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Abstract. In this paper, we focused on a Self-Balancing 
Tractor-Trailer-Bicycle(TTB) and developed an under-actuated dynamical 
model for the system. The bicycle is characterized with two parts, that is a 
tractor and a trailer, and considering the nonholonomic constrains from 
no-slipping contacts of its three wheels and the flat ground, we presented a 
dynamical model for the bicycle by using Chaplygin equation. The model 
suggest that the TTB should be an under-actuated system with three DOF 
(degree of freedom) and there are two driving-torque inputs. An inverse 
dynamics and a virtual prototype simulations are given to demonstrate the 
correctness of the proposed dynamical model.  

1 Introduction  
Self-balancing bicycle is the combination of bicycle mechanism and balance control 

technology. For this kind of two-wheeled mechanism, on the one hand, it can satisfy ones’ 
needs of convenient travelling and labor-saving due to its lightweight and flexible body; on 
the other hand, the bicycle riders hope in some case that it can balance automatically, which 
can get rid of the dependence on ones’ “driving”. So far, the research on the self-balancing 
bicycle can be grouped into two types: “without mechanical regulator” and “with 
mechanical regulator”. 

Researchers who focus on self-balancing bicycle without mechanical regulators include 
Jones[1], Tanaka[2], Kooijman[3], Huang[4,5], and Li[6], etc. These researchers believed 
that the unmanned bicycle can achieve the dynamic balance of the body by governing the 
handlebar turning and the wheels running without adding additional mechanical regulators. 

In the literatures [4-5], Huang introduced the principle of instantaneous rotation axis to 
analyze the constraints of bicycle robots, and used Lagrange method to establish its 
dynamic model. Huang also designed a motion controller based on partial feedback 
linearization method, and finally gave some physical prototype experiments, e.g., in situ, 
circular motion, linear balanced walking, etc. 

Researchers who study self-balancing bicycles with mechanical regulators include 
Lee[7], Bui[8], Liu[9], Jin[10], Yin[11], Kim[12], etc. These researchers designed 
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mechanical adjusting devices of moving or rotating for their bicycles. They stressed the 
dominant role of the mechanical adjusting devices in maintaining the balance of the body. 
The balance adjustment mechanism includes inertial flywheel (or rotating rod, or pendulum 
rod), translation mass block, mechanical gyro, etc. 

At present, the research of self-balancing bicycle is mostly focused on the 
self-balancing of the body, and few of them can pay attention to the problem of the payload 
capacity of the system. Since the self-balancing bicycle without mechanical regulator has a 
simpler structure, fewer driving motors, lighter weight, and of more energy-saving. The 
existing self-balancing bicycles usually adopt the narrow structure of two wheels arranged 
back and forth, and the wheelbase between their two wheels has an important impact on 
their balance performance. If the wheelbase increased for improving the load-carrying 
capacity, it may cause many unexpected problems aroused from the frame deformation and 
flexibility reduction, and it is easy to lead the bicycle to lose balance. 

How to improve the payload capacity without reducing the balance performance of the 
system? Inspired by the multi-section train, we proposed a new self-balancing bicycle 
mechanism composed of two-wheel tractor and single-wheel trailer. This kind of 
two-section bicycle retains the advantages of the traditional bicycle body in structure. If a 
breakthrough can be made in balance theory and experiment, this kind of mechanism 
should become a new type of convenient road traffic tool. 

The structure of a new tractor-trailer-bicycle (TTB) are described in details in this 
article, and its dynamic model of the system was developed seriously by using Chaplygin 
equation. 

2 Mechanical structure 
The TTB consists of roughly two parts: a tractor and a trailer, which is shown in Fig. 1~Fig. 
2. 

 
Fig. 1. Physical prototype of our TTB. 
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Fig. 2. Schematic diagram of our TTB. 

As it is seen in Fig. 1~Fig. 2, the tractor includes a tractor frame, a handlebar, a front 
wheel of the tractor and a rear wheel. Both the handlebar and the rear wheel of the tractor 
are rotated around the frame, and the front wheel of the tractor rotates around the handlebar. 
The trailer comprises the front fork of the U-shaped block, the rear fork of the U-shaped 
block and the wheel. The front fork of the U-shaped block can be rotated up and down 
around the tractor frame, the rear fork of the U-shaped block can be rotated around the front 
fork of the U-shaped block, and the wheel of the trailer is rotated around the rear fork of the 
U-shaped block. 

3 Dynamical model 

3.1 Coordination settings  

We denote the tractor frame by 1B , the handlebar by 2B , the front wheel of the tractor by 3B , 
the rear wheel of the tractor by 4B , the front fork of the U-block by 5B , the rear fork of the 
U-block by 6B , and the wheel of the trailer by 7B . The grounding point is denoted by 1P , 2P , 
and 3P . The coordinates of the Self-Balancing Tractor-Trailer-Bicycle are set to: 

 (0) (0) (0)
1 2 3O − e e e {0} is the global coordinate system fixed on the ground; 

 (1) (1) (1)
1 1 2 3O − e e e {1} is the coordinate system of the tractor frame 1B and the origin of 

the coordinates is at the geometric center of the front wheel of the tractor 3B ;  

 (2) (2) (2)
2 1 2 3O − e e e {2} is the coordinate system of the handlebar 2B and the origin of the 

coordinates is at the intersection of the frame of the tractor 1B  and the axis of the 
handlebar 2B ;  

 (3) (3) (3)
3 1 2 3O − e e e {3} is the coordinate system of the front wheel of the tractor 3B and 

the origin of the coordinates is at the geometric center of the front wheel of the 
tractor 3B ;  

 (4) (4) (4)
4 1 2 3O − e e e {4} is the coordinate system of the rear wheel of the tractor 4B and 

the origin of the coordinates is at the geometric center of the rear wheel of the 
tractor 4B ; 

 (5) (5) (5)
5 1 2 3O − e e e {5} is the coordinate system of the front fork of the U-shaped 
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block 5B and the origin of the coordinates is at the geometric center of the rear wheel 
of the tractor 4B ; 

 (6) (6) (6)
6 1 2 3O − e e e {6} is the coordinate system of the rear fork of the U-shaped 

block 6B and the coordinate origin is at the intersection of the rear fork of the 
U-shaped block 6B axis and the rotating shaft of the rear fork of the U-shaped 
block 6B around the front fork of the U-shaped block 5B ; 

  (7) (7) (7)
7 1 2 3O − e e e {7} is the coordinate system of the wheel of the trailer 7B and the 

origin of the coordinates is at the geometric center of the wheel of the trailer 7B . 

3.2 Constraint analysis 

We suppose the bicycle was running on a flat plane, then the angular velocity of 1B can be 
given as: 

(1) (1) (1) (1)
1 3 2 2 3 1 1 2 1 3 2 2 3 1 3 2 3( ) ( ) ( )B c q c s q s q q c c q s q= − + + + +     ω e e e     (1) 

where ( )j
ie ( 1,2,3i = , 1,2,j =  ) is the thi  base vector of 

coordinate { }j . sin( )i is q= , cos( )i ic q= ( 1,2,i =  ); iq ( 1,2,3i = ) is the thi  Euler 
angular rate of 1B .  

Because iB ( 2,4,5i = ) rotates about 1B , their angular velocity should be calculated as: 

(2) 2 (1) (2)
2 1 1 4 3B B q e= + ω R ω , (1) (1) (1)

1 ( 2) 2 ( 4,5)Bi B iq e i+= + =ω ω          (2)~(4) 

where j
iR ( , 1,2,i j =  )denotes the rotation transform matric from the coordinate{ }j to{ }i , 

and iq ( 6,7i = ) denotes the angular rate of iB ( 4,5i = ), respectively. 
Because 3B rotates around 2B , 6B rotates around 5B , and 7B rotates around 6B , so the 

expressions of their angular velocity are as follows:  

(2) (2) (2)
3 2 5 2B B q e= + ω ω , 

(6) 6 (1) (6)
6 1 5 8 3B B q e= + ω R ω , 

(6) (2) (6)
7 2 9 2B B q e= + ω ω     (5)~(7) 

where iq ( 4,5,8,9i = ) denotes the angular rate of iB ( 2,3,6,7i = ), respectively. 
Assume that the bicycle would not slide on the horizontal plane, so the speed 

of 1P and 2P is zero, then there we can get the following equation: 

(2) (2) 2 (3)
3 3 3 1( ) 0o B r+ × =v ω R , (1) (1) 1 (4)

4 4 4 2+ ( ) 0o B r× =v ω R            (8)~(9) 

where ( )j
ir ( , 1,2,i j =  ) denotes the position vector of iP in coordinate{ }j . 

In addition, there are the following equations: 

(2) (1) (1) (1)
3 4 1 3=o o B Bv + ×

2
1v R ω l , (4) (4) (4)

4 1 2o x y= + v e e           (10)~ (11) 

where ( )j
Bil ( 1,2, ,7; 1,5,6i j= = )denotes the position vector in{ }j from the center of iB to 
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the origin of { }j , (4)
4ov is the linear velocity of the geometric center of the rear wheel of the 

tractor. 
  In (1)~(5) and (8)~(11), we can get the following four nonholonomic constraint 
equations: 

2 1 4 2 5+ + ( 1,6)k i i iq t q t q t q k+ += =    , 1 2 2 4 3 5x f q f q f q= + +    , 4 2y f q=    (12)~(15) 

Similarly, the speed of 3P is zero, so we can get: 

2 1 4 2 5 ( 8,9)k i i iq v q v q v q k+ += + + =                    (16)~(17) 

In (12)~(15), x , y denote the longitudinal and the lateral velocity of the geometric 
center of 4B , respectively; and it , iv , jf ( 1,4; 1,2,3,4i j= = )is the function 

of mq ( 2,3,4,7,8m = ).  
In addition, considering the geometric constraints, we can get the following equations: 

0 1 2 0 (1)
1 2 3 1 0 0 1 1 3

0 1 5 6 0 1 (5) 0 1 5 (6)
1 5 6 7

2

21 0 0 1 1 5 6 1 5 6 7

( (0,0, ))[3] (( , , ) )[3]
( (0,0, ))[3] (( , , ) )[3]

C C B

C C o B

cr x y r
r x y r c

 = +


= + +

   

        

R R R R l
R R R R R R l R R R l

 
Eventually, we can derive the following two holonomic constraint equations: 

3 1 2 2 4q w q w q= +   , 7 1 2 2 4 3 5q ww q ww q ww q= + +                (18)~(19) 

where 1r denote the radius of three wheels, 0 0 1 2( , , )C Cy r cx denote the position vector of the 
center of the rear wheel of the tractor in coordinate {0}, ( )[3]∗ is the 3rd item of the 
vector∗ , and i jw ww、  ( 1,2; 1,2,3i j= = ) is the function of kq ( 2,3,4,7,8k = ). 

 We assume that the bicycle is running on a flat ground. The attitude matrix of the front 
fork of the U-shaped block is denoted by αR , and the roll angle is denoted byα , and the 
attitude matrix of the rear fork of the U-shaped block is denoted by βR , and the roll angle is 

denoted by β . As a result, we would get two equations : 0 1
1 5a = R R R , 

0 1 5
1 5 6β =  R R R R . Therefore, we further have:  

2qα = , 8 2 2 8 3 7+s c s c s sβ +=                 (20)~(21) 

From Eq. 16 and Eq. 18~Eq. 21, we can knowα , β is the function of iq ( 2,4,5i = ). 

3.3 Velocities of the COM 

We set the velocity of the geometric center of 4B as: 

(4) (4) (4)
4 1 2C x y= + v e e                 (22) 

Considering the principle of the relative motion, we can get the velocity of 
kB ( 1,2,3,5,6,7k = ), respectively, as follows:  
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(1) 1 (4) (1) (1)
4 4 1 ( 1,2,3)Ci C B Bi i= + × =v R v ω l , (1) 1 (4) (1) 1 (5)

5 4 4 5 5 5( )C C B B= + × v R v ω R l    (23)~(26) 

(1) 1 (4) (1) 1 (5) 1 (6) (6)
4 4 5 5 6 5 6( ) ( ) ( 6,7)Cj C B o B Bj j= + × + × =  v R v ω R l R ω l    (27)~(28) 

where (1)
Civ is the velocity of iB ( 1,2,3,6,7i = )in{1}, (5)

6ol is the position vector in{5}from 
the origin of {6}to the origin of {5}. 

3.4 Kinetic energy and potential energy 

According to the derived ( )j
Biω ( , 1,2, ,5i j =  ) in Eq. 1~Eq. 7 

and ( )k
Ciυ ( 1,2, ,7; 1,4i k= = ) in Eq. 22~Eq. 28, we can calculate the system’s kinetic 

energy as: 

5
( ) ( ) ( ) ( )

1

1 (( ) ( ) ( ) ( ))
2

j T j k T k
Bi Bi Bi Ci Bi Ci

i
T M

=

= +∑ ω J ω υ υ         (29) 

where BiJ ( BiM )( 1,2, ,7i =  )represents the inertial matric(mass 
matrix)of iB ( 1,2, ,7i =  ), respectively.  

By substituting the nonholonomic constrains Eq. 12~Eq. 17 into T , we will get another 
form of the kinetic energyT . Simultaneously, system gravity potentialU can be given as:  

7

1
= ( 1,2, ,7)i ii

U m gh i
=

=∑              (30) 

where im and ih are the mass and center height(the ground plane as the zero potential energy 

surface) of ( 1 ~ 7)iB i = , respectively. The formula of the height of each rigid body is as 
follows: 

4 1 2=h rc , 
5

0 1 (5)
5 4 1 5( )[3]Ch h R R l= +  

, 0 (1)
4 1( )[3]( 1,2,3)

jj Ch h R l j= + =
 (31)~(35) 

6

0 1 5 (6) 0 1 (5)
4 1 5 6 1 5( )[3] ( )[3]( 6,7)

kk C oh h R R R l R R l k= + + =      (36)~(37) 

3.5 Dynamical model 
Considering the following form of Chaplygin equation: 

, ,

1 1

B B
Qd T T T

dt q q
q

q q q

γ ε
ε β σ ε β ν

β νσ σ ε β ν
ν σ

σ

+ +

= =+

∂ ∂ ∂ ∂ ∂
− − − ∂ ∂ ∂ ∂ ∂ 

=


∑ ∑












  (38) 

whereT is the kinetic energy andT is the kinetic energy by substituting nonholonomic 
constrains into T ; ,Bε β σ+ is the thσ coefficient of the thβ  nonholonomic constrain; 

qν and qσ are the generalized coordinates of the system; ε and γ are the numbers of the 

independent generalized coordinates and the nonholonomic constrains; Qσ
 is 

the thσ generalized force of the system. The system’s dynamics as:  
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( ) ( , ) ( )θ θ θ+ + =  D q q C q q q G q τ          (39) 

In (39), ( )
3 3

( , )= ijCθ ×
C q q , ( )1 2( )= 0 TG GG q , and ( )

3 3
( )= ijD

×
D q denote 

centripetal-Coriolis, gravity terms and the inertia; 4 5(0, , )Tτ τ=τ denote the driving torque 
vector; θq and q are two kinds of generalized coordinates, which are defined as: 

( )2 4 5, , Tq q qθ =q , ( )1 3 7 8, , , Tq q q q=q . 
Eq. 39 indicates the TTB is an under-actuated system with three independent velocities, 

and for more detail: The roll angle ( 2q α β、 、 ) of 1 5 6B B B、 、 are 
under-actuated,andα β、 is the function of iq ( 2,4,5i = ); There are totally two driving 
inputs in the two joints iq ( 4,5i = ), so we could regulate control-force inputs iτ ( 4,5i = ) of 
the two joints to control the roll angle ( 2q α β、 、 ) of the TTB.  

4 Model verification 
We will demonstrate the reliability of the model (see Eq. 39) by two different approaches. 
One is the use of an inverse dynamic simulation of Eq.39 under a given balanced trajectory 
in Matlab, from which we compare the energy increment with the input work of the 
dynamic bicycle. The other is the use of a virtual prototype simulation in ADAMS, by 
which we compare the driving torque of the handlebar in Adams with the model-calculated 
handlebar driving torque.  

Table 1 shows the physical parameters which would be used in the numerical simulation. 
Note that we obtain the parameters from the measurement of a virtual TTB prototype in 
Solidworks.  

Table 1. Physical parameters. 

Symbol Value Unit Symbol Value Unit Symbol Value Unit 

1l  0.250 m (6)
7Bl  ( )-0.347 0 0  m 1m  25.038 kg 

(1)
1Bl  (0.275,0,0.145)  m 1BJ  

3.106 0 0
0 0.581 0
0 0 2.629

 
 
 
 
 

 
kg·m2 2m  2.946 kg 

(1)
2Bl  (0.070,0,0.166)  m 2BJ  

0.070 0 0
0 0.073 0
0 0 0.008

 
 
 
 
 

 
kg·m2 wm  1.616 kg 

(1)
3Bl  (0.893,0,0)  m 3BJ  

1.000 0 0
0 0.500 0
0 0 1.000

 
 
 
 
 

 
kg·m2 5m  2.294 kg 

(1)
5Bl  (-0.274,0,0.036)  m 5BJ  

0.040 0 0
0 0.070 0
0 0 0.040

 
 
 
 
 

 
kg·m2 6m  2.070 kg 

(6)
6Bl  (-0.204,0,0.102)  m 6BJ  

0.033 0 0
0 0.056 0
0 0 0.060

 
 
 
 
 

 
kg·m2 1r  0.200 m 
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4.1. Inverse dynamics simulations 

The simulation is perform with two steps. 
 Step 1: trajectory planning 

We plan the motion trajectory of the roll angle of the tractor frame 1B and the angular 
velocity of the front wheel of the tractor 5B : 

2 1 sin( )tq A e tσ ω ϕ−= + , 5 2q A= , 5 0q = . 
where 1 / 35A π= , 2 6A π= , -1σ = , ω π= , / 2ϕ π= . 
 Step 2: : driving torque calculating 

By solving Eq. 39, we can calculate the driving torque 4τ of the handlebar 2B and the 
driving torque 5τ of the front wheel of the tractor 5B , and then we will obtain:  

11 22 11 1
4 21 2 2

12 12

( )D D D FD q F
D D

τ = − − + , 11 32 32 3
5 31 2 2

12 12

( )D D D FD q F
D D

τ = − − +     (40) 

Here, 1 11 2 12 4 1F C q C q G= + +  , 2 21 2 22 4 2F C q C q G= + +  , 3 31 2 32 4 3F C q C q G= + +  . 
Fig. 3 examines two kinds of kinetic energy: T1 is get by the current velocity and T2 is 

get by the previous velocity and the elementary work.  
Fig. 4 shows the difference between the mechanical energy and the work of the running 

bicycle.  

0 1 2 3 4 5 6 7 8 9 10
421.5

422

422.5

423

t/(s)

T1
&

T2
/(J

)

 

 

T1
T2

 
Fig. 3. Comparison of two kinds of kinetic energy. 

 

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10
x 10

-4

t/(s)

dE
-d

W
/(J

)

 
Fig. 4. Difference between energy and work. 

As seen in Fig. 3~Fig. 4, while calculated by use of different variable, the two kinetic 
energy are coincident, and the difference between the increment of the mechanical energy 
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and the elementary work is less than -310 (see Fig. 4). The results show that our dynamical 
model (Eq. 39) strictly obey the law of conservation of energy.  

4.2. Virtual prototype simulation 

The simulation is as follows: 
 Experiment description 

First, we build the virtual prototype in Adams platform, and add kinematic pairs and 
constraints to each rigid body part. Secondly, we define the type of contact between the 
wheels of the TTB and the ground, and add static friction and dynamic friction. The 
parameter settings such as system quality, moment of inertia, length and body structure 
length required for simulation are shown in Table 1.Finally, the angular velocity of the 3B is 
set to 650r/min, then a simply PD controller is designed as: 

4 1 2 1 2= p dk q k qτ +  , in which 1 15pk = , 1 5dk = . 
The handlebar is governed by the controller to balance the TTB. The simulation 

continue with 20s due to the space limit. The relative data of the virtual prototype are 
exported for the post process after the complement of the simulation. 
 Experiments result and analysis 

We calculated the driving torque of the handlebar 2B through the dynamical model in Eq. 
39. Also, we got the measurement of this torque from ADAMS. 

Fig. 5 show that TTB is running on a flat plane in the ADAMS simulation platform 
environment. 

 
Fig. 5. Snapshot of the balanced running TTB in ADAMS. 

Fig. 6 show the results of the analysis.  
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a) the roll angle of the tractor frame 
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b) the roll angle of the rear fork of the U-block 
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c) the angular acceleration of the front wheel of the tractor 
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-10
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0

5
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t/(s)

ta
u1

&
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u2
/(n

*m
)

 

 
Measured value
Calculated value

 
d) the driving torque of the handlebar 

Fig. 6. The data to be exported in Adams. 
It is illustrated that the two kinds of the driving torque of the handlebar 2B exhibited the 

similar trend with a little difference in the amplitude. The reasons for the difference maybe 
as follows: 

1) There definitely is wheel slippage because the angular acceleration of the front wheel 
of the tractor 5B  is relatively large form 0 to 0.5 second; 2) The measurement errors of 
virtual sensors; 3) The structural parameter measurement errors; 4) The proposed 
dynamical model is developed under ideal assumption without considering the friction 
between the wheels and the ground etc.  

As a conclusion, the results of the two simulations seriously demonstrate the correctness 
and the reliability of the proposed dynamical model (Eq. 39).  

CSCNS2019
MATEC Web of Conferences 309, 05002 (2020) https://doi.org/10.1051/matecconf/202030905002

10



5 Conclusions and future work  
One of the contribution of this research is that we suggest that the TTB can be controlled 
balance by the handlebar. Another contribution of the research might be that we explored 
the dynamical model for the system. Our model illustrates that the TTB is explicitly a 
nonholonomic and under-actuated system, which consist of three independent velocities 
and two control-torque inputs. With the comparison between numerical and virtual 
prototype simulation, we validated that the reliability of our dynamical model. However, by 
so far, there is lack of realistic test to provide further support for our theoretical analysis; so, 
our next work should concentrate on the physical experiments. 
 
Our work has received the financial support from National Natural Science Foundation of China 
(Grant No. 51765011 && No. 51865005) and Project of Guangxi Natural Science Foundation (Grant 
No. 2018JJA160115 && No. 2018JJA160116).  

References 
1. Jones D E H. The stability of the bicycle[J]. Physics Today, 1970, 23(4): 34-40. 
2. Tanaka Y, Murakami T. Self sustaining bicycle robot with steering controller[C]// The 

8th IEEE International Workshop on Advanced Motion Control, Kawasaki 
International Center, Kawasaki, Japan. Kawasaki: IEEE, 2004: 193-197. 

3. Kooijman J D G, Meijaard J P, Papadopoulos J M. A bicycle can be self-stable without 
gyroscopic or caster effects [J]. Science Magazine, 2011, 332(6027): 339-342. 

4. Huang Y H, Liao Q Z, Guo L, et al. Simple realization of balanced motions under 
different speeds for a mechanical regulator-free bicycle robot[J]. Robotica, 2014, 72(9): 
1-15.  

5. Huang Y H, Liao Q Z, Guo L, et al. Balanced motions realization for a mechanical 
regulators free and front-wheel drive bicycle robot under zero forward speed[J]. 
International Journal of Advanced Robotic Systems, 2013, 10(317):1-9. 

6. Li J, Wei S M, Guo L, et al. Adaptive fuzzy control of a front-wheel drive bicycle 
robot[C]// 2016 4th International Conference on Cloud Computing and Intelligence 
Systems, IEEE, 2016: 113-116. 

7. Lee S, Ham W. Self stabilizing strategy in tracking control of unmanned electric 
bicycle with mass balance[C]// Proceedings of the 2002 IEEE/RSJ International 
Conference on Intelligent Robots and Systems, Lausanne, Switzerland. Lausanne: 
IEEE, 2002: 2200-2205. 

8. Bui T T, Parnichkun M, Le C H. Structure-specified H∞ loop shaping control for 
balancing of bicycle robots: A particle swarm optimization approach[J]. Proceedings of 
the Institution of Mechanical Engineers. Part I: Journal of Systems and Control 
Engineering, 2010, 224(7): 857-867. 

9. Liu Y B, Jia C H, Han J H. Dynamics modeling of an unmanned bicycle with parallel 
mechanism adjusting stability[C]// Proceedings of the 2009 IEEE International 
Conference on Mechatronics and Automation, Changchun, China. Changchun: IEEE, 
2009: 1601-1605. 

10. Jin H Z, Yang D C, Liu Z X, et al. A gyroscope-based inverted pendulum with 
application to posture stabilization of bicycle vehicle[C]// Proceedings of the 2015 
IEEE Conference on Robotics and Biomimetics, Zhuhai, China. Zhuhai: IEEE, 
2015:2103-2108. 

CSCNS2019
MATEC Web of Conferences 309, 05002 (2020) https://doi.org/10.1051/matecconf/202030905002

11



11. Yin S, Yamakita M. Passive velocity field control approach to bicycle robot path 
following [C]// Proceedings of the SICE Annual Conference, Tsukuba, Japan. 
Tsukuba : IEEE, 2016: 1654-1659. 

12. Kim Y, Kim H, Lee J. Stable control of the bicycle robot on a curved path by using a 
reaction wheel[J]. Journal of Mechanical Science and Technology, 2015, 29 (5): 
2219-2226. 

CSCNS2019
MATEC Web of Conferences 309, 05002 (2020) https://doi.org/10.1051/matecconf/202030905002

12


	1 Introduction
	2 Mechanical structure
	3 Dynamical model
	3.1 Coordination settings
	3.2 Constraint analysis
	3.3 Velocities of the COM
	3.4 Kinetic energy and potential energy

	4 Model verification
	4.1. Inverse dynamics simulations
	4.2. Virtual prototype simulation

	5 Conclusions and future work

