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Abstract. This paper deals with both size and shape of plastic zone in the 

vicinity of the crack edges. Determination of plastic zone is proposed using 

the three-dimensional finite element analysis. Both, linear elastic and 

elastic-plastic material models are considered in this paper. Subsequently, 

results of these approaches are compared and their applicability is 

evaluated. Geometry considered is a beam with L-shaped cross section 

containing a crack, as it is described below. Mentioned beam is subjected 

to mixed mode loading condition, that is represented by variable forces in 

the direction of global coordinate system. Evolution of plastic zones is 

observed and evaluated around the crack edges of the profile. 

1 Introduction  

At the production stage of structural elements, various material errors and cracks arise, that 

is natural part of this process. Main goal of fracture mechanics is to understand the 

components behavior with these disturbances to ensure their safety and usability. Therefore, 

it is very important to describe the behavior of structures in real conditions with the 

presence of various defects or cracks in materials.  
Considering the linear elastic material, the stress analysis in the vicinity of the crack tip, 

leads to a stress singularity at 𝑟 → 0 where the stress tensor components 𝜎ij → ∞. Materials, 

that exhibit plastic deformation exceed the yield point at the stress concentration area 

resulting in local plastic deformation. In the plastic zone around the crack tip, the stress will 

be largest, but its amplitude will be limited by the material stress-strain curve. For this 

reason, it is also necessary to consider the plastic deformations, when evaluating crack 

stability. 

This article will gradually describe the basic principles in the determination of the 

plastic zones around the crack tip. The problem is solved as a three-dimensional task using 

the finite element method. We considered mixed mode loading of crack and the obtained 

results are consequently evaluated. 
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2 Boundary condition of solved problem 

Considered geometry, shown in Fig. 1., is a beam with L-shaped cross section containing a 

corner crack. Main dimensions are the length of profile L=200 mm, profile web height and 

width w=20 mm, thickness of webs b=1.5mm and considered crack length a=5 mm.   

 

The profile is at one side attached by pair of bolts, that have fixed support from external 

side. Other side is loaded with force in several variants of action. Forces in directions of 

global coordinates y, z is considered in five scenarios with respect to ratio to the constant 

force acting in the direction of longitudinal axis x.  

3 Defining the concepts of fracture mechanics 

Using the linear elastic fracture mechanics (LEFM) principles, the solution of stress field in 

the vicinity of the crack tip can be described using one single parameter, the stress intensity 

factor (SIF). There are three different SIFs due to the loading condition of crack, i.e. 

loading modes, shown in Fig. 2. 

 
 (a) (b) (c)  

Each of this loading modes contain a singular component represented by r 
-0.5

. Using 

known SIFs, the stresses in the vicinity of crack edge can by calculated using polar 

coordinates r and θ, shown in Fig.3. 

 

Fig. 1. Geometry of cracked body and global coordinate system. 

Fig. 2. The three basic loading modes of crack (a) Mode I (b) Mode II (c) Mode III. 
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In case when more than one loading mode occurred, the final solution of stress fields 

can be described using the principles of superposition. For further information see the 

handbooks dealing with fracture mechanics problems, e.g. [1], [2], [3]. 

Considering materials capable of plastic deformation, the plasticity can occur around the 

crack edge. As a result, the stresses are bounded by the stress-strain curve of the material 

and the singularity problem disappears. 

First approximation of the size and shape of plastic zone can be obtained from von 

Misses yield criterion. The equivalent stresses (defined by von Mises) can be obtained by 

individual components of stress tensor. Based on this criterion, plastic zone shall occur in 

the location, where the equivalent stress exceeds the yield point.  Boundaries of yield stress 

obtained by von Mises criteria for plane strain condition are shown in Fig.4, where rys is a 

polar coordinate of yield area boundary and σys is a yield stress. Note that KI value is set to 

be constant and KII and KIII are variables. 

 

This approach provides an approximate estimate of the size and shape of the plastic 

zone around the crack tip. To obtain real size and shape of plastic zone for nonlinear 

materials, it is necessary to use experimental or numerical analysis. 

 

Fig. 3. The stress tensors and local coordinate system of the crack. 

Fig. 4. Isolines of plastic area boundaries for mixed mode of loading, where KI value is constant and

 KII, KIII are variables. 
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4 Numerical analysis 

Numerical analysis was conducted by the Ansys software, using the finite element method. 

The analysis itself was divided in several steps. At first SIFs was calculated for various 

loading condition. Subsequently, corresponding yielded volumes, based on the principle of 

the von Mises criterion were determined. Finally, the analysis considering the elastic-plastic 

material was completed. 

4.1 Determination of SIF 

First step of numerical analysis was the determination of SIFs for each scenario of 

considered problem. Individual SIFs was calculated using the node displacement 

extrapolation method as mentioned in [4,5]. 

Using this method, it was possible to calculate SIF directly from displacements on the 

so-called singular elements around the crack edge. This type of element was first presented 

in [6]. In our case the singular element was achieved by degenerating the Solid 186 to the 

shape of prism and mid nodes were shifted to a quarter of element length.  

4.2 Analysis of elastic-plastic material 

Based on the calculation of plastic zone size for linear elastic material, the finite element 

mesh was refined in the area of predicted plastic deformation. Outside of this zone, there 

was a transition area of mesh to elements with larger dimensions. The used mesh was 

primarily hexahedral, except the location in the vicinity of the crack edge, as mentioned 

above. Material with strain-hardening rate n=50, that characterizing low strain-hardening, 

was considered according to [7]. 

5 Results and discussion 

Results showed bellow were verified with previous study of plastic zones on the single 

edge notch bending specimen. The aim of the study was to estimate the plastic zone in the 

condition of plane stress, plane strain, and considering the three-dimensional problem. 

These results were compared with [1], [8-10].  

Results of so called “preparation analysis” can be summarized into evaluation of plastic 

volume for pure mode I loading condition as showed in Fig. 5.  

 
(a) (b) 

Fig. 5. Yielded volume for pure mode I loading obtained by numerical analysis for (a) linear elastic

 material (b) material with strain-hardening rate n=50. 

4

MATEC Web of Conferences 310, 00028 (2020) https://doi.org/10.1051/matecconf/202031000028
SPACE 2019



Theoretical yielded volume when considering only linear elastic material was 

approximately three times larger, than in the case when considering material is capable to 

plastic deformation (in Fig. 5). 

5.1 Linear-elastic fracture mechanics approach 

As stated above, SIFs in this article are determined using the node displacement 

extrapolation method. This method is very effective tool for determining SIFs. The main 

advantage of this method instead the interaction integral method is saving the 

computational time. SIFs are computed directly from displacements of nodes placed on the 

singular elements mentioned above.  Results of individual SIFs are shown in Fig. 6. These 

results are dimensionless as achieved by dividing actual SIF with K∞ = σ(πa)0.5, where σ is 

applied force in the x direction divided by cross sectional area of profile.  

 

 Crack edge on the top web of profile Crack edge on the bottom web of profile 
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Fig. 6. Through thickness variation of SIFs, where negative value of b means external side of profile

 (the sequel is on the next page). 
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Fig.6. Through thickness variation of SIFs, where negative value of b means external side of profile. 

The force in longitudinal axis x is still a present constant and forces in direction y, z are 

variables. Individual marking numbers in Fig. 6 represents: 1st Fy=0 Fz=0; 2nd Fy= Fx·30-1 

Fz=0; 3rd Fy= Fx·30-1 Fz= -Fx·30-1; 4th Fy= Fx·15-1 Fz= -Fx·15-1; 5th Fy= Fx·10-1 Fz= -Fx·10-1. 

The theoretical yielded volumes with respect to Fig. 6 are shown in Fig. 7. where ratios 

of actual yielded volume to yielded volume occurred when applying only axial force are 

graphically evaluated. 

 

Using theoretical means, that these volumes are obtained only from linear elastic model. 

It can be seen, that maximum theoretical value of yielded volume ratio occurred at scenario 

2, see Fig.7. At the same time this scenario reached maximum values of KI, that was much 

higher value, than the other two SIFs, see Fig. 6. For this reason, force in the z direction is 

applied to cause the closure effect of crack so that each loading modes are comparable. 

5.2 Elastic-plastic analysis 

In this chapter results for the fifth scenario of loading crack are evaluated. Forces in the 

perpendicular direction are considered as 10% of the axial force. In Fig. 6 the chart of SIFs 

for this type of loading condition is depicted with two dotted and one dashed line. 

Results of plastic zone shape for the crack edge located on the bottom web of the profile 

are shown in Fig.8. Depicted coordinate system in Fig.8 is a local coordinate system of the 

crack, showed in Fig.3.  

b (mm) b (mm) 

Fig. 7. Theoretical values of yielded volumes ratio. 
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(a) (b) 

 

 

Results for crack edge located on the top web of the profile are graphically evaluated in 

Fig. 9, where the three-dimensional shape of plastic zone is shown. Coordinate system 

shown od Fig. 9 is a local coordinate system of crack. 

 
(a) (b) 

Fig.9. Plastic zone shape around the crack edge located on the top web of profile for (a) LEFM 

approach (b) elastic-plastic analysis. 

6 Conclusion 

In this paper the determination of plastic zones around the crack edges was carried out. It 

was pointed out, that for different loading conditions, the yielded volume changed its shape 

and size. Each loading conditions were represented by ratio of variable forces in global 

coordinate system y, z to axial force, that was acting in the longitudinal direction of profile. 

On the given geometry, only relatively small forces perpendicular to longitudinal axis of 

profile to initiated mixed mode loading effects were needed. This mixed mode loading 

conditions affected the plastic zone size and generally affected the stability of crack itself.  

x x 

y y 

Fig. 8. Plastic zone shape for bottom edge of crack in three through body thickness position for (a)

 LEFM approach (b) elastic-plastic analysis. 
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Due to this fact, it is needed to consider every possible loading cases of a body 

including a crack. Presented results needs to be experimentally verified.  

 
This article was written thanks to the grant program SK-VEGA 1/0412/18 and SK-KEGA  025 STU-

4/2019.   
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