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Abstract 

 
We present a biologically motivated method for 

scene image classification. The core of the method is to 
use shape based image property that is provided by a 
hierarchical feedforward model of the visual cortex 
[18]. Edge based and color based image properties 
are additionally used to improve the accuracy. The 
method consists of two stages of image analysis. In the 
first stage, each of three paths of classification uses 
each image property (i.e. shape, edge or color based 
features) independently. In the second stage, a single 
classifier assigns the category of an image based on 
the probability distributions of the first stage classifier 
outputs. Experiments show that the method boosts the 
classification accuracy over the shape based model. 
We demonstrate that this method achieves a high 
accuracy comparable to other reported methods on 
publicly available color image dataset. 
 
1. Introduction 
 

The ability to distinguish between multiple semantic 
categories of natural scene images is a challenging and 
attractive target for the field of computer vision. 
Although human vision is still superior to computer 
vision on image classification tasks, recent studies 
have made significant advances in improving the 
ability of computers to classify images. Some basic, 
although not very accurate, approaches for classifying 
scene images are on the basis of low level features 
such as color histogram information and power 
spectrum [1, 2, 3, 15].  A number of recent studies 
showed improvement in the accuracy of classification 
by using previously assigned intermediate 
representations to classify images [4, 5, 6, 7]. There 
are several ways to obtain such intermediate 
representations, for instance, labeling by human 
observers [4], classifying grids based on color and 
edge [6], retrieving automatically based on Latent 

Dirichlet Allocation [5] or probabilistic Latent 
Semantic Analysis [7] .  

A method that does not use intermediate 
representations, but instead relies on the spatial 
information of features, has been described [8].  This 
method applied to 15 scene categories has achieved a 
significant improvement in the accuracy of 
classification over a simple bag-of-features approach. 
The key point of the improvement is to utilize local 
distribution of edges or SIFT features together with a 
histogram that shows the number of the features found 
in a local region. The idea of using local distribution of 
features has been applied to intermediate 
representation approaches to achieve state-of-the-art 
performance [7].  

These approaches have achieved high accuracy on 
scene classification, even though they do not require 
detection of explicit objects existing in the whole 
image. Taken together with the well known fact about 
the human vision that scenes can be viewed in a short 
time when there is not enough time for eye movements 
or attention shifts [9], the results of these studies 
suggest that global properties provide sufficient 
discrimination power for natural scene images. 

If global properties classify scene images well, 
object recognition mechanisms that incorporate current 
knowledge about the early stage of human and primate 
vision analysis [10, 18] may provide good performance 
on scene classification. 

Though it is well known that humans can recognize 
objects without color, presence of color improves the 
accuracy and response time in the early stage of scene 
categorization by human subjects [11]. We therefore 
assumed that the accuracy of scene classification with 
the biologically inspired vision model may be 
improved by including color analysis. 

In addition, research on the vision system of 
primates has shown evidence that the luminance and 
chrominance components of an image signal are 
processed through separate pathways [12]. The 
concept of analyzing color and texture information 



separately has been applied to improve the accuracy of 
image classification [3]. 

 
In this paper, we describe a method for classifying 

scene images that separately analyzes three types of 
image attributes.  It builds on the biologically inspired 
model of shape based analysis and has the potential to 
incorporate color information and local distribution of 
edges to refine the accuracy of image classification. 
The structure of the method is described in section 2 
and the results of evaluation are shown in section 3. 
We demonstrate that this method achieves a high 
accuracy comparable to other state-of-the-art methods.  

 
2. Approach 

 
Figure 1 shows the outline of the proposed method. 

The method is composed of two stages of analysis. In 
the first stage, three paths of classification use different 
image features independently of each other. The core 
of the method is shape based analysis which follows 
the standard model of the visual cortex described in 
[10]. Edge based analysis and color based analysis are 
the other two paths in the first stage of the method. In 
the second stage, outputs from the first stage are 
combined by different strategies to assign a scene 
category to the test image. The details of how to 
compute the shape based feature is described in section 
2.1 and how to compute the edge and color based 
features is described in section 2.2.  

 
2.1. Biologically inspired model 

 
The standard model of vision follows a theory of 

immediate object recognition (first 100 to 200 
milliseconds after the recognition process starts). The 
model consists of four layers of computational units, 
namely two S units (S1, S2) and two C units (C1, C2). 
S and C respectively correspond to ‘Simple’ and 
‘Complex’ cells discovered by Hubel and Wiesel [13] 
in the primary visual cortex (V1). The values of C2 
units are computed in a hierarchical way thorough S1, 
C1, S2 and C2 in turn. In the classification stage, the 
responses of C2 units (C2 feature) of training images 
are used to learn the category and those of test images 
are used to predict the category of the image. 

The method described in this paper uses the 
standard model source code that is available on the 
Web [17]. The parameter values in the model are the 
same as in [10]; these match what is known about the 
primate vision system. All input images that have color 
information are converted to grayscale before the 
computation of the S1 units.  

Responses of S1 units are computed by 2-D Gabor 
filter using the following equation: 
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where ,sincos  yxX   cossin yxY  and λ 

(aspect ratio) = 0.3. The filter sizes are varied from 
7 7 to 37 37 pixels in 2 pixel increments. Each size 
of the filter has a corresponding wavelength λ, and 
effective width σ (Table 1 in [10] for detail). The 
orientation θ is either 0°, 45°, 90° or 135°, therefore, 
S1 units form a total of 64 receptive fields (16 sizes 4 
orientations).  
 

The computed S1 responses are pooled together in 
the C1 layers with a MAX operation. This operation 
brings some tolerance against change in location or 
size. The C1 layers consist of several scale bands and 
several orientations of C1 units. Each scale band of C1 
units pools together two adjacent sizes of S1 units with 
the same orientation. In this model, the number of 
scale bands is 8 and the pooling grid size of scale 
bands ranges from 8 8 (scale 1) to 22 22 (scale 8) by 
increments of 2. C1 responses of each scale band are 
computed with S1 responses subsampled to be fit to 
the grid size. The pooling grids overlap by the amount 
of half of a pooling grid size. C1 units form a total of 
32 receptive fields (8 sizes 4 orientations).  

 
In the S2 layers, S2 units compute the responses 

between patches of C1 units and previously stored 
prototypes composed of some C1 units. The prototypes 
P with the size of nn  and 4 orientations are 
extracted randomly from the C1 layers of training 
images and stored. S2 responses r are represented by 
the Euclidean distance between the image patches X of 
C1 units and particular prototypes P. The response of 
the patch Xj to the prototype Pi is given by the 
Gaussian radial basis function:  
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where  is a tuning parameter for the sharpness of the 
response and is the absolute value of a iP ; the square 

root of its inner product. 
 
C2 units take the maximum over all scales and 

positions of S2 responses in the previous layer.  
Therefore, the number of C2 units is the same as the 
number of prototypes. When the number of prototypes 
is N, each image has an N-dimensional vector 
consisting of C2 responses. A C2 feature is represented 
by the vector and can be considered as a global 
property because each C2 response does not have scale 



or position information, but is the value of the 
strongest S2 response to a particular shape.  

The size of a prototype in this paper is chosen 
among 4, 8, 12 and 16 randomly at a learning stage. 
We preliminarily examined the possibility that 
extending the range of prototype sizes may improve 
the accuracy of scene image classification. The result 
suggested that adding smaller and larger sizes of 
prototypes did not seem to improve the accuracy 
significantly and that the increase in the number of 
prototypes might even decrease the accuracy.   
 
2.2. Addition of edge and color based features 
    

First, we explain how to compute edge based 
features. The histograms of C1 responses represent 
edge information in this system. After an image is 
divided into several equally sized regions (Nr), C1 
histograms are computed for each region so that the 
histograms have a local distribution of edges. After the 
responses of S1 and C1 units are computed from each 
region with the same model parameters as shown in 
Section 2.1, a histogram with Nb bins is calculated in 
the each region. As there are Nr regions, there are Nr 
histograms, and they are concatenated for an image. In 
this paper, because C1 units have 32 fields (8 sizes 4 
orientations) in every single region, the dimension of 
the histogram is 32Nb and the total dimension for the 
image is 32  Nb  Nr. The values of histograms are 
normalized by the number of C1 units that are included 
in the corresponding field where the histogram is 

calculated so that the range of the histogram is 0 to 1 
and different sized images can be analyzed.  

Color histogram information for an image has been 
used for object recognition and image retrieval. 
Although several types of color descriptors may be 
used (such as Lab, HSL, LUV, etc), we used HSV 
information in our method, based on the number of 
studies which demonstrate its effectiveness in scene 
image classification [2, 7].  

While a color image is converted to grayscale in 
computing shape based and edge based paths, original 
data set images are used in the color based path. The 
image is divided equally into several small regions 
(Nrc), and the histograms for H, S and V values are 
computed with Nb bins. The value of a histogram is 
normalized by the number of pixels in the region for 
the range 0 to 1. Three types of histograms of H, S and 
V are concatenated into one vector, therefore the 
dimension of the vector of each region is 3Nbc and 
the total of the whole image is 3NbcNrc.  

 
The features obtained for each path at the first stage 

analysis of our method (shape based path, edge based 
path and color based path) are combined in the second 
stage in the following manner: 1) three multi-class 
Support Vector Machine (SVM) classifiers are trained 
separately with C2 features, C1 histograms, HSV 
histograms using training images, 2) as the first stage 
of analysis, any test image gets three different category 
predictions as outputs from the individual SVMs for 
each path, 3) finally, the first stage outputs are used as 

Figure 1.  Overview of the proposed method. In the first stage, images are analyzed by three separate 
paths (only shape based and edge based paths are used in the analysis of grayscale images). In the second 
stage, the separate first stage outputs are combined by various classifiers to assign the output category for 
the image.  



the inputs for the second stage classifier which 
provides the final result of classification for the image.   

 
3. Experimental Evaluation 

 
We evaluate our method by analyzing each path 

separately in the first stage and in combination at the 
second stage. The Caltech Natural Scene image (NS) 
dataset [5] is used to evaluate the shape based and edge 
based paths. The MIT Color NS dataset [4] is used to 
evaluate the full feature method.  

 
3.1. Edge based path (Caltech NS dataset) 
 

The performance of the method is evaluated by 
measuring the accuracy of scene classification. If the 
proposed method, which combines C2 feature and C1 
histogram, works effectively, its accuracy will exceed 
the accuracy of either of the C2 feature or the C1 
histogram alone. The Caltech NS dataset is composed 
of 13 categories of grayscale images: suburb (241 
images), bedroom (174), kitchen (151), living-room 
(289), office (216), coast (360), forest (328), highway 
(260), inside-city (308), mountain (410), open-country 
(260), tall-building (356). The image size is around 
300  250 pixels, and the images are not resized in the 
evaluation.  

The accuracy of the 13-category classification 
reported here is the average of 13 precisions of each 
category which is obtained by taking the average of 
five independent runs. In each run, 100 training images 
are selected randomly, and 50 test images are also 
selected randomly form the rest of images for each 
category. 

The prototypes (see sec. 2.1), with which the C2 
responses are computed, are extracted from training 
images with randomly chosen sizes from random 
locations of C1 response fields. Two multi-class SVMs 
are used as the first stage classifier for the C2 features 
and the C1 histograms respectively. Each SVM is 
trained with one-versus-all method and its parameters 
are determined based on twofold cross validation with 
all training images. The class or category of a 
particular test image is designated by taking the class 
having the highest response of SVM outputs.  

Figure 2 shows the result of the classification with 
the C2 features. The graph in the figure expresses the 
correlation between the accuracy/deviation and the 
number of prototypes. While the number of prototypes 
greatly affects the accuracy when the number is small, 
accuracy does not improve significantly after the 
number reaches over 2600 (equivalent to 2 prototypes 
per training image). 
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Figure 3 shows the result of the classification with 
the C1 histograms. The graphs express the correlation 
between the accuracy and the number of bins of C1 
histograms over several types of region divisions. In 
the figure, ‘2 by 2’ has 4 regions in an image, which is 
divided into 2 regions horizontally and into 2 vertically. 
Similarly, ‘3 by 3’ has 9 regions, and ‘2 by 2 + center’ 
has 5 regions with the region which has the same area 
size as others located at the center in addition to the ‘2 
by 2’. In ‘Global’, the entire image is used without any 
partitioning. This result shows that dividing the image 
and getting histograms from the small regions 
improves the accuracy of the classification and that 25 
bins is sufficient in most cases. Interestingly, ‘Global’ 
has the lowest accuracy, suggesting that dividing the 
image improves the accuracy for the edge based 
analysis. The best result of 73.2% accuracy is achieved 
in two conditions: ‘2 by 2 + center’ with 25 bins (5 
regions; vector dimension 4000) and ‘3 by 3’ with 50 
bins (9 regions; vector dimension 14400). Interestingly, 

Figure 3.  Accuracy versus the number of bins of C1 
histogram for several types of region divisions. 

Figure 2.  Accuracy and standard deviation versus the 
number of prototypes on classification with C2 feature. 



the ‘2 by 2 + center’ provides competitive performance 
to the ‘3 by 3’ in this case. 

Having determined the accuracy of C2 response 
and of C1 histograms to be 77.7% and 73.2% 
respectively, the target for the second stage classifier is 
to get higher accuracy than 77.7%. The inputs for the 
second stage classifier are the outputs of the first stage 
classifiers. A softmax function is used to convert them 
to probabilities [14]. At the second stage of the method, 
images are classified by combining the first stage 
outputs using the same strategies as in [16]. 1) 
Summation: the two 13-dimentional vectors consisting 
of the first stage classifier outputs are added together 
to create a new vector. The category that has the 
maximum output over the 13 elements of the new 
vector is the predicted category of the image. 2) 
Product: The procedure is similar to ‘Summation’, 
however, instead of taking the sum of each vector 
element, products for each element are calculated to 
create a new vector. The category which has the 
maximum value over the 13 factors is the predicted 
category. 3) Majority vote: the maximum value of all 
elements of two 13-dimensional vectors is searched, 
and the category having the maximum value over 26 
elements is the predicted category. Table 1 shows the 
classification result with our method using the second 
stage classifiers. ‘Summation’ and ‘Product’ strategies 
successfully improved the accuracy, as compared to 
the accuracy with only C2 feature. 
 
 

 
 
3.2. Full feature method (MIT NS dataset) 

 
Next, we evaluated the method with full feature 

including HSV information on the MIT Color NS 
dataset. The MIT dataset, which has been inherited by 

 
 
 

the Caltech NS dataset, is composed of 2680 images of 
8 categories: coast, forest, highway, inside-city, 
mountain, open-country and tall-building. Each image 
is 256 256 pixels.  
 

In the color based path analysis, the number of 
regions and the number of bins for computing HSV 
histogram had the values that gave the best result on 
image classification task, on this 8-category dataset, in 
preliminary tests. Similar to the edge based path, each 
data split contained 100 randomly selected training 
images and 50 test images for each category. 

The best classification accuracy was achieved with 
the average of 144 regions (divided into 12 
horizontally and 12 vertically) and 5 bins for H, S and 
V (total 15 bins). These parameters were used in 
subsequent evaluations, in addition to the parameters 
of C2 feature’s 1600 prototypes extracted from 
training images (2 prototypes per image) and the C1 
histogram’s 5 regions and 25 bins which were decided 
based on the previous evaluation (see sec. 3.1). 

For the full method evaluation, we chose the same 
test conditions as in previously published methods that 
have demonstrated state-of-the-art accuracy (87.8% [7], 
83.7% [4]). Each data split contains 100 randomly 
selected training images and the rest of the images in 
each category are used as test images. Five 
independent data splits are analyzed. For further 
comparison, we evaluated one more method ( ‘Stack’) , 

 Full feature

C2 feature  
+  

C1 
histogram 

C2 feature 
+  

HSV 
histogram 

Summation 88.6 ± 0.2 86.9 ± 0.4 87.0 ± 0.3

Product 85.8 ± 1.0 86.9 ± 0.4 84.7 ± 0.8

Majority vote 88.5 ± 0.2 85.6 ± 0.9 84.7 ± 0.8

Stack 81.9 ± 0.6 84.5 ± 0.4 79.9 ± 1.2

C2 feature 84.1 ± 0.6 

C1 histogram 80.5 ± 0.8 

HSV histogram 65.2 ± 1.2 

Table 2. The result of color image classification with 
full feature method (C1 histogram, HSV histogram and 
C2 feature) 

  
5 regions   
25 bins  

9 regions 
50 bins  

Summation 80.7 ± 1.1 81.2 ± 0.4 

Product 80.6 ± 1.2 81.2 ± 0.5 

Majority vote 77.4 ± 1.6 78.9 ± 0.8 

C2 feature 77.7 ± 0.9 

C1 histogram 73.2 ± 2.2 73.2 ± 1.1 

Table 1.  The result of grayscale image classification 
with C1 histogram and C2 feature.   



in which all first stage vectors are simply concatenated 
and classified by an SVM (there is no second stage 
classifier). 

 
Table 2 shows the result of classifications with 

either the full feature method (i.e. C2 feature, C1 
histogram and HSV), ‘C2 feature + C1 histogram’ (C2 
feature and C1 histogram) or ‘C2 feature + HSV 
histogram’ (C2 feature and C1 histogram). The best 
result is obtained by the full feature with ‘Summation’ 
as the second stage classifier. In every case, the second 
stage classifier successfully improves the accuracy 
given by C2 feature. The parameters of this model, 
such as number of prototypes, histogram bins and 
regions, can be optimized beyond what is described in 
this evaluation. However it is clear that our full feature 
method is an improvement with respect to using shape 
based classification alone. More significantly, we 
demonstrated that the full feature method provides 
slightly superior performance (88.6% accuracy) 
relative to the previous state-of-the-art method (87.8% 
accuracy).  

An interesting aspect of this evaluation is that even 
though HSV histogram by itself is not enough for 
accurate classification (65.2%), the color based path 
boosts the accuracy of the C2 feature, comparing ‘C2 
feature + HSV histogram’ of 87.0% accuracy to C2 
feature alone of 84.1% under the ‘Summation’ (see 
Table 2). Similarly, the full feature method is able to 
achieve 88.6% accuracy while ‘C2 feature + C1 
histogram’ is 86.9% accurate without the contribution 
of the color.  

 
Figure 4 (a) shows the detail of improvement in 

precision of each category. Each bar in the graph 
shows the difference of precisions: between ‘C2 
feature + HSV histogram’ and only C2 feature on the 
left graph and between the full feature method and ‘C2 
feature + C1 histogram’ on the right. None of 
categories suffer from a decrease in precision. Figure 4 
(b) illustrates the example of the most significant 
improvement; ‘open-country’ increased by 7.5% with 
addition of HSV to C2 feature. ‘open-country’ is most 
often confused with ‘coast’ by C2 feature alone. Figure 
4 (b) includes examples of images that are incorrectly 
classified as ‘coast’ by C2 feature but correctly as 
‘open-country’ by ‘C2 feature + HSV histogram’. 
 
 
4. Conclusion 
 

We have described a biologically inspired method 
for image classification that utilizes three image 

properties which are shape based, edge based and color 
based. The method consists of two stages of image 
analysis. In the first stage, each image property is 
independently used for classification. In the second 
stage, a single classifier assigns the image category 
based on the probability distributions of the first stage 
classifier outputs. We demonstrate that our method can 
achieve a high accuracy which is comparable to the 
best reported methods on color scene image dataset. 
The better classification results obtained by adding 
edge or color based properties to shape based 
properties suggest that  low level image features based 
on edges and color can boost classification accuracy 
when combined with higher level, shape-based,  
properties. 
 
 
 

 
 

 
(a) The improvement of precisions on each category 

by adding HSV histogram. Left: added to C2 feature. 
Right: added to C2 feature and C1 histogram. (CO: coast, 
FO: forest, HW: Highway, IS: inside-city, MO: mountain, 
OC: open-country, ST: street, TB: tall building)  

 
 

 
 

(b) Example images of ‘open-country’ that are 
correctly classified by ‘C2f + HSV’, while classified 
‘coast’ incorrectly by C2 feature.  

 

 
 

  Figure 4.  Improvement by HSV histogram on 
color image classification. 
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Appendix. 
 
A-1. Reduction of Color information 

 
In our study, we demonstrated that including color 

analysis improves the accuracy of image classification. 
Although color information in a particular scene is 
generally varied (e.g. the brightness of a coast scene on 
a sunny day is much different from the brightness on a 
cloudy day) and color descriptors are not able to 
classify scenes very well by themselves (see Table.2), 
the addition of color information helps C2 and C1 
features classify scene images. This suggests that there 
might be a typical range of color descriptor values for 
semantic categories in a scene image data set, such as 
MIT Color NS, which is categorized by human 
subjects. Taking into account potential bias in the 
variety of  color information in scene images, we 
supposed that all of the HSV descriptors, H (hue), S 
(saturation) and V (brightness) information, could be 
reduced effectively. 

 
In this section, we investigate whether all HSV 

color descriptors are required to help the C2 feature 
and C1 histogram improve the accuracy of scene 
classification, or if a part of HSV is enough. We 
determined the accuracy that the full feature method 
can achieve on classifying the MIT Color NS dataset, 
with either all of hue, saturation and brightness 
histograms (HSV), with hue and saturation (HS) and 
with hue alone (H). The examination settings and data 
splits are as described in section 3.2. In the previous 
evaluation, the number of histogram bins for either of 
H, S or V in each region is 5, and the same number of 
bins is chosen in this evaluation. As the number of 
regions is 144, HSV has a total of 2160 histogram bins 
for an image (15 bins in a region), HS has 1440 (10 in 
a region) and H has 720 (5 in a region). 

 
Table A-1 shows the result of the limited color 

information analysis, one with all of HSV, another 
with HS and the other with H alone. As the second 
stage classifier, a trained second SVM strategy is 
utilized in addition to the previously mentioned 
‘Summation’. The accuracy with ‘Summation’ stays 
almost the same even when the HSV information is 
reduced from HSV (88.6%) to HS (88.6%) or H 
(88.4%), however if all color information is removed, 
accuracy decreases (86.9%). On the other hand, the 
accuracy of classification by only color information 
decreases when available color information is limited 
(from 65.2% of HSV to 61.6% of H alone).  

Using the SVM as the second stage classifier does 
not improve the accuracy significantly but does 
provide higher accuracy than ‘Summation’ on HSV 
(88.9%) and H (88.7%). The results of SVM second 
stage classifier comparing HSV and H are shown in 
Figure A-1 as confusion maps. The similarity between 
the two maps suggests the potential for including only 
H color information in the full feature method. The 
result of the method with only H, suggests that this 
classification scheme is more robust than one with 
HSV, as smaller number of features is required while 
maintaining accuracy. 
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Figure A-1. The confusion matrixes of the full 
feature method analysis with either all of HSV (left) or 
H alone (right). 

Table A-1.  The results of color image classification 
with various aspects of color information. 

 HSV HS H No color

Summation
88.6 
± 0.2 

88.6 
± 0.2 

88.4 
± 0.2 

86.9 
± 0.4 

SVM 
88.9 
± 0.3 

88.1 
± 0.7 

88.7 
± 0.6 

87.0 
± 0.4 

Only Color
65.2 
± 1.2 

61.9 
± 1.0 

61.6 
± 1.1 

- 
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