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Abstract

Adaptive signal processing using an array of antenna elements has long been a solution to the
problem of combating interference in communication systems. While the classical method of
applying a complex weight to each array element has proven very effective for cancellation of
interference signals, it has its limitations. The performance is degraded in the presence of
interference signals of reasonable bandwidth. In addition, the angle of arrival of the un-
wanted signals leads to further loss of interference rejection. With the advent of inexpensive
high speed computers, new adaptive systems never before capable of implementation are
being explored. One such approach, named adaptive band-partitioning, attempts to alleviate
the problems of the classical approach by applying frequency-dependent complex weights.
In addition to its insensitivity to interference bandwidth and angle of arrival, this approach is
shown to have the capability of canceling a far greater number of interference signals than
traditional methods. Whereas fixed-weight methods performed on a N-element array are
limited to the ability of canceling N-1 interference signals, provided they have bandwidths
much less than the signal bandwidth, adaptive band-partitioning can be shown to cancel up
to (N-1)L/2 signals where the interference signals are narrowband and L is the number of
bins used in dividing the frequency spectra. It can be demonstrated that adaptive band-
partitioning is a viable solution to the problem of interference cancellation.
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Chapter 1

1. Introduction

Adaptive signal processing using an array of elements has long been a solution to the

problem of combating interference signals in communication systems. However, in the last

few years with the introduction of compact, inexpensive digital computers, it is now feasible

to implement more complicated results from detection and estimation theory. These results

have led to the development of adaptive array systems that can adjust and respond to a

changing signal environment. As a consequence, systems with much greater flexibility,

reliability, and improved reception than previous systems can be realized.

1.1 Motivation for Adaptive Arrays

In recent years, adaptive arrays have become a significant area of study for their effectiveness

in reducing interference signals present in radar, sonar, and communication systems. Where

common filter techniques using one element have proven to be effective when frequencies of

interest differ from the frequencies of interference signals, adaptive array algorithms have

become commonplace when the spectrum of interference signals and the desired signal

overlap. Since an adaptive array has the ability to automatically sense and separate signals and

interference noise from different directions without prior knowledge of the environment, it

has become of widespread interest. Furthermore, adaptive arrays can be used in conjunction

with other interference reduction techniques, thus achieving a reduction greater than can be

accomplished by using just one method.

In conventional communication systems, a direct-sequence spread-spectrum system is

often utilized, modulating the communication signal with a pseudonoise(PN) signal and later

despreading it with the original known PN sequence. While this conventional method can

reduce interference, it is limited by the length of the PN sequence. The longer the PN code,

the greater the ability to separate the signal from the interference noise. Since longer PN



sequences also result in longer transmission delays, the length of the PN code and thus the

ability to cancel noise is often limited. As this is frequently the case, another method, such as

that of the adaptive array system, is often implemented in conjunction with the spread-

spectrum approach when further interference attenuation and greater channel capacity is

desired.

1.2 Adaptive Band-Partitioning Approach

While classical adaptive array methods have proven to be very effective for cancellation of

interference signals, they are still plagued by several severe limitations. The ability of such a

system to cancel interference signals is strongly influenced by the arrival angle and bandwidth

of the interference signals. To alleviate these problems, an adaptive system, one which

applies multiple frequency-dependent weights to each array element rather than just one

weight on each element, is proposed which should provide numerous benefits over the older

more classical approaches. This approach, known as adaptive band-partitioning, divides the

frequency spectrum into multiple narrow frequency bins and then performs spatial

cancellation on each bin. The primary advantage of this approach is the ability to cancel

interference signals of appreciable bandwidths. Furthermore, the system also has the ability

to cancel a greater number of narrowband interference signals. While the classical approach

is capable of attenuating N-1 narrowband interference signals, N being the number of

antenna elements in the array, the new proposed system has the ability of attenuating N-1

narrowband interference signals in each frequency bin.

1.3 Overview

The overall goal of this thesis is to determine the ability of adaptive band-partitioning to

cancel interference signals. To do so, we first need to establish the basic characteristics and

capabilities of an array. Chapter 2 begins by investigating the properties of an array. Here,

we see how the performance of an adaptive array as a spatial filter is characterized by two

important aspects, the spacing and size of the array. Then, we introduce the classical array

approach to interference cancellation by introducing complex weights to each element of the



array. The classical approach's ability to reject and cancel unwanted interference signals are

discussed in detail.

While Chapter 2 illustrates the ability of complex weights to aid in the cancellation of

interference signals, Chapter 3 investigates the methods and algorithms used in determining

the correct set of weights. The two most widely used methods of deriving the optimal

steady-state weights, the mean-square-error criterion (MSE) and the maximum likelihood

criterion (ML) are derived. Since in most applications the signal environment changes over

time, we are then left with the problem of developing an algorithm for the weights that

converges as quickly as possible to the optimal steady-state weights. For this reason, two

adaptive algorithms, the least-mean-square (LMS) and direct matrix inversion (DMI), are then

studied.

Chapter 4 describes the derivation of, and implications of implementing adaptive band-

partitioning. Finally, simulations are performed and analyzed to assess the true ability of

adaptive band-partitioning to cancel interference signals. Specific cases, involving

narrowband and wideband interference signals, are examined to fully characterize the

functionality and practicality of such a system.



Chapter 2

2. Adaptive Array Concept and Performance

The performance of an adaptive array as a spatial filter is characterized by two important

aspects. The arrangement and spacing of the array elements constrain the basic operation of

the array while the design of the complex weighting of the data from each array element

determines the ability of the adaptive array to reject unwanted signals.

2.1 Element Spacing Constraints

First, we must investigate the variables used in representation of spatial coordinates. Most

array literature specifies spatial dependence in terms of the more intuitive 'angle'; however, it

is more powerful to introduce the wavenumber variable k 'where, Ik = co / c, co being the

radian frequency (2x f) , and c being the propagation speed in free space. Thus Ik = co / c =

2xrf/c = 2rx/, 2 and has dimensions of 1/length. While the standard angular representation

does describe the response over the region for all real signals, the full wavenumber space, or

"virtual" space, is more useful in analyzing the consequences of spatial aliasing.

Let us now consider an array of N sensors sampling an area of space where the element

locations are governed by [i,, i = 1,.., N]. From this we have a time series x(t, ,) as

illustrated in Figure 2.1. Then, the output from each sensor is input to a linear, time invariant

filter having the impulse response w, (r). Finally, the outputs of the filters are summed to

produce the output of the array y(t),

N

y(t) = L _• Wl(t - r)x(r, 1 ,)dr . (2.1)

I * represents a spatial vector in terms of (x,y,z).

2 Where the wavelength X=f/c and c=3*10^8m/s for radio waves.
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y(t)

eamformer output

Array

Figure 2.1 Beamforming Model.

Using the Fourier representation for a space-time signal, a plane wave x(t, i ) of a single

frequency can be represented by a complex exponential in terms of a radian frequency (o, and

vector wavenumber k

x(t, • ) = e j(cot-kfi ) 3 (2.2)

The array response to a plane wave is as follows:

N

y(t) = w,(t - r)x(r,z,)dr
i=1

N

= 1 w(t - r)eIj( -O-k-'dr
i=1

3 T represents transpose, + complex conjugate transpose

12



N

= w, (t')e _j e-j • e •" dt '
i=1

N

= 1 w()ej( -i)
i=1

w, (co)

W(co) = and E(k)

WN (Co)

(2.3) becomes

where r = t - t'

y(t) = W' (co)E(k)e j *'

where W(co, k) = W' (co)E(k) is the frequency wavenumber response.4 The frequency

wavenumber response evaluated versus direction k, is known as the beampattern,

B(a(O, 0)) = W(co, ) 2= r a(O,),A
(2.6)

where a(O,ý) is the unit vector in spherical coordinates.

The most widely used array, due to its simplicity and well known characteristics, is a linear

uniformly weighted array with N elements and an inter-element spacing of Az.

4 Throughout this thesis, a variable will be bold if it represents a vector.

Letting

(2.3)

e -jk Ze
e -jk22

eI
(2.4)

(2.5)



Equally spaced line array

Zt ;(N-I)Az/2
k

0 0

}AZ

-(N-1)Az/2

Figure 2.2 Uniform Line Array along z-axis

If we use a frequency independent uniform weighting of 1/N, we arrive at a frequency

wavenumber response'

W (co , k) =

N -1

1 e- Aa n Az ,where k aiz
N -1

2

L
sin c(k, )

2
Az

sin c(k, )
2

Evaluating (2.7) for kz

2= n
= |kl sin(0) sin(O), where 0 is defined with respect to the angle

to the z axis, we arrive at a beampattern of

Ssinc(x)=sin(x)/x,

14

(2.7)

Y
=kz



sin c (27 sin(O) L)

B(co,0) = ) where L=NAz. (2.8)

sinc 2;sin(0)

Due to the spatial sampling of our discrete array, we observe grating lobes in Figure 2.3 at

integer multiples of k=27n/Az. If the element spacing Az is greater than k, the grating lobes

would appear within the region of propagating signals, or rather 'real space'. In order to

I - 271/k
I|-- RealSpace ------

0=-90 0=90

- 27c/Az ---- ) I

Figure 2.3 Beampattern response for linear array and uniform weighting.

avoid such aliasing, we require Az<X/2, known as the spatial Nyquist criterion. We must

keep in mind, however, that the resolution of the main lobe is 27u/L = 2x/NAz and thus the

smaller the spacing Az, the worse the resolution. In practice, the spacing is chosen as big as

possible while still avoiding aliasing, hence we choose Az=•/2.

We have just seen how element spacing determines the array's resolution and grating lobe

effects. Now, let us examine how the number of elements affects array performance.

Having constrained Az-h/2, our array's resolution, 27x/NAz, is now completely determined

by the number of elements. In addition, as we increase N, the number of nulls in real space

15
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increases. To illustrate this dependence, let us examine some beampattern responses for

linear spaced arrays with uniform weighting and a spacing Az= /2. In Figure 2.4, the nulls

occur at 0= ± 900 due to the fact that the signal wavefront at that direction of arrival travels

exactly k/26 between the two array elements.

0

-5

-10

-15

-20

-25

-30

-35

-40

-45

-50
-80 -60 -40 -20 0 20 40 60 80

Azimuth (degrees)

Figure 2.4 Array beampattern for two-element array.

The signals at the two elements differ by a phase shift of 1800, and thus the array sum results

in an exact cancellation of the signal. As we increase the number of array elements, Figure

2.5, the placement of the nulls change according to the beampattern equation, with nulls at

Om = m.sin-'(2/ N) , m = ±1, 2, 3,...N/2 and N odd. (2.9)

Notice that the level of the first sidelobes are -13.5dB down from the mainlobe. This is

due to our uniform weighting. If we were, however, to use an non-uniform window, or

6 Up till now, we have assumed that f in X=c/f, is the single center frequency.

16



taper, such as a Hamming or Kaiser-Besssel window, we could lower the first sidelobes to

-50dB or -80dB, respectively.

0

-5

-10

-15

-20

-25

-30

-35

-40

-45

-50
40 60 80

Figure 2.5 Beam pattern for seven-element array.

For interference signals not in the mainlobe, we would have excellent rejection or

cancellation. Unfortunately there is always a tradeoff, and by decreasing the sidelobes we

have drastically increased the width of our mainlobe. See Oppenheim and Schafer for

windowing effects.

While the mainlobe resolution and number of nulls increase with the number of elements

N, the widths or sharpness of the nulls actually decrease with N, and thus the ability of the

array to place a broad null on aggregate interference sources degrades. However, as we will

soon discover in Section 2.2, by choosing appropriate weights the array beam pattern nulls

can be placed arbitrarily in whatever single direction one wishes to cancel interference signals.

In addition, by inserting a time delay of nk/2-sin(Osteer), or an equivalent phase shift, in each

nth element, we can "steer" the array beam pattern so that the entire pattern is shifted over

by 0. The resulting steered beampattern is

-40 -20 0 20
Azim uth (degrees)

-80 -6 0

11\



sin c (2v{ sin(0) - sin(Oseer) i)
(2.10)

DsWU) sinc (2({sin() - sin(Osteer)}

For a 0steer=150 , we have the resulting plot:

0

-5

-10

-1 5

-20

-25

-30

-35

-40

-45

-50
-80 -60 -40 -20 0 20 40 60

Azimuth (degrees)

Figure 2.6 Beampattern for array steered to 150.

While the operation of delaying or advancing the signal by adjusting the weights w(t) can

effectively steer the beampattern, it can also produce a destructive combination, or null, at a

particular angle 0.

2.2 Classical Two-Element Interference Cancellation

Consider a two-element linearly spaced array separated by a spacing of Az, shown below in

Figure 2.7. An interference signal n(t) originating from a direction 0 arrives at the second

element T seconds later that the first element, where T=(Az/c)sin0 and c=propagation speed.

18
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If we sum the signals from the two elements, ignoring the weights for now, the resulting

output y(t)= n(t) + n(t-t). To truly cancel n(t), all we would really need to do is delay the

signal received at element one by t and subtract this from the signal received at element two.

While this would result in perfect cancellation of all frequencies at an angle 0, in practice the

angle of arrival is not known, and thus there is no straight forward method for determining

the time delay needed.

However, as we will see in Chapter 3, by introducing a complex weight' on each array

element, we can devise a method for determining the directions of signal wavefronts.

t)

Az-sin0 {

Figure 2.7 Two-Element Linear Array.

2.3 Nulling Limitations

Assuming for now that we know the angle of arrival for a single interference signal n(t), let us

again refer to Figure 2.7. If we form the output y(t), but now add the effect of the complex

weights,

y(t) = wzn(t) + w2n(t - ). (2.11)

Taking the Fourier transform, the frequency domain representation is:

7 W is a complex number, W = Wreal + jWiaginary.

19
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Y(w,t) = N(co,t)[w, + w2e-j "]. (2.12)

If the interference is a stationary signal, where the frequency spectra N(co,t) varies slowly over

time relative to o, and narrowband with a center frequency of fo, N(co,t) would be zero

everywhere except where co equals oio. To perfectly cancel the signal, all we need to do is

choose

w = -w 2 e-  . (2.13)

With these weights, Y((o,t)=0.

2.3.1 Bandwidth Degradation

In most situations though, the interference signal one encounters is not a narrowband signal,

but a signal with some bandwidth. Using the above weights now results in less than perfect

cancellation. For a perfectly stationary environment N(co,t)=N(c) and the weights result in a

transfer function

Y(w0)
H ( ) - w [ 1 - e co -co , ]. (2.14)

N(o)

If we let w142 = 1, the output power H(w) 2 becomes,

H(cm)12 = {2 - 2 cos[rv( -co)]} . (2.15)

The plot of the output interference spectrum ( for Az=ko/2 and 0=900) is seen in Figure 2.8.

Ignoring the internal thermal noise associated with an array element, the output spectrum is

perfectly zero, as we expected, at the center frequency of 100 MHz , but increases rapidly as

we move away from the center frequency of the interference signal.

For an interference signal with a bandwidth, the frequencies away from the center



frequency will only be attenuated and not completely canceled. As illustrated in Figure 2.8, a

signal with a bandwidth of 10 MHz as compared to a signal of 2 MHz will receive 13dB less

-15

-2 0

. -2 5

CU -30

3 5

-40

-45
9 5

F re q uency (M H z)

Figure 2.8 Two-element Cancellation Performance.

attenuation at its outer frequencies.

Examining the equation for the output power mH(co)2 more closely, we realize that the

depth of the null also increases as the angle of arrival of the interference signal leaves

broadside(0=00 ). The output power as the angle of arrival travels from 0-900 for frequencies

varying from 1-5 MHz from a center frequency fo = 100 MHz is plotted in Figure 2.9. As we

can see, a signal arriving from broadside and 5MHz from the center frequency gets

attenuated by only 15 dB. This is because the closer we get to broadside, the smaller the time

-10

-20

-30

Gain (dB) -40

-50

-60

from fo

from fo

00 20 40 60 80 100
Azimuth (degrees)

Figure 2.9 Cancellation vs. Arrival Angle for Off-Center Frequencies.



delay the signal experiences between elements and the harder it is too approximate this small

delay with complex weights. Figure 2.9 also illustrates the bandwidth degradation discussed

and shown in Figure 2.8

2.3.2 Amplitude and Phase Mismatch

Previously, we examined the degradation of interference cancellation due to the effects of

interference bandwidth and angle of arrival while assuming that the gain and phase

associated with each weight were exact. This, however, is not the case as the weights are

represented by a finite number of bits determined by the specific hardware used. Using the

previously derived output power JH(w)l 2 while ignoring the effects of bandwidth and arrival

angle, produces a basic model for amplitude and phase mismatch. The interference output

power for a two-element array now has the form

H(C0) 2 =l+a 2 -2a cos (2.16)

where the phase error is zero for =0, and the amplitude error is zero for a=l. 8 Figure 2.10

shows the corresponding plot of interference cancellation for various amplitude and phase

-2 0

-4 0

-60

-80

-100
-1 0 0

-1 2 0

-1 4 0

10 102 10 10 0
A m plitude error, Phase error(degrees)

Figure 2.10 Cancellation for Amplitude and Phase Mismatch

8 Phase 0=-" sin 0

22



errors in a two-element system. In order to achieve an attenuation of 60dB, the plot

indicates that we need an amplitude error of less than .02 and a phase error less than 10.

2.4 Tapped Delay Lines

As we just observed in Section 2.3, the bandwidth of the interference signal affects the ability

of the array to reject such signals. This is due to the fact that the inter-element phase shift 4

is a function of frequency,

coAz
S= cz = - sin 0. (2.17)

C

Since the phase shift varies across the bandwidth of the interference signal, to achieve perfect

cancellation we would need to introduce a new process on each array element. The now

standard process, one which uses tapped delay lines, is able to provide a phase shift that

could vary with frequency. As in the two-element case in Section 2.3, to achieve perfect

cancellation we need

wI = -w 2 e - w 2e -J (2.18)

where o corresponds to a single radian frequency coo. If we use a tapped delay line as

illustrated in Figure 2.11, we arrive at a transfer function which is a function of frequency,

H(o) = w + w2e -  + w 3ej2 r +... WNe - j(N - 1)wr  (2.19)

Using this method, we are better able to compensate for the difference in phase shift across

frequencies, and thus don't require co to be a single frequency. Essentially, the tapped delay

line, by turning off and on the weights at various points, inserts a variable delay behind each



array element. The more taps, the better the approximation to an non-integer delay and the

closer we come to placing an exact null on a non-zero bandwidth interference signal.

In typical situations, interference signals are not simply narrowband, but both wideband

and narrowband. While tapped delay lines have become the standard approach to dealing

with the wideband problem, the method of band-partitioning, to be presented in Chapter 4,

addresses the same wideband issue with excellent results.

Array element

Figure 2.11 Tapped Delay Line with N complex weights.

2.5 Degrees of Freedom

We have previously shown the ability of a two-element array to cancel one interference

signal. Revisiting an adaptive array with N elements, a narrowband signal arriving from an

angle 0 with a radian frequency co produces an array signal vector of

X= e" 1 ej2 ... e-J ]T , (2.20)

where 4i is the phase shift from the first to the i' element. The output signal is then

obtained by applying a complex weight to each element and summing the result over all

elements. The output signal has the form



y(t) = Re{ ej [wl + w 2e
- '] +±'".+wNe- ' ]}. (2.21)

Looking closely we see the already visited beampattern response with

B(O) = w, + w2e - j + +wNe -  (2.22)

If we wish to place a null at an angle of 01, the weights must be chosen so that

B(6) = w, + w2e - j
2 

( 0
1

) +..+WNe - j uO( 
1) = 0. (2.23)

There are infinite non-zero solutions to this one equation with N unknowns. If, however, we

impose a second null at 02, the weights must also satisfy the equation

B(02) = 1 + w2e-J2 (02)+.. .+wNe-JON ) = 0. (2.24)

Furthermore, we can steer the beam, putting a beam maximum at an angle 03. This

constraint yields a third equation

dB
dB I  = -j,(03)w2e- j 2 ('

3),._ j (O3)WN e- j
3

' ( ) = 0. (2.25)

Placing a constraint on a beam maximum, or rather steering the beam to where we expect

our desired signal to appear, requires only one degree of freedom. Since we have N weights

and therefore N unknowns, we can find a non-zero solution for at most N equations. Thus,

an N element array can successfully cancel N-1 narrowband interference signals while

maintaining a beam maximum in the direction of the wanted signal.

All previous computations in Chapter 2 calculated the weights needed to cancel

interference signals by exploiting the fact that we knew the frequency and angle of arrival of

the various sources. While this served to demonstrate the ability of an array to realize

interference cancellation through complex weight control, it is not a practical approach.



Practical systems cannot be expected to know the number of signals present, their frequency

content, and their angle of arrival. This leaves us with the goal of Chapter 3, to develop a

practical method to solve for the necessary weights in an adaptive array.



Chapter 3

3. Adaptive Algorithms

An adaptive array attempts to cancel interference signals by adjusting complex weights on

each antenna element. Assuming for the moment that the signal environment is stationary,

not changing with respect to time, there are two criteria that are most used in communication

systems to establish theoretical performance limits of an array. They are the mean-square-

error criterion (MSE) and the maximum-likelihood criterion (ML). In Chapter 2 we

discussed the constraints imposed by the array itself. Now, let us investigate the methods

and adaptive algorithms used in determining the optimal steady-state weights.

3.1 Steady-State Solution for Adaptive Weights

The importance of the steady-state solution derives from the fact that it is this solution that

provides the theoretical limits to how well any complex weight algorithm can perform. First,

we will investigate the above mentioned criteria and see how they lead to a similar equation

for the optimum complex weight solution. Then, in Section 3.2, the least-mean-square

(LMS) and direct matrix inversion (DMI) methods for implementing these solutions will be

compared.

3.1.1 Mean-Square-Error (MSE) Criterion

The minimum mean-square-error criterion, originally established by Widrow, is based on the

standard array configuration in Figure 3.1. Subtracting the array output from the desired

signal results in an error signal

e(t) = d(t) - y(t) . (3.1)



(t)

Figure 3.1 Adaptive array structure with known desired signal

To minimize this error signal, the weights are adjusted and optimized. One may question

how a system that is privy to the desired communication signal a priori is useful. In practice

though, for this system to work, an exact replica of the desired signal is not needed. Rather,

d(t) only has to satisfy the constraint that it must be correlated with the communication

signal and uncorrelated to the interference signals. In communication systems, which

typically use pseudo-noise codes to transmit information, this constraint is met.

Continuing our derivation for the optimal complex weights, if we define y(t) as

y(t) = W+X(t). (3.2)

where

X(t) = [x(t) x 2(0) .. XN(t)] , (3.3)

the error signal reduces to

e(t) = d(t) - W+X(t). (3.4)



In order to make the output signal come as close as possible to desired signal, we wish to

minimize the squared error between the two signals. The squared error becomes

e2 (t) = d 2(t) - 2d(t)XT(t)W + W+X(t)XT(t)W. (3.5)

Assuming x(t) and d(t) are stationary, we can take the expected value over t. This yields a

mean-squared-error

E[e2 (t)] = E[d2 (t)] - 2E[d(t)XT(t)]W + W+E[X(t)XT (t)]W . (3.6)

Using the definition of auto-correlation, where

E[x,(t)x,(t)]
E[x2(t)x,(t)]

R, = E[X(t)X T(t )] = E[x (t)]

E[x,(t)x,(t)]

E[x,(t)x2(t)]

E[x2(t)x 2(t)]

... E[xl(t)xN(t)]

... E[x,(t)x,(t)]

E[d(t)xi (t)]

E[d(t)x2*(t)]r = E[d(t)X*(t)] =

LE[d(t)xN*(t)]
we can express the mean-square-error in a more convenient notation. Equation 3.6 now

becomes

E[e2 (t)] = E[d2 (t)] - 2rdW + W+RxxW. (3.9)

Furthermore, if we define E[d2(t)], which is the power of our desired signal, as equal to S,

Equation 3.9 simplifies to

and

(3.7)

(3.8)



E[e2 (t)] = S-2 rdW + WR,W . (3.10)

We can see from the above expression that the mean-square error is a quadratic function

of the weights. Since the square error must be a positive quantity and increasing the weight

vector increases the square error, the quadratic surface must be concave up and have a

defined global minimum. This is an important result and implies that the optimal set of

weights that minimize the square error correspond to the point on the bottom of the bowl-

like quadratic surface. By differentiating E[e2 (t)] with respect to the weight vector and setting

the gradient equal to zero,

Vw{E[e2 (t)]} E[et)] = 0 (3.11)

we obtain the equation

Vw{E[e 2(t)]} = 0 = -2r, + 2RW. (3.12)

It follows that the optimal weight vector, assuming R is nonsingular so that R'

exists, is found to be

Woo = WA E = Rx-r. (3.13)

This vector can be simplified even further if our wanted communications signal s(t), incident

on the array, is a single signal source with s(t) = eJ• °' . The signal vector S(t) is then

ST(t) = eot[1, e-jO ,... ej"v ]

= s(t)v r (3.14)



where

ST = [1, e-j2 ,... e- " ] . (3.15)

Using (3.14), the array input vector X(t) can be written as

X(t) = s(t)v + N(t) (3.16)

where N(t) represents the noise vector due to interference signals. Since the desired signal

and the noise due to the interference signals are uncorrelated, the expected value of the

product of the two should equal zero. Furthermore, our desired signal should be correlated

with our communications signal s(t), and the expected value of these two quantities should

equal the power of the communications signal to within a constant. With this in mind,

rd = E[d(t)X*(t)] (3.17)

= E[d(t)(s*(t)v* + N*(t))]

= E[d(t)s*(t)v* +d(t)N*(t)]

= E[d(t)s*(t)v*]

r = Sv* (3.18)

where S, as defined earlier, is the power of the desired signal. The optimal weights from

(3.13) are now simply

Wop = WV I= SRExx-lV (3.19)

where v is the steering vector, the direction vector in which we expect our desired signal.

This weight vector in (3.19), often referred to as the Wiener solution, corresponds to the

point on the quadratic surface representing the minimum mean-square error (MSE).



Finally, using matrix properties where [AB]T=BTAB' and R+=R, the MSE equation from

(3.10) becomes

Emin[e2 (t)] = S - rx+R-'r x. (3.20)

3.1.2 Maximum-Likelihood

Using the array configuration in Figure 3.1, but now assuming that the desired signal structure

is completely unknown, leads us to a second criterion for weight optimization. This method,

known as the maximum-likelihood method, requires only that the noise has Gaussian

statistics. The goal of this criterion is to estimate the parameters which maximize the

probability that the output of the array only corresponds to the desired signal and not the

noise caused by interference signals. Revisiting (3.16), the array signal vector X(t) can be

represented as

X(t) = s(t)v + N(t), (3.21)

where

vT = [1, e-j ,... e- j ] . (3.22)

As in the MSE method, we need an estimate of the desired signal s(t). Specifically, we want

to estimate s(t) such that the probability density function for X(t) given (3.21),

P{X(t)j X(t) = s(t)v + N(t)} (3.23)

is maximized. To simplify our calculations, we can take the negative natural logarithm of

(3.23), known as the likelihood function:

L[X(t)] = - In[P{X(t)j X(t) = s(t)v + N(t)}]. (3.24)

Assuming X(t) is stationary and N(t) is a vector of Gaussian random variables with a

covariance matrix of R,,, (3.24) can be written as follows:



L[X(t)] = [X(t) - s(t)v] + R,,-'[X(t) - s(t)v]. (3.2!

The derivation is left in reference [4]. To maximize (3.25), we wish to find a estimate of s(t)

such that the derivative of (3.25) with respect to s(t) is zero,

dL[X(t)]
= -2v'R,-'X + 2s(t)v'R, 'v = 0. (3.2i

a(t)

Solving for the estimated s(t), we obtain

+R -1
S(t) = v+R X(t)v R,,1 v

= W,'X(t). (3.27)

Thus, the maximum likelihood optimal weight vector is

nn V
ML vR,rn 1V (3.28)

Comparing the weight solution of the mean squared error method in (3.18) to the weight

solution of the maximum likelihood method (3.28), we realize that the two are very similar.

If we rewrite (3.19) and (3.28) using

R, = R,, + R,, No = W Rnn W, and So = WR, 1,,-W = SNo

where No and So are the noise and signal power, respectively, output from the array,

after several complex matrix manipulations we arrive at:

S- *
W = o R,,-lv

NW(so + No)

1
and W, = R,,,,-lv

No

6)

(3.29)

(3.30)

5)



Surprisingly, the two weight solutions differs only by a scale factor.

3.2 Gradient-Based Algorithms for Adaptive Weights

We have just seen that for a steady-state system, the weights that achieve optimal interference

cancellation are directly related to R,-'v' * . For such a stationary system, in which the signal

environment is unchanging but the signal statistics are unknown, the correlation matrix is

determined by taking samples at the N array elements over an extremely long period of time.

The resulting array input vector, X(t), is then used to compute the correlation matrix:

R, = E[X(t)X*(t)], for t=0-oo. (3.31)

Finally, the weights are computed by taking the inverse of (3.31) and multiplying by the

steering vector.

Unfortunately, in most applications the signal environment does change over time and

thus taking an infinite number of samples in order to find the true correlation matrix is not

feasible. After taking samples and computing the optimal weights, the signal environment

would have changed and the current optimal weights would be different from the ones

computed. Essentially, the computed weights would be worthless.

So, we are left with the problem of developing an algorithm for the weights that

converges as quickly as possible to the optimal weights. Let us investigate two adaptive

algorithm that attempt to do just that, the least mean square (LMS) and the direct matrix

inversion (DMI) algorithms.

3.2.1 Least Mean Square (LMS)

The least mean square algorithm is by far the most widely used algorithm for converging to

the optimal weights solution. This algorithm, based on a gradient search method, is

extremely applicable to quadratic performance surfaces. Since quadratic surfaces have an



absolute minimum, the gradient method uses a gradient estimate (slope estimate) to

determine the direction of the performance surface minimum.

3.2.1.1 Gradient Search Method

Let us review the derivation of the MSE in Section 3.1 to illustrate its quadratic nature. As

we recall, the error signal, the difference between the desired signal and array output, was

expressed as

e(t) = d(t) - W'X(t). (3.32)

In order to make the output signal come as close as possible to the desired signal, we wished

to minimize the squared error between the two signals:

e2 (t) = d 2 (t)- 2d(t)XT (t)W + W+X(t)X T(t)W. (3.33)

Assuming x(t) and d(t) were stationary, we took the expected value over t. This yielded a

mean squared error

E[e2(t)] = E[d2(t)] - 2E[d(t)XT (t)]W + W+E[X(t)XT (t)]W. (3.34)

which we expressed in a more convenient notation as

E[e2(t)] = S - 2rdW + W+RW. (3.35)

As seen earlier, the mean square error of (3.35) is a quadratic function in terms of the weight

vector. Thus, we can use a gradient approach to find the optimal weights that cause the

mean-square error to be minimized.

Not knowing the location of the minimum of the performance surface, the gradient

search algorithm begins with a guess of the optimal weight vector. Then, an estimate of the

gradient vector, or slope of the curve, at this point is measured and a new weight vector is

computed. Since the gradient is in the direction of steepest upward slope, the new weight



vector is chosen equal to the previous guess minus some increment proportional to the

direction of the gradient. The process repeats until eventually the optimal weights are

reached. The iterative search method has the form:

wk+1 ' Wk -PVk (3.36)

where k is the iteration number, Wk is the current weight vector, and pt is the step size.

While the step size is chosen so that 0<ýp<1, typically, the smaller the step size the closer we

get to the optimal weights, but the longer it takes to get there.

3.2.1.2 LMS Derivation

The LMS algorithm uses (3.36) where at any iteration k, the gradient of e2 (k)is chosen as the

estimated gradient. The weight vector algorithm now becomes

Wk+, = w, - V[e2 (k)]. (3.37)

The estimated gradient of a single time sample is

Vk = V[e 2(k)] = = 2e(k)V[e(k)].

Remembering (3.32) but replacing t with k,

e(k) = d(k) - W+ X(k)

and thus the gradient of e(k) with respect to the weights reduces to

(3.38)

(3.39)



V[e(k)] = V[d(k)- W X(k)] = -X(k). (3.40)

Plugging (3.40) into (3.38), the estimated gradient can be written as:

Vk = -2e(k)X(k) . (3.41)

Finally, substituting (3.41) into the weight algorithm of (3.37), we arrive at the least mean

square weight vector algorithm:

Wk+1 = k + 2pe(k)X(k). (3.42)

Since (3.42) requires no averaging, differentiation, or squaring, the LMS algorithm is

extremely simple and efficient to implement. This strength accounts for the popularity of

the LMS algorithm.

3.2.1.3 Transient Response of LMS

It can be shown that the transient response of the LMS weights, or rather the speed of the

convergence to the optimal weights, is determined by time constants of the form:

1
S- , p=1,2,...,N (3.43)

where .P is the pth eigenvalue or signal power of the correlation matrix Rx. Since the

transient response of the LMS algorithm is determined by the smallest signal power and the

choice of step size ýt, it is often difficult to choose an appropriate step size. To approach as

close as possible to the optimal weights, we want a small step size. However, if the signal

environment is changing, we want to approach the optimal weight as quick as possible, which

according to (3.43) requires a large step size.

The appropriate step size, the smallest one which would still allow a specific transient

response to be met, could be chosen if we knew the smallest signal power (eigenvalue). Of



course this is not known, and thus the convergence time of the LMS algorithm is very

susceptible to differences in interference signal powers, also known as the eigenvalue spread.

While the LMS algorithm is extremely easy to implement, the transient problem due to

eigenvalue spread, leads us to our second algorithm, direct matrix inversion.

3.2.2 Direct Matrix Inversion (DMI)

In many practical applications, either the signal environment changes quickly or the platform

on which the array is placed is in constant motion. In both situations, the ability of the array

to reject interference signals is completely reflected by the convergence rate of the adaptive

algorithm used. Where the speed of convergence to the optimal steady-state weight solution

is imperative, an algorithm that is insensitive to eigenvalue spread is of valued importance.

Direct matrix inversion is such an algorithm.

3.2.2.1 DMI Derivation

Direct matrix inversion simply approximates the optimal weight solution

S= R -'r = R -jV*  (3.44)

by estimating Rxx over a finite observation interval. In communication systems, the desired

signal is often many orders of magnitude smaller than the interference signals and typically

close to the thermal noise of the actual receiver. Whether this is the case, or the weights are

adjusted over intervals when the desired signal is known to be absent, the estimated

correlation matrix Rxxbecomes Rn. Thus, the estimated covariance matrix is

RXX = Rnn - K X(i)X (i) (3.45)
K i=1



where X(i) is the ih time sample of array input vector X(t). Earlier, we defined the output of

the array as y(t) = W'[S(t) + N(t)]. Noting that the output power of the desired signal

only is

E{ly,(t)I2I} = WT S2 (3.46)

while the output noise power is

E{y (t)l2 } =I W NI2 (3.47)

gives us a signal to noise ratio (SNR) of

I wTS2
IWTN 2

WT[SST ]W
W T[NN T]W

(3.48)

If we normalize (3.48) by the maximum SNR, So/No,

(s/ n)
(S, /No) (3.49)

where co is a measure of how close we come to the optimal SNR. The probability

distribution of (3.49) formulated using the incomplete Beta distribution described in [5] [6] is

K!
PN < (q) K (f

(N - 2)!(K + 1 - N)! 0
- u)N-2 uK+1-Ndu

where N is the number of adaptive weights, and K is the number of time samples used to

estimate Rnn

(3.50)

SEl{ y,(t)2
SE{l yn(t)12 I



3.2.2.2 DMI Transient Response

Using the properties of the Beta distribution, from (3.50) we can compute the expected value

and variance of c. Dependent on K and N, the expected value of c is

K-N+2
E(c) (3.51)

K+1

while the variance is

(K - N + 2)(N - 1)
var(o-) = (K ) 2 (K2) (3.52)(K + 1)2(K+ 2)

Looking closely at (3.52), we observe an amazing result. The variance is completely

independent of the spread of the eigenvalues.' Computing the optimal weights by estimating

the covariance matrix has eliminated the problem encountered by the LMS algorithm. The

number of samples needed to compute an effective covariance matrix can be determined by

plotting (3.51). To come within 60% (-3dB) of the maximum SNR, it is apparent from

Figure 3.2 that the covariance matrix should be formed by using a number of time samples

greater than two times the number of antenna elements. Considering the number of time

1
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K

Figure 3.2 E(a) vs. K for N>2

9 In actuality, as illustrated in [4], if less than 10 bits are used when computing the inverse covariance matrix, var(s) is
slightly dependent on the eigenvalue spread.
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samples needed to compute the weights gives us a bound on the transient nature of both the

LMS and DMI algorithm.

While the complex weights necessary in a five element adaptive array require only 10 time

samples by direct matrix inversion, the LMS algorithm could require anywhere from 10 to

several hundred time samples due to eigenvalue spread. Even though direct matrix inversion

has its clear advantage over the LMS algorithm when it comes to rapid convergence to

steady-state, until recently, it has not been utilized. This can be accounted for by the fact that

DMI requires far more complex circuitry than does the LMS algorithm. Estimating R. when

using DMI requires KN(N+1)/2 complex multiplications. In addition, inverting Rx

requires (N3/2+N 2) complex multiplications and computing the weights another N 2

multiplications.

The LMS algorithm can be implemented completely through simple analog techniques

with minimal hardware. Unfortunately, with this simplicity comes limitations.

Enhancements for improved performance in an analog system are extremely difficult once

the system is built. In a digital system, however, algorithms can be modified very easily.

Furthermore, a digital system allows for the use of fast adapting algorithms such as direct

matrix inversion.

Due to staggering advances in computer technology over the last 3-4 years, it is now

possible to perform computationally intensive complex algorithms that require high speed

digital processing. This new ability, in combination with the ability to efficiently implement

the discrete fourier transform by computer, has initiated the investigation of new advanced

adaptive array algorithms that were before impractical. This leads us Chapter 4, the

exploration of an improved interference cancellation technique called adaptive band-

partitioning.



Chapter 4

4. Adaptive Band-Partitioning Approach

In Chapter 2 we observed how the introduction of complex weights to an array could

increase the array's ability to reject interference signals. We then investigated the severe

drawback of the traditional method, bandwidth degradation. Adaptive band-partitioning

attempts to address and alleviate such dependence on interference bandwidth by utilizing

digital techniques including the Fast Fourier Transform and direct matrix inversion.

4.1 Adaptive Algorithm

The traditional method for interference cancellation attempts to approximate a time delay

through multiplication of a single complex weights on each array element. As illustrated in

Figure 2.7 and derived in Section 2.3, if we have a two-element array, the output y(t) has the

form

y(t) = wln(t) + w2n(t - r). (4.1)

Taking the Fourier transform, the frequency domain representation, assuming the

interference signal is stationary, is

Y(co) = N(wo)[w, + w2e -J ' . (4.2)

If the signal n(t) were a narrowband signal with a center frequency of fo, 0c would equal Oo

and we would thus be able to perfectly cancel the signal by choosing

w, = -w 2e-J(ov. (4.3)

For situations in which interference signals are not narrowband, the bandwidth of the signal

greatly affects the ability of the array to reject such signals.



We discovered that this was due to the fact that the inter-element phase shift 4 was a

function of frequency,

c= = Az
€ = ot = -- sin O. (4.4)

Since the phase shift varies across the bandwidth of the interference signal, to achieve perfect

cancellation we observed that we would need to introduce a new process, one which could

apply a phase shift that varied with frequency.

Az
4/

t)

Az.sinO {
n(t-t) n, Element 2

Figure 4.1 Classical Two-element array

Let us take a step back and look at Figure 2.7 but without the weights. From Figure 4.1

an interference signal n(t) arriving at element 1 at an angle 0 arrives at element 2 as a shifted

version of itself, n(t-¶). If we assume the signal has a non-zero bandwidth, the Fourier

transform of xl(t) and x2(t) is

xl(f) = N(f) and x2(f)= N(f)e- j 2
nfr (4.5)

The most obvious method of canceling the signal would be to multiply x2(f) by e j2; r and

subtract this from xl(f). Notice, multiplying x2(f) by ej 2# r is essentially multiplying each

frequency f in x2 by a complex number. Amazing, by performing this in the frequency

m



domain where the correct weight is applied to each individual frequency, we have perfect

cancellation for an interference signal with a bandwidth.

To multiply each frequency by a complex number, we would need a complex weight for

each frequency. Of course it is not practical to place a complex weight on each frequency,

but we can place weights on a large number of frequencies or frequency bins. Essentially, we

can partition a frequency band of interest into smaller bins and apply weights to each of these

bins. The result is our adaptive band-partitioning algorithm:

Element 1

Element N

Figure 4.2 Adaptive Band-Partitioning Approach

First, a L-point FFT is performed on each of N array elements, dividing the frequency

response of each element into L distinct bins. Then, complex weights are applied to each

frequency bin of each element. Where in the classical adaptive array we applied one complex

weight to each element, the new approach places L weights on each element, corresponding

to the L frequency bins. To find the optimal weights to cancel an interference signal, we now

(t)



compute an optimal set of weights separately for each frequency bin. If we define the weight

vector for bin 1 as

w, = (4.6)

-WIN

and the vector of frequencies for bin 1 as

fl = (4.7)

the output frequency for bin 1 is

fiow, = w"f . (4.8)

Taking the output frequency for each of L bins and then computing the L-point IFFT gives

us our output signal y(t), hopefully now devoid of all interference signals.

Whereas the N-element classical array was capable of canceling N-1 narrowband

interference signals while steering the array toward the desired signal, adaptive band-

partitioning has the ability of canceling N-1 narrowband interference signals in each of L

frequency bins. Furthermore, cancellation is no longer dependent on interference

bandwidth. Since we are applying adaptive weights to each frequency, a wideband

interference signal can be completely cancelled. The performance of adaptive band-

partitioning under various circumstances is simulated in Section 4.4.



4.2 Applying DMI

To compute the weights necessary for each frequency bin, the DMI algorithm of Chapter 3,

Section 3.2.2 is used. As determined by Figure 3.2, to obtain a reasonable estimate of R, we

need to take at least 2N time samples per array element. Instead, since we are now dealing

with deriving weights in the frequency domain, for each array element we need to average at

least 2N samples for each frequency bin. This leads to taking quite a few more time samples

than in the classical case. If we average 2N consecutive segments of L time samples

overlapped by 50%, we arrive at

no. time samples = fftsize + (fftsize-overlap)2N

= L+(L/2)2N

= L(N+1) for 50% overlap. (4.9)

While the number of time samples might seem excessive, in communication systems that

have bandwidths of 10-25 MHz, and thus sampling rates of 20 MHz and higher, the

associated time delay is not a concern. This will become obvious in the simulation which

follows.

4.3 Simulation Setup

To confirm and further characterize the ability of the adaptive band-partitioning algorithm to

reject narrowband and wideband interference signals, extensive simulations were performed

on various interference environments. To approximate a communication system, a

bandwidth of 25 MHz set on a carrier frequency of 1.4 GHz was chosen.

4.3.1 Array Configuration

For comparison purposes and ease of implementation, the well-studied uniform array with an

c

element spacing of k/2 was chosen for all the experiments. Since A = where fo is the

carrier frequency of 1.4 GHz, we have an inter-element spacing of .107 meters. As each
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additional array or antenna element introduces a significant cost to the system, often several

to tens of thousands of dollars for military applications, a 5-element array was used to

simulate a small and affordable array.

4.3.2 Communication Assumptions

Several assumptions were made to make the simulations reasonable and applicable to satellite

communication systems. The array was placed along a horizontal axis and phased and

oriented to point skyward. Thus, to steer the antenna toward the desired signal sent by the

satellite, we need to steer the array to 00 (essentially no steering is needed). In addition, since

the only signals that can propagate from directly above are signals sent by satellites, and the

main beam width for a 5 element array given by (2.9) is + 170, we will assume that

interference signals will not be present in the main beam.

There is one other very important assumption we will need to make. Typical

communication systems use a method of spread-spectrum coding, often called pseudo-noise

coding, to spread their narrowband signal over a wide bandwidth. The purpose of such a

technique is to be able to send a signal with much smaller power density, and then correlate

the signal at the receiver with a known reference signal to achieve amplification. Since the

pseudo-noise code is designed to be uncorrelated with noise, only amplification of the signal

is achieved. The important implication of using such a technique is that the amplitude of the

desired signal at the receiver, array element, is comparable to the thermal noise level of the

receiver. Assuming that the interference signals have large amplitudes compared to the

thermal noise level, the system will place nulls only at the location of the largest signals,
consequently the interference signals. Thus, when deriving weights to cancel the

interference signal, the desired signal will not be mistaken as a large amplitude signal needing

rejection. Of course, since we will actually steer the array toward the known location of the

desired signal, the desired signal would never be canceled. If the desired signal was, however,
much greater in amplitude that the thermal noise, the convergence rate of the weights would



be much slower. Consequently, the 2N frequency samples needed by the DMI algorithm

would not be enough to derive sufficient weights and achieve interference cancellation.

4.3.3 Convergence Rate

As stated earlier, the convergence rate of an adaptive algorithm is critical if the signal

environment is rapidly changing or the platform on which the array is placed is in motion.

Let us examine the actual time required by the DMI algorithm in our simulated

communication scenario using adaptive band-partitioning. If we choose to compute 2N

blocks of 256-point FFTs overlapping each block by 50%, we need L(N+1) time samples,

(4.9). Having chosen L=256 and 5 elements, this requires us to take 1536 time samples.

Since our communications bandwidth of 25 MHz requires a sampling rate of 50 MHz, we

have a time sample every 1/50MHz or rather every 20ns. Thus, our convergence rate, the

time for our algorithm to converge, is

1536 time samples x 20ns/sample = 30.7ýtsec. (4.10)

To see how robust this seemingly small time is, let us imagine that the array is on a platform,

such as a plane, moving at 500miles/hr.. Converting this speed to inches/ltsec we have

miles lhour 1 min. 1 sec. 5280ft. 12inches inches
500~ x -- x- x x x =.0088 -

hour 60 min. 60 sec. 106 u sec lmile lft. p sec

Multiplying this result by the convergence rate of (4.10), the plane will move only

inches
30.7pu sec x.0088 - =.27inches

p sec

in the time it takes the algorithm to converge. This movement is extremely small and would

lead to the array moving less than a degree off axis. Thus, in our test scenario the convergent

rate of adaptive band-partitioning algorithm while using DMI is more than adequate.



4.3.4 Jammer Simulation

Two types of interference signals were used to test the adaptive array, narrowband and

wideband signals. While narrowband signals were given a bandwidth of 100 kHz, wideband

signals were given a bandwidth of 25 MHz, in order to span the entire communication

spectrum. To simulate the arrival angle for each interference signal at each of the 5 elements,

the signal vector X(t) was generated by delaying the signal appropriately:

x(t s(t) Az
X(t) = = where r = - sin 0 = - sin 0 (4.11)c 2c

x (t)_I s(t -(N -1)r)

Finally, the signal vector for each interference signal was added to arrive at the resulting

interference vector.

4.4 Simulation Results

The sections to follow each deal with distinct simulations involving a combination of

narrowband and wideband interference signals. The desired signal will always be placed at 00

azimuth and will have a power density equal to that of the thermal noise. To set a reference,

the thermal noise at each receiver will have a power of OdB. Hence, an interference signal

with a power of 60dB is 60dB above the thermal noise power.

For each scenario, several plots will be included to illustrate the success of adaptive band-

partitioning in canceling the interference signals. The first plot will always indicate the

location and frequencies of the generated interference signals. The second plot will show the

beampattern resulting from the optimal derived weights. The comparison of the two should

illustrate the ability of the algorithm to locate the interference signal's frequencies and angle

of arrival. The third plot will graph the residual interference power left in each frequency bin



after adaptive band-partitioning. Inspecting the residual power left in each frequency bin

will give us a final assessment of the success of interference cancellation.

4.4.1 Single Narrowband Interference Signal

Let us first look at the cancellation achieved for narrowband interference signals only.

Figures 4.3 to 4.5 were generated for a 60dB interference signal arriving at an angle of -300

and centered at 15MHz. The true angle of arrival and frequency of the interference signal is

plotted in Figure 4.3. If we compare this to Figure 4.4, we see that a null of 80dB is placed

exactly in the true location and frequency of the interference signal. The colormap on the

right side of Figure 4.3 serves to map the plot color to the attenuation at any location. To

ensure that the interference signal was fully canceled, the residual interference power left at

each frequency after applying the weights was graphed. As seen in Figure 4.5, the

interference signal was completely rejected.

To show the adaptive band-partitioning's insensitivity to arrival angle, a single narrow

band interference signal of 15MHz was generated for arrival angles of -900 to 00. Amazingly,

the null depth remains relatively constant as the interference signal's arrival angle was varied.

This can be seen in Figure 4.6. It appears that perfect cancellation is achieved even when the

interference signal's arrival angle is close to the arrival angle of the desired communications

signal. While this alone might be true, it is also extremely important to observe the effect of

the weights on the desired signal. Figure 4.7 plots the attenuation of the desired signal for an

interference signal as the arrival angle is varied as in Figure 4.6.. Surprisingly, even when the

interference signal is at 00, the desired signal is hardly attenuated. This can be accounted for

by the fact that the desired signal is a spread spectrum signal having a bandwidth of 25 MHz.

Thus, even though the interference signal and thus the desired signal is canceled at 15 MHz,

most of the desired signal's frequency components remain intact and so too then does the

desired signal.
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4.4.2 Multiple Narrowband Interference Signals

We have just seen that adaptive band-partitioning performs better than the classical approach

when a single narrowband interference signal's arrival angle varies. The much more

important advantage of band partitioning, however, becomes apparent when we have

multiple narrowband interference signals. The classical approach to interference cancellation

has the limit of canceling N-1 narrowband interference signals, where N is the number of

array elements. In our simulations with a 5-element array, the classical approach would be

able to cancel a maximum of 4 signals. In theory, the adaptive band-partitioning approach

has the ability to cancel N-1 narrowband signals in each frequency bin. Implementing band-

partitioning by performing 256 point FFT's, we now have 128 bins representing the

frequencies of 0-25 MHz. So, our new approach should be able to cancel 4 narrowband

interference signals in each of the 128 frequency bins. While this would lead us to believe

that 512 narrowband signals could be canceled, this is not the entire picture. If only 4

interference signals were present in each frequency bin, then 512 signals could be canceled.

Unfortunately, in practice we cannot expect a uniform distribution of interference signals

across frequencies. Consequently, there is no set number of signals that the band-

partitioning approach can reject. At a minimum it can cancel 4 signals. Of course, it has the

ability to cancel many more. If each of the narrowband interference signals happened to fall

in separate frequency bins, we would be able to cancel 512 narrowband interference signals.

To illustrate that adaptive band-partitioning can in fact cancel more interference signals

than the classical approach, two sets of plots follow. The first set of plots will show the

cancellation of 4 narrowband interference signals, all centered at the same frequency of 15

MHz and 60dB, but with random arrival angles. Then, the second set of plots will show the

effective cancellation of 25 narrowband interference signals with randomly distributed arrival

angles and center frequencies. Again, all the signals have a power of 60dB. In both

scenarios, one can see that adaptive band-partitioning does an excellent job of rejecting the

unwanted interference signals.
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4.4.3 Wideband Interference Signals

As illustrated in Section 2.3.1, the classical approach's Achilles tendon was the degradation of

cancellation as the interference signal's bandwidth increased. This was the main motivating

force behind the creation of adaptive band-partitioning. To see how well adaptive band-

partitioning fairs with a interference signal having a wide bandwidth, a 60dB interference

signal covering the full 25MHz bandwidth and having an arrival angle of -300 was generated.

Figure 4.14 show the interferer's true location and frequency. The beampattern

corresponding to the optimal cancellation weights is plotted in Figure 4.15. As we had

hoped, a null is placed across all frequencies at an angle of -300. Looking at the residual

power after applying the weights, Figure 4.16, we see that adaptive band-partitioning is

completely effective at canceling a wideband signal. No degradation results from attempting

to cancel an interference signal with a bandwidth.
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The maximum number of wideband interference signals that adaptive band-partitioning

can cancel is limited to N-1. For our five element array, only four wideband signals can be

canceled. While we have not gained the ability to cancel a greater number of wideband

interference signals than the classical method, we are able to fully cancel a wideband

interference signal, no matter how large the bandwidth. Unlike the classical method, no

degradation results due to interference bandwidth. This is because optimal weights were

derived for each frequency bin and each array element. The downfall of the classical

approach was the use of only one complex weight per element.

To confirm the ability to cancel four wideband interference signals, adaptive band-

partitioning was given four 60dB wideband signals as seen in Figures 4.17. The beampattern

in Figure 4.18 shows that nulls are placed at the precise arrival angles generated. Finally, the

residual power is plotted in Figure 4.19. Adaptive band-partitioning worked perfectly in

canceling the four wideband signals.

To illustrate how the algorithm fails when pushed beyond the limits of its capabilities, five

wideband interference signals each of 60 dB were tested. The results are shown in Figures

4.20-4.22. From the beampattern plot, it is evident that the nulls, which should be straight

lines at five angles, are imperfect. The obvious indication of the failure to cancel all five

interference signals is the non-zero residual power seen in Figure 4.22. Indeed, we are limited

to canceling only N-1 wideband interference signals.
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4.4.4 Narrowband and Wideband Interference Signals

As a final test, the adaptive band-partitioning approach was tested using both narrowband

and wideband interference signals. Since we verified that at most we could cancel only four

wideband interference signal, the algorithm was tested on 2 wideband and 25 narrowband

interference signals, all of 60dB power. While the classical approach would have failed at five

narrowband interference signals or just one wideband signal if the bandwidth was large

enough, adaptive band-partitioning is capable of canceling a much larger number of

interference signals. As seen in Figures 4.23-4.25, adaptive band-partitioning has no problem

canceling 27 signals. As long as there are no more than four signals in each frequency bin,

adaptive band-partitioning has the ability of canceling an even greater number than 27.
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Chapter 5

5. Conclusion

The previous three chapters have presented the development and analysis of the standard

approach to interference cancellation as well as that of adaptive band-partitioning. We began

in Chapter 2 by introducing the tradeoffs inherent when choosing the array size and spacing.

Then we investigated the idea of interference cancellation by creating nulls through the

addition of complex weights to the elements of an array. Deriving the results of interference

cancellation for a standard two-element array, we determined that applying a single complex

weight to each element results in limited interference rejection. While the standard technique

has the ability to completely cancel narrowband interference signals, it fails to fully cancel

interference signals of appreciable bandwidth. The inability to cancel wideband interference

signals instigated the investigation of a different cancellation approach, adaptive band-

partitioning. Chapter 3 and Chapter 4 served to introduce the methods and algorithms

necessary for the implementation of adaptive interference cancellation through the use of

frequency-dependent complex weights.

5.1 Algorithm Summary

For a linear array and a stationary signal environment, we determined in Section 3.1 that the

optimal steady-state weight solution found using the MSE and ML criterion had the form

Wop oc R,-l v *. Knowing that useful applications could not be expected to be characterized

by stationary signal environments, we investigated two algorithms used to converge to the

steady-state weight solution. We found that direct matrix inversion, while introducing added

complexity and computational burden, had a significant advantage over the well studied and

relatively simple to implement least-mean-squared algorithm. Recalling the derivations in

Section 3.2.2.2, the DMI algorithm required only 2N time samples to come within 3dB of the



optimal steady-state weight vector. Furthermore, DMI's insensitivity to eigenvalue spread,

and thus its unparalleled rapid convergence to the steady-state weight vector, make it the

ideal algorithm for use in adaptive interference cancellation, especially when used in adaptive

band-partitioning.

5.2 Algorithm Performance

The heart of band-partitioning, the concept of dividing the frequency spectra of a

communication signal into frequency bins and applying weights to each of these bins, was

illustrated in Chapter 4. As was shown in numerous simulations, the performance of

adaptive band-partitioning is remarkable. Adaptive band-partitioning has capability of

completely canceling wideband interference signals. In addition, it was shown to cancel at

least N-1 narrowband signals, matching the ability of standard cancellation techniques.

Moreover, for narrowband interference signals equally distributed across frequency bins,

band partitioning has the ability of canceling (N-1)L/2 interference signals.

The advantage of adaptive band-partitioning is obvious. With the ability to cancel a much

greater number of narrowband interference signals and completely cancel wideband signals,

adaptive band partitioning will soon become the standard approach used in interference

cancellation and rejection.

5.3 Implementability

As indicated in Section 4.3.3, an issue of primary importance when considering the

implementability of adaptive band partitioning is convergence rate. In a real-world system,

such as that aboard a plane, the system must be computationally as simple as possible in

order to derive the weight solution with minimum latency. As derived in (4.10), performing

adaptive band partitioning on a communication system with a bandwidth of 25 MHz while

using DMI and dividing the frequency spectra into 256 bins, requires 30.7gsec. This required

time is extremely reasonable and results in only .27 inches of movement in the aircraft in the

time it takes to compute the weights. While this result in itself is remarkable, we must not

overlook the enormous computational burden imposed by such a system.



In such a real system, using DMI requires estimating and inverting R,. As stated in

Section 3.2.2.2, KN(N+1)/2 complex multiplications are needed in estimating R_,while an

additional (N3/2+N 2) complex multiplications are needed to calculate its inverse and another

N 2 multiplications to compute the weights. To calculate a new set of weights after receiving

each new input sample for a 5-element array where K=2N=10, would require roughly

3(N2+N 3/2) = 263 operations. Unfortunately, since we are sampling at 50 MHz, our system

must be capable of performing 263 operations every 1/50MHz or rather every 20ns. Hence,

our computer must perform 13.15 billion operations per second. This might seem

unreasonable since conventional computers are only now breaking the barrier of 166 million

operations per second. It is possible, however, to create a system capable of such speeds by

designing a system that utilizes many parallel processors. Such a system was recently

developed by C. M. Rader [9] using restructurable VLSI wafers capable of more 3 billion

operations per second and as small as a wallet.

5.4 Future Work

There are several directions of study that might be of interest for improving the interference

cancellation achieved by adaptive band-partitioning. One direction is suggested by the ability

of band-partitioning to cancel (N-1)L/2 narrowband interference signals only when they

happen to be distributed equally among frequency bins. To ensure that more than the

minimum number of N-1 signals can be canceled, a method that adapts and divides the bins

according to the distribution of interference signals could be realized. If more than N-1

interference signals happen to fall within a certain frequency bin, this bin could be further

partitioned and bins devoid of interference signals could be merged together. Thus, we

would always be able cancel (N-1)L/2 narrowband interference signals, no matter what their

frequency distribution provided the bandwidths of the narrowband signals were close to zero.

A second area of study worthy of investigation, a bit less involved than the above

mentioned method, also involves improving the ability of adaptive band-partitioning. Again,

if more than N-1 narrowband signals happen to fall within the same frequency bin,

cancellation cannot be achieved. We would observe residual interference power at that



frequency bin. If we were to set the weights for that bin to zero, essentially zeroing that

frequency bin, the interference signal and desired signal at that frequency would be

completely canceled. Unfortunately, now we have lost frequency information about our

desired signal. Remember, however, that our desired communication signal is placed on a

spread-spectrum code. Since this spread-spectrum code occupies all frequency bins, zeroing

one or even many bins should not result in signal loss. This method of zeroing bins that

contain substantial residual interference power should be tested for its potential in assisting

adaptive band-partitioning in its rejection of interference signals.

Finally, as more complex and computationally intensive algorithms are being developed,

there is a definite need for further development of systems capable of tremendous speeds,

performing billions of operations per second.
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