interrogative by moving the first occurrence of the auxiliary

in the declarative to the beginning of the sentence.

(b) Hierarchical: Form the interrogative by moving the auxiliary from the main

clause of the declarative to the beginning of the sentence.

The linear rule 1.3(a) can be implemented without reference to the hierarchical

phrase structure of the sentence, but the hierarchical rule 1.3(b) cannot. We know

that the actual grammar of English follows principles much closer to the hierarchical

rule 1.3(b), but how is a child to learn that such a rule is correct as opposed to a

linear rule such as 1.3(a)? Although the linear and hierarchical rules result in the

same outcome when applied to simple declarative sentences like “The man is hungry”,

they yield different results when applied to more complex declaratives such as this:

1.4. The man who is hungry is ordering dinner.

The linear rule predicts the interrogative form in (1.5.a), while the hierarchical

rule predicts the form in (1.5.b):

1.5. (a) * Is the man who hungry is ordering dinner?

(b) Is the man who is hungry ordering dinner?

Of course, 1.5(b) is grammatical in English while 1.5(a) is not. This difference

could provide a basis for inferring the correct rule: if children learning language hear

a sufficient sample of grammatical sentences like 1.5(b) and few or no ungrammatical

sentences like 1.5(a), they might reasonably infer that the hierarchical rule rather than

the linear rule correctly describes the grammar of English. Yet Chomsky argued that

complex interrogative sentences such as 1.5(b) do not exist in sufficient quantity in

child-directed speech, going so far as to assert that “it is quite possible for a person to

go through life without having heard any of the relevant examples that would choose
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between the two principles” (1971). In spite of this paucity of evidence, children

three to five years old can form correct complex interrogative sentences like 1.5(b)

but appear not to produce incorrect forms such as 1.5(a) (Crain & Nakayama, 1987).

Chomsky further argued that on a priori grounds, a general-purpose learning

agent who knows nothing specifically about human natural languages would take the

linear rule to be more plausible by virtue of its simplicity: it does not assume either

the existence of hidden objects (e.g., syntactic phrases) or of a particular organization

(e.g., hierarchical rather than linear). If the correct rule cannot be learned from data

and is also dispreferred due to a general inductive bias favoring simplicity, the logical

conclusion is that children come equipped with some powerful language-specific innate

mechanisms that bias them to learn syntactic rules defined over hierarchical rather

than linear structures.4

Word learning: The problem of reference

The issue of determining the referent of a word is one of the prototypical learnability

problems confronting children as they develop. As in other domains, most theories

of how to overcome this problem hypothesize some sort of innate overhypothesis

or higher-order constraint. For instance, the whole object constraint is theorized

to describe why children prefer to apply words to whole objects rather than parts

(Heibeck & Markman, 1987; Markman, 1990). Other constraints include the mutual

exclusivity principle, which suggests that children assume that objects have only one

label, and the taxonomic assumption, under which children assume that labels pick

out objects organized by kind rather than thematically (Markman, 1990).

These and other overhypotheses seem reasonable, and there is considerable evi-

dence in favor of them, but it is also clear that they cannot be the whole story. After

4In his formulation, Chomsky was concerned with the question of structure dependence (whether
the syntactic rules were defined over the structures of the language) rather than the question of
what those structures were (i.e., hierarchical or linear). The analysis here is not an attempt to argue
against the innateness of structure dependence per se, which inherently depends on the notion of
movement rules. I do not evaluate linguistic representations that incorporate any such rules, and
therefore am focused here more on the second question, (although the two are clearly quite closely
intertwined, and the general framework might be interestingly applied to that question).
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all, we do learn the names of parts of objects eventually (presumably one does not

need to see a detached arm or head in order to acquire those terms!). Some of the

words children learn violate the mutual exclusivity assumption: a child’s pet may be

both an animal and a dog (and, for that matter, a pet). While one could respond

to these objections by modifying the constraints to be soft and allow exceptions,

precisely specifying which exceptions to allow, and when, is nontrivial indeed.

There is deeper problem with the idea that the problem of reference is solved by

assuming the existence of innate overhypotheses about word learning: namely, that

at least some overhypotheses appear to be learned. For instance, consider the shape

bias: by the age of 24 months old, English-learning children tend to assume that

count nouns are organized by shape. When given a novel object paired with a novel

label like “dax”, they are likely to generalize it to items that are similar in shape

but not texture or color (Landau, Smith, & Jones, 1988; Soja, Carey, & Spelke,

1991). There are many compelling reasons for believing that this bias is learned

rather than innate. The distribution of count nouns in English is organized by shape,

and children do not acquire the shape bias until their vocabulary reaches a certain

size (Samuelson & Smith, 1999, 2000). Teaching them additional words before that

point makes them not only acquire the bias earlier, but also results in faster learning

of other, non-taught words (Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson,

2002). Furthermore, the shape bias does not appear to be the only overhypothesis

about feature generalization that children apply to word learning: while shape alone

is a good cue to category membership for artifacts, texture seems as good as shape

for animal categories, and color rather than shape appears most appropriate for foods

(e.g., Booth & Waxman, 2002; Macario, 1991).

Some have suggested that the shape bias is a matter of attentional learning, and

emerges simply from noting the distributional overlap between count nouns and their

referents (Smith, Jones, Yoshida, & Colunga, 2003; Colunga & Smith, 2004, 2005;

Smith & Samuelson, 2005). Under this view, words are simply features that hap-

pen to correlate strongly with shape, and children learn this correlation based on

simple association. Another explanation holds that word labels are a cue to kind or
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category membership, and shape is useful because it is also a reliable cue (Soja et

al., 1991; Xu, Carey, & Quint, 2004). Under this explanation, the shape bias is not

linguistic per se: rather, it emerges from the ontological commitments children make

concerning the nature of kinds (Xu, 2002; Xu et al., 2004; Bloom, 2000; Markson,

Diesendruck, & Bloom, 2008). Thus, although this latter account certainly argues for

more innate machinery, what is assumed innate is not the shape bias (or any partic-

ular feature bias) itself, but rather the assumptions the child brings to the problem

of word learning that result in the shape bias.5

Another way to characterize this debate, therefore, might be that the two sides

disagree about the nature of the over-overhypotheses that govern the acquisition of the

shape bias – or, put another way, they differ on the nature of the innate knowledge that

guides the acquisition of the higher-level constraints T .6 One side states this explicitly,

arguing that the contention under debate concerns what assumptions children make

about how labels and shapes pick out kinds. But even the distributional account,

though it claims that no strong or domain-specific assumptions are necessary, limits

the features considered; they include shape and some others (size, color, texture), but

not an infinite number, and the account is largely about how a learner determines

which of those features is relevant. Everyone has implicitly accepted that something

that is itself an overhypothesis (i.e., the shape bias) can be learned; they just disagree

about what assumptions are necessary to explain how.

However, there is a hint of a paradox at the center of the notion of learned in-

ductive constraints that we need to confront: how can an overhypothesis be learned

before the things it is constraining and still act to constrain them? Does lower-level

learning always occur before higher-level learning, as one might expect, or is it pos-

5While many of these researchers suggest that shape for young children is salient and important
even in the absence of word learning, this is not due to some sort of (innate) general perceptual
salience applied indiscriminately; rather, it is salient precisely when children have reason to believe
it is a valid cue for kind categories (e.g., S. Gelman & Ebeling, 1998; Bloom & Markson, 1998;
Diesendruck & Bloom, 2003). Indeed, although these researchers have not proposed a learning
mechanism for how children realize that shape is a cue for category membership, they seem broadly
sympathetic to the idea that one exists (e.g., Soja et al., 1991; Markson et al., 2008).

6Although, as we shall see in Chapter 4, these are not over-overhypotheses that are cached out
directly in the model we present. I use the notion here of over-overhypothesis in a more general
sense, as a constraint on a constraint that is itself learned.
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sible to acquire an overhypothesis faster than the specific hypotheses it is meant to

constrain? If not, how can we explain the shape bias? If so, what principles ex-

plain this acquisition? And what, if anything, does this imply about the inductive

constraints that were previously assumed must be innate?

Baker’s Paradox: The case of verb argument constructions

Another classic learnability problem in language acquisition concerns the generaliza-

tion patterns of verb argument constructions (Baker, 1979; Bowerman, 1988; Pinker,

1989). Verbs vary syntactically as well as semantically: different verbs take arguments

in distinct patterns, or constructions. For instance, a verb like love is associated with

the transitive construction, which requires the verb to take an NP object (e.g., “He

loves her”). Different verbs are associated with different constructions, and often

cluster in recognizable patterns. Consider the following English sentence pairs:

1.6. (a) Dave gave a gift to Laura. / Dave gave Laura a gift.

(b) Tracy sent an e-mail to Rob. / Tracy sent Rob an e-mail.

(c) Steve told a joke to Lauren. / Steve told Lauren a joke.

(d) Julie read a book to John. / Julie read John a book.

You might expect, based on these, that an acceptable generalization would be to

say that anything that can occur in the first construction (the prepositional dative)

is also found in the second (double-object dative). Unfortunately, some verbs occur

in one construction only:

1.7. (a) Toby reported the loss to Sara. / * Toby reported Sara the loss.

(b) Diane said “okay” to George. / * Diane said George “okay.”

This is a classic example of the No Negative Evidence problem: though children

are never told that the starred sentences are incorrect, they eventually learn to avoid

them. This particular pair of constructions, called the dative alternation, is just one

example; three other common alternations, extensively discussed by Pinker (1989)

and elaborated in Levin (1993), among others, are:
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1.8. Passive alternation

(a) Ben kicked Stephanie. / Stephanie was kicked by Ben.

(b) Ben resembled Stephanie. / *Stephanie was resembled by Ben.

1.9. Causative alternation

(a) The box opened. / Melissa opened the box.

(b) The dog barked. / * Melissa barked the dog.

1.10. Locative alternation

(a) Kelly loaded hay into the truck. / Kelly loaded the truck with hay.

(b) Kelly pushed hay into the truck. / * Kelly pushed the truck with hay.

Baker (1979), one of the first to point out this problem, claimed that children

never produce the incorrect constructions: “the speech of children contains virtually

no examples in which they overgeneralize the double-NP construction to verbs that

do not allow it in the adult language.” (p 543) More recent evidence indicates that

Baker’s claim is untrue – there is a stage at which children do overgeneralize7 – but

this simply makes their behavior more difficult to explain. If children make certain

predictable errors due to overgeneralization, they are probably not relying on the

Subset Principle; so how are they ultimately solving this learnability problem? What

higher-order constraints T must we assume in order to explain their behavior?

Bringing it all together

Each of these three learnability problems is centrally concerned with the issues that

arise when faced with an underconstrained problem of induction. The Feature Rele-

vance problem focuses on the question of how a learner decides which of a potentially

infinite number of features to generalize upon. The No Negative Evidence problem is

about how to correctly limit generalizations along the feature(s) already identified as

7See Pinker (1989) and Chapter 5 for an overview.
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relevant, if one lacks negative evidence about which ones are incorrect. And the most

general of the three, the Poverty of the Stimulus problem, is about how to general-

ize when one lacks the evidence (of whatever kind) believed necessary to distinguish

between multiple hypotheses that are otherwise all consistent with the data.

Existing learnability analyses have proven valuable for not only pointing out these

problems in the first place, but also for providing a starting point in the struggle

to understand how human learners solve them; but, as with any single approach,

they have certain limitations. In this thesis I exploit recent advances in machine

learning and computer science to revisit these arguments from a novel perspective.

Although each specific learnability problem poses its own challenges, and all differ

in particular details, several common themes – the core insights contributed by the

Bayesian approach – emerge throughout.

Ideal analysis, but with real-world datasets

The three learnability problems I have discussed involve datasets with certain char-

acteristics. The mathematical investigations of learnability in the limit apply only

for datasets that are infinite in size. For the logical problem of induction presented

by Goodman, the concern arises from the finite size of the dataset rather than any of

the other characteristics it might have. And the Poverty of the Stimulus argument

makes reference not to an entire dataset of language, but only to those certain subsets

assumed to be relevant.

In none of these cases are large, real-world datasets incorporated into the analy-

ses. In one sense this is a strength – it is genuinely useful to be able to identify what

can happen in the limit of infinite data – but at the same time, it forms only part of

the picture. Learnability analyses can be ideal either because the learner is ideal, or

because the data is. This means that the space of different kinds of learnability anal-

yses encompasses four options, graphically depicted in Figure 1-1. Most learnability

analyses to date, as we’ve seen, have applied only to the top square: evaluating the

effects of having ideal data as well as an ideal learner. The ultimate goal of cognitive

science and linguistics is to understand the bottom square: how realistic learners use
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Figure 1-1: The landscape of learnability analyses. Learnability approaches differ
based on the assumptions made about both the data and the learner. Most learn-
ability analyses to date have applied only to the top square: ideal learners given ideal
data. Ultimately we would like to be able to understand the bottom square: what
realistic learners glean from realistic data. With this ultimate goal in mind, this thesis
considers the shaded square on the right: ideal learners given realistic data.

realistic data over their lifetime. This thesis considers the shaded square on the right,

exploring what is possible to learn in theory – i.e., given an ideal learner – based on

the type of data that children actually see.

An advantage of this approach, besides moving the dialogue towards the ultimate

goal, is that reframes the dialogue; instead of noting all of the many ways that

learning is impossible in theory, it asks what can be learned in practice. Thanks to

the analyses of mathematical learning theory, we know that it is impossible to learn

non-finite languages in the limit without making certain strong assumptions about

the presentation of the data, and that even viewing the problem probabilistically

only helps if you know the general shape of the family of distributions to begin with.

But these analyses apply to classes of languages defined according to the Chomsky

hierarchy, not individual ones. Even if an ideal learner is not guaranteed to converge

to the correct grammar on an arbitrary dataset, it might actually converge – or at

least learn something linguistically interesting – on a dataset of real linguistic input.

Natural language, particularly of the sort that children receive, is very different than

an ideal corpus, containing a small number of sentence types that are idiosyncratically

distributed in many ways. This is certainly a different sort of learning problem, and

it is useful to explore precisely what assumptions need to be made to solve it.

Exploring full real-world datasets is important even in counterpoint to the anal-

34



yses that have either assumed that the dataset is minimal (but finite), or that have

concentrated on only a particular subset of linguistic input. Goodman’s riddle of

induction points out that some constraints are necessary, leaving scientists with the

question of “which ones?” Identifying those constraints – particularly if they exist on

an even higher level, like over-overhypotheses – is much facilitated by being able to

explore what an ideal learner can learn from real-world data. PoS arguments whose

core contention concerns the lack of some piece of data are better evaluated in the

context of a real-world dataset: this helps to avoid making implicit assumptions about

which data is actually relevant to the learning problem.

Higher-order constraints can be learned

Although the idea that higher-order inductive constraints T can be learned is explored

most fully in the context of the shape bias, it is a theme that runs through all of the

analyses in this thesis. The importance of this idea is apparent in two major ways.

First, it forces a re-examination of the usual presumption in cognitive science that

finding evidence for the existence of an inductive constraint means that the constraint

itself must be innate. If inductive constraints can be learned – and sometimes learned

faster than the specific hypotheses they are constraining – then it may be possible

that many of the constraints and biases we assume to be built in are actually not.

Under this view something must be innate, to be sure; but we may not be justified in

concluding that any particular constraint is, even if it emerges early in development.

More broadly, realizing how levels of knowledge can mutually reinforce and interact

with one another as they are acquired can yield insight into what must be presumed

in the first place.

Secondly, and perhaps more beneficially, this work demonstrates a paradigm for

addressing the questions the first point opens up. Without a means to explore whether

a hypothesized inductive constraint is truly innate, or is learned based on some even

higher-level innate assumptions, the only benefit from this sort of re-examination

would be, perhaps, to help restrain ourselves from jumping to conclusions. However,

the Bayesian framework offers a means for performing that exploration by providing
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a way to rigorously and systematically evaluate what sort of over-overhypotheses (or

even over-over-overhypotheses) would be necessary to qualitatively explain human

learning in the face of real-world data.

The simplicity/goodness-of-fit tradeoff

A central question in understanding how people learn and reason about the world

relates to why we generalize beyond the input we receive at all – why not simply

memorize everything? Needing to generalize creates a logical problem when there

are an infinite number of possible features along which that generalization could be

formed. Nevertheless, we must generalize because the ability to make inferences and

predict data we haven’t previously observed relies on our ability to extract structure

from our observations of the world. If we do not generalize, we cannot learn, even

though any act of generalization is, by definition, a simplification of the data in the

world, resulting in occasional error. It is therefore important to simplify the data in

such a way as to find the optimal balance between the gain in generalization and the

cost due to error.

Achieving this balance is one of the fundamental goals of any learner, and indeed

of any scientific theory or computational/statistical framework. Too much emphasis

on simplicity means the learner is unable to learn from data, producing a high degree

of error; too much emphasis on precisely memorizing the data means that the learner

overfits, unable to capture the correct underlying generalizations. Bayesian models

capture the tradeoff between simplicity and goodness-of-fit in an optimal way.8 Be-

cause human learners – including children – care primarily about predicting future

events, they too must adopt some version of this tradeoff.

As a result of performing this tradeoff, the amount and type of data can have a

profound effect on the inferred theory. Especially when the representations involved

are richly structured, what look like discrete qualitative shifts emerge simply because

the tradeoff favors different theories as the data changes. In all three of the areas

examined in this thesis, we will see how shifts in behavior that qualitatively parallel

8See Chapter 2 for a thorough discussion of this point.
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human learning are a natural byproduct of Bayesian learning on realistic data.

Goals of this thesis

The central goal of this thesis is to explore three common learnability arguments by

formalizing them in Bayesian terms; and, in so doing, to supply insight on several of

the fundamental questions in cognitive science and language acquisition. What do we

need to assume about a child’s innate endowment – about her representational capac-

ities, learning mechanisms, and cognitive biases – in order to explain the process and

outcome of language acquisition? By focusing on three classic learnability arguments

in the context of three major questions in language acquisition, I explore the issues

of representation and learnability from multiple angles and demonstrate some of the

power and flexibility of the this paradigm.

Bayesian learning offers a solution to the No Negative Evidence problem, resulting

from the simplicity/goodness-of-fit balance. And while it does not solve the Feature

Relevance or the Poverty of Stimulus problems in the abstract, it yields useful insights

about both: that higher-level abstract constraints may be learned at least as rapidly as

lower-level specific information; that evidence for certain types of abstract knowledge

may result from characteristics of an entire dataset rather than specific items; and

that what knowledge or constraints are innate may be specifiable at an abstract

enough level that they could plausibly be domain-general even if the less abstract

knowledge is not.

This research offers a new perspective about what we can and can’t conclude

from standard learnability arguments, and provides a framework that allows for an

increasingly subtle, detailed, and rigorous analysis of claims about what must or must

not be innate (as well as what that even means). The framework allows us to evaluate

the bounds of “optimal” reasoning while also being able to vary with precision how

this might depend on the data, the nature of the learner’s mental representation, and

both domain-specific as well as domain-general biases (whether due to the attentional,

perceptual, memory-based, or learning mechanisms of the child). By no means do
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I argue that such a framework should supplant other methods in cognitive science,

but it is an essential tool in the toolbox as we move toward constructing a full and

accurate picture of the human mind.

In the next chapter I provide a basic introduction to the Bayesian framework,

including a discussion of some of the implications and issues that arise for anybody

working within it. The subsequent three chapters each focus on the three particular

areas in language acquisition and cognitive development introduced in here, which we

can broadly classify by topic: abstract syntactic structure, verb argument structure,

and word learning. Although similar themes emerge in each of these areas, the division

by topic helps us explore the power and flexibility of the framework as I apply it to

a range of problems, over several types of representation, and with multiple kinds

of data. In the final chapter I discuss this work on a broader level, with a special

focus on the themes underlying all of the individual projects, a consideration of the

framework, and the direction of research as we move forward.

38



Chapter 2

An introduction to Bayesian

modelling

Generalization is a central issue in cognitive science and language acquisition: how do

we learn so much from such apparently limited evidence? This question arises in any

situation in which the conclusions are underdetermined by the information available

and it is therefore necessary to make inductive leaps – precisely the sorts of situations

likely to be encountered by a human learner on a daily basis. Bayesian inference

is a general-purpose computational framework for understanding and exploring how

people might make these inductive leaps.

This chapter provides a basic introduction to how the Bayesian framework can be

applied to important questions in cognitive science. The goal is to provide an intuitive

and accessible guide to the what and the why of the Bayesian approach: what sorts of

problems and data the framework is most relevant for, and how and why it may be

useful for psychologists and cognitive scientists. I spend some time considering issues

that are particularly relevant for any cognitive scientist in evaluating a computational

model, including its biological plausibility, application to developmental issues, and

the question of what these sorts of models can reveal about the human mind. This will

be useful in subsequent chapters as we analyze particular models and ask questions

about why they act as they do, and what conclusions we can draw about important

issues in cognitive science on the basis of their behavior.
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The basics

The fundamental question a Bayesian approach addresses is how to update beliefs and

make new inferences in light of new data. Central to this framework is the assumption

that beliefs can be represented as probabilities – that one’s degree of belief in some

proposition, hypothesis, or theory X can be expressed as a real number ranging

from 0 to 1, where 0 means “X is completely false” and 1 means “X is completely

true.” Making such an assumption allows us to use the mathematics of probability

theory to conduct inference: how to select from among a set of theories which one(s)

best explain the observed data. The Bayesian framework does so by formalizing an

important tradeoff between the complexity of the theory on one hand and how well

it explains the observed data on the other; it prefers theories that offer a balance

between the two.

Observed data is assumed to be generated by some underlying process – a mecha-

nism explaining why the data occurs in the patterns it does. (Spoken sentences may

be generated from some sort of mental grammar; words are generated from a mental

lexicon; and both are partially affected by social and pragmatic factors as well). The

job of the learner is to evaluate different hypotheses about the underlying nature of

that process, and to make predictions based on the most likely hypotheses.

This is perhaps best illustrated in the context of a schematic example, depicted

graphically in Figure 2-1. Data (the dots) are generated by processes that occupy

different subsets of space: each process can generate data within its region, but

not data outside of it. Each hypothesis constitutes a different theory about which

subset(s) of space the processes occupy. One such hypothesis is illustrated in Figure

1: according to this hypothesis, there are two underlying processes, each denoted

by one of the blue rectangles. If a learner believes that this hypothesis was correct,

she might predict that she would be far more likely to observe a new datapoint in

position a rather than position b, even if she had previously seen neither. In such

a way, learning which hypotheses are most likely can aid a learner in inference and

generalization.
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Figure 2-1: Example data and hypothesis. Graphical representation of data and one
possible hypothesis about the how that data was generated. This hypothesis suggests
that there are two generative processes, each depicted as a blue rectangle. Under this
hypothesis, a new datapoint in position a is far more likely than one in b.

Hypotheses are compared using Bayes’ Rule (Equation 2.1, below), which states

that the probability of some hypothesis given the data (the posterior) is proportional

to the probability of the data given the hypothesis (the likelihood) and the probability

that the hypothesis is true, regardless of what the data is (the prior).

p(H|D) ∝ p(D|H)p(H). (2.1)

Intuitively, the posterior probability captures a natural balance between simplicity

(measured by the prior) and goodness-of-fit (measured by the likelihood). Achieving

this balance is one of the fundamental goals of any computational framework, and

indeed of any scientific theory: too much emphasis on simplicity means the theory or

model is unable to learn from data, and too much emphasis on goodness-of-fit means

that it overfits, unable to capture the true generalizations within the data. Figure 2-2

illustrates this graphically: channeling Goldilocks, we might conclude that hypothesis

A looks too simple, hypothesis C seems too complex, and hypothesis B is “just right.”

(Or, following Einstein, “everything should be made as simple as possible, but not

simpler.”) Bayesian models capture this intuition using techniques sometimes known

as the Bayesian Occam’s Razor (MacKay, 2004).

How well a hypothesis fits the data is captured by the likelihood, given by P (H|D):

the probability of the observed data given the hypothesis. Although the likelihood

can sometimes be difficult to calculate in practice, it is straightforward to understand
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Figure 2-2: The Goldilocks Effect. Hypothesis A is too simple, C is too complex, and
B is “just right.” Hypothesis A is quite simple, but fits the observed data poorly:
C fits closely but is highly complicated. The best description of the data should
optimize a tradeoff between complexity and fit, as in B.

intuitively. For instance, hypothesis C in Figure 2-2 clearly has a high likelihood:

if the hypothesis is true – that is, if the data is truly generated by thirty distinct

underlying processes corresponding to the thirty rectangles of C – the datapoints

could hardly be anywhere else. Hypothesis C therefore fits the data extremely well.

By contrast, hypothesis A has relatively low likelihood: it does not explain why the

datapoints are found where they are. After all, according to A, the thirty datapoints

would be just as likely if they were each randomly located in other places within the

blue rectangle. The ratio of the observed datapoints to the area for predicted data

is low for A, since the data could easily have been elsewhere, but high for C, since

it couldn’t. Likelihood is, essentially, this ratio1; thus, hypotheses that make specific

predictions – those with more explanatory power – are favored there.

The prior probability of a hypothesis, or P (H), is calculated in such a way that

simpler hypotheses have higher probability. The definition of simplicity and the

corresponding calculation of P (H) are not the result of some externally-imposed ad

hoc mechanism. Rather, they emerge naturally from the generative assumptions

1This is, incidentally, why it can be sometimes be difficult to calculate. In the example here,
area is a straightforward calculation, but if the space of hypotheses is itself quite complicated, then
calculating the “area” of that space involves summing up all of the data that can be generated by the
hypothesis. This can be done by enumeration, but this is very time-consuming, and only practical
for simple problems. In general, mathematical techniques are used instead; one of the biggest areas
of research in machine learning is to develop more effective techniques and faster, more efficient
algorithms for using them. Gilks, Richardson, and Spiegelhalter (1996), MacKay (2004), and A.
Gelman, Carlin, Stern, and Rubin (2004) are good references for those interested in this issue.
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underlying the Bayesian framework, in which hypotheses are themselves generated

from a space of candidate hypotheses. For instance, the hypotheses in Figure 2-2

correspond to different sets of rectangular regions within the metric space. Simpler

hypotheses require fewer “choice points” during that generation process. Hypothesis

A can be fully captured by making only four choices: two for the coordinates of the

lower left-hand corner of the rectangle (x and y), one for its length (l), and one for

its width (w). By contrast, hypothesis C contains thirty distinct rectangular regions,

and therefore requires 120 separate choices to specify, four for each region.

This notion of calculating complexity as a function of the number of choice points

is a reflection of the idea that the more complicated something is, the more likely it is

to mess it up – or, in other words, “The more they overtech the plumbing, the easier

it is to stop up the drain.”2 I discovered this principle in junior high school when I

tried to make a double-layer cake for a bake sale, never before having tried baking

anything. Several explosions of flour, an unanticipated smoke alarm, and a burnt,

unrisen cake later, I concluded that perhaps it would have been a better idea to start

my cooking career with grilled cheese sandwiches or scrambled eggs instead. More

complicated recipes have more ingredients and more directions, which means they

have more choice points – more opportunities for things to go wrong. In a similar

way, the more choices a hypothesis requires, the more likely it is that those choices

could have been made in a different way, resulting in an entirely different hypothesis.

The precise prior probability of a hypotheses is therefore not arbitrarily assigned,

but rather falls out in a principled way from how the hypotheses are generated. My

“generative model” for cake recipes – in a sad reflection of my cooking knowledge at

the time – was close to assuming that recipes consist of ingredients randomly thrown

together; the generative model for the hypotheses in Figure 2-2 is one that can result

in any possible combination of rectangular regions within the metric space. A different

generative model results in a different – but no less principled – assignment of prior

probabilities. For instance, if we assumed the regions could be circles rather than

rectangles, then each region would require three choice points rather than four (the

2Scotty, Star Trek IV.

43



x and y coordinates of the center of the circle, plus its radius). Despite the different

generative model, the logic favoring simple hypotheses is the same: multiple regions

will still be a priori less likely than a few.3 The generative model therefore matters

for determining precisely what the relative probability of each hypothesis is, but

most reasonable models give qualitatively similar relative probabilities to qualitatively

similar hypotheses.

The set of all possible hypotheses is called the hypothesis space, which is depicted

graphically in Figure 2-3. It can also be thought of as the range of hypotheses the

model can entertain – the space of possibilities inherent in the setup. In the cooking

example, the hypothesis space would be the space of all recipes I could have made

given the ingredients in the house at the time – the number of random combinations

of those ingredients and ways of cooking them. (Note that hypothesis spaces can

be infinite in size). The hypothesis space corresponding to Figure 2-2 consists of

all possible combinations of rectangles. Hypothesis spaces can also be additive or

disjunctive: for instance, if we weren’t sure about the shape of the regions generating

the data, we could consider the hypothesis space made up of all possible rectangles

and all possible circles. (If that were the case, prior probability would be assigned

under a generative model that had an additional choice point for each region: is it a

rectangle or a circle? Each individual hypothesis would therefore have a lower prior

probability, although the probability of each relative to the other would be the same).

Learning and inference within a Bayesian model involves comparing the different

3It is always true that within the set of choices defined by the generative model, the hypothesis
that requires fewer choices has higher probability. However, it is always possible, by changing the
primitives of the model, to design some Bizarro World model that looks to us as though it assigns
higher probability to more complicated-looking hypotheses. For instance, so far we have considered
“primitives” – the basic elements we have to make choices about – to be simple regions like rectangles
and circles. We could imagine instead that each primitive was defined within the model as, say, a set
of thirty tiny regions (of which hypothesis C might be one instance); other hypotheses might be made
by adding to or subtracting from those. In that case, hypothesis C might very well have higher prior
probability than A. In this sense, then, the simplicity of a hypothesis is only meaningful relative to
the set of primitives out of which the hypotheses are generated – and prior probability is, therefore,
only a principled calculation given to those. The decision of what the primitives are is therefore an
important choice that must be made by any modeler, and is an issue I consider in more depth later.
For now, I will just note that this is a decision that is not restricted to Bayesian modelers, but must
in fact be faced by any theorist, computational or otherwise: indeed, the Bayesian framework – by
forcing us to make these assumptions explicit – can be a powerful tool for evaluating the primitives
we choose.
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Figure 2-3: Hypothesis space for some sample data. Each rectangle consists of a
possible hypothesis; some are supported closely by the data and some are not. The
actual hypothesis space contains all possible rectangles, but I show just a few for
illustrative purposes.

hypotheses in the hypothesis space, ultimately preferring those with the highest pos-

terior probability. In the example above, the model learns which of the possible sets

of regions constitutes the best theory about the underlying data-generating process.

The hypothesis space itself is given: the theory must consist of a set of regions that

exist within the positive quadrant of coordinate space, and the regions are specified

by x, y, l, and w values within some range. This type of information must be built

into any model, but these specifications need not be very strong or very limiting: for

instance, one might simply specify that the range of possible values for x, y, l, and w

lies between 0 and some extremely large number like 109, or be drawn from a prob-

ability distribution with a very long tail. The issue of what is “built in” will recur

throughout this chapter, and I will return to it more broadly later in the chapter.

Hierarchical learning

One way to effectively increase the size of the hypothesis space is to allow learning

at multiple levels of abstraction – learning higher-order information about specific

hypotheses as well as the hypotheses themselves. We see this type of learning all the

time in human cognition. Learning to cook involves realizing that making breads and

pastries generally requires mixing ingredients that often include eggs and flour; that

meat is often either fried or cooked in a pan, but not usually inserted into the toaster;

and that spices and seasonings should be used by the pinch, not by the jar. These
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(a) (b)

Figure 2-4: Learning higher-order information. (a) Given point a, one cannot identify
whether b or c is more likely. (b) Given additional data, a model that could learn
higher-order information about hypotheses might realize that regions tend to be long,
thin rectangles oriented along the y axis. If so, points a and b are probably within
the same region, but a and c are not.

realizations are all inferences about the nature of recipes rather than specific recipes

themselves, and are especially useful when confronted with a novel yet underspecified

recipe or a new set of ingredients. Even if you have never made roast goose before,

you know that you shouldn’t try to cook it by grinding it up and mixing it with eggs

and flour – there is no need to ruin Christmas dinner to find this out.

A similar type of inference would occur if, presented with the data in Figure 2-4,

a learner realized not only which rectangular regions were most likely, but also that

the regions tend to long, thin, and oriented along the y-axis. Just as making higher-

order inferences about cooking helps when confronted with a new situation, making

this type of higher-order inference helps the learner when confronted with novel data.

Such a learner would be able to infer that point b is probably in the same region as

a but point c is not, even though b and c are equidistant from a.

A certain kind of Bayesian model, known as a hierarchical Bayesian model (HBM),

can capture this sort of inference. It learns not only by choosing among specific hy-

potheses, but by also making higher-order generalizations about those hypotheses. In

a non-hierarchical Bayesian model, the modeler sets the parameters that govern the

hypotheses, as we’ve seen. In a hierarchical model, the modeler specifies the hyper-

parameters – parameters on the parameters – and the model learns the parameters
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themselves. So rather being given that the range of each of the x, y, l, and w values

lies between 0 and 109, the hierarchical model learns the typical range of each – e.g.,

that l tends to be short while w tends to be long – and the modeler specifies the

range of the ranges.

A surprising effect of learning in hierarchical models is that, quite often, the higher-

order abstractions are acquired before the specific lower-level details: the model might

realize that l tends to be short and w tends to be long before it has specified the size

and location of each rectangular region with precision. This effect, which we might call

the “blessing of abstraction”4, is somewhat counterintuitive. Why are higher-order

generalizations like this sometimes easier for a Bayesian learner to acquire?

One reason is that the higher-level hypothesis space is often smaller than the

lower-level one. As a result, the model has to choose between fewer options at the

higher level, which may require less evidence. For instance, the higher-level knowledge

may consist of only three options: l and w are approximately equal, l is smaller than

w, or w is smaller than l. Even if a learner doesn’t know whether l is 10 units or 11

units long and w is 20 or 22, it might be fairly obvious that l is smaller than w.

More generally, the higher-level inference concerns the lower-level hypothesis space

(and hence the dataset as a whole), whereas the lower-level inference is only relevant

for specific datapoints. The red datapoint in Figure 2-4 is informative only about

the precise size and location of a single region, the rectangle on the left. However,

it – and every other single datapoint – is informative about all of the higher-level

hypotheses. There is, in effect, more evidence available to the higher levels than the

lower ones, and they are therefore learned more quickly.

This has interesting implications for the study of learnability and the question

of innateness. The basic motivation for positing innate constraints on cognitive de-

velopment is that without these constraints, children would be unable to infer the

specific knowledge that they seem to acquire from the limited data available to them.

What is critical to the argument is that some constraints are present prior to learning

some of the specific data, not that those constraints must be innate. Approaches to

4I owe this coinage to Noah Goodman.
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cognitive development that emphasize learning from data typically view the course

of development as a progressive layering of increasingly abstract knowledge on top of

more concrete representations; under such a view, learned abstract knowledge would

tend to come in after more specific concrete knowledge is learned, so the former could

not usefully constrain the latter. This view is sensible in the absence of learning mech-

anisms that can explain how abstract constraints could be learned together with (or

before) the more specific knowledge they are needed to constrain. However, hierarchi-

cal Bayesian models provide such a learning mechanism. If an abstract generalization

can be acquired very early and can function as a constraint on later acquisition of

specific data, it may function effectively as if it were an innate domain-specific con-

straint, even if it is in fact not innate and instead is acquired by domain-general

induction from data.

Representational capacity

Because a Bayesian model can be defined for any well-specified generative framework,

the representational capacity of the Bayesian approach is limited only by the repre-

sentations that can be specified by the generative process. In the example we’ve been

considering, the representation (rectangles in a metric space) is fairly simple, and

probabilistic inference is done over that representation. Other common representa-

tions include probability distributions in a metric space, which may be appropriate

for phonemes as Gaussian clusters in phonetic space (e.g., N. Feldman & Griffiths,

2007); directed graphical causal models, which may be appropriate for causal reason-

ing (e.g., Pearl, 2000; Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003; Gopnik et

al., 2004); abstract graphical structures including taxonomies, which may be appro-

priate for some aspects of conceptual structure (e.g., Kemp, Perfors, & Tenenbaum,

2004; Roy, Kemp, Mansinghka, & Tenenbaum, 2006; Schmidt, Kemp, & Tenenbaum,

2006; Xu & Tenenbaum, 2007); objects as vectors of features, which may be appropri-

ate for categorization and object understanding (e.g., Kemp, Tenenbaum, Griffiths,

Yamada, & Ueda, 2006; Kemp, Perfors, & Tenenbaum, 2007; Shafto, Kemp, Mans-
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inghka, Gordon, & Tenenbaum, 2006; Navarro & Griffiths, 2007); bags of words,

which may be appropriate for semantic representation (e.g., Griffiths, Steyvers, &

Tenenbaum, 2007); grammars, which may be appropriate for syntax (e.g., Dowman,

2000; Perfors, Tenenbaum, & Regier, 2006); argument structure frames, which may

be appropriate for verb knowledge (e.g., Alishahi & Stevenson, 2008); Markov models,

which may be appropriate for action planning and goal inference or part-of-speech

tagging (e.g., Verma & Rao, 2006; Baker, Tenenbaum, & Saxe, 2007; Goldwater &

Griffiths, 2007); and even logical rules, which may be appropriate for some aspects

of conceptual knowledge (e.g., Goodman, Griffiths, Feldman, & Tenenbaum, 2007).

This is not an exhaustive list, but it is sufficient to illustrate the representational

flexibility inherent in the Bayesian approach.

The ability to capture a wide variety of both structured and unstructured repre-

sentations provides an escape from an intellectual dichotomy imposed in part by the

computational models available to theorists, especially those interested in questions

of learnability in language. Although the question of whether human learners have

(innate) domain-specific knowledge is logically separable from the question of whether

and to what extent that knowledge requires structured representations, in practice

these issues have often been conflated. Within cognitive science, computational mod-

els of how language might be learned have usually assumed that domain-general learn-

ing operates on representations without explicit structure (e.g., Elman et al., 1996;

Rumelhart & McClelland, 1986; Rogers et al., 2004; Reali & Christiansen, 2005).

The main proponents of innate language-specific factors, on the other hand, have

typically assumed that the representations involved are structured (e.g., Chomsky,

1965; Pinker, 1984). Few cognitive scientists have seriously explored the possibil-

ity that explicitly structured mental representations might be learned via domain-

general mechanisms. This lack exists in part because, historically, the computational

formalisms most widely perceived to be capable of capturing domain-general human

learning – neural networks and Markov models – incorporate representations without

explicit structure. While both of these frameworks have made substantial contribu-

tions to cognitive science, it is also important to be able to evaluate the possibility
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that structured representations exist explicitly but can still be learned. Bayesian

models provide a computational framework in which to ask this question.

Bayesian learning in action

Although each of these specific models have distinct properties depending on the

nature of the domain and dataset they are appropriate for, Bayesian learning in

general has a number of notable characteristics. One such feature, which emerges

naturally as a result of the tradeoff between simplicity and goodness-of-fit, is that the

size of the dataset matters: different hypotheses may be favored for different amounts

of data, even if the data is always generated by the same underlying process. This is a

byproduct of sensible inference, and a hallmark of human cognition – I am more apt to

think that all pastry recipes share a common structure (eggs, flour, baking in an oven)

if I have seen many different recipes rather than only one. The Bayesian framework

offers an explanation of why this kind of inference is reasonable, and provides a precise

account for how inference changes as the amount of data increases – in short, how

this sort of learning works, and why.

Let us return to Figure 2-2, but instead of comparing three different hypotheses on

the same dataset, we can ask which hypotheses are preferred on datasets of different

size. Figure 2-5 shows three datasets, all generated from the same underlying process,

but varying in the number of datapoints. The best hypothesis fits the five datapoints

in dataset 1 quite poorly, but because there are so few points this does not impose

a substantial penalty relative to the high prior probability of the hypothesis. Thus,

smaller datasets are often marked by a greater degree of overgeneralization because

the dynamics of inference favor the simpler, more overgeneral hypotheses. As the

data accumulates, the penalty imposed for poor fit is greater, since it applies to

each datapoint that is not predicted accurately by the hypothesis. Thus, the same

hypothesis that was dispreferred on the data in Figure 2-2 is actually most appropriate

for the largest dataset, which contains many points clustered into thirty tiny regions.

A potentially misleading implication of Figure 2-5 is that as the number of dat-
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Figure 2-5: Role of dataset size. Three datasets with increasing numbers of datapoints
and their corresponding best hypotheses. For dataset 1, there are so few datapoints
that the simplicity of the hypothesis is the primary consideration; by dataset 3, the
preferred hypothesis is one that fits the clustered datapoints quite tightly.

apoints increases, the most complex hypothesis will eventually always be preferred.

This is not true. Rather, the hypothesis that will be preferred is the one that com-

presses the data most optimally: in general, this will be the hypothesis that is closest

to the true generative process5 (MacKay, 2004). In other words, if the data is truly

generated by a process corresponding to thirty different rectangular regions, then the

points will increasingly clump into clusters in those regions, and hypothesis C will

be preferred. But if the data is truly generated by a process inhabiting two larger

regions, then additional datapoints would look more like Figure 2-6 instead; in which

case, hypothesis B would still have a higher probability. In general, as data accu-

mulates a Bayesian learner will move towards increasingly complex hypotheses, but

stops as the current hypothesis approximates the true generative process.

This initial preference for a simple hypothesis, followed by the eventual adoption of

a more complex hypothesis, provides a natural solution to the No Negative Evidence

5Technically, this result has been proven for information-theoretic models in which probabilities
of data or hypotheses are replaced by the lengths (in bits) of messages that communicate them
to a receiver. The result is known as the “MDL Principle” (Rissanen, 1978), and is related to
Kolmogorov complexity (Solomonoff, 1964; Kolmogorov, 1965). The Bayesian version applies given
certain assumptions about the randomness of the data relative to the hypotheses and the hypotheses
relative to the prior (Vitànyi & Li, 2000). Both versions apply only to the hypotheses in the
hypothesis space: if no hypothesis corresponding to the true data generating process exists in the
space, then it will never be considered, much less ultimately preferred. Thus, the hypothesis that is
preferred by the model in the limit of infinite data is the “best” hypothesis only in the sense that
it is closest to the true data generating process out of all of the hypotheses considered. This is a
somewhat simplified account of the mathematical results, since the relationship between Bayesian
inference and MDL-based approaches is complex; see Vitànyi and Li (2000); Jaynes (2003); MacKay
(2004); Grünwald, Myung, and Pitt (2005) for more details).
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Figure 2-6: Interaction of dataset size and hypothesis choice. As data accumulates,
the best hypothesis approaches the true generative model. Here, the hypothesis
consisting of two subsets of space is preferred over one with more, since the data is
distributed in such a way as to make the latter unlikely.

problem: deciding among hypotheses given positive-only examples. As the size of the

dataset approaches infinity, a Bayesian learner rejects overgeneral hypotheses in favor

of more precise ones, as the subset principle would do. With limited amounts of data,

the Bayesian approach can make different and more subtle predictions, as the graded

size-based likelihood trades off against the preference for simplicity in the prior. The

likelihood in Bayesian learning can thus be seen as a principled quantitative measure

of the weight of implicit negative evidence – one that explains both how and when

overgeneralization should occur.

What will a Bayesian learner conclude after seeing just one datapoint? It may be

tempting to infer from the discussion so far that in that case, the simplest possible

hypothesis will be preferred; but this is not necessarily the case. It all depends on the

tradeoff in complexity that it takes to represent individual datapoints as opposed to

entire hypotheses: if it is “cheaper” to represent one or two datapoints than an entire

hypothesis – no matter how simple – then simply memorizing the data would have a

higher likelihood and a higher prior probability than an extremely vague, overgeneral

hypothesis. This is sensible in real-world terms: if I have only seen one recipe in

my entire life, it makes more sense to simply memorize it than to try to extract

general “recipe principles.” Consider also our graphical example. One datapoint

would require two choices to specify – its x and y coordinates. By contrast, even

the simplest hypothesis would require at least four (x, y, l, and w). Moreover, the

single datapoint also has the highest possible likelihood, since it predicts the data
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(itself) exactly. Only as the number of datapoints increases does the penalty in the

prior become high enough to preclude simply memorizing each datapoint individually:

this is when overgeneral, highly simple hypotheses begin to be preferred. Precisely

how much data can be memorized depends on the representational complexity of the

hypotheses and data, but the basic qualitative pattern occurs widely.

This pattern looks a great deal like the U-shaped curve observed in a variety of

domains over the course of development (e.g., Marcus et al., 1992; Siegler, 2004). It

falls naturally out of the dynamics of learning, as the balance between simplicity and

goodness-of-fit changes in response to increases in the amount of data.

Some general issues

Several issues are typically raised when evaluating Bayesian modelling as a serious

computational tool for cognitive science. Bayesian reasoning characterizes “optimal”

inference: what does this mean? How biologically plausible are these models, and

how much does this matter? And finally, where does it all come from – the hypothesis

space, the parameters, the representations? The answers to each of these questions

affect what conclusions about actual human cognition we can draw on the basis of

Bayesian models; I will therefore consider each one in turn.

Optimality: What does it mean?

Bayesian probability theory6 is not simply a set of ad hoc rules useful for manipulating

and evaluating statistical information: it is also the set of unique, consistent rules for

6Bayesian methods are often contrasted to so-called “frequentist” approaches, which are the
basis for many of the standard statistical tests used in the social sciences, such as t-tests. Although
frequentist methods are often only appropriate for certain simple, idealized conditions that often fail
to describe reality, provide no way to take prior information account, and indeed constitute a special
case of Bayesian probability theory, Bayesian methods have historically been relatively neglected,
and often attacked, in part because they are viewed as unnecessarily subjective (R. Fisher, 1933;
Jeffreys, 1939; Savage, 1954; Lindley, 1956; Dantzig, 1957). This perception is untrue – Bayesian
methods are simply more explicit about the prior information they take into account. Regardless, the
issue of subjectivity seems particularly irrelevant for those interested in modelling human cognition,
where accurately capturing “subjective belief” is part of the point. (There has also been a great deal
of debate about the proper interpretation of probabilities within each framework; see the references
above, as well as Jaynes (2003), for an overview of this issue).
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conducting plausible inference Jaynes (2003). In essence, it is a extension of deductive

logic to the case where propositions have degrees of truth or falsity – that is, it

is identical to deductive logic if we know all the propositions with 100% certainty.

Thus, just as formal logic describes a deductively correct way of thinking, Bayesian

probability theory describes an inductively correct way of thinking. As Laplace said,

“probability theory is nothing but common sense reduced to calculation.”

What does this mean? If we were to try to come up with a set of desiderata that a

system of “proper reasoning” should meet, they might include things like consistency

and qualitative correspondence with common sense – if you see some data supporting

a new proposition A, you should conclude that A is more plausible rather than less;

the more you think A is true, the less you should think it is false; if a conclusion

can be reasoned multiple ways, its probability should be the same regardless of how

you got there; etc. The basic axioms and theorems of probability theory, including

Bayes’ Rule, emerge when these desiderata are formalized mathematically (Cox, 1946,

1961), and correspond to common-sense reasoning and the scientific method (Jeffreys,

1931, 1939; de Finetti, 1974; Jaynes, 2003). Put another way, Bayesian probability

theory is “optimal inference” in the sense that a non-Bayesian reasoner attempting

to predict the future will always be out-predicted by a Bayesian reasoner in the long

run (de Finetti, 1937).

Even if the Bayesian framework captures optimal inductive inference, does that

mean it is an appropriate tool for modelling human cognition? People’s everyday

reasoning can be said to be many things, but few would aver that it is optimal, subject

as it is to emotions, heuristics, and biases of many different sorts (e.g., Tversky &

Kahneman, 1974). However, even if humans are non-optimal thinkers in many ways

– and there is no reason to think they are in every way – it is impossible to know

this without being able to precisely specify what optimal thinking would amount to.

Understanding how humans do think is often made easier if one can identify the ways

in which people depart from the ideal: this is approximately the methodology by

which Kahneman and Tversky derived many of their famous heuristics and biases,

and the flexibility of the Bayesian approach makes it relatively easy to incorporate
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constraints based on memory, attention, or perception directly into one’s model.

Bayesian modelling, in fact, is an implementation of scientific inquiry that operates

on Marr’s third (computational) level, which seeks to understand cognition based

on what its goal is, why that goal would be appropriate, and the constraints on

achieving that goal, rather than precisely how it is implemented algorithmically (Marr,

1982). Understanding at this level is important because the nature of the reasoning

may often depend more on the learner’s goals and constraints than it does on the

particular implementation. It can also enhance understanding at the other levels: for

instance, analyzing connectionist networks as an implementation of a computational-

level theory can elucidate what sort of computations they perform, and often explain

why they produce the results they do (Hertz, Krogh, & Palmer, 1991; MacKay, 2004).

Being able to precisely specify and understand optimal reasoning is also useful for

performing ideal learnability analysis, which especially important in the area of cog-

nitive development. What must be “built into” the newborn mind in order to explain

how infants eventually grow to be adult reasoners, with adult knowledge? One way

to address this question is to establish the bounds of the possible: if some knowledge

couldn’t possibly be learned by an optimal learner presented with the type of data

children receive, it is safe to conclude that actual children couldn’t learn it, either7.

It would then be necessary to identify precisely what must be innate in order for that

knowledge to be learnable in principle. Due to its representational flexibility and

its ability to accurately calculate optimal inference even on large datasets, Bayesian

modelling is an ideal tool for this sort of problem.

Biological plausibility

Because cognitive scientists are ultimately interested in understanding human cog-

nition, and human cognition is ultimately implemented in the brain, it is important

that our computational-level explanations be realizable on the neurological level, at

least potentially. This is one reason for the popularity of the connectionist approach,

which was developed as a neurally inspired model of the cognitive process (Rumelhart

7Assuming, of course, that the data in question accurately reflects children’s natural input.
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& McClelland, 1986). Connectionist networks, like the brain, contain many highly

interconnected, active processing units (like neurons) that communicate with each

other by sending activation or inhibition through their connections. As in the brain,

learning appears to involve modifying connections, and knowledge is represented in a

distributed fashion over the connections. As a result, representations degrade grace-

fully with neural damage, and reasoning is probabilistic and “fuzzy.”

In contrast, Bayesian models may appear wholly implausible from the neurological

perspective. One of the major virtues of the Bayesian approach – the transparency

of its computations and the explicitness of its representation – is, in this light, poten-

tially a major flaw: the brain is many wonderful things, but it is neither transparent

nor explicit. How could representations like grammars or logics be instantiated in our

neural hardware? How could our cortex encode hypotheses and compare them based

on a tradeoff between their simplicity and goodness-of-fit? Perhaps most problem-

atically, how could the brain – with a processing speed that is orders of magnitude

slower than that of modern computers – actually implement optimal inference, which

requires such a thorough search of such enormous hypothesis spaces that even the

fastest computers can take days or weeks, if they can succeed at all?

These are good questions, but there is growing evidence for the relevance of

Bayesian approaches on the neural level (e.g., Doya, Ishii, Pouget, & Rao, 2007).

Probability distributions can in fact be represented by neurons, and they can be

combined according to a close approximation of Bayes’ Rule; posterior probability

distributions may be encoded in populations of neurons in such a way that Bayesian

inference is achieved simply by summing up firing rates (Pouget, Dayan, & Zemel,

2003; Ma, Beck, Latham, & Pouget, 2006). Spiking neurons can be modeled as

Bayesian integrators accumulating evidence over time (Deneve, 2004; Zemel, Huys,

Natarajan, & Dayan, 2005). Recurrent neural circuits are capable of performing both

hierarchical and sequential Bayesian inference (Deneve, 2004; Rao, 2004, 2007). Even

specific brain areas have been studied: for instance, there is evidence that the recur-

rent loops in the visual cortex integrate top-down priors and bottom-up data in such

a way as to implement hierarchical Bayesian inference (Lee & Mumford, 2003).
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This work, though still in its infancy, suggests that concerns about biological plau-

sibility may not, in the end, prove to be particularly problematic. It may seem to

us, used to working with serial computers, that searching these enormous hypothe-

sis spaces quickly enough to perform anything approximating Bayesian inference is

impossible; but the brain is a parallel computing machine made up of billions of

highly interconnected neurons. The sorts of calculations that take a long time on a

serial computer, like a sequential search of a hypothesis space, might be very easily

performed in parallel. Whatever the future holds, indications so far serve as a chas-

tening reminder of the danger of advancing from the “argument from incredulity” to

any conclusions about biological plausibility.

It is also important to note that, for all of their apparent biological plausibility,

neural networks are unrealistic in important ways, as many connectionist modelers

acknowledge. Units in neural networks are assumed to have both excitatory and

inhibitory connections, which is not neurally plausible. This is a problem because

the primary learning mechanism, backpropagation, relies on the existence of such

connections (Rumelhart & McClelland, 1986; Hertz et al., 1991). There is also no

analogue of neurotransmitters and other types of chemical transmission, which play

an important role in brain processes (Gazzaniga, Ivry, & Mangun, 2002). These issues

are being overcome as the state of the art advances (see Rao, Olshausen, and Lewicki

(2002) for some examples), but for the models most commonly used in cognitive

science – perceptrons, multilayered recurrent networks and Boltzmann machines –

they remain a concern.

The different computational techniques are therefore each biologically plausible in

some ways and perhaps less so in others. Because we still know so little about the

neurological mechanisms within the brain, it is difficult to characterize how plausible

either approach is or how much the ways they fall short impact their utility. In

addition, to a large extent, biological plausibility is irrelevant on the computational

level of analysis. Even if it turned out that there was no possible way the brain

could implement anything (even heuristically) approximating Bayesian inference –

which seems unlikely in light of current research – Bayesian models would still be
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useful for comprehending the goals and constraints faced by the cognitive system,

and for comparing actual human performance to optimal reasoning. To the extent

that connectionist models apply on the computational level, the same is true for them.

Where does it all come from?

For many, a more important critique is that it seems that, in some sense, Bayesian

models do not seem to be learning at all. The entire hypothesis space, as well as

the evaluation mechanism for comparing hypotheses, has been given by the modeler;

all the model does is choose among hypotheses that already exist. Isn’t learning,

particularly the sort of learning that children perform over the first years of their life,

something more than this? Our intuitive notion of learning certainly encompasses a

spirit of discovery that does not appear at first glance to be captured by a model that

simply does hypothesis testing within an already fully-specified hypothesis space.

The same intuition lies at the core of Fodor’s famous puzzle of concept acquisi-

tion (Fodor, 1975, 1981). His essential point is that one cannot learn anything via

hypothesis testing because one must possess it in order to test it in the first place.

Therefore, except for those concepts that can be created by composing them from oth-

ers, all concepts – including concepts like CARBURETOR and GRANDMOTHER –

are, and must be, innate.

Fodor’s argument makes sense only under a very restricted, essentially un-intuitive

definition of what it means to learn. As an analogy, consider a standard English

typewriter with an infinite amount of paper. There is a space of documents that

it is capable of producing, which includes things like The Tempest and does not

include, say, a Vermeer painting or a poem written in Russian. This typewriter can

easily be formalized in Bayesian terms where each document is a hypothesis and the

infinite set of documents producible by the typewriter is its hypothesis space. (The

hypothesis space does not consist of the documents that the typewriter has actually

produced because a hypothesis space is not an exhaustive, explicitly enumerated set

of hypotheses8; rather, it is the latent space of possibilities that is implicitly defined

8Indeed, exhaustive hypothesis enumeration is intractable for all but the simplest models; most
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by the generative process).

Is there a difference between documents that have been created by the typewriter

and documents that exist only in the latent space? Of course there is: documents

that have been created can be manipulated in all sorts of ways (reading, burning,

discussing, editing) that documents latent in the space cannot. In the same way,

there may be a profound difference between hypotheses that have been considered

by the learner and hypotheses that are simply latent in the space: the former can

be manipulated by the cognitive system – evaluated, used in inference, compared to

other hypotheses – but the latter cannot. The process of transformation from an

implicit, latent hypothesis into one that can be manipulated by the cognitive system

is a process that looks, from most perspectives, rather like learning. Only once

something is learned can we entertain it, talk about it, and manipulate it in other

ways; to say that it exists in the latent space simply means we have the capacity to

learn it. When I learn how to play chess, that means that I now identify chess pieces,

entertain strategies for winning, and talk about the rules with other players, whereas

before I didn’t (though I had the capacity to learn it).

Fodor’s argument, and this critique of Bayesian modelling, presumes a notion of

learning that is very different from this, and indeed that is conceptually incoherent

in many ways. If “learning” does not include acquiring some knowledge through

hypothesis testing, then what would it consist of? The knowledge would have to spring

into the hypothesis space somehow, but how? As we think about it further, we realize

that this critique assumes a definition of learning that only applies if new knowledge

enters the hypothesis space without any regularity or predictability whatsoever.

This can be proven by contradiction. Imagine that I could explain how new

knowledge might be added to a hypothesis space; such an explanation would have to

make reference to some rules or some kind of process for adding things. That process

and those rules, however, would implicitly define a meta-space of their own. And

because this meta-space is pre-specified (implicitly, by that process or set of rules)

perform inference via guided search, and only some of the hypotheses within the space are actually
evaluated.

59



in the exact same way the original hypothesis space was pre-specified (implicitly, by

the original generative process), the hypotheses within it are “innate” in precisely the

same way that the original hypotheses were. In general, the only way for something

to be learned in the Fodorian sense – the sense that underlies this critique – is for

them to be able to spring, willy-nilly, into a hypothesis space in such a way that is

essentially random (i.e., unexplainable via some process or rule). If this is truly what

learning is, it seems to preclude the possibility of studying it scientifically; but luckily,

this is not what most of us mean by learning.

One consequence of this is that every model, even the brain, must come equipped

with a latent hypothesis space that consists of everything that it can possibly repre-

sent and compute; all learning must happen within this space. This is not a novel or

controversial point – all cognitive scientists accept that something must be built in

– but it is often forgotten as soon as a Bayesian model appears. Somehow, the fact

that hypotheses are explicit and hypothesis spaces are clearly defined makes them

appear more “innate” than if they were simply latent in the model. But even con-

nectionist networks – which are often believed to presume very little in the way of

innate knowledge – implicitly define hypotheses and hypothesis spaces via their ar-

chitecture, functional form, learning rule, etc. In fact, connectionist networks can be

viewed as implementations of Bayesian inference (e.g., Funahashi, 1998; McClelland,

1998; MacKay, 2004), corresponding to a computational-level model whose hypoth-

esis space is a set of continuous functions (e.g., Funahashi, 1989; Stinchcombe &

White, 1989). This is a large space, to be sure, but Bayesian models can easily have

hypothesis spaces that are equivalently large.

Does this mean that there is no difference between Bayesian models and connec-

tionist networks? In one way, the answer is yes: because neural networks are universal

approximators (Hornik, Stinchcombe, & White, 1989), it is always possible to con-

struct one that is an implementation of a Bayesian model. In practice, however, the

answer is usually no: the two methods have very different strengths and weaknesses,

and therefore their value as modelling tools varies depending on the questions being
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asked.9 Bayesian models optimally trade off between simplicity and goodness-of-fit;

connectionist models perform a similar tradeoff, but generally non-optimally and in a

more ad hoc manner, avoiding overfitting by limiting the length of training and choos-

ing appropriate weights, learning rules, and network architecture.10 In the Bayesian

framework, what is built in is the generative process, which implicitly defines the

assignment of prior probabilities, the representation involved, and the size of the

hypothesis space; in the connectionist framework, these things are built in through

choices about the architecture, weights, learning rule, training procedure, etc.

It is therefore incorrect to say one framework assumes more innate knowledge than

another: specific models within each may assume more or less, but it can be quite

difficult to compare them precisely, in part because connectionist networks incorpo-

rate it implicitly. Which model assumes more innate knowledge is often not even the

interesting question. A more appropriate one might be: what innate knowledge does

it assume? Instead of asking whether one representation is a stronger assumption

than another, it is often more productive to ask which predicts human behavior bet-

ter. The answer will probably depend on the problem and the domain, but the great

advantage of computational modelling is that it allows us to systematically explore

this dependence precisely. And an advantage of Bayesian modelling in particular is

that we can be explicit about what assumptions we are making, thus facilitating that

exploration.

One thing that is often overlooked in evaluating what is built into computational

models is preprocessing: any model – Bayesian approaches as well as neural networks

– requires the data to be entered in a usable form. If there is too much preprocessing,

or too much of the wrong sort, it can be difficult to tell if the interesting learning

has been done by the model or the modeler. This is a general problem confronted

by any computational modeler, and is one of the reasons for the truism that “every

model is wrong.” Unless we can give the model completely raw, un-preprocessed data

9Many connectionist modelers see the two approaches as complementary (e.g., Rogers & McClel-
land, 2004), and I agree with this view.

10There is an interesting subfield called Bayesian neural networks studying how to construct
models that make these choices for themselves, pruning connections in a Bayes-optimal way (e.g.,
MacKay, 1995; Neal, 1994, 1996).
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– and the model is a complete copy of the brain itself – we will be simplifying and

introducing error somehow. Of course, if we do that, we then won’t have learned

anything: the point of modelling is to simplify, and to hope that we have done so

in such a way that it adds to our understanding rather than detracts. The ultimate

aim is to develop models that take data that is preprocessed less and less; we are not

there yet, but Bayesian models are a powerful tool toward that end.

Conclusion

Bayesian modelling is a useful approach in cognitive science, especially when used

in conjunction with other types of computational modelling as well as experimental

work. Its representational flexibility makes the Bayesian approach applicable to a

wide variety of learning problems, and its transparency makes it easy to be clear

about what assumptions are being made and what is being learned. The framework

is valuable for defining an optimal standard as well as for exploring and illustrating

the tradeoff between simplicity and goodness-of-fit. As a result, it has the potential

to explain many aspects of human cognition.

In the next chapters I present specific Bayesian models that address problems

in three particular areas of language acquisition. We will see how the principles of

Bayesian inference, presented here in a more abstract form, come into play in each of

these specific contexts.
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Chapter 3

The acquisition of abstract

linguistic structure

Chapter 1 introduced a classic learnability argument that moves from the phenomenon

of auxiliary fronting in English interrogatives to the conclusion that children must in-

nately know that syntactic rules are defined over hierarchical phrase structures rather

than linear sequences of words (e.g., Chomsky, 1965, 1971, 1980; Crain & Nakayama,

1987). Here I use a Bayesian framework for grammar induction to argue for a dif-

ferent possibility. I show that, given typical child-directed speech and certain innate

domain-general capacities, an unbiased ideal learner could recognize the hierarchical

phrase structure of language without having this knowledge innately specified as part

of the language faculty. I discuss the implications of this analysis for accounts of

human language acquisition, and focus in particular about implications for Poverty

of the Stimulus arguments more generally.

Hierarchical phrase structure in language

Scientific inquiry in language acquisition was influenced by Chomsky’s observation

that language learners make grammatical generalizations that appear to go beyond

The work in this chapter was carried out in collaboration with Terry Regier and Joshua

Tenenbaum.
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what is immediately justified by the evidence in the input (1965, 1980). One such class

of generalizations concerns the hierarchical phrase structure of language: children

appear to favor hierarchical rules that operate on grammatical constructs such as

phrases and clauses over linear rules that operate only on the sequence of words,

even in the apparent absence of direct evidence supporting this preference. Such

a preference, in the absence of direct supporting evidence, is used to suggest that

human learners innately know a deep organizing principle of natural language, that

grammatical rules are defined on hierarchical phrase structures.

The goal in this chapter is to reevaluate the modern PoS argument for innate

language-specific knowledge by formalizing the problem of language acquisition within

a Bayesian framework for rational inductive inference. I consider an ideal learner

who comes equipped with two powerful but domain-general capacities. First, the

learner has the capacity to represent structured grammars of various forms, including

hierarchical phrase-structure grammars (which the generative tradition argues must

be innately known to apply in the domain of language) and simpler non-hierarchical

alternatives (which the generative tradition claims must be innately inaccessible for

language learning, but that might be an appropriate model for sequential data in non-

linguistic domains). Second, the learner has access to a Bayesian engine for statistical

inference which can operate over these structured grammatical representations and

compute their relative probabilities given observed data. I will argue that a certain

core aspect of linguistic knowledge – the knowledge that syntactic rules are defined

over hierarchically organized phrase structures – can be inferred by a learner with

these capabilities but without a language-specific innate bias favoring this conclusion.

Note that this claim about innateness is really a claim about the domain-specificity

of innate linguistic knowledge. Because language acquisition presents a problem of

induction, it is clear that learners must have some constraints limiting the hypotheses

they consider. The question is whether a certain feature of language – such as hierar-

chical phrase structure in syntax – must be assumed to be specified innately as part

of a language-specific “acquisition device”, rather than derived from more general-

purpose representational capacities and inductive biases. I introduce a specific issue
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that has sparked many discussions of innateness, from Chomsky’s original discussions

to present-day debates: the phenomena of auxiliary fronting in constructing English

interrogative sentences (Laurence & Margolis, 2001; Lewis & Elman, 2001; Legate

& Yang, 2002; Pullum & Scholz, 2002; Reali & Christiansen, 2005). Nevertheless,

this analysis should not be seen as an attempt to explain the learnability of auxil-

iary fronting (or any specific linguistic rule) per se. Rather the goal is to address

the general phenomenon of hierarchical phrase structure in syntax – the phenomenon

that has been argued to underlie the learning of auxiliary fronting and many other

specific rules. I take as data an entire corpus of child-directed speech and evaluate

hypotheses about candidate grammars that could account for the corpus as a whole.

As a byproduct of this, the analysis allows us to explore the learnability of auxiliary

fronting and other related specific aspects of syntax.

The debate

As we saw in Chapter 1, Chomsky put forth several Poverty of the Stimulus arguments

for the claim that part of the initial state of the language acquisition system – and a

necessary feature of any possible hypothesis considered by the language learner – is

the knowledge that the rules of syntax are defined over hierarchical phrase-structure

representations rather than a linear sequence of words. I presented the following

abstract schema for PoS arguments in general:

1.1. (i) Children show a specific pattern of behavior B.

(ii) A particular generalization G must be grasped to produce behavior B.

(iii) It is impossible to reasonably induce G simply on the basis of the data D

that children receive.

(iv) ∴ Some abstract knowledge T , limiting which specific generalizations G are

possible, is necessary.

This form of the PoS argument makes explicit the distinction between multiple

levels of knowledge – a distinction that I consider in one form or another throughout
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Figure 3-1: Graphical depiction of the standard Poverty of Stimulus argument. Ab-
stract higher-level knowledge T is necessary to constrain the specific generalizations
G that are learned from the data D, and that govern behavior B.

this thesis, and also illustrate schematically in Figure 3-1. In the case of auxiliary

fronting, the specific generalization G refers to the hierarchical rule 1.3(b) in Chapter 1

that governs the formation of interrogative sentences (also shown, for ease of reference,

below). The learning challenge is to explain how children come to produce only the

correct forms for complex interrogatives (B), apparently following a hierarchical rule

like 1.3(b), when the data they observe (D) comprise only simple interrogatives (such

as “Is the man hungry?”) that do not discriminate between the correct generalization

and simpler but incorrect alternatives like the linear rule 1.3(a).

1.3. (a) Linear: Form the interrogative by moving the first occurrence of the auxiliary

in the declarative to the beginning of the sentence.

(b) Hierarchical: Form the interrogative by moving the auxiliary from the main

clause of the declarative to the beginning of the sentence.

Note that the interesting claim of innateness here is not about the rule for pro-

ducing interrogatives (G) per se; rather, it concerns some more abstract knowledge

T . Nothing in the logical structure of the argument requires that T be specific to

the domain of language – constraints due to domain-general processing, memory, or

learning factors could also limit which generalizations are considered. Nevertheless,

many versions of the PoS argument assume that the T is language-specific: in partic-

ular, that T is the knowledge that linguistic rules are defined over hierarchical phrase
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structures rather than linear sequences of words. This knowledge constrains the spe-

cific rules of grammar that children may posit and therefore licenses the inference to

G. Constraints on grammatical generalizations at the level of T may be seen as one

aspect of, or as playing the role of, “universal grammar” (Chomsky, 1965).

As I have discussed, an advantage of this logical schema is to clarify that the

correct conclusion given the premises is not that the higher-level knowledge T is

innate – only that it is necessary. The following corollary is required to conclude that

T is innate:

1.2. (i) (Conclusion from above) Some abstract knowledge T is necessary.

(ii) T could not itself be learned, or could not be learned before the specific

generalization G is known.

(iii) ∴ T must be innate.

Given this schema, the argument here can be construed in two different ways. On

one view, I am arguing against premise 1.2(ii); I suggest that the abstract linguistic

knowledge T – that language has hierarchical phrase structure – might be learnable

using domain-general mechanisms and representational machinery. Given some ob-

served data D, I evaluate knowledge at both levels (T and G) together by drawing

on the methods of hierarchical Bayesian models and Bayesian model selection (A.

Gelman et al., 2004). Interestingly, these results suggest that less data is required to

learn T than to learn the specific grammar G.

On another view, I am not arguing with the form of the PoS argument, but

merely clarifying what content the knowledge T must have. I argue that phenomena

such as children’s mastery of auxiliary fronting are not sufficient to require that the

innate knowledge constraining generalization in language acquisition be language-

specific. Rather it could be based on more general-purpose systems of representation

and inductive biases that favor the construction of simpler representations over more

complex ones.

Other critiques of the innateness claim dispute the three premises of the original

argument, arguing either:
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3.1. (a) Children do not show the pattern of behavior B.

(b) Behavior B is possible without having made the generalization G, through

some other route from D.

(c) It is possible to learn G on the basis of D alone, without the need for some

more abstract knowledge T

In the case of auxiliary fronting, one example of response 3.1(a) is the claim that

children do not in fact always avoid errors that would be best explained under a linear

rule rather than a hierarchical rule. Although Crain and Nakayama (1987) demon-

strated that children do not spontaneously form incorrect complex interrogatives such

as “Is the man who hungry is ordering dinner?” (1.5(b)), they make other mistakes

that are not so easily interpretable. For instance, one might utter a sentence like “Is

the man who is hungry is ordering dinner?”, which is not immediately compatible

with the correct hierarchical grammar but might be consistent with a linear rule.

Additionally, recent research by Ambridge, Rowland, and Pine (2005) suggests that 6

to 7 year-old children presented with auxiliaries other than is do indeed occasionally

form incorrect sentences along the lines of 1.5(a), such as “Can the boy who run fast

can jump high?”, as well as other kinds of errors.

A different response, 3.1(c), accepts that children have inferred the correct hier-

archical rule for auxiliary fronting, but maintains that the input data is sufficient to

support this inference. If children observe sufficiently many complex interrogative

sentences like 1.5(b) while observing no incorrect sentences like 1.5(a), then perhaps

they could learn directly that the hierarchical rule 1.3(b) is correct, or at least bet-

ter supported than simple linear alternatives. The force of this response depends

on how many grammatical complex interrogatives like 1.5(b) children actually hear.

While it is an exaggeration to say that there are no complex interrogatives in typi-

cal child-directed speech, they are certainly rare: Legate and Yang (2002) estimate

based on two CHILDES corpora1 that between 0.045% and 0.068% of all sentences

are complex interrogative forms. Is this enough? Unfortunately, in the absence of

1Adam (Brown corpus, 1973) and Nina (Suppes corpus, 1973); for both, see MacWhinney (2000).
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a specific learning mechanism, it is difficult to develop an objective standard about

what would constitute “enough.” Legate & Yang attempt to establish one by com-

paring how much evidence is needed to learn other generalizations that are acquired

at around the same age; they conclude on this basis that the evidence is probably in-

sufficient. However, such a comparison overlooks the role of indirect evidence, which

has been suggested to contribute to learning in a variety of other contexts (Landauer

& Dumais, 1997; Regier & Gahl, 2004; Reali & Christiansen, 2005).

Indirect evidence also plays a role in the second type of reply, 3.1(b), which is

probably the most currently popular line of response to the PoS argument. The claim

is that children could still show the correct pattern of linguistic behavior – acceptance

or production of sentences like 1.5(b) but not 1.5(a) – even without having learned

any grammatical rules like 1.3(a) or 1.3(b) at all. Perhaps the data, while poor

with respect to complex interrogative forms, are rich in distributional and statistical

regularities that would distinguish the linear rule 1.3(a) from the hierarchical rule

1.3(b). If children pick up on these regularities, that could be sufficient to explain

why they avoid incorrect complex interrogative sentences like 1.5(a), without any

need to posit the kinds of grammatical rules that others have claimed to be essential

(Redington, Chater, & Finch, 1998; Lewis & Elman, 2001; Reali & Christiansen,

2004, 2005).

For instance, Lewis and Elman (2001) trained a simple recurrent network to pro-

duce sequences generated by an artificial grammar that contained sentences of the

form AUX NP ADJ? and Ai NP Bi, where Ai and Bi stand for inputs of random

content and length. They found that the trained network predicted sentences like “Is

the boy who is smoking hungry?” with higher probability than similar but incorrect

sequences, despite never having received that type of sentence as input. In related

work, Reali and Christiansen (2005) showed that the statistics of actual child-directed

speech support such predictions. They demonstrated that simple bigram and trigram

models applied to a corpus of child-directed speech gave higher likelihood to correct

complex interrogatives than to incorrect interrogatives, and that the n-gram models

correctly classified the grammaticality of 96% of test sentences like 1.5(a) and 1.5(b).
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They also argued that simple recurrent networks could distinguish grammatical from

ungrammatical test sentences because they were able to pick up on the implicit sta-

tistical regularities between lexical classes in the corpus.

Though these statistical-learning responses to the PoS argument are important

and interesting, they have two significant disadvantages. First of all, the behavior of

connectionist models tends to be difficult to understand analytically. For instance, the

networks used by Reali and Christiansen (2005) and Lewis and Elman (2001) measure

success by whether they predict the next word in a sequence or by comparing the

prediction error for grammatical and ungrammatical sentences. These networks lack

not only a grammar-like representation; they lack any kind of explicitly articulated

representation of the knowledge they have learned. It is thus difficult to say what

exactly they have learned about linguistic structure.

Second, by denying that explicit structured representations play an important role

in children’s linguistic knowledge, these statistical-learning models fail to engage with

the motivation at the heart of the PoS arguments and most contemporary linguistics.

PoS arguments begin with the assumption – taken by most linguists as self-evident –

that language does have explicit hierarchical structure, and that linguistic knowledge

must at some level be based on representations of syntactic categories and phrases

that are hierarchically organized within sentences. The PoS arguments are about

whether and to what extent children’s knowledge about this structure is learned via

domain-general mechanisms, or is innate in some language-specific system. Critiques

based on the premise that this explicit structure is not represented as such in the

minds of language users do not really address this argument (although they may

be valuable in their own right by calling into question the broader assumption that

linguistic knowledge is structured and symbolic). The work here is premised on tak-

ing seriously the claim that knowledge of language is based on structured symbolic

representations. We can then investigate whether the principle that these linguistic

representations are hierarchically organized might be learned. I do not claim that

linguistic representations must have explicit structure, but assuming such a represen-

tation allows us to engage with the PoS argument on its own terms.
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Overview

I present two main results. First of all, I demonstrate that a learner equipped with

the capacity to explicitly represent both linear and hierarchical grammars – but with-

out any initial bias to prefer either in the domain of language – can infer that the

hierarchical grammar is a better fit to typical child-directed input, even on the basis

of as little as a few hours of conversation. These results suggest that at least in this

particular case, it is possible to acquire domain-specific knowledge about the form

of structured representations via domain-general learning mechanisms operating on

type-based data from that domain. Secondly, I show that the hierarchical grammar

favored by the model – unlike the other grammars it considers – masters auxiliary

fronting, even when no direct evidence to that effect is available in the input data.

This second point is simply a by-product of the main result, but it provides a valu-

able connection to the literature and makes concrete the benefits of learning abstract

linguistic principles.

These results emerge because an ideal learner must trade off simplicity and goodness-

of-fit in evaluating hypotheses, just as we saw in Chapter 2. The notion that inductive

learning should be constrained by a preference for simplicity is widely shared among

scientists, philosophers of science, and linguists. Chomsky himself concluded that

natural language is not finite-state based on informal simplicity considerations (1956,

1957), and suggested that human learners rely on an evaluation procedure that in-

corporates simplicity constraints (1965). Just as hypothesis B offers the “just right”

balance between simplicity and goodness-of-fit in Figure 2-2, I argue that in a simi-

lar way, a hierarchical phrase-structure grammar yields a better tradeoff than linear

grammars between simplicity of the grammar and fit to typical child-directed speech.

But although these findings suggest that the specific feature of hierarchical structure

can be learned without an innate language-specific bias, I do not argue or believe that

all interesting aspects of language will have this characteristic.

One finding of this work is that it may require less data to learn a higher-order

principle T – such as the hierarchical nature of linguistic rules – than to learn every
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correct generalization G at a lower level, e.g., every specific rule of English. Though

this model does not explicitly use inferences about the higher-order knowledge T

to constrain inferences about specific generalizations G, in theory T could provide

effective and early-available constraints on G, even if T is not itself innately specified.

Throughout this thesis I investigate what drives this perhaps counterintuitive result

and discuss its implications for language acquisition and cognitive development more

generally.

Method

I cast the problem of grammar induction within a hierarchical Bayesian framework2

whose structure is shown in Figure 3-2. The goal of the model is to infer from

some data D (a corpus of child-directed language) both the specific grammar G

that generated the data as well as the higher-level generalization about the type of

grammar T that G is an instance of. This is formalized as an instance of Bayesian

model selection.

The framework assumes a multi-stage probabilistic generative model for linguistic

utterances, which can then be inverted by a Bayesian learner to infer aspects of

the generating grammar from the language data observed. A linguistic corpus is

generated by first picking a type of grammar T from the prior distribution p(T ). A

specific grammar G is then chosen as an instance of that type, by drawing from the

conditional probability distribution p(G|T ). Finally, a corpus of data D is generated

from the specific grammar G, drawing from the conditional distribution p(D|G). The

inferences we can make from the observed data D to the specific grammar G and

grammar type T are captured by the joint posterior probability p(G, T |D), computed

via Bayes’ rule:

2Note that the “hierarchical” of “hierarchical Bayesian framework” is not the same “hierarchical”
as in “hierarchical phrase structure.” The latter refers to the hierarchical embedding of linguistic
phrases within one another in sentences. The former refers to a Bayesian model capable of performing
inference at multiple levels, in which not only the model parameters but also the hyperparameters
(parameters controlling priors over the parameters) are inferred from the data, rather than being
set by the modeler.
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Figure 3-2: A hierarchical Bayesian model for assessing Poverty of Stimulus argu-
ments. The model is organized around the same structure as Figure 3-1, but now
each level of representation defines a probability distribution for the level below it.
Bayesian inference can be used to make inferences at higher levels from observations
at lower levels. Abstract principles of the grammar T constrain the specific gram-
matical generalizations G a learner will consider by defining a conditional probability
distribution p(G|T ). These generalizations in turn define probabilistic expectations
about the data D to be observed, p(D|G). Innate biases for specific types of gram-
mars can be encoded in the prior p(T ), although here I consider an unbiased prior,
with p(T ) equal for all T .

p(G, T |D) ∝ p(D|G)p(G|T )p(T ). (3.1)

We wish to explore learning when there is no innate bias towards grammars with

hierarchical phrase structure. This is implemented in this model by assigning p(T )

to be equal for each type T . The prior for a specific grammar p(G|T ) is calculated

assuming a generative model of grammars that assigns higher prior probability to

simpler grammars. The likelihood p(D|G) reflects the probability of the corpus of

child-directed speech D given G and T ; it is a measure of how well the grammar

fits the corpus data. The Bayesian approach to inferring grammatical structure from

data, in the form of the posterior p(G, T |D), thus automatically seeks a grammar

that balances the tradeoff between complexity (prior probability) and fit to the data

(likelihood).
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Relation to previous work

Probabilistic approaches to grammar induction have a long history in linguistics. One

strand of work concentrates on issues of learnability (e.g., Solomonoff, 1964, 1978;

Horning, 1969; Li & Vitànyi, 1997; Chater & Vitànyi, 2003, 2007). This work is close

to ours in intent, because much of it is framed in response to the negative learnability

claims of Gold (1967), and demonstrates that learning a grammar in a probabilistic

sense is possible if the learner makes certain assumptions about the statistical distri-

bution of the input sentences (Horning, 1969; Angluin, 1988). Part of the power of

the Bayesian approach derives from its incorporation of a simplicity metric: an ideal

learner with such a metric will be able to predict the sentences of the language with

an error that approaches zero as the size of the corpus goes to infinity (Solomonoff,

1978), suggesting that learning from positive evidence alone may be possible (Chater

& Vitànyi, 2007). This analysis is complementary to these previous Bayesian analy-

ses. The main difference is that instead of addressing learnability issues in abstract

and highly simplified settings, I focus on a specific question – the learnability of hi-

erarchical structure in syntax – and evaluate it on realistic data: a finite corpus of

child-directed speech. As with the input data that any child observes, this corpus

contains only a fraction of the syntactic forms in the language, and probably a biased

and noisy sample at that.

Another strand of related work is focused on computational approaches to learn-

ing problems (e.g., Eisner, 2002; Johnson & Riezler, 2002; Light & Greiff, 2002;

Klein & Manning, 2004; Alishahi & Stevenson, 2005; Chater & Manning, 2006). This

analysis is distinct in several ways. First, many approaches focus on the problem of

learning a grammar given built-in constraints T , rather than on making inferences

about the nature of T as well. For instance, Klein and Manning (2004) have explored

unsupervised learning for a simple class of hierarchical phrase-structure grammars

(dependency grammars) from natural corpora. They assume that this class of hier-

archical grammars is fixed for the learner rather than considering the possibility that

grammars in other classes, such as linear grammars, could be learned.
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A more important difference in this analysis lies in the nature of the corpora.

Other work incorporates either on small fragments of (sometimes artificial) corpora

(e.g., Dowman, 2000; Alishahi & Stevenson, 2005; A. Clark & Eyraud, 2006) or on

large corpora of adult-directed speech (e.g., Eisner, 2002; Klein & Manning, 2004).

Neither is ideal for addressing learnability questions. Large corpora of adult-directed

speech are more complex than child-directed speech, and do not have the sparse-data

problem assumed to be faced by children. Analyses based on small fragments of a

corpus can be misleading: the simplest explanation for limited subsets of a language

may not be the simplest within the context of the entire system of linguistic knowledge

the child must learn.

An ideal analysis of learnability

This analysis views learnability in terms of an ideal framework in which the learner is

assumed to be able to effectively search over the joint space of G and T for grammars

that maximize the Bayesian scoring criterion. (In other words, we set aside one learn-

ability issue, centered on the computational tractability of performing the search, to

focus on the issue of sufficiency of the data. We address the implications of this

focus in the discussion). This proposal is therefore not a comprehensive or mechanis-

tic account of how children actually acquire language; the full problem of language

acquisition poses many challenges that I do not consider here. Rather, this analysis

provides a formal framework for analyzing the learnability of some aspects of linguistic

syntax, with the goal of clarifying and exploring claims about what language-specific

prior knowledge must be assumed in order to make learning possible. I discuss the

reasoning behind performing this sort of ideal learnability analysis in far more detail

in Chapters 2 and 6, but the essential goal is to follow the spirit of how Chomsky

and other linguists have considered learnability: as a question of what is learnable

in principle. Is it in principle possible given the data a child observes to learn that

language is governed by hierarchical phrase-structure rules, rather than linear rules,

if one is not innately biased to consider only hierarchical grammars? If we can show

that such learning is in principle possible, then it becomes meaningful to ask the
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algorithmic-level question of how a system might successfully and in reasonable time

search the space of possible grammars to discover the best-scoring grammar.

Of course, the value of this ideal learnability analysis depends on whether the

specific grammars I consider are representative of the best hypotheses that can be

found in the full spaces of different grammar types we are interested in (the spaces

of hierarchical phrase-structure grammars, linear grammars, and so on). I therefore

examine grammars generated in a variety of ways:

(1) The best hand-designed grammar of each grammar type.

(2) The best grammars found via local search, using the grammar from (1) as the

starting point.

(3) The best grammars found in a completely automated fashion

Because I restrict the analysis to grammars that can successfully parse the corpora,

I will explain the corpora before moving on to a more detailed description of the

process of inference and search and finally the grammars.

The corpora

The corpus consists of the sentences spoken by adults in the Adam corpus (Brown,

1973) of the CHILDES database (MacWhinney, 2000). In order to focus on gram-

mar learning rather than lexical acquisition, each word is replaced by its syntactic

category.3 Although learning a grammar and learning a lexicon are probably tightly

linked, I believe that this is a sensible starting assumption for several reasons: first,

because grammars are defined over these syntactic categories, and second, because

there is some evidence that aspects of syntactic-category knowledge may be in place

even in very young children (Booth & Waxman, 2003; Gerken, Wilson, & Lewis,

3Parts of speech used included determiners (det), nouns (n), adjectives (adj), comments like
“mmhm” (c), prepositions (prep), pronouns (pro), proper nouns (prop), infinitives (to), participles
(part), infinitive verbs (vinf), conjugated verbs (v), auxiliaries (aux), complementizers (comp), and
wh-question words (wh). Adverbs and negations were removed from all sentences. Additionally,
whenever the word what occurred in place of another syntactic category (as in a sentence like “He
liked what?” the original syntactic category was used; this was necessary in order to simplify the
analysis of all grammar types, and was only done when the syntactic category was obvious from the
sentence.
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2005). In addition, ungrammatical sentences and the most grammatically complex

sentence types are removed from the corpus.4 The complicated sentence types are

removed for reasons of computational tractability as well as the difficulty involved

in designing grammars for them, but this is if anything a conservative move since

these results suggest that the hierarchical grammars will be more preferred as the

input grows more complex. The final corpus contains 21671 individual sentence to-

kens corresponding to 2336 unique sentence types, out of 25755 tokens in the original

corpus.5

In order to explore how the preference for a grammar depends on the amount

of data available to the learner, I create six smaller corpora as subsets of the main

corpus. Under the reasoning that the most frequent sentences are most available as

evidence and are therefore the most likely to be understood, different corpus Levels

contain only those sentence forms whose tokens occur with a certain frequency or

higher in the full corpus. The levels are: Level 1 (contains all forms occurring 500

or more times, corresponding to 8 unique types); Level 2 (100 times, 37 types); Level

3 (50 times, 67 types); Level 4 (10 times, 268 types); Level 5 (5 times, 465 types);

and the complete corpus, Level 6, with 2336 unique types, including interrogatives,

wh-questions, relative clauses, prepositional and adjective phrases, command forms,

and auxiliary and non-auxiliary verbs. The larger corpora include the rarer and more

complex forms, and thus levels roughly correspond to complexity as well as quantity

of data.6

An additional variable of interest is what evidence is available to the child at

different ages. As in Chapter 5, I approximate this by splitting the corpora into five

equal sizes by age. The Adam corpus has 55 files, so I define the earliest (Epoch 1)

corpus as the first 11 files. The Epoch 2 corpus corresponds to the cumulative input

4Removed types included topicalized sentences (66 individual utterances), sentences containing
subordinate phrases (845), sentential complements (1636), conjunctions (634), serial verb construc-
tions (460), and ungrammatical sentences (443).

5The final corpus contained forms corresponding to 7371 sentence fragments. In order to ensure
that the high number of fragments did not affect the results, all analyses were replicated for the
corpus with those sentences removed. There was no qualitative change in the findings.

6The mean sentence length of Level 1 forms is 1.6 words; the mean sentence length at Level 6 is
6.6.
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from the first 22 files, Epoch 3 the first 33, Epoch 4 the first 44, and Epoch 5 the full

corpus. Splitting the corpus in this way is not meant to reflect the data that children

necessarily use at each age, but it does reflect the sort of data that is available.

The hypothesis space of grammars and grammar types

Because this work is motivated by the distinction between hierarchical and linear

rules, I wish to compare grammar types T that differ from each other structurally

in the same way. Different Bayesian approaches to evaluating alternative grammar

types are possible. In particular, we could score a grammar type T by integrating the

posterior probability over all specific grammars G of that type (
∑

G p(T,G|D)) or by

choosing the best G of that type (maxGp(T, G|D)). Integrating over all grammars

is computationally intractable, and arguably also less relevant. Ultimately it is the

specific grammar G that governs how the learner understands and produces language,

so we should be interested in finding the best pair of T and G jointly. I therefore

compare grammar types by comparing the probability of the best specific grammars

G of each type.

There are various formal frameworks we could use to represent hierarchical or

linear grammars as probabilistic generative systems. Each of these grammars consists

of a set of production rules, specifying how one non-terminal symbol (the left-hand

side of the rule) in a string may be rewritten in terms of other symbols, terminal or

non-terminal. These grammars can all be defined probabilistically: each production

is associated with a probability, such that the probabilities of all productions with

the same left-hand sides add to one and the probability of a complete parse is the

product of the probabilities of the productions involved in the derivation.

To represent hierarchical systems of syntax, I choose context-free grammars (CFGs).

Context-free grammars are arguably the simplest approach to capturing the phrase

structure of natural language in a way that deals naturally with hierarchy and recur-

sion. Since the 1950s, they have often been treated as a first approximation to the

structure of natural language since the early period of generative linguistics (Chomsky,

1959). Probabilistic context-free grammars (PCFGs) are a probabilistic generaliza-
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tion of CFGs commonly used in statistical natural language processing (Manning &

Schütze, 1999; Jurafsky & Martin, 2000), and I incorporate powerful tools for sta-

tistical learning and inference with PCFGs in this work here. I recognize that there

are also many aspects of syntax that cannot be captured naturally in CFGs. In par-

ticular, they do not express the sort of movement rules that underlie some standard

generative accounts of aux-fronting: they do not represent the interrogative form

of a sentence as a transformed version of a simpler declarative form. I work with

CFGs because they are the simplest and most tractable formalism suitable for this

purposes here – assessing the learnability of hierarchical phrase structure in syntax –

but in future work it would be valuable to extend these analyses to richer syntactic

formalisms.

I consider three different approaches for representing linear grammars. The first is

based on regular grammars, also known as finite-state grammars. Regular grammars

were originally proposed by Chomsky as a “minimal linguistic theory”, a kind of “null

hypothesis” for syntactic theory. They are models capable of producing a potentially

infinite set of strings, but in a manner that is sensitive only to the linear order of

words and not the hierarchical structure of syntactic phrases. A second approach,

which I call the FLAT grammar, is simply a memorized list of each of the sentence

types (sequences of syntactic categories) that occur in the corpus (2336 productions,

zero non-terminals aside from S). This grammar will maximize goodness-of-fit to

the data at the cost of great complexity. Finally, I consider the one-state (1-ST)

grammar, which maximizes simplicity by sacrificing goodness-of-fit. It permits any

syntactic category to follow any other and is equivalent to a finite automaton with

one state in which all transitions are possible (and is similar to a standard unigram

model). Though these three approaches may not capture exactly what was originally

envisioned as linear grammars, I work with them because they are representative of

simple syntactic systems that can be defined over a linear sequence of words rather

than the hierarchical structure of phrases, and they are all easily defined in proba-

bilistic terms.
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Hand-designed grammars

The first method for generating the specific grammars for each type is to design

by hand the best grammar possible. The flat grammar and the one-state grammar

exist on the extreme opposite ends of the simplicity/goodness-of-fit spectrum: the

flat grammar, as a list of memorized sentences, offers the highest possible fit to the

data (exact) and the lowest possible compression (none), while the one-state grammar

offers the opposite. I design both context-free and regular grammars that span the

range between these two extremes (much as the models in Figure 2-2 do); within

each type, specific grammars differ systematically in how they capture the tradeoff

between simplicity and goodness-of-fit. Table 3.1 contains sample productions from

each of the specific grammars.7

I consider two specific probabilistic context-free grammars in this analysis. The

smaller grammar, CFG-S, can parse all of the forms in the full corpus and is based

on standard syntactic categories (e.g., noun, verb, and prepositional phrases). The

full CFG-S, used for the Level 6 corpus, contains 14 non-terminal categories and 69

productions. All grammars for other corpus levels and epochs include only the subset

of productions and items necessary to parse that corpus.

CFG-L is a larger grammar (14 non-terminals, 120 productions) that fits the data

more precisely but at the cost of increased complexity. It is identical to CFG-S

except that it contains additional productions corresponding to different expansions

of the same non-terminal. For instance, because a sentence-initial Vinf may have

a different statistical distribution over its arguments than the same Vinf occurring

after an auxiliary, CFG-L contains both [Vinf → Vinf PP] and [Vinf → vi PP]

whereas CFG-S includes the former only. Because of its additional expansions, CFG-

L places less probability mass on the recursive productions, which fits the data more

precisely. Both grammars have approximately the same expressive power, but balance

the tradeoff between simplicity and goodness-of-fit in different ways.

I consider three regular grammars spanning the range of the simplicity/goodness-

7All full grammars, corpora, and perplexity values (corresponding to all likelihood calculations)
may be found at http://www.mit.edu/ perfors/posgrammars.html.
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of-fit tradeoff just as the context-free grammars do. All three fall successively between

the extremes represented by the flat and one-state grammars, and are created from

CFG-S by converting all productions not already of the form [A → a] or [A → a B] to

one of these forms. (It turns out that there is no difference between converting from

CFG-S or CFG-L; the same regular grammar is created in any case. This is because

the process of converting a production like [A → B C] is equivalent to replacing B by

all of its expansions, and CFG-L corresponds to CFG-S with some B items replaced.)

When possible without loss of generalizability, the resulting productions are simplified

and any productions not used to parse the corpus are eliminated.

The “narrowest” regular grammar, REG-N, offers the tightest fit to the data of

the three I consider. It has 85 non-terminals and 389 productions, some examples of

which are shown in Table 3.1. The number of productions is greater than in either

context-free grammar because it is created by expanding each context-free production

containing two non-terminals in a row into a series of distinct productions (e.g. [NP

→ NP PP] expands to [NP → pro PP], [NP → n PP], etc). REG-N is thus more

complex than either context-free grammar, but it provides a much closer fit to the

data – more like the flat grammar than the one-state.

Just as CFG-S might result from collapsing different expansions in CFG-L into

a single production, simpler regular grammars can be created by merging multiple

productions in REG-N together. For instance, merging NPCP and NPPP into a

single non-terminal such as NP results in a grammar with fewer productions and

non-terminals than REG-N. Performing multiple merges of this sort results in a

“moderately complex” regular grammar (REG-M) with 169 productions and 13 non-

terminals. Because regular grammars are less expressive than context-free grammars,

REG-M still requires more productions than either context-free grammar, but it is

much simpler than REG-N. In theory, we can continue merging non-terminals to

create successively simpler grammars that fit the corpus increasingly poorly until

we reach the one-state grammar, which has no non-terminals aside from S. A third,

“broader” regular grammar, REG-B, is the best performing of several grammars cre-

ated in this way from REG-M. It has 10 non-terminals and 117 productions and is
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Table 3.1: Sample productions from each of the hand-designed grammars. These
are chosen to illustrate the differences between each grammar, and may not be an
exhaustive list of all the expansions of any given non-terminal.

Context-free grammar CFG-S
NP → NP PP | NP CP | NP C | N | det N | adj N | pro | prop
N → n | adj N

Context-free grammar CFG-L
NP → NP PP | NP CP | NP C | N PP | N CP | N C | pro PP | pro CP | pro C

prop PP | prop CP | prop C | N | det N | adj N | pro | prop
N → n | adj N

Flat grammar
S → pro aux part S → det n v n
S → adj n aux n prep det n S → pro aux adj n comp pro v

Regular grammar REG-N
NP → pro | prop | n | det N | adj N | pro PP | prop PP | n PP | det NPP | adj NPP

pro CP | prop CP | n CP | det NCP | adj NCP | pro C | prop C | n C | det NC | adj NC

N → n | adj N NPP → n PP | adj NPP

NCP → n CP | adj NCP NC → n C | adj NC

Regular grammar REG-M
NP → pro | prop | n | det N | adj N | pro PP | prop PP | n PP

pro CP | prop CP | n CP | pro C | prop C | n C
N → n | adj N | n PP | n CP | n C

Regular grammar REG-B
HP → pro | prop | n | det N | adj N | pro HP | prop HP | n HP | pro CP | prop CP | n CP

pro C | prop C | n C | prep HP | prep | adj | adj HP | to Vinf

N → n | adj N | n HP | n CP | n C

identical to REG-M except that non-terminals NP, AP, PP, and T – which occur in

similar contexts as arguments of verbs – are merged to form a new non-terminal HP.

Grammars constructed by automated search

There is reason to believe that hand-designed grammars provide a good approximation

of the best grammar of each type. Both context-free grammars are designed based on

linguistic intuition, and the regular grammars are constructed from the context-free

grammars in order to preserve as much linguistic structure as possible. Furthermore,

grammars of all types have been chosen to reflect the range of tradeoffs between

simplicity and goodness-of-fit. It would nevertheless be ideal to search the space of

possible grammars and compare the resulting best grammars found for each type,
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rather than simply comparing the best hand-designed grammars. Unfortunately, this

type of search for context-free grammars presents a difficult computational problem,

and current search algorithms cannot be relied upon to find the optimal grammar

of any given type on large-scale corpora. Fortunately, this argument requires only a

search over regular grammars: if the hand-designed context-free grammars are not

close to optimal but still have higher probability than the best regular grammars,

then the argument is reasonable, but the converse is not true.

I perform a fully-automated search of the space of regular grammars by apply-

ing an unsupervised algorithm for learning a trigram Hidden Markov Model (HMM)

to the corpora (Goldwater & Griffiths, 2007). Though the algorithm was originally

developed for learning parts of speech from a corpus of words, it applies to the acqui-

sition of a regular grammar from a corpus of syntactic categories because the formal

description of both problems is similar. In both cases, one must identify the hidden

variables (parts of speech vs. non-terminals) that best explain the observed data (a

corpus of words vs. a corpus of syntactic categories), assuming that the variables

depend only on the previous sequence of variables and not on any additional struc-

ture. The output of the algorithm is the assignment of each syntactic category in

each sentence to the non-terminal that immediately dominates it; this corresponds to

a regular grammar containing those non-terminals and no others.8

As another comparison, I also perform a partial search over both regular and

context-free grammars using the best hand-designed grammar of that type as a start-

ing point. The partial search was inspired by the work of Stolcke and Omohundro

(1994), in which a space of grammars is searched via successive merging of states.

States (productions) that are redundant or overly specific are replaced with produc-

tions that are not. For more details, see the appendix.

8It is not assumed that each syntactic category has one corresponding non-terminal, or vice
versa; both may be ambiguous. Though the algorithm incorporates a prior that favors fewer hidden
variables (non-terminals), it requires the modeler to specify the maximum number of non-terminals
considered. I therefore tested all possibilities between 1 and 25. This range was chosen because it
includes the number of non-terminals of the best grammars (CFG-L: 21, CFG-S: 21, REG-B: 16,
REG-M: 16, REG-N: 86). Since the model is stochastic, I also repeated each run three times, with
N=10000 iterations each time. The grammars with the highest posterior probability at each level
are reported; they have between one and 20 non-terminals.
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The probabilistic model

Inferences are calculated using Bayes’ rule, which combines the prior probability of

G and T with the likelihood that the corpus D was generated by that G and T .

Scoring the grammars: Prior probability

The prior probability of a grammar reflects its complexity. I formalize it using a

generative model under which each grammar is selected from the space of all grammars

of that type. More complex grammars are those that result from more (and more

specific) choices. As we saw in Chapter 2, this method of scoring simplicity is quite

general, not restricted to grammars or even language. Just as the more complex

hypotheses in Figure 2-2 are those that require more free parameters to specify, more

complex probabilistic grammars G require more choices during the generation process.

If one were generating a grammar from scratch, one would have to make the series of

choices depicted in Figure 3-3, beginning with choosing the grammar type: one-state,

flat, regular, or context-free. (Since the model is unbiased, the prior probability of

each of these is identical). One would then need to choose the number of non-terminals

n, and for each non-terminal k to generate Pk productions. These Pk productions,

which share a left-hand side, are assigned a vector of positive, real-valued production-

probability parameters θk. Because the productions Pk represent an exhaustive and

mutually exclusive set of alternative ways to expand non-terminal k, their parameters

θk must sum to one. Each production i has Ni right-hand side items, and each of

those items must be drawn from the grammar’s vocabulary V (set of non-terminals

and terminals). If we assume that each right-hand side item of each production is

chosen uniformly at random from the vocabulary V , the prior probability is:

p(G|T ) = p(n)
n∏

k=1

p(Pk)p(θk)

Pk∏
i=1

p(Ni)

Ni∏
j=1

1

V
. (3.2)

I model the probabilities of the number of non-terminals p(n), productions p(Pk),

and items p(Ni) as selections from a geometric distribution; production-probability

parameters p(θk) are sampled from a discrete approximation of a uniform distribution
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Figure 3-3: Flowchart depicting the series of choices required to generate a grammar.
More subtle differences between grammar types are discussed in the appendix.
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Figure 3-4: Venn diagram depicting the relation of the grammar types T to each other.
The set of context-free grammars contains regular, flat, and one-state grammar types
as special cases. Flat and one-state grammars are themselves special cases of regular
grammars.

appropriate for probability parameters (Dirichlet). This prior gives higher probability

to simpler grammars – those with few non-terminals, productions, and items. Because

of the small numbers involved, all calculations are done in the log domain. The

appendix contains further details.

The subsets of grammars that can be generated by the several grammar types I

consider are not mutually exclusive. A particular grammar – that is, a particular

vocabulary and set of productions – might be generated under more than grammar

type and would receive different prior probabilities under different grammar types. In

general, a grammar with a certain number of productions, each of a certain size, has

the highest prior probability if it can be generated as a one-state or flat grammar, next

as a regular grammar, and the lowest as a context-free grammar. One-state and flat

grammars are a subset of regular grammars, which are a subset of context-free gram-

mars (see Figure 3-4). All other things being equal, one has to make fewer “choices”

in order to generate a specific regular grammar from the class containing only regular

grammars than from the class of context-free grammars. However, because regular

and flat grammars are less expressive, relatively more complex grammars of those

types may be required in order to parse all sentences in larger corpora.

This preference for the simplest grammar type is related to the Bayesian Occam’s

razor (MacKay, 2004). Other ways to measure simplicity could be based on notions
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such as minimum description length or Kolmogorov complexity (Li & Vitànyi, 1997;

Chater & Vitànyi, 2003, 2007). These have been useful for the induction of specific

context-free grammars G (e.g., Dowman, 1998), and reflect a similar intuitive idea

of simplicity.

Scoring the grammars: Likelihood

The likelihood p(D|G) can be defined straightforwardly for any probabilistic context-

free grammar or regular grammar by assuming that each sentence in the corpus is

generated independently from the grammar. This is the standard approach in prob-

abilistic grammar induction (e.g., Stolcke & Omohundro, 1994; Manning & Schütze,

1999). However, this assumption is not well-matched to the induction problem we

address here. Most centrally, these models generate a statistical distribution of sen-

tences that differs systematically from the statistics of natural language in a way that

might be expected to lead to a bias in grammar induction. In particular, they produce

distributions that do not capture the well-attested power law organization of language

(e.g., Zipf, 1932).9 They also fail to capture the actual causal process underlying

language production. Many factors – discourse requirements, semantics, priming and

salience effects, subjective preference, the conversational context, etc. – all affect

which sentences are spoken that are not captured by the production probabilities of

the grammar; a model that presumes that sentences are emitted independently from

one another based on those probabilities is therefore descriptively and explanatorily

inadequate.

Motivated by the fact that conventional probabilistic grammars that generate

every sentence independently fail to capture the power-law statistics of natural lan-

guage, Goldwater, Griffiths, and Johnson (2006) introduced a modified approach to

grammar induction known as adaptor grammars (see also Johnson, Griffiths, and

Goldwater (2007)). I adopt a version of their approach here. In the adaptor grammar

framework, the likelihood is calculated assuming a language model that is divided

into two components. The first component, the generator, assigns a probability dis-

9See also Briscoe (2006) for a more recent overview.
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tribution over the potentially infinite set of syntactic forms that are accepted in the

language. The generator can naturally take the form of a traditional probabilistic gen-

erative grammar, such as a PCFG. (I sometimes refer to this component as simply the

“grammar”). The second component, the adaptor, produces a finite observed corpus

through a nonparametric stochastic process that mixes draws from the generating

grammar with draws from a stored memory of previously produced sentence forms.

The adaptor component is primarily responsible for capturing the precise statistics of

observed utterance tokens, and unlike simpler traditional probabilistic grammars, it

can account naturally for the characteristic power-law distributions found in language.

An important special case of the adaptor framework, corresponding to particular

settings of the adaptor parameters10, evaluates a grammar based on the probabil-

ities it assigns to the set of sentence types occurring in a corpus, independent of

the frequencies with which these types occur (i.e., the sentence token frequencies).

Goldwater et al. (2006) note that this parallels – and gives a principled justification

for – the standard linguistic practice of assessing grammars based on the forms they

produce rather than the precise frequencies of those forms. Since we are concerned

with grammar comparison rather than corpus generation, I focus in this work on the

first component of the model. I thus take the data to consist of the set of sentence

types (i.e., distinct sequences of syntactic categories) that appear in the corpus, and

evaluate the likelihoods of candidate probabilistic grammars on that dataset.

It is important to note although the model is presented with type-based informa-

tion only, I do not presume that human children ignore token frequencies in general.11

The adaptor grammar framework explicitly captures people’s well-attested sensitiv-

ity to token-based frequency information via the adaptor component of the model; in

fact, to the extent that token-based frequencies follow a power-law distribution, the

adaptor framework captures that sensitivity better than more standard approaches.

10In which β = and α → 0.
11There are two different sorts of token-based frequency information, and the distinction between

the two is somewhat important. Much of the evidence demonstrating a sensitivity to this sort of
frequency information concerns the token frequency of individual lexical items. Sentence tokens, in
our model, correspond to the unique strings of syntactic sequences (e.g., n aux adj) rather than unique
lexical items such as dog or run. We do not presume that children ignore either kind of token-based
frequency information – simply that different sorts of information are relevant to different tasks.
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The model corresponds to assuming that language users can generate the syntactic

forms of sentence tokens either by drawing on a memory store of familiar syntactic

types, or by consulting a deeper level of grammatical knowledge about how to gen-

erate the infinite variety of acceptable syntactic forms in the language. Any sentence

type generated by the former system would originally have been generated from the

latter, but speakers need not consult their deep grammatical knowledge for every

sentence token they utter or comprehend.

It is the deeper grammatical knowledge used to generate the set of sentence types

– not the memory-based generation process that produces the observed frequency

of sentence tokens – that I am interested in here. By focusing only on the first

component of the language model (for which the data consists of sentence types) I

presume that token frequencies – while important in many phenomena in language

acquisition that I do not model here, including learning individual lexical items,

categories, or constructions, or for explaining performance effects due to memory

or attention – may be less relevant to the problem of identifying which particular

sentence forms are grammatical or not. In the discussion I address this presumption

in more detail.

The likelihood assigned to a grammar based on a dataset of sentence types can

be interpreted as a measure of how well the grammar fits or predicts the data. Like

simplicity, this notion of “fit” may be understood in intuitive terms that have nothing

specifically to do with grammars or language. Consider again Figure 2-2: intuitively

it seems as if hypothesis B is more likely to be the source of the data than hypothesis

A, but why? If A were the correct model, it would be quite a coincidence that all of

the data points fall only in the regions covered by B. Likelihood is dependent on the

quantity of data observed: it would not be much of a coincidence to see just one or a

few data points inside B’s region if they were in fact generated by A, but seeing 1000

data points all clustered there – and none anywhere else – would be very surprising

if A were correct.

This probabilistic preference for the most specific grammar consistent with the

observed data is a version of the size principle in Bayesian models of concept learn-
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ing and word learning (Tenenbaum & Griffiths, 2001; Regier & Gahl, 2004; Xu &

Tenenbaum, 2007). As noted before, it can also be seen as a probabilistic version

of the subset principle (Wexler & Culicover, 1980; Berwick, 1986). The effective set

of sentences that the probabilistic grammars can produce depends on several fac-

tors. All other things being equal, a grammar with more productions will produce

more distinct sentence types. But distinct sentences generated also depends on how

those productions relate to each other: how many have the same left-hand side (and

thus how much flexibility there is in expanding any one non-terminal), whether the

productions can be combined recursively, and other subtle factors. The penalty for

overly general or flexible grammars is computed in the parsing process, where we

consider all possible ways of generating a sentence under a given grammar and assign

probabilities to each derivation. The total probability that a grammar assigns over

all possible sentences (really, all possible parses of all possible sentences) must sum

to one, and so the more flexible the grammar, the lower probability it will tend to

assign to any one sentence.

More formally, the likelihood p(D|G) measures the probability that the corpus

data D would be generated by the grammar G. This is given by the product of the

likelihoods of each sentence Sl in the corpus, assuming that each sentence is generated

independently from the grammar. If there are M unique sentence types in the corpus,

the corpus likelihood is given by:

p(D|G) =
M∏

l=1

p(Sl|G). (3.3)

The probability of any sentence type Sl given the grammar (p(Sl|G)) is the product

of the probabilities of the productions used to derive Sl. Thus, calculating likelihood

involves solving a joint parsing and parameter estimation problem: identifying the

possible parse for each sentence in the corpus, as well as calculating the parameters

for the production probabilities in the grammar. I use the inside-outside algorithm

to sum over all possible parses and find the set of production probability parame-

ters that maximize the likelihood of the grammar on the observed data (Manning &

Schütze, 1999; Johnson, 2006). I evaluate Equation 3.3 in the same way, using the
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maximum-likelihood parameter values but integrating over all possible parses of the

corpus.12 Sentences with longer derivations will tend to be less probable, because

each production used contributes a factor less than one to the product in Equation

3.3. This notion of simplicity in derivation captures an inductive bias favoring gram-

mars that assign the observed sentences more economical derivations – a bias that is

distinct and complementary to that illustrated in Figure 2-2, which favors grammars

generating smaller languages that more tightly cover the observed sentences.

Results

The posterior probability of a grammar G is the product of the likelihood and the

prior. All scores are presented as log probabilities and thus are negative; smaller

absolute values correspond to higher probabilities.

Posterior probability on different grammar types

Hand-designed grammars

Table 3.2 shows the prior, likelihood, and posterior probability of each handpicked

grammar on each corpus. When there is the least evidence in the input (corpus Level

1), the flat grammar is preferred. As the evidence accumulates, the one-state grammar

scores higher. However, for the larger corpora (Level 4 and higher), a hierarchical

grammar always scores the highest, more highly than any linear grammar.

If linear grammars are a priori simpler than context-free grammars, why does

the prior probability favor context-free grammars on more complex corpora? Recall

that I considered only grammars that could parse all of the data. Though regular

and flat grammars are indeed simpler than equivalently large context-free grammars,

linear grammars also have less expressivity: they have to use more productions to

parse the same corpus with the same fit. With a large enough dataset, the amount

12See the appendix for a discussion of the subtleties involved in this calculation. One might calcu-
late likelihood under other assumptions, including (for instance) the assumption that all productions
with the same left-hand side have the same probability (g=1; see the appendix). Doing so results
in lower likelihoods but qualitatively identical outcomes in all cases.
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Table 3.2: Log prior, likelihood, and posterior probabilities of each hand-designed
grammar for each level of evidence. Because numbers are negative, smaller absolute
values correspond to higher probability. If two grammars have log probabilities that
differ by n, their actual probabilities differ by en; thus, the best hierarchical grammar
CFG-L is e101(∼ 1043) times more probable than the best linear grammar REG-M.

Corpus Probability FLAT REG-N REG-M REG-B 1-ST CFG-S CFG-L

Level 1
Prior -99 -148 -124 -117 -94 -155 -192

Likelihood -17 -20 -19 -21 -36 -27 -27
Posterior -116 -168 -143 -138 -130 -182 -219

Level 2
Prior -630 -456 -442 -411 -201 -357 -440

Likelihood -134 -147 -157 -162 -275 -194 -177
Posterior -764 -603 -599 -573 -476 -551 -617

Level 3
Prior -1198 -663 -614 -529 -211 -454 -593

Likelihood -282 -323 -333 -346 -553 -402 -377
Posterior -1480 -986 -947 -875 -764 -856 -970

Level 4
Prior -5839 -1550 -1134 -850 -234 -652 -1011

Likelihood -1498 -1761 -1918 -2042 -3104 -2078 -1956
Posterior -7337 -3311 -3052 -2892 -3338 -2730 -2967

Level 5
Prior -10610 -1962 -1321 -956 -244 -732 -1228

Likelihood -2856 -3376 -3584 -3816 -5790 -3917 -3703
Posterior -13466 -5338 -4905 -4772 -6034 -4649 -4931

Level 6
Prior -67612 -5231 -2083 -1390 -257 -827 -1567

Likelihood -18118 -24454 -25696 -27123 -40108 -27312 -26111
Posterior -85730 -29685 -27779 -28513 -40365 -28139 -27678
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of compression offered by the context-free grammar is sufficient to overwhelm the

initial simplicity preference towards the others. This is evident by comparing the

size of each grammar for the smallest and largest corpora. On the Level 1 corpus,

the context-free grammars require more productions than do the linear grammars (17

productions for CFG-S; 20 for CFG-L; 17 for REG-N; 15 for REG-M; 14 for REG-B;

10 for 1-ST; 8 for FLAT). Thus, the hierarchical grammars have the lowest initial prior

probability. However, their generalization ability is sufficiently great that additions to

the corpus require relatively few additional productions: the context-free grammars

that can parse the Level 6 corpus have 69 and 120 productions, in comparison to 117

(REG-B), 169 (REG-M), 389 (REG-N), 25 (1-ST), and 2336 (FLAT).

The flat grammar has the highest likelihood on all corpora because, as a perfectly

memorized list of each of the sentence types, it does not generalize beyond the data

at all. The regular grammar REG-N has a relatively high likelihood because its many

productions capture the details of the corpus quite closely. The other regular gram-

mars and the context-free grammars have lower likelihoods because they generalize

more beyond the data; these grammars predict sentence types which have not (yet)

been observed, and thus they have less probability mass available to predict the sen-

tences that have in fact been observed. Grammars with recursive productions are

especially penalized in likelihood scores based on finite input. A recursive grammar

will generate an infinite set of sentences that do not exist in any finite corpus, and

some of the probability mass is allocated to those sentences (although longer sentences

with greater depth of recursion are given exponentially lower probabilities). The one-

state grammar has the lowest possible likelihood because it accepts any sequence of

symbols as grammatical.

As the amount of data accumulates, the posterior increasingly favors the hier-

archical grammars: the linear grammars are either too complex or fit the data too

poorly by comparison. This ideal learning analysis thus infers that the syntax of En-

glish, at least as represented by this corpus, is best explained using the hierarchical

phrase structures of context-free grammars rather than the linear structures of sim-

pler Markovian grammars. In essence, this analysis reproduces one of the founding
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insights of generative grammar (Chomsky, 1956, 1957): hierarchical phrase-structure

grammars are better than Markovian linear grammars as models of the range of syn-

tactic forms found in natural language. Child learners could in principle make the

same inference, if they can draw on the same rational inductive principles.

Berwick (1982) presented a different approach to formalizing the simplicity ar-

gument for hierarchical structure in syntax, using tools from automata theory and

Kolmogorov complexity. At a high level, this analysis and Berwick’s are similar, but

there are two important differences. First, I evaluate learnability of a sizeable and

realistic CFG for English on a natural corpus of child-directed speech, rather than

simple languages (e.g., palindrome or mirror-symmetry languages on a binary alpha-

bet) with idealized corpora (e.g., including all sentences generated by the grammar,

or all sentences up to some maximum length or depth of recursion). Second, rather

than considering only those grammars that fit the corpus precisely and evaluating

them based only on their simplicity, I adopt a framework in which simplicity of the

grammar trades off against how well the grammar fits the particular corpus.

We can see where these differences matter in comparing the scores of particular

grammars at different levels of evidence. Although regular grammars never receive the

highest score across grammars of all types, they all score higher on the smallest corpus

(Level 1) than do any of the hierarchical grammars. On most levels of evidence, at

least one regular grammar is preferred over CFG-L. CFG-L is in fact the grammar that

is ultimately favored on the full corpus, but it overgeneralizes far more than the regular

grammars, and for the smaller corpora the tradeoff between simplicity and fit weighs

against it. Thus these results cannot be obviously predicted by simplicity-based

learnability analyses developed for artificial grammars on idealized corpora. The

tradeoff between simplicity and degree of fit, given the sparse and idiosyncratic nature

of child-directed language input, is critical to determining what kind of grammar an

ideal learner should acquire.

It is interesting that the smallest corpora are best accounted for by the flat and

one-state grammars. The smallest corpus contains only eight sentence types, with

an average 1.6 words per sentence; thus, it is not surprising that it is optimal to
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simply memorize the corpus. Why is the one-state grammar preferred on the Level 2

and Level 3 corpora? Its simplicity gives it a substantial advantage in the prior, but

we might expect it to suffer greatly in the likelihood because it can predict literally

any sequence of syntactic categories as a possible sentence. The low likelihood does

wind up ruling out the one-state grammar on larger but not smaller corpora: this is

because the likelihood is not completely uninformative since it can encode the relative

probability of each of the syntactic categories. Though this minimal model never fits

the data well, it doesn’t fit the smaller corpora so poorly as to overcome the advantage

due to the prior. This suggests that simply encoding the statistical distribution of

syntactic categories may be helpful at the earliest stages of language learning, even

though it is ultimately a poor predictor of natural language.

What kind of input is responsible for the transition from linear to hierarchical

grammars? The smallest three corpora contain very few elements generated from

recursive productions (e.g., nested prepositional phrases or relative clauses) or sen-

tences using the same kind of phrase in different positions (e.g., a prepositional phrase

modifying an NP subject, an NP object, a verb, or an adjective phrase). While a

regular grammar must often add an entire new subset of productions to account for

these elements, a context-free grammar need add fewer (especially CFG-S). As a con-

sequence, the flat and regular grammars have poorer generalization ability and must

add proportionally more productions in order to parse a novel sentence.

The larger context-free grammar CFG-L outperforms CFG-S on the full corpus,

probably because it includes non-recursive counterparts to some of its recursive pro-

ductions. This results in a significantly higher likelihood since less of the probability

mass is invested in recursive productions that are used much less frequently than the

non-recursive ones. Thus, although both grammars have similar expressive power,

the CFG-L is favored on larger corpora because the likelihood advantage overwhelms

the disadvantage in the prior.
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Figure 3-5: Posterior probabilities of each grammar considered during the search of
regular and context-free possibilities. Each point represents one grammar; the x-axis
is meaningless.

Local search from hand-designed grammars

To what extent are these results dependent on these particular hand-designed gram-

mars? I address this question by analyzing the posterior scores of those grammars

identified via local search. Figure 3-5 depicts the posterior probabilities of all of the

grammars considered in the search. Many linear grammars found by the automatic

search procedures have scores similar to the best hand-designed linear grammars, but

none have posterior probabilities close to that of the best context-free grammars.

The posterior probabilities of the best grammars of each type found after the local

search are shown in Table 3.3. The results are qualitatively similar to those obtained

with hand-designed grammars: the posterior still favors a context-free grammar once

the corpus is large enough, but for smaller corpora the best grammars are linear.

Identifying a regular grammar by automated search

In addition to identifying the best grammars resulting from a local search, I also

examine the best regular grammar (REG-AUTO) found in a purely automated fashion

using the unsupervised learning model developed by Goldwater and Griffiths (2007).

The grammars with the highest posterior probability on each corpus are shown in

Table 3.4. All of the REG-AUTO grammars have posterior probabilities similar
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Table 3.3: Log prior, likelihood, and posterior probabilities of each grammar resulting
from local search. Because numbers are negative, smaller absolute values correspond
to higher probability.

Corpus Probability FLAT REG-N REG-M REG-B 1-ST CFG-S CFG-L

Level 1
Prior -99 -99 -99 -99 -94 -133 -148

Likelihood -17 -19 -20 -19 -36 -26 -25
Posterior -116 -118 -119 -118 -130 -159 -173

Level 2
Prior -630 -385 -423 -384 -201 -355 -404

Likelihood -134 -151 -158 -155 -275 -189 -188
Posterior -764 -536 -581 -539 -476 -544 -592

Level 3
Prior -1198 -653 -569 -529 -211 -433 -521

Likelihood -282 -320 -339 -346 -553 -402 -380
Posterior -1480 -973 -908 -875 -764 -835 -901

Level 4
Prior -5839 -1514 -1099 -837 -234 -566 -798

Likelihood -1498 -1770 -1868 -2008 -3104 -2088 -1991
Posterior -7337 -3284 -2967 -2845 -3338 -2654 -2789

Level 5
Prior -10610 -1771 -1279 -956 -244 -615 -817

Likelihood -2856 -3514 -3618 -3816 -5790 -3931 -3781
Posterior -13466 -5285 -4897 -4772 -6034 -4546 -4598

Level 6
Prior -67612 -5169 -2283 -1943 -257 -876 -1111

Likelihood -18118 -24299 -25303 -25368 -40108 -27032 -25889
Posterior -85730 -29468 -27586 -27311 -40365 -27908 -27000
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to those of the other regular grammars, but on the larger corpora none have higher

probability than the best context-free grammars. Because the REG-AUTO grammars

do not consistently have higher probability than the other regular grammars, we

cannot conclude that they represent the “true best” from the space of all possible

grammars of that type. However, the fact that the best regular grammars found by

every method have a similar order-of-magnitude probability – and that none have

been found that approach the best-performing context-free grammar – suggests that

if better regular grammars do exist, they are not easy to discover.

Summing up these results, we find that a context-free grammar always has the

highest posterior probability on the largest corpus, compared to a variety of plausible

linear grammars. Though the ability of the hierarchical grammars to generate a higher

variety of sentences from fewer productions typically results in a lower likelihood, this

compression helps dramatically in the prior. A hierarchical grammar thus consistently

maximizes the tradeoff between data fit and complexity.

Ungrammatical sentences

One decision made in constructing the corpus was to remove the ungrammatical

sentences. This decision was primarily a pragmatic one, but I believe it is justified for

several reasons. A child learning a language might be able to identify at least some

of the ungrammatical sentences as such, based on pragmatic signals or on portions

of the grammar learned so far. Also, if learners disregard sentence forms that occur

very rarely, this would minimize the problem posed by ungrammatical sentences:

they would be able to ignore the majority of ungrammatical sentences, but relatively

few grammatical ones. Finally, since the hierarchical grammar type is preferred on

corpora as small as Level 4 and no ungrammatical sentences occurred 10 times or

more, it seemed unlikely that including ungrammatical sentences would alter the

main findings.

Nevertheless, it is still useful to compare each of the grammars on the corpus that

includes ungrammatical sentences in order to be certain that the decision to exclude
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them is not critical to the outcome.13 To the best grammars of each type, I added

the minimum number of additional productions required to parse the ungrammatical

corpus. The hierarchical grammars still have the highest posterior probability (Level 6

posterior: CFG-L: -29963; REG-B: -30458; REG-M: -30725; CFG-S: -31008; REG-N:

-33466; 1-ST: -43098; FLAT: -92737). Thus, considering the ungrammatical sentences

along with the grammatical sentences does not qualitatively alter these findings.

Sentence tokens vs sentence types

The likelihood was defined under a language model with separate generative processes:

one for the allowable types of syntactic forms in a language, another for the frequency

of specific sentence tokens. This definition effectively restricts the data considered

by the model to only include sentence types, rather than each individual sentence

token. Defining the likelihood in this way was a principled choice, paralleling standard

linguistic practice, in which grammars are evaluated based on how well they account

for which sentences occur, rather than their frequency distribution. It is nevertheless

useful to explore precisely what the effect of making this choice is.

Interestingly, the linear grammars were overwhelmingly preferred over the hier-

archical grammars on the corpus of sentence tokens (Level 6 posterior: REG-N: -

135704; REG-M: -136965; REG-B: -136389; CFG-L: -145729; CFG-S: -148792; FLAT:

-188403; 1-ST: -212551). As before, the context-free grammars had higher prior prob-

ability – but unlike before, the linear grammars’ goodness-of-fit outweighed the pref-

erence for simplicity. Why? The corpus of sentence tokens contains almost ten times

as much data, but no concomitant increase in the variety of sentences (as would occur

if there were simply more types, corresponding to a larger dataset of tokens). As a re-

sult, the likelihood term is weighted much more highly, thus more strongly penalizing

the hierarchical grammars (which overgeneralize more).

This result suggests that if the hierarchical structure of syntax is to be inferred

from observed data based on Bayesian inference with probabilistic grammars, the

13The ungrammatical corpus is the full corpus plus the 191 ungrammatical sentence types that
correspond to the 443 ungrammatical sentence tokens.
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learner must have some sort of disposition to evaluate grammars primarily with re-

spect to type-based rather than token-based data. Although one possibility is that

this disposition emerges from a general insensitivity to token frequencies, we certainly

do not suggest that this is the case: there is extensive psycholinguistic and develop-

mental evidence demonstrating that people are sensitive to quantitative frequency

variations in a wide variety of contexts. It is more plausible that grammar induction

per se is based on more sophisticated grammar models (like the adaptor framework)

which do not treat each sentence as an independent statistical sample from the gram-

mar. In such a framework, quantitative variation in token frequencies is not ignored,

but is separated from the component of the representation that captures the deep

principles of the grammar that generate acceptable forms. We will return to this

issue in the discussion.

Age-based stratification

These results may have developmental implications, but these must be interpreted

with caution. The findings do not necessarily imply that children should go through

a period of using a simpler flat or one-state grammar, just because those grammar

types were found to do best on the smaller type-based corpora. The Levels corpora are

based on divisions by sentence frequency rather than by age. Though it is plausible

that children can parse the simpler and more common sentences before the longer,

rarer ones, it is certainly not the case that they acquire an understanding of language

sentence by sentence, fully understanding some sentences and not at all understanding

everything else. Thus, the different Levels corpora probably do not directly correspond

to the amount of input available to the children at various ages. Instead, the division

into Levels allows for an exploration of the tradeoff between complexity and data fit

as the quantity of evidence increases.

It is nevertheless worthwhile to estimate, at least approximately, how soon that

evidence is available to children. I therefore compare the posterior probabilities of the

grammars on the Epoch corpora, which were constructed creating age-based divisions

in the full corpus. Table 3.5 shows the probabilities of the best hand-designed linear
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and hierarchical grammars on these corpora. Strikingly, a context-free grammar is

preferred at every age. This is even true for grammars that correspond to just the

first file (Epoch 0), which consists of one hour of conversation at age 2;3. It is also

interesting that the prior probabilities of the CFG-S and CFG-L grammars beginning

at Epoch 3 do not change. Why is this? Recall that at each epoch and level, I

evaluate only the subset of each grammar necessary to parse the sentences observed in

the corresponding corpus (removing any unnecessary productions). The fact that the

CFGs stabilize by Epoch 3 suggests that only 60% of the corpus is necessary to support

the same grammars that are also preferred for the entire corpus. This is a consequence

of the powerful generalization capacity that comes from using a CFG. In contrast,

regular grammars generalize less appropriately: the best regular grammar must be

supplemented with additional productions at every additional epoch, resulting in a

prior probability that continues to change as the corpus grows.

Do these results indicate that English-speaking children, if they are rational learn-

ers, can conclude after only a few hours of conversation that language has hierarchical

phrase structure? No. In order to draw such a conclusion the child would minimally

need to assign each word to its correct syntactic category and also be able to remember

and parse somewhat complex utterances – capacities which are taken for granted in

this model. However, this analysis does show that the data supporting a hierarchical

phrase structure for English are so ubiquitous that once a learner has some ability to

assign syntactic categories to words and to parse sentences of sufficient complexity, it

should be possible to infer that hierarchical grammars provide the best description of

the language’s syntax. It is interesting and theoretically important that the amount

of data required to infer the existence of hierarchical phrase structure is much less

than is required to infer all the rules of the correct hierarchical phrase-structure gram-

mar. In terms of Figures 3-1 and 3-2, an ideal learner can infer the correct hypothesis

at the higher level of abstraction T from less data than is required for inferring the

correct hypothesis at a lower level, G. Although I have not demonstrated this here, it

is theoretically possible that during the course of acquisition, higher-level knowledge,
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Table 3.5: Log prior, likelihood, and posterior probabilities of each grammar type
on the Epoch corpora, which reflect an age split. The hierarchical grammars are
favored at all stages, even on the first corpus (Epoch 0), corresponding to one hour
of conversation at age 2;3.

Corpus Probability FLAT REG-N REG-M REG-B 1-ST CFG-S CFG-L
Epoch 0 Prior -3968 -1915 -1349 -1166 -244 -698 -864
(2;3) Likelihood -881 -1265 -1321 -1322 -2199 -1489 -1448

Posterior -4849 -3180 -2670 -2488 -2443 -2187 -2312
Epoch 1 Prior -22832 -3791 -1974 -1728 -257 -838 -1055
(2;3-2;8) Likelihood -5945 -7811 -8223 -8164 -13123 -8834 -8467

Posterior -28777 -11602 -10197 -9892 -13380 -9672 -9522
Epoch 2 Prior -34908 -4193 -2162 -1836 -257 -865 -1096
(2;3-3;1) Likelihood -9250 -12164 -12815 -12724 -20334 -13675 -13099

Posterior -44158 -16357 -14977 -14560 -20591 -14540 -14195
Epoch 3 Prior -48459 -4621 -2202 -1862 -257 -876 -1111
(2;3-3;5) Likelihood -12909 -17153 -17975 -17918 -28487 -19232 -18417

Posterior -61368 -21774 -20177 -19780 -28744 -20108 -19528
Epoch 4 Prior -59625 -4881 -2242 -1903 -257 -876 -1111
(2;3-4;2) Likelihood -15945 -21317 -22273 -22293 -35284 -23830 -22793

Posterior -75570 -26198 -24515 -24196 -35541 -24706 -23904
Epoch 5 Prior -67612 -5169 -2283 -1943 -257 -876 -1111
(2;3-5;2) Likelihood -18118 -24299 -25303 -25368 -40108 -27032 -25889

Posterior -85730 -29468 -27586 -27311 -40365 -27908 -27000
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once learned, may usefully constrain predictions about unseen data. It might also

effectively act in ways that are hard to distinguish from innate knowledge or innate

constraints, given that it can be learned from such little data. I will return to this

point in the discussion.

Generalizability

Though posterior probability penalizes overgeneralization via the likelihood, it is im-

portant for a natural language learner to be able to generalize beyond the input

observed, to be able to parse and comprehend novel sentences. How well do the dif-

ferent grammars predict unseen sentences? One measure of this is the percentage of

the full (Level 6) corpus that can be parsed by the best grammars learned for subsets

(Level 1 to 5) of the full corpus. If a grammar learned from a smaller corpus can parse

sentence types in the full corpus that do not exist in its subset, it has generalized

beyond the input it received and generalized in a correct fashion. Table 3.6 shows the

percentage of sentence types and tokens in the full Level 6 corpus that can be parsed

by each of the best grammars for the smaller Levels. The context-free grammars

usually generalize the most, followed by the regular grammars. The flat grammar

does not generalize at all: at each level it can only parse the sentences it has direct

experience of. The one-state grammar can generalize to 100% of sentence types and

tokens at every level because it can generalize to 100% of all sentences, grammatical

or not.

A more stringent test of generalization is to evaluate it with respect to completely

novel corpora. To that end, we selected the final file of the Sarah corpus (Brown,

1973) of the CHILDES database (MacWhinney, 2000); we chose this because, since

Sarah was 5;1 at the time, this presented a more stringent test of generalization than

if she were younger. Processing the corpus in the same way as the Adam corpus (i.e.,

replacing lexical items with syntactic categories and removing the more complex

sentence types) results in a dataset with 156 sentence types corresponding to 230

sentence tokens. The Level 6 CFG-L parses the highest percentage of sentence types

in that corpus (94.2%), followed closely by CFG-S (93.6%), with REG-M (91.7%),
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Table 3.6: Proportion of sentences in the full corpus that are parsed by smaller
grammars of each type. The Level 1 grammar is the smallest grammar of that type
that can parse the Level 1 corpus. All Level 6 grammars can parse the full (Level 6)
corpus.

Grammar FLAT REG-N REG-M REG-B 1-ST CFG-S CFG-L
% types

Level 1 0.3% 0.7% 0.7% 0.7% 100% 2.4% 2.4%
Level 2 1.4% 3.7% 5.1% 5.5% 100% 31.5% 16.4%
Level 3 2.6% 9.1% 9.1% 32.2% 100% 53.1% 46.8%
Level 4 10.9% 50.7% 61.2% 75.2% 100% 87.6% 82.7%
Level 5 18.7% 68.8% 80.3% 88.0% 100% 91.8% 88.7%

% tokens
Level 1 9.9% 32.6% 32.6% 32.6% 100% 40.2% 40.2%
Level 2 21.4% 58.8% 61.7% 60.7% 100% 76.4% 69.7%
Level 3 25.4% 72.5% 70.9% 79.6% 100% 87.8% 85.8%
Level 4 34.2% 92.5% 94.3% 96.4% 100% 98.3% 97.5%
Level 5 36.9% 95.9% 97.6% 98.5% 100% 99.0% 98.6%

REG-B (91.0%), and REG-N (87.2%) trailing. Although the magnitude of these

differences is not large, they once again follow the same pattern as that noted on the

Adam corpus.

Do the context-free grammars simply generalize more than the regular gram-

mars, or do they generalize in the right way? In other words, would the context-free

grammars also recognize and parse more ungrammatical English sentences than the

regular grammars? Of the 191 ungrammatical sentence types excluded from the full

Adam corpus, the REG-B parses the most (107), followed by CFG-L (84), CFG-S

(73), REG-M (72), and REG-N (57). Aside from the flat grammar, all of the gram-

mars make some incorrect overgeneralizations. This should not be surprising given

that these grammars lack the expressivity needed to encode important syntactic con-

straints, such as agreement. However, it is interesting that the REG-M grammar,

which generalizes less than either context-free grammar to the full corpus in Table

3.6, generalizes to the ungrammatical sentences similarly to CFG-S: to the extent that

REG-M grammar generalizes, it does so more often in the wrong way by making more

incorrect overgeneralizations. This is even more striking in the case of the REG-B

grammar, which parses somewhat fewer correct sentences (in the full corpus) than
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either context-free grammar, but parses more incorrect (ungrammatical) sentences

than the others.

The hierarchical grammars also generalize more appropriately than the linear

grammars in the specific case of auxiliary-fronting for interrogative sentences. As

Table 3.7 shows, both context-free grammars can parse aux-fronted interrogatives

containing subject NPs that have relative clauses with auxiliaries – Chomsky’s critical

forms – despite never having seen an example of these forms in the input. They can

do so because the input does contain simple declaratives and interrogatives, which

license interrogative productions that do not contain an auxiliary in the main clause.

The input also contains relative clauses, which are parsed as part of the noun phrase

using the production [NP→ NP CP]. Both context-free grammars can therefore parse

an interrogative with a subject NP containing a relative clause, despite never having

seen that form in the input.

Unlike the context-free grammars, neither regular grammar can correctly parse

complex aux-fronted interrogatives. The larger regular grammar REG-N cannot be-

cause, although its NPCP productions can parse a relative clause in an NP, it does

not have productions that can parse input in which a verb phrase without a main

clause auxiliary follows an NPCP production. This is because there was no input in

which such a verb phrase did occur, so the only NPCP productions occur either at

the end of a sentence in the object NP, or followed by a normal verb phrase. Com-

plex interrogative sentences – exactly the input that Chomsky argued are necessary

– would be required to drive this grammar to the correct generalization.

The other regular grammars, REG-M and REG-B, cannot parse complex interrog-

atives for a different reason. Because they do not create a separate non-terminal like

NPCP for NPs containing relative clauses, they do have productions that can parse

input in which such a subject NP is followed by a verb phrase without a main clause

auxiliary. However, since they do not represent phrases as phrases, successful parsing

of the complex interrogative “Can eagles that are alive fly?” (aux n comp aux adj vi)

would require that the sentence have an expansion in which the non-terminal adj is

followed by a vi. Because no sentences in the input follow this pattern, the grammars
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cannot parse it, and therefore cannot parse the complex interrogative sentence in

which it occurs.

One might argue that because none of these grammars can parse the incorrect

complex interrogative (e.g., “Are eagles that alive can fly?”), we have not engaged

with the precise original argument. Although we do not seek to address the issue

of structure dependence, which this question more directly bears on, it is nonethe-

less useful to compare the performance of these grammars to the same grammars

containing the minimal number of additional productions necessary to parse such

a sentence. When we add these productions to the grammars (whether regular or

context-free), they are not used to parse any of the sentences in the full corpus, and

the inside-outside algorithm automatically prunes them away. If it is forced not to,

the resulting grammars have lower prior probability (due to the additional produc-

tions) as well as lower likelihood (due to predicting sentences not found in the corpus),

and thus will be dispreferred to similar grammars that lack those productions.

The superior generalization ability of the hierarchical grammars, though it hurts

their likelihood scores, is of critical importance. Chomsky’s original suggestion that

linear rules might be taken as more natural accounts of the data may have rested on

the intuition that a grammar that sticks as closely as possible to the observed data is

simpler without any a priori biases to the contrary. Such grammars do indeed predict

the data better; they receive higher likelihood than the hierarchical grammars, which

overgeneralize and thus waste some probability mass on sentence types that are never

observed. However, a grammar that overgeneralizes – not too far, and just in the

right ways – is necessary in order to parse the potentially infinite number of novel

sentences faced by a learner of natural language. Of all the grammars explored, only

the hierarchical grammars generalize in the same way humans do. While in a sense

this should not be a surprise, it is noteworthy that a rational learner given child-

directed language input prefers these grammars over those that do not generalize

appropriately, without direct evidence pointing either way.
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Discussion

This model of language suggests that there may be sufficient evidence in the input for

an ideal rational learner to conclude that language has hierarchical phrase structure

without having an innate language-specific bias to do so. The best-performing gram-

mars correctly form interrogatives by fronting the main clause auxiliary, even though

the input contains none of the crucial data Chomsky identified. In this discussion,

I consider the implications of these results for more general questions of innateness,

and for the nature of language acquisition in human children.

The question of innateness

In debates about innateness, there are often tradeoffs between the power of the learn-

ing mechanism, the expressive potential of the representation, and the amount of

built-in domain-specific knowledge. This modelling framework enables us to make

assumptions about each of these factors explicit, and thereby analyze whether these

assumptions are fair as well as to what extent the conclusions depend upon them. The

issue is also more complicated than is captured by making the distinction between

representational structure and the nature of the cognitive biases necessary. There

is the additional question of which of the many capacities underlying successful lan-

guage use are innate, as well as to what extent each capacity is domain-general or

domain-specific. The argument I consider here is concerned with whether a particular

feature of linguistic syntax – hierarchical structure – must be innately specified as

part of a language-specific learning module in children’s minds. This analysis incor-

porates several assumptions about the cognitive resources available to children, but

these resources are plausibly domain-general.

Probably the strongest assumption in the analysis is a powerful learning mech-

anism. I assume both that the learner can effectively search over the space of all

possible grammars to arrive at optimal or near-optimal hypotheses, and that the

grammars I have analyzed are sufficiently close to the optimal ones. Advances in

computational linguistics and the development of more powerful models of unsuper-
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vised grammar induction will do much to address the latter assumption, and until

then, these conclusions are of necessity preliminary. In the meantime, we can have

some confidence based on the fact that every linear grammar I was able to construct

through various and exhaustive means performed less well than the best hierarchical

grammars I found. Moreover, the poor performance of linear grammars appears to

occur for a principled reason: they require more productions in order to match the

degree of fit attained by context-free grammars, and therefore fail to maximize the

complexity-fit tradeoff.

Even if this approach succeeds in identifying (near-)optimal grammars, the as-

sumption that child learners can effectively search the space of all possible grammars

is a strong one. Especially for context-free grammars, where the space is much larger

than for regular grammars, it may be that learners will need some built-in biases in

order to search effectively (Kearns & Valiant, 1989). In general, one must assume

either a powerful domain-general learning mechanism with only a few general innate

biases that guide the search, or a weaker learning mechanism with stronger innate

biases, or some compromise position. These results do not suggest that any of these

possibilities is more likely than the others. The core argument concerns only the spe-

cific need for a bias to a priori prefer analyses of syntax that incorporate hierarchical

phrase structure. I am arguing that a rational learner may not require such a bias,

not that other biases are also unnecessary.

In addition to assumptions about the learning mechanism, this model incorporates

some assumptions about the representational abilities of the child. First of all, I

assume that children have the (domain-general) capacity to represent various types

of grammars, including both hierarchical and linear grammars. I am not claiming

that the specific grammars I analyze are exactly the ones children represent; clearly

all of the grammars I have worked with are oversimplified in many ways. But an

assumption that children in some sense have the capacity to represent both linear

and hierarchical patterns of sequential structures – linguistic or non-linguistic – is

necessary to even ask the questions I consider here. If children were not born with

the capacity to represent the thoughts they later grow to have, no learning in that
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direction could possibly occur. This analysis also assumes that the learner represents

the different grammar types as different grammar types, choosing between context-

free, regular, flat, and one-state grammars. This stratification is not critical to the

results, however. If anything, it is a conservative assumption, because it favors the

non-hierarchical grammars more heavily than they would be favored if I treated all

grammars as instances of a single general type.14

Perhaps the most basic representational assumption is that learners are evaluating

grammars with explicit symbolic structure. Although this assumption is not particu-

larly controversial in linguistics, it has been expressly denied in other recent analyses

of PoS arguments by cognitive modelers (e.g., Lewis & Elman, 2001; Reali & Chris-

tiansen, 2005). I am not arguing that the assumption of explicit structure is the only

viable route to understanding language acquisition as a kind of inductive learning.

It is important and useful to explore the alternative possibility that generalizations

about grammatical structure are not innate because such structure either does not

exist at all or is present only implicitly in some kind of sub-symbolic representation.

But it is also important to consider the possibility that these generalizations about

grammatical structure exist explicitly and can still be learned. One motivation is

simply thoroughness: any possibility that cannot be ruled out on a priori grounds

should be investigated. Another reason is that the reality of linguistic structure is

widely accepted in standard linguistics. There are many linguistic phenomena whose

only satisfying explanations (to date, not in principle) have been framed in struc-

tured symbolic terms. Explicitly structured representations also provide the basis of

most state-of-the-art approaches in computational linguistics (e.g., Charniak, 1993;

Manning & Schütze, 1999; Collins, 1999; Eisner, 2002; Klein & Manning, 2004).

Given how useful structured grammatical representations have been both for explain-

ing linguistic phenomena and behavior and for building effective computer systems

for natural language processing, it seems worthwhile to take seriously the possibility

that they might be the substrate over which children represent and learn language.

A final set of assumptions concerns the way I represent the input to learning. I

14See the appendix for details.
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have given the model a corpus consisting of sequences of syntactic categories, corre-

sponding to types of sentences, rather than sequences of lexical items which would

correspond to actual sentence tokens.15 There are two assumptions here: first, that

it is reasonable to use syntactic categories rather than individual lexical items, and

second, that it is reasonable to use input consisting of sentence types rather than

sentence tokens.

Both of these assumptions are not necessary in principle, but they greatly simplify

the analysis. Working with syntactic categories rather than individual lexical items

allows us to focus on learning grammars from the syntactic-category data they imme-

diately generate rather than having to infer this intermediate layer of representation

from raw sequences of individual words. I make no claims about how children might

initially acquire these syntactic categories, and the analysis would not change if they

themselves were shown to be innate (whatever that would mean). There is some

evidence that aspects of this knowledge may be in place even in children below the

age of two (Booth & Waxman, 2003), and that syntactic categories may be learnable

from simple distributional information without reference to the underlying grammar

(Schütze, 1995; Redington et al., 1998; Mintz, Newport, & Bever, 2002; Gerken et al.,

2005; Griffiths, Steyvers, Blei, & Tenenbaum, 2005). Thus I think it is plausible to

assume that children have access to something like the input I have used here as they

approach problems of grammar acquisition. However, it would still be desirable for

future work to move beyond the assumption of given syntactic categories. It is pos-

sible that the best linear grammars might use entirely different syntactic categories

than those I assumed here. It would be valuable to explore whether hierarchical

grammars continue to score better than linear grammars if the input to learning con-

sists of automatically labelled part-of-speech tags rather than hand-labelled syntactic

categories.

15Tomasello (2000) and others suggest that children initially restrict their syntactic frames to be
used with particular verbs (the so-called “verb island” hypothesis). This model treats all members
of a given syntactic category the same, and therefore does not capture this hypothesis. However, this
aspect of the model reflects a merely pragmatic decision based on ease of computation. An extension
of the model that took lexical items rather than syntactic categories as input could incorporate
interesting item-specific dependencies.
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Evaluating simple probabilistic grammars on sentence types rather than sentence

tokens is an approximation to using more sophisticated multi-stage probabilistic gram-

mars such as adaptor grammars (e.g., Goldwater et al., 2006; Johnson et al., 2007),

which better capture the observed power-law frequencies of natural language and the

processes giving rise to those frequencies. Presenting the model with sentence types

does not mean I am presuming that human learners ignore token frequencies; in fact,

the adaptor grammar framework explicitly provides a way to capture token-based

frequency information, and does so more accurately than conventional probabilistic

grammars do.

Do children actually evaluate candidate grammars primarily in terms of observed

sentence types rather than tokens? There is little empirical work that bears directly

on this issue, but the possibility is at least not inconsistent with what we know of

language acquisition. It derives from a sensible model of language, which separates

the component of the language faculty used to generate legal syntactic forms from the

component of the faculty that determines the distribution of sentences. This separa-

tion is reasonable because there are many factors that might affect which sentences

are spoken that have nothing to do with the grammar itself: the conversational con-

text, lexical and syntactic priming effects, and salience in memory, to name just a few.

A sensible learner should want to distinguish between these factors when evaluating

potential grammars, or at least try to remove some of the variation that is due to

language usage effects rather than the intrinsic structure of the grammar.

If people do have a disposition to evaluate grammars on the basis of sentence types,

does this constitute a language-specific or domain-general disposition? It is difficult

to say, but the conceptual underpinnings of the adaptor grammar framework are

consistent with a domain-general interpretation, emerging due to memory constraints

or other cognitive factors. Determining whether such a disposition exists – and, if so,

whether it is language-specific or not – is a question for future work.

It is important to note that the main claim, that the hierarchical phrase structure

of language need not be specified as part of the language faculty, is supported by the

finding that the model prefers the hierarchical grammars on the basis of type-based
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input. As noted earlier, as long as there is some reasonable way to set it up such that

the ideal learner learns the right thing, that shows it is learnable; this argument is

even more powerful when the framework adopted, based on adaptor grammars, is if

anything a more accurate statistical model of natural language.

While the preference for linear grammars given token-based input does not affect

my positive conclusion about hierarchical learnability with context-free grammars, it

does provide further motivation to explore more linguistically sophisticated hierar-

chically structured grammars that move beyond a simple context-free formalism. It

is known that CFGs are not adequate to capture the full syntax of language. It is

possible that if one worked with more sophisticated, linguistically powerful hierar-

chical grammars, they might provide better fits to sentence token data. This work

also yields predictions that might be testable experimentally: for instance, one could

evaluate whether people learn a different grammar in an artificial language learning

experiment based on whether the evaluate the data with respect to type or token-

based information.

In any case, all of the assumptions made in this analysis involve either abilities

that are plausibly domain-general, or language-specific knowledge that is distinct

from the knowledge being debated: I critically did not assume that learners must

know in advance that language specifically has hierarchical phrase structure. Rather,

I showed that this knowledge can be acquired by an ideal learner equipped with

sophisticated domain-general statistical inference mechanisms and a domain-general

ability to represent hierarchical structure in sequences – a type of structure found in

many domains outside of natural language. The model contains no a priori bias to

prefer hierarchical grammars in language – a bias that classic PoS arguments have

argued was necessary. The learned preference for hierarchical grammars is data-

driven, and different data could have resulted in a different outcome. Indeed, we find

different outcomes when we restrict attention to only part of the data.
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Relevance to human language acquisition

What conclusions, if any, may we draw from this work about the nature of grammat-

ical acquisition in human learners? This analysis focuses on an ideal learner, in the

spirit of Marr’s level of computational theory. Just as Chomsky’s original argument

focused on what was in principle impossible for humans to learn without some innate

knowledge, this response looks at what is in principle possible. While this ideal learn-

ing analysis helps recalibrate the bounds of what is possible, it may not necessarily

describe the actual learning processes of human children.

One concern is that it is unclear to what extent humans actually approximate

rational learners. Chomsky himself appealed to the notion of an objective neutral

scientist studying the structure of natural language, who rationally should first con-

sider the linear rule for auxiliary-fronting because it is a priori less complex (Chomsky,

1971). Although there is some debate about how best to formalize rational scientific

inference, Bayesian approaches offer what is arguably the most promising general ap-

proach (Jaynes, 2003; Howson & Urbach, 1993). A more deductive or falsificationist

approach (Popper, 1959) to scientific inference might underlie Chomsky’s view: an

objective neutral scientist should maintain belief in the simplest rule – e.g., the lin-

ear rule for auxiliary-fronting – until counterevidence is observed, and because such

counterevidence is never observed in the auxiliary-fronting case, that scientist would

incorrectly stay with the linear rule. But under the view that scientific discovery is a

kind of inference to the best explanation – which is naturally captured in a Bayesian

framework such as ours – the hierarchical rule could be preferred even without direct

counterevidence eliminating the simpler alternative. This is particularly true when

we consider the discovery problem as learning the grammar of a language as a whole,

where the rules for parsing a particular kind of sentence (such as complex auxiliary-

fronted interrogatives) may emerge as a byproduct of learning how to parse many

other kinds of sentences. The rational Bayesian learning framework adopted here

certainly bears more resemblance to the practice of actual linguists – who after all

are mostly convinced that language does indeed have hierarchical structure! – than
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does a falsificationist neutral scientist.

Defining the prior probability unavoidably requires making particular assump-

tions. A simplicity metric defined over a very different representation would probably

yield different results, but this does not pose a problem for this analysis. The classic

PoS argument claims that it would be impossible for a reasonable learner to learn

a hierarchical rule like aux-fronting. All that is required to respond to such a claim

is to demonstrate that such a reasonable learner could learn this. Indeed, this prior

is reasonable: consistent with intuition, it assigns higher probability to shorter and

simpler grammars, and it is defined over a sensible space of grammars that is capable

of representing linguistically realistic abstractions like noun and verb phrases. Even

if a radically different simplicity metric were to yield different results, this would not

change the conclusion that some reasonable learner could learn that language has

hierarchical phrase structure.

Another issue for cognitive plausibility is the question of scalability: the largest

corpus presented to the model contains only 2336 sentence types, many less than

the average human learner is exposed to in a lifetime. Since these results are driven

by the simplicity advantage of the context-free grammars (as reflected in their prior

probabilities), it might be possible that increasing quantities of data would eventually

drown out this advantage in favor of advantages in the likelihood. I think this is

unlikely for two reasons. First, the number of sentence types grows far less rapidly

than the number of distinct sentence tokens, and the likelihoods in the analysis are

defined over the former rather than the latter. Secondly, as I have shown, additional

(grammatical) sentence types are more likely to be already parsable by a context-free

grammar than by a regular grammar. This means that the appearance of those types

will actually improve the relative likelihood of the context-free grammar (because

they will no longer constitute an overgeneralization) while not changing the prior

probability at all; by contrast, the regular grammar may more often need to add

productions in order to account for an additional sentence type, resulting in a lower

prior probability and thus a lower relative posterior score.

If the knowledge that language has hierarchical phrase structure is not in fact
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innate, why do all known human languages appear to have hierarchical phrase struc-

ture? This is a good question, and I can only offer speculation here. One answer is

that nothing in this analysis precludes the possibility that children have a cognitive

bias towards syntactic systems organized around hierarchical phrase structures: the

point is that the classic PoS argument may not be a good reason to believe that

they do, or that the bias need be specifically linguistic. Another answer is that even

if a rational learner could in principle infer hierarchical structure from typical data,

that does not mean that actual children necessarily do so: such knowledge might

still be innate in some way, either language-specifically or emergent from cognitive,

memory-based, or perceptual biases. For instance, if human thoughts are fundamen-

tally structured in a hierarchical fashion, and if children have an initial bias to treat

syntax as a system of rules for mapping between thoughts and sequences of sounds,

then this could effectively amount to an implicit bias for hierarchical structure in

syntax. In fact, the finding that hierarchical phrase structure is only preferred for

corpora of sentence types (rather than tokens) may suggest that a bias to attend to

types is necessary to explain children’s acquisition patterns. It is also still possible

that there are no biases in this direction at all – cognitive or otherwise – in which

case one might expect to see languages without hierarchical phrase structure. There

have recently been claims to that effect (e.g., Everett, 2005), although much work

remains to verify them.

Although Chomsky’s original formulation of the PoS argument focused on the

innateness of the hierarchical structure of language, recent characterizations of an

innate language faculty have concentrated on recursion in particular (Hauser, Chom-

sky, & Fitch, 2002). An interesting aspect of these results is that although all of

the best context-free grammars I found contained recursive productions, the model

prefers grammars (CFG-L) that also contain non-recursive counterparts for complex

NPs (noun phrases with embedded relative clauses).16 It is difficult to know how to

interpret these results, but one possibility is that perhaps syntax, while fundamentally

16See Perfors, Tenenbaum, Gibson, and Regier (submitted) for a more detailed exploration of this
issue.
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recursive, could also usefully employ non-recursive rules to parse simpler sentences

that recursive productions could parse in principle. These non-recursive productions

do not alter the range of sentence types the grammar can parse, but they are useful

in more precisely matching the linguistic input. In general, this paradigm provides

a method for the quantitative treatment of recursion and other contemporary ques-

tions about the innate core of language. Using it, we can address questions about

how much recursion an optimal grammar for a language should have, and where it

should have it.

Conclusion

I have demonstrated that an ideal learner equipped with the resources to represent a

range of symbolic grammars that differ qualitatively in structure, as well as the abil-

ity to find the best fitting grammars of various types according to a Bayesian score,

can in principle infer the appropriateness of hierarchical phrase-structure grammars

without the need for innate language-specific biases to that effect. If an ideal learner

can make this inference from actual child-directed speech, it may be possible for hu-

man children to do so as well. Two important open questions remain: how well an

ideal learnability analysis corresponds to the actual learning behavior of children, and

how well this computational model approximates this ideal. These specific conclu-

sions are therefore preliminary and may need to be revised as we begin to learn more

about these two fundamental issues. Regardless, I have offered a positive and plausi-

ble “in principle” response to the classic negative “in principle” poverty-of-stimulus

arguments for innate language-specific knowledge.

This work also suggests a new approach to classic questions of innateness. By

working with sophisticated statistical inference mechanisms that can operate over

structured representations of knowledge such as generative grammars, we can rigor-

ously explore a relatively uncharted region of the theoretical landscape: the possibility

that genuinely structured knowledge is genuinely learned, as opposed to the classic

positions that focus on innate structured knowledge or learned unstructured knowl-
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edge, where apparent structure is merely implicit.

Some general lessons can be drawn. It does not make sense to ask whether a

specific generalization is based on innate knowledge when that generalization is part

of a much larger system of knowledge that is acquired as a whole. Abstract organiza-

tional principles can be induced based on evidence from one part of the system and

effectively transferred to constrain learning of other parts of the system, as we saw

for the auxiliary-fronting rule. These principles may also be learned prior to more

concrete generalizations, or may be learnable from much less data than is required to

identify most of the specific rules in a complex system of knowledge. In the following

two chapters, I will explore two other topics within language acquisition – learning

verb argument constructions, and acquiring word learning biases – in an effort to

evaluate whether, and to what extent, these lessons apply more generally.
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Chapter 4

Word learning principles

In Chapter 1 I discussed the problem of Feature Relevance, with an emphasis on its

implications for the problems of word learning and the determination of reference.

We saw that it may be reasonable to assume that the problem of Feature Relevance

can be addressed, at least in part, by assuming the existence of some innate higher-

order learning constraint (or overhypothesis), but that this solution cannot apply

everywhere. In some domains, overhypotheses themselves appear to be learned, as

is plausibly true for the case of the shape bias in word learning. However, we still

understand little about how learning on multiple levels of abstraction can be done.

Does lower-level learning always occur before higher-level learning, as one might ex-

pect, or is it possible to acquire an overhypothesis faster the the specific hypotheses

it is meant to constrain? If not, how can we explain the emergence of the shape bias?

If so, what principles explain this acquisition? And what, if anything, does this imply

about the inductive constraints that were previously assumed must be innate?

The acquisition of feature biases

Although learning on multiple levels of abstraction is a theme throughout this thesis,

in this chapter I focus on it in more detail in the context of the acquisition of word

The work in this chapter was carried out in collaboration with Joshua Tenenbaum, and the

model is an extension of Kemp et al. (2007).
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learning biases. This work addresses several major issues that arise in that literature.

Category learning

In previous work with Charles Kemp (Kemp et al., 2007), we demonstrated that

a simple hierarchical Bayesian model can qualitatively capture human performance

based on simple datasets modelled on Smith et al. (2002) and Jones and Smith (2002).

However, the input we gave to that model was far “cleaner” than that typically faced

by the child; it had relatively few features, and there was more within-category coher-

ence than might be typically found in the real world. Was the successful acquisition

of a shape bias the result of these factors? How “messy” would the input have to be

before second-order overhypothesis learning would be impossible?

Our previous work also assumed that the learner already knows which categories

individual items are in. The actual learning task faced by children is of course far

more complicated, since category information is not given directly: children must

realize that individual exemplars of basketballs and baseballs are both members of the

category ball, as well as that balls (like other count nouns) tend to be similar in shape

but not other features. How do children solve this learning problem? One answer is

that perhaps they are effectively given category information via word labels: if they

believe that labels are clear indicators of category membership, they could use this

information to cluster items in the world into categories and thereby learn the shape

bias. A different possibility is that children could learn the categories themselves,

without requiring labels, if they assume that categories consist of clusters of items

with coherent features.

As we saw in Chapter 1, a core debate about how the shape bias emerges focuses

on the nature of the higher-level assumptions necessary to explain that emergence:

is it due to attentional/associationist learning (Smith et al., 2003; Colunga & Smith,

2004), or does it result from certain ontological commitments children make concern-

ing the nature of kinds (Xu, 2002; Xu et al., 2004)? Central to this discussion is the

question of what assumptions children make about word labels. According to the

“dumb attentional mechanism” account, no special assumptions about words need
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to be made in order to explain its emergence (Smith et al., 2003; Colunga & Smith,

2004, 2005; Smith & Samuelson, 2005). The shape bias is a bias about words, but

only in the sense that what is learned is the correlation between the structure of

early noun vocabularies and organization by shape. This correlation is argued to be

sufficient for an associative learner to acquire the second-order biases that children

do – biases saying that count nouns are correlated with shape, but in other domains

different features are correlated with labels. Simulations on connectionist networks

qualitatively replicate the emergence of feature biases, given artificial input whose

statistics reflect that of the early noun vocabulary of children speaking English and

Japanese (Samuelson, 2002; Colunga & Smith, 2005).

Other researchers propose that the emergence of the shape bias cannot be fully

understood via simple associative mechanisms. Rather, as Waxman (2004) suggests,

“infants embark on the task of word learning not as tabulae rasae, but equipped with

a broad, universally shared expectation that links words to commonalities among

objects.” According to this idea, labels cannot be viewed simply as another feature

that varies coherently with features of objects in the world: instead, from birth,

children have an innate bias to believe that word labels pick out categories in a special

way (e.g., Soja et al., 1991; Xu, 1999, 2002). Even pre-linguistic infants appear

sensitive to information conveyed by language, individuating objects (Xu, 2002) and

forming object categories (Balaban & Waxman, 1996; Fulkerson & Waxman, 2007)

on the basis of linguistic labels but not other correlated information like tones.

These researchers agree that the statistical correlation between early noun vocab-

ularies and objects in the world plays some role in the shape bias in word learning,

but argue that one of the more crucial parts is that children have an a priori bias

to believe that words are privileged cues to categories. Under this view, the shape

bias is not specific to naming, but rather emerges because shape is a reliable cue to

category/kind membership, which itself is correlated strongly with naming (Bloom,

2000; Diesendruck & Bloom, 2003; Xu et al., 2004). Children show the shape bias

when asked to reason about categories, whether they are named or not (Diesendruck

& Bloom, 2003). In addition, word generalization patterns are argued to depend on
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conceptual as well as perceptual knowledge: when novel target objects are described

as artifacts 18- to 24-month-olds extend names on the basis of shape, but when they

are described as animates, they use both shape and texture (Booth, Waxman, &

Huang, 2005; Booth & Waxman, 2006).

In sum, then, there remains much confusion about the role of linguistic input

in the emergence of higher-order feature biases. Do children presume that labels are

strong cues to category membership, or is the emergence of the shape bias explainable

without this assumption? The connectionist networks presented by Samuelson (2002)

and Colunga and Smith (2005) do not address this question, because there is no way

within those models to differentiate between words-as-categories, words-as-features,

and no words at all.

Learning from a few examples

An interesting study by Smith et al. (2002), often taken to be strong evidence for

the distributional account of the shape bias, provides strong evidence that it can be

taught. 17-month-old infants lacking the shape bias were trained for eight weeks on

two items from four novel categories with novel names (e.g., zup) that were strongly

organized by shape. At the end of this training, the infants’ first-order and second-

order generalization was tested by presenting them with either an exemplar from one

of the trained categories (first-order) or an exemplar from a novel category (second-

order) and asking them to choose another object that they think would share the same

label. In both cases, children preferred to extend the objects by shape, demonstrating

that they had acquired the shape bias at an age when non-trained children do not

have one. Most intriguingly, the children’s outside-of-the-lab vocabularies increased,

suggesting that the acquisition of the shape bias helped them to acquire English words

faster.

This is a surprising finding because aspects of it seem difficult to explain under

either the distributional or the more nativist words-as-categories view. Although the

latter view may be consistent with a learning account that can explain how a few

additional items can lead to the emergence of this feature bias, no such account has
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been articulated. Smith et al. (2002) interpret their results to be arguing for the

distributional account. However, although the finding supports the notion that the

shape bias is learned, it may be difficult to explain how an associationist learner could

acquire it based on so little data. Associationist learning is generally much slower,

and less prone to rapid shifts based on few data points. The children in the study

already spoke many words; why did learning just a few more have such a large effect?

Study 1: Category learning

In this section I present an extension of the model described in Kemp et al. (2007),

with the goal of exploring how first-order learning (about categories) and second-

order learning (of feature biases) might emerge together. The model extension has

the ability to cluster individual items into categories as well as infer second-order

knowledge, or overhypotheses, about how categories in general are organized. It

can also capture different assumptions about the role of words. This permits us to

evaluate under what circumstances, if any, the different assumptions would give rise

to differences in performance, at least in this ideal learning setting.

Previous work

In earlier work with Charles Kemp (Kemp et al., 2007), we presented a hierarchical

Bayesian model for the acquisition of feature biases. The basic model assumes that

data consists of observations of categories, where each observation corresponds to the

number of times the category is observed with each feature. For instance, one of the

datapoints corresponding to the model schema in Figure 4-1 would indicate that the

ball category occurs five times with the shape feature sphere.

Within the framework captured by this model, if we would like to predict what

sort of features we are liable to observe in some category n (i.e., level 1 knowledge

about features), the first step is to ask how the level 1 knowledge might be acquired.

The answer to this question will make reference to a more abstract body of knowledge

(level 2 knowledge). In this case, level 2 knowledge would be knowledge about the
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Figure 4-1: A hierarchical Bayesian model, Model L2. Each setting of (α, β) is
an overhypothesis: β represents the feature distribution across all categories, and
α represents the variability of each feature within each category. Data consists of
category information corresponding to the features associated with each of the items
in the category – for instance, the individual exemplars of cats, cups, and balls shown
here. The hyper-parameters µ and λ are given; Level 1 and Level 2 knowledge are
inferred by the model.

distribution of features across categories in the world, which can be represented by

two parameters, α and β. Roughly speaking, α captures the extent to which each

individual category is organized by a given feature (or not), and β captures the

average distribution of features across all categories in the world. For instance, low

α would indicate that each item in a category tends to share a certain feature value,

but does not say anything about what value that might be: if a category had low α

for the shape feature, one would know that it was organized by shape, but not know

precisely what shape it was.

As one might expect, level 2 knowledge depends on knowledge at a higher level,

level 3, which is represented in this model by two (hyper-)parameters λ and µ. Be-

cause knowledge on higher levels grows increasingly abstract, it is difficult to translate

level 3 prior knowledge in a clear and intuitive way – but, broadly speaking, λ and

µ capture prior assumptions about α and β, respectively. The λ parameter cap-

tures something about the range of values expected about the uniformity of features

(would it be extremely unusual to see categories whose items all have exactly the

same shape?), and the µ parameter the range of values of the expected distribution

of features in the world.
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Table 4.1: Data presented to the model, based on the Smith et al. (2002) study.

Category 1 Category 2 Category 3 Category 4
Feature Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Novel item
shape 1 1 2 2 3 3 4 4 5
texture 1 2 3 4 5 6 7 8 9
color 1 2 3 4 5 6 7 8 9
size 1 2 1 2 1 2 1 2 1

In Kemp et al. (2007), we presented this model with data modelled after the

Smith et al. (2002) experiments. The data consisted of eight items divided into four

categories and is described in detail in Table 4.1. The model, which I will call Model

L2 because it performs inference on two levels of abstraction, forms correct first- and

second-order generalizations on the basis of shape, as shown in Figure 4-2.
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Figure 4-2: Type of generalization predicted by Model L2 given input modelled after
the Smith et. al. (2002) study. The model correctly learns that categories are
organized by shape, rather than color or texture. (a) First-order generalization. (b)
Second-order generalization.

However, this data assumes the individual items are already partitioned into cat-

egories. Is learning of the shape bias possible if the model does not know in advance

what the categories are, if it is simply given eight individual items, but with no

category information? Figure 4-3 shows the first- and second-order predicted gener-

alization of Model L2 on this new input. It is apparent that if it is not given category

information, Model L2 cannot learn the shape bias. This is, of course, exactly what we

would expect, because the shape bias is a bias about what how features are organized

within categories; without categories, the idea is meaningless.
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Figure 4-3: Type of generalization predicted by Model L2 given input modelled after
the Smith et. al. (2002) study, but without category information. The model gen-
eralizes along each feature equally, since it lacks any categories along which to infer
any bias.(a) First-order generalization. (b) Second-order generalization.

Extension A: Learning categories and overhypotheses

We cannot assume that children are necessarily shown how each individual item is

clustered into categories. Yet they clearly do learn the shape bias (and other sorts of

feature biases as well). How is this done? One possibility, as discussed earlier, would

be that the labels children hear serve as strong cues to category membership, and

that without labels they would be unable to form categories or make second-order

generalizations about them. The other possibility we considered is that the categories

could be learnable even without any associated word labels.1

I evaluate these possibilities by creating a category-learning extension of Model L2.

This extension is denoted with the prefix “C” (e.g., Model C-L2). Whereas Model L2

assumed that the input data corresponded to the features associated with categories

y (where yi contains the counts of features corresponding to category i), Model C-L2

assumes that the input consists of the features corresponding to individual items j.

It then tries to group the items j into the best categories yi. The model does not

know how many categories there are; rather, it calculates the best partition of items

into categories on the assumption that items with similar feature distributions are

1Of course, if a second-order bias were formed without any word information at all, it would not
be a bias about word learning per se, but rather about category organization. Nevertheless, since
this sort of bias has a clear relationship to the word learning biases we focus on in the literature, it
is an interesting question to explore – especially since, if a bias could be learned based simply on the
organization of coherent non-word features, it would not be difficult to exploit the same mechanism
to handle additional word information.
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more likely to be grouped together into a category. A prior favors smaller numbers

of categories, but this prior can be overcome if the items are different enough from

one another. The technical details of this model are described in the appendix.

Presenting Model C-L2 the same data as in Table 4.1, but without category infor-

mation included, results in performance that is qualitatively quite different to Model

L2 given the same data, and similar to that of Model L2 on input in which category

information is included. Figure 4-4 shows model performance for first and second-

level generalization, as well as a depiction of the categories learned. The model is able

to group the individual items into categories based simply on feature coherence: the

shape features are more coherent than texture or color, and size, while coherent itself,

results in categories with overall more variation, so clustering by size is dispreferred.
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Figure 4-4: (a) Type of first-order generalization predicted by Model C-L2 given
input corresponding to the data from Smith et. al. (2002), but not pre-classified
into categories. (b) Second-order generalization. (c) The model learns the correct
categorization of the objects, forming four categories.

These results appear to suggest that knowing the categories may not be necessary

in order to acquire the shape bias, and in fact may not even make it much easier.

However, such a conclusion would be rather hasty. This input is much cleaner (in

terms of both the number and the coherence of features) than what is faced by children

learning natural language. Thus, even if knowing the categories in advance might not

be necessary when faced with this sort of input, it might still be necessary for a

more realistic situation. What we really need is an understanding in the abstract

of how knowing first-order information about category assignments helps an ideal

learner make second-order generalizations about feature biases across categories. It is
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unclear how much we can generalize results based on relatively small, clean datasets

to the complexity of the situation faced by the child learner in real life.

Extension B: A systematic exploration of category learning

One approach to this problem would be to present the model with realistic, child-

directed data, as we do in Chapters 3 and 5. But while it is possible to at least

approximate the sort of input children receive when the data in question is about

the syntactic forms they hear (thanks to the existence of corpora), it is a much

different matter to know how to approximate the kind of data that would be relevant

here. How many items, and of what categories, does a typical child encounter in

his daily life? Even if we could roughly estimate this based on the first words in

children’s vocabularies, what features do we assume those items have? Perhaps we

could estimate these by having adults list the features they associate with those items,

but – in addition to problems typical to feature-listing methodologies, like overlooking

extremely common or basic features (e.g., “breathes”, “has cells”) – doing so puts us

in danger of assuming precisely what we wish to study. If, as some have argued (e.g.,

Goldstone, Steyvers, Spencer-Smith, & Kersten, 2000; Smith, 2005), the process of

category learning affects our perception of features, then adult ratings might not

accurately reflect children’s input at all.

Another option would be to evaluate how factors like category coherence or num-

ber of items and categories in a dataset of dataset affect overhypothesis learning.

Previously the model was presented with datasets in which the categories were com-

pletely coherent with respect to shape: knowing the shape of an object served as a

100% valid predictor of which category that object was in. It may be that if categories

were less coherent, then knowing which items were in which categories would be more

useful for learning overhypotheses about how they are organized.

To test this, I create a series of datasets that vary systematically by coherence. As

before, there are eight objects from four categories, but the complexity of the dataset

is increased somewhat by adding additional features, ten of which are arbitrarily

called shape, and ten other. The other features always have 0% coherence, meaning
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Table 4.2: Sample artificial datasets, varying in coherence. For illustrative purposes and
to make the difference between different coherence levels most clear, these sample dataset
contain two categories of five items each. The actual sample datasets first presented to the
model contain eight items corresponding to four categories; later we systematically vary the
number of items and categories between one and sixteen.

Category 1 Category 2
Feature Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10 Novel item

100% Coherence
shape1 1 1 1 1 1 3 3 3 3 3 5
shape2 2 2 2 2 2 4 4 4 4 4 5
shapen 3 3 3 3 3 2 2 2 2 2 5
other1 1 4 3 1 2 4 1 2 3 2 5
other2 4 3 4 2 1 1 3 4 2 3 5
othern 2 1 4 3 4 2 4 3 1 1 5

60% Coherence
shape1 1 2 1 3 1 3 4 2 3 3 5
shape2 1 4 2 2 2 4 1 4 4 3 5
shapen 3 3 4 3 3 1 2 2 2 4 5
other1 1 4 3 1 2 4 1 2 3 2 5
other2 4 3 4 2 1 1 3 4 2 3 5
othern 2 1 4 3 4 2 4 3 1 1 5

that they vary completely randomly with respect to category membership. The shape

features are generated by the following procedure. First, we set them to have feature

values that are 100% coherent with respect to the category, meaning they are perfect

predictors of category membership. A coherence level of c is generated according

to the definition that a feature value has a 100 − c% chance of being random. For

instance, if a feature (say, shape1) is 60% coherent, then each item in some category m

would, with 40% probability, have a shape1 that does not match the defining shape1

of category m. To illustrate what is meant by coherence, sample data is shown in

Table 4.2.

I create datasets that vary systematically in the coherence of their shape features.

Dataset coherence ranges from 0% to 100% in increments of 20%. As before, second-

order generalization is tested with an additional object with novel values along each

feature: is the model more likely to assume that additional items in the same category

will share the same shape features, or the same other features?

At each level of coherence, I compare the generalization between datasets in which

the categories are given and datasets in which the model must infer the categories

itself. Figure 4-5(a) shows the results. Somewhat surprisingly, there is no significant
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difference in second-order generalization depending on whether the categories were

given to the model or not. As Figure 4-5(b) reveals, if coherence is low enough

it does not support category learning; but it would not be sufficient to support a

second-order generalization even if the categories were known. In other words, once

the features are coherent enough to support second-order generalizations, they are

coherent enough to support categorization. Thus – at least for an optimal learner

– being given category information appears to make little difference as to whether

second-order overhypotheses are acquired.
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Figure 4-5: (a) Second-order generalization by shape features on simulated datasets
that vary in how coherent the shape features are (shown on the x-axis). Second-
generalization, shown on the y-axis, is similar regardless of whether the model is given
the category information or not. For low values of coherence there is no shape bias
in both cases; but if coherence is high enough to infer the existence of a feature bias,
it is high enough to infer category membership. (b) Category assignments inferred
by Model C-L2. Consistent with the (a), recognizable categories only emerge when
coherence reaches 60%.

Although this is interesting, it is still somewhat unclear how much this result

depends on other aspects of the dataset, like the number of items or underlying

categories. I therefore systematically vary all possible combinations of the number

of items in the dataset (among 16, 8, 4, and 2 items) and the number of categories

(among 8, 4, 2, and 1). Results are shown in Figure 4-6. There is once again no

systematic difference in model performance depending on whether the categories are

given or not. If there is sufficient coherence to support overhypothesis learning, there

is sufficient coherence to support categorization. The other general patterns are all

sensible: second-order generalization is better if category coherence is higher or there

are more items in the dataset.
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Figure 4-6: Second-order generalization by shape features on simulated datasets that
vary in the number of items in the dataset (vertical) and the number of categories
(horizonal). Within each subplot, the y axis indicates the degree of second-order
generalization by shape features, and the x axis depicts coherence varying from 0%
to 100%. As before, there is little systematic difference between second-order gener-
alization by whether the categories were given to the model or not.

If there is no systematic effect of from making category information accessible, one

implication might be that the assumptions children make about words should have

no effect either. Whether words are just another feature or a strong cue to category

membership, they carry more category information than was given to the model in

the “no categories” case, but it performed equally well regardless.
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Extension C: The role of words

The simulations so far include two conditions, one in which no category information at

all is given and one in which category membership is known for all items. The latter

condition is equivalent to assuming that labels are perfectly indicative of category

membership and all items are labelled. To these two conditions, I add a condition in

which labels are simply additional features (and, again, all items are labelled). The

label information is there, but labels are not taken to be a strong indicator of category

membership; it is thus more consistent with the distributional learning account of the

shape bias.

Because it is unlikely that children hear labels for every item in their world, I

also add two conditions where only 50% of the items are labelled.2 I refer to these

conditions as semi-supervised, and there is a semi-supervised version corresponding

to each of the assumptions about words – whether words are taken as strong cues of

category membership, or whether they are simply features in the model.

Results are shown in Figure 4-7. As expected, there is no significant difference in

model performance regardless of what assumptions were made about words, whether

all the items were labelled or only some were.
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Figure 4-7: Second-order generalization by shape features on simulated datasets that
vary in coherence. Second-order generalization is unaffected by the nature of the
assumption made about words.

2I also evaluated conditions where 25% and 75% of the items were labelled, respectively; there is
no qualitative difference between any of these conditions so here I only report on the 50% condition.
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Is there any circumstance in which that the different theories about the role of

words might result in different predictions? One possibility could be be if words do

not correlate with the other features that pick out categories. Under the strongest

“words are cues to categories” claim, one should form categories based on the labels

even if the other features are consisted with a different category organization. But if

words are features, then if the words are no longer correlated with the other features,

one should learn to disregard words when forming categories. Under such an account,

the shape bias would emerge, but would no longer be word-driven.
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Figure 4-8: Second-order generalization by shape features on simulated datasets that
vary in coherence. Here, the coherence of the shape features contradict the organiza-
tion of the categories (given by word labels). If words are treated as features, rather
than taken as strong cues of category membership, the model learns that categories
are organized by shape, and that word labels should be ignored. But if words are
taken as strong cues of category membership, the model can learn no such thing (since
the categories picked out by the words now aren’t organized by shape), and therefore
does not acquire a shape bias.

Indeed, that is what we find. I present the model with the same dataset, except

that the labels pick out categories opposite to those formed by the coherent correlation

of the other (shape) features. Figure 4-8 shows that, as expected, if words are assumed

to pick out categories then no shape bias emerges – the “categories” are no longer

organized by shape. If words are assumed to be features, there is evidence of second-

order generalization by shape, but this generalization is no longer word-based at all;

the model has learned that the word features should be disregarded.

It is somewhat unclear how this result bears on the shape bias debate. A situation
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in which naming patterns completely go against all other visible features of a category

certainly seems quite unnatural, and it is possible to come up with explanations under

both accounts that capture this behavior. The distributional learning account might

simply point out that if words don’t vary coherently with categories, then a shape bias

in word learning should not be acquired. This might predict that a human presented

with data like that shown to the model would learn to disregard labels in categorizing

and forming second-order generalization. One future direction would be to perform

such an experiment, although the situation is so unnatural it may still be difficult to

determine how it applies to children’s word learning.

Only an extreme version of the “words as categories” account would be unable to

explain the model results, and few would argued that all words are assumed to pick

out categories no matter what. Even if children begin with the expectation that words

pick out categories in general, this expectation is clearly defeasible in some contexts.

For instance, a study by Davidson and Gelman (1990), used to argue for a more

nativist account of word learning, demonstrates that children will only generalize

based on novel labels if the labels have some grounding in object appearance. This

is a somewhat similar circumstance to the results reported here, but it is difficult to

describe what is going on in terms that yield clear differences or predictions within

this framework. Do children in the Davidson and Gelman (1990) study decide to

disregard labels because they view words as features, or do they assume that while

words pick out categories in general, there are exceptions? If so, how do children

determine when this is? And how does this explanation differ predictively from

the distributional account? It begins to look as if the difference between the two

perspectives may be a difference that makes no difference, at least in terms of the

implications for second-order generalization.

Study 2: Learning from a few examples

Another question inspired by the extensive literature on the acquisition of the shape

bias is how to account for the rapid learning reported in the experiment by Smith et
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al. (2002), where teaching 17-month-old children four new words that were cleanly

organized by shape was sufficient to lead to the presence of a shape bias long before

one typically emerges. Why did only a few examples provoke such a large change?

This seems like the sort of question that a purely distributional, bottom-up associ-

ationist account is ill-equipped to handle, since associationist learning is generally

slower and more gradual. Indeed, although connectionist models have been shown

to capture many of the empirical phenomena in the literature about the shape bias

(e.g., Samuelson, 2002; Colunga & Smith, 2005), I am not aware of any that explain

this finding in particular.

One possibility is that category learning is useful because it enables children to

create “shape caricatures” or abstractions, resulting in improved object recognition

and rate of lexical acquisition (Smith, 2005). Evidence for this is that children between

17 and 25 months of age begin to be able to recognize stylized caricatures of objects

(both known and new), and increases in this ability are related to higher vocabulary

size. This suggests that language learning – in particular, learning the object names

that identify categories – is what drives these changes in shape perception. According

to this hypothesis, the Smith et al. (2002) experiment was so successful because the

new items were so simple and so cleanly organized that they enabled children to

form a more abstract notion of shape – and it is this that formed the basis of the

second-order generalization about shape.

Extension A: Adding new items to simulated datasets

Our model provides a way to begin to evaluate whether this sort of abstract feature

learning is necessary in order to explain the Smith et al. (2002) results. Unlike more

associationist or bottom-up methods, hierarchical Bayesian learning can quickly form

abstract generalizations on the basis of only a few datapoints. Can a model capable

of this sort of learning – but lacking in an ability to form abstract features or “shape

caricatures” – account for the type of rapid learning found in the Smith et al. (2002)

experiment?

I investigate this possibility by adding two additional items to the datasets in
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Extension B of Study 1. These datasets vary in coherence as well as the number

of items (between two and sixteen) and categories (between one and eight). The

two additional items, meant to play the same role as the new words in the Smith

et al. (2002) experiment, are 100% coherent with respect to the shape features and

0% coherent with respect to the other features. Is adding them sufficient to create a

shape bias? As a control condition, I create a series of datasets whose two additional

items have the same average coherence as every other item in that dataset. This

condition ensures that any observed shape bias does not emerge simply because of

the addition of two objects, regardless of their nature.

Figure 4-9 shows the difference in the emergent shape bias in the “clean feature”

condition as compared to the control condition, at all levels of coherence except 100%,

where there is no difference between the conditions. In general, if the shape features

are already highly coherent, there is relatively little effect of adding a few additional

items, since the shape bias has already been learned. (This would be equivalent to

running the Smith et al. (2002) training study on children who already had the

shape bias). A shape bias emerges, however, on datasets whose other objects are

otherwise not coherent enough to support making a generalization by shape. The

simple addition of a few highly coherent objects to these datasets is enough for the

model to abstract this as a general bias, just as children do.

Extension B: Mimicking children’s vocabulary

Another possibly more relevant way to evaluate this question would be with a dataset

that approximates the input children have received by the time they are taught the

additional items. This is difficult to do accurately for all of the reasons discussed at

the beginning of Study 1: what items have children seen? What are the features they

pay attention to? How are the items organized within categories, and which categories

do children know about? Though the problem of assigning features in particular is

an extremely difficult one, it may be interesting nevertheless to construct a dataset

that approximates children’s reality as well as we know how. Work by Samuelson

and Smith (1999) and Smith et al. (2002) is useful here, since they report on typical
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Figure 4-9: Role of adding two objects with highly coherent shape features, relative
to a control condition. If the dataset is already highly coherent by shape, there is
little additional benefit to adding the new objects, since it already supported a shape
bias. But if the dataset is not already highly coherent, then these additional objects
are sufficient for the model to infer a higher-level shape bias across the entire dataset.

vocabulary organization at different ages, as well as the average vocabulary size for

the children in their study.

Based on this work, I therefore create a dataset meant to more closely capture chil-

dren’s actual input when they began the Smith et al. (2002) experiment. According

to Smith et al. (2002), the average count noun vocabulary size for the 17-month-old

children at the beginning of training was 16 items. Assuming that the organization

of their vocabulary parallels that reported in Samuelson and Smith (1999), I estimate

that 9 of the 16 items are organized by shape, 6 are ambiguous between being or-

ganized by shape or material, and 1 is organized by material. It is unclear how to

estimate the number of exemplars children have for each of these categories, what de-
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gree of feature coherence corresponds to “being organized by” shape, or what features

children have. As a rough guess, I assume that the number of exemplars per category

follows a Zipfian distribution. I also define three features in the dataset, correspond-

ing to shape, color, and material, chosen because they are the three features reported

on in the Samuelson and Smith (1999) study). Each feature has a sufficient number

of values for each object to be entirely defined by that feature.3 This is of course far

simplified from the task facing children, but it may do as a first pass. I also assume

that if an item is organized by shape or material, that means that it is 15% coherent

in that feature and 0% coherent in the others; if it is ambiguous between any, then it

is 10% coherent in both.4

Figure 4-10 compares model performance on this dataset with performance on the

same dataset with four additional categories of two items each. As in the Smith et al.

(2002) study, these categories are strongly organized by shape, which I implemented

by setting their coherence on the shape feature to 100% and coherence on the other

features to 0%. When given the dataset without the additional items, the model does

not show a shape bias; but when those items are added, one emerges.

Discussion

The problem of Feature Relevance, introduced in Chapter 1, may be addressed at

least in part by learning that can operate over multiple levels of abstraction. We saw

this in a different domain in Chapter 3, where I showed that it might be possible to

form abstract inferences about syntactic structure even before lower-level knowledge

about the correct specific grammar is complete. The acquisition of the shape bias

is a phenomenon for which there is also strong reason to believe that a higher-order

inference is learned in time to constrain later generalizations. Previous work I did

3This is equivalent to assuming there are features such as, e.g., “cup-shaped” or “banana-shaped”,
rather than simply more generic features like “round.”

4This coherence is quite low, but these are the values I had to choose in order that the model did
not show a shape bias even without seeing the extra items. If there were more than one shape, one
color, and one material feature, then individual items would be picked out by a fuzzy combination
of many of the features of each type, and their coherence could be correspondingly greater without
inducing a shape bias.
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Figure 4-10: (a) Second-order generalization by shape on simulated dataset modelled
after children’s vocabulary at the beginning of the Smith et al. (2002) training study.
The model, like children, does not show a shape bias. (b) Second-order generalization
on the same dataset with four additional categories added, each strongly organized
by shape. The model now shows a substantial shape bias.

with Charles Kemp (Kemp et al., 2007) presented a hierarchical Bayesian model for

the acquisition of the shape bias, which was a valuable first step, but it assumed

that children are simply given category information – clearly a simplification from

the complicated, noisy world that human learners are faced with.

In this chapter I presented an extended version of the Kemp et al. (2007) model

which is capable of clustering individual items into categories and inferring higher-

order generalizations about those categories at the same time. This work demon-

strates that learning overhypotheses like the shape bias is possible at the same time

as category learning. The extended model, C-L2, provides a basis for exploring one

of the oft-debated questions in the literature surrounding the acquisition of the shape

bias – the assumptions that children make about word labels. Simulation results sug-

gest that at least in this ideal learner setting, there is no significant difference between

second-order generalization based on the presence or type of label information. This

work also allows us to explore how and why adding only a few additional items can

lead to a sudden emergence of a general higher-order bias.

In the following section I consider in more detail the implications and limitations

of these findings. What do they tell us about the shape bias in language, and how do

they bear on the learnability problems that motivated this thesis?
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Words and categories

Perhaps the most surprising result in this chapter is the finding that there is no

significant difference between second-order generalization based on whether category

information is given to the model or not. This is true when the input is simple and

abstract, as with the dataset based on the Smith et al. (2002) study, but it remains

true for a variety of datasets that systematically vary in terms of coherence, number of

items, and number of categories. Although the analysis could always be extended to

cover datasets with more items or different numbers of features, the finding is robust to

all of the variations I explored. From a purely computational perspective, this result

is sensible: it reflects the insight that to the same extent that some input supports

categorization, it supports forming second-order generalizations about the features

along which categorization occurred. As a result, being given the category information

makes little difference – if the categories are not strongly organized by a feature like

shape, no second-order generalization about shape is learned even when the categories

are known. Knowing the categories only leads to second-order generalization if there

is enough organization to those categories to support such a generalization; but if

that organization exists, an ideal learner will be able to infer the categories without

being told what they are. Figure 4-11 demonstrates this graphically, with the goal of

making it more intuitively clear how this is possible. As the category structure grows

increasingly incoherent, the strength of first-order inferences (i.e., how each category

is defined, e.g., “black dots”) and second-order inferences (i.e., the generalization that

categories tend to be long and thin) appear to vary in tandem.

The fact that this model is an ideal learner may play a critical role. It is possible,

even likely, that the cognitive limitations of a non-ideal learner could make word

labels far more important. Even if so, this analysis is still valuable. It points out

that if word labels have a special status, that status is not due to the informational

content they impart. Even the strong assumption that words pick out categories

does not give the model appreciably more information on which to infer a shape bias.

Informationally, a second-order feature bias is supported to the same degree that first-
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Figure 4-11: Graphical depiction of category structure as a function of coherence.
The individual items, depicted via shaded dots, are 100% coherent with respect to
the categories in the graph on the far left. It is easy to make first-order inferences (e.g.,
that the top category is shaped like a long thin rectangle, and is uniformly black) as
well as second-order inferences (e.g., that all categories tend to be long thin rectangles
and uniform in color). The middle graph shows categories with lower coherence,
but that are still clear enough for both first- and second-order generalizations to be
possible. In the final graph, coherence is low enough that both first- and second-order
inferences are difficult to make. This graphically illustrates the degree to which both
types of inference emerge in tandem.

order information about categorization is supported; knowing that category structure

therefore does not provide significant information about second-order feature biases.

This is a departure from some arguments in the literature. The idea that children

assume that words are privileged cues to category membership – while supported em-

pirically by a variety of research (e.g., Xu, 1999, 2002; Fulkerson & Waxman, 2007;

Bloom, 2000) – is sometimes justified theoretically as resulting from the additional

information such an assumption would provide. Waxman (2004) suggests that chil-

dren’s initial expectations about words “support the formation of a stable repertoire

of concepts” and help to establish reference. Xu (2002) suggests that a strong assump-

tion that words map onto kinds “may be a mechanism by which infants first establish

what kinds of things are in their environment and how these object kind concepts can

play a role in object individuation.” The results in this chapter suggest that, contra

these ideas, the special status of words may not be due to the information they carry

about category. Although assuming that words pick out categories might help even

an ideal learner with first-order category learning, these results demonstrate that a

strong assumption about words does not help with generalization beyond familiar

items.

It is possible (and in some ways easiest) in interpret these results as consistent
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with the distributional account of the shape bias, which suggests that words are sim-

ply another feature, and that learning is based on the coherent covariation of items

that share a category. But it is also possible to interpret the results in ways that are

consistent with the notion that word labels have some sort of special status as long as

the learner is non-ideal in some way. Perhaps words serve as a memory aid, either be-

cause items that are labelled are easier to remember or their features are (e.g., Need-

ham & Baillargeon, 2000). Maybe distinct labels highlight the differences between

items, making it easier to identify which of many features matter – or, conversely,

maybe different labels attenuate the differences between items (Robinson, Timbrook,

& Sloutsky, 2006). Perhaps children pay special attention to information imparted

linguistically or communicatively. Maybe perceptual biases arising from familiarity

or other aspects of visual and auditory processing affect how children perceive and

attend to word labels (Sloutsky & Robinson, 2008). Any of these possibilities are

consistent with the findings in this chapter, which assume an optimal learner.

There is another option: perhaps word labels do not have an effect here only be-

cause the categories they pick out here are relatively impoverished. If the categories

were associated with many, many other features, then solving the problem of Fea-

ture Relevance would become much more difficult. In that case, words may indeed

contribute informationally, by picking out which features matter for categorization.

More generally, in any circumstance where the relevant features are significantly out-

weighed by other features that coherently covary in another direction (or are simply

random) then some external clue about which features are relevant may become nec-

essary: words could serve such a purpose. This idea, which I present here in a rather

qualitative and impressionistic sense only, may be susceptible to quantitative analy-

sis in which the need for an external clue to Feature Relevance is a function of the

number of features and their degree of covariation. This is an interesting avenue of

future research.

The work presented in this chapter provides a new way to evaluate these pos-

sibilities. A thorough exploration would involve two main prongs of research: (1)

experimentally testing to what extent the predictions of the model capture human
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performance; and (2) adjusting the model to make it non-ideal in interesting ways.

By yoking experiments with model predictions, we can determine precisely to what

extent people use category information to form second-order generalizations. For in-

stance, adults (or older children) could be presented with novel items corresponding

to the input given to the model in Study 1. Does giving subjects category information

or word labels improve their ability to form second-order generalizations? Do adults

differ from optimal performance in any systematic ways? Experimental results along

these lines would dovetail nicely with modelling work investigating different ways

of making the model non-optimal. This general research program offers a valuable

way to ask and test increasingly subtle questions about the role of words in category

learning and the acquisition of the shape bias.

Feature learning and new examples

This work appears to address the finding of Smith et al. (2002), which showed that

presenting 17-month-old children with just a few examples of items cleanly organized

by shape was sufficient to lead to the presence of a shape bias (and increased vo-

cabulary growth) long before one typically emerges. When the model is presented

with a dataset that by itself does not support a shape bias plus two items strongly

organized by shape, it shows increased generalization by shape relative to a control

condition. Because the model is Bayesian, it is capable of making relatively strong

inferences on the basis of relatively few datapoints. As discussed in Chapter 2, this is

a byproduct of measuring likelihood with respect to the size of the hypothesis space.

Since each datapoint (item) is presumed to be independent, the likelihood of seeing

n items increases exponentially in the size of the space. Thus, seeing only two items

that are strongly organized by shape is sufficient to conclude that there a shape bias

of some sort.

A limitation of this finding, however, is that the model also forms a shape bias

even when the other items in the dataset are not organized by shape at all. This

does not appear to be a very sensible inference; wouldn’t a rational learner conclude,

instead, that the two new items simply follow a different pattern than the other data?
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An extension of the model that can learn on the level of categories (as does Model

C-L2) as well as kinds (as does the model in Kemp et al. (2007)) may be more

appropriate for this sort of data. One would predict that if the other items in the

dataset were different enough from the novel exemplars, such a model would, indeed,

simply assume that the novel exemplars are in a separate “kind” and do not bear

on the others. But if they were not too different, only a bit more well-organized by

shape, there might be a version of the model that does learn the shape bias on the

basis of only those. Further adventures in modelling will explore this possibility.

The results from Extension A of Study 2 may appear to suggest that a few new

examples may have such a large effect simply because they are highly organized

by shape, not because their features are in any way more stylized or abstract, as

suggested by Smith (2005). However, although the initial results of the model are

consistent with this suggestion, it is not yet well-supported. As before, a potential

limitation is that our model is an ideal learner: it may be that a learner who was non-

optimal in certain ways would not be able to form a rapid second-order generalization

without inferring abstract features of some sort. We can explore this possibility by

adjusting the model to have performance limitations of various sorts. Another issue

is that the two new objects were well-organized on all of the shape features; a more

realistic approximation might have items that are only well-organized on some of the

shape features. Much work therefore remains to be done here, but there are several

intriguing possibilities

We should also be extremely wary of generalizing from the model performance,

especially on the dataset designed to capture children’s actual category structure.

I had to make many approximations and guesses in designing that dataset. It is

unclear how many exemplars children have seen in the categories that correspond to

their count noun vocabulary at this age. The actual features that children attend

to are probably not simply shape, material, and color. Indeed, in order to properly

test the hypothesis proposed by Smith (2005), we would have to incorporate multiple

features of each kind, such that categories are only fuzzily organized around them.

Regardless of the results of that exploration, the suggestion of Smith (2005) yields
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an intriguing challenge for modelers: how might a learner be capable of making infer-

ences about abstract features at the same time as forming categories and acquiring

higher-order learning biases? Is it possible to infer abstract features simply on the

basis of how features co-occur with each other within categories, or is more infor-

mation (say, features of features) necessary? Does forming an abstract feature or

“shape caricature” help in generalization and inference, even if it may not be strictly

necessary? Future work will address these questions and more.

Conclusion

In this chapter I presented a hierarchical Bayesian model capable of clustering in-

dividual items into categories and inferring higher-order generalizations about those

categories at the same time. This work demonstrates that learning overhypotheses

like the shape bias is possible at the same time as category learning. At least in this

ideal learner setting, there is no significant difference between second-order general-

ization based on the presence or type of label information. We also began to explore

how and why adding only a few additional items can lead to a sudden emergence of

a general higher-order bias, as found in work by Smith et al. (2002).

On a broader level, I have used a Bayesian modelling framework to explore some

classic issues of learnability in another domain. Although this work does not show

how to solve the Feature Relevance problem, since there were always a finite number

of features, it does provide one way to address it. Instead of assuming the innateness

of any observed higher-order constraints about which features are relevant, it may be

possible to learn such constraints. And although even higher-order assumptions (like

over-overhypotheses) of some sort must be necessary in order to explain this learning,

one take-home message of hierarchical Bayesian models is that the mere presence of a

higher-order constraint cannot be reason for assuming that that constraint is innate.

Our work suggests, in fact, that learning on multiple levels of abstraction can occur

simultaneously, and that receiving additional information on a lower level may not

speed up acquisition at a higher level.

In the next chapter I extend this model to a very different phenomenon: the acqui-
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sition of verb constructions. Whereas here the focus was on exploring the dynamics

of learning on multiple levels of abstraction, the next chapter centers more on the

No Negative Evidence problem. As always, however, threads of all of the learnability

problems and common themes about how to approach them will emerge. Finally, in

the last chapter I will explore these threads and themes in richer detail.
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Chapter 5

The acquisition of verb argument

constructions

Chapter 1 introduced the learnability problems raised by the apparent lack of neg-

ative evidence in children’s input, and we saw in Chapter 3 how a Bayesian learner

might learn to avoid grammars that are too overgeneral, without eliminating over-

generalization entirely. In this chapter I address the learnability problems raised in

Chapter 1, in particular the No Negative Evidence problem, in the context of a spe-

cific, well-studied example: the acquisition of verb argument constructions. I extend

the simple hierarchical Bayesian model introduced in Chapter 4 to apply in this new

domain, and show that its behavior qualitatively matches children’s in several impor-

tant respects. This framework suggests how the negative evidence problem may be

solvable, and I finish by considering the assumptions and details built into the model

that lead to this result.

Baker’s Paradox and the puzzle of verb learning

Negative evidence – information about which constructions in a language are ungram-

matical – appears to be largely missing in naturalistic speech to children (e.g., Brown

The work in this chapter was carried out in collaboration with Charles Kemp, Elizabeth Won-

nacott, and Joshua Tenenbaum, and the model an is extension of Kemp et al. (2007).
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Table 5.1: Constructions in the dative alternation.
Construction name Abbreviation Abstract form Example
Prepositional dative PD NP1 V NP2 to NP3 Debbie gave a pretzel to Dean.
Double object dative DOD NP1 V NP3 NP2 Debbie gave Dean a pretzel.

& Hanlon, 1970), which poses a learning problem: without knowing how not to gen-

eralize beyond the language heard so far, a learner can only be certain that he isn’t

speaking ungrammatically if he is perfectly conservative, never saying anything he

hasn’t already heard. This poses obvious difficulties for scientists seeking to explain

human language acquisition, because it is quite clear that in many ways, children are

not conservative learners in this sense (e.g., Pinker, 1989). How, then, do they learn

language, realizing not only what constructions are grammatical, but which ones are

ungrammatical as well?

A classic and well-studied example of this puzzle can be found in the study of the

acquisition of verb argument constructions. In every language, different verbs take

arguments in distinct constructions; for instance, the verb give is associated with

a construction requiring the verb to have two object arguments in addition to the

subject (“Debbie gave Dean the pretzel”). Not all verbs can occur in all constructions:

“Debbie gave Dean” is ungrammatical, and not a sentence one would expect out of

the mouth of a native adult English speaker. Rather, verbs appear to cluster together

according to which constructions they can appear in. This phenomenon is known as

subcategorization, and the clusters of each verb are called subcategories.

Consider the two constructions shown in Table 5.1. Given that many verbs in

English occur in both, it seems natural to conclude that verbs that occur in one of

the two can occur in the other. Unfortunately, this generalization – known as the

dative alternation – does not apply for all verbs: for instance, confess is grammatical

in the PD construction (“Jonathan confessed the truth to Doug”) but not in the

DOD (*“Jonathan confessed Doug the truth”). Despite never having been explicitly

taught that confess is ungrammatical in the double object dative – and even though

a near-synonym, told, is grammatical – fluent speakers of English appear to have no

trouble avoiding the incorrect form. How is this explained?
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In the following subsections I will evaluate several answers to this question, which

requires a critical and detailed discussion of some of the major empirical phenomena

involved. At the end of the section I will discuss these findings and elaborate on what

they mean and what has yet to be explained.

Hypothesis #1: The data is sufficient

So far I have only asserted, rather than demonstrated, the truth of the claim that

children do not receive negative evidence, or at least not enough. But is that actually

true?

At the minimum, there is a broad consensus that there is little overt correction of

ungrammatical constructions. In an examination of parent-child exchanges, Brown

and Hanlon (1970) found that parents were no more likely to express explicit dis-

approval (or less likely to express explicit approval) when children spoke ungram-

matically than when they didn’t. In some sense, this is no surprise: if adults did

frequently offer explicit correction, it would be extremely difficult to have any sort of

conversation, given how often children speak ungrammatically.

Another, more realistic, possibility is that children might receive negative evidence

in a more subtle or probabilistic form: perhaps adults give replies to ungrammatical

utterances that, statistically at least, can be used differentiate them from grammatical

ones. Indeed, there is evidence that parents more often repeat 2-year-olds’ utterances

when they are ungrammatical (Hirsh-Pasek, Treiman, & Schneiderman, 1984). Clar-

ification questions, verbatim questions, and “move on” conversational signals may be

statistically related to the grammaticality of children’s utterances (Demetras, Post,

& Snow, 1986). One study found that 34% of two-year-olds’ syntactic errors are fol-

lowed by implicit feedback of some sort, either via more frequent exact repetitions

when the utterance is grammatical, or more frequent recasts and expansions when it

is not (Bohannon & Stanowicz, 1988).

Is this type of indirect negative evidence sufficient? It is difficult to know how

one would determine this definitively, but there are several reasons to think it might

not be. The information is probabilistic, after all, and often the differences between
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the responses to grammatical and ungrammatical utterances would require impres-

sive statistical abilities to discern. Although there is evidence that children do have

impressive statistical abilities in many ways (e.g., Saffran, Aslin, & Newport, 1996),

it is not clear that they notice or track these differences in particular; and some have

argued that even if they do, the differences are not large enough to solve the negative

evidence problem (Gordon, 1990; Marcus, 1993).

Another problem is that implicit, subtle feedback does not tell the child what

precisely is ungrammatical, only that something is (or might be). Was the word

incorrect, or the pronunciation of the word? Was the verb used in an incorrect

construction? Were the words in the wrong order? Were important words dropped?

The child has no way of knowing unless the feedback is explicit. If the adult responses

are reformulations – which highlight, by their structure, the location of the error –

this problem may be mitigated somewhat; but, at best, this feedback is still only

distributional. In a study by Chouinard and Clark (2003), between 20% and 67% of

erroneous utterances were found to be reformulated, compared to between 2% and

38% of correct ones (see also Saxton, 1997). It seems clear, at least, that a Gold-

style ideal learner would not be able to converge onto the correct language given

statistical syntactic evidence of the sort considered here (Gordon, 1990), and as yet I

am unaware of any formal, concrete proposals for what sort of learner could.

Hypothesis #2: Language learners do not overgeneralize

One logical possibility for how human learners solve the negative evidence problem is

that, like the Subset Principle (Berwick, 1985), they are simply conservative, and do

not generalize in any systematic way beyond the input they hear. Unfortunately, this

explanation – or at least the strongest version of it – is quite clearly ruled out by the

data: both children and adults will cheerfully, and frequently, use words and construc-

tions that they couldn’t possibly have heard before. Children have been documented

producing novel causative forms like Don’t giggle me and You go it in (Bowerman,

1982); novel passives like It was bandaided (E. Clark, 1982); and novel datives like

I go write you something or You ate me my cracker (Gropen, Pinker, Hollander,
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Goldberg, & Wilson, 1989). This is just the tip of the iceberg: Pinker (1989) cites

and discusses evidence from dozens of studies showing that children spontaneously

produce sentences that are clearly generalizations beyond what they have previously

heard.

Hypothesis #3: Learners use semantic information

One of the most important suggestions for how learners overcome the “no negative ev-

idence” problem is that there might actually be positive evidence about which verbs

enter into an alternation and which do not, in the form of correlated morphologi-

cal, phonological, or semantic features (e.g., Morgan & Demuth, 1996; Pinker, 1984,

1989). This “semantic bootstrapping” hypothesis is argued to overcome the learn-

ability problem by providing a feature that the child could use to distinguish between

verbs that do and do not occur in the alternation in question (Mazurkewich & White,

1984; Pinker, 1984). According to this hypothesis, the child notices the semantic and

morpho-phonological features pertaining to different “narrow” verb classes, and learns

to generalize the syntactic alternation pattern based on those classes (Pinker, 1989).

For instance, many verbs that are not dativizable are of Latinate origin, and thus

have distinct morphological and phonological features (Green, 1974; Mazurkewich &

White, 1984) that predict adult speakers’ ratings of the goodness of each construction

(Gropen et al., 1989). There is also a strong correlation between verb meaning and

syntactic structure (C. Fisher, Gleitman, & Gleitman, 1991). In addition, there is

evidence that semantics play a role in constraining generalization: children are able

to use semantic information to generalize novel verbs (Gropen et al., 1989; Gropen,

Pinker, Hollander, & Goldberg, 1991), and assessments of the grammaticality of some

constructions is related to the semantic class membership of the verbs in question

(Ambridge et al., 2005).

Although the semantic distinctions between verbs that occur in different construc-

tions are well-attested and appear to be productive in the adult grammar, there is

reason to believe that the semantic bootstrapping hypothesis cannot explain every-

thing about the acquisition of verb argument constructions. For one thing, semantic
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and morpho-phonological classes do not suffice to capture the full verb-structure dis-

tribution (Bowerman, 1988; Braine & Brooks, 1995; Goldberg, 1995), and children

may have more difficulty learning verbs that the semantic bootstrapping hypothesis

suggests should be easy (Bowerman, 1990). Furthermore, it is demonstrably difficult

to ascertain the meaning of many verbs based simply on environmental contingen-

cies and co-occurrences (Landau & Gleitman, 1985; Gleitman, 1990; Gillette, Gleit-

man, Gleitman, & Lederer, 1991). Even if, as Pinker (1994) claims, this difficulty

is only insurmountable for an associationist learner incapable of representing struc-

tured hypotheses about verb semantics or applying information from across multiple

situations, it is clear that in practice, syntactic information is enormously useful for

acquiring the meaning of certain verbs.

This hypothesis, called “syntactic bootstrapping”, does not suggest – despite what

its name may imply – that verb meaning is learned entirely (or even mostly) via syn-

tactic information; instead, it proposes that words are acquired through a probabilistic

process that depends on multiple cues, one of which is syntax. In particular, the ac-

quisition of less concrete words like abstract nouns and mental state verbs proceeds by

combining information from multiple sources, including extralinguistic world informa-

tion and syntactic structure (Gleitman, 1990; Gleitman, Cassidy, Nappa, Papafragou,

& Trueswell, 2005). Consistent with this, children appear capable of using syntac-

tic information to make inferences about verb meaning (Naigles, 1990; C. Fisher,

1996). In some circumstances syntax may be even more reliable than contextual cues

(Papafragou, Cassidy, & Gleitman, 2007).

Although the syntactic bootstrapping hypothesis is a powerful and well-supported

theory, it addresses the problem of Feature Relevance, not the problem of No Negative

Evidence. It is a theory about how a learner chooses among a logically infinite num-

ber of possible verb meanings; although it suggests that multiple cues can mutually

constrain one another as that meaning is acquired, it does not bear on the question

of syntactic overgeneralization raised by Baker’s Paradox. By contrast, the semantic

bootstrapping hypothesis is a theory about how syntax might be acquired – and, in

particular, how certain syntactic overgeneralizations might be constrained by seman-
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tic knowledge. Its ability to solve the No Negative Evidence problem is limited by the

degree to which it relies on semantic knowledge that may be unlearnable without the

aid of syntax (and implausible to assume is innate); but syntactic bootstrapping does

not offer an alternate theory about how to resolve the No Negative Evidence prob-

lem. Thus, the original question remains: to the extent that correlated semantic and

morpho-phonological features are not sufficient to constrain syntactic generalizations

of this sort, how do children resolve the No Negative Evidence problem?

Hypothesis #4: Learners use indirect negative evidence

Another hypothesis, made originally by Braine (1971), suggests that learners might be

able to use indirect negative evidence, inferring that if a certain form does not occur

given enough input, then it is probably ungrammatical. One way this might occur is

through pre-emption: if a verb is encountered in one construction, when another, more

felicitous construction would provide the same information, the pragmatic conclusion

would be that the unseen construction is actually ungrammatical (Goldberg, 1995).

Children 4.5 years and older appear to be receptive to this sort of information (Brooks

& Tomasello, 1999), but as of yet there is no evidence that younger children do.

Another form of indirect negative evidence is entrenchment – the idea that the

more often a verb is observed in one construction only, the less likely it is to be gen-

eralized to new ones (Braine & Brooks, 1995). Both children and adults are more

likely to rate overgeneralizations as grammatical if they occur in low-frequency rather

than high-frequency verbs (Theakston, 2004; Ambridge et al., 2005). Indeed, even

children as young as two and a half to three years of age are sensitive to frequency;

the less frequent a verb is, the more likely children are to produce overgeneraliza-

tions (Brooks, Tomasello, Dodson, & Lewis, 1999; Matthews, Lieven, Theakston, &

Tomasello, 2005).

People are sensitive to distributional information on both the verb-general and the

verb-specific level. A large literature demonstrates that verb-specific syntactic biases

about which structures are likely to follow individual verbs have strong effects on real-

time processing (e.g., Trueswell, Tanenhaus, & Kello, 1993; Snedeker & Trueswell,
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2004). Verb-general effects can also be seen; in particular, readers will sometimes

interpret nouns occurring after a verb as a direct object even when that particular

verb does not take direct objects (Mitchell, 1987; Juliano & Tanenhaus, 1993). This

overgeneralization is more common if the verb is low in frequency.

How are these relationships between verbs and constructions acquired? While it

is clear that semantic factors must play an important role in argument structure ac-

quisition, one possibility is that balancing knowledge on multiple levels may critically

depend upon distributional statistics. Support for this comes from a series of artificial

language learning experiments by Wonnacott, Newport, and Tanenhaus (2008). In

these experiments, adults were presented with languages containing novel verbs and

two synonymous novel constructions. In all languages the syntactic input distribution

provided the only cue to verb subcategory – semantic features did not correlate in any

systematic way with subcategorization – but the co-occurrence of verbs and construc-

tions differed across the languages. Overall, participants proved able to acquire both

verb-specific constraints and to generalize. Critically, however,the tendency to gen-

eralize was affected by a third source of information: learners exposed to languages

in which the majority of verbs occurred in both constructions were more likely to

generalize verb to a construction in which it had not occurred in the input.

This evidence suggests that people incorporate information about distributional

statistics on several levels of abstraction – from verb-specific information about par-

ticular lexical items, to verb-general inferences about verb classes or construction

types, to knowledge on an even higher level about variability across verbs or con-

structions in language in general. But does this sort of distributional learning bear

on the No Negative Evidence problem? And if so, what sort of learning mechanism

can combine multiple levels of information in such a way to allow overgeneralization

of low-frequency forms, but limit overgeneralization with increasing frequency in a

principled and justifiable manner?
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Bringing it all together

The weight of the evidence indicates that people solve Baker’s Paradox, but probably

not by making use of negative evidence directly, nor by employing strategy of strict

conservativism. In the following sections I show that the hierarchical Bayesian model

introduced in Chapter 4 resolves the No Negative Evidence problem on the basis

of syntactic-only distributional information alone. This occurs because of general

characteristics of Bayesian learning stemming from balancing simplicity and goodness-

of-fit, as discussed in Chapters 1 and 2, which I address with respect to these specific

problem here. In addition, because the model is capable of learning on multiple levels

of abstraction, it can capture other empirical phenomena in the literature.

Study 1 reveals that the model captures adult performance in the artificial lan-

guage experiments of Wonnacott et al. (2008), demonstrating how such performance

results from making inferences about the sort of feature variability one would expect

across verbs or constructions in language in general. Study 2 shows that the same

model, given syntactic input for the verbs that occur in the dative alternation in a

corpus of child-directed speech, learns the correct alternation problem in the absence

of negative evidence. Moreover, it productively overgeneralizes verb constructions on

the basis of frequency. These results are especially interesting in light of the fact

that this model was originally developed to capture the emergence of feature biases

in word learning (see Chapter 4), rather than anything particular about verb learning

or verbal knowledge at all. Finally, in Study 3 I explore how learning is affected by

semantic information being added to the input. Results show that the model is capa-

ble of using semantic information to make interesting syntactic generalizations much

as people do, even without strong assumptions about the nature of the semantic rep-

resentations or the nature of the semantic-syntactic linkage. Although I do not wish

to imply that these assumptions are unnecessary or (even if they are) that children

do not make them, the work suggests that a surprising amount may be learnable in

principle without them, and provides a framework within which to rigorously explore

the possibility in more detail.
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Study 1: Modelling adult artificial language learn-

ing

Data: Artificial language input

The purpose of the artificial language learning experiment of Wonnacott et al. (2008)

was to determine whether adults exposed to a novel language could acquire knowl-

edge at both the verb-specific and verb-general levels.1 Over the course of five days,

subjects were taught a novel language including five nouns and eight verbs occurring

in one of two possible constructions: VAP (verb agent patient) and VPA-ka (verb

patient agent particle(ka). During training, participants were presented with a set of

scene/sentence pairs, hearing sentences (VAP or VPA-ka) corresponding to video clips

of scenes in which puppets acted out the sentence meaning. Because part of the pur-

pose of the experiment was to explore performance given only syntactic information,

both constructions had the same meaning.

Subjects were divided into two conditions based on the language they were exposed

to. One group was presented with a language in which each of the eight verbs occurred

in both constructions, but seven times as often in the VPA-ka construction as in the

VAP. Wonnacott et al. (2008) dubbed this the Generalist language. The other group

was exposed to the Lexicalist language, in which seven verbs occurred in the VPA-ka

construction only and one verb occurred in the VAP only. In both languages, the

absolute and relative frequencies of the VAP and VPA-ka constructions are the same,

but the conditions differ widely in terms of the distribution of those constructions

across individual verbs; this allows for the evaluation of whether learners can acquire

and use verb-general as well as verb-specific statistical information. When presented

with a novel verb in one construction, would participants in the Generalist condition

be apt to infer that it can occur in both, even if one is more frequent? And would

participants in the Lexicalist condition tend to think that it can occur only in one?

1For simplicity of presentation, I focus on Experiment 3 in their paper, although the model
captures the results of all three experiments, all of which focus on the acquisition of knowledge
about variability across individual verbs.
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To test this, participants’ grammatical knowledge was evaluated in two compre-

hension and one production test. I focus here on the results of the latter test, in

which productive language use was evaluated in a procedure first established by Hud-

son Kam and Newport (2005). Subjects viewed a scene, heard the verb corresponding

to the action in the scene, and were asked to complete the sentence aloud. This pro-

cedure allowed the testing of both familiar and novel verbs.2 There were four novel

verbs which were not heard during training at all but were presented four times dur-

ing the test stage (just prior to the relevant production test): two of the verbs only in

the VAP construction, and the other two only in VPA-ka. The novel verbs are par-

ticularly interesting because they reflect subjects’ higher-level generalizations about

variability across verbs, rather than just information inferred about those particular

verbs, as shown in Figure 5-1a). People learning the Generalist language were likely

to produce a novel verb in both constructions, though with a strong bias for the VSO-

ka construction; they thus match the overall frequencies of each of the constructions

in the language and ignore the fact that the novel verb itself had only occurred in one

construction. By contrast, subjects learning the Lexicalist language, whose previous

input consisted of verbs that only ever occurred in only one construction, tended to

produce the novel verb only in the single construction in which it was observed.

Model: Level 2 and Level 3

The basic model, which was described in Kemp et al. (2007) and Chapter 4, applies

to the problem of acquiring word learning biases3 – but it can be reframed to apply

instead to the acquisition of verb argument constructions by simply changing the

input given. Where before the data consisted of observations of categories and the

number of times they occurred with each feature, the data now consists of observations

of verb types: the observations of each verb consist of the number of its tokens occur

in each construction under consideration. Where before we wanted to predict what

2Wonnacott et al. (2008) refer to these previously-unobserved verbs as “minimal exposure” verbs,
but for simplicity and continuity with Study 2 and 3, I will refer to them as novel verbs.

3The basic model we use corresponds to the one described in Kemp et al. (2007) rather than the
category-learning extension developed at the end of Chapter 4.
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sort of features we are liable to observe category n with (i.e., level 1 knowledge about

features), we now would like to predict what sort of constructions we are liable to

observe verb n in (i.e., level 1 knowledge about verb constructions). Where before,

level 2 knowledge was knowledge about the distribution of features across categories

in the world, it is now knowledge about the distribution of verb constructions. As

before, this is represented by two parameters, α and β. In this context, α captures the

extent to which each individual verb occurs uniformly in one construction (or not),

and β captures the average distribution of constructions across the entire language.

Low α would indicate that each verb tends to occur uniformly in one construction (as

in the Lexicalist language), but does not say anything about which construction that

might be (here, verb-specific information would be necessary). The β would be the

same for both Generalist and Lexicalist languages, since (by design) both had seven

times as many instances of the VOS-ka as the VOS construction.

As before, this level 2 knowledge depends on knowledge at a higher level, level 3,

which is represented by the hyper-parameters λ and µ. The λ parameter captures

something about the range of values expected about the uniformity of constructions

(would it be extremely unusual to see complete uniformity, as in the Lexicalist lan-

guage? Is that the expected pattern?), and the µ parameter the range of values of

the expected distribution of verb constructions across the language.

In this chapter I consider two models. Model L2, which we have seen before,

assumes that the level 3 knowledge (λ and µ) is already known, and learns the α and β

values that maximize posterior probability for the given data. Model L3, by contrast,

learns λ and µ in addition to α and β, and assumes that knowledge at Level 4 is given.

Both models acquire level 1 knowledge about the expected constructions found in

specific individual verb types. Both models also make quite simple representational

assumptions, presuming only that individual verbs are represented as a vector of

features (consisting of the number of observations of each construction) and that

verb-general knowledge is represented by these higher-level parameters. The appendix

describes the technical aspects of these models in more detail.
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Results: Learning construction variability

I present Models L2 and L3 with data corresponding to the input given to adult

subjects over the course of the five days of training in the Generalist and Lexicalist

languages. As with the human subjects, I wanted to evaluate how previous exposure

to the two languages would change how learners dealt with a small amount of verb-

specific information. The model was therefore also presented with a single exemplar

of a completely novel verb occurring either in the VAP or VPA-ka construction.4

Results are shown in Figure 5-1. Both models (L2 and L3) qualitatively replicate

the difference between conditions, demonstrating that the model makes inferences on

both the verb-general and verb-specific level, much as humans do. Novel verbs in

the Generalist condition are assumed to occur in both constructions, while the same

novel verbs in the Lexicalist condition are assumed to occur in only one.

(a) (b) (c)

Figure 5-1: Comparison of model performance with human production for novel verbs
in an artificial language. (a) Adult performance. Subjects in the Generalist condi-
tion were likely to produce a novel verb in both constructions, matching the overall
frequency of each in the language, rather than the single construction it was heard
in. Subjects in the Lexicalist condition, whose previous input consisted of verbs that
occurred in only one construction at a time, tended to produce the novel verb only in
the single construction it occurred in. (b) Model L2. (c) Model L3. Both models qual-
itatively replicate the difference in human performance in the each condition. Model
L3, which can learn at a higher level of abstraction, matches human performance
more closely.

Model L3 outperforms L2 in the Generalist condition, more accurately predicting

human production for the novel verb occurring in the less-frequent construction in the

4Humans were presented with four novel verbs rather than one, but because the model does not
have the memory limitations that humans do, it is more appropriate to evaluate its generalization
given only one novel verb.
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language (VAP). Even though that verb was heard in the VAP construction only, both

humans and Model L3 predict that it will occur in the other (VPA-ka) construction

nearly 87.5% of the time (which is the base rate of VPA-ka in the language as a whole).

Although Model L2 qualitatively captures the difference between the Generalist and

Lexicalist conditions, it is quantitatively less accurate, extending the VAP form to

VPA-ka 60% rather than 87.5% of the time. The reason for this difference is that the

hyperparameters (λ and µ) over α and β, which are “built in” for Model L2, weakly

restrict the range of α and β to avoid extreme values. The Generalist condition, in

which each of the individual verbs’ distribution of constructions precisely mirrors the

distribution in the language as a whole, is best captured by values of α and β that

happen to be dispreferred by the hyperparameters of Model L2. One might select

different hyperparameters, but that would be arbitrary and post hoc; it could also

cause the model to be unable to capture a different dataset. By contrast, because

Model L3 can learn the hyperparameters λ and µ, it infers that the more extreme

values are more appropriate for this dataset.

In the all of the subsequent sections, both Model L2 and L3 were analyzed, and

results were qualitatively similar for both. For space and readability reasons, I report

only the results from Model L3, which usually slightly outperforms Model L2.

Study 2: Modelling the dative alternation

Data: Corpus of child-directed speech

The previous study explored performance of the model given the data presented to

adults in an artificial language learning task, but it is important to determine how

relevant this is to the task facing the child. In this study I therefore present the model

with real-world data taken from a corpus of child-directed speech. Because the dative

alternation is a central, well-studied example relevant to Baker’s Paradox, I choose

to focus on verbs that occur in it. The data is collected from the sentences spoken by

adults in the Adam corpus (Brown, 1973) of the CHILDES database (MacWhinney,
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2000), and consists of the counts of each construction (PD and POD) for each of the

dative verbs (as listed in Levin (1993)) that occur in the corpus.

An additional variable of interest is what sort of evidence may be available to the

child at different ages. This can be loosely approximated by tallying the number of

occurrences of each verb in each construction in subsets of the corpus split by age

(see Table 2 in the appendix). The Adam corpus has 55 files, so the first segment,

Epoch 1, contains the verbs in the first 11 files. The Epoch 2 corpus corresponds to

the cumulative input from the first 22 files, and so on up until the full corpus at Epoch

5. The dative verbs in the first file only, corresponding to approximately one hour

of input, constitute Epoch 0. Splitting the corpus in this way is not meant to reflect

the data that children necessarily use at each age, but it does reflect the sort of data

that is available.

Model: Learning verb classes

The previous study demonstrated that both models can acquire verb-general variabil-

ity information, but this may not suffice to address the complexity of the problem

faced by a child. In natural language, verb-general statistics may be shared among

only verbs in a certain class rather than over all the verbs in the language. For in-

stance, some verbs occur in both constructions in the dative alternation, but others

occur in only one. A learner that could only make inferences about verb-general

statistics across the language as a whole would not be capable of realizing that there

were these two types of verbs. Presented with a novel verb occurring only once in

one construction, such a learner might be more likely to generalize it to both than

one who realized that it might belong to a non-alternating class.

I therefore add the ability to discover verb classes (or “kinds”5) to both Models L2

and L3 and denote this extension with the prefix K (i.e., Model K-L2 and K-L3). As

in Kemp et al. (2007), this results in a model that assumes that verbs may be grouped

5Because “class” is more sensible nomenclature for verbs, I will refer to them as classes throughout
this chapter, but these are the same entities referred to as “kinds” in the Kemp et al. (2007) work
and in Chapter 4.
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into several classes, where each class is associated with its own hyperparameters. The

model is not told how many classes there are, nor which verbs occur in which class;

instead, it forms the categories based on the data, in combination with a prior under

which all class assignments are possible, but fewer classes are favored. The goal of

learning is to simultaneously infer how verbs are assigned to classes, along with the

values of the hyperparameters that describe each class. It is described more fully in

the appendix.

Results: Overgeneralization with frequency and quantity of

data

Figure 5-2 shows class assignments predicted by Model K-L3. It captures the intu-

itively sensible pattern: those verbs that occur in one construction tend to be found

in a separate class from verbs that occur in both. Sensibly, when there is less data

(i.e., at the earlier Epochs), the model is less certain: the class assignments for sub-

sets of the full corpus are generally less sharp than they are for the entire corpus.

Frequency also plays a role; the model is more certain about class assignments of the

high-frequency verbs like give and call, and much less confident about the class assign-

ments of the low-frequency verbs like sing. In part because of this lack of certainty, we

would expect the model to be more likely to overgeneralize the low-frequency verbs

beyond the constructions in which they occur in the input.

Figure 5-2: Class assignments given by Model K-L3. Lighter colors indicate increasing
probability that the verbs in that row and column are assigned to the same class. The
diagonal is always white because each verb is always in the same class as itself.
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There are two ways of testing this prediction. First, we can examine model pre-

dictions for how to produce novel instances for each of the input verbs. These results

are shown in Figure 5-3. It is evident the model overgeneralizes more often for the

low-frequency verbs. The predicted construction distribution for high-frequency verbs

like give or call is very similar to the observed distribution (shown in the associated

pie chart). But low-frequency verbs like explain or serve, which only occur in one

construction in the input, are nevertheless somewhat likely to be produced in the

other construction. This is because there is still some possibility that they are actu-

ally members of the alternating class; as more and more verb tokens are heard and

these verbs are still only heard in one construction, this becomes less and less likely.
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Figure 5-3: Production predictions of Model K-L3 for each verb in the full corpus.
High-frequency verbs’ constructions are produced at a distribution close to their em-
pirical distribution, while low-frequency verbs are more likely to be overgeneralized
(i.e., produced in a construction that they did not occur in the input). The produc-
tion distribution is denoted with the stacked bars; the associated pie chart depicts
each verb’s observed distribution, and its empirical frequency is the number under
the pie chart.

Second, we can examine how the model produces novel instances of verbs it has

seen before, at each Epoch. Figure 5-4 shows the degree of overgeneralization for each

of the verbs that occurred in just one construction at each Epoch in Model K-L3.6

6We exclude verbs that have already occurred in both constructions in the data, because by
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This is calculated by finding the difference between the proportion of times the verb

is observed vs. produced in the DOD construction.7 If this difference is zero then it

means the model produces the verb constructions precisely at the same frequency as

they occurred in the corpus. The larger this difference is, the more the model has

“smoothed,” or overgeneralized away from, the observed data.

The results indicate that as the frequency of the verb increases, overgeneralization

decreases: the difference between observed and predicted approaches zero. There is

also an interaction with Epoch: verbs of equivalent frequencies are overgeneralized

more in earlier Epochs. For instance, verbs that occur once in the full corpus are

overgeneralized one-third as often as verbs that occur once at Epoch 2. The reason

for this is that there is more data in the corpus at later Epochs, and the model is

therefore more certain about the probable constructions it infers for even the low-

frequency verbs.

Figure 5-4: Degree of overgeneralization of non-alternating verbs by Epoch for Model
K-L3. The y axis reflects the degree of overgeneralization, calculated by taking the
absolute value of the difference between the proportion of the time the verb is observed
vs. produced by the model in the DOD construction. Verbs of different frequencies
are grouped in bins along the x axis: thus bin 1 contains all of the verbs that occurred
only once in the corpus, bin 2 contains verbs occurring twice, and so on.

Both models appear to be learning in the absence of negative evidence: although

they are never “told” explicitly that some do not occur in one construction or another

– nor do they receive any correction of early overgeneralizations – the models even-

tually form classes of verbs along precisely these lines. This qualitatively captures

two of the major phenomena found in the acquisition of verb argument constructions:

more frequent verbs being overgeneralized more rarely, and a general decrease of over-

definition, they cannot overgeneralize beyond the constructions in which they have been observed.
7One could equivalently calculate this for the PD rather than DOD construction; since there are

only two, this captures the same information.
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generalization with age. The importance of frequency is made clearer by combining

all of the Epochs together, which is shown in Figure 5-5.
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Figure 5-5: All Epochs: degree of overgeneralization of non-alternating verbs by for
Model K-L3. This graph makes clear the effect of frequency on overgeneralization.
As before, verbs of different frequencies are grouped in bins, such that bin 1 contains
all of the verbs that occurred only once in the corpus, bin 2 contains verbs occurring
twice, and so on.

To what degree is the change in overgeneralization with age and verb frequency

due to the fact that the model can group verbs into classes? I address this question by

comparing performance of the class-learning model K-L3 with Model L3 from Study

1. The results are shown in Figure 5-6. The ability to learn verb classes leads to less

overgeneralization at all Epochs, but many of the qualitative effects are similar for

both models. Both capture three of the major empirical phenomena: learning in the

absence of overt negative evidence, and decreasing overgeneralization with increasing

age as well as verb frequency. This is because these aspects of model performance

result from general characteristics of Bayesian learning, rather than particular as-

sumptions made by any specific model. I address this point in more detail in the

discussion section.

Figure 5-6: Model L3: Overgeneralization of non-alternating verbs by Epoch.
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One interesting empirical finding is that neither model captures is the “U-shaped

learning curve” reported for many aspects of language acquisition (e.g., Marcus et

al., 1992). In U-shaped learning, periods marked by overgeneralization errors occur

after an initial stage of correct production; yet in this model, overgeneralization is

greatest at the beginning. U-shaped learning can sometimes emerge from Bayesian

models, if the representation is complex enough that for the first few datapoints it is

actually more parsimonious to simply memorize the exemplars directly (see Chapter 2

for further discussion of this point). This does not occur in this model, but that may

not be a concern, since the evidence for U-shaped learning curves in the acquisition of

verb constructions (as opposed to verbal morphology) is equivocal at best. The diffi-

culty is that correct performance involves avoiding overgeneral constructions entirely,

and unless a child’s entire productive output is sampled, it is difficult to determine

whether the child knows the verb and never overgeneralizes incorrectly, or simply

failed to do so during the sampled segments. If, as has been suggested (Tomasello,

2000), the youngest children learn verbs on an item-by-item basis and do not form

the abstract notion of constructions until they are older, then we must examine indi-

vidual verbs rather than constructions as a whole. Of the eight verbs associated with

overgeneralization errors found in the spontaneous speech of five children in Gropen

et al. (1989), only three were used grammatically elsewhere in the corpus; of those

three, two were used grammatically before the error (Adam, fix and put) and one was

used after (Ross, say). Does this support a U-shaped acquisition pattern? The data

are simply too sparse to tell. Even if it is true that very young children have abstract

knowledge of verb constructions at a young age (Conwell & Demuth, 2007), sparse

sampling still poses a problem: the rarer an error is, the more unlikely it is to be

observed in a corpus at the time it first emerges (Tomasello & Stahl, 2004).

For instance, Gropen et al. (1989) examined the spontaneous speech of five chil-

dren in the CHILDES database. The children used both constructions in the dative

alternation (PD and DOD) idiosyncratically: 28 verbs occurred in both constructions,

22 potentially alternating verbs were used in the DOD construction only, and 24 were

used in the PD construction only. No child acquired constructions in the same order
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for all of their verbs. Although overgeneralization errors were rare8, those that did

occur were preceded by grammatical uses of both DOD and PD forms – which might

suggest a U-shaped acquisition pattern, but there is reason to be cautious here.

In sum, then, it is unclear whether the lack of U-shaped learning mimics children’s

acquisition of verb argument constructions or not. However, the model does capture

other more widely-observed and well-established empirical phenomena: learning in

the absence of negative evidence, and decreasing overgeneralization as age and verb

frequency increase.

Study 3: Exploring the role of semantics

Thus far I have focused on the acquisition of verb constructions based on only syn-

tactic information, since that is central to the puzzle raised by Baker’s Paradox.

However, learning verb constructions involves the acquisition of semantic knowledge

as well: not only realizing what syntactic forms are grammatical, but also recognizing

what relationship those forms have to the semantic meaning of the verb. The precise

role that semantic features play in acquiring verb constructions is still debated, and

the answer is almost certainly more complex than I attempt to capture in this model.

The results from Study 1 and Study 2 suggest that at least some aspects of

the learnability problem are in principle solvable based on syntactic input alone.

Nevertheless, it is undeniably true that humans learn and use semantic as well as

syntactic information. For instance, children taught novel motion verbs in PD syntax

extend the verbs to DOD syntax somewhat differentially according to the semantics

of the verb – more often when the verb depicts transfer of possession than motion to

a location (Gropen et al., 1989). Does this model have the ability to use co-occurring

semantic and syntactic information to mutually reinforce each other in this way?

8It is difficult to determine how, precisely, to measure “rarity” of a form. Gropen et al. (1989)
found an incorrect DOD form in 1 out of every 3,924 sentences, yielding an error rate of 0.0003. As
they note, however, many sentences occurred in contexts where potentially dativizable verbs were
inappropriate. A different measure might include only those, or might calculate over specific verbs
(either types or tokens); the latter measure yields an error rate that is considerably higher (between
5% and 14%), although still not large in absolute terms.
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Data: Adding semantic features

I evaluate how semantics may be incorporated into the model by adding to the corpus

of dative verbs a semantic feature that precisely parallels the semantics of each of

the three classes. This semantic feature therefore has three possible values: one

corresponding to the class of alternating verbs (which I will call semantic class A),

one to those verbs occurring only in PD syntax (semantic class P), and one to verbs

occurring only in DOD syntax (semantic class D). For instance, give, which occurs

106 times in DOD syntax and 44 times in PD syntax, has a semantic feature occurring

150 times in semantic class A; call, which occurs 46 times in DOD syntax, occurs 46

times in semantic class D; and say, which occurs 6 times in PD syntax, has a semantic

feature occurring 6 times in semantic class P.

Semantics are assigned in this way for several reasons. Semantics are not obvious

from corpora in the same way that syntax is, so it would be difficult to assign semantic

features in a way that matches the actual input, especially since we do not know what

features are obvious or available to children in those situations. Furthermore, this

highly simplistic version of semantics allows for a clear exploration of precisely how

people might generalize when semantic features are (and are not) correlated with

syntax in the expected ways. In particular, the semantic bootstrapping hypothesis

suggests that semantic features are correlated not with the syntactic constructions,

but rather with the underlying “narrow” semantic classes – this is the reason they are

believed to be a useful source of evidence for solving Baker’s Paradox. Even though

Study 2 suggests that these features may not be necessary to solve the No Negative

Evidence problem, it is still interesting to ask how people might generalize when the

correlation of semantic and syntactic features follows this pattern.

To test the generalizations made by the model, I evaluate it on this corpus of

dative verbs (with semantic features included). In order to mimic the Gropen et al.

(1989) experiment and test second-order generalization, I add one additional novel

verb. The six conditions differ in the nature of that novel verb, as shown in Table 5.2.

In three conditions the syntax of the novel verb is DOD, and in the other three it is
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Table 5.2: Conditions based on semantic and syntactic features of novel verb.

Syntactic form
Semantic form PD DOD

D Other Non-Alternating Same Non-Alternating
A Alternating Alternating
P Same Non-Alternating Other Non-Alternating

PD. Each syntactic form is paired with each semantic form. When the syntactic form

corresponds to the same semantic form it matches in the input data, I refer to that

as the Same Non-alternating Form condition (i.e., PD syntax, semantic class P; and

DOD syntax, semantic class D). If the semantic form occurs in the alternating class

in the input, that is the Alternating Form condition (i.e., both PD and DOD syntax,

semantic class A). And if the semantic form and syntactic form conflict based on the

input corpus, I refer to that as the Other Non-alternating Form condition (PD syntax,

semantic class D; DOD syntax, semantic class P). As a baseline, I compare these six

conditions to the sort of generalization that occurs when there are no semantic features

at all.

Model: Inference on multiple features

The models in Study 1 and Study 2 incorporate only a single feature, syntax, but

can be trivially extended to include multiple features, just as the model in Chapter

4 incorporates multiple category features. As in that model, we assume that each

feature is independently generated, which allows inference to proceed exactly as be-

fore except that each α and β is learned separately for each feature. The posterior

probability for the full model is therefore the product of the probabilities along each

feature.

Results: Using semantics for generalization

As shown in Figure 5-7(a), Model K-L3 generalizes according to semantics in just

the way children do in the Gropen et al. (1989) experiment. Both children and

the model are more likely to produce the construction they were not presented with
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if its semantic feature is associated with the alternating class of verbs. Sensibly, if

the semantic feature matches the syntax of the same non-alternating form, then the

model rarely produces the unattested construction.

(a) (b)

Figure 5-7: Percent of generalization of novel verb to the syntactic construction it
was not previously observed in. (a) Model K-L3; (b) Model L3. Model K-L3 behaves
qualitatively like human responses, generalizing most to the other construction when
the semantic feature is consistent with the non-alternating class, and least when it is
consistent with the same alternating class. Model L3 does not, indicating that the
ability to group verbs into appropriate classes is necessary to capture this aspect of
human behavior.

One interesting result is that, in general, the model is more likely to overgener-

alize a verb occurring in PD syntax to DOD syntax than vice-versa – but only if

the semantics is alternating. This is because among the verbs that alternate, the

DOD construction is approximately twice as frequent. Therefore when a novel with

alternating semantics is encountered in PD syntax, the model probabilistically puts

the novel verb in the alternating class, and therefore assumes that it tends to have

a similar distribution over constructions as other verbs in that class – i.e., that it

should occur more often in the DOD construction. But because the model also takes

verb-specific information into account (and because the verbs in the class are fairly

variable) it does not assume that its distribution will be identical to that of the class.

In other words, because a verb with alternating semantics will be assumed to belong

to a class in which the DOD construction is more frequent, novel verbs occurring in

the PD construction will be more often produced in the DOD construction than novel

verbs in the DOD construction will be produced in the PD construction.
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The fact that the success of the model depends on its ability to form separate

verb classes is apparent when we examine the performance of Model L3, shown in

Figure 5-7(b). This model, which cannot form separate classes, generalizes each novel

verb identically, regardless of its semantics. In essence, the class information is the

vehicle for capturing the relationship between semantics and construction usage.9

Even without class information, the model is more likely to overgeneralize verbs

occurring in PD syntax to DOD syntax (rather than vice-versa); this is because it is

still capable of learning statistics on the level of the language as a whole, and in the

language as a whole the DOD construction is somewhat more frequent than the PD

construction.

One final interesting result is that in the No Semantics and Other, Non-Alternating

Form conditions – i.e., when presented with a novel verb where either there is no

semantic feature, or when the semantics is inconsistent with the syntactic form –

Model K-L3 and Model L3 show opposite behavior. In Model K-L3 the novel verbs

are overgeneralized slightly more from DOD syntax to PD syntax, whereas in Model

L3 the opposite occurs. Why is this? Examining the class assignments in Figure 5-8

tells the story. Class groupings are as we would expect in the Alternating and Same,

Non-Alternating conditions. However, because the semantic features in the Other,

Non-Alternating Form class contradict the semantic features, it is difficult to know

what to make of these verbs. The model therefore acts sensibly by assuming that

they are likely to be in an entirely new category of their own – a category about

which little is known. The model is slightly more likely to make this assumption if

the novel verb occurs in DOD syntax since there is already a high quantity of data

in the DOD-only class, which makes it fairly certain that the class is not associated

with semantic feature P. It is somewhat more uncertain whether the class of verbs

occurring in PD syntax is associated with semantic feature D, because there are fewer

examples in that class.

9It is easy enough to imagine a model that could capture the relationship between semantics
and syntax, perhaps by building it in via explicit hypotheses about semantics-syntax linking rules.
But it is interesting that even in this model, which has no such hypotheses, the relationship can be
learned as long as it has the ability to form separate verb classes.
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Figure 5-8: Verb class assignments for corpus with semantic as well as syntactic fea-
tures, in six conditions of novel verb. In the Alternating and Same, Non-Alternating
conditions, the novel verb is grouped into the appropriate class; in the Other, Non-
Alternating condition, the novel verb is grouped in a class of its own.

One might object that it is unrealistic to assume the existence of one semantic

feature that precisely follows the correct verb classes. It may be far more accurate

to assume that there are many different features, each somewhat noisy, that are only

statistically associated with the correct classes. Does this model qualitatively match

human behavior even if the semantic features are less clean?

To evaluate this I present the model with the same corpus, except instead of one

semantic feature with three possible values, each verb is associated with three se-

mantic features, and each feature is associated with the correct verb class 60% of

the time. The results in the same generalization task as before, shown in Figure 5-9,

are qualitatively identical to the previous results. It is evident that it is not neces-

sary for the semantic feature(s) to be perfectly clean in order to explain appropriate

generalization on the basis of semantics as well as syntax.

Even this is a simplification of a situation that is undoubtedly far more complex:

certainly, one of the things that makes verb learning difficult is that there are many

features (semantic and otherwise) that are simply irrelevant, uncorrelated with the

correct class assignments, perhaps even correlated with other regularities among the

verbs. To what extent does this result depend on this simplification? I addressed
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Figure 5-9: Verb class assignments for corpus with noisy semantic as well as syntactic
features, in six conditions of novel verb. As before, in the Alternating and Same,
Non-Alternating conditions, the novel verb is grouped into the appropriate class; in
the Other, Non-Alternating condition, the novel verb is grouped in a class of its own.

the broad question of Feature Relevance (of which this is a subset) in more detail in

Chapter 4, but we can explore it in this context by adding additional features to the

verbs in this analysis.

I therefore present the model with the same data as before – one syntactic feature

corresponding to the construction counts, and three semantic features noisily associ-

ated with the correct verb class – and add to it seven additional features. Three of

those are noisily correlated with the syntactic construction counts, and four covary

in such a way as to identify four completely different verb classes. (Note that they do

not covary with each other; each of the features picks out a different class organiza-

tion). Adding these additional features should act to partially outweigh the semantic

features. I evaluate the generalizations as before, based on the semantic features, and

the results are shown in Figure 5-10. As we might expect, the qualitative pattern is

still the same, but the generalizations are far less marked.

Of course, there will be some extreme at which the additional features are noisy

enough, or pick out other categories strongly enough, to completely wash out any

effects of the semantic and syntactic features. For instance, I can add six additional

features to this already noisy dataset, and specifically set every features to be con-

sistent with a partitioning that puts all verbs in the same class. As a result, in this
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Figure 5-10: Verb class assignments for corpus with noisy semantic and syntactic
features, plus seven additional noisier features, in six conditions of novel verb. As
before, in the Alternating and Same, Non-Alternating conditions, the novel verb is
grouped into the appropriate class; in the Other, Non-Alternating condition, the novel
verb is grouped in a class of its own. These effects are much less marked than when
the features are cleaner.

dataset most of the features either directly support an analysis in which all verbs are

in one class, or support conflicting analyses that (at least somewhat) have effects that

cancel each other out. As Figure 5-11 demonstrates, the resulting predictions this

time do not qualitatively capture human performance.

Figure 5-11: Verb class assignments for corpus with noisy semantic and syntactic
features, plus 13 additional noisier features, in six conditions of novel verb. Unlike
before, the model does not behave sensibly, largely because it tends to group all of the
verbs into one class, causing overall imbalances in construction distributions across
the dataset as a whole to play a larger role.

As I discussed in Chapter 4, generalization is a function of the coherence and

number of features that pick out the correct class assignments. This brief exploration
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demonstrates that this sort of learning is somewhat robust to noise and error, but not

is not infinitely so. A great deal of further work is necessary to understand precisely

how and to what extent additional features matter – to flesh out what the shape and

nature of that “generalization function” is.

Discussion

In this chapter I have presented a domain-general hierarchical Bayesian model that

addresses how abstract learning about feature variability can be combined with verb-

general learning on the level of construction-based verb classes and verb-specific learn-

ing on the level of individual lexical items. It captures the qualitative patterns ex-

hibited by adults in an artificial language learning task, as well as those exhibited

by children over the course of acquisition. This model suggests that Baker’s Para-

dox can be resolved by a certain kind of learner, even based on syntactic-only input.

Furthermore, it does so in a (largely) domain-general way, without making strong

language-specific representational assumptions about verb constructions.

In the following section I evaluate these conclusions in more detail. I take care to

orient this research with respect to other computational models in order to highlight

its contributions and limitations.

Abstract learning about feature variability

Study 1 demonstrates how it may be possible to learn abstract knowledge about vari-

ability across verb types, just as adult subjects do in the experiment performed by

Wonnacott et al. (2008). Both humans and our model acquire different generaliza-

tions based on whether the input comes from a language in which all verbs occurred

in both constructions or a language in which each verb occurred in only one con-

struction. This sort of statistical learning is part of a larger process of balancing

information on multiple levels of abstraction – a theme we observe throughout this

thesis – and the work demonstrates how this balance may be achieved.

To my knowledge there are no computational models that can capture the acqui-

177



sition of higher-level knowledge on the level of verb or construction variability. Many

models address the issue of learning more lexically-specific and detailed verb infor-

mation (e.g., Dominey, 2003; Chang, 2004). However, although several models are

capable of learning verb-general information about classes or construction types (e.g.,

Dowman, 2000; Onnis, Roberts, & Chater, 2002; Alishahi & Stevenson, 2008), even

these do not acquire even higher-level information about their variability, and would

therefore be unable to account for human behavior in the Wonnacott et al. (2008)

task. The work by Dowman (2000) and Onnis et al. (2002) is focused mainly on

the problem of negative evidence, and compares segments of toy grammars of varying

degrees of complexity. The work by Alishahi and Stevenson (2008), which is in many

ways an impressive model capable of capturing many aspects of semantic and syntac-

tic acquisition, nevertheless cannot account for higher-order knowledge about feature

variability. Their model and this one have numerous similarities: both are Bayesian,

both can flexibly determine how many constructions or verb classes are appropriate

given the data, and both capture similar qualitative patterns in acquisition. But be-

cause their model does not do inference on the highest levels (level 2 or level 3), it

is capable only of learning about which semantic and syntactic features to expect for

each construction, rather than making more abstract judgments about how variable

they are expected to be.

Is the ability to learn on this level important in order to explain the acquisition of

verb constructions in natural language? Because many of the qualitative aspects of

acquisition can be captured by models that cannot learn on that level, it is possible

that this sort of learning is not necessary. Nevertheless, several considerations should

make us hesitant to draw this conclusion. First, the experiments of Wonnacott et

al. (2008) suggest that humans (or at least adult humans) are capable of this kind

of learning; it seems odd if people to have learning abilities that are too powerful

or unnecessary to the task to which they are applied. It might be that this sort of

learning is a domain-general capacity, useful when applied to other domains (such as,

perhaps, the acquisition of word learning biases, as in Chapter 4), that may not be

strictly necessary for the acquisition of verb constructions but that people are happy
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to apply nevertheless.

Another possibility is that there may be conditions under which the ability to

learn about variability is particularly useful. For instance, the model presented here

is capable of learning the distinction between alternating and non-alternating verb

classes on the basis of syntactic input alone. The model of Alishahi and Stevenson

(2008) can form constructions, but only on the basis of differences in features rather

than on patterns of feature variability. As a result, it would be unable to form the

distinction between non-alternating and alternating verb classes without additional

semantic features to assist. Each individual verb usage would occur only in PD or

DOD syntax, and without semantic information differentiating alternating from non-

alternating verbs, the model would only be capable of inferring a maximum of two

constructions (DOD and PD). It would thus be able to learn that individual verbs

are alternating or non-alternating (and thus resolve the negative evidence problem for

those verbs). However, because it would have no reason to form a single alternating

construction, it would not – as our model does – be able to infer that a completely

novel verb appearing once in each construction is alternating, but that a verb appear-

ing twice in one may not be. This is the sort of generalization made by adult subjects

in the artificial language of Wonnacott et al. (2008), and it is an open question

whether children or adults make it in more naturalistic circumstances.

A solution to the No Negative Evidence problem

One implication of this work is that it demonstrates how Baker’s Paradox may be

resolved on the basis of syntactic information alone. The Bayesian learner presented

here, given the syntactic information from a corpus of dative verbs used in child-

directed speech, can learn the appropriate categories of verbs. In so doing it solves

the negative evidence problem, correctly realizing that verbs that have been observed

often in one construction but never in another probably are not grammatical in both,

but that verbs that have been observed rarely in one construction and never in another

might be. In essence, the learner takes indirect negative evidence into account, and is

a formal instantiation of the notions of entrenchment and pre-emption suggested by
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other researchers (Braine, 1971; Braine & Brooks, 1995; Goldberg, 1995). Consistent

with this hypothesis, the model – like people – is more apt to overgeneralize lower-

frequency verbs or verbs earlier in the process of acquisition.

This performance is not an idiosyncratic property of specific choices made in

setting up the model, but is rather the result of a general property of optimal inference,

as we saw in Chapter 2. Because Bayesian inference trades off complexity (via prior

probability) and goodness-of-fit (via likelihood), it tends to prefer hypotheses that

are neither too simple nor too complex, but rather “just right” (as in Hypothesis

B in Figure 2-2). As a result of this, as the number of datapoints increases, the

likelihood increasingly favors the theory that most closely matches the observed data,

and overgeneralization decreases. The likelihood in Bayesian learning can thus be seen

as a principled quantitative measure of the weight of implicit negative evidence – one

that explains both how and when overgeneralization should occur.

Because this pattern of inference is a general result of Bayesian inference, other

computational approaches to the acquisition of verb argument constructions provide

the same natural solution to Baker’s Paradox (Dowman, 2000; Onnis et al., 2002; S.

Niyogi, 2002; Alishahi & Stevenson, 2008). For instance, Dowman (2000) illustrates

the same principle explicitly, by comparing toy grammars with and without subclasses

of non-alternating verbs; as the amount of data increases, the more complex grammar

is preferred and overgeneralization disappears. Their work involves a simplistic toy

grammar segment and an idealized artificial corpus rather than the more naturalistic

child-directed data considered here, but both models show the same ability to deal

sensibly with the problem of negative evidence. More similarly to this work, Onnis

et al. (2002) use a Bayesian model to demonstrate the learnability of an alternation

based on statistics from corpora of child-directed speech. Their model succeeds in this

for the same reason ours does. Our model makes different (in many ways simpler, more

domain-general) representational assumptions, and is in other ways more flexible and

powerful, with the ability to learn on multiple levels of abstraction, and the ability to

determine flexibly how many classes of verbs there are. But in terms of the problem
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of negative evidence, all of these models – ours included – solve it in the same way.10

Of course, there are models – computational as well as less formal ones – that

do not provide the same natural solution to Baker’s Paradox. These models can

be broadly classified into two types: those that, like the Subset Principle, do not

generalize at all (Berwick, 1985), and those that limit generalization on the basis of

non-syntactic features (e.g., Pinker, 1989). While the non-generalization approach

provides a solution to the problem in the sense that it explains how a learner might, in

principle, arrive at the correct grammar, it does not capture an important empirical

phenomenon: namely, that both children and adults do overgeneralize. Models that

constrain generalization on the basis of correlated features, of which Pinker’s (1989)

proposal is perhaps the most elaborated and elegant example, can result in periods of

overgeneralization. The difference is that the generalization is ultimately constrained

by the presence of the other, correlated features rather than by the accumulated

weight of indirect negative evidence. This sort of model is sensitive to indirect negative

evidence only in a trivial sense, in that it behaves differently based on whether a

certain sort of data is present or absent; a direct dependence on frequency is not a

part of this approach in the same way that it is for the class of models that performs

some sort of tradeoff between simplicity and goodness-of-fit.

One aspect of the problem that none of these models address – ours included

– is the question of how the child knows which sort of evidence is important: an

aspect of the problem of Feature Relevance.11 Pinker raised this point about indirect

negative evidence, saying that “it can’t be true that the child literally rules out any

sentence he or she hasn’t heard, because there is always an infinity of sentences that

he or she hasn’t heard that are grammatical... So the question is, under exactly what

circumstances does a child conclude that a nonwitnessed sentence is ungrammatical?

10In fact, even connectionist models (e.g., Allen & Seidenberg, 1999; Desai, 2002) implicitly incor-
porate a sort of tradeoff between simplicity and goodness-of-fit. Often the tradeoff is non-optimal,
since the preference for simplicity emerges out of choices about network architecture, number of
training epochs, and other modelling choices rather than the mathematics of probability theory, but
as long as any tradeoff is being made, overgeneralization will decrease with increasing amounts of
data.

11Aside from the models that specify that the child must innately know which features are relevant,
that is.
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This is virtually a restatement of the original learning problem.” (Pinker (1989), p.

14). How does the child know that those particular syntactic forms are the interesting

and relevant ones? How does she realize what semantic features are important? This

knowledge has just been given to this model, and this work makes no particular

claims about how it comes about. However, it is essential to realize that what I have

done is not simply restated the learning problem, as Pinker suggests: rather, I have

suggested an answer to one problem (the No Negative Evidence problem, or how to

rule out logically possible alternatives without negative evidence), leaving another

still unsolved (the Feature Relevance problem, or how to know which of a potentially

infinite number of dimensions to generalize along). Though the latter problem remains

a difficult and open question, it is not the same problem. The logic of Baker’s Paradox

would be the same even if there were only one possible dimension of generalization:

the dilemma exists because one can never be certain that an unobserved datapoint

(along that dimension) is truly ungrammatical, or simply unobserved. How the learner

knows which dimensions to pay attention to is a different issue, an aspect of which I

considered (albeit in a different domain) in Chapter 4.

Representational assumptions

Because this model was originally developed for a completely different domain, it

makes few domain-specific assumptions about the representation of verbs and verb

constructions. Both semantic and syntactic information is represented as a vector

of features. An advantage of the simpler representation is that it highlights which

phenomena emerge due to the nature of the data and the characteristics of Bayesian

(optimal) inference, rather than because of the domain-specific representation. The

only domain-specific knowledge in the model is in the assumption that the syntactic

forms corresponding to verb constructions are already known by the learner to be the

features that inference must operate over. Actually learning that, say, NP1 V NP3

NP2 is a construction is itself a complex learning problem, and not one that this work

bears on. But a significant part of the debate about verb construction learning is

about the issue I focus on in Study 2 and Study 3: how to generalize properly over
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the constructions seen in the input once it is clear what they are.

I do not claim that all aspects of verb learning (or even most of the interesting ones)

can be accounted for by a model that makes the sparse representational assumptions

this one does. In one sense this sort of representation is an advantage, because it

clarifies and highlights precisely what aspects of learning derive from the Bayesian

paradigm and which derive from the specific representation; and it allows us to explore

the contribution of additional semantic features in the abstract, without worrying

about their accessibility or precisely what they are. The tradeoff, of course, is that

we are therefore abstracting over many details that might be critical for understanding

the acquisition of particular verbs or asking the question of what particular semantic,

conceptual, or syntactic knowledge must be built in order for the child to perceive

which features are important and relevant.

Although Study 2 may appear to imply that some aspects of verb construction

learning could be accomplished without semantic information, I am not suggesting

that semantics are not an important part of learning verbs. Indeed, Study 3 was

motivated by the fact that verb learning must include semantic as well as syntactic

knowledge. We found that it is necessary to include some sort of semantic repre-

sentation in order to capture the sort of generalization captured by the experiments

of Gropen et al. (1989). Interestingly, although I did not build in innate semantic-

syntactic rules of the sort theorized by both the semantic and syntactic bootstrapping

hypotheses, as long as the model could form classes of verbs it was capable of cap-

turing relationships between syntax and semantic class. I am hesitant to draw any

strong conclusions from this result, but it does suggest the utility of further work

in this direction, exploring to what extent innate linking rules are required to ab-

stract semantic-syntactic relationships when the data and representations are more

complicated and realistic.

Another interesting possibility suggested by the analysis here is that perhaps

syntactic information was so effective because I gave the model clean features that

already picked out precisely the constructions of interest. If both the semantic and

syntactic features available to the child are far more noisy – and hidden amongst
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many irrelevant features in the environment – then it may be that semantic and

syntactic features only become accessible through a process of mutual bootstrapping.

One could even imagine a model in which one or a few extremely coherent or salient

features provided information sufficient to pick out features that would otherwise

be too incoherent or difficult to observe – as may happen for particularly abstract

semantics, like those corresponding to verbs of mental state (Gleitman et al., 2005;

Papafragou et al., 2007). This might capture results reported by Ambridge, Pine,

Rowland, and Young (2008), which found that for younger children (age 5-6) there

was only a small effect of semantic class on generalization, whereas for older children

and adults, there was a larger and significant one. Similarly, Brooks et al. (1999)

found that entrenchment effects (in syntax) emerged before semantic class effects.

Addressing these ideas, or others that explore the roles of syntax and semantics more

fully, will probably require a richer semantic representation than the current model

instantiates. Future work will explore this idea in more detail.

Conclusion

This chapter extends the hierarchical Bayesian model introduced in Chapter 4 to

explore several issues relevant to the acquisition of verb argument constructions.

Although the model was originally developed to address the acquisition of feature

biases in word learning, it can also explain how abstract learning about feature vari-

ability can be combined with verb-general learning on the level of construction-based

verb classes and verb-specific learning on the level of individual lexical items. This

work demonstrates clearly how the No Negative Evidence problem can be solved by a

Bayesian learner due to its ability to balance simplicity and goodness-of-fit when eval-

uating hypotheses for generalization. Additionally, I demonstrate how this model can

acquire the dative alternation based on syntactic-only input from actual child-directed

speech while capturing the qualitative patterns exhibited by adults in an artificial lan-

guage learning task and by children over the course of acquisition. Furthermore, it

does so in a (largely) domain-general way, without making strong language-specific
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representational assumptions about verb constructions.

In the next and final chapter I consider how the work in this chapter, in combi-

nation with that from Chapters 3 and 4, can shed light on the learnability problems

motivating this thesis. What broader questions do each of these specific models ad-

dress? What themes underlie each component of this research, and what general

lessons can we infer from this work? Finally, where should we go in the future?
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Chapter 6

Discussion

The main goal of this thesis was to explore three common learnability arguments

by formalizing them in Bayesian terms. By focusing on these classic learnability

arguments in the context of three major questions in language acquisition, I was able

to explore the issues of representation and learnability from multiple angles, and to

shed new light on these old questions.

In this chapter I step back and position this work in a larger context. What are

its implications for those studying language acquisition and cognitive development?

What are its major limitations? In an effort to make this discussion maximally

accessible (particularly because I revisit many points that I have already addressed

to some degree elsewhere) this chapter will be written in a more colloquial tone.

Simplicity/goodness-of-fit tradeoff

Q: You suggest that a Bayesian learner can actually solve the No Negative

Evidence problem. How is this possible?

I answer this question abstractly in some detail in Chapter 2 and touch on the rea-

soning again in Chapters 3 and 5, but in a nutshell, the solution emerges because

Bayesian inference trades off the complexity of a hypothesis (reflected in its prior

probability) and how well that hypothesis fits to the observed data (reflected in the
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likelihood). As a result, it tends to prefer hypotheses that – like B in Figure 2-2 –

strike a balance between being overly simple (hence missing important details) and

overly complex (hence overfitting). Because the importance of fitting the data in-

creases with the number of datapoints, there is an interesting pattern as the amount

of data increases. When there are only a few datapoints, Bayesian learners tend to

favor simpler hypotheses, because the importance of simplicity outweighs the lack of

fit to those few datapoints. But as the number of datapoints increases, fitting them

badly matters more and more (since there are more of them, and each one is penal-

ized). As the size of the dataset approaches infinity, a Bayesian learner rejects larger

or more overgeneral hypotheses in favor of more precise ones, as the Subset Principle

would do. But with limited amounts of data, the Bayesian approach can make more

subtle predictions.

You can see how this would solve the No Negative Evidence problem: as the

learner observes more and more data, he becomes less and less likely to think that

something that was unobserved is nevertheless permissible. Essentially, the likelihood

captures the notion of a suspicious coincidence. If a gumball machine gives me ten

blue gumballs in a row, I’m going to be fairly certain that it only gives blue gumballs;

it’s at least more likely than thinking that somehow, coincidentally, I just happened

to never get green or red or yellow ones. The nice thing about Bayesian inference is

that it gives a quantitative way of determining when the coincidence grows too great.

Why am I not likely to think that the machine gives only blue gumballs after just

receiving one, but will think it does after ten? Being able to calculate the tradeoff

between simplicity and likelihood allows us to answer this question. In essence, the

likelihood in Bayesian learning is a principled quantitative measure of the weight of

implicit negative evidence – one that explains both how and when overgeneralization

should occur.

A side effect of this reasoning is that frequency becomes very important. Because

quantity of data is the deciding factor in determining how overgeneral the hypothesis

should be, a Bayesian learner overgeneralizes more when there is less data. This is

what we saw in Chapter 3, where the 1-ST grammar (which accepts any sentence
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as grammatical) was preferred on smaller corpora and the context-free grammars

were preferred on larger ones. It also explains the frequency effects found in Chapter

5, where the low-frequency items tended to be overgeneralized much more than the

higher-frequency ones.

Q: This doesn’t sound all that different from people who argued that

indirect negative evidence is the way to solve the No Negative Evidence

problem. Isn’t this just a version of the same thing? And isn’t this,

therefore, vulnerable to the same counter-arguments?

It is indeed a very similar idea. One major difference is simply that conceptualizing

the notion of indirect negative evidence in Bayesian terms allows us to justify why

a learner might deal with indirect negative evidence in this way. There is a lot of

research explaining why Bayesian learning constitutes optimal inference; in essence, a

non-Bayesian reasoner attempting to predict the future will always be out-predicted

by a Bayesian reasoner in the long run (e.g., de Finetti, 1937; Jaynes, 2003). It

is also hardly a new idea to point out that making use of a simplicity criterion can

enable a learner to limit overgeneralization in the “right” way (Solomonoff, 1964, 1978;

Rissanen & Ristad, 1992; Chater & Vitànyi, 2007). A byproduct of reasoning with

such a criterion in mind, while also being concerned with goodness of fit, is becoming

sensitive to indirect negative evidence – information about what isn’t there, as well

as what is.

The other major difference is that the Bayesian framework provides a method

that offers quantitative and precise predictions, rather than simply a qualitative idea.

Without quantitative details, it can be difficult to test or falsify specific claims. How

much negative evidence is sufficient? How does this depend on the complexity of the

representation and the nature of the evidence that is observed? Formalizing the idea

of indirect negative evidence in Bayesian terms allows us to rigorously address these

questions.

The main counter-argument to the idea of indirect negative evidence is that point

that people need to already know the relevant dimensions of generalization in order
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to be sensitive to it. I discussed this in Chapter 5, since Pinker’s objection is a version

of this: “under exactly what circumstances does a child conclude that a nonwitnessed

sentence is ungrammatical? This is virtually a restatement of the original learning

problem.” (Pinker (1989), p. 14). How does the child know that those particular

syntactic forms are the relevant ones? This is, indeed, a hard problem – but it is not

the No Negative Evidence problem per se. The logic of the No Negative Evidence

problem remains the same whether there is one possible dimension of generalization,

or an infinite number: the dilemma comes because one can never be certain that

an unobserved datapoint (along that dimension) is truly ungrammatical, or simply

unobserved. Indeed, in the formulation by Gold (1967) there is only one dimension

of relevance: which formal grammar is appropriate.

So, I agree that the simplicity/goodness-of-fit tradeoff doesn’t solve the Feature

Relevance problem. I hope that one virtue of my analysis has been to make clear that

the Feature Relevance problem is a separate problem from the No Negative Evidence

problem, which a Bayesian learner can overcome.

Q: But how can this be reconciled with the logic of the No Negative

Evidence argument? I haven’t seen you show where it is wrong.

You’re right that I haven’t argued against the logic of the No Negative Evidence

problem at any point. It is true that without negative evidence one cannot logically

rule out hypotheses that are consistent with, but supersets of, the observed data. If

the hypothesis space is infinite – as it is in Gold’s 1967 analysis, and as it is in many

interesting problems in language acquisition – we cannot simply wait until seeing all

of the data before concluding that the correct hypothesis is the most conservative

one. It is impossible to deductively rule out all of the infinite numbers of consistent

superset hypotheses on the basis of positive-only finite data. It was impossible at the

beginning of this thesis, and it remains impossible now.

However, a Bayesian learner does not deductively rule out consistent superset

hypotheses; it simply assigns them less and less probability as the amount of data

increases. This effectively converts the logical problem into a probabilistic problem;
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and while a learner may never be 100% confident that it has converged to the correct

hypothesis, it can quickly get to the point that the probability of other hypotheses is

vanishingly small.

So this isn’t a logical solution. It is, however, a solution in the sense that it

offers an explanation for how an actual learner might deal with and overcome the

problem in practice. This ties back into a point I made first in Chapter 1, when

I talked about the importance of exploring how an ideal learner might handle real

datasets. This sort of analysis, instead of focusing on all of the many ways that some

abstract learning problem is impossible in theory, reframes to ask what can be learned

in a more realistic situation, or what sort of learner can deal with realistic data in

a reasonable way. Since we’re ultimately interested in how human learners actually

learn from data, this seems like an important question.

Q: You say that Bayesian learning solves the No Negative Evidence prob-

lem because it instantiates the tradeoff between simplicity and goodness-

of-fit. But isn’t “simplicity” a completely arbitrary metric?

Well, no. As I discuss in Chapter 2, the definition of simplicity emerges naturally from

the generative assumptions underlying the Bayesian framework, in which hypotheses

are themselves generated from a space of candidate hypotheses. If we conceptualize

hypotheses as being generated through a series of choices – as in the dot examples in

Chapter 2, or the grammars in Chapter 3 – then simpler hypotheses are those that

require fewer “choice points.” This is an intuitively sensible notion of simplicity. I

think it’s safe to say that we would all agree that the more complicated something is,

the easier it is to mess it up: there are more choices you have to make, more places

where you could zig instead of zag.

The precise prior probability of a hypotheses is therefore not arbitrarily assigned,

but rather falls out in a principled way from how the hypotheses are generated. In

Chapter 2 I mentioned the idea of a “generative model for recipes” whose “primi-

tives” are recipe ingredients and measurements. The analysis in Chapter 3 assumes a

generative model for grammars whose “primitives” are terminals, non-terminals, and
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rules (which are built from the terminals and non-terminals). Though I didn’t discuss

the models in Chapter 4 and 5 explicitly using this terminology, their primitives are

parameters and hyperparameters of distributions. In every case, the logic favoring

simple hypotheses is the same: multiple choices are a priori less likely than a few.

I have one important caveat. While is always true that within the set of choices

defined by the generative model the hypothesis that requires fewer choices has higher

probability, one could always change the primitives of the model to design some

Bizarro World model that looks to us as though it assigns higher probability to more

complicated-looking hypotheses. For instance, if I defined a generative model for

grammars whose primitives were specific 50-rule grammars that could be added to

and subtracted from in complicated ways, it might look like one of those grammars was

a priori “simpler” than a grammar with one rule only. Simplicity is only meaningful

relative to the set of primitives out of which the hypotheses are generated, and in that

sense any simplicity metric is indeed arbitrary. But this is true for any computational

model (in which the primitives define the space of possible behavior) or, indeed,

any theory (where the primitives assumed about the learner or the task implicitly

define the solutions that can be found). This doesn’t mean we should all retire

and go into management consulting or stock-car racing; it means that we should be

aware that one’s choice of primitives, whether implicit or explicit, counts among the

assumptions made by the theory. Whether those are the appropriate primitives is

an empirical question, and interesting theoretical work might be done showing that

with a different choice of primitives, very different results occur. But for the most

part, unless the primitives are very different, the assignment of simplicity will often

produce broadly similar results across the board. And either way, it offers a solution

to the No Negative Evidence problem.
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Q: Any learner is only as good as its assumptions; there is no such thing

as a free lunch. What assumptions does this sort of Bayesian reasoning

depend on, and in what situations will those assumptions lead the learner

astray?

Implicit in all of the models in this thesis, and most Bayesian models more generally,

is an assumption that data is generated based on a process in which each datapoint

is sampled independently of one another. This is not an in-principle assumption that

Bayesian models must make – one could make any well-defined sampling assumptions

one wished – but assuming independence makes the mathematics considerably easier.

If the data is not actually independently generated, a Bayesian learner assuming that

it is may infer the wrong model.

A similar situation would arise if for some reason data were systematically (rather

than randomly) excluded from the observed evidence in the world (e.g., due to perfor-

mance limitations not captured in the assumed generative process). All other things

being equal, a Bayesian learner faced with this dataset might (wrongly) infer that the

generalization that would produce the missing data is not permitted.

In both of these cases, the problem emerges because the assumptions made about

the generative process are not accurate. In general, the performance of a Bayesian

learner depends in an important way on these assumptions. Since the generative

process also defines the hypothesis space, if the correct solution does not lie in the

hypothesis space, the learner will not arrive at it. This point may appear trivial,

but it highlights the importance of defining the generative process, hypothesis space,

and representational capacity with care. (Of course, even if one’s hypothesis space

excludes the “correct” hypothesis – as is probably true for all of the analyses presented

in this thesis, due to their simplicity – the analysis can still be a useful way of

comparing the theories that are in the hypothesis space).
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Ideal learner, real dataset

Q: What is the point of exploring the performance of an ideal learner,

given that we’re interested in actual human cognition?

This is a common issue, and I address it throughout this thesis, especially in Chapters

1, 2, and 3. Ideal learnability arguments focus on the question of whether something

is learnable in principle, given the data. By describing the characteristics of an ideal

learner and then evaluating whether it could acquire the knowledge in question, these

analyses suggest a series of testable questions and are a positive way of guiding further

inquiry. To what extent do humans really have the hypothesized characteristics? Are

the assumptions made about the data accurate? Do the ways in which the analysis

departs from reality prove critically important? If so, why? If not, why not?

Whether or not people are ideal learners themselves, understanding how humans

do reason can often be made if one can identify the ways in which people depart

from the ideal: this is approximately the methodology by which Kahneman and

Tversky derived many of their famous heuristics and biases. Bayesian modelling is

an implementation of scientific inquiry that operates on Marr’s third (computational)

level, which seeks to understand cognition based on what its goal is, why that goal

would be appropriate, and the constraints on achieving that goal, rather than precisely

how it is implemented algorithmically (Marr, 1982). Understanding at this level is

important because the nature of the reasoning may often depend more on the learner’s

goals and constraints than it does on the particular implementation. This approach

allows us to examine rigorously the inductive logic of learning – what constraints

are necessary given the structure of the hypothesis space and the data available to

learners – independent of the specifics of the algorithms used.

Q: In what way is Bayesian learning “optimal”, anyway? That sounds like

a value judgment rather than a scientific claim.

As I note in Chapter 2, Bayesian inference is optimal in the sense that a non-Bayesian

reasoner attempting to predict the future will always be out-predicted by a Bayesian

194



reasoner in the long run (de Finetti, 1937). It is essentially an extension of deductive

logic to the case where propositions have degrees of truth or falsity (and is identical

to deductive logic if we know all the propositions with 100% certainty). Thus, just

as formal logic describes a deductively correct way of thinking, Bayesian probability

theory describes an inductively correct way of thinking (Jaynes, 2003).

If we were to try to come up with a set of desiderata that a system of “proper

reasoning” should meet, they might include things like consistency and qualitative

correspondence with common sense – if you see some data supporting a new proposi-

tion A, you should conclude that A is more plausible rather than less; the more you

think A is true, the less you should think it is false; if a conclusion can be reasoned

multiple ways, its probability should be the same regardless of how you got there; etc.

The basic axioms and theorems of probability theory, including Bayes’ Rule, emerge

when these desiderata are formalized mathematically (Cox, 1946, 1961). Bayesian

inference has also been shown to correspond to common-sense reasoning and the

scientific method (Jeffreys, 1931, 1939; de Finetti, 1974; Jaynes, 2003).

Q: Okay, you’ve convinced me that an ideal learning analysis is worthwhile.

But what’s the point of studying realistic datasets? It seems like you lose

your ability to make any general claims if you do that.

Yes, there is an inherent tradeoff here. One of the real virtues of ideal learnability

analyses on ideal datasets, as we saw in Chapter 1, is that they are more general and

not tied to the vagaries or idiosyncracies of any particular dataset. At the same time,

they are only a first step (at best) for anybody interested in human cognition. If the

ultimate goal of cognitive science is to understand how realistic learners use realistic

data, then – given that we don’t yet understand how realistic learners do their thing

– exploring how an ideal learner can use realistic data is an important next step.

This is not just a step forward; it also reframes the questions in a useful way.

Instead of asking what is learnable in the limit (or not), we can focus on what learn-

ers actually could learn – and how different representational or other assumptions

affect that. As an example, in Chapter 1 I mentioned research showing that making
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the assumption that grammars are probabilistic does not actually expand the class

of learnable languages (Angluin, 1988; P. Niyogi, 2006). Positive learnability results

emerge only if the probability distribution on rules µ comes from a family of approx-

imately uniformly computable distributions. The probability distribution associated

with the class of context-free grammars follows an exponential-decay distribution; a

learner who (correctly) assumes that the distribution is of this form will converge to

the correct context-free grammar (Horning, 1969), but a learner assuming an arbi-

trary distribution may not. Since it is fairly clear that natural languages are more

expressive than context-free grammars, but that the actual family of distributions

(if there is one) corresponding to natural language grammars is unknown, this has

widely been taken as further evidence for the in-principle unlearnability of natural

languages without further assumptions.

The analysis in Chapter 3 appears on the surface to contradict this result by sug-

gesting that some aspects of syntactic knowledge previously argued to be innate may

actually be learnable. These findings are reconcilable because I used an actual, real-

istic dataset. The Bayesian learner there actually does assume the exponential-decay

distribution of context-free grammars – and, even though the resulting CFG only

roughly approximated English, enough was learned to support abstract inferences

previously argued to be impossible. This result depending on performing computa-

tions over sentence types rather than tokens, but this is not a drawback – it is a

prediction, and offers a new way of conceptualizing the learning problem. Even if

learning entire families of languages is impossible without knowing the full nature of

the distribution in advance, it may nevertheless be true that making certain distri-

butional assumptions results in interesting learning of actual natural languages.1

This example illustrates that in a sense, ideal learnability analyses on ideal datasets

1As an aside, I can’t resist noting that it is also possible that people do make the correct dis-
tributional assumption about the grammars underlying human language, and that is why human
languages are learnable. This distribution µ, whatever it is, might not be exponential-decay (or
something else corresponding to the classes of grammars picked out by formal syntactic theories),
but it might neatly pick out exactly the class of natural languages. Indeed, some explanation along
these lines is almost inevitable – cf. Terence Deacon (1997), if people were not making the assump-
tions necessary to learn human languages, languages would not have been learned and passed on
through the generations.
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run into the danger of “letting the perfect be the enemy of the good.” Focusing on

realistic datasets allows us to explore what is learnable from the sort of data that

people actually are presented with, and what assumptions guide that learning.

Q: These datasets don’t actually seem very realistic to me, though.

At our current state of understanding, it is impossible to have a completely realistic

dataset – even videotaped evidence needs to be encoded in some sort of usable form,

and may not reflect exactly what the child was attending to or noticing. All of the

choices about encoding and preprocessing, as I discuss in Chapter 2, constitute lapses

from perfect realism; but making these sorts of choices, simplifying the dataset so

that models can do something sensible and interpretable with it, is something that

every modeler must do. In fact, the point of modelling is to simplify, and to hope

that we have done so in such a way that it adds to our understanding rather than

detracts.

The important question is whether the preprocessing choices I made are such that

they render the conclusions invalid or uninteresting. In each of Chapters 3, 4, and 5,

I devoted some time to evaluating the datasets with respect to this criterion. In each

case, while the preprocessing of the datasets limits the range and generality of some

of the results, the choices made were not indefensible, nor did they presuppose the

conclusions that I do draw.

Q: Ultimately, of course, we would like to understand how real learners,

not just ideal ones, might deal with real data. How can we move from the

analyses in this thesis toward this direction?

This is a very good question. I can foresee two major steps, and many other re-

searchers are already moving in this direction. One would be to combine this sort

of ideal learning model with experiments on adults and children, with the aim of

exploring in what ways people diverge from optimality. Done properly, this sort of

analysis requires experimentation and modelling to be tightly yoked, since it is most

interesting to not simply note where this divergence occurs, but to be able to explain
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it in modelling terms. For instance, what if adult learners do perform differently on

the datasets in Chapter 4 based on whether they are given category information or

not? This behavior is not what is found in the ideal learning model, and the next

interesting question would be to characterize exactly why. Do people have memory

or attentional biases or deficits? Do they have perceptual or cognitive biases that

make them systematically ignore some possibilities, or overweight others? Do they

use heuristics (like, say, weighting features by salience) that drive their behavior?

This ties into the other step, which is modifying these ideal learning models to be

less ideal in systematic ways. It would not be difficult to impose memory or processing

constraints on Bayesian models, either by adding noise to the input or “forgetting” it

in consistent ways. Different assumptions about feature salience, biases that exclude

certain possibilities from being considered, and other heuristics can also be added.

The advantage of starting with an optimal learner and adding limitations is that it

makes clear what aspects of the behavior are due to the limitations. By yoking this

sort of modelling with experimental work on subjects, we can significantly broaden

the set of questions we can address.

Learning on multiple levels of abstraction

Q: You keep mentioning learning higher-order constraints even before the

lower-level specific knowledge. I don’t understand how this is possible.

To be clear, the claim is not that the higher-order constraints must necessarily be

learned before any specific lower-level knowledge; it is that we cannot assume that

they must be learned later. Depending on the nature of the task and the dataset,

either may be faster than the other (Kemp et al., 2007). In Chapter 3 we saw a situa-

tion in which the higher-order abstraction T (that the corpus of child-directed speech

is better captured by a grammar with hierarchical phrase structure) was acquired

before honing on the precisely correct lower-level grammar G: at both Epochs and

Levels prior to the full corpus, CFGs were preferred even though the favored specific

grammar was different than the best one on the full corpus. Though that model did
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not explicitly use inferences about T to constrain inferences about G, it could have

done so, since T was learned at lower levels of evidence than were necessary to acquire

the full specific grammar or to parse complex interrogative sentences.

In fact, in Chapter 4, we do see an instance where higher-order inferences act

to constrain inferences at a lower level. That is what the shape bias is. And, as

we discovered, this higher-order generalization about feature variability emerges as

soon as there is enough lower-level information to form categories. It is not the case

that the model must wait until acquiring all of the (lower-level) category information

before it is capable of forming generalizations on a higher level.

How is it possible to learn a higher-order generalization before a lower-order one?

Although it may seem counterintuitive, there are conditions under which higher-order

generalizations should be easier to acquire for a Bayesian learner. If there are many

fewer possibilities at a higher level than at a lower level, less data may be required

to draw conclusions at the higher level. For instance, while there are infinitely many

possible specific grammars G, there are only a small number of possible grammar

types T . It may thus require less evidence to identify the correct T than to identify

the correct G.

More deeply, because higher levels of abstraction consist of inferences about an

entire hypothesis, while lower levels may be relevant to only a small part, there is in a

sense much more data available about these higher levels of abstraction. For instance,

the higher level T of grammatical knowledge affects the grammar of the language as a

whole while any component of G affects only a small subset of the language produced.

A single sentence like adj adj n aux part contributes evidence about certain aspects of

the specific grammar G – that it is necessary to have productions that can generate

such a sequence of words – but the evidence is irrelevant to other aspects of G – for

instance, productions involving non-auxiliary verbs. In general any sentence is going

to be irrelevant (except for indirectly, insofar as it constitutes negative evidence) to

inferences about most parts of the grammar: in particular, to all of the productions

that are not needed to parse that sentence. By contrast, every sentence offers at least

some evidence about the grammar type T – about whether language has hierarchical
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or linear phrase structure – based on whether rules generated from a hierarchical or

linear grammar tend to provide a better account of that sentence. In a similar way,

every item in the world provides some evidence about whether categories in general

are organized by shape or not, but only items from a specific category provide evidence

about that categories. Higher-order generalizations may thus be learned faster simply

because there is much more evidence relevant to them.

Because of the possibility of this sort of learning, it is important to remember

that children learn individual phenomena as a part of a system of knowledge. As with

auxiliary fronting, most PoS arguments consider some isolated linguistic phenomenon

that children appear to master and conclude that because there is not enough evidence

for that phenomenon in isolation, it must be innate. I have suggested here that even

when the data does not appear to explain an isolated inference, there may be enough

evidence to learn a larger system of linguistic knowledge – a whole grammar – of

which the isolated inference is a part. To put this point another way, while it may be

sensible to ask what a rational learner can infer about language as a whole without

any language-specific biases, it is less sensible to ask what a rational learner can

infer about any single specific linguistic rule (such as auxiliary fronting). The need

to acquire a whole system of linguistic rules together imposes constraints among the

rules, so that an a priori unbiased learner may acquire constraints that are based

on the other linguistic rules it must learn at the same time. As long as higher-

level learning is possible, it becomes necessary to explore what kinds of system-wide

inferences can be acquired.

Q: Even if higher-level learning is possible, it doesn’t seem to have espe-

cially interesting implications. After all, you haven’t removed the need for

innate knowledge; you’ve just moved it up a level.

It is definitely true that none of this analysis removes the need for innate knowledge; I

am not trying to argue against that. But “moving it up a level” accomplishes several

things. First, as the knowledge gets increasingly abstract, it also gets increasingly

simple and general. So this framework does not do away with the need for innate
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knowledge, but it may change the nature of that knowledge. It raises the possibility

that a learner could make domain-specific inferences on higher levels of abstraction,

based on innate knowledge on even higher levels that is vague or general enough that

it is plausibly domain general. The work is not meant to show that this is always

true, but it illustrates that the simple existence of an observed higher-level inference

is not reason to conclude that it is innate; what is innate may be quite different.

In a sense, this finding reconstructs the key intuition behind linguistic nativism,

preserving what is almost certainly right about it while eliminating some of its less

justifiable aspects. The basic motivation for positing innate knowledge of grammar,

or more generally innate constraints on cognitive development, is that without these

constraints, children would be unable to infer the specific knowledge that they seem to

come to from the limited data available to them. What is critical to the argument is

that some constraints are present prior to learning specific knowledge, not that those

constraints must be innate. Approaches to cognitive development that emphasize

learning from data typically view the course of development as a progressive layering

of increasingly abstract knowledge on top of more concrete representations; under

such a view, learned abstract knowledge would tend to come in after more specific

concrete knowledge is learned, so the former could not usefully constrain the latter.

This view is sensible in the absence of learning mechanisms that can explain how

abstract constraints could be learned together with (or before) the more specific

knowledge they are needed to constrain. However, this work offers an alternative,

by providing just such a learning mechanism in the form of hierarchical Bayesian

models. If an abstract generalization can be acquired very early and can function as

a constraint on later development of specific knowledge, it may function effectively

as if it were an innate domain-specific constraint, even if it is in fact not innate and

instead is acquired by domain-general induction from data.

Q: Are you making a general argument against innateness here?

No.
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Q: Can you expand on that answer?

As I mentioned in the first few pages of this thesis, the simplistic distinction between

nature and nurture is not a very constructive or interesting distinction from a scientific

point of view. Very few things in cognition are entirely due to one or the other; indeed,

feedback loops and non-linear interactions over the course of development make the

distinction almost meaningless. Even if that weren’t true, though, the interesting

question often turns on the question of domain specificity rather than innateness.

Chomsky’s argument from the Poverty of the Stimulus, considered in Chapter 3,

was used to argue for the presence of a particular kind of innate language-specific

knowledge about grammar; as we saw in Chapter 5, Baker’s Paradox was used by

Pinker to argue for the presence of particular innate language-specific semantic linking

rules and classes; and the debate in Chapter 4 critically turned on the question of

what language-specific assumptions children make about word labels.

Throughout this thesis, I formalized these debates in Bayesian terms, with the goal

of clarifying what innate knowledge must be assumed, and what form that knowledge

must take. In Chapter 3 I argued that the particular domains-specific knowledge that

has been argued to be innate – the knowledge that language has hierarchical phrase

structure – need not be: it might, in fact, be derived from more general-purpose rep-

resentational capacities and inductive biases. The learner I considered incorporates a

mechanism that trades off simplicity and goodness-of-fit when evaluating hypotheses,

performs inference over type rather than token data, and encodes sentences according

to their syntactic categories. The first two items are domain-general biases, and the

last is either learnable via domain-general mechanisms or is at least not the precise

language-specific assumption that was previously argued to be innate.

Chapter 5 was similar in many ways. There I argued, in contrast to Pinker (1989),

that innate semantic categories and linking assumptions are not necessary to solve

Baker’s Paradox. My model does make certain assumptions, most critically in the

preprocessing, since it “knows” automatically what syntactic forms correspond to

verb constructions (e.g., that NP1 V NP3 NP2 is a construction). This is domain-
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specific, but – as before – could plausibly have been learned, and in any case is not

the precise language-specific assumption previously argued to be necessary.

One finding in Chapter 4 is that making strong innate assumptions about the role

of words does not yield differences in the nature or extent of second-order generaliza-

tion. This does not necessarily mean that those strong innate assumptions might not

be present for other reasons. It is also possible that a less ideal learner might need to

make certain innate assumptions about words, even if they are not necessary for an

ideal learner.

In all of these cases, I’m not trying to make a claim that there is no innate

knowledge, nor even that there is no innate domain-specific knowledge; I’m simply

interested in using this paradigm to be able to specify precisely what happens when

we make different assumptions about what is built in (or not), or domain-specific (or

not).

Q: How do you identify what is domain-specific and what isn’t, and why

does this matter?

The reason it matters is that few if any cognitive scientists believe that there is liter-

ally nothing that is innate; many debates about innateness tend to boil down to the

question of whether the capacity in question is domain-general or not. For instance,

one way of framing the issue of the learnability of hierarchical phrase structure dis-

cussed in Chapter 3 is that it turns on the question of whether the innate knowledge

consists of (a) a domain-general learning mechanism (Bayesian inference) in combina-

tion with domain-general biases (to evaluate theories on the basis of type-based input)

and representational capacities (grammars), or (b) a language-specific constraint that

eliminates non-hierarchical grammars from consideration.

Any answer to this question will have two components: first, identifying which

abilities or propensities are necessary to explain acquisition; and second, identifying

whether those abilities or propensities are domain-general or not. The latter compo-

nent is more difficult than one might think: while some are obvious, others are not.

Is the bias to evaluate grammars on the basis of type-based input domain-general or
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domain-specific? I suggest here that it may be domain-general, since one can imag-

ine may domains where it would be valuable to assume a two-component generative

process analogous to that captured by the adaptor grammar framework, in which one

component captures the “deep knowledge”, and the other captures the more super-

ficial or performance-based factors that affect how that deep knowledge is used to

generate data. However, it is possible that this bias is domain-specific. Ultimately,

many of these questions are only resolvable empirically. In many ways the resolution

of the question of domain specificity is far less important than the identification of

the bias in the first place – what matters is that it exists (or not) – and I am mostly

concerned with the latter.

The Bayesian paradigm

Q: What’s the big deal about Bayesian learning?

It’s not that Bayesian learning is the be-all and end-all of cognitive science, but the

paradigm is uniquely well-suited to address questions of learnability. As discussed in

Chapter 2 and depicted schematically in Figure 6-1, it offers a unique way to study

how two fundamental questions in cognitive science interact. The question of whether

human learners have (innate) language-specific knowledge is logically separable from

the question of whether and to what extent human linguistic knowledge is based on

structured representations. In practice, however, these issues are often conflated.

Within cognitive science, recent computational models of how language might be

learned have usually assumed that domain-general learning operates on representa-

tions without explicit structure (e.g., Elman et al., 1996; Rumelhart & McClelland,

1986; Reali & Christiansen, 2005). The main proponents of innate domain-specific

factors, on the other hand, have typically assumed that the representations involved

are structured (e.g., Chomsky, 1965, 1980; Pinker, 1984). Few cognitive scientists

have explored the possibility that explicitly structured mental representations might

be learned via domain-general mechanisms. This framework offers a way to explore

this relatively uncharted territory in the context of language acquisition.
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Figure 6-1: A schematic representation of the theoretical landscape for language
acquisition in cognitive science. The vertical axis reflects the nature of the rep-
resentation. The horizontal axis reflects the source of inductive bias: “innate” and
“learned” are in parentheses because they are often conflated with “language-specific”
and “domain-general”, which I suggest is closer to the real issue. The two most promi-
nent views are represented by the two opposite shaded quadrants. I explore another
area, represented by the shaded oval. (The oval covers both sides of the horizontal
axis because this approach explores both: it is in principle possible that it could
yield results suggesting that the particular innate language-specific bias in question
is necessary).

In addition, Bayesian modelling offers a normative framework for rational infer-

ence. In virtue of how it integrates statistical learning with structured representations,

the Bayesian approach can apply to questions of learnability for many different aspects

of linguistic knowledge, not just the specific questions considered here. In addition to

domain-general inferential principles, the framework can incorporate domain-specific

information, either by specifying unique details of the representation, incorporating

biases into priors, or calculating likelihoods in some domain-specific way. Thus, it lets

us investigate the role of both domain-general and domain-specific factors in learning,

as well as the role of different kinds of representational structure.
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Q: How can a statistical learner perform inference as rapidly as these

models do, on the basis of relatively few examples? I thought statistical

learning was slow and gradual.

This is a common confusion. Statistical learners like associationist or connectionist

models, which operate through a process of incremental updating in response to data,

generally produce a pattern of learning that is more gradual or slow. But this pattern

is a result of the update rule, not the nature of statistical reasoning in general. As we

saw in Chapter 4, a Bayesian learner can actually make relatively strong inferences on

the basis of only a few datapoints. This is a byproduct of measuring likelihood with

respect to the size of the hypothesis space. Since each datapoint is presumed to be

independent, the likelihood of seeing n particular datapoints increases exponentially

by the size of the space. Statistical learning isn’t always slow.

Q: Doesn’t the Bayesian paradigm build the correct answer into the hy-

pothesis space? How can this be considered learning? Isn’t it actually a

pretty strong innate assumption?

I focus on this issue in some detail in Chapter 2, and I will not reiterate the entire

answer since it verges on territory that is kind of complicated and deep. The essential

point centers on the distinction between giving the model the answer and having the

answer be latent in the hypothesis space. As an example, imagine I asked you to

guess an integer. At this point you haven’t been given the answer in any meaningful

sense, even though you’ve been given the hypothesis space: the set of all integers.

In the sense that the answer is latent in the hypothesis space, you’ve been given it,

but I consider it uncontroversial that a learner should be able to represent and get to

the hypotheses it ultimately should believe. The interesting part of learning is how

the learner figures out which hypothesis is correct, out of the (potentially infinite)

hypotheses it could represent.

This just touches the surface of a more complicated and interesting discussion,

and for that I refer you to Chapter 2.

206



Q: You’re being very rah-rah about the Bayesian approach. Is there any-

thing it doesn’t do well?

As I mentioned earlier, I am certainly not arguing that the Bayesian framework should

supplant other methods in cognitive science. It is an essential tool in the toolbox,

but there are many other tools as well.

Trivially, one thing the Bayesian approach doesn’t do well is tell us what actual

humans do. For that, nothing can beat experimental and observational studies. I’ve

argued that yoking modelling efforts with experimental data can be especially useful,

but experimental and observational work is valuable, period.

As for other computational methods, different methods have different strengths

and weaknesses. I have argued that Bayesian models are particularly appropriate for

learnability issues, for all of the reasons discussed before. But if you’re interested

in, for instance, studying how different regions of the brain (like the hippocampus

and the neocortex) might play complementary roles in memory and learning, then

connectionist models might be more appropriate (e.g., McClelland, McNaughton, &

O’Reilly, 1995). They can also be useful for studying how semantic information can

be stored in a distributed manner. Dynamical systems models are appropriate for

studying feedback loops and non-linearities over development. Which sort of approach

you should use depends on what question you’re asking.

Conclusion

Q: You’ve talked about future directions for some of the specific topics in

their respective chapters. But what do you think are the most interesting

unexplored areas that lie ahead in a more general sense?

One very exciting topic, which I’ve mentioned before at some length (and so will not

belabor too much here) is the possibility of extending Bayesian models to capture

different ways of being non-ideal. Although I think there are still many, many ques-

tions that pure ideal learning analyses can tell us a lot about, I mention this direction
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because I think it is qualitatively different, and opens up a lot of future directions.

Another exciting direction is that with Bayesian models I think we can finally

start to address one of the deepest, most unresolved questions in all of cognitive

science: where we get our hypotheses and representations in the first place. I discuss

this question at length from a more theoretical perspective in Chapter 2, but I think

recent developments in nonparametric Bayesian models can help us address them

computationally as well. These models, called “infinite” because they assume that

the true underlying dimensionality is unbounded, can dynamically learn to create

additional features as learning progresses (e.g., Ghahramani, Griffiths, & Sollich,

2006). Can this sort of model be used to explain how people themselves infer which

features are important for categorization or reasoning? Might we even extend the

basic idea to explore how hypothesis spaces themselves can grow?

Q: What do you think are the biggest limitations of your analyses?

I knew you’d ask that. Here is a handy list:

Chapter 3: The computational problem of searching the space of context-free gram-

mars (and, to some extent, regular grammars) is so difficult that I was only able

to approximate a full search. I used many different methods for doing this ap-

proximation – creating linguistically motivated hand-designed grammars, per-

forming a local search using them as the starting point, and performing an

automatic search from scratch – but until we can develop a procedure that we

can be sure is adequately searching the entire space, my conclusions can only

be preliminary.

Chapter 4: It is extraordinarily difficult to know how to characterize the nature

of objects in categories in the world, and therefore how to map the datasets I

considered there onto the input children receive. I addressed this difficulty by

systematically varying the coherence of the features and the number of items

and categories in the datasets, but much remains to be done here. What if the

organization of features is entirely different? What about larger datasets? What
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if the choice to represent items as sets of features itself is completely off base? We

have to start from where we are – and most models and theories of categorization

have similar difficulties – but this is nevertheless a major shortcoming.

Chapter 5: The major problem here is similar to the problem in Chapter 4: the lim-

itations of the representation. Representing knowledge about verbs as counts of

occurrences in different syntactic constructions has one advantage, because it

demonstrates how many phenomena in verb learning can be captured by such

a simple model; but it is nevertheless quite limited. Many of the interesting

questions in the verb acquisition literature center on the nature of the semantic

representations, which this model can say very little on (although it is somewhat

interesting that, again, it can qualitatively replicate some phenomena even mak-

ing these sparse assumptions). Future work in this area will probably depend

on expanding its representational capacity in some way.

Q: What do you think are the most important take-home messages?

This work demonstrates that one of the learnability problems, the No Negative Evi-

dence problem, is solved by a Bayesian learner – or, indeed, by any learner that trades

off between simplicity and goodness-of-fit. In Chapter 2 I explained in abstract terms

why this occurs, and in the three subsequent chapters – particularly Chapter 5 – we

saw how this principle plays out in several different domains.

One common thread running through all of the chapters is that higher-level ab-

stract constraints may be learned at least as rapidly as lower-level specific information,

early enough to act to constrain generalization at the lower-level. This was especially

apparent in Chapters 3 and 4, and as I noted then, may in general imply that simply

noting the presence of an early higher-order constraint is not sufficient motivation to

assume that it is innate.

A related implication is that abstract knowledge or higher-order constraints may

be supported by an entire system of data, not just individual items. This may serve

as a cautionary warning of the perils of concluding that there is no evidence for some

higher-level inference, based on the observed lack of some individual type of data; it
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might be that system-wide statistics of the entire dataset would support the inference,

as we see occur in Chapter 3.

In general, this research offers a new perspective about what we can and can’t

conclude from standard learnability arguments, and provides a framework that allows

for an increasingly subtle, detailed, and rigorous analysis of claims about what must

or must not be innate (as well as what that even means). The framework allows

us to evaluate the bounds of “optimal” reasoning while also being able to vary with

precision how this might depend on the data, the nature of the learner’s mental

representation, and both domain-specific as well as domain-general biases (whether

due to the attentional, perceptual, memory-based, or learning mechanisms of the

child). I suggest that this approach provides an essential tool as we move toward

constructing a full and accurate picture of the human mind.
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Appendix: Model details

Model details from Chapter 3

Searching the space of grammars

There are two search problems, corresponding to the two ways of building or im-

proving upon our initial hand-designed grammars. The first is to perform a fully

automated search over the space of regular grammars, and was described in the main

text and in detail in Goldwater and Griffiths (2007). The second, described here, is

the problem of performing local search using the best hand-designed grammar as a

starting point.

Search was inspired by work by Stolcke and Omohundro (1994), in which a space

of grammars is searched via successive merging of productions; some sample merges

are shown in Table 1. Merge rules are different for context-free and regular grammars;

this prevents a search of regular grammars from resulting in a grammar with context-

free productions.

At each stage in the search, all grammars one merge step away from the previous

grammar are created. If the new grammar has a higher posterior probability than the

current grammar, it is retained, and search continues until no grammars with higher

posterior probability can be found within one merge step away.
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Table 1: Sample merges for context-free and regular grammars. Identical merges for
right-hand side items were also considered.

CFG merge example REG merge example
Old New Old New

A → B C A → B F A → b C A → b F
A → B D F → C A → b D F → d
A → B E F → D A → b E F → g E

F → E C → g E F → e D
D → d

E → e D

Prior probabilities

Non-terminals, productions, and items

The probabilities of the number of non-terminals p(n), productions p(P ), and items

p(Ni) are modelled as selections from a geometric distribution. One can motivate this

distribution by imagining that non-terminals are generated by a simple automaton

with two states (on or off). Beginning in the “on” state, the automaton generates a

series of non-terminals; for each non-terminal generated, there is some probability p

that the automaton will move to the “off” state and stop generating non-terminals.

This process creates a distribution over non-terminals described by Equation 1 and

illustrated in Figure -2.

p(1− p)n−1. (1)

No matter the value of the parameter p, this distribution favors smaller sets: larger

values – i.e., those corresponding to more productions, non-terminals, or items – are

less probable. All reported results use p=0.5, but the qualitative outcome is identical

for a wide variety of values.

Production-probability parameters

Because each θk corresponds to the production-probability parameters for non-terminal

k, the individual parameters θ1,...,θm in each vector θk should sum to one. As is stan-
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Figure -2: A geometric distribution, with three possible values of p.

Figure -3: The unit simplex for mk = 3 (a triangle), corresponding to the Dirichlet
distribution with α = 1 on a θk vector of production-probability parameters with
three productions.

dard in such cases, we sample each θk from the Dirichlet distribution. Intuitively, this

distribution returns the probability that the mk production-probability parameters

for non-terminal k are θ1,...,θm, given that each production has been used α−1 times.

We set α = 1, which is equivalent to having never observed any sentences and not

assuming a priori that any one sentence or derivation is more likely than another.

This therefore puts a uniform distribution on production-probability parameters and

captures the assumption that any set of parameters is as likely as any other set. In

general, drawing samples from a Dirichlet distribution with α = 1 is equivalent to

drawing samples uniformly at random from the mk − 1 unit simplex; the simplex

(distribution) for mk = 3 is shown in Figure -3.

The Dirichlet distribution is continuous, which means that the probability of any
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Figure -4: Top: one cannot compare the probability of continuous points A and C
with different dimensionality. Bottom: when A and C correspond to discrete points,
comparison is possible.

specific θk is zero; this may seem paradoxical, but no more so than the fact that a line

of length one inch contains an infinite number of zero-length points. Even though the

distribution is continuous, one can still compare the relative probability of choosing

the points from the line. For instance, consider the line in the upper part of Figure

-4. If the probability of choosing any particular point is normally distributed about

the center of the line, point A is more likely than point B. In much the same way,

it is possible to calculate the relative probability of specific θ1,...,θm, even though the

Dirichlet distribution is continuous.

However, one cannot validly compare the relative probability of choosing points

from sets with different dimensions, as in A and C in Figure -4. Because they are

continuous, the probability of each is zero, but – unlike the previous instance – they

are not normalized by the same factor. In an analogous way, it is also invalid to

compare the probability of two specific θk of different dimensionalities.

This poses a difficulty for our analysis, because our grammars have different num-

bers of productions with the same left-hand sides, and therefore the θk are defined

over different dimensionalities. We resolve this difficulty by using a discrete approx-

imation of the continuous Dirichlet distribution. This is conceptually equivalent to

comparing the probability of selecting point A and point C by dividing each dimen-

sion into g discrete segments. If we split each dimension into g = 2 equally-sized

discrete segments or grids, as in the lower half of Figure -4, it becomes clear that the

grid corresponding to point A contains half of the mass of the line, while the grid
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corresponding to C contains approximately one quarter the mass of the square. Thus,

the probability of drawing C is 25%, while A is 50%. As g approaches infinity, the

relative probabilities approach the true (continuous) value.

Since drawing samples θ1,...,θm from a Dirichlet distribution is equivalent to draw-

ing samples from the mk − 1 unit simplex, we calculate their probability by dividing

the simplex into identically-sized pieces. Any m − 1 simplex can be subdivided into

gm−1 simplices of the same volume, where g is the number of subdivisions (grids)

along each dimension (Edelsbrunner & Grayson, 2000). If α = 1, all grids are a

priori equally probable; thus, p(θk) is given by the volume of one grid divided by the

volume of the entire simplex, that is, 1
gm−1 . Production-probability parameters are

then set to the center-of-mass point of the corresponding grid.

As in the main analysis, there is a simplicity/goodness-of-fit tradeoff with size of

grid g. If g = 1, then vectors with many production-probability parameters have high

prior probability (each is 1.0). However, they fit the data poorly: the parameters are

automatically set to the center-of-mass point of the entire simplex, which corresponds

to the case in which each production is equally likely. As g increases, the likelihood

approaches the maximum likelihood value, but the prior probability goes down. This

tradeoff is captured by scoring g like we do other choices. We assign a possible

distribution of grid sizes over g by assuming that ln(g) is distributed geometrically

with parameter p = 0.5. Thus, smaller g has higher prior probability, and we can

select the grid size that best maximizes the tradeoff between simplicity and goodness-

of-fit. We evaluated each grammar with g = 1, 10, 100, 1000, and 10000. The

results reported use g = 1000 because that is the value that maximizes the posterior

probability for all grammars; the hierarchical grammar type was preferred for all

values of g.

Additional complexities involved in scoring prior probability

Depending on the type of the grammar, some specific probabilities vary. The flat

grammar has no non-terminals (aside from S) and thus its p(n) is always equal to 1.0.

Both the regular and context-free grammars, written in Chomsky Normal Form to
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conform to standard linguistic usage, are constrained to either have one or two items

on the right hand side. The regular grammars have further type-specific restrictions

on what kind of item (terminal or non-terminal) may appear where, which effectively

increase their prior probability relative to context-free grammars. These restrictions

affect p(Ni) as well as the effective vocabulary size V for specific items. For example,

the first item on the right-hand side of productions in a regular grammar is constrained

to be a terminal item; the effective V at that location is therefore smaller. A context-

free grammar has no such restrictions.

Model details from Chapter 4

Model L2: Learns overhypotheses at Level 2

Model L2, also specified in Kemp et al. (2007), is known to statisticians as a Dirichlet-

Multinomial model (A. Gelman et al., 2004), and can be written as:

α ∼ Exponential(λ)

β ∼ Dirichlet(µ)

θi ∼ Dirichlet(αβ)

yi |ni ∼ Multinomial(θi)

where ni is the number of observations for category i. Because the model is

learning only Level 2 knowledge, I specify the Level 3 knowledge by setting parameters

λ = 1 and µ = 1, which indicates weak prior knowledge over both α and β.

This notation is ambiguous about whether categories may have multiple features

or not. If there are multiple features, inference proceeds exactly as before except that

each α and β is learned separately for each feature. The posterior probability for

the full model is therefore the product of the probabilities along each feature, which

corresponds to the assumption that each feature is independently generated. When

working with multiple features, I will use α to refer to the collection of α values along
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all features, and β for the set of all β counts along all features.

Inference is performed by computing posterior distributions over the unknown

knowledge at the higher levels. For instance, the posterior distribution P (α, β|y)

represents a belief given the data y (the categories seen so far). I formally instantiate

this model by denoting the true distribution over features of category i as θi; thus,

if (as in Figure 4-1) the true distribution of features means the category occurs 30%

of the time with a round shape and 70% of the time with a square shape, then θi

= [0.3 0.7]. If we have observed that one item in the category is round and four are

square, then yi = [1 4]. I assume that yi is drawn from a multinomial distribution

with parameter θi, which means that the observations of the category are drawn

independently at random from the true distribution of category i. The vectors θi are

drawn from a Dirichlet distribution parameterized by a scalar α and a vector β: α

determines the extent to which each category tends to be associated with only one

feature, and β represents the distribution of features across all categories.

To fit the model to data I assume that counts y are observed for one or more

categories. The goal is to compute the posterior distribution P (α, β, {θi}|y). In-

ferences about α and β can be made by drawing a sample from P (α, β|y) – the

posterior distribution on (α, β) given the observed categories. Inferences about θi,

the distribution of features for category i, can be made by integrating out α and β:

P (θi|y) =

∫

α,β

p(θi|α, β,y)p(α, β|y)dαdβ (2)

For most of the analyses in this thesis (in both Chapters 4 and 5), this is estimated

using numerical integration via a Markov Chain Monte Carlo (MCMC) scheme. The

sampler uses Gaussian proposals on log(α), and proposals for β are drawn from a

Dirichlet distribution with the current β as its mean. Four different runs are averaged

to produce the graphs.

In order to speed up the runs in Study 2 and Extensions B and C of Study 1 in

Chapter 4, P (θi|y) there is estimated using a form of non-stochastic numerical inte-

gration in which the space of parameter values is discretized and evaluated directly.

Because the datasets themselves, being simulated, are more variable than in other
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sections, these graphs reflect the averages of 24 different runs rather than four.

Model extension: Learning category assignments

To add the ability to discover categories to Model L2, instead of assuming that the

model is given data corresponding to counts of occurrences of categories y, I assume

that the model is given data corresponding to individual items j, from which it must

infer the proper assignment of categories y. As before, the true distribution over

features of category i is denoted as θi, and the data corresponding to category i is yi.

The difference now is that the model is only given data corresponding to individual

items in the world, j, and it must decide which items belong in each category yi.

I assume that each category yi corresponds to a partition of items, and represent

this partition by a vector z. The partition of the twelve items in Figure 4-1, where

the first four items are cups, the next five are balls, and the last three are cats, would

be represented by the vector [1 1 1 1 2 2 2 2 2 3 3 3]. The prior distribution on z is

induced by the Chinese Restaurant Process:

P (zj = c|z1, . . . , zj−1) =





ni

j−1+γ
ni > 0

γ
j−1+γ

i is a new category
(3)

where zj is the category assignment for item j, ni is the number of items previously

assigned to category i, and γ is a hyperparameter which captures the degree to which

the process favors simpler category assignments (I set γ = 1). The Chinese Restaurant

Process prefers to assign items to categories that already have many members, and

therefore tends to prefer partitions with fewer categories.

If z is known, this model reduces to several independent versions of Model L2,

and predictions can be computed using the techniques described in the last section.

Since z is unknown, we integrate over each of the possible category partitions z:

P (θi|y) =
∑

z

P (θi|y,z)P (z|y) (4)

where P (z|y) ∝ P (y|z)P (z) and P (z) is the prior induced by the CRP pro-
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cess. For Model L2, computing P (y|z) reduces to the problem of computing several

marginal likelihoods

P (y′) =

∫

α,β

P (y′|α, β)P (α, β)dαdβ (5)

which is estimated by drawing 10,000 samples from the prior P (α, β).

Model details from Chapter 5

This chapter considered two models. Model L2 is the model introduced in Chapter

4 and specified in Kemp et al. (2007) and earlier in this appendix. L3 performs

inference over another level of overhypotheses, learning not only overhypotheses α

and β, but also overhypotheses on em those overhypotheses, denoted by parameters

λ and µ, respectively.

Model L3: Learns overhypotheses at Level 2 and 3

The Level 3 model is quite similar to the Level 2 model, except that instead of

assuming that λ and µ are known, we learn those as well. In statistical notation, it

can be written2:

λ ∼ Exponential(1)

µ ∼ Exponential(1)

α ∼ Exponential(λ)

β ∼ Dirichlet(µ)

θi ∼ Dirichlet(αβ)

yi |ni ∼ Multinomial(θi)

where ni is the number of observations for verb i.

2Note that µ is a scalar, but in order for it to be a proper hyperparameter for the vector β, it is
vectorized: µ = µ1.
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As before, inference is performed by computing posterior distributions over the

unknown knowledge at the higher levels. The only difference is that the posterior

distribution is given by P (λ, µ, α, β, {θi}|y). Inferences about λ,µ,α, and β can be

made by drawing a sample from P (α, β, λ, µ|y), which is given by:

P (α, β, λ, µ|y) ∝ P (y|α, β)P (α|λ)P (β|µ)P (λ)P (µ) (6)

Inferences about θi, which in this case correspond to the distribution of construc-

tions for verb i, can be made by integrating out α, β, λ, and µ:

P (θi|y) =

∫

α,β,λ,µ

P (θi|α, β,y)P (α, β, λ, µ|y)dαdβdλdµ (7)

This is estimated using numerical integration via a Markov Chain Monte Carlo

(MCMC) scheme. The sampler uses Gaussian proposals on log(α), log(λ), and log(µ);

as before, proposals for β are drawn from a Dirichlet distribution with the current β

as its mean. Four different runs are averaged to produce the graphs, except in the

case of Study 3 where, since the results were more variable, eight runs are included.

Model extension: Learning verb classes

The procedure for discovering verb classes is somewhat analogous to the procedure

for learning item categories, introduced in Chapter 4 and explained elsewhere in

this appendix. The difference is that learning item categories involves clustering on

the level of specific items (Level 1), whereas learning verb classes (or, equivalently,

ontological kinds) involves clustering on a more abstract level, Level 2. To add the

ability to discover verb classes to both Models L2 and L3, I assume that verbs may

be grouped into classes, each of which is associated with its own hyperparameters.3

For Model L2, this means that there is a separate αc and βc for each class c inferred

by the model; for Model L3, there is a separate αc, βc, λc, and µc for each class c.

In both cases, the model partitions the verbs into one or more classes. Each possible

3This extension for Model L2 is presented in Kemp et al. (2007); though it is referred to learning
ontological kinds rather than learning verb classes, the model itself is equivalent. Here I extend the
same idea to Model L3.
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partition can be represented by a vector z. A partition of six verbs in which the first

three verbs are in one class and the last three were in another can be represented

by the vector [1 1 1 2 2 2]. The prior distribution on z is induced by the Chinese

Restaurant Process:

P (zi = c|z1, . . . , zi−1) =





nc

i−1+γ
nc > 0

γ
i−1+γ

c is a new class
(8)

where zi is the class assignment for verb i, nc is the number of verbs previously

assigned to class c, and γ is a hyperparameter which captures the degree to which

the process favors simpler class assignments (I set γ = 1). The Chinese Restaurant

Process prefers to assign verbs to classes that already have many members, and

therefore tends to prefer partitions with fewer classes.

The extension for Model L3 can now be written as follows:

z ∼ CRP(γ)

λc ∼ Exponential(1)

µc ∼ Exponential(1)

αc ∼ Exponential(λc)

βc ∼ Dirichlet(µc)

θi ∼ Dirichlet(αciβci)

yi |ni ∼ Multinomial(θi)

The equivalent extension for Model L2 is trivially derivable from this.

If z is known, the extended model reduces to several independent versions of

the basic (L2 or L3) model, and predictions can be computed using the techniques

described in the last section. Since z is unknown, we must integrate over each of the

possible class partitions z:

P (θi|y) =
∑

z

P (θi|y,z)P (z|y) (9)
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where P (z|y) ∝ P (y|z)P (z) and P (z) is the prior induced by the CRP pro-

cess. For Model L2, computing P (y|z) reduces to the problem of computing several

marginal likelihoods

P (y′) =

∫

α,β

P (y′|α, β)P (α, β)dαdβ (10)

which I estimate by drawing 10,000 samples from the prior P (α, β).

For model L3, computing P (y|z) reduces to computing

P (y′) =

∫

α,β,λ,µ

P (y′|α, β)P (α, β|λ, µ)P (λ, µ)dαdβdλdµ (11)

which is also estimated by drawing 10,000 samples, this time from the joint prior

P (α, β|λ, µ)P (λ, µ).

Corpus of dative verbs

The data of verb counts is collected from the sentences spoken by adults in the Adam

corpus (Brown, 1973) of the CHILDES database (MacWhinney, 2000), and consists

of all instances of each of the dative verbs listed in Levin (1993), including the number

of occurrences in each construction (PD and DOD). Epochs correspond to the counts

for verbs in subsections of the corpus of 55 files, split by age (Epoch 1 is the first 11

files, Epoch 2 is the first 22, and so on).
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Table 2: Number of times each verb appears in each construction (Adam corpus).

Epoch 0 Epoch 1 Epoch 2 Epoch 3 Epoch 4 Full corpus
Verb DOD PD DOD PD DOD PD DOD PD DOD PD DOD PD
take 0 5 0 9 0 11 0 16 0 16
say 0 3 0 4 0 6 0 6 0 6

explain 0 1 0 1 0 1 0 1
send 0 1 0 1 0 2
sell 0 1 0 1 0 1
mail 0 1 0 1 0 1
throw 1 0 1 2 1 2 1 2 1 2
read 1 1 2 5 2 11 3 12 3 13 3 16
give 2 1 15 18 39 27 62 31 82 33 106 44
show 2 1 10 5 23 9 27 11 31 15 36 17
bring 2 1 4 3 6 3 9 4 11 5
tell 1 1 8 1 14 1 17 1 22 1
call 3 0 9 0 24 0 32 0 46 0
sing 1 0 1 0 1 0 1 0
pay 2 0 2 0
serve 2 0 2 0 2 0
find 2 0
ask 2 0 3 0 3 0 4 0

make 1 0 5 0 6 0 11 0
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