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Abstract—Approximate Dynamic Inversion has been estab-
lished as a method to control minimum-phase, nonaffine-in-
control systems [1]. In this report, we re-state the main results
of [1], clarify some minor notational errors, and prove the same
results in an expanded form. In the large, the main results
of [1] still stand. The development follows [1] closely, and no
novelty is claimed herein. The purpose of this report is mainly
to supplement our existing results in [2]–[4] that rely heavily on
the results of [1].

Index Terms—Dynamic inversion, feedback linearization, ap-
proximate.

I. INTRODUCTION

IN [1], an Approximate Dynamic Inversion (ADI) control
law was proposed that drives a given minimum-phase

nonaffine-in-control system towards a chosen stable reference
model. The control signal was defined as a solution of “fast”
dynamics, and Tikhonov’s Theorem [5, Theorem 11.2, pp.
439 – 440] in singular perturbation theory was used to show
that the control signal approaches the exact dynamic inversion
solution, and that the system state approaches and maintains
within an arbitrarily close neighborhood of the state of a
chosen reference model when the controller dynamics are
made sufficiently fast.

Previous results in [2]–[4] rely heavily on the results of [1].
This report re-state the main results of [1], clarify some minor
notational errors, and prove the same results in an expanded
form. The main purpose is to supplement previous results
in [2]–[4]. Importantly, no novelty of any form is claimed

herein. The main results of [1] are Theorems 2 and 3 (in [1]),
which establish the ADI method for single-input-single-output
(SISO) and multi-input-multi-output (MIMO) nonlinear sys-
tems respectively. These correspond in the present report to
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Theorems 4 and 5 respectively. The primary differences in the
statement of these theorems between [1] and the present report
are the first and third technical assumptions, arising from
some (minor) notational errors, but nonetheless can lead to
confusion or erroneous interpretations. We will show explicitly
that the assumptions stated in Theorems 4 and 5 herein
leads correctly to the desired results. Another key difference
between [1] and the present report is in the part of the proof
which verifies the second technical assumption. It was claimed
in [1] that the second technical assumption implies, together
with [5, Lemma 4.6, pp. 176], that the reduced system of
the associated singular perturbation model is input-to-state
exponentially stable, which is stronger than the conclusion
of [5, Lemma 4.6, pp. 176]. We will prove a stronger version
of [5, Lemma 4.6, pp. 176] as Lemma 1 in Section II-B,
to justify the claim. However, to establish Lemma 1, some
required intermediate results which are strengthened versions
of corresponding results in [5] must be established, which are
presented in Section II-B. Subtle differences between [1] and
the present report will be mentioned in passing, together with
some clarifications.

The report will proceed as follows. We recall Tikhonov’s
Theorem from singular perturbation theory, which is the basis
of the ADI method, in Section II-A. Strengthened versions
of corresponding results in [5] are presented in Section II-B,
leading to the sought Lemma 1. The main result for SISO
systems and its extension to MIMO systems are presented in
Section III and IV respectively. The final section concludes
this report.

II. PRELIMINARIES

Here, we present Tikhonov’s Theorem from singular pertur-
bation theory and some strengthened versions of correspond-
ing results in [5]. These will be needed to establish the main
results of ADI.
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A. Tikhonov’s Theorem from Singular Perturbation Theory

Consider the standard singular perturbation model [5,
Chapter 11]

ẋ = f(t, x, z, ε), x(0) = ξ(ε),

εż = g(t, x, z, ε), z(0) = η(ε),
(1)

where ε is a small positive parameter, and ξ(ε), η(ε) depend
smoothly on ε. Assume that f and g are continuously differ-
entiable in their arguments for all (t, x, z, ε) ∈ [0,∞)×Dx×
Dz × [0, ε0], where Dx ⊂ Rn and Dz ⊂ Rm are domains,
and ε0 > 0. By the standard singular perturbation model, it
is meant that the equation

0 = g(t, x, z, 0) (2)

has k ≥ 1 isolated real roots

z = hi(t, x), i ∈ {1, 2, . . . , k},

for each (t, x) ∈ [0,∞) × Dx. We fix one particular i, and
henceforth omit the subscript i. Define

y = z − h(t, x).

The reduced system is then obtained by setting ε = 0, z =
h(t, x) in the first equation of (1) to get

ẋ = f(t, x, h(t, x), 0), x(0) = ξ0 = ξ(0). (3)

Let τ = t/ε. The boundary layer system in the y coordinates
in the τ time scale is then given by

dy

dτ
= g(t, x, y + h(t, x), 0), y(0) = η0 − h(0, ξ0), (4)

where η0 = η(0). The following is the main result needed.

Theorem 1 (Tikhonov [5, Theorem 11.2, pp. 439 – 440]).
Consider the singular perturbation problem of (1) and let z =
h(t, x) be an isolated root of (2). Assume that the following

conditions hold for all

(t, x, z − h(t, x), ε) ∈ [0,∞)×Dx ×Dy × [0, ε0],

for some domains Dx ⊂ Rn and Dy ⊂ Rm which contain

their respective origins:

1) On any compact subset of Dx × Dy , the functions f ,

g, their first partial derivatives with respect to (x, z, ε),

and the first partial derivative of g with respect to t

are continuous and bounded, h(t, x) and ∂g
∂z (t, x, z, 0)

have bounded first partial derivatives with respect to

their arguments, ∂f
∂x (t, x, h(t, x), 0) is Lipschitz in x,

uniformly in t, and the initial data ξ(ε) and η(ε) are

smooth functions of ε.

2) The origin is an exponentially stable equilibrium point of

the reduced system (3). There exists a continuously dif-

ferentiable Lyapunov function V : [0,∞)×Dx → [0,∞)
such that

W1(x) ≤ V (t, x) ≤W2(x),
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x, h(t, x), 0) ≤ −W3(x),

holds for all (t, x) ∈ [0,∞) ×Dx, where W1, W2 and

W3 are continuous positive definite functions on Dx. Let

c > 0 be chosen so that {x ∈ Dx | W1(x) ≤ c} is a

compact subset of Dx.

3) The origin is an exponentially stable equilibrium point

of the boundary layer system (4), uniformly in (t, x).

Let Ry ⊂ Dy be the region of attraction of the autonomous

system
dy

dτ
= g(0, ξ0, y + h(0, ξ0), 0),

and Ωy be a compact subset of Ry . Then, for each compact set

Ωx ⊂ {x ∈ Dx | W2(x) ≤ ρc, ρ ∈ (0, 1)}, there is a positive

constant ε∗ such that for all t > 0, ξ0 ∈ Ωx, η0 − h(0, ξ0) ∈
Ωy , and ε ∈ (0, ε∗), the singular perturbation problem of (1)
has a unique solution x(t, ε), z(t, ε) on [0,∞), and

x(t, ε)− x̄(t) = O(ε)

holds uniformly for all t ∈ [0,∞), where x̄(t) is the solution

of the reduced system (3).

Proof: See [5, Appendix C.18, pp. 706 – 708].

Proposition 1 (See also [5, pp. 433], and [1, Remark 1]). If

the eigenvalue condition

Re
(
λ

(
∂g

∂z
(t, x, h(t, x), 0)

))
≤ −k < 0 (5)

holds for some positive constant k and for all (t, x) ∈ [0,∞)×
Dx, then the origin y = 0 of the boundary layer system (4)
is exponentially stable, uniformly in (t, x) ∈ [0,∞)×Dx, for

sufficiently small initial conditions, ‖y(0)‖.

Proof: Since z = h(t, x) is the solution of (2), we
have g(t, x, h(t, x), 0) = 0, which shows that y = 0 is
an equilibrium point of (4). It remains to show that it is
exponentially stable. Define

g̃(τ, y) = g(ετ, x(ετ), y + h(ετ, x(ετ)), 0),
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so that the boundary layer system (4) can be rewritten as

dy

dτ
= g̃(τ, y), (6)

with x(ετ) viewed as an exogenous time-varying signal. Then

A(τ) =
∂g̃

∂y
(τ, y)

∣∣∣∣
y=0

=
∂g

∂z
(ετ, x(ετ), h(ετ, x(ετ)), 0).

When (5) holds, all eigenvalues of A(τ) have strictly negative
real parts for all (τ, x) ∈ [0,∞)×Dx, so that the origin is an
exponentially stable equilibrium point of the linear system

dỹ

dτ
= A(τ)ỹ.

By [5, Theorem 4.13], the origin is an exponentially stable
equilibrium point of the nonlinear system (6), which translates
directly to exponential stability of the origin of the boundary
layer system (4).

B. Other Auxiliary Results

Some other intermediate results that will be needed are
established here. All of these are strengthened versions of cor-
responding results in [5]. The main result needed is Lemma 1,
but to establish this, the following are needed. Define the
closed ball Br as

Br = {x ∈ Rn | ‖x‖ ≤ r},

and system
ẋ = f(t, x), (7)

where f : [0,∞)×D → Rn is piecewise continuous in t and
locally Lipschitz in x on [0,∞)×D, and D ⊂ Rn is a domain
that contains the origin.

Theorem 2 (See also [5, Theorem 4.18, pp. 172]). Let D ⊂
Rn be a domain that contains the origin and V : [0,∞)×D →
R be a continuously differentiable function such that

c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2,
∂V

∂t
+
∂V

∂x
f(t, x) ≤ −c3‖x‖2, ∀‖x‖ ≥ µ > 0,

(8)

∀t ≥ 0 and ∀x ∈ D, where c1, c2 and c3 are positive

constants, and c1 < c2. Take r > 0 such that Br ⊂ D and

suppose that

0 < µ <

√
c1
c2
r. (9)

Then, for every initial state x(t0) satisfying ‖x(t0)‖ ≤
√

c1
c2
r,

there exists T ≥ 0 (dependent on x(t0) and µ) such that the

solution of (7) satisfies

‖x(t)‖ ≤
√
c2
c1
‖x(t0)‖e−

c3
2c2

(t−t0), ∀t ∈ [t0, t0 + T ), (10)

‖x(t)‖ ≤
√
c2
c1
µ, ∀t ∈ [t0 + T,∞). (11)

Moreover, if D = Rn, then (10) and (11) hold for any initial

state x(t0), with no restriction on how large µ is.

Proof: Let ρ = c1r
2 and η = c2µ

2 and define

Ωt,η = {x ∈ Br | V (t, x) ≤ η},

Ωt,ρ = {x ∈ Br | V (t, x) ≤ ρ}.

Since η < ρ by (9), we have Ωt,η ⊂ Ωt,ρ. A boundary point
x of Ωt,η satisfies either ‖x‖ = r >

√
c2/c1µ > µ by (9),

or c2µ2 = η = V (t, x) ≤ c2‖x‖2 which implies ‖x‖≥ µ.
Similarly, a boundary point x of Ωt,ρ satisfies either ‖x‖=
r > µ or c1r2 = ρ = V (t, x) ≤ c2‖x‖2 which implies ‖x‖ ≥√
c1/c2r > µ by (9). Hence on all boundary points of Ωt,η

and Ωt,ρ, we have ‖x‖ ≥ µ so that V̇ (t, x) is negative by (8),
and all solutions starting in Ωt,η or Ωt,ρ cannot leave them.
Since c2‖x(t0)‖2 ≤ ρ by assumption, we have

V (t0, x(t0)) ≤ c2‖x(t0)‖2 ≤ ρ⇒ x(t0) ∈ Ωt0,ρ.

Then, x(t) ∈ Ωt,ρ for all t ≥ t0. A solution starting in Ωt,ρ
must enter Ωt,η in finite time because in the set Ωt,ρ \ Ωt,η ,
V̇ satisfies

V̇ (t, x) ≤ −c3µ2 < 0.

The foregoing inequality implies that

V (t, x(t)) ≤ V (t0, x(t0))− c3µ2(t− t0) ≤ ρ− c3µ2(t− t0),

which shows that V (t, x(t)) reduces to η within the time
interval [t0, t0 +(ρ−η)/(c3µ2)]. For a solution starting inside
Ωt,η, inequality (11) holds for all t ≥ t0, since for any
x(t0) ∈ Ωt,η , inequality c1‖x(t)‖2 ≤ V (t, x(t)) ≤ η = c2µ

2

holds for all t ≥ t0, which implies (11) with T = 0. For a
solution starting inside Ωt,ρ but outside Ωt,η , let t0 +T be the
first time it enters Ωt,η . For all t ∈ [t0, t0 + T ],

V̇ ≤ −c3‖x‖2 ≤ −
c3
c2
V.

Hence, by the Comparison Lemma [5, Lemma 3.4, pp. 102],
V (t, x(t)) satisfies

V (t, x(t)) ≤ V (t0, x(t0))e−
c3
c2

(t−t0), ∀t ∈ [t0, t0 + T ],

which gives for all t ∈ [t0, t0 + T ],

c1‖x(t)‖2 ≤ V (t, x(t)) ≤ V (t0, x(t0))e−
c3
c2

(t−t0),
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≤ c2‖x(t0)‖2e−
c3
c2

(t−t0),

yielding (10). If D = Rn, then r can be chosen arbitrarily
large, and any initial state x(t0) can be included in the set
{x ∈ Rn | ‖x‖ ≤

√
c1
c2
r}.

We will need the definition of input-to-state exponential

stability. Consider the system

ẋ = f(t, x, u), (12)

where f : [0,∞) × Rn × Rm → Rn is piecewise continuous
in t and locally Lipschitz in x and u.

Definition 1 (See also [6] and [5, Definition 4.7, pp. 175]).
The system (12) is said to be input-to-state exponentially stable

if there exist a class K function γ and positive constants k and

λ such that for any initial state x(t0) and any bounded input

u(t), the solution x(t) exists for all t ≥ t0 and satisfies

‖x(t)‖ ≤ k‖x(t0)‖e−λ(t−t0) + γ

(
sup

t0≤τ≤t
‖u(τ)‖

)
. (13)

For definitions and properties of class K, K∞ and KL
functions, see [5, Section 4.4].

Theorem 3 (See also [5, Theorem 4.19, pp. 176]). Let

V : [0,∞)×Rn → R be a continuously differentiable function

such that

c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2,
∂V

∂t
+
∂V

∂x
f(t, x, u) ≤ −c3‖x‖2, ∀‖x‖ ≥ c4‖u‖ > 0,

for all (t, x, u) ∈ [0,∞)×Rn ×Rm, where c1, c2, c3, c4 are

positive constants with c1 < c2. Then the system (12) is input-

to-state exponentially stable, and its solution satisfies (13) with

k =
√
c2
c1
, λ =

c3
2c2

, γ(r) =
√
c2
c1
c4r.

Proof: By applying the global version of Theorem 2, we
find that the solution x(t) exists and satisfies

‖x(t)‖ ≤
√
c2
c1

(
‖x(t0)‖e−

c3
2c2

(t−t0) + sup
τ≥t0

c4‖u(τ)‖
)
,

for all t ≥ t0. Since x(t) depends only on u(τ) for τ ∈ [t0, t],
the supremum on the right-hand side of the above inequality
can be taken over [t0, t], which yields (13).

Lemma 1 (See also [5, Lemma 4.6, pp. 176]). Suppose

f(t, x, u) is continuously differentiable and globally Lipschitz

in (x, u), uniformly in t. If the unforced system of (12), namely

ẋ = f(t, x, 0), (14)

has a globally exponentially stable equilibrium point at the

origin x = 0, then the system (12) is input-to-state exponen-
tially stable. Its solution satisfies (13), and γ can be chosen

to be a linear function

γ(r) = cr,

for some positive constant c.

Remark 1. Observe that all assumptions of Lemma 1 are

identical to those of Lemma 4.6 in [5, pp. 176], but the

conclusion is stronger, namely of input-to-state exponential
stability, with γ of (13) being a linear function. Note that not

all class K functions can be bounded above by a (class K∞)

linear function, e.g. γ(r) = tan(r) for r ∈ [0, π2 ).

Proof: View the system (12) as a perturbation of the
unforced system (14). The Converse Lyapunov Theorem [5,
Theorem 4.14, pp. 162 – 163] shows that the unforced
system (14) has a Lyapunov function V (t, x) that satisfies

c̃1‖x‖2 ≤ V (t, x) ≤ c̃2‖x‖2,
∂V

∂t
+
∂V

∂x
f(t, x, 0) ≤ −c̃3‖x‖2,∥∥∥∥∂V∂x
∥∥∥∥ ≤ c̃4‖x‖,

(15)

for some positive constants c̃1, c̃2, c̃3, c̃4, with c̃1 < c̃2,
globally. Due to the uniform global Lipschitz property of f ,
the perturbation term satisfies

‖f(t, x, u)− f(t, x, 0)‖ ≤ L‖u‖,

for some Lipschitz constant L > 0, for all t ≥ t0 and all
(x, u). The derivative of V along solutions of (12) satisfies

V̇ =
∂V

∂t
+
∂V

∂x
f(t, x, 0) +

∂V

∂x
(f(t, x, u)− f(t, x, 0)),

≤ −c̃3‖x‖2 + c̃4L‖x‖‖u‖.

To use the term −c̃3‖x‖2 to dominate c̃4L‖x‖‖u‖ for large
‖x‖, we rewrite the foregoing inequality as

V̇ ≤ −c̃3(1− θ)‖x‖2 − c̃3θ‖x‖2 + c̃4L‖x‖‖u‖,

where θ ∈ (0, 1). Then,

V̇ ≤ −c̃3(1− θ)‖x‖2, ∀‖x‖ ≥ c̃4L‖u‖
c̃3θ

,

for all (t, x, u). Hence, the conditions of Theorem 3 are
satisfied with

c1 = c̃1, c2 = c̃2, c3 = c̃3(1− θ), c4 =
c̃4L

c̃3θ
.

We conclude that the system is input-to-state exponentially
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stable with solution satisfying (13), and

k =
√
c̃2
c̃1
, λ =

c̃3(1− θ)
2c̃2

, γ(r) =
c̃4L

c̃3θ

√
c̃2
c̃1
r.

Hence γ can be chosen to be a linear function γ(r) = cr, with
c ≥ c̃4L

c̃3θ

√
c̃2
c̃1

.

III. TRACKING DESIGN FOR MINIMUM-PHASE

NONAFFINE-IN-CONTROL SISO SYSTEMS

Consider an n-th order SISO nonaffine-in-control system
of (constant and well-defined) relative degree ρ, expressed in
normal form

φ(ρ) = f(x, z, u), x(0) = x0,

ż = g(x, z, u), z(0) = z0,
(16)

defined for all (x, z, u) ∈ Dx×Dz×Du with Dx ⊂ Rρ, Dz ⊂
Rn−ρ and Du ⊂ R being domains containing the origins. The
(partial) state x is defined as x = [φ, φ̇, φ(2), . . . , φ(ρ−1)]T, and
φ(q) denotes the q-th time derivative of φ. The state vector of
the system is [xT, zT]T, u is the control input, and f : Dx ×
Dz ×Du → R, g : Dx ×Dz ×Du → Rn−ρ are continuously
differentiable functions of their arguments. To ensure that its
relative degree is constant and well-defined, assume that ∂f∂u is
bounded away from zero for all (x, z, u) ∈ Dx×Dz×Du. That
is, there exists b0 > 0 such that

∣∣∂f
∂u

∣∣ ≥ b0 for all (x, z, u) ∈
Dx ×Dz ×Du. This implies that sign

(
∂f
∂u

)
∈ {−1,+1} is a

constant, and that ψ : u 7→ f(x, z, u) is a bijection for every
fixed (x, z) ∈ Dx×Dz . Additionally, assume that the function
f cannot be explicitly inverted with respect to u.

Remark 2. That ψ is a bijection means that the inverse of f

with respect to u exist for every fixed (x, z) ∈ Dx ×Dz . By

f being not explicitly invertible with respect to u, it is meant

that an analytical expression for u in terms of x, z, and the

evaluation of f at (x, z, u) cannot be written. This happens

for example, when f is a transcendental equation in u, like

f(x, z, u) = sin(u) + 2u.

The problem is to design a controller so that x tracks the
state of a chosen ρ-th order stable linear reference model

φ(ρ)
r + ar(ρ−1)φ

(ρ−1)
r + · · ·+ ar1φ̇r + ar0φr = brr, (17)

where xr = [φr, φ̇r, φ
(2)
r , . . . , φ

(ρ−1)
r ]T ∈ Rρ is its state, r

is a continuously differentiable reference input signal with
bounded time derivative ṙ, and xr(0) = xr0 is some chosen
initial state, possibly with xr0 = x0. Stability of the reference

model requires that all roots of the characteristic equation

sρ + ar(ρ−1)s
ρ−1 + · · ·+ ar1s+ ar0 = 0

lie in the open left half complex plane, denoted by C−.

Define the tracking error φe = φ − φr and error vector
e = x − xr = [φe, φ̇e, φ

(2)
e , . . . , φ

(ρ−1)
e ]T ∈ Rρ, and choose

the desired stable error dynamics

φ(ρ)
e + ae(ρ−1)φ

(ρ−1)
e + · · ·+ ae1φ̇e + ae0φe = 0, (18)

with initial condition defined by e(0) = e0 = x0 − xr0.
Similarly, stability of the desired error dynamics requires that
all roots of

sρ + ae(ρ−1)s
ρ−1 + · · ·+ ae1s+ ae0 = 0

lie in C−. Observe that in [1], aei was set equal to ari for
i ∈ {0, 1, . . . , ρ − 1}. This is a minor extension of [1] that
allows the error dynamics to be specified independently of the
reference model dynamics.

For notational convenience in the sequel, define

ar = [ar0, ar1, . . . , ar(ρ−1)]T,

ae = [ae0, ae1, . . . , ae(ρ−1)]T,
α = sign

(
∂f

∂u

)
.

As observed above, α ∈ {−1,+1} is a constant. The open-
loop (time-varying) error dynamics are then given by the
system

φ(ρ)
e = f(e+ xr(t), z, u) + aT

r xr(t)− brr(t),

ż = g(e+ xr(t), z, u),
(19)

with initial conditions e(0) = e0, z(0) = z0. Observe that
time variance in (19) is induced by the external signals xr(t)
and r(t) only.

We want to apply Theorem 1 to the system (19) with
an appropriate controller to be specified. The ideal dynamic
inversion control is found by solving

f(e+ xr(t), z, u) + aT
r xr(t)− brr(t) = −aT

e e (20)

for u, resulting in the exponentially stable closed-loop tracking
error dynamics (18). Since (20) cannot (in general) be solved
explicitly for u, an approximation of the dynamic inversion
controller is constructed by introducing fast dynamics

εu̇ = −αf̃(t, e, z, u), u(0) = u0, (21)

where

f̃(t, e, z, u) = f(e+ xr(t), z, u) + aT
r xr(t)− brr(t) + aT

e e.

Here, ε is a positive controller design parameter, chosen
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sufficiently small to achieve closed-loop stability. Observe
that (21) relaxes the requirement for exact dynamic inversion
while increasing the control in a direction to reduce the
discrepancy (20) so as to approach the exact dynamic inversion
solution.

Let u = h(t, e, z) be an isolated root of f̃(t, e, z, u) = 0.
In accordance with the theory of singular perturbations [5,
Chapter 11], the reduced system for (19), (21), obtained by
setting ε = 0 and u = h(t, e, z) is

φ(ρ)
e = −aT

e e, e(0) = e0, (22)

ż = g(e+ xr(t), z, h(t, e, z)), z(0) = z0. (23)

With v = u−h(t, e, z) and τ = t/ε, the boundary layer system
is

dv

dτ
= −αf̃(t, e, z, v + h(t, e, z)). (24)

Applying Theorem 1 to (19) and (21) yields the following.

Theorem 4 (Hovakimyan et al. [1, Theorem 2]). Consider the

system (19) and (21), and let u = h(t, e, z) be an isolated root

of f̃(t, e, z, u) = 0. Assume that the following conditions hold

for all

(t, e, z, u− h(t, e, z), ε) ∈ [0,∞)×De,z ×Dv × [0, ε0],

for some domains De,z ⊂ Rn and Dv ⊂ R which contain

their respective origins:

1) On any compact subset of De,z ×Dv , the functions f ,

g, their first partial derivatives with respect to (x, z, u),

and r(t), ṙ(t) are continuous and bounded, h(t, e, z)
and ∂f

∂u (x, z, u) have bounded first partial derivatives

with respect to their arguments, and ∂f
∂x , ∂f∂z , ∂g∂x , ∂g∂z as

functions of (e + xr(t), z, h(t, e, z)), are Lipschitz in e

and z uniformly in t.

2) The origin is an exponentially stable equilibrium of the

system

ż = g(xr(t), z, h(t, 0, z)).

The map (e, z) 7→ g(e + xr(t), z, h(t, e, z)) is continu-

ously differentiable and Lipschitz in (e, z) uniformly in

t.

3) (t, e, z) 7→
∣∣∣∂f∂u (e+ xr(t), z, h(t, e, z))

∣∣∣ is bounded from

below by some positive number for all (t, e, z) ∈
[0,∞)×De,z .

Then the origin of (24) is exponentially stable. Let Rv ⊂ Dv

be the region of attraction of the autonomous system

dv

dτ
= −αf̃(0, e0, z0, v + h(0, e0, z0)),

and Ωv be a compact subset of Rv . Then, for each compact

subset Ωe,z ⊂ De,z , there exists positive constants ε∗ and T

such that for all t > 0, (e0, z0) ∈ Ωe,z , u0 − h(0, e0, z0) ∈
Ωv , and ε ∈ (0, ε∗), the system (16), (17), (21) has a unique

solution x(t, ε), z(t, ε), xr(t), u(t, ε) on [0,∞), and

x(t, ε)− xr(t) = O(ε)

holds uniformly for all t ∈ [T,∞).

Remark 3. The primary differences between Theorem 4 and

Theorem 2 of [1] is the first and third technical assumptions.

For comparison, we recall here these assumptions from [1]:

1) On any compact subset of De,z × Dv , the functions f

and g and their first partial derivatives with respect

to (e, z, u), and the first partial derivative of f with

respect to t are continuous and bounded, h(t, e, z)
and ∂f

∂u (t, e, z, u) have bounded first derivatives with

respect to their arguments, ∂f
∂e and ∂f

∂z as functions of

(t, e, z, h(t, e, z)) are Lipschitz in e and z, uniformly in

t.

3) (t, e, z, v) 7→ ∂f
∂u (t, e, z, v+h(t, e, z)) is bounded below

by some positive number for all (t, e, z) ∈ [0,∞)×De,z .

Note that f and g are not explicitly functions of t and e.

Proof: The proof proceeds by showing that satisfaction of
the assumptions above implies satisfaction of the assumptions
of Theorem 1, whose result can be translated to the stated
conclusions. We identify x, z, y, and h(t, x) of Theorem 1,
(denoted here by xs, zs, ys, and hs(t, xs) respectively for
distinction) with quantities in (19) and (21) by

xs ∼ [eT, zT]T, zs ∼ u, ys ∼ v, hs(t, xs) ∼ h(t, e, z).

Also, f and g of Theorem 1 (denoted here by fs and gs) are
identified with quantities in (19) and (21) as

fs ∼



φ̇e

φ
(2)
e

...
φ

(ρ−1)
e

f(e+ xr(t), z, u) + aT
r xr(t)− brr(t)

g(e+ xr(t), z, u)


∈ Rn,

gs ∼ −αf̃(t, e, z, u) ∈ R.

Now, translate the first assumption of Theorem 1. Since
xr(t) is the state of the exponentially stable system (17), xr(t)
and ẋr(t) are both continuous and bounded if r(t) and ṙ(t) are
continuous and bounded. To have fs and gs continuous and
bounded for any compact subset of Dxs

×Dys
requires that f ,
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g and r(t) be continuous and bounded for any compact subset
of De,z×Dv . Similarly, to have the first partial derivatives of
fs and gs with respect to (xs, zs, ε) continuous and bounded,
we require that the first partial derivatives of f and g with
respect to (x, z, u) be continuous and bounded. The first partial
derivative of gs with respect to t, corresponds in the present
section to the first partial derivative of −αf̃(t, e, z, u) with
respect to t given by

−α
(
∂f

∂x
(e+ xr(t), z, u)ẋr(t) + aT

r ẋr(t)− br ṙ(t)
)
.

Hence we require ∂f
∂x and ṙ(t) to be continuous and bounded.

The requirement that hs(t, xs) have bounded first partial
derivatives with respect to its arguments translates directly
to requiring the same for h(t, e, z). Since ∂gs

∂zs
(t, xs, zs, 0)

corresponds to −α∂f̃∂u (t, e, z, u), and given by

−α∂f
∂u

(e+ xr(t), z, u),

we require that ∂f
∂u (x, z, u) have bounded first partial deriva-

tives with respect to its arguments, and that ṙ is bounded.
The remaining Lipschitz conditions of Theorem 1 on xs are
straightforward. Also, since the initial conditions are inde-
pendent of ε, the smoothness conditions are automatically
satisfied. Summarizing these gives assumption 1 above.

Next, we show that the second assumption of Theorem 1
holds. To show that the origin is an exponentially stable
equilibrium point of the reduced system (22), (23), we proceed
in a manner similar to the proof of Lemma 4.7 in [5, pp.
180]. Let t0 ≥ 0 be the initial time. Clearly, e = 0 is an
exponentially stable equilibrium point of (22), and its solution
satisfies

‖e(t)‖ ≤ ke‖e(t0)‖ exp(−λe(t− t0)), (25)

for some positive constants ke, λe, and for all t ≥ t0. With
assumption 2 above, Lemma 1 shows that system (23) with e
as input, is input-to-state exponentially stable, and its solution
satisfies

‖z(t)‖ ≤ kz‖z(s)‖ exp(−λz(t− s)) + sup
s≤ζ≤t

cz‖e(ζ)‖, (26)

for some positive constants kz , λz , cz , and for all t ≥ s ≥ t0.
Substituting s = (t+ t0)/2 into (26) yields

‖z(t)‖ ≤ kz
∥∥∥∥z( t+ t0

2

)∥∥∥∥ exp
(
−λz(t− t0)

2

)
+ sup

t+t0
2 ≤ζ≤t

cz‖e(ζ)‖. (27)

To estimate
∥∥z ( t+t02

)∥∥, substitute s = t0 and replace t by

t+t0
2 in (26) to obtain∥∥∥∥z( t+ t0

2

)∥∥∥∥ ≤ kz‖z(t0)‖ exp
(
−λz(t− t0)

2

)
+ sup
t0≤ζ≤

t+t0
2

cz‖e(ζ)‖. (28)

Using (25), we have

sup
t0≤ζ≤

t+t0
2

cz‖e(ζ)‖ ≤ czke‖e(t0)‖, (29)

sup
t+t0

2 ≤ζ≤t
cz‖e(ζ)‖ ≤ czke‖e(t0)‖ exp

(
−λe(t− t0)

2

)
. (30)

Let the composite state be xez = [eT, zT]T. Using (27), we
obtain

‖xez(t)‖ ≤ ‖e(t)‖+ ‖z(t)‖,

≤ ‖e(t)‖+ kz

∥∥∥∥z( t+ t0
2

)∥∥∥∥ exp
(
−λz(t− t0)

2

)
+ sup

t+t0
2 ≤ζ≤t

cz‖e(ζ)‖,

which, on substitution of (25) and (30), and using the fact that
exp(−|a|) ≤ exp(− |a|2 ) for all a ∈ R yields

‖xez(t)‖ ≤ (1 + cz)ke‖e(t0)‖ exp
(
−λe(t− t0)

2

)
+ kz

∥∥∥∥z( t+ t0
2

)∥∥∥∥ exp
(
−λz(t− t0)

2

)
.

Substitution of (28) into the preceding gives

‖xez(t)‖ ≤ (1 + cz)ke‖e(t0)‖ exp
(
−λe(t− t0)

2

)
+ kz exp

(
−λz(t− t0)

2

)(
sup

t0≤ζ≤
t+t0

2

cz‖e(ζ)‖

+ kz‖z(t0)‖ exp
(
−λz(t− t0)

2

))
,

and using (29) yields

‖xez(t)‖ ≤ (1 + cz)ke‖e(t0)‖ exp
(
−λe(t− t0)

2

)
+ czkekz‖e(t0)‖ exp

(
−λz(t− t0)

2

)
+ k2

z‖z(t0)‖ exp(−λz(t− t0)).

Finally, defining λez = 1
2 min{λe, λz}, and using the facts

that ‖e(t0)‖ ≤ ‖xez(t0)‖, ‖z(t0)‖ ≤ ‖xez(t0)‖, we obtain

‖xez(t)‖ ≤ kez‖xez(t0)‖ exp(−λez(t− t0)),

where kez = (1+cz)ke+czkekz+k2
z , valid for all t ≥ t0 ≥ 0.

This shows that xez = 0 is an exponentially stable equilibrium
point of the reduced system (22), (23).
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Hence by a Converse Lyapunov Theorem [5, Theorem 4.14,
pp. 162 – 163], there exists a Lyapunov function V : [0,∞)×
De,z → [0,∞) that satisfies

c1‖xez‖2 ≤ V (t, xez) ≤ c2‖xez‖2,
∂V

∂t
+

∂V

∂xez
f̂(t, xez) ≤ −c3‖xez‖2,

where

f̂(t, xez) =



φ̇e,

φ
(2)
e ,
...,

φ
(ρ−1)
e ,

−aT
e e,

g(e+ xr(t), z, h(t, e, z))


∈ Rn.

It can be seen that the Lyapunov function condition of as-
sumption 2 in Theorem 1 is satisfied with W1(r) = c1‖r‖2,
W2(r) = c2‖r‖2, and W3(r) = c3‖r‖2. Further, by choosing
c sufficiently small, the set {xez ∈ De,z | W1(xez) =
c1‖xez‖2 ≤ c} can be made compact. We conclude that
satisfaction of assumption 2 in the current theorem implies
satisfaction of assumption 2 in Theorem 1.

We will use Proposition 1 to show that the origin is an
exponentially stable equilibrium point of the boundary layer
system (24), uniformly in (t, e, z), so that assumption 3 of
Theorem 1 is satisfied. Define

g̃(t, e, z, u) = −αf̃(t, e, z, u),

so that the boundary layer system (24) can be rewritten as

dv

dτ
= g̃(t, e, z, v + h(t, e, z)). (31)

Then, using the definitions of f̃ in (21) and α, we have

∂g̃

∂u
(t, e, z, u) = − sign

(
∂f

∂u

)
∂f̃

∂u
(t, e, z, u),

= − sign
(
∂f

∂u

)
∂f

∂u
(e+ xr(t), z, u),

= −
∣∣∣∣∂f∂u (e+ xr(t), z, u)

∣∣∣∣ ,
and hence,

∂g̃

∂u
(t, e, z, h(t, e, z)) = −

∣∣∣∣∂f∂u (e+ xr(t), z, h(t, e, z))
∣∣∣∣ .

From the preceding, assumption 3 implies that the eigenvalue
condition (5) holds. Proposition 1 then applies to show that
the boundary layer system (31) or (24), has the origin as
an exponentially stable equilibrium, uniformly in (t, e, z) ∈
[0,∞)×De,z .

Thus all assumptions of Theorem 1 are implied by the

current assumptions. Observe that the set

Ωe,z ⊂ {xez ∈ De,z |W2(xez) = c2‖xez‖2 ≤ ρc, ρ ∈ (0, 1)}

is compact by the choice of c above. Then, for each such
compact set Ωe,z , there exists a positive constant ε∗ such that
for all t > 0, (e0, z0) ∈ Ωe,z , u0 − h(0, e0, z0) ∈ Ωv , and
ε ∈ (0, ε∗), the system (19), (21) has a unique solution e(t, ε),
z(t, ε), u(t, ε) on [0,∞), and

e(t, ε)− ē(t) = O(ε),

z(t, ε)− z̄(t) = O(ε),

holds uniformly for all t ∈ [0,∞), where ē(t) and z̄(t) are
the solutions of the reduced system (22) and (23) respec-
tively. Since ē(t) is the solution of the exponentially stable
system (22), and xr(t) is the solution of system (17), using
the definition of e = x− xr in the above yields

x(t, ε)− xr(t)− ē(t) = O(ε),

x(t, ε)− xr(t)− exp(At)e0 = O(ε),
where

A =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−ae0 −ae1 . . . −ae(ρ−1)

 ∈ Rρ×ρ.

Since (22) is exponentially stable, A is Hurwitz, so that for
any ε > 0, there exists T <∞ such that

‖exp(At)e0‖ ≤ ε, ∀t ≥ T.

Then for all t ≥ T , we reach the desired conclusion

x(t, ε)− xr(t) = O(ε).

Remark 4. Observe that if e0 = 0, then T can be chosen to

be 0, and x(t, ε) − xr(t) = O(ε) holds for all t > 0. This

can be achieved by setting xr0 = x0. See also [1] for further

discussions.
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IV. EXTENSION TO MINIMUM-PHASE

NONAFFINE-IN-CONTROL MIMO SYSTEMS

Consider the n-th order MIMO nonaffine-in-control system
expressed in normal form

φ
(ρ1)
1 = f1(x, z, u), x1(0) = x10,

φ
(ρ2)
2 = f2(x, z, u), x2(0) = x20,

...
...

φ(ρm)
m = fm(x, z, u), xm(0) = xm0,

ż = g(x, z, u), z(0) = z0,

(32)

defined for all (x, z, u) ∈ Dx×Dz×Du with Dx ⊂ Rρ, Dz ⊂
Rn−ρ, and Du ⊂ Rm being domains containing the origins.
The (partial) state x is defined as x = [x1, x2, . . . , xm]T ∈ Rρ,
ρ =

∑m
i=1 ρi, with each xi = [φi, φ̇i, . . . , φ

(ρi−1)
i ]T ∈

Rρi for i ∈ {1, 2, . . . ,m}, and φ(q) denotes the q-th time
derivative of φ. The state vector of the system is [xT, zT]T,
u = [u1, u2, . . . , um]T ∈ Rm is the control input, and
fi : Dx × Dz × Du → R for i ∈ {1, 2, . . . ,m}, g : Dx ×
Dz × Du → Rn−ρ are continuously differentiable functions
of their arguments. Define

f(x, z, u) = [f1(x, z, u), f2(x, z, u), . . . , fm(x, z, u)]T. (33)

Assume that the inverse of the function u 7→ f(x, z, u) exists
for each fixed (x, z) ∈ Dx×Dz , but that it cannot be written
in closed form.

The problem is to design a controller so that x tracks the
state of a chosen ρ-th order stable linear reference model
described by the following set of linear ordinary differential
equations

φ
(ρ1)
r1 + aT

r1xr1 = br1r1, xr1(0) = xr10,

φ
(ρ2)
r2 + aT

r2xr2 = br2r2, xr2(0) = xr20,

...
...

φ(ρm)
rm + aT

rmxrm = brmrm, xrm(0) = xrm0,

(34)

where for each i ∈ {1, 2, . . . ,m}, the corresponding vectors
are ari = [ari0, ari1, . . . , ari(ρi−1)]T ∈ Rρi and xri =
[φri, φ̇ri, . . . , φ

(ρi−1)
ri ]T ∈ Rρi , ri is a continuously differ-

entiable reference input signal with bounded time derivative
ṙi. Let r = [r1, r2, . . . , rm]T. Here, ρi corresponds to those
defined for system (32) so that xri is of the same dimen-
sion as xi in (32), and the state of the reference model
xr = [xT

r1, x
T
r2, . . . , x

T
rm]T is of the same dimension as x

in (32). Stability of the reference model requires that for each

i ∈ {1, 2, . . . ,m}, all roots of the characteristic equation

sρi + ari(ρi−1)s
ρi−1 + · · ·+ ari1s+ ari0 = 0

lie in C−.

Define the tracking error e = x − xr, which can be
decomposed as

e = [eT1 , e
T
2 , . . . , e

T
m]T,

ei = xi − xri = [φei, φ̇ei, . . . , φ
(ρi−1)
ei ]T, i ∈ {1, 2, . . . ,m}.

Choose the desired stable error dynamics as described by the
following set of linear ordinary differential equations

φ
(ρ1)
e1 + aT

e1e1 = 0, e1(0) = e10 = x10 − xr10,

φ
(ρ2)
e2 + aT

e2e2 = 0, e2(0) = e20 = x20 − xr20,
...

...

φ(ρm)
em + aT

emem = 0, em(0) = em0 = xm0 − xrm0,

(35)

where for each i ∈ {1, 2, . . . ,m}, the corresponding vectors
are aei = [aei0, aei1, . . . , aei(ρi−1)]T ∈ Rρi . Similarly, ρi
corresponds to those defined for system (32) so that ei is
of the same dimension as xi in (32), and the state of the
desired error dynamics e is of the same dimension as x in (32).
Stability of the desired error dynamics requires that for each
i ∈ {1, 2, . . . ,m}, all roots of the characteristic equation

sρi + aei(ρi−1)s
ρi−1 + · · ·+ aei1s+ aei0 = 0

lie in C−. Similar to the SISO case, observe that this is a
minor extension of [1], wherein aeij is set equal to arij for
i ∈ {1, 2, . . . ,m}, j ∈ {0, 1, . . . , ρi − 1}.

The open-loop (time-varying) error dynamics are then given
by the system

φ
(ρ1)
e1 = f1(e+ xr(t), z, u) + aT

r1xr1(t)− br1r1(t),

φ
(ρ2)
e2 = f2(e+ xr(t), z, u) + aT

r2xr2(t)− br2r2(t),
...

φ(ρm)
em = fm(e+ xr(t), z, u) + aT

rmxrm(t)− brmrm(t),

ż = g(e+ xr(t), z, u),

(36)

with initial conditions e(0) = e0, z(0) = z0. Similarly, observe
that time variance in (36) is induced by the external signals
xr(t) and r(t) only.

The ideal dynamic inversion control is found by solving the
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system of m equations

f1(e+ xr(t), z, u) + aT
r1xr1(t)− br1r1(t) = −aT

e1e1,

f2(e+ xr(t), z, u) + aT
r2xr2(t)− br2r2(t) = −aT

e2e2,

...

fm(e+ xr(t), z, u) + aT
rmxrm(t)− brmrm(t)

= −aT
emem,

(37)

for u ∈ Rm, resulting in the exponentially stable closed-
loop tracking error dynamics (35). Since (37) cannot (in
general) be solved explicitly for u, an approximation of the
dynamic inversion controller is constructed by introducing fast
dynamics

εu̇ = P f̃(t, e, z, u), u(0) = u0, (38)

where P ∈ Rm×m is a chosen constant matrix, and with (33),

f̃(t, e, z, u) = f(e+ xr(t), z, u) +Arxr(t)−Brr(t) +Aee,

Ar =


aT
r1 0 . . . . . . 0
0 aT

r2 0 . . . 0
...

...
. . .

...
...

0 . . . . . . 0 aT
rm

 ∈ Rm×ρ,

Br =


br1 0 . . . . . . 0
0 br2 0 . . . 0
...

...
. . .

...
...

0 . . . . . . 0 brm

 ∈ Rm×m,

Ae =


aT
e1 0 . . . . . . 0
0 aT

e2 0 . . . 0
...

...
. . .

...
...

0 . . . . . . 0 aT
em

 ∈ Rm×ρ.

Let u = h(t, e, z) be an isolated root of f̃(t, e, z, u) = 0.
The reduced system for (36), (38), obtained by setting ε = 0
and u = h(t, e, z) is

φ
(ρ1)
e1 = −aT

e1e1, e1(0) = e10,

φ
(ρ2)
e2 = −aT

e2e2, e2(0) = e20,

...
...

φ(ρm)
em = −aT

emem, em(0) = em0,

ż = g(e+ xr(t), z, h(t, e, z)), z(0) = z0.

(39)

With v = u−h(t, e, z) and τ = t/ε, the boundary layer system
is

dv

dτ
= P f̃(t, e, z, v + h(t, e, z)). (40)

Applying Theorem 1 to (36), (38), and noting the definition
of f in (33) yields the following.

Theorem 5 (Hovakimyan et al. [1, Theorem 3]). Consider the

system (36) and (38), and let u = h(t, e, z) be an isolated root

of f̃(t, e, z, u) = 0. Assume that the following conditions hold

for all

(t, e, z, u− h(t, e, z), ε) ∈ [0,∞)×De,z ×Dv × [0, ε0],

for some domains De,z ⊂ Rn and Dv ⊂ Rm which contain

their respective origins:

1) On any compact subset of De,z ×Dv , the functions f ,

g, their first partial derivatives with respect to (x, z, u),

and r(t), ṙ(t) are continuous and bounded, h(t, e, z)
and ∂f

∂u (x, z, u) have bounded first partial derivatives

with respect to their arguments, and ∂f
∂x , ∂f∂z , ∂g∂x , ∂g∂z as

functions of (e + xr(t), z, h(t, e, z)), are Lipschitz in e

and z uniformly in t.

2) The origin is an exponentially stable equilibrium of the

system

ż = g(xr(t), z, h(t, 0, z)).

The map (e, z) 7→ g(e + xr(t), z, h(t, e, z)) is continu-

ously differentiable and Lipschitz in (e, z) uniformly in

t.

3) For every (t, e, z) ∈ [0,∞) ×De,z , all the eigenvalues

of

P
∂f

∂u
(e+ xr(t), z, h(t, e, z))

have negative real parts bounded away from zero.

Then the origin of (40) is exponentially stable. Let Rv ⊂ Dv

be the region of attraction of the autonomous system

dv

dτ
= P f̃(0, e0, z0, v + h(0, e0, z0)),

and Ωv be a compact subset of Rv . Then, for each compact

subset Ωe,z ⊂ De,z , there exists positive constants ε∗ and T

such that for all t > 0, (e0, z0) ∈ Ωe,z , u0 − h(0, e0, z0) ∈
Ωv , and ε ∈ (0, ε∗), the system (32), (34), (38) has a unique

solution x(t, ε), z(t, ε), xr(t), u(t, ε) on [0,∞), and

x(t, ε)− xr(t) = O(ε)

holds uniformly for all t ∈ [T,∞).

Proof: Similar to the proof of Theorem 4, we show that
satisfaction of the above assumptions imply satisfaction of
those of Theorem 1 to get the desired conclusions. In the same
way as the proof of Theorem 4, it can be shown that the first
assumption of Theorem 1 is implied by assumption 1 above.

For the second assumption, note that the first m equations
of (39) represents m decoupled exponentially stable linear time
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invariant systems with composite state e = [eT1 , e
T
2 , . . . , e

T
m]T.

Hence for each i ∈ {1, 2, . . . ,m}, the solutions satisfy

‖ei(t)‖ ≤ kei‖ei(t0)‖ exp(−λei(t− t0)),

for some positive constants kei and λei, for all t ≥ t0. Using
the facts that

‖e(t)‖ ≤
m∑
i=1

‖ei(t)‖, ‖ei(t)‖ ≤ ‖e(t)‖,

and for all c1 > c2 > 0,

exp(−c1(t− t0)) ≤ exp(−c2(t− t0)), ∀t ≥ t0,

we have for all t ≥ t0,

‖e(t)‖ ≤
m∑
i=1

‖ei(t)‖ ≤
m∑
i=1

kei‖ei(t0)‖ exp(−λei(t− t0)),

≤ ‖e(t0)‖
m∑
i=1

kei exp(−λei(t− t0)),

≤ ‖e(t0)‖ exp(−λe(t− t0))
m∑
i=1

kei,

= ke‖e(t0)‖ exp(−λe(t− t0)),

where 0 < λe = min{λe1, λe2, . . . , λem} and ke =
∑m
i=1 kei.

Hence the verification of assumption 2 proceeds as in the proof
of Theorem 4.

We will use Proposition 1 to show that the origin of
the boundary layer system (40) is an exponentially stable
equilibrium point, uniformly in (t, e, z). Define

g̃(t, e, z, u) = P f̃(t, e, z, u),

so that the boundary layer system (40) can be rewritten as

dv

dτ
= g̃(t, e, z, v + h(t, e, z)).

Then, taking derivatives,

∂g̃

∂u
(t, e, z, u) = P

∂f̃

∂u
(t, e, z, u) = P

∂f

∂u
(e+ xr(t), z, u),

and hence,

∂g̃

∂u
(t, e, z, h(t, e, z)) = P

∂f

∂u
(e+ xr(t), z, h(t, e, z)).

Hence assumption 3 implies that the eigenvalue condition (5)
holds, and Proposition 1 applies to show that the boundary
layer system has the origin as an exponentially stable equilib-
rium, uniformly in (t, e, z) ∈ [0,∞)×De,z .

The stated conclusions follow immediately from Theorem 1
in a similar manner to the proof of Theorem 4.

CONCLUSIONS

The statements of the ADI method are re-stated with some
minor notational corrections, and the proofs are expanded.
This is to supplement our existing results in [2]–[4]. As such,
Theorem 1 and 2 in [3] should be replaced by Theorem 4
and 5 in the present report respectively. Also, Theorem 1 in [4]
should be replaced by Theorem 4 in the present report.
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