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Abstract 

Misfire is another type of abnormal combustion. When engine misfires, 

cylinder (or cylinders) is not producing its normal amount of power. Engine 

misfire also has negative effects on engine exhaust emissions such as HC, CO, 

and NOx. Engine misfire should be detected and eliminated. Normal 

combustion and misfire in the cylinder (if any) generates vibrations in the 
engine block. The vibration characters due to misfire are unique for a particular 

cylinder. This can be diagnosed by processing the vibration signals acquired 

from the engine cylinder block using a piezoelectric accelerometer. The 

obtained signals were decoded using statistical parameters, like, Kurtosis, 

standard deviation, mean, median, etc. Misfire identification algorithms such as 

AdaBoost, LogitBoost, MultiClass Classifier, and J48 were used as tools for 

feature selection and classification. The signals were trained and tested by the 

selected classifiers. The classification accuracy of selected classifiers were 

compared and presented in this paper. MultiClass Classifier was found to be 

performing better with selected statistical features compared to other classifiers.  

Keywords: Engine misfire, Feature extraction, Confusion matrix, AdaBoost,  

                  LogitBoost, MultiClass Classifier. 
 

1.  Introduction 

Misfiring can usually be caused by ignition or fuel system faults as well as engine 

mechanical problems. The algorithms used for misfire detection proved to be 

reliable, with neglectable detection error. Several methods of misfire detection 

have been proposed [1, 2]: a. Monitoring catalyst temperature at exhaust. This 

method is unacceptable since the catalyst temperature at exhaust does not rise 

significantly in the case of low frequency misfire. b. Monitoring the oxygen 
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sensor signal in exhaust. This method is not encouraging since the momentary 

increase in oxygen level for a single misfire might not evoke a good response 

from the sensor and it is even more challenging at higher speeds. c. In-cylinder 

pressure monitoring. This method is very reliable and accurate as individual 

cylinder instantaneous mean effective pressure could be calculated in real time. 

However, the cost of fitting each cylinder with a pressure transducer is 

prohibitively high. d. Evaluation of crankshaft angular velocity fluctuations. 

Extensive studies have been done using measurement of instantaneous crank 

angle speed [3-7] and diverse techniques have been developed to predict misfire. 

These methods call for a high resolution crank angle encoder and associated 

infrastructure capable of identifying minor changes in angular velocity due to 

misfire. The application of these techniques becomes more challenging due to 

continuously varying operating conditions involving random variation in 

acceleration coupled with the effect of flywheel, which tries to smoothen out 

minor variations in angular velocity at higher speeds. Fluctuating load torque 

applied to the crankshaft through the drive train poses additional hurdles in 

decoding the misfire signals. Piotr and Jerky [8] reported their work using 

vibroacoustic measurement at engine exhaust to model nonlinear methods for 

misfire detection in locomotive engines. Although the idea of using vibroacoustic 

signals is encouraging, the implementation of such a system requires the use of 

multi sensor input escalating the cost and computational infrastructure. It also 

offers more challenges when there is a need to integrate the system to an onboard 

condition monitoring system for automobiles, with minimum infrastructure.  

Ye [9] reported work on misfire detection using the Matter-element model, 

which is built on diagnostics derived from specialists’ knowledge of practical 

experience. In this model the misfire in the engine cylinder can be directly 

identified using relation indices. The shortcoming observed here is that the 

technique depends heavily on the knowledge of an expert and does not facilitate 

automatic machine learning through a model built on an algorithm using 

knowledge hidden in the data. The reliability of a system with automatic rule 

based learning is more since it can be trained for the continuously changing 

behavior of the engine, due to wear and tear. 

Engine misfire detection done using sliding mode observer [10, 11] is 

challenged with difficulty in modeling. Expressing a dynamic non-linear system 

into a robust model will induce errors. The system becomes more complicated with 

IC engines since it is a time varying system. Some studies have also been done 

using linear approximation techniques using Kalman filter [12]. The inherent 

problem in such systems is that there can be loss of valuable information due to 

linear approximation and these signals cannot be used to extract other engine 

information required for designing a vehicle condition monitoring system. The 

linear approximation models using Kalman filter is found to be less efficient than 

non-linear systems [13]. Chang, Kim, and Min [14] have reported their work using 

a combination of engine block vibration and wavelet transform to detect engine 

misfire and knock in a spark ignition engine. The use of engine block vibration is 

appreciable because it requires minimum instrumentation but the use of wavelet 

transforms increases the computational requirements. The present study proposes a 

non-intrusive engine block acceleration measurement using a low cost mono axial 

piezoelectric accelerometer connected to a computer through a signal processor. 

The acquired analog vibration signals are converted to digital signals using an 
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analog to digital converter and the discrete data files are stored in the computer for 

further processing. Feature extraction and feature selection techniques are employed 

and their classification results obtained is presented in the ensuing discussion. 

A good classifier should have the following properties: 

• It should have good ‘predictive accuracy’; it is the ability of the model to 

correctly predict the class label of new or previously unseen data. 

•  It should have good speed. 

• The computational cost involved in generating and using the model 

should be as low as possible. 

• It should be ‘robust’; robustness is the ability of the model to make 

correct predictions given the noisy data or data with missing values. 

(Insensitive to noise in the data) 

• The level of understanding and insight that is provided by classification 

model should be high enough. 

The selected classifiers have all the above properties and hence chosen for 

the study. 

The above review stimulated us to perform some statistical analysis on new 

methods of misfire detection diagnostic such as adaboost, logitBoost, Simplelogic, 

and Multiclass classifier, considering J48 decision tree as a reference tool on which 

Babu Senapati et al. [2] have performed misfire detection from a multi-cylinder 

gasoline engine. They obtained samples that were divided into training set to train 

the classifier and testing set to validate the performance of the classifier. The 

classification accuracy was evaluated by tenfold cross-validation which is found to 

be around 95% for decision tree (J48) algorithm. The same authors [16] evaluated 

the use of random forest (RF), as a tool for misfire detection using statistical 

features, which is found to have a consistency high classification accuracy of 

around 90%. From the favourable results obtained, the authors concluded that, the 

combination of statistical features and random forest algorithm is well suited for the 

detection of misfire in spark-ignition engines. However, the other statistical learning 

approaches like AdaBoost, LogitBoost, SimpleLogistic, and MultiClass Classifier 

have not been studied for misfire detection. Hence, in the present study, the above 

classifiers were studied to find the classification accuracy for misfire detection in a 

multi-cylinder gasoline engine. 

 

2.  Experimental Setup 

Referring to Fig. 1, the misfire simulator consists of two subsystems namely, IC 

engine test rig and data acquisition system. They are discussed in detail in the 

following sections. 

 

2.1. IC engine test rig 

The experimental setup of the engine misfire simulator consists of a four-stroke 

vertical four-cylinder gasoline (petrol) engine. Switching off the high voltage 

electrical supply to individual spark plugs or to a combination of spark plugs 

simulates the misfire. The engine accelerator is manually controlled using a screw 
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and nut mechanism that can be locked in any desired position. The engine speed 

is monitored using an optical interference tachometer. 

 

 

Fig. 1. Experimental setup. 

 

 

Fig. 2. Flowchart of fault diagnosis system. 

2.2.  Data acquisition system 

Accelerometers are the preferred transducers in machine condition monitoring 

due to the following advantages: extreme ruggedness, large frequency response 
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and large dynamic range. Accelerometers have a wide operating range enabling 

them to detect very small and large vibrations. The vibration sensed can be taken 

as a reflection of the internal engine condition. The voltage output of the 

accelerometers is directly proportional to the vibration. A piezoelectric mono 

axial accelerometer and its accessories form the core equipment for vibration 

measurement and recording. The accelerometer is directly mounted on the center 

of the engine head-using adhesive mounting as shown in Fig. 1.  

The output of the accelerometer is connected to the signal-conditioning unit 

through a DACTRON FFT analyzer that converts the signal from Analogue to 

Digital (ADC). The digitized vibration signal (in time domain) is given as input 

to the computer through the USB port. The data are stored in the secondary 

memory of the computer using the accompanying software for data processing 

and feature extraction. 

 

3.  Experimental Procedure 

The engine is started by electrical cranking at no load and warmed up for 15 

min. The FFT analyzer is switched on, the accelerometer is initialized and the 

data are recorded after the engine speed stabilized. A sampling frequency of 24 

kHz and sample length of 8192 is maintained for all conditions. The highest 

frequency was found to be 10 kHz and since Nyquist sampling theorem says 

that the sampling frequency must be at least twice that of the highest measured 

frequency or higher. Hence the sampling frequency was chosen to be 24 kHz. 

To strike a balance between computational load and data quality, the number of 

samples is chosen as 1000.  

Extensive trials were taken at various speeds (1000 rpm, 1500 rpm and 2000 

rpm) and discrete vibration signals were stored in the files. Five cases were 

considered – normal running (without any fault), engine with any one-cylinder 

misfire individually (i.e. first, second, third or fourth). All the misfire events were 

simulated at 1000 rpm, 1500 rpm and 2000 rpm. The rated speed of the engine 

electrical generator set is 1500 rpm. Time domain plots of the signals at 1500 rpm 

are shown in Figs. 3(a) to (e). 

 

Fig. 3(a). Amplitude-misfire in cylinder 1 (Skip1). 
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Fig. 3(b). Amplitude-misfire in cylinder 2 (Skip2). 

 

Fig. 3(c). Amplitude-misfire in cylinder 3 (Skip3). 

 

Fig. 3(d). Amplitude-misfire in cylinder 4 (Skip4). 
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Fig. 3(e). Amplitude-normal combustion (without misfire). 

 

4.  Feature extraction 

Referring to Fig. 1, after data acquisition, the next step is feature extraction. The 

process of computing relevant parameters of the signals that reveal the 

information contained in the signal is called feature extraction. Statistical analysis 

of vibration signals yields different parameters. The statistical parameters taken 

for this study are mean, standard error, median, standard deviation, sample 

variance, kurtosis, skewness, range, minimum, maximum and sum. These features 

were extracted from the vibration signals. All these features may not be required 

to capture the information required for classification. The relevant ones can be 

selected by several means. Here it is performed by comparing classification 

accuracies of selected classifiers. 

 

5.  Classifiers 

5.1.  Decision tree (J48 algorithm) 

A decision tree is a tree based knowledge representation methodology used to 

represent classification rules. Decision tree learning is one of the most popular 

learning approaches in classification because it is fast and produces models with 

good performance. Generally, decision tree algorithms are especially good for 

classification learning if the training instances have errors (i.e. noisy data) and 

attributes have missing values. A decision tree is an arrangement of tests on 

attributes in internal nodes and each test leads to the split of a node. Each terminal 

node is then assigned a classification. A standard tree induced with c5.0 (or 

possibly ID3 or c4.5) consists of a number of branches, one root, a number of 

nodes and a number of leaves. One branch is a chain of nodes from root to a leaf; 

and each node involves one attribute. The occurrence of an attribute in a tree 

provides the information about the importance of the associated. A decision tree is 

a tree based knowledge representation methodology used to represent 

classification rules.  
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The definition and process of extracting statistical features were described for 

bearing fault diagnosis by Sugumaran et al., [15]. Following the footsteps of 

Sugumaran et al., effect of number of features, feature selection and classification 

accuracy for decision tree was carried out. 

 

5.2. LogitBoost 

A boosting procedure used in this study is implemented by LogitBoost. Boosting 

is one of the most important recent developments in classification methodology. 

Boosting is a way of combining the performance of many weak classifiers to 

produce a powerful committee. It works by sequentially applying classification 

algorithms to reweighted versions of the training data and then taking a weighted 

majority vote of the sequence of classifiers thus produced.  For many 

classification algorithms, this simple strategy results in dramatic improvements in 

performance. This is a specialized case of regression analysis over discrete or 

ordinal values; but basic regression-based learning algorithms have inherent 

disadvantages. Better algorithms that overcome these pitfalls have been 

developed and are collectively known as Discriminant Analysis (DA) techniques 

or simply Metal learning algorithms. One such algorithm that effectively 

addresses these issues is the LogiBoost Meta classifier-based on the log of the 

odds ratio for the dependent variable. 

Friedman et al. [17] propose the LogitBoost algorithm for fitting additive 

logistic regression models by maximum likelihood. 

Start with weights wij=1/n. i=1, ……, n, j=1, ……, J, Fj (x) = 0 and pj 

(x)=1/J  ∀j 

Repeat for m=1, ……, M : 

(a) Repeat for j = 1, ……, J: 

i. Compute working responses and weights in the jth 

class 

  zij = 
))x(p()x(p

)x(py

ijij

ijij
*

−

−
 

  wij = ))x(p()x(p ijij −  

ii. Fit the function fmj(x) by a weighted least-squares 

regression of zij to xi with weights wij. 
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It is based on the concept of additive logistic regression. It can successfully 

boost very simple learning schemes, (like DecisionStump), even in multiclass 

situations. It differs from other boosting procedure such as AdaBoost.M1, in an 

important way because it boosts schemes for numeric prediction in order to form 

a combined classifier that predicts a categorical class.  

 

5.3.  AdaBoost (17)  

AdaBoost, also known as ‘Adaptive Boosting’ is a machine learning algorithm. In 

the present study, this boosting algorithm is used in conjunction with random 

forest algorithm to improve its performance. The boosting algorithm takes as 

input a training set of m examples S={(x1, y1), …., (xm, ym)} where xi is an 

instance drawn from some space X and represented in some manner (typically, a 

vector of attribute values), and yi∈Y is the class label associated with xi. In this 

paper, it is assumed that the set of possible labels Y is of finite cardinality.  

In addition, the boosting algorithm has access to another unspecified learning 

algorithm called the weak learning algorithm, which is denoted generally as Weak 

Learn. The boosting algorithm calls Weak Learn repeatedly in a series of rounds. 

On round t, the booster provides Weak Learn with a distribution Dt over the 

training set S. In response, Weak Learner computes a classified or hypothesis ht: 

X→ Y which should misclassify a non traivial fraction of the training examples, 

relative to Dt. That is the weak learner’s goal is to find a hypothesis ht which 

minimizes the (training) error ∈t = Pri~Dt [ht(xi) ≠yi]. Note that this error is 

measured with respect to the distribution Dt that was provided to the weak learner. 

This process continues for T rounds, and at last, the booster combines the weak 

hypotheses h1, …, hT into single final hypotheses hfin. 

Still unspecified are (1) the manner in which Dt is computed on each round, 

and (2) how hfin is computed. Different boosting schemes answer these two 

questions in different ways. AdaBoost.M1 uses the simple rule shown in 

algorithm. The initial distribution D1 is uniform over S so D1(i) = 1/m for all i. To 

compute distribution DL+1 from Dt and the last weak hypothesis ht, we multiply 

the weight of example I by some number βt∈[0,1] if left unchanged. The weights 

are then renormalized by dividing by the normalization constant Zt. Effectively 

‘easy’ examples that are correctly classified by many of the previous weak 

hypothesis get lower weight, and ‘hard’ example which tend often to be 

misclassified get higher weight. Thus, AdaBoost focuses the most weight on th 

examples which seem to be hardest for WeakLearn. 

 

Algorithm AdaBoostM1 

Input: Sequence of m examples {(x1, y1), ….., (xm,ym)} 

 with labels yi ЄY = {1, ….., k} 

 weak learning algorithm WeakLearn 

 integer T specifying number of iterations 

Initialize D1 (i) = 1/m for all i 
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Do for I = 1,2,….,T 

Call WeakLearn, providing it with the distributor Dt. 

Get back a hypothesis ht: X → Y. 

Calculate the error of ht: Єt = ∑
≠= iit y)x(hi

t ).i(D  If Єt > ½, then set T = 

t-1 and abort loop. 

Set βt = Єt / (1-Єt). 

Update distribution Dt = Dt+1(i)=

t

t

Z

)i(D
×{  

Where Zt is a normalization constant (chosen so that Dt+1 will 

be a distribution. 

Output the final hypothesis: hfin(x)=arg max ∑
= βy)x(h:i tt

1
log  

The number βt is computed as shown in the figure as a function of ∈t. the final 

hypothesis hfin is a weighted vote (i.e., a weighted linear threshold) of the weak 

hypothesis. That is, for a given instance x, hfin outputs the label y that maximizes 

the sum of the weights of the weak hypothesis predicting that label. The weight of 

hypothesis ht is defined to be ln (1/βt) so that greater weight is given to hypothesis 

with lower error.   

 

5.4. Multiclass classifier 

The extensions of boosting to classification with multiple classes were explored. 

Some learning schemes can only be used in two-class situations such as SMO 

class. To apply such schemes to multiclass datasets, the problem must be 

transformed into several two-class ones and the results combined.  This can be 

done by MultiClass Classifier. It takes a base learner that can output a class 

distribution or a numeric class, and applies it to a multiclass learning problem 

using the simple one-per-class coding. 

Among these strategies is the one-vs.-all strategy, where a single classifier is 

trained per class to distinguish that class from all other classes. Prediction is then 

performed by predicting using each binary classifier, and choosing the prediction 

with the highest confidence score (e.g., the highest probability of a classifier such 

as naive Bayes). 

In pseudocode, the training algorithm for a one-vs.-all learner constructed 

from a binary classification learner L is as follows: 

Inputs:  

• L, a learner (training algorithm for binary classifiers: Logistic) 

• samples X 

• labels y where yᵢ ∈ {1, … K} is the label for the sample Xᵢ 

Output:  
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• a list of classifiers fk for k ∈ {1, … K} 

Procedure:  

• For each k in {1 … K}:  

o Construct a new label vector yᵢ' = 1 where yᵢ = k, 0 (or -

1) elsewhere 

o Apply L to X, y' to obtain fk 

Making decisions proceeds by applying all classifiers to an unseen sample x 

and predicting the label k for which the corresponding classifier reports the 

highest confidence score: 

 

 

6.  Results and Discussion 

The study of misfire classification using the selected classifiers is discussed in the 

following phases: 

1. Dimensionality reduction (Feature selection). 

2. Validation of the classifiers. 

From the experimental setup through data acquisition 200 signals were 

acquired for each condition. The conditions are mentioned in section 3. 

 

6.1.  Dimensionality reduction 

Dimensionality reduction is the process of reducing the number of input features 

that are required for classification to reduce the computational effort. From the 

signals obtained at 2000 rpm, 11 statistical features, as explained in Section 4, 

have been extracted. All 11 features were given as input to the selected classifiers 

and the dimensionality reduction was carried out as explained in Fig. 4.  

 

Fig. 4. Effect of dimension (1500 rpm). 
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Initially all the 11 features such as Mean, Standard error, Median, Standard 

deviation, Sample variance, Kurtosis, Skewness, Range, Minimum, Maximum, 

and Sum were considered for classification and the classification accuracy was 

noted down. In the next step classification was performed by reducing 11 features 

to top ten features (mean to maximum) and the classification accuracy was noted 

down. Further down the prominent features with 9 (mean to minimum) were 

considered for classification. Similarly top eight (mean to range), top seven (mean 

to skewness), etc., features have been considered and the corresponding 

classification accuracies were noted down. Figure 4 shows the plot of the number 

of features versus classification accuracies for the selected classifiers. From the 

graph, it is evident that the classification accuracy gradually increases as the 

number of features increases and then has minor reduction in classification 

accuracy when number of features increased beyond nine. Using lesser number of 

features reduces the computational load considerably hence in this work the first 

eight features in their order of importance have been selected considering the 

maximum accuracies acquired from the selected classifiers (Table 1).  

Table 1. Effect of number of features on classification accuracy. 

No. of 

Features 
J48 AdaBoost LogitBoost 

Multiclass 

Classifier 

1 58.4 55.9 56.3 36.3 

2 74.9 79.1 81.5 60.3 

3 80.7 85.4 85.0 82.6 

4 83.6 85.3 85.3 82.6 

5 84.0 85.5 85.3 87.7 

6 86.8 89.5 90.0 90.5 

7 87.9 90.4 89.9 92.4 

8 87.8 91.7 90.7 93.0 
9 88.0 91.4 90.4 93.0 

10 88.2 90.9 90.6 93.0 

11 88.2 91 90.6 92.9 

6.2. Validation of classifier 

Evaluation of the following classifiers was performed using the standard tenfold 

cross validation process. The misclassifications details pertaining to all the 

classifiers without any data pre-processing is presented in the form of a confusion 

matrix in Tables 2 to 5. Skip1 represents misfire in cylinder 1, Skip2, Skip3, and 

Skip4, represents misfire in cylinder 2, 3 and 4 respectively.  Normal represents 

no misfire in any cylinder. The fault diagnosis of misfire in gasoline engines was 

taken up. Machine learning approach was used with statistical feature for fault 

classification. The results are discussed below. 

 

7.2.1 Feature classification using J48 

Eleven statistical features that are considered in discriminating misfire fault 

conditions of multi-cylinder gasoline engine were mean, standard error, median, 

standard deviation, sample variance, kurtosis, skewness, range, minimum, 

maximum, and sum.  
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The effect of number of features on classification accuracy is given in 

Table.1. It shows that when the number of features is 8 in each class, the 

classifier gives good accuracy. In the present study, minimal computation time 

strategy was used because the on board processors on vehicle have limited 

computational resources. The decision tree was trained using selected features 

of vibration signals. The classification accuracy was presented in terms of 

confusion matrix shown in Table 2.  

The general procedure for reading for reading and understanding the 

confusion matrix is as follows. It looks in the form of a square matrix. Referring 

to Table 2, the first row represents the total number of data points corresponding 

to engine operation without misfire condition (normal). The first column in the 

first row represents, the number of data points that were correctly classified as 

‘normal’.  The second column in the first row represents the number of data 

points that are misclassified as Skip1 (misfire in cylinder 1) fault condition. The 

third column in the first row represents the number of data points that are 

misclassified as Skip2 (misfire in cylinder 2), and so on. The total data points in 

the first row is 200, out of which 199 are correctly classified and one is 

misclassified as misfire in cylinder 1. The other elements in the first row are zero 

and indicate that none of the good conditions are misclassified as faulty 

conditions. Similarly the second row represents that the total number of data 

points correspond to misfire in cylinder 1. The second element in second row 

represents the correctly classified instances for ‘misfire in cylinder 1’ condition 

and rest of them are misclassified details as explained earlier. Similar 

interpretation can be given for other elements as well.  

As discussed above, misclassification details of classifier with the statistical 

features can be illustrated in a better way using the confusion matrix. In this 

fashion, the classification accuracies were found and compared. 

• Total number of instances  1000 

• Correctly classified instances 878 87.8% 

• Incorrectly classified instances 122 12.2% 

When the number of features is 8, the decision tree classifier gives good result 

of  87.8% as given in Table 1. 

Table 2. Confusion matrix for J48. 

Classified as Normal Skip1 Skip2 Skip3 Skip4 

Normal 199 1 0 0 0 

Skip1 0 175 0 14 11 

Skip2 1 0 199 0 0 

Skip3 0 11 0 152 37 

Skip4 0 8 0 39 153 

7.2.2 Feature classification for AdaBoost 

The AdaBoost algorithm was trained using selected number of statistical 

features of vibration signals. The confusion matrix for AdaBoost classification 

is shown in Table 3. 
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• Total number of instances  1000 

• Correctly classified instances 917 91.7% 

• Incorrectly classified instances 83 8.3% 

Referring the above summary AdaBoost gives a better efficiency (91.7%) than 

that of the J48 and LogitBoost classifications.   

Table 3. Confusion matrix for AdaBoost. 

Classified as Normal Skip1 Skip2 Skip3 Skip4 

Normal 200 0 0 0 0 

Skip1 1 186 0 9 4 

Skip2 0 0 200 0 0 

Skip3 0 8 0 168 24 

Skip4 0 7 0 30 163 

 

7.2.3 Feature classification using LogitBoost 

The LogitBoost algorithm was trained using selected number of statistical 

features of vibration signals. Eight statistical features were used for classification. 

The confusion matrix for this classifier is shown in Table 4. 

• Total number of instances  1000 

• Correctly classified instances 907 90.7% 

• Incorrectly classified instances 93 9.3% 

Referring the above result, the classification accuracy for LogitBoost was 

found as 90.7%. The misclassification details are presented in Table 4. It is 

evident that none of the ‘Fault’ condition data points were misclassified as 

‘Good’ condition.   

Table 4. Confusion matrix for LogitBoost. 

Classified as Normal Skip1 Skip2 Skip3 Skip4 

Normal 200 0 0 0 0 

Skip1 0 179 0 14 7 

Skip2 0 0 200 0 0 

Skip3 0 12 0 162 26 

Skip4 0 8 0 26 166 

 

7.2.4 Feature classification for MultiClass Classifier 

The multiclass Classifier was trained using selected number of statistical features 

of vibration signals. The confusion matrix for MultiClass Classifier is shown in 

Table 5. 

• Total number of instances  1000 
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• Correctly classified instances 930 93.0% 

• Incorrectly classified instances 70 7.0% 

Referring the above result, the classification accuracy for MultiClass 

Classifier was calculated as 93%. The misclassification details are presented in 

Table 5. It is evident that none of the ‘GOOD’ condition data points were 

misclassified.  It was observed that one data point belongs to misfire in cylinder 2 

(Skip2) was misclassified as ‘GOOD’. It is not desired. However such incidence 

is 1 out of 1000 data points and hence may be tolerated. 

Table 5. Confusion matrix for MultiClass classifier. 

Classified as Normal Skip1 Skip2 Skip3 Skip4 

Normal 200 0 0 0 0 

Skip1 0 192 0 2 6 

Skip2 1 0 199 0 0 

Skip3 0 7 0 162 31 

Skip4 0 2 0 21 177 

 

6.3. Detailed accuracy by class 

TP (True positive) rate means the number of items correctly labeled as belonging 

to the positive class. FP (false positive) is a result that indicates a given condition 

has been fulfilled, when it actually has not been fulfilled.  

In pattern recognition and information retrieval, precision is the fraction of 

retrieved instances that are relevant, while recall is the fraction of relevant 

instances that are retrieved. Both precision and recall are therefore based on an 

understanding and measure of relevance.  

A measure that combines precision and recall is the harmonic mean of 

precision and recall is known as the traditional F-measure. 

Precision = 
{ } { }

{ }DatatrievedRe

DatatrievedReDataleventRe ∩
 

Recall = 
{ } { }

{ }DatalevantReTotal

DatatrievedReDataleventRe ∩
 

F = 2
callReecisionPr

callRe.ecisionPr

+
  

Table 6-9 shows the detailed accuracy by class for various classifiers selected 

for this work.  True positive (TP) rate and precision should be ideally one. 

According to this, the average TP rate from all classes is close to one and hence 

the accuracy of the data sets belong to MultiClass classifier is likely to be high as 

compared to other classifiers. The same tendency is seen towards average values 

of precision and F-Measure also. This slightly reduction in their values was due to 

some misclassification as detailed in confusion matrices.  
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Table 6. Detailed accuracy by class for J48. 

Class 
TP 

Rate 

FP 

Rate 

Pre- 

cision 

Re- 

call 

F- 

Measure 

ROC 

Area 

Normal 0.995 0.001 0.995 0.995 0.995 0.997 

Skip1 0.875 0.025 0.897 0.875 0.886 0.933 

Skip2 0.995 0 1 0.995 0.997 0.998 

Skip3 0.76 0.066 0.741 0.76 0.751 0.906 

Skip4 0.765 0.06 0.761 0.765 0.763 0.907 

Average 0.878 0.0304 0.8788 0.878 0.8784 0.9482 

 

Table 7. Detailed accuracy by class for AdaBoost. 

Class 
TP 

Rate 

FP 

Rate 

Pre- 

cision 

Re- 

call 

F- 

Measure 

ROC 

Area 

Normal 1 0.001 0.995 1 1 1 

Skip1 0.93 0.019 0.925 0.93 0.96 0.993 

Skip2 1 0 1 1 1 1 

Skip3 0.84 0.049 0.812 0.795 0.84 0.956 

Skip4 0.815 0.035 0.853 0.87 0.815 0.964 

Average 0.917 0.0208 0.917 0.919 0.925 0.9826 

 

Table 8. Detailed accuracy by class for LogitBoost. 

Class 
TP 

Rate 

FP 

Rate 

Pre- 

cision 

Re- 

call 

F- 

Measure 

ROC 

Area 

Normal 1 0 1 1 1 1 

Skip1 0.895 0.025 0.899 0.895 0.897 0.99 

Skip2 1 0 1 1 1 1 

Skip3 0.81 0.05 0.802 0.81 0.806 0.967 

Skip4 0.83 0.041 0.834 0.83 0.832 0.977 

Average 0.907 0.0232 0.907 0.907 0.907 0.9868 

 

Class 
TP 

Rate 

FP 

Rate 

Pre- 

cision 

Re- 

call 

F- 

Measure 

ROC 

Area 

Normal 1 0.001 0.995 1 0.998 1 

Skip1 0.96 0.011 0.955 0.96 0.958 0.997 

Skip2 0.995 0 1 0.995 0.997 1 

Skip3 0.81 0.029 0.876 0.81 0.842 0.975 

Skip4 0.885 0.049 0.827 0.885 0.855 0.976 

Average 0.93 0.018 0.9306 0.93 0.93 0.9896 
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6.4.  Overall classification accuracy 

Table 10 shows the overall classification accuracy of various classifiers 

considered for the present study. It was encouraging to note that the classification 

accuracy for the MultiClass classifier algorithm using statistical features is more 

as compared to other statistical algorithm using same set of features. The reason is 

that the number of misclassified instances is lower than the other classifiers. 

 

Table 10. Overall classification accuracy. 

Classifiers 
Classification accuracy, % Overall 

accuracy, % Normal Skip1 Skip2 Skip3 Skip4 

J48 99.5 87.5 99.5 76.0 76.5 87.8 

AdaBoost 100 93.0 100 84.0 81.5 91.7 

LogitBoost 100 89.5 100 81.0 83.0 90.7 

MultiClass 

Classifier 
100 96.0 99.5 81.0 88.5 93.0 

 

7.  Conclusion 

In a condition monitoring activity the main objective is fault identification and 

fault classification comes second in priority. In this context, the present study 

deals with misfire identification in a multi-cylinder gasoline engine. Four classical 

states were simulated on a multi-cylinder gasoline engine test rig. Set of features 

were extracted using statistical analysis and the feature selection was carried out. 

The selected features were classified using J48, LogitBoost, AdaBoost, and 

MultiClass Classifier algorithms. The results were compared. From the results, it 

has been concluded that statistical features with MultiClass Classifier is a 

potential candidate and it can be used for practical applications of misfire 

detection of multi-cylinder gasoline engines. 
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