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Abstract
Side effects are both the essence and bane of imperative pro-
gramming. The programmer must carefully coordinate ac-
tions to manage their side effects upon each other. Such co-
ordination is complex, error-prone, and fragile. Coherent re-
action is a new model of change-driven computation that co-
ordinates effects automatically. State changes trigger events
called reactions that in turn change other states. A coherent
execution order is one in which each reaction executes be-
fore any others that are affected by its changes. A coherent
order is discovered iteratively by detecting incoherencies as
they occur and backtracking their effects. Unlike alternative
solutions, much of the power of imperative programming is
retained, as is the common sense notion of mutable state.
Automatically coordinating actions lets the programmer ex-
press what to do, not when to do it.

Coherent reactions are embodied in the Coherence lan-
guage, which is specialized for interactive applications like
those common on the desktop and web. The fundamental
building block of Coherence is the dynamically typed muta-
ble tree. The fundamental abstraction mechanism is the vir-
tual tree, whose value is lazily computed, and whose behav-
ior is generated by coherent reactions.

Categories and Subject Descriptors D.1.1 [Programming
Techniques]: Applicative (Functional) Programming; D.1.3
[Programming Techniques]: Concurrent Programming; F.1.2
[Computation by Abstract Devices]: Modes of Computation—
Interactive and reactive computation

General Terms Languages

Keywords interactive systems, reactive systems, synchronous
reactive programming, functional reactive programming,
bidirectional functions, trees
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1. Introduction
I see no reasonable solution that would allow a paper
presenting a radically new way of working to be ac-
cepted, unless that way of working were proven better,
at least in a small domain. – Mark Wegman, What it’s
like to be a POPL referee [48]

This paper presents a new kind of programming language
and illustrates its benefits in the domain of interactive appli-
cations (such as word processors or commercial web sites).
The fundamental problem being addressed is that of side
effects, specifically the difficulties of coordinating side ef-
fects.

Coordinating side effects is the crux of imperative pro-
gramming, the style of all mainstream languages. Imperative
programming gives the power to change anything anytime,
but also imposes the responsibility to deal with the conse-
quences. It is the programmer’s responsibility to order all
actions so that their side effects upon each other are correct.
Yet it is not always clear exactly how actions affect each
other, nor how those interdependencies might change in the
future.

Coordinating side effects is a major problem for inter-
active applications, for two reasons. Firstly, interaction is a
side effect. The whole purpose of user input is to change
the persistent state of the application. The issue can not be
side-stepped. Secondly, the size and complexity of modern
applications demands a modular architecture, such as Model
View Controller (MVC) [44] and its descendants. But coor-
dination of side effects inherently cross-cuts modules, lead-
ing to much complexity and fragility.

A common example is that of a model constraint that
ensures multiple fields have compatible values. If a view
event, say submitting a form, changes two of those fields,
it is necessary that they both change before the constraint
is checked. Otherwise the constraint might falsely report
an error. There are many common workarounds for this
problem, none of them entirely satisfactory.

In the MVC architecture it falls to the controller to coor-
dinate change. One approach to the example problem is to
defer checking the constraint until after all relevant changes
have been made. This erodes modularity, for now the model
must publish all its constraints and specify what fields they
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depend upon, limiting the freedom to changes such internals.
Even still it may not be obvious to the Controller what im-
plicitly called methods may changes those fields, so it can
not be sure when to call the check. It could defer all checks
till the very end. But that presumes that the code is itself
never called by other code, again eroding modularity. The
difficulty of modularizing MVC controllers has been dis-
cussed by others. [9, 27, 36]

Another approach, no more satisfactory, is to have the
model publish special methods that bundle the changes to
all constraint-related fields into a single call. Once again
this defeats modularity, for the model is exposing its internal
semantics, limiting the freedom to change them. Worse, the
controller is given the impossible task of accumulating all
changes to the relevant fields, made anywhere in the code it
calls, so that it can change them atomically.

Modern application frameworks employ an event-driven
publish/subscribe model to respond to input more modlarly.
Event handlers can subscribe to be called back whenever an
event is published. The subscribers and publishers need not
know of each other’s existence. This approach eliminates
many hard-wired interdependencies that obstruct modular-
ity, but does not solve the example problem. The constraint
can not subscribe to changes on the involved fields, for it
will be triggered as soon as the first one changes. One re-
sponse is to queue up the constraint checks to be executed
in a separate phase following all the model change events.
The popular web framework JavaServer Faces [10] defines
ten different phases.

Phasing is an ad hoc solution that works only for pre-
conceived classes of coordination problems. Unfortunately
event-driven programming can create more coordination
problems than it solves. The precise order of interrelated
event firings is often undocumented, and so context-dependent
that it can defy documentation.1 You don’t know when you
will be called back by your subscriptions, what callbacks
have already been called, what callbacks will be subse-
quently called, and what callbacks will be triggered implic-
itly within your callback. Coordinating changes to commu-
nal state amidst this chaos can be baffling, and is far from
modular. The colloquial description is Callback Hell.

An analysis [32] of Adobe’s desktop applications indi-
cated that event handling logic comprised a third of the code
and contained half of the reported bugs.

The difficulties of event coordination are just one of the
more painful symptoms of the disease of unconstrained
global side effects. It has long been observed that global
side effects destroy both referential transparency [30] and
behavioral composition [26]. Unfortunately, attempts to ban-
ish side effects from programming languages have required

1 For example, when the mouse moves from one control to another, does the
mouseLeave event fire on the first before the mouseEnter event fires on the
second? Does your GUI framework document that this order is guaranteed?
The order is seemingly random in one popular framework.

significant compromises, as discussed in the Related Work
section.

The primary contribution of this paper is coherent re-
action, a new model of change-driven computation that con-
strains and coordinates side effects automatically. The key
idea is to find an ordering of all events (called reactions)
that is coherent, meaning that each reaction is executed be-
fore all others that it has any side effects upon. Coherent
ordering is undecidable in general. It can be found with a
dynamic search that detects incoherencies (side effects on
previously executed reactions) as they occur. All the effects
of a prematurely executed reaction are rolled back, as in a
database transaction, and it is reexecuted later. From the pro-
grammer’s point of view, coordination becomes automatic.
The programmer can concentrate on saying what to do, not
when to do it. Coherent reaction is discussed in more detail
in the next section.

The secondary contribution of this paper is the Coher-
ence language, which employs coherent reactions to build
interactive applications. The fundamental building block of
the language is the dynamically typed mutable tree. The key
idea is that abstraction is provided by virtual trees, whose
values are lazily computed, and whose behaviors are gener-
ated by coherent reactions. The Coherence language is dis-
cussed in section 3.

2. Coherent Reaction
This section explains coherent reaction in the simple setting
of a Read Eval Print Loop (REPL). Programmer input is
prefixed with a >, the printed value of inputs with a =, and
program output with a <. Printed values will be omitted
when they do not further the discussion.

1 > task1: {
2 name: ”task1”,
3 start: 1,
4 length: 2,
5 end = Sum(start, length)}
6 = {name: ”task1”, start: 1, length: 2, end: 3}
7 > task1.start := 2
8 > task1
9 = {name: ”task1”, start: 2, length: 2, end: 4}

Lines 1–5 define the variable task1 to be a structure contain-
ing the fields within the curly braces. This structure is meant
to represent a task in some planning application, and has a
starting time and length defined in the fields start and length.
For simplicity these fields are given plain numeric values
rather a special time datatype. Variables and fields are dy-
namically typed.

The field end is defined on line 5 as the total of the start and
length fields using the Sum function. (Functions are capital-
ized by convention. Traditional infix mathematical notation
can be supported, but will not be used in this paper.) The end

field is said to be derived, indicated by defining it with an
equals sign instead of a colon, followed by an expression to
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name: "task1"

start: 2

length: 2

end = 4 Sum

name: "task2"

start = 4

length: 2

end = 6 Sum

task1:

task2:

Figure 1. Arrows denote derivation, faded elements are in-
herited.

calculate the value. The value of task1 is printed on 6, with
end correctly computed.

The derivation expression of end is recalculated every
time the field is accessed (although the implementation may
cache the last calculated value and reuse it if still valid). The
persistence of derivation is demonstrated on line 7, where
an assignment statement changes the value of the start field.
(Assignment statements use the := symbol instead of a colon
or equals sign.) The effect of the assignment is shown by
referencing task1 on line 8, whose value is output on line 9,
where the derived value of end has been recomputed.

Derivation is a fundamental concept in Coherence. A
derivation is computed lazily upon need, and as will be
seen is guaranteed to have no side-effects, so it is like a
well-behaved getter method in OO languages. A derivation
expression is also like a formula in a spreadsheet cell: it is
attached to the field and continually links the field’s value
to that of other fields. The following example shows more
ways that derivation is used.

10 > task2: task1(name: ”task2”, start = task1.end)
11 = {name: ”task2”, start: 4, length: 2, end: 6}

Line 10 derives the variable task2 as an instance of task1,
meaning that it is a copy with some differences. The dif-
ferences are specified inside the parentheses: a new name is
assigned, and the start field is derived from the end field of
task1. Figure 1 diagrams this example. The length field was
not overridden, and is inherited from the prototype, as shown
by its value output on line 11. Any subsequent changes to
task1.length will be reflected in task2.length. However since
task2.name has been overridden, changes to task1.name will
not affect it. Derivation functions are inherited and overrid-
den in the same manner. Instantiation behaves as in proto-
typical languages [42]. Functions are also treated as proto-
types and their calls as instances (justifying the use of the
same syntax for calling and instantiation). Materializing ex-
ecution in this way has large ramifications on the design of
the language, including the interpretation of names and the

name: "task1"

start: 1

length: 2

end = 3 Sum

name: "task2"

start = 3

length: 2

end = 5 Sum

task1:

task2:

5

Figure 2. Reaction flow. Bold arrows show the flow. Values
are post-states.

status of source text [17, 19], but those issues are beyond the
scope of this paper.

2.1 Reaction
Derivation is bidirectional: changes to derived variables can
propagate back into changes to the variables they were de-
rived from. This process is called reaction, and is used to
handle external input. A Coherence system makes certain
structures visible to certain external interfaces (the program-
mer’s REPL can see everything). All input takes the form
of changes to such visible fields, which react by changing
internal fields, which in turn can react and so on. Multiple
input changes can be submitted in a batch, and the entire
cascade of reactions is processed in a transaction that com-
mits them atomically or not at all. Output consists of reading
visible fields, which are rederived if necessary from the lat-
est changed state. The following example illustrates.

12 > task2.end := 5
13 > task2
14 = {name: ”task2”, start: 3, length: 2, end: 5}
15 > task1
16 = {name: ”task1”, start: 1, length: 2, end: 3}

On line 12 the task2.end field is assigned the value 5,
and the results are shown on the following four lines and
diagrammed in Figure 2. Because task2.end is a derived field
its derivation function reacts to the change. Every function
reacts in some way, if only to declare an error. The Sum

function’s reaction is to adjust its first argument by the same
amount as the result, so that the result is still the sum of the
arguments.2 Thus a change to the end of a task will adjust
its start to maintain the same length: task2.start is changed
to 3. Since task2.start is derived from task1.end, the reaction
propagates to the latter field, and in turn causes task1.start

to be set to 1. The task1.start field is not derived, so the
chain reaction grounds out at that point, leaving the field

2 The second argument could be adjusted instead. A function is expected to
document such choices.
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changed. If you don’t like the built-in reaction of a function
you override it with your own custom reaction, as follows.

17 > task1: {
18 name: ”task1”,
19 start: 1,
20 length: 2,
21 end = Sum(start, length)
22 => {start := Difference(end’, length’)}}
23 = {name: ”start1”, start: 1, length: 2, end: 3}

Here task1 has been redefined to include a custom reaction
for the end field on line 22. The symbol => specifies the
reaction for a field, in counterpoint to the use of = for the
derivation, as reaction is opposite to derivation. The reaction
is specified as a set of statements that execute when the field
is changed. Note that while these statements may look like
those in a conventional imperative language, they behave
quite differently. For one thing, they execute in parallel.
Section 2.3 will explain further.

The reaction specified above duplicates the built-in reac-
tion of the Sum function. The changed value of the end field is
referenced as end’, adopting the convention of specification
languages that primed variables refer to the post-state. Non-
primed references in reactions always refer to the pre-state
prior to all changes in the input transaction. The post-state
of end has the post-state of length subtracted from it to com-
pute the post-state of start. The post-state of length is used
rather than its pre-state because it could have changed too,
discussed further below.

2.2 Actions
Reactions can make arbitrary changes that need not be the
inverse of the derivation they are paired with. An example of
this is numeric formating, which leniently accepts strings it
doesn’t produce, effectively normalizing them. An extreme
case of asymmetry is an action, which is a derivation that
does nothing at all and is used only for the effects of its
reaction. Here is a “Hello world” action.

24 > Hello: Action{do=>{
25 consoleQ << ”Hello world”}}
26 > Hello()
27 < Hello world

The Hello action is defined on line 24 with the syntax
Action{do=>...}. This indicates that a variant of the prototype
Action is derived, incorporating a reaction for the do field. A
variant is like an instance, except that it is allowed to make
arbitrary internal changes, whereas instances are limited to
changing only certain public aspects like the input arguments
of a function. Curly braces without a leading prototype, like
those used to create the task1 structure in line 17, are actually
creating a variant of null, an empty structure.

Actions are triggered by making an arbitrary change to
their do field (conventionally assigning it null), which has
the sole effect of triggering the reaction defined on it. A
statement consisting of only a function call will trigger its
action by changing its do field. The Hello action is triggered

in this way on line 26. By encoding actions as the reactions
of do fields we establish the principle that all behavior is
in reaction to a change of state, which is essential to the
semantics described below.

The body of the action on line 25 outputs to the console
with the syntax consoleQ<<”Hello world”. The << symbol de-
notes an insertion statement. It creates a new element within
consoleQ and assigns its value to be the string ”Hello world”. If
the input transaction commits, any elements inserted into the
consoleQ will be printed and then removed from the queue.
Driving console output from a queue preserves the principle
that all behavior is in reaction to a change of state.

2.3 Coherent execution
Enough preliminaries are now in place to explain the seman-
tics of coherent reactions. Say that inside some action we
need to change a task’s end and length, as in the following
code snippet.

28 TaskAction: Action{task, do=>{
29 ...
30 task.end := e,
31 task.length := d}}

The question is, what is the value of the task’s start field
afterwards? One might expect it to be e − d. That would be
wrong if this code were executed in an OO language, where
the reaction of end would be encoded into its set method. The
set method would use the value of length at the time it was
called to calculate start. But length is set after the call, so the
value of start will actually be e−oldLength and the value of
end recalculated by its get method will not be e as expected
but e− oldLength + d.

Obviously it is necessary to set length before end to get
the correct result. But in practice such issues are often far
from obvious. The side-effects of methods (especially those
caused by deeply nested method calls) are often undocu-
mented and subject to change. For example if task were
refactored so that length was instead derived from the differ-
ence of start and end, then any code like ours depending on
the ordering of the side-effects would break. This example
is indicative of the fundamental quandary of imperative pro-
gramming: it is up to the programmer to orchestrate the exact
order in which all events takes place, yet the programmer of-
ten lacks the omniscience and clairvoyance required to do so
perfectly. The result is much complexity and fragility.

Coherence avoids these problems by automatically deter-
mining the correct execution order of all events. In the above
example, the reaction on end will be automatically executed
after the assignments to end and length. A correct execution
order is called coherent, defined as an order in which every
reaction executes before any others that it affects. A reaction
affects another in only one way: if it writes (assigns to) a
location whose post-state is read by the other.

Finding a coherent order may seem at first to be a straight-
forward problem of constraint satisfaction. We form a graph
of reactions whose edges are such effects. A coherent order
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is a topological sort of this graph. The problem is that form-
ing this graph is undecidable. Reactions can use pointers:
they are free to do arbitrary computations to compute the lo-
cations which they read and write. For example, TaskAction

might take some user input as a key with which to search all
tasks with a spelling-similarity algorithm, and then modify
the found task. Allowing arbitrary computation of locations
makes the effect graph undecidable in general. Coherence
is not a problem of constraint satisfaction — it is a prob-
lem of constraint discovery. Previously there have been two
alternative solutions: reduce the expressive power of the lan-
guage so that constraint discovery becomes decidable (as in
state machines and dataflow languages), or leave it to the
programmer to deal with.

This paper introduces a new technique that dynamically
discovers effects between reactions and finds a coherent ex-
ecution order. Every reaction is run in a micro-transaction
that tracks both its writes and post-state reads. Reactions are
initially executed in an arbitrary order. Incoherencies are de-
tected as they occur: whenever a reaction writes a location
whose post-state was read by a previously executed reac-
tion. In that case the previous reaction’s micro-transaction is
aborted and it is run again later. The abort cascades through
all other reactions that were transitively affected. This al-
gorithm is essentially an iterative search with backtracking,
using micro-aborts to do the backtracking. If there are no
errors a coherent execution order will found and the whole
input transaction is committed.

Cyclic effects are an error: a reaction can not transi-
tively affect itself. Errors are handled tentatively because
they might be later rolled back — errors that remain at the
end cause an abort of the whole input transaction. The search
for a coherent ordering converges because reactions are de-
terministic (randomness is simulated as a fixed input). It will
terminate so long as the reactions themselves terminate, as
only a finite number of reactions can be triggered.

2.4 The price of coherence
Clearly a naive implementation of coherence will be slower
than hand-written coordination logic in an imperative lan-
guage. But at this point worrying about performance op-
timization would be both premature and misguided. The
history of VM’s shows that clever implementation tech-
niques can yield large speedups. There is a large body of
prior research that could be exploited, from static analysis
to feedback-directed optimization. Coherent code reveals in-
herent parallelism that might be exploited by multicore pro-
cessors. Annotations could partially instruct how to order
reactions (but still be checked for coherence, which is easier
than solving for it). In any case the major problem of inter-
active applications is not CPU performance but programmer
performance — the difficulty of designing, building, and
maintaining them.

Coherence imposes certain constraints on reactions:

1. A field can change at most once per input transaction.
Multiple reactions can change the same field, but only to
the same value. This situation might occur in the above
example if the code snippet also assigned the start field.
That would be OK so long as the value agreed with
what the reaction computed it should be, which would
effectively become an assertion: if the values disagreed
an error would abort the input transaction.

2. All reactions can see the entire global pre-state. Each can
see the pending post-state of the field it is attached to, and
decides how to propagate those changes to other fields.
Each can also see the pending post-state of other fields.
But in no case can a reaction see the consequences of
any changes it makes, because that would create a causal
loop whereby it depends upon itself. Causality violation
is punished by aborting the transaction.

3. A consequence of the above property is that all of the
assignment statements inside a reaction execute as if in
parallel. Causal ordering only occurs between different
reactions.

This paper suggests that much of the manual sequencing
of actions that is the crux of imperative programming is an
accidental complexity [8], and that coherent execution can
handle it automatically, at least in the domain of interactive
applications. But there are cases when sequential execution
is truly essential. For such cases, Coherence offers an encap-
sulated form of imperative programming called progression.

2.5 Progression
Say that we want to execute the previous TaskAction on a
task, but also want to ensure that whatever it does, the task’s
length ends up no more than 10. We could do that by creating
an alternate version of TaskAction that maximized the length
before assigning it. But it is simpler to just execute TaskAction

and then cap the length if it is too large. However reactions
only get a single shot to change each field, and can not see
the consequences of their own actions. Instead we can use a
progression:

32 BoundedAction: Action{task, do=>{
33 prog (task) [
34 TaskAction(task);
35 if (Gt(task.length, 10)) then
36 {task.length := 10}]}}

The prog statement on line 33 takes a parenthesized list
of one or more versioned variables, which here is just task.
That is followed by square brackets containing a sequence
of statements separated by semicolons. The statements can
be read somewhat imperatively: the statement on line 34
executes TaskAction on task, and then the if statement on the
following line checks the resulting length value and sets it to
10 if it is greater. What actually happens is that a separate
version of task is made for each statement. Each statement
changes its version, which then becomes the pre-state of the
next version.
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name: "task2"

start = 9

length: 11

end = 20 Sum

name: "task2"

start = 9

length: 10

end = 19

TaskAction

task.length := 11

task.end := 20

if (Gtr(task.length, 10) then

{task.length := 10}

BoundedAction(task2)

Sum

name: "task1"

start: 7

length: 2

end = 9 Sum

name: "task2"

start = 9

length: 10

end = 19

task1:

task2:

Sum

version 1

version 2

Figure 3. Progression reaction flow. All values are post-states.

An example reaction flow for BoundedAction(task2) is dia-
grammed in Figure 3. The first version of task2 is modified by
TaskAction, creating the second version which is modified by
the if statement. The changes made in the first version are en-
capsulated. The change to length gets overridden in the sec-
ond version, and the change to end is discarded because it is
consumed by the Sum reaction. The Sum reaction’s change to
start gets inherited into the second version. The accumulated
changes to start and length in the second version are exported
out of BoundedAction. The exported change to task2.start then
propagates into task1.end. Note that while internal reactions
like Sum execute in each version, any external reactions like
the link to task1 only execute at the very end.

Progressions are encapsulated: the internal unfolding of
events is isolated from the outside. External changes are
visible only at the beginning, and internal changes become
visible externally only by persisting till the end.

Progression depends on the fact that Coherence can make
incremental versions of entire structures like a task. As dis-
cussed later in Section 3, the state of a Coherence program
is a tree. Progressions can version any subtree, such as col-
lections of structures, or even the entire state of the system.
In the latter case, progression becomes a simulation of im-
perative programming, capable of making arbitrary global
changes in each version, and constrained only from doing
external I/O. This simulation also reproduces the usual pit-
falls of imperative programming. Progression is an improve-
ment over imperative programming only to the extent that it
is quarantined within localized regions of state, and used as
a special case within a larger coherent realm.

Progressions also support looping with a for statement.
The whatif statement is a hypothetical progression with no ef-
fect, executed only to extract values produced along the way.
Hypotheticals function like normal progressions, except that
all emitted changes are silently discarded. Values produced
within a hypothetical can be accessed from its calling con-

text. Hypotheticals turn imperative code into pure functions,
and can thus be used inside derivations. Hypothetical pro-
gressions on the global state can be used for scripting behav-
ioral tests, running the entire system in an alternate timeline.

2.6 Coherence as a model of computation
Derivation and reaction are quite different, yet work well
together. To summarize:

1. Interaction is cyclic: input and output alternate.

2. Output is derivation: external interfaces query visible
state, which may be derived from internal state.

3. Input is reaction: external interfaces stimulate the system
by submitting batches of changes to visible fields, which
react by propagating changes to internal fields. Input is
transactional: all the changes happen atomically or not at
all.

4. Derivation (output) is pure lazy higher-order functional
programming. It executes only upon demand, and can not
have any side-effects. Derivation is explained more fully
in section 3.

5. Reaction (input) is coherent. A set of input changes cas-
cades through reactions until they all ground out into state
changes or errors. Reactions are automatically ordered so
that each executes before any others that it affects. Reac-
tions that transitively affect themselves are an error. Er-
rors abort the entire input transaction.

6. Coherence is dynamic. State can grow and change. Re-
actions can have arbitrary dynamically computed effects,
though they may need to use progressions to do so.

7. Derivation, as pure functional programming, does not
naturally handle the state mutation inherent in input. Re-
action does not naturally handle output, for that would
lead to cyclic effects on inputs. Derivation and reaction
need each other.
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8. Coherence is the dual of laziness. They both remove tim-
ing considerations from programming. A lazy function
executes before its result is needed. A coherent reaction
executes before its effect matters.

9. It is often said that functional programs let one express
what should be computed, not how. Coherent reactions
let one express what should be done, not when.

These symmetries are pleasing. Derivation and reaction
are complementary opposites that fit together like yin and
yang to become whole.

3. The Coherence Language
This section more fully describes the Coherence program-
ming language, which incorporates the idea of coherent reac-
tion in order to build interactive applications. The fundamen-
tal building block of Coherence is the tree. Unlike in func-
tional programming languages, trees are dynamically typed
and mutable: pointers can traverse freely through a tree and
make changes in situ. The entire state of a Coherence appli-
cation is kept in a single state-tree, including both code and
data.

The fundamental abstraction mechanism of the language
is the virtual tree. Any subtree of the state-tree can be virtu-
alized, meaning that its value is derived by a function. That
function lazily computes the contents of the virtual tree top-
down as needed. Changes to a virtual tree are handled by the
reaction of its derivation function, or a programmer-supplied
reaction. Virtual trees look and feel like normal tree data
structures, except that their look (their contents) is computed
on the fly by their derivation, and their feel (their response to
changes) is generated by their reaction. Modularity in Coher-
ence is achieved by substituting trees with similar structure
for one another. They can transparently differ in the internal
computation of their contents and the internal reactions to
their changes.

This section will present examples of how virtual trees
can be used to build interactive applications, and how coher-
ent reactions provide the key properties that make it work.
The following examples continue from those of the previous
section to build a simple web application for task manage-
ment. We will omit many of the details of configuring a real-
istic web application. Assume that an HTTP server responds
to GET requests on a certain URL by returning the value of
the global variable currentPage, which is expected to contain
a tree structure encoding an HTML page. We first define a
form to display a task.

37 > currentPage = Grid[
38 [”name”; TextControl(task2.name)];
39 [”start”; NumberControl(task2.start)];
40 [”length”; NumberControl(task2.length)];
41 [”end”; NumberControl(task2.end)]]
42 =

name task2

start 3

length 1

end 4

The Grid function on line 37 will generate the proper HTML
for a table-based layout, the contents of which are speci-
fied inside square brackets and spread over the following
four lines. Square brackets contain sequences of semicolon-
separated values. (When a sequence follows a function call
it becomes the first argument of the call, reducing bracket
nesting.) The sequence elements are expected to be the rows
of the grid, and are each specified with square-bracketed
pairs of values. Each of these pairs contains a string label
and a TextControl or NumberControl function which generates
the HTML for a text input control. The resulting HTML is
rendered on line 42.

Virtual trees supplant the template languages [14, 43]
of most web application frameworks, avoiding their jumble
of clashing syntaxes and semantics. Derivation expressions
like Grid and NumberControl return arbitrary tree-structured
values in-situ, allowing a seamless mix of literal structure
and calculated content.

The above example hard-wires the reference to task2. To
fix that we can define the TaskForm function below that takes
a task as an argument.

43 > TaskForm: Fnc{
44 task: task1
45 val = Grid[
46 [”name”; TextControl(task.name)];
47 [”start”; NumberControl(task.start)];
48 [”length”; NumberControl(task.length)];
49 [”end”; NumberControl(task.end)]]}
50 > currentPage = TaskForm(task: task2)

Line 43 defines TaskForm as a variant of Fnc, the prototype
of all functions. The next line defines task as an argument of
the function, with a default value of task1. Functions define
their value with the val field, as done on line 45. The function
is called on line 50 to produce the same result as the previous
example. The derivation of the form is diagrammed in Figure
4.
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name: "task2"

start = 3

length: 1

end = 4 Sum

task2:

Grid

task:

TaskForm(task: task2)

"name"

TextControl

"start"

NumberControl

"length"

NumberControl

"end"

NumberControl

currentPage:

Figure 4. TaskForm derivation.

3.1 Input
To explain how user input is handled, we first examine how
NumberControl is implemented:

51 > NumberControl: Fnc{
52 val: xmlNode{
53 tag: ”input”,
54 type: ”text”,
55 name: ˆ,
56 value = DecimalString(#1)}}

Line 51 shows that NumberControl is a function whose
value is an xmlNode structure. Each xmlNode contains a tag

field to specify the name of the XML tag it represents.
XML attributes are stored as fields of the node. The name

attribute is set on line 55 with ˆ to be a reference to the
xmlNode itself. This reference will be serialized into HTML
as a string encoding the location of the node in the state-
tree. Finally the value attribute of the input tag is derived
with DecimalString to be a string representation of #1, the first
positional (unnamed) argument to NumberControl.

The user can change some of the fields in the form and
and submit it back to the server. The server will receive a
POST request containing a set of name/value pairs for the
input fields, and will deserialize each name into the location
of the corresponding xmlNode in order to assign its value

field. Unchanged values are discarded. The changes will
propagate into the DecimalString derivations, which react by
parsing the string back into a number, which then propagates
into one of the linked fields of task2. These reactions simply
reverse the direction of the derivation arrows in Figure 4.
The combination of derivation and reaction play the role of
the Observer pattern [23] and bidirectional data binding [41]
in many application frameworks.

3.2 Causal error handling
Truth lies within a little and certain compass, but
error is immense. – William Blake

What if there is an error, say the user enters ”foo” into
the end field? In that case, the DecimalString reaction would
declare an error and abort the input transaction, discarding
all changes. That would be too abrupt: we want to catch the
error and reply to the user showing the submitted values with
associated error messages. This is done by the following
revised version of NumberControl.

57 > NumberControl: Fnc{
58 val: xmlNode{tag: ”span”}[
59 control: xmlNode{
60 tag: ”input”,
61 type: ”text”,
62 name: ˆ,
63 value = Latch(DecimalString(#1), fence: userErrors)};
64 ˆcontol.value@error]}

Here the input field is wrapped inside an HTML span tag
defined on line 58. The square brackets supply the contents
of the span node, which contains the input field and a follow-
ing error message. The input field is defined as before, except
that on line 63 the call to DecimalString has been wrapped in-
side a call to Latch. Latches catch reaction errors. Normally
the latch has no effect: it passes through the value of its argu-
ment. But if the value changes and the argument reacts with
an error, the latch traps the error and prevents the transaction
from being aborted. Latching permits errors to be reported
to the user as follows.

The erroneous value that triggered the error is latched as
the value of the Latch function. The error itself is recorded
in the error field of the Latch. Assuming for simplicity that
the error value is a textual message, the error is reported in
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tag: "input"

type: "text"

name: ^

value: "foo"

   xmlNode
tag: "span"

xmlNode

"Invalid numeric value"

val: "foo"

error: "Invalid 

numeric value"

Latch DecimalString

NumberControl   currentPage:

name: "task2"

start = 3

length: 1

end = 4 Sum

task2:

fence

Figure 5. Detail of reaction error latching. Dashed arrow is error reflection.

the form on line 64 using the syntax control.value@error which
refers to the error field of the Latch function. (The @ symbol is
a path separator like the dot that is used to access a derivation
function from the location it derives.) Figure 5 zooms in on
the reaction error handling for the end field, showing how the
latch catches and publishes the reflected error.

Latches are grouped into fences, specified with the latch’s
fence argument on line 63. The userErrors fence is used here to
control the handling of all user-generated errors. Latches and
fences change the way errors are handled. When a reaction
declares an error, it is reflected back down the chain of
reactions that triggered it. The error will be trapped by the
first latch it encounters along the way. If the error reflects all
the way back to one of the original input changes then it is
fatal and the entire input transaction is aborted.

When an error is latched, all of the latches in the fence are
activated. All changes caused by those latches are aborted,
whether erroneous or not. Only changes inside the fence are
committed. In this example, any other input field changes
made at the same time as ”foo” are preserved, but do not pass
through into the task2 structure. A fence creates a bound-
ary for staging changes and localizing errors. If crossing the
fence led to an error, everything is rolled back to the fence
but no further. Multiple errors at multiple latches can be
trapped simultaneously by a fence. The next time a change
hits one of the latches in the fence, all its latches will be re-
leased, and they will resubmit any changes they are holding.
It is also possible to explicitly release a fence and discard all
its latched changes.

Error handling is the source of much complexity in in-
teractive applications. Conventional exception handling is
problematic because the call stack at the time an error is de-
tected does not always tell us how to handle it. Instead we
have to carry around contextual information to attribute er-
rors to user actions and set them aside for later processing.
We have to ensure that errors are caught before state is left
invalid, or else repair it. To handle more than one error at
a time requires adding paths for continuing gracefully from

an exception without triggering a cascade of redundant er-
rors. Error handling in Coherence is better suited to the needs
of interactive applications. Errors are handled automatically
based on causal relationships, not control flow. Multiple er-
rors are automatically traced back to their causes, and erro-
neous effects beyond fenced state are automatically backed
out.

3.3 Coherent constraints
We can now handle the motivating example of model con-
straints from the introduction. Supposing that every task be-
longs to a project, we can add a constraint that all tasks must
complete by the end of the project.

65 > task1: {
66 project: project1,
67 name: ”task1”,
68 start: 1,
69 length: 2,
70 end = Sum(start, length) | Leq(., project.end) ”Too late” }

This definition adds a field referencing a project on line
66, and on line 70 a constraint on the end field. The con-
straint consists of a | followed by a predicate to test and an
error to declare if it the predicates is false. The predicate
compares the value of the constrained field (referred to with
a dot), to the end date of the project. Constraints are checked
whenever a field is derived or changed. This constraint on
the value of end implicitly depends on the values of start and
length, so we are faced with the familiar problem of execut-
ing the constraint only after all changes to those fields have
been executed. Coherence does the ordering automatically.
If the constraint fails, the error is reflected back down the re-
actions that triggered it. In this example the error will reflect
from task2.end, through the DecimalString function, and be
latched on the end field in the task form as described above.
The following page results:
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name task2

start 3

length 1

end 1000  Too late

3.4 Virtual sequences
Sequences are structures whose elements are ordered but
not named3, represented textually with square brackets. As
with other forms of structure, sequences can be virtualized,
which is useful for interacting with collections of data as in
databases. Assume that all task instances are stored inside
the tasks sequence. The following function derives a form to
display all the tasks in a list.

71 > TasklistForm: Fnc{
72 tasklist: tasks,
73 let header: [”name”, ”start”, ”length”, ”end”],
74 let Row: Fnc{
75 val: [
76 NumberControl(#1.name);
77 NumberControl(#1.start);
78 NumberControl(#1.length);
79 NumberControl(#1.end)]},
80 val = Grid(Append([header], Map(tasklist, Row)))}
81 > TasklistForm()
82 =

name start length end
task1 1 2 3

task2 3 1 4

task3 5 1 6

Line 80 defines the form as a grid whose first row is header,
and whose subsequent rows are generated by a call to Map.
The header is defined on line 73 with a let that declares it to
be a local variable (i.e. private field). The Map function is like
the standard map function of higher order functional pro-
gramming languages. Its first argument is a source sequence,
tasklist, which defaults on line 72 to tasks. Its second argument
is a function (Row) to map over the sequence. Its value is the
sequence of values of the function applied to the elements
of the source sequence. Assuming there are three tasks, the
result is equal to [Row(tasks[1]); Row(tasks[2]); Row(tasks[3])].

The novel feature of Map is that it is reactive: each el-
ement of the derived sequence is itself derived by an in-
stance of the mapped function (Row), which will react to any
changes within the element. In this case, that causes any user
edits in the form to be directed to the corresponding task in-
stances (and for errors to likewise reflect back to the correct
form fields).

Derived sequences also serve as queries that can be up-
dated. The following example displays a list of tasks in a
specific project.

83 > Pred: Fnc{val=Equals(#1.project, myProject)}
84 > myTasks = Filter(tasks, Pred)
85 > TasklistForm(tasklist = myTasks)

3 Coherence unifies named and ordered structures with positions [19].

Line 84 derives a sequence with the Filter function, which
as in functional languages takes a sequence and a predicate
to select elements with. The predicate is defined on line 83
to select only tasks in the project myProject. Instantiating the
form with the derived sequence allows direct editing of those
selected tasks without any extra programming: the form and
the query compose modularly. What’s more, we can insert
and delete within such a query. Here is a variant of the form
with simple insert/delete capabilities.

86 > TasklistForm: Fnc{
87 tasklist: tasks,
88 let header: [”name”, ”start”, ”length”, ”end”],
89 let Row: Fnc{
90 val: [
91 NumberControl(#1.name);
92 NumberControl(#1.start);
93 NumberControl(#1.length);
94 NumberControl(#1.end);
95 Button{label: ”delete”, do=>{Delete(#1)}}]},
96 let insert = Button{label: ”insert”, do=>{tasklist <<}},
97 val = Grid(Append([header], Map(tasklist, Row), [[insert]]))}
98 > TasklistForm(tasklist = myTasks)
99 =

name start length end
task1 1 2 3 delete

task2 3 1 4 delete

task3 5 1 6 delete

insert

A delete button has been added to each row, containing
an action that deletes the corresponding task. In line 96 an
insert button is placed at the bottom of the table to create a
new task. The action {tasklist <<} creates a new element in
the tasklist sequence.

Both insertion and deletion work correctly even when
the form is displaying the virtual sequence myTasks. Insert-
ing a new task in myTasks will result in a new task in the
source sequence tasks with its project field automatically set
to myProject in order to satisfy the condition of the filtering
predicate.

The Filter function reacts in two steps (using a two step
progression over the source sequence). First Filter maps all
insertions and deletions in the derived sequence back into
the source sequence (tasks). Then it sets the value of the filter
predicate on all the insertions to true. The filter predicate in
this case is an Equals function, whose built-in reaction to true

is to set its first argument equal to its second. That has ex-
actly the desired effect of setting the project field to myProject.
One can specify a custom reaction on the filter predicate to
achieve any desired insertion behavior in a query.

Updatable views are not new [3, 7, 13, 22], but they have
required that the filter predicate be written in a restricted
language that allows a decidable analysis to infer the truth-
preserving changes. Coherence takes a simpler approach.
Filters are written as normal functions in the programming
language, and are not analyzed. Instead, their values are set
to true and it is left to their reactions to behave appropriately.
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Often the built-in reactions will do the right thing, as in this
example, but there is no guarantee provided. Programmers
can supply their own reactions to implement arbitrary be-
havior as in database triggers [24].

3.5 Virtual variants
A key implementation technique of Coherence is the ability
to efficiently make virtual variants of trees, up to and in-
cluding the entire state of the system. Only the differences
are physically recorded, with the variant being lazily con-
structed on demand. Tree variation is more subtle than it may
at first appear: trees can contain subtrees that are variants of
other subtrees, allowing variants of variants; and trees can
contain variants of themselves, leading to (lazily) infinitely
deep trees. Tree variation is by itself Turing-complete. [18]

Changes made within a variant do not propagate back to
the source, but instead accumulate in the list of differences.
Changes to the source are visible in the variant except when
they are occluded by differences. The Reset action will erase
all the differences in a variant, setting it equal again to
its source. The Release action removes all the differences
recorded in a variant and applies them to its source.

Variants can be used as database transactions. If we place
an entire database within a tree, a transaction is just a variant
of it in which the application makes all its changes until
executing a Reset or Release action.

100 > database: {tasks, projects}
101 > tran: database{}
102 > ...
103 > Release(tran)

Coherent ordering guarantees that transactional changes
appear atomic, and further allows multiple transactions to be
atomically committed together. Transactions can be nested
by making chains of variants.

3.6 And so on
Much more is required to build modern production-quality
interactive applications. The goal of Coherence is to pro-
vide all the capabilities of modern application frameworks
in a dramatically simpler form, as features of the language
semantics itself, rather than as an immense pyramid of com-
plex libraries. This section has surveyed some of these fea-
tures as a way to validate the practical utility of coherent
reactions and virtual trees. Virtual trees are a surprisingly
versatile building block, and coherent reaction gives them
nice properties of modular composition. They are worthy of
further evaluation.

4. Related work
This paper addresses a fundamental issue of programming
languages: how to manage side effects. This issue has been
researched so intensively that it is impossible to cite all the
related work. Instead, I will offer a declarative specification
of the related work. This specification extends the motivating
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Figure 6. Related Work.

example from the introduction into a challenge problem and
applies two metrics. The challenge problem is that we have
a variable number of data model objects (like tasks) which
contain constraints, and we have a variable number of view
objects (like forms) that alter the model objects. The views
take user input data to dynamically choose a model object
(for example using a spelling-similarity algorithm) and then
make multiple changes to that object. The constraint must
not execute until after any changes that affect it.

Figure 6 charts related work along two dimensions, which
measure modular coordination and dynamic connection.
Modular coordination is a measure of the coupling needed
between the view and model objects to coordinate changes.
Imperative programming fares poorly on this metric, for all
the reasons discussed in the introduction. Dynamic connec-
tion is a measure of the ability to express the dynamic choice
that connects views to models. Imperative programming
scores at the top for dynamism: you can do anything you
want, if you write enough code. Imperative programming
thus goes in the lower right corner of the chart.

State machines [25] execute events instantaneously and
simultaneously, in one stroke eliminating all coordination
problems. But the price is that both states and events become
statically structured. State machines do not allow variable-
sized or variable-shaped structures, nor can one do arbitrary
computations in them. You can not build a word processor
purely with a state machine. After all, state machines can be
compiled into gate arrays. Any language that compiles into
hardware must sacrifice the essential softness of software.
State machines go in the upper left corner of the chart, be-
cause while they coordinate change modularly, they can not
implement the dynamics of the challenge problem. Practical
languages based on state machines [38] do support more dy-
namic capabilities, but only by embedding them in an asyn-
chronous imperative framework, which recreates the prob-
lems of coordinating events.
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Dataflow languages [15, 34] are in the same situation
as state machines. Synchronous Reactive Programming
(SRP) [5, 11] was an inspiration for coherent reaction. SRP
provides powerful features lacking in Coherence, including
static analysis of cyclic dependencies and bounds on reac-
tion time. But SRP is intended for embedded systems and
intentionally limits itself to static state spaces that can be
compiled into state machines or gate arrays. Like them it
must go into the upper left corner of the chart.

Pure functional programming languages [28] address
the problem of side effects by banishing them from the
language. Monads [47] simulate imperative programming
through higher-order constructions. The plethora of monad
tutorials [39] witness that many programmers find them hard
to understand. Yet they do not help solve the challenge prob-
lem, for the problems of coordinating side effects are recre-
ated inside the monadic simulation of imperative program-
ming.

Functional Reactive Programming (FRP) [12, 20, 29]
entirely abandons the notion of mutable state. States be-
come time-indexed sequences of values defined in terms of
streams of input events. It is not clear exactly where FRP
belongs on the chart, so it has been placed approximately.
Some forms of FRP are capable of merging simultaneous
events [33] to solve the challenge problem. But this solution
comes at a heavy conceptual price. FRP inverts the normal
order of cause-and-effect: effects are defined in terms of
all causes that could lead to them. That approach seems to
require that each model object know what views may con-
nect to it in advance, breaking the modularity we seek. The
response may be that we must learn different kinds of modu-
larity, using some of the sophisticated abstractions proposed
by FRP. At the least, FRP asks us to unlearn the common
sense notion of mutable state. Coherence retains mutable
state, abandoning only the Program Counter.

Superglue [36] combines FRP signals with OO abstrac-
tions to gracefully integrate with imperative code. Superglue
connections are more modular and dynamic than conven-
tional data binding techniques. Superglue can synchronize
the events in the challenge problem. It lacks the computa-
tional power for fully dynamic connections.

Trellis [16] is a Python library that embodies the essen-
tial idea of coherent reaction, using transactional rollback to
automatically order event dependencies. It appears to be the
first invention of the idea. Coherence goes further by adding
derivation and adopting the resultant model of computation
as the semantics of a programming language. While Coher-
ence was developed independently of Trellis, the prior work
on Reactors [21] was a direct influence. Reactors offer a
data-driven model of computation where data is relational
and code is logical rules. It could be said that Reactors are to
logic programming as Coherence is to functional program-
ming. Reactors support distributed asynchronous execution,
which Coherence has not yet addressed. Both Trellis and Re-

actors can handle the challenge problem, placing them at the
top-right corner of the chart.

The bidirectional execution of derivation and reaction re-
semble constraints. Sutherland first noted the usefulness of
constraints in interactive systems [46]. They were combined
with prototypes in the Garnet [40] system. Meertens [37]
developed user-interface constraints based on bidirectional
functions. Unlike Coherence, constraints can solve for fix-
points of cycles. But they are limited to static symmetric re-
lationships, so they can not express arbitrary actions. The
same is true for logical constraint languages like Prolog.

Lenses [7, 22] define a rich language of bidirectional
functions over trees, supporting updatable views. Coherence
builds upon that work. Lens are symmetric, and so can not
express arbitrary reactions. Derivation and reaction combine
into bidirectional functions, but are asymmetric, and use
quite different semantics.

Actors [1] and related asynchronous languages [2, 6] im-
prove the modularity of event handling in imperative pro-
gramming, but can not implicitly coordinate the events in
the challenge problem.

Coherent ordering shares some concepts with serializ-
ability [4, 45, 49] in transactional concurrency control, but
they have different goals. The goal of concurrency control
is to allow actions in different transactions to be interleaved
so that they execute as if the transactions were executed se-
rially rather than concurrently. Serializability is the source
of the ACID properties of Atomicity, Consistency, and Iso-
lation. But these properties do not apply between the actions
within a transaction, which execute serially and have side
effects upon each other. Coherence provides analogs of the
ACI properties within a transaction, by ordering the actions
so that they execute in parallel, as if they all occured simul-
taneously, with effects propagating instantaneously. Never-
theless, traditional concurrency control techniques might be
adapted to finding coherent orderings.
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(e.g. trigger fields, queues)

Figure 7. OO contrasted with Coherence.

5. Conclusion
Smalltalk’s design—and existence—is due to the in-
sight that everything we can describe can be repre-
sented by the recursive composition of a single kind
of behavioral building block that hides its combina-
tion of state and process inside itself and can be dealt
with only through the exchange of messages. – Alan
Kay [35]

The conceptual model of Coherence is in a sense opposite
to that of Object Oriented languages. As Alan Kay’s quote
above indicates, the central metaphor of OO is that of mes-
saging: written communication. The central metaphor of Co-
herence is that of observing a structure and directly manipu-
lating it. These two metaphors map directly onto the two pri-
mary mechanisms of the mind: language and vision. Figure
7 contrasts several other language aspects. The pattern that
emerges strikingly matches the division of mental skills into
L-brain and R-brain [31]. From this perspective, OO is ver-
bal, temporal, symbolic, analytical, and logical. In contrast
Coherence is visual, spatial, concrete, synthetic, and intu-
itive. This observation raises a tantalizing possibility: could
there be such a thing as an R-brain programming language
— one that caters not just to the analytical and logical, but
also to the synthetic and intuitive?
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