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Abstract

In this dissertation I study some properties of field theories at finite temperature
using the AdS/CFT correspondence.

I present a general proof of an "inheritance principle" satisfied by a weakly coupled
SU(N) (or U(N)) gauge theory with adjoint matter on a class of compact manifolds
(like S3). In the large N limit, finite temperature correlation functions of gauge
invariant single-trace operators in the low temperature phase are related to those at
zero temperature by summing over images of each operator in the Euclidean time
direction. As a consequence, various non-renormalization theorems of Af = 4 Super-
Yang-Mills theory on S3 survive at finite temperature.

I use the factorization of the worldsheet to isolate the Hagedorn divergences at
all orders in the genus expansion and to show that the Hagedorn divergences can
be re-summed by introducing double scaling limits. This allows one to extract the
effective potential for the thermal scalar. For a string theory in an asymptotic anti-de
Sitter (AdS) spacetime, the same behavior should arise from the boundary Yang-
Mills theory. Introducing "vortex" contributions for the boundary theory at finite
temperature I will show that this is indeed the case and that Yang-Mills Feynman
diagrams with vortices can be identified with contributions from boundaries of moduli
space on the string theory side.

Finally, I consider the shear viscosity to entropy density ratio in conformal field
theories dual to Einstein gravity with curvature square corrections. For generic curva-
ture square corrections I show that the conjectured viscosity bound can be violated.
I present the calculation in three different methods in order to check consistency.
Gauss-Bonnet gravity is also considered, for any value of the coupling. It is shown
that a lower bound (lower than the KSS bound) on the shear viscosity to entropy
density ratio is determined by causality in the boundary theory.

Thesis Supervisor: Hong Liu
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Chapter 1

Introduction

1.1 Overview

In this dissertation we study some properties of gauge theories with string theory

duals, at finite temperature. The conjectured duality between conformal quantum

field theories and string theory (of which gravity is the low energy, classical limit) has

been a remarkable idea since it connects two apparently very different theories. Its

importance was such as to motivate much research in the past decade. The conjecture

relates field theories in (d - 1)-dimensions with string theory in d-dimensional asymp-

totically Anti-de Sitter (AdS) spacetimes (times a compact manifold). Through the

duality it is possible to describe the same physics phenomena using two different lan-

guages; since one of the two descriptions may be significantly simpler than the other,

researchers have been able to gain insight on physics previously unaccessible.

In this dissertation we will study two different situations where the correspondence

can be fruitfully used. In the first case (described in chapters 2, 3), we will analyze the

critical behavior of string theory at the Hagedorn temperature. We will start from a

quantum field theory with a U(N) gauge group and fields in the adjoint representation

on a class of compact manifolds. We will study properties of the partition function

at finite temperature and we will analyze the critical behavior of the theory. We can

then use the duality to obtain information about the behavior of string theory at the

Hagedorn temperature from this analysis. In particular we will show a way to re-



sum the contributions of the most divergent diagrams in order to obtain an effective

potential description (Eq. (1.7)) of the phase transition. We will do this in both

the gauge theory and in the string theory. Along the way we will prove a general

result (Eq. (1.10)) valid for this class of field theories at finite temperature in the

large N limit. This result allows us to deduce information on correlation functions

at finite temperature from the zero temperature results. We will call this result an

"Inheritance principle".

In the second part of this dissertation, described in chapter 4, we will consider an

example of the correspondence working in the opposite direction, studying the gravity

side to calculate hydrodynamic properties of quantum field theories. The limit in

which a strongly interacting field theory is described by hydrodynamics is accessible

in the gravity approximation and this allows us to compute transport coefficients from

the dual spacetime geometry. In chapter 4 we will compute the shear viscosity and the

entropy density of a field theory when string motivated higher derivative corrections

to the Einstein-Hilbert action are taken into account. We also argue that a recently

conjectured universal bound (Eq. (1.12)) on the ratio between shear viscosity and

entropy density may be violated when such corrections are present (Eq. (1.13)).

In the remainder of this introductory chapter, we will describe the main ideas

which laid the foundations for this work, and we will state more precisely what the

main original results of the thesis work are. Detailed derivations are left for the

subsequent chapters.

1.2 The holographic principle and the AdS/CFT

One of the main tools which is used in this thesis is the conjectured correspondence

between string theory in asymptotic AdS spacetimes (times a compact manifold) and

conformal field theories having one spatial dimension less than the AdS space. The

possibility of having a relation between a theory with gravity and a lower dimensional

theory without gravity is an idea which was first proposed in the works by 't Hooft

[76] and Susskind [73]. The idea is that gravity poses an upper limit to the amount



of degrees of freedom that can be contained in a bounded region of spacetime. This

limit scales with the size of the boundary of the region and not with the size of the

volume contained. This also implies that a field theory defined on the boundary of

the region contains enough information to describe the whole gravitational theory in

the inside. The heuristic argument in support of this bound can be traced back to

the Bekenstein formula for the entropy of a black hole which states that, for a black

hole of horizon area ABH, the entropy is (G is the Newton constant)

ABH
SBH = A (1.1)

4G

This provides an upper bound on the entropy of a bounded region of space in theories

containing gravity. The idea is that, given a spherical region of space with some

value S for entropy, one can produce a black hole of the same size by adding more

matter in a process which does not decrease the entropy. Therefore S can't be larger

than SBH. This argument can be made more precise [12]; the sense in which the

correspondence between Anti-de Sitter (AdS) spaces and conformal field theories

(CFT) is a holographic correspondence is explained in [74], and we'll review this

argument shortly.

The duality between string theory and gauge theory was first proposed by Mal-

dacena [51] and in [34, 79], in the context of type IIB string theory. In this original

example of the correspondence, the field theory in question is the maximally super-

symmetric SU(N) gauge field theory in 4 dimensions. Since the maximal number of

spinor supercharges one can have in four dimension is 4, this theory is denoted as

AF = 4 super Yang-Mills (SYM). This theory is conformal and has also an SU(4)R

additional global symmetry (R-symmetry) which rotates the various fields among

themselves.

On the other hand one considers type IIB super-string theory on an AdS5 x S5

background, where the S5 and AdS5 have the same size L4 = 4rgN(a')2. N is

determined by the flux of the type IIB 5-form through the S 5.

In its strongest form (the one which is widely believed to be correct), the corre-



spondence states that the two theories are equivalent when the coupling constants

are related by g, = gM = A/N.

Classical string theory on AdS5 x S~ is obtained by fixing A and taking N

g - 1 -+ o0. This limit corresponds to having a 't Hooft expansion in the conformal

field theory.

The classical supergravity limit is obtained on the string theory side when, in

addition to g, -- 0, the length of the string is negligible compared to the size of AdS.

This corresponds to L = 47rA > 1, i.e. when the conformal field theory is strongly

coupled and therefore difficult to access via perturbative techniques.

Since we can perform calculations in the super-gravity approximation, we can ob-

tain information on the strongly coupled regime of the conformal field theory and vice

versa, from perturbative field theory calculations we can have information on string

theory on the curved background. In this thesis we will show examples of both cases.

The downside of the complementarity of regimes is that tests of the correspondence

are also very difficult, since we can very often reliably compute physical quantities

only in one of the two dual theories. A noteworthy exception to this argument is the

case of quantities protected by non-renormalization theorems which are the same at

both strong and weak coupling. In particular, using the superconformal symmetry of

N" = 4 SYM theory, it is possible to show that the spectrum of chiral operators and

some correlation functions are independent on the Yang-Mills coupling and are there-

fore the same both at zero and at very large coupling. Comparing the results obtained

in the supergravity approximation with the results from field theory provided an im-

portant early test for the correspondence. There are also other correlation functions

(of chiral primary operators) which are conjectured to be protected by some non-

renormalization theorem, [49, 23]. In chapter 2 we will prove that even though the

non-renormalization is a consequence of the superconformal symmetry, these proper-

ties are inherited by the finite temperature correlation functions at leading order in

the large N expansion.

Let us review now the sense in which the AdS/CFT is related to the holographic

principle, following [74] (see also [3] for a review). The core of the argument is that in



order to measure the number of degrees of freedom of the field theory, it is necessary

to introduce a cut-off S at high energy (UV). The number of degrees of freedom of

NA = 4 SYM on a S3 of radius 1 scales then according to the number of elementary

cells (with size of order V3) one can fit in the sphere

SCFT- N 2 6- 3 . (1.2)

In a set of coordinates for AdS where the metric is

ds2 = L r r2)) dt2 + 4 (dr 2 + r2 d2) , (1.3)

imposing a UV cut-off of order 6 in the field theory is equivalent to imposing an

infrared (IR) cut-off at r = 1 - J. Using the metric Eq. (1.3), the area of the surface

at r = 1 - 6 is (when we include the compact S5),

SAdS = L S-3- N 2j-3 (1.4)463G

We see therefore that the entropy of the dual field theory scales in the same way as

the entropy of the AdS space, as expected from holography.

1.2.1 Large N expansion

Another way of understanding the correspondence is given by the large N expansion

of a field theory, first developed by 't Hooft [75](for a review see also [21] and [3]).

Since this is the language we'll employ in the chapters 2 and 3, we will give here

a short introduction to the main idea. Consider a field theory with a U(N) gauge

group. Let us consider a field in the adjoint, with lagrangian of the form

S= Trf( +)2 + gckijk TrijCJk + g2PijkiTr ijk, (1.5)

where g, is the gauge coupling constant and the indices i, j, k, I span some set of non-

color indices. The traces act on the color indices which are suppressed. The choice



of the power of the coupling constant is consistent with the self-coupling of a gauge

field as in the case of a pure Yang-Mills or for SU(N) SYM. Re-scaling the fields by

a factor of g9, we can rewrite this lagrangian as

L = 1 (r (ao)2 +Tr 3  Tr 4). (1.6)
9-

The propagator for this theory will carry a factor of g2 and each vertex a factor of

9c 2 . In a Feynman diagram, each closed loop amounts to taking a trace, and will

therefore give a factor of order N. Considering the set of diagrams with no external

legs, it is easy to check that the total contribution of a diagram with V vertices, L

propagators and F loops is proportional to

NF 2(L-V) (N2L-VF-L+V 2-2g L-V

where in the second equality we defined the 't Hooft coupling A = Ng2 and we

wrote F - L + V in terms of the genus of the diagram, defined as the genus of the

surface of which the diagram is a triangulation. If we consider the limit in which A

is kept fixed and N is large, we can organize the diagrams in a perturbative series

in 1/N, where the power of N is determined by the genus of the diagram. The

expansion in genus is analogous to the quantum expansion in string theory where

the perturbative expansion is in terms of diagrams of different genus with weights

g2-2. The understanding is then that the sum over all diagrams with a fixed genus

in field theory is equivalent to string theory amplitudes on a world-sheet of the same

genus. In chapter 2 we will show how this expansion need to be augmented on the

field theory side to include new contributions ("vortex diagrams") in order to account

correctly for the finite temperature.

Using these new elements, in chapter 2 we are able to identify the leading order

divergence at the Hagedorn temperature T = TH and to re-sum the contributions

from diagrams of every genus. This will allow us to describe the phase transition in

terms of a simple effective potential so that the free energy at the Hagedorn transition



Fing = logJ d/d* e-my*-gA4(*) 2  (1.7)

In chapter 3 we will then show how the procedure of identifying and re-summing the

leading divergence is possible also in the string theory side, in a double scaling limit.

1.3 Finite temperature

In this thesis we study various properties of systems at finite temperature. In the

first part of this work we will concentrate on calculating the partition function and

n-point functions of single trace operators. The partition function at temperature

T = 1/3 is,

Zp = e-PE
all states

where E is the energy of the state. This quantity can be calculated by considering a

path integral with Euclidean time, compactified on a circle of radius P. In the path

integral language,

Z = JD e•-fdTL4I, (1.8)

where £[o] represents the Euclidean time lagrangian as a functional of the fields

(, , ). Correlation functions of operators at finite temperature in the Eucliden time

formalism are calculated as

(01,..., ,),= Jn hOl.. .Oe -'3Ctl (1.9)

In the finite temperature theory, bosons satisfy periodic boundary conditions in

the Euclidean time direction, whereas fermions satisfy anti-periodic boundary condi-

tions. The difference in boundary conditions causes fermions and bosons to have a

different mode expansion, thus breaking supersymmetry.

In chapter 2 of this dissertation we will show that at leading order in the large

N expansion, for a U(N) gauge field theory with fields in the adjoint on S3 at a



temperature T = < T,, the n-point functions of single trace bosonic 1 operators

satisfies,

mlo.,mn=-oo

where 7 and e' are coordinates in the Euclidean time and on the S 3 respectively, and

Go and Go are the correlation functions at T = < T, and T = 0 respectively. If

the n-point function satisfies some non-renormalization theorem at zero temperature,

Eq. (1.10) implies that the same property is inherited at finite temperature at leading

order in .

In the context of the AdS/CFT we can ask whether these field theories at finite

temperature have a gravity dual. In this case one should consider the gravity solutions

with the correct asymptotic behavior. The thermodynamic properties of Anti-de

Sitter spaces have been first studied by Hawking and Page [37]. They showed that

at a certain temperature THp there is a first order phase transition between two

possible gravity solutions. For T < THP, the relevant gravity background is the so-

called thermal AdSd+l, while at T > THP the gravity background is the AdSd+l black

hole solution. This phase transition has been interpreted as a de-confinement phase

transition for the dual field theory in [80]. The dual field theory is defined on the

compact manifold S 1 x Sd-i and therefore the phase transition is sharp only in the

large N limit. The partition function and the de-confinement phase transition for free

SU(N) gauge theories on compact manifolds have been studied more recently also by

Aharony at al. in ([4, 5, 72]). Our discussion on properties of correlation functions

at finite temperature in chapter 2 will use some of the formalism developed in these

papers.

In the language of the last paragraph, Eq. (1.10) can be interpreted as suggesting

that the manifold on which the dual string theory is defined at T < TH is the same

manifold of the zero temperature theory, but with the Euclidean time direction com-

pactified with period p. This is analogous to the thermal AdS described above, but

1For more details and for the extension to the case with fermions, see Eq. (2.4)



this description is now valid when the string length is comparable to the AdS scale.

1.4 Hydrodynamic properties of gauge theories

As mentioned in the previous section, we are able to calculate the partition function

for free fields at zero or small 't Hooft coupling using perturbative methods. The

gauge-gravity duality gives also a way to compute the free energy at infinite 't Hooft

coupling using the gravity dual. For the case of Mf = 4 SYM, where the gravity dual

is well known, one can verify that the entropy calculated for free fields is comparable

to the result at infinite coupling,

SA=.O=4SYM = N2T3Vs3 = ( SA=0~ =4SYM = x 2N2T 3Vs3. (1.11)

The A = oc result we quoted above is the Bekenstein entropy from the supergravity

background. There are other thermodynamic properties of strongly coupled field

theories which are calculable when the gravity dual is known. In particular, it is widely

expected that the behavior of field theories at long distances and low frequencies

should be described by hydrodynamics (for details see [62, 42]).

Hydrodynamics determines the form of correlation functions of the stress-energy

tensor and of conserved currents as a function of a few parameters such as the shear

viscosity 77, the bulk viscosity ( and the speed of sound c8 . The gravity description

gives a description compatible with these constraints, and allows us to calculate the

value of transport coefficients for strongly coupled field theories.

A striking feature of all the theories with a gravity dual is that, in all examples at

hand, the ratio of shear viscosity over entropy density is found to be equal to [61, 46]

7- 1. (1.12)
s 47r

This result was proven to be a general result for all field theories with gravity dual in

[17] and was conjectured to be a universal lower bound for all materials in [45].

On the other hand, we expect gravity to be just a zeroth order approximation



with modifications due to finite length of strings and to non-zero string coupling.

The first type of corrections can be organized in a perturbative expansion, with terms

containing higher derivatives suppressed by powers of 18/L, where 1, is the length of

the string and L is the AdS scale. The details of the perturbation will depend on

the details of the compactification of string theory. It may be asked what happens to

the lower bound Eq. (1.12) when higher order corrections to Einstein-Hilbert gravity

are taken into account. The first a' correction to the IIB supergravity calculations

result Eq. (1.11) has been calculated in literature [35, 57, 18, 9] and was found to be

positive, therefore not violating the bound.

In chapter 4 we consider the lowest order higher derivative corrections to the

Einstein-Hilbert action with arbitrary coefficients. We consider the background de-

scribing an AdS5 black hole and we calculate the shear viscosity and the entropy

density. We compute the shear viscosity using three different method as a check of

consistency. We also show that the bound Eq. (1.12) is generically corrected and

becomes,

1 [1 - 4Ag + O(A)], (1.13)
s 47r)

where A. is the coefficient of the Riemann tensor squared term and has arbitrary sign.

For positive Ag the bound is manifestly violated.

We then concentrate on the particular case of Gauss-Bonnet gravity which is

technically less involved and we look for inconsistencies in the region of parameter

space where the bound is violated. In Gauss-Bonnet gravity the terms O(A ) in

Eq. (1.13) vanish, and the result Eq. (1.13) is correct for any value of the Gauss-Bonnet

coupling Ag. We find that this theory violates causality in a region of parameter space

where
fl 116S< --. (1.14)
s - 4r 25

It seems therefore that the bound may be violated by a consistent gravitational theory

once higher derivative corrections are taken into account and it may therefore not be a

universal bound on the properties of matter. The question whether this gravitational

theory with higher derivative correction can arise as a consistent truncation of string



theory is still open.

Experimentally, there are indication that a strongly coupled quark-gluon plasma

(QGP) has been produced during gold-gold collisions at RHIC. Experimental data

suggests that the hydrodynamic approximation may be relevant for this plasma and

that the ratio of shear viscosity over entropy density is very small, of the same order

of magnitude of Eq. (1.12).

Calculating hydrodynamics properties of field theories in the regime relevant for

experiments is difficult using the usual techniques of perturbative field theory or of

lattice QCD (even though recent progress in this direction has been made by [53]).

The AdS/CFT on the other hand gives us a setting where some of the computations

can be performed. Even though the gravity dual of QCD is not known we can improve

our understanding of it by using the results obtained for strongly coupled plasmas

in theories with a gravity dual. We'll give more details on this and a more complete

bibliography in chapter 4.

The results described in this dissertation have been published in the papers [13] and

[14] written in collaboration with Guido Festuccia and Hong Liu, and in the papers

[15] and [16] written in collaboration with Hong Liu, Robert Myers, Stephen Shenker

and Sho Yaida.





Chapter 2

Large N field theory at finite

temperature

2.1 Outline

In this chapter we consider a class of gauge theories with fields in the adjoint of a

U(N) gauge group on a class of compact manifolds, in the large N limit. In section

2.2 we consider their general properties and we show that the partition function and

correlation functions can be obtained by integrals over Wilson lines U. In section 2.3

we concentrate on correlation functions in the low temperature phase. We show that,

at leading order in N, correlation functions at 0 < T < TH can be obtained from the

result at zero temperature by introducing images in Euclidean time for each opera-

tor. This is valid for every value of the gauge coupling constant. Consequences of

this property, which we call the "Inheritance Principle" are then described in section

2.4. In the remainder of the chapter we go beyond the leading order and we consider

the expansion at all orders in 1/N for the partition function in the low temperature

phase. At finite temperature new elements, which we call "vortex diagrams," need to

be considered. Carefully analyzing this new diagrammatic expansion we are able to

analyze and extract the leading divergence of the partition function at temperature

TH. We conclude the chapter by stating that the behavior close to the critical tem-

perature can be described as the critical behavior of a scalar field. The relevance of



this fact in terms of string theory is analyzed in chapter 3.

Parts of this chapter have been published in [13, 14].

2.2 Free Yang-Mills theory on S3

In this section we discuss some general aspects of free gauge theories with adjoint

matter on S3 at finite temperature. We will assume that the theory under con-

sideration has a vector field A, and a number of scalar and fermionic fields' all in

the adjoint representation of SU(N). The discussion should also be valid for other

simply-connected compact manifolds. We use the Euclidean time formalism with

time direction T compactified with a period = 1. Spacetime indices are denoted

by p- = (T, i) with i along directions on S3.

The theory on S3 can be written as a (0 + 1)-dimensional (Euclidean) quantum

mechanical system by expanding all fields in terms of spherical harmonics on S3

Matter scalar and fermionic fields can be expanded in terms of scalar and spinor

harmonics respectively. For the gauge field, it is convenient to use the Coulomb

gauge ViAi = 0, where V denotes the covariant derivative on S3 . In this gauge,

Ai can be expanded in terms of transverse vector harmonics, A, and the Fadeev-

Popov ghost c can be expanded in terms of scalar harmonics. At quadratic level, the

resulting action has the form

So= NTr dr I(DMa)2 - 2 2 +((DT+± a)ýa+ m 2 + ea (2.1)
0 [( 2 Wa2 ia 2 a a a

where we have grouped all harmonic modes into three groups:

1. Bosonic modes Ma with nontrivial kinetic terms. Note that in the Coulomb

gauge, the harmonic modes of the dynamical gauge fields have the same (0 +

1)-dimensional action as those from matter scalar fields. We thus use Ma to

collectively denote harmonic modes coming from both the gauge field Ai and

matter scalar fields.
1We also assume that the scalar fields are conformally coupled.



2. Fermionic modes a with nontrivial kinetic terms.

3. va and ca are from nonzero modes of A, and the Fadeev-Popov ghost c, which

have no kinetic terms.

The explicit expressions of various (0 + 1)-dimensional masses wa, Wa, ma can in prin-

ciple be obtained from properties of various spherical harmonics and will not be used

below. In Eq. (2.1), following [4] we separated the zero mode a(r) of A, on S3 from

the higher harmonics and combine it with 9, to form the covariant derivative D, of

the (0 + 1)-dimensional theory, with

DrM = ,irMa - i[a, Ma], D,-a = 8ra - i[a, 7] .

a(r) plays the role of the Lagrange multiplier which imposes the Gauss law on physical

states. In the free theory limit the ghost modes ca do not play a role and va only give

rise to contact terms (i.e. terms proportional to delta functions in the time direction)

in correlation functions2 . Also note that Ma, Ca satisfy periodic and anti-periodic

boundary conditions respectively

Ma ( + + ) = Ma (7), Ca(T + 1) = -a(7T) . (2.2)

Upon harmonic expansion, correlation functions of gauge invariant operators in

the four-dimensional theory reduce to sums of those of the one-dimensional theory

Eq. (2.1). More explicitly, a four-dimensional operator O(r, e) can be expanded as

O(r, e) = f(o')(e)Qi(r) (2.3)

where e denotes a point on S3 and Qi are operators formed from Ma, a, Va and their

time derivatives. The functions f(0) (e) are given by products of various spherical

harmonics. A generic n-point function in the four-dimensional theory can be written
2Also note that since Va, ca do not have kinetic terms, at free theory level they only contribute

to the partition function by an irrelevant temperature-independent overall factor.



(0 1(71, e1)O 2(r 2 , e 2 )" .. ' n(, e.)) =

= fS (el) ... f• (en) (Qi, (T1)Qi2(T2) '. Qin (rn) (2.4)

where (...) on the right hand side denotes correlation functions in the 1-dimensional

theory Eq. (2.1). Note that Eq. (2.4) applies to all temperatures.

The theory Eq. (2.1) has a residue gauge symmetry

Ma -- 'M'Qt,

Ca --> •Qa t (2.5)

a * Qat + if2aRt.

At zero temperature, the 7 direction is uncompact. One can use the gauge symmetry

Eq. (2.5) to set a = 0. Correlation functions of the theory Eq. (2.1) can be obtained

from the propagators of Ma, &a by Wick contractions. Note that3

(Ma(T) Mk(O)) o = kG,(7; w•) 6 ab6il6 kj

(•• (r) (•0(O))o = -kGf(T; Cwa) 6 ab6 il6kj (2.6)

where
1

G,(T; w) = e-" l'l ,  Gf(T; w) = (-a, + w)G,(T; w) . (2.7)2w
and i, j, k, 1 denote SU(N) indices.

At finite temperature, one can again use a gauge transformation to set a(T) to

zero. The gauge transformation, however, modifies the boundary conditions from

Eq. (2.2) to

Ma(T + 0) = UMaUt, 6a(7 + P) = -U~aUt . (2.8)

The unitary matrix U can be understood as the Wilson line of a wound around the r

direction, which cannot be gauged away. It follows that the path integral for Eq. (2.1)

3We use (- ... )o and ( ... ), to denote the correlation functions of Eq. (2.1) at zero and finite
temperature respectively.



at finite T can be written as

( )d Z() J dU J DM(T-)D() ... e- so[Ma,• ;a=o]  (2.9)

with Ma, &a satisfying boundary conditions Eq. (2.8) and Z the partition function.

Since the action Eq. (2.1) has only quadratic dependence on Ma and C, the

functional integrals over Ma and ~a in Eq. (2.9) can be carried out straightforwardly,

reducing Eq. (2.9) to a matrix integral over U. For example, the partition function

can be written as

Zo(3) = JdU eI(U) (2.10)

where lo(U) was computed in [72, 4]

Seff(U) = E 1Vn(/)TrUnTrU-n (2.11)
n=l

with

Vn, () = z,(no) + (-1)"+l zf(no), z, (0) = e-flwa, zf(f0) = e-Oc
a a

(2.12)
Similarly, correlation functions at finite temperature are obtained by first performing

Wick contractions and then evaluating the matrix integral for U. With boundary

conditions Eq. (2.8), the contractions of Ma and Ca become

Mý. (_r)Ull •'-- a/ il Vk0

M(7) MN(0)= S G,(-mP;wa)Uim U,
m=-oo

=)Jab E (-1)mGf(T - mf; Cua)UVT m Uk. (2.13)
m=-oo

Eq. (2.13) are obtained from Eq. (2.6) by summing over images in T-direction and can

be checked to satisfy Eq. (2.8). As an example, let us consider the planar expression

of one- and two-point functions of a normal-ordered operator Q = TrM4 , with M



being one of the Ma in Eq. (2.1). One finds that

(TrM4) = 7  mL E#o0,n0o Gs(-mp)G,(-np) (TrUTrU"TrU-m -)

(2.14)

and the connected part of the two-point function is

(TrM 4 (T)TrM 4(0)), =

= 4 Em,n,p,q G,(7 - mp)G,( r - nf,)G,(r - pP)G,(- - q0)x
x (TrUq-mTrUm-"TrU"-PTrUP-q)U+  (2.15)

+ mni , ,p,q G8(-mp3)G.(-np3)G,(T - pp)G.(7 - qP) x

x (TrUmTrUn (TrU-m-p+qTrU-n+p- + TrU-m-p-n+qTrUp-q))U

In Eqs. (2.14)-(2.15) all sums are from -oo to +oo and

( -)u = • dU ... es f'f(U) (2.16)

with Z given by Eq. (2.10). We conclude this section by noting some features of

Eq. (2.14)-(Eq. (2.15)):

1. Since the operators are normal-ordered, the zero temperature contributions to

the self-contractions (corresponding to m, n = 0) are not considered. In general,

the one-point function is not zero at finite T because of the sum over images;

this is clear from Eq. (2.14).

2. The first term of Eq. (2.15) arises from contractions in which all M's of the

first operator contract with those of the second operator. The second term of

Eq. (2.15) contains partial self-contractions4, i.e. two of M's in TrM 4 contract

within the operator. The non-vanishing of self-contractions is again due to the

sum over nonzero images.

4Full self-contractions correspond to disconnected contributions.



2.3 Correlation functions in the low temperature

phase

It was found in [72, 4] that Eq. (2.1) has a first order phase transition at a temperature

T, in the N = oo limit. TrUn can be considered as order parameters of the phase

transition. In the low temperature phase, one has

(TrUn)u , NS,,o + 0(1/N) (2.17)

while for T > Tc, TrU", n = 0 develop nonzero expectation values. It follows from

Eq. (2.17) that in the low temperature phase, to leading order in 1/N expansion

(TrU"n'TrU" 2 ... TrUn)u , (TrUn)u(TrUn2)U . . (TrUnk)U

SNk bn,0... n" nk,O (2.18)

where in the second line we have used the standard factorization property at large

N.

We now look at the implications of Eq. (2.18) on correlation functions. Applying

Eq. (2.18) to Eq. (2.14) and Eq. (2.15), one finds

(TrM4)% = 0 + 0(1/N)

(TrM4 (T)TrM 4 (0)) = 4 G(T r - m/3) + O(1/N 2)

= E (TrM 4 (T - m_ )TrM4 (0))0 (2.19)

Note that the second term of Eq. (2.15) due to partial self-contractions vanishes and

the finite-temperature correlators are related to the zero-temperature ones by adding

the images for the whole operator.

The conclusion is not special to Eq. (2.19) and can be generalized to any correla-

tion functions of single-trace (normal-ordered) operators in the large N limit. Now

consider a generic n-point function for some single-trace operators. At zero temper-



ature, the contribution of a typical contraction can be written in a form

n Iij

Nn2+2h G$")(nT2 ), -r = -- Tj (2.20)
i<j=lp=l

where i, j enumerate the vertices, Iij is the number of propagators between vertices

i, j, G (p ) (ij) is the p-th propagator between vertices i and j, and h is the genus of the

diagram. At finite temperature, one uses Eq. (2.13) to add images for each propagator

and finds the contribution of the same diagram is given by

1
NI 1GP) - m)• (TrU1TTr" 2 .. -), (2.21)

i<j=l p=1

where m label the images of G' )(Tij). When involving contractions of fermions,

one replaces GS' (" - m-3 ) by (-1)mPG() G , ( - m ,)# for the relevant p's.

The powers s1, s82, ... in the last factor of Eq. (2.21) can be found as follows. To each

propagator in the diagram we assign a direction, which can be chosen arbitrarily and

similarly an orientation can be chosen for each face. For each face A in the diagram,

we have a factor TrUSA, with SA given by

SA = (+)m), A= 1,2,... F (2.22)
8A

where the sum dA is over the propagators bounding the face A and F denotes the

number of faces of the diagram. In Eq. (2.22) the plus (minus) sign is taken if the

direction of the corresponding propagator is the same as (opposite to) that of the

face. SA has a precise mathematical meaning: it is the number of times that the

propagators bounding a face A wrap the Euclidean time circle. We will thus call sA

the vortex number for the face A. To illustrate more explicitly how Eq. (2.21) works,

we give some examples in section 2.5.1

In the low temperature phase, at leading order in 1/N expansion, due to equation



Figure 2-1: An example of a double-line diagram at finite temperature. Each prop-
agator carries a winding number (or image number), which should be summed over.
Due to the presence of U-factors in Eq. (2.13), associated with each face one finds a
factor of trUSA, instead of a factor N as is the case at zero temperature.

Eq. (2.18) one has constraints on m associated with each face

SA = 0(±)m ) = 0, A = 1,2, ... F . (2.23)
OA

Note that not all equations in Eq. (2.23) are independent. The sum of all the equations

gives identically zero. One can also check that this is the only relation between the

equations, thus giving rise to F - 1 constraints on m •)'s. For a given diagram, the

number I of propagators, the number F of faces and the number n of vertices5 satisfy

the relation F + n - I = 2 - 2h, where h is the genus of the diagram. It then follows

that the number of independent sums over images is K = I - (F - 1) = n - 1 + 2h.

2.3.1 The planar case

For planar diagrams (h = 0), we have the number of independent sums over images

given by

K = n - 1 (2.24)

i.e. one less than the number of vertices. Also for any loop L in a planar diagram,
one has6

4m = 0 (2.25)
aL

5Note that since we are considering the free theory, the number of vertices coincides with the
number of operators in the correlation functions.

6The following equation also applies to contractible loops in a non-planar diagram.



where one sums over the image numbers associated with each propagator that the

loop contains with the relative signs given by the relative directions of the propaga-

tors. Eq. (2.25) implies that all propagators connecting the same two vertices should

have the same images, i.e. mj) = mij (up to a sign), which are independent of p.

Furthermore, this also implies that one can write

mij = mi - my . (2.26)

In other words, the sums over images for each propagator reduce to the sums over

images for each operator. We thus find that Eq. (2.21) becomes (for h = 0)

1 00 n li

Nl 2 Z 1 11 G(P (Qri - m f) - (Tj - mT/)). (2.27)
mi,"..mn=-oo i<j=l p=l

In the above we considered contractions between different operators. As we com-

mented at the end of section 2.2, at finite temperature generically self-contractions do

not vanish despite the normal ordering. One can readily convinces himself using the

arguments above that all planar self-contractions reduce to those at zero tempera-

ture and thus are canceled by normal ordering. For example, for one-point functions,

n = 1, from Eq. (2.24) there is no sum of images. Thus the finite-temperature results

are the same as those of zero-temperature, which are zero due to normal ordering.

When the operators contain fermions, we replace G, by Gf in appropriate places

and multiply Eq. (2.27) by a factor

n(2.28)

i<j=l

where I) is the number of fermionic propagators between vertices i, j. Using Eq. (2.26),

we have

(-1)EZi<jmLm•ju = (-1)YE,jmlf) = (- 1 )EZm<i  (2.29)

where Ej = 0(1) if the i-th operator contains even (odd) number of fermions.

Since Eq. (2.27) and Eq. (2.29) do not depend on the specific structure of the



diagram, we conclude that to leading order in 1/N expansion the full correlation

function should satisfy

Gp(ri, 7-n) = E (-1)'Go(-i - m1,,.• Tn - mO) . (2.30)
ml,m2,i*mn=-oo

Note that Eq. (2.30) applies also to the correlation functions in the four dimensional

theory since the harmonic expansion is independent of the temperature.

2.3.2 Including interactions

In the sections above we have focused on the free theory limit. We will now present

arguments that Eq. (2.30) remains true order by order in the expansion over a small 't

Hooft coupling A. In addition to Eq. (2.1) the action also contains cubic and quartic

terms which can be written as

Si = N dTr A b£3, + A • da,£4,) (2.31)

where L·a and £4c are single-trace operators made from a M,, Ma , , ca and their time

derivatives. b, and dc are numerical constants arising from the harmonic expansion.

Again the precise form of the action will not be important for our discussion below.

The corrections to free theory correlation functions can be obtained by expanding the

exponential of Eq. (2.31) in the path integral. For example, a typical term will have

the form

d l - - - dTn+k ((1 71) .. On(i ) £3 1 (Tn+) 1 4a " " Tn+k))3,0 (2.32)

where to avoid causing confusion we used ( ... ),)p to denote the correlation function

at zero coupling and finite temperature. Using Eq. (2.30), Eq. (2.32) can be written



Z00 dm-,m... T f±1 d-dnr+k

(01(71 - mi 3 ) ' On(-n - mn3) C3 1(Tn+l1) -'£4ak (Tn+k)) 0,0 (2.33)

where (... )0,0 denotes correlation function at zero coupling and zero temperature and

we have extended the integration ranges for Tn+I, ... Tn+k into (-oo, +oo) using the

sums over the images of these variables. Eq. (2.33) shows that Eq. (2.30) can be

extended to include corrections in A.

2.4 The Inheritance Principle - Consequences of

Eq. (2.30)

Eq. (2.30) implies that properties of correlation functions of the theory at zero tem-

perature can be inherited at finite temperature in the large N limit. For example, for

those correlation functions which are independent of the 't Hooft coupling in the large

N limit at zero temperature, the statement remains true at finite temperature. For

A = 4 Super-Yang-Mills theory (SYM) on S 3, which was the main motivation of our

study, it was conjectured in [49] that two- and three-point functions of chiral operators

are nonrenormalized from weak to strong coupling8 . The conjecture, if true, will also

hold for / = 4 SYM theory at finite temperature despite the fact that the conformal

and supersymmetries are broken. Eq. (2.30) also suggests that, at leading order in

1/N expansion, the one-point functions of all gauge invariant operators (including

the stress tensor) at finite temperature are zero. Eq. (2.30), while surprising from a

gauge theory point of view, has a simple interpretation in terms of string theory dual.

Suppose the gauge theory under consideration has a string theory dual described by

some sigma-model M at zero temperature and some other sigma-model M' at finite

temperature. The correlation functions in gauge theory to leading order in the 1/N

7Note L3a and £4, also contain ghosts c, whose contractions are temperature independent and
so will not affect our results in the last section.

sSee also [24, 40, 29, 31] for further evidence.



expansion should be mapped to sphere amplitudes of some vertex operators in the M

or M' theory. Eq. (2.30) follows immediately if we postulate that M' is identical to

M except that the target space time coordinate is compactified to have a period 0.

To see this, it is more transparent to write Eq. (2.30) in momentum space. Fourier

transforming 7i to wi in Eq. (2.30) we find that

Gp(wl,... ,w.) = Go(wl, ... ,w), (2.34)

with all wi to be quantized in multiples of 2. Thus in momentum space to leading

order in large N, finite temperature correlation functions are simply obtained by those

at zero temperature by restricting to quantized momenta. From the string theory

point of view, this is the familiar inheritance principle for tree-level amplitudes.

We note that given a perturbative string theory, it is not a priori obvious that the

theory at finite temperature is described by the same target space with time direction

periodically identified'. For perturbative string theory in flat space at a temperature

below the Hagedorn temperature, this can be checked by explicit computation of the

free energy at one-loop [59]. Equation Eq. (2.30) provides evidences that this should

be the case for string theories dual to the class of gauge theories we are considering

at a temperature T < Tc.

For A = 4 SYM theory on S3 , the result matches well with that from the

AdS/CFT correspondence [51, 34, 79].

When the curvature radius of the anti-de Sitter (AdS) spacetime is much larger

than the string and Planck scales (which is dual to the YM theory at large 't Hooft

coupling) the correspondence implies that IIB string in AdS5 x S5 at T < T, is

described by compactifying the time direction (so-called thermal AdS) [79, 80].

The result from the weakly coupled side suggests that this description can be

extrapolated to weak coupling'.

We conclude this section by some remarks:
9A counter example is IIB string in AdS5 x S 5 at a temperature above the Hawking-Page tem-

perature. Also in curved spacetime this implies one has to choose a particular time slicing of the
spacetime.

10Also note that it is likely that AdS 5 x Ss is an exact string background [52, 43, 10].



1. The inheritance principle Eq. (2.30) no longer holds beyond the planar level.

For non-planar diagrams, it is possible to have images running along the non-

contractible loops of the diagram. These may be interpreted in string theory

side as winding modes for higher genus diagrams. We'll study in more details

these diagrams in the remainder of this chapter.

2. In the high temperature (deconfined) phase, where TrU" generically are non-

vanishing at leading order, Eq. (2.30) no longer holds, as can be seen from the

example of Eq. (2.15). This suggests that in the deconfined phase M' should

be more complicated. In the case of IN = 4 SYM theory at strong coupling,

the string dual is given by an AdS Schwarzschild black hole [79, 80]. It could

also be possible that the deconfined phase of the class of gauge theories we are

considering describe some kind of stringy black holes [72, 4].

We finally note that the argument of the section is but an example of how the inher-

itance property for the sphere amplitude in an orbifold string theory can have a non

trivial realization in the dual gauge theory.

2.5 Yang-Mills Theory on S3 beyond the planar

level

In this section we will resume our discussion of the matrix model, considering con-

tributions beyond the planar level in the partition function. In the large N limit, at

zero temperature, the free energy of the matrix model in Eq. (2.1) can be organized

in terms of the topology of Feynman diagrams

00

logZ = N2 (1 h)fh(A) (2.35)
h=O

where fo(A) is the sum of connected planar Feynman diagrams, and fi(A) is the

sum of connected non-planar diagrams which can be put on a torus, and so on. As

mentioned in the introduction, Eq. (2.35) resembles the perturbative expansion of

38



a string theory, with 1/N identified with the closed string coupling g, and fh(A)

identified with contributions from world-sheets of genus-h.

In the next few subsections, we discuss the large N expansion of Eq. (2.1) at finite

temperature, and we see new ingredients arise. We find new contributions associated

with Feynman diagrams with vortices, which can be identified with degenerate limits

of a string world-sheet. In the next chapter we'll then show how this behavior is

connected to the Hagedorn behavior in string theory.

In section 2.2 we showed that the free theory partition function reduces to an

integral over the matrices U,

Zo() = JdU eIo(U) (2.36)

with lo(U) given by
00

1o(U) = V,(Ia)TrU" TrU-n. (2.37)
n=l

When the temperature T is small, this can be evaluated in the large N limit as [72, 4]

00

Zo(3) = C. 1 n- + 0(1/N2 ) (2.38)
n= 1

where C is an N-independent constant factor. Zo(3) becomes divergent if some V(/3)

are equal to 1. From Eq. (2.12) one can check that V1(3) > V,(/) for n > 1 and

that V,((0) is a monotonically increasing function of T, with V(i30 = oo) = 0 and

V11(3 = 0) > 1. Thus as one increases T from zero there exists a TH at which

VI (TH) = 1 and Zo becomes divergent. Eq. (2.38) only applies to T < TH.

The partition function Eq. (2.36) and more generally matrix integrals in Eq. (2.21)

can be evaluated to all orders in a 1/N 2 expansion. In appendix A we prove that,

up to corrections non-perturbative in N, the matrix integrals can be evaluated by

treating each TrU n as an independent integration variable. More explicitly,

( - zo( dU d e.o(U) (2.39)
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can be evaluated by replacing

1-TrU n -+ n,N
1-TrU -" - -n = On,

N

1 1 1
( TrU'1 TrUS2 TrUF)
N N N U

= ndodp , aexp -N 2 v0 (O)inO +
Z -oo (1i=1 ) n=l

+ nonperturbative in N

1 - V,(O3)
·U(P) :

From Eq. (2.41),

( TrU' Tr1 ... TrU F)N N N UF F F

i=1 N2 i<j=1 Si k=1 k#i,j

+ O(N - 4) + nonperturbative in N (2.43)

where order 1/N 2 terms are obtained by contractions of one pair of Oi's, order 1/N 4

terms are obtained by contracting two pairs of O's, and so forth. Each contraction

brings a factor of 1, . Perturbative corrections in 1/N 2 terminate at order 1/NF

(or 1INF-1) for F even (odd). For example, there is no other perturbative correction

in 1/N 2 for the partition function Eq. (2.38), and for F = 2,

1 trU ItrUm) = 6n,O0m,o + n 6m+,o +nonperturbative corrections(2.44)
N N NI vln(/)

To summarize, combining Eq. (2.21) and Eq. (2.43) we find that for a correlation

function of gauge invariant operators, there are two sources of 1/N 2 corrections:

1. From the genus of the diagram as indicated by the power of 1/N in Eq. (2.21).

i.e.

(2.40)

where

(2.41)

(2.42)

0 = 1 ,

. °



Figure 2-2: Examples of double-line diagrams with nonzero vortices. Each thin
line (vortex propagator) represents a contraction in Eq. (2.43). Compare the left
diagram to Fig. 2-1. Diagrams which are disconnected at zero temperature can be
connected through vortex propagators as in the right diagram.

This follows from the standard large N counting.

2. From the 1/N 2 corrections of the matrix integral Eq. (2.43). The leading order

term in Eq. (2.43) imposes the constraint that for any face A of the diagram

the vortex number SA should be zero. The next order corresponds to having

nonzero vortex numbers in two of the faces, say the faces A and B with SASB - 0

and SA + sB= 0. Below, we will refer to those diagrams with nonzero vortex

numbers as containing vortices, in anticipation of their interpretation from the

string worldsheet which we will discuss in the next chapter". From remarks

below Eq. (2.22), if a face A of a Feynman diagram contains a vortex with

vortex number SA, then the propagators bounding the face wrap around the

Euclidean time circle SA times. At finite temperature, due to the presence of

vortices, planar diagrams also contain higher order 1/N 2 corrections.

It will be convenient to represents the vortex contributions diagrammatically: we

represent each contraction in Eq. (2.43) by an oriented line between two surfaces

which have the opposite vortex numbers. The orientation of a line is that it exists

(enters) the surface if its vortex number is positive (negative). We associate a factor

1/N for each vortex and a factor 1/v, (1) to a line (vortex propagator) connecting two

surfaces with vortex number +n. See Fig. 2-2 for some examples of such diagrams.

Note that a diagram with otherwise disconnected parts connected by vortex lines

"See also the discussion of [33] in the context of c = 1 matrix models.



Figure 2-3: Planar disconnected contributions to (TrM 4(-)TrM 4 (0))

should be considered as connected, as in the right diagram of Fig. 2-2. In computing

a correlation function one should sum over all possible vortex contributions.

To summarize this subsection, in computing correlation functions at finite tem-

perature, one should consider not only Feynman diagrams which appear at zero tem-

perature, but also diagrams with nonzero vortices. Explicit examples are given in the

next subsection.

2.5.1 Examples of Eq. (2.21)

In this subsection we give some explicit examples on the use of equation Eq. (2.21)

for calculating correlation functions between single trace operators. For definiteness

we consider only bosonic operators, but the procedure is analogous for operators

involving fermions. Let us consider again the following simple example

(NTrM4 ( 4 (0)) (2.45)

where M can be any of the bosonic modes in Eq. (2.1). The calculation of Eq. (2.45)

amounts to drawing all possible double line diagrams. For example the disconnected

planar contribution is given in Fig. 2-3. From Eq. (2.13), each propagator carries

an image number (or winding number), which should be summed over. Each face A

carries a factor trUSA. SA is determined by choosing a direction for the propagators,

and an orientation for the face, as explained below Eq. (2.22). Fig. 2-3 therefore
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Figure 2-4: Planar connected contributions to (TrM 4(r)TrM 4(0))

Tn

Figure 2-5: Some non-planar (torus) connected contributions to (TrM 4(T)TrM 4(0)).
For visualization purpose, the edge of one of the faces is drawn in red.

gives a contribution of the form

G (-mP)G,(-np)G,(-p3)G,(-q3) x2 m,
m,n,p,q=-co

x (TrU"TrU"TrU-m-"TrUPTrUqTrU--q)6,. (2.46)

The connected planar contributions are given in Fig. 2-4 with, for example, the

first diagram given by

(TrM4 (T)TrM 4 (0)) p lanar connected -

= 0 G,(r - mf)G, (r - n/3)G, (T - pf) G, (T - q,3)x
m,n,p,q=-oo

x (TrUm-"TrUn-TrU-TrU-m)U (2.47)

In Fig. 2-5 we have also plotted some connected non-planar diagrams, with the first

diagram given by

4N Z-O,n,p,q=-o G,(r - mP)G,(7 - n3p)G,(T - pP3)G,(T - q,8)x

'T' -T Tin -C-- r4r-
ttL 
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Figure 2-6: Connected vortex diagram from disconnected double line diagram

x (TrUm-p+q-nTrU-m+p-q+n)u (2.48)

Now let us consider the evaluation of the expectation values of traces of U in

Eq. (2.46)-(2.48) using Eq. (2.43). At leading order in the large N expansion the

expectation values give N F , where F is the number of traces, times some product

of Kronecker delta enforcing all exponents to be zero. In this case we recover the

results of section 2.2. Higher order corrections in 1/N can be described graphically

by inserting pairs of vortices on different faces of the diagrams and connecting them

with the propagator ' . One should sum over all the possible ways of inserting

pairs of vortices. Note that each vortex insertion gives a factor of 1/N. Diagrams

with disconnected parts connected by vortex propagators should be considered as

connected as in Fig. 2-6. Note that in terms of large N counting Fig. 2-6 is of the

same order as those in Fig. 2-5 with no vortices.

2.6 Free energy in interacting theory and vortex

diagrams

We now consider the Euclidean partition function of the interacting theory. Below

Eq. (2.38) we identified TH as the temperature at which Zo becomes divergent. Our

purpose is now to identify TH and the critical behavior near TH to all orders in the

1/N 2 expansion.

I

I·,,,



In perturbation theory, the partition function can be evaluated by expanding the

interaction terms in the exponent of the path integral

Z(, A) = n Zo•() d (V(7-1) ..( V(T • ))o (2.49)
n=0 i=1

In Eq. (2.49), (... )o, denotes free theory correlation functions and recall that V is

given by a sum of single trace operators of the form Ntr(... ). The free energy can

be obtained from

log Z = log Zo + E n! f dr, (V(rT) ... V(rn))o,3,conneed (2.50)
n=O i=1

i.e. one sums only over the connected diagrams. The discussion in the last subsection

for free theory correlation functions can now be directly carried over to log Z. In

particular, there are two sources of 1/N 2 corrections: from the non-planar structure

and from vortices. We can expand log Z in 1/N 2 as

00oo

log Z(OL) = 2-N2 Zn( ) = N2Z() + Z1 () + 2Z 2 () +... (2.51)
n=0

where Zo corresponds to the sum over connected planar diagrams with no vortices,

while Z 1 contains the sum of connected genus-1 non-planar diagrams with no vortices

and planar diagrams with one pair of vortices, and so on. Recall that each vortex

carries a factor 1/N and they always come in pairs. Also as remarked at the end of

the last subsection, a diagram with otherwise disconnected parts connected by vortex

propagators is connected.

To elucidate the structure of Z9 , we introduce a new set of "vortex diagrams", by

generalizing the diagrammatical rules introduced below Fig. 2-2:

1. Denote Q(hn) as the sum of connected Feynman diagrams with genus h and

with n vortices. In terms of large N counting, Q(hn) is of order N 2 - 2h - n , as

we associate a factor 1/N with each vortex. Each vortex is labeled by a vortex
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Figure 2-7: The propagators and vertices for vortex diagrams. The vertices Q(h,n) of
a vortex diagram have n legs, each of which is labelled by a vortex number. The sign
of the vortex number is positive (negative) if the corresponding leg exists (enters) the
vertex. The total vortex number of a vertex is zero. We show Q(0,2), Q(1, 3 ) in the
figure as illustrations.

number and the total vortex number carried by Q(h,n) is zero12. Diagrammati-

cally, Q(h,n) are represented as vertices with n oriented legs. The leg exits the

vertex if the corresponding vortex number is positive.

2. Vortex diagrams are then constructed following the usual rules with Q(hn) as

fundamental vertices and 1/vb( 3), b > 0 as propagators. Note that b is the

vortex number carried by a propagator and Vb was defined in Eq. (2.42).

3. The combinatoric rules are the same as standard Feynman diagram. In par-

ticular, if there are m identical vertices Q(hn) in a diagram, there is a factor

1/m!, which comes from the fact that disconnected diagrams are obtained from

connected ones by exponentiation.

Using the above diagrammatical rules, we now enumerate the contributions to Z, .

See Fig. 2-7 for illustrations of propagators and vertices for vortex diagrams.

Let us first look at Zo, which is given by the sum of all planar diagrams without

vortex. In section 4 of section 2.3.1 it was shown that Zo is identical to the correspond-

ing expression at zero temperature and thus is temperature-independent 13. Since the

free energy -PF is defined by subtracting the zero-temperature contribution (which

is the vacuum energy) from Eq. (2.51), we conclude that the planar contribution to

12 This follows from the discussion below Eq. (2.22).
13 Zo is a special case of the discussion in section 4 of section 2.3.1 with no external operator

insertions.

II _·
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Figure 2-8: Vortex diagrams contributing to ZJ.3)

the free energy is identically zero'l4.

We now look at Z1, which contains three contributions: (i) genus-1 contribution

in free theory coming from the first term in Eq. (2.50); (ii) sum of genus-1 Feynman

diagrams with no vortices; (iii) planar diagrams with vortices. The first contribution

Z 1) is given by the logarithm of Eq. (2.38). The second contribution Z12) is given

by Q(1,0). To find the third contribution Z(3) , let us denote Qb0, 2) the sum of all

planar connected diagrams with two vortices of winding ±b. Graphically, it can be

represented by a sphere with an arrow pointing in and an arrow pointing out, each

carrying vortex number b, as in the second diagram of Fig. 2-7. Using Qb0,2), Z(3)

is obtained by summing the vortex diagrams in Eq. (2-8). The combinatoric factor

for a diagram with m vertices is 1/m following from the cyclic symmetry and we find

that

Z(3) =  0,2) (Al) log0,2) - ( (2.52)
b=l m=l b b=l Vb()

Adding all three contributions together we find that

z = z(1) + z(2) + Z3)

= Qi, ) b=l Vb(V )  + 10g Vb

14 as is the case for a string theory below the Hagedorn temperature.

0+ + +
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Figure 2-9: The dark thick line represents the re-summed propagator 9b = 0
vb_QQ

0 ,2) "

+ + +
l,.2.o) Q(EEO) , 0Q(,4)

Q(0.3)

Figure 2-10: Vortex diagrams contributing to Z 2. All this diagrams have genus h = 2
if we consider the re-summed propagator as adding an extra handle to the diagrams

= 1,o(0, A) - log (b(/) - Q0,2)(A,)) . (2.53)

b=1

It should be clear from the above discussion of z73) that Qb0,2 ) should not really be

treated as a vertex. Rather all Qb0,2) should be re-summed along with the propagators

1 to obtain a "re-summed propagator" for each vortex numberVb(/)

O - 1 ( ,2)n (Q( 2) 1 (2.54)
n=1 b() b Vb - QbO2)

as shown diagrammatically in Fig. 2-9. Note that Eq. (2.53) can be rewritten in

terms of 9b as
00

Z1 = Q1,0(P, A) + E log 1 b(0 ) . (2.55)
b=1

In the vortex diagrams for Zg with g > 2, only re-summed propagators 9b appear.

As an example, the vortex diagrams contributing to Z 2 are shown in Fig. 2-10. Higher

order diagrams contributing to general Zg can be similarly constructed.

2.6.1 Critical behavior and the effective action

Now let us examine the critical behavior of Eq. (2.51) by increasing the temperature

from zero.



In free theory, as reviewed after equation Eq. (2.38), there is a critical temperature

given by equation Vi (/3 H) = 1 at which the free energy diverges as log Zo Z - log(/3 -

/H). Note that there is only a one-loop divergence since all perturbative corrections

in 1/N to Eq. (2.38) vanish.

In the interacting theory the effective vertices Q(h,n) should be regular at any

temperature since they involve only sums of products of Eq. (2.7) and their images.

The divergences of Zn then can only occur when the re-summed propagator gb(/3)

Eq. (2.54) become divergent, which happens when

Vb() = Q'(A, /3), i.e. 1 - Vb() = Q,2(A, /), b = 1,2... (2.56)

If we again assume that Eq. (2.56) is first satisfied for b = 1 as one decreases / from

infinityl5 , the critical temperature in the interacting theory is determined by

V,(/3H(A)) = 1 - Q(0'2)(A,/3H(A)) (2.57)

with the most divergent term in Z1 given by (see 2.53)

Z1 M - log(/ - /3H(A)) + finite, /3 /H(A) . (2.58)

The most divergent contribution to Zn can be obtained counting the maximal

number of divergent propagators at TH. We will now prove that the most divergent

contribution to Zn as / -~ /H is given by

1
S(/(2.59)(, -_H)2(n-1)

Denote V( p q) as the number of Q(p,q) in a diagram. Then the total number of re-

15which should be the case for A small since Q'O 2) starts at order O(A). For large A, in principle
this does not appear to be guaranteed from the gauge theory point of view. However, from string
theory it appears always to be the case that the lowest winding modes become massless first.



summed propagators and the genus g of the diagram can be written as

2L = qV (p"), g 1+ q+ p - I V p q) . (2.60)
p,q p,q

The second equation of Eq. (2.60) can be obtained by thinking of each vortex prop-

agator as adding a "handle" to the diagram and therefore increasing the genus by

one. Then the total genus will depend on the genus of the various "blobs" in the

diagram (p) and on the various "handles" connecting them (q). It is also convenient

to introduce

V = V( p' ), ga = pV(P' ), (2.61)
p,q p,q

where V is the total number of vertices, g9a is the apparent genus of the diagram (i.e.

the sum of the genus of each vertex). Equations Eq. (2.60) and Eq. (2.61) lead to

L - (V - 1) = g - ga . (2.62)

Since vortex numbers carried by propagators have to be conserved at each vertex,

Eq. (2.62) implies that the total number of independent vortices in a diagram is

g - ga. The maximal number of independent vortices among different degenerate

limits is then g, in which cases each vertex has the topology of a sphere.

From Eq. (2.60) and Eq. (2.61), we also have

V = IL - ( q - 4) V(pq) (2.63)

P,q

and Eq. (2.63) and Eq. (2.62) lead to

L = 2(g - 1) - (2p + -2)V( P ' ). (2.64)
p,q

Eq. (2.64) implies that the maximal number of re-summed propagators is indeed

3g - 3, obtained when only Q(O,3) appear in a diagram. However, it is impossible to

have all 3g - 3 propagators to be divergent at the same time, i.e. to have all vortex



numbers to be ±1, since by vortex number conservation if the vortex numbers of two

of the propagators coming out of a 3-point vertex are ±1, then the third one can only

be ±2.

Since at least one of the propagators going out of a 3-point vertex must have

vortex number Ibl = 1, if our purpose is to find the maximum number of propagators

that can have b = ±1, one can ignore such a propagator. This implies we only need to

consider those diagrams in which every vertex has at least four insertions, i.e. m > 4.

Ignoring V(0,3 ) for the purpose of finding the leading divergence, equation Eq. (2.64)

implies that

L < 2(g - 1) (2.65)

where the equality holds when

V (0,4) t 0, otherwise V (p q) = 0. (2.66)

Thus we have proven that the most divergent term is of the form Eq. (2.59).

Furthermore, since the construction of vortex diagrams follows the standard com-

binatoric rules of Feynman diagrams, we find that the most divergent pieces at each

1/N 2h order is precisely given by the expansion of

Fi,9 = logJ dodo* e- •4 -(0*)2

A4  A2=- log(3 - PH)- 2 m•4N2 + 10 N4m + - (2.67)

with ¢ is a c-number. with the identification

mO -4 ,) (0,a) (0, ,3) 1 1, (2.68)
N22 . - Q 0,2)'V1,1,-2V -1,-1, 2

where the subscripts in Q(h,n) denote the vortex numbers for each leg. Notice that

the four point coupling constant A4 will indeed contain a pair of Q(0,3) connected by a

propagator regular at OH. Eq. (2.68) is exactly the behavior of a complex scalar field

with mass mo in 0 + 1-dimensions. It is important to emphasize that our discussion



above should also apply to strong coupling. Q(n'm)(A), which are the basic building

blocks of the vortex diagrams, can be defined non-perturbatively as follows. Since

at each genus the number of Feynman diagrams grows with loops only as a power,

we expect that Q(n,m)(A) should have a finite radius of convergence in the complex

A plane. Once one obtains Q(n,m)(A) near the origin, one can analytically continue

them to strong coupling.

2.7 Summary and outlook

In this chapter we studied the large N expansion of a generic field theory with fields in

the adjoint representation at some finite temperature T < TH. We proved an "inher-

itance principle" satisfied by correlation function at planar level. We also considered

sub-leading corrections to correlation functions and to the partition function and we

showed that at finite temperature new ingredients arise. The large N expansion con-

tains corrections due to the usual genus expansion and corrections due to sub-leading

order contributions in the integrals over Wilson lines U. Close to the critical temper-

ature TH we can identify the diagrams contributing to the leading divergence. We

then argued, from the diagrammatical expansion, that the leading divergence close to

TH can be re-summed and expressed in terms of a simple integral Eq. (2.67), similar

in structure to a scalar A54 theory. In the next chapter we are going to analyze the

critical behavior of string theory close to the Hagedorn transition, and we are going

to find the string theory interpretation of the results in this chapter.



Chapter 3

String theory amplitudes,

Hagedorn transition and tachion

potential

3.1 Outline

Since the early days of string theory, it was observed that the free string spectrum

has a density of states which grows exponentially with energy, and that the partition

function Z = e- OH of a free string gas at a temperature T = would diverge when T

is greater than some critical value TH [36, 39, 30]. The Hagedorn divergence occurs for

all known (super)string theories with spacetime dimensions greater than two. The

physical meaning of the critical temperature TH and of the divergence has been a

source of much discussion since then.

In the late eighties, a few important observations were made which suggested that

the Hagedorn divergence signals a phase transition, analogous to the deconfinement

transition in QCD [67, 44, 56, 7]. At the Hagedorn temperature TH the lowest wind-

ing modes (with winding +1) around the periodic Euclidean time direction become

marginal operators in the world-sheet conformal field theory [67, 44, 56]. Sathiapalan

and Kogan [67, 44] argued that above the Hagedorn temperature, the winding modes



would condense in a fashion similar to the Kosterlitz-Thouless transition in the X - Y

model and the world-sheet theory will flow to a new infrared fixed point. From the

spacetime point of view, these winding modes (with winding ±1) correspond to a

complex scalar field 0 living in one fewer spacetime dimension (i.e. not including

Euclidean time). Near the Hagedorn temperature, the spacetime effective potential

for 4 can be written in a form

V = m ()5*5 + +A4g(q*b)2 + 6 )3 +... , m ) Oc TH - T. (3.1)

If A4 is positive (negative), the phase transition would be second order (first order).

In [7] Atick and Witten argued that for a string theory in asymptotic flat spacetime

the transition should be first order 1 (i.e. A4 < 0) due to the coupling of the thermal

scalar to the dilaton.

The purpose of this chapter is to point out a relation between Hagedorn diver-

gences and the effective potential Eq. (3.1). While the one-loop Hagedorn divergence

has been extensively discussed in the past (see e.g. [81, 58] for reviews), Hagedorn

divergences from higher genus amplitudes have been investigated rather little. In this

chapter we use a factorization argument to extract Hagedorn divergences for higher

genus amplitudes. We show that they can be re-summed by introducing various dou-

ble scaling limits, which smooth the divergences. The double scaling limits also allow

one to extract the effective potential Eq. (3.1) to arbitrary high orders. That a dou-

ble scaling limits might exist for higher genus Hagedorn divergences was speculated

earlier in [50] and further discussed in [6] in a toy model motivated from AdS/CFT.

Our discussion further highlights that Hagedorn divergences signal a breakdown

of string perturbation theory due to appearance of massless modes and do not imply

a limiting temperature for string theory [67, 44, 7].

The discussion of this chapter will be rather general, e.g. applicable to string the-

ories in asymptotic anti-de Sitter (AdS) spacetime. The AdS/CFT correspondence

then implies that the critical Hagedorn behavior from high genera and the relation

'That the transition is of first order can also be argued from the non-perturbative instability of
the thermal flat spacetime discovered in [32].



with the effective potential should also arise from Yang-Mills theories.

In the previous chapter we showed that the free energy of Yang-Mills theory

contains "vortex" contributions at finite temperature. In this chapter we show that

Yang-Mills Feynman diagrams with vortices can be identified with contributions from

the boundary of the moduli space on the string theory side.

The plan of the chapter is as follows. In section 3.2.1 we first review the one-loop

result and discuss the physical set-up of our calculation. We then extract the critical

Hagedorn behavior from higher genus amplitudes and show that one can find terms

in Eq. (3.1) by defining suitable double scaling limits. In section 3.3 we turn to the

comparison with Yang-Mills theory. We conclude in section 3.3 with a discussion of

some physical implications.

Parts of this chapter have been published in [13].

3.2 High-loop Hagedorn divergences in perturba-

tive string theory

3.2.1 Review of one-loop divergence and set-up

Consider a string theory consisting of a compact CFT times R1,d. The one-loop

free energy of the system at a finite temperature can be computed by the torus path

integral with a target space in which the Euclidean time direction is compactified with

period 3 = I and with anti-periodic boundary condition for spacetime fermions [59].

The Hagedorn singularity appears when the lowest modes with winding +1 around

the compactified time direction become massless [56, 67, 44]. More explicitly, the

mass square can be written as

m(/0) = -Co ( - 2 - (3.2)MO 27a' 27ra' 2a·(3.'

where the first term is the winding contribution and co is the zero point energy of the

string (in the winding sector). The second equality of Eq. (3.2) should be considered as



a definition of the Hagedorn temperature. From Eq. (3.2), m(/3) -+ 0 as 0 -4 3 H and

becomes tachyonic when 0 < /H. In spacetime, the winding ±1 modes correspond

to a complex scalar field 0 living in one fewer spacetime dimension (i.e. spatial part

of the spacetime), which is often called the thermal scalar in the literature. We

will follow this terminology below. We will also collectively call modes with general

winding numbers (and no internal excitations) winding tachyons. Equation Eq. (3.2)

applies to both bosonic and superstring theories with possibly different co for different

theories.

The critical behavior of the one-loop free energy F1 as 0 -4+ /H is controlled by

that of the thermal scalar

F= -2 x log(-V 2 + M2(/3)) + Finite, / --+H (3.3)

where V2 is the Laplacian on the spatial manifold. If the gap of V2 along the compact

CFT directions is bigger than m 2(/3), the singular part of Eq. (3.3) can be further

written as

F1  xo -- f ()d log(k 2 + m(/))

(m (M0)) d odd
(3.4)

(m (/)) 2 logm(3(0) d even

F1 has a branch point singularity at m(o/3) = 0 for all d. In particular, for d = 0 it is

logarithmically divergent as / -- /3H

F1 = - log(3 - PH) + finite . (3.5)

The above discussion should also apply to a static curved spacetime, for example

in AdS spacetime, even though an explicit computation of the one-loop free energy

is often not possible. For an AdS spacetime, since the Laplacian has a mass gap, we

expect the free energy for a thermal gas of AdS strings should behave as Eq. (3.5)

when the Hagedorn temperature is approached (see e.g. [48] for further discussion).



In this paper we will focus our discussion on d = 0 or more generally those space-

times (including AdS) in which Eq. (3.5) is satisfied, for the following reasons:

1. The thermal ensemble cannot be defined in an uncompact asymptotically flat

spacetime due to Jeans instability. To make the canonical ensemble well defined,

an Infrared (IR) cutoff is needed. One particularly convenient (and well-defined)

IR regulator is to introduce a small negative cosmological constant2 . For our

discussion below the precise nature of such a regulator will not be important as

far as it makes the thermal ensemble well defined. Such IR regulators introduce

a gap in the Laplacian V2, which will be kept fixed in the limit T - TH and

thus will be greater than m. when the temperature is sufficiently close to TH.

2. The Hagedorn singularity is sharpest at d = 0. While the free energy is singular

at , = ,H for all dimensions, it is divergent only for d = 0.

The logarithmic divergence of Eq. (3.5) at 3 fPH implies that the string

perturbation theory breaks down before P = PH is reached. Thus it is not

sufficient to consider only the one-loop contribution to the free energy and

higher genus contributions could be important. Below we will show that as

0 -- > H, it is necessary to re-sum the string perturbation theory to all orders.

We will then show that one can extract the spacetime effective action for the

thermal scalar from the re-summed series and that the divergences are smoothed

out.

When A4 in Eq. (3.1) is negative, i.e. when the transition is first order, there

exists a lower temperature T, < TH, at which the thermal gas of strings be-

comes metastable. At a temperature Tc < T < TH, the thermal gas is still

perturbatively stable. Here we are interested in probing the critical behavior in
2In an asymptotic AdS spacetime it is possible to define a canonical ensemble in the presence

of gravity, as discovered by Hawking and Page [371. Hawking and Page also found that the system
undergoes a first order phase transition at a temperature THp from a thermal gas in AdS to a stable
black hole. Treating an AdS spacetime with a small cosmological constant as an IR regularization
of the flat spacetime, it is natural to identify the first order phase transition argued by [7] with the
Hawking-Page transition. Note that the flat space limit, which corresponds to keeping g, small, but
fixed and taking the curvature radius of AdS to infinity, is rather subtle. In this limit the stable
black hole phase in AdS disappears and the Jeans instability should develop at a certain point.



Figure 3-1: An example of a degenerate genus-6 Riemann surface. Each blob rep-
resents a surface of certain genus and thin lines connecting blobs represent pinched
cycles.

Co 03o-O 0a
Figure 3-2: Degenerate limits of a genus-2 Riemann surface. Notice that the 2nd, 3rd
and 5th diagrams here did not appear in Figure 2-10, since they contain propagators
which have zero windings

the metastable phase (or superheated phase) as T -- TH from below.

3.2.2 Higher loop divergences

We now examine higher loop divergences as 0 -+ PH. For simplicity we will restrict

our discussion to bosonic strings. We expect the conclusion to hold for superstring

theories as well.

The genus-g contribution Fg to the free energy is obtained by integrating the

single string partition function on a genus-g surface over the moduli space My of such

surfaces. The potentially divergent contributions to Fg arise from the integration near

the boundary of the moduli space.

The boundary Ag of My is where a Riemann surface degenerates, which can be

described by pinching cycles on the surface (for reviews see e.g. [25, 8, 58]). There are

two types of basic degenerations depending on whether the pinched cycle is homol-

ogous to zero or not. If the pinched cycle is homologous to zero, a surface of genus

g degenerates into two surfaces of genus gi and g2 (g - g1 + 92) which are joined

together at a point. If the pinched cycle is not homologous to zero, a genus g surface



degenerates into a surface of genus g - 1 with two points glued together. One can

pinch more than one cycle at the same time as far as they do not intersect with each

other. On a genus g surface, the maximal number of non-intersecting closed geodesics

is 3g - 3, so one can pinch at most 3g - 3 cycles at the same time. See Fig. 3-1 and

Fig. 3-2 for examples of degenerate limits.

Let us now examine the contribution to Fg from boundaries of moduli space. The

pinching of a Riemann surface can be described in terms of cutting open the path

integral on the surface. The pinching is a local operation and so is cutting the path

integral (other than possible constraints from the zero mode integration). We follow

the standard procedure as described in [58]. One has

(1)g = gh qhi (i (z1))9, (A(z2))g, (3.6)

and

(1), = qhq (A-(z)A(z 2))9-1  (3.7)

for the two types of basic degenerations, where ( .. )9 denote world-sheet correlation

functions on a genus g surface and i sums over a complete set of intermediate states.

q can be considered as the complex coordinate transverse to the boundary with q -+ 0

corresponding to the degeneration limit. Integration of Eq. (3.6) and Eq. (3.7) near

q -+ 0 yields the propagator

G= 8r (3.8)
&/(-V 2 + i?)

The contribution to the free energy from boundaries of moduli space can be ex-

tracted from diagrams like the ones in Fig. 3-1 and Fig. 3-2. One can treat blobs

(representing surfaces of certain genus with some insertions) as effective vertices and

thin lines (pinched cycles) as propagators. For 3 -+ PH and assuming that the spatial

Laplacian operator -V 2 has a gap, then the propagator Eq. (3.8) for a pinched cycle



Figure 3-3: Two possible degenerate limits of a genus-3 Riemann surface which give
rise to most divergent contributions. Each propagator has the thermal scalar running
through it.

is potentially dominated by that of the thermal scalar3,

87r 1
G 2()+ finiteoc •• + -, -- pH (3.9)

Since one can pinch at most 3g - 3 cycles at the same time, naively we may conclude

from Eq. (3.9) that Fg diverges as ( _)3g-3 for g 3 2 as --+ PH. However, there are

global constraints due to winding number conservation at each blob of Fig. 3-1 and

Fig. 3-2. As a result, not all propagators can have the nearly-massless thermal scalar

propagating through them. Using exactly the same discussion as in section 2.6.1,we

can show that the most divergent terms at genus g are proportional to

1
Ig 2, (3.10)

(W - OH)2g-2 g 2, (3.10)

and happens when only V(0 ,4) = 0, where V(g,m) is the number of vertices with genus

g and m insertions.

See Fig. 3-3 for degenerations which give rise to the most divergent contributions
3Note that it is not immediately obvious that the thermal scalar (or other winding modes along

the Euclidean time direction) appears in the intermediate states from the point of view of calculating
the free energy of a finite temperature string gas, since they do not correspond to spacetime phys-
ical states. Indeed in the one-loop calculation, they appear only after a modular transformation.
However, it is clear that they should appear in the intermediate states from the point of view that
we are working with a string theory compactified on a circle with anti-periodic boundary condition
for fermions.



at genus 3.

To summarize, the most divergent contributions at each genus have the following

diagrammatic structure:

1. Each vertex has the topology of a sphere and has four winding tachyon operator

insertions with winding numbers 1, 1, -1, -1 respectively. The total number of

vertices in a genus g diagram is g - 1. The path integral over each vertex gives

rise to an effective coupling

gs8 4 = (V+1(0)V+1(1)V1i(00) jd2z V,(z)) (3.11)

Note that at 3 = 6H, the vertex operators Vl1 for the thermal scalar are

marginal and Eq. (3.11) is well defined. Also A4 is g,-independent.

2. The propagators are given by that of the winding tachyon 3.9. The total number

of propagators is 2(g - 1).

Thus vortex diagrams correspond to a specific decomposition of the boundary of the

moduli space and can be considered as defining an effective string field theory for the

winding tachyon modes. Thus the most divergent contribution to the free energy at

genus-(n + 1) has the form

8r 2n g2nang a m• ( -8r) (3.12)

where an is a combinatoric numerical factor depending on the specific geometric

structure of boundaries of moduli space. Determining these numerical factors from

direct world-sheet computation is a rather complicated mathematical question, which

goes beyond the scope of this paper. Below we will determine them using an indirect

argument. By now readers may have recognized the resemblance of vortex diagrams

with the diagrams in Fig. 3-1 and in Fig. 3-2. Indeed it is natural to identify vortex

diagram contributions in the gauge theory with contributions from degenerate limits

of string world-sheets in the corresponding string theory. For example, diagrams



in Fig. 2-10 can be identified with various degenerate limits (Fig. 3-2) of genus

two Riemann surfaces. In particular, vortices in gauge theory vortex diagrams can be

identified with insertions of winding tachyon modes in the world-sheet. On the world-

sheet if one follows a closed contour around the vertex operator of a winding tachyon

mode of winding number b, the Euclidean time circle is traversed b times. Similarly,

as discussed in the previous chapter, if a face of a Feynman diagram contains a vortex

with vortex number b, the propagators bounding the face wrap around the Euclidean

time circle b times.

A more careful comparison between vortex diagrams for Zg and degenerate limits

of a genus-g surface (e.g. between Fig. 2-10 and Fig. 3-2) also show some important

differences:

1. Notice that the 2nd, 3rd and 5th diagrams in Fig. 3-2 do not appear in Fig.

2-10. These diagrams are distinguished in that some propagators are forced

to have zero winding due to winding number conservation. One can convince

oneself that this feature persists to all orders. Thus YM vortex diagrams do

not correspond to the full contributions from degenerate limits of a Riemann

surface. All propagators in the YM vortex diagrams carry nonzero windings.

2. Various degenerate limits of a Riemann surface do not follow the standard

Feynman rules and cannot be treated as Feynman diagrams. For example, the

third diagram of Fig. 3-2 can be obtained as a degenerate limit of the first

diagram and the fifth as a limit of the fourth, etc. In contrast, the vortex

diagrams we constructed in Yang-Mills theory do follow standard Feynman

rules. In particular, different diagrams in Fig. 2-10 do not overlap.



3.2.3 Double scaling limits and the effective thermal scalar

action

In the last subsection we showed that the leading order Hagedorn divergences at all

loop orders can be written as

Faing = -log(- H) 1 "" + n +-'' (3.13)

with
S87r\

2  2 OH
A4 = 4 7 MO r2 (20- OH). (3.14)

Equation Eq. (3.13) suggests a double scaling limit

S- H --+ 0, g, --* 0, H= finite (3.15)
98

in which case all higher order terms in the series become equally important and we

need to be re-summed.

How do we interpret the free energy F obtained by re-summing the series? A clue

comes from the structure of the degenerate diagrams summarized at the end of the

last subsection, which resemble the Feynman diagrams of a 1|14 theory (see e.g. Fig.

3-3). Indeed the free energy of a (114 theory gives an asymptotic expansion which

is precisely of the form Eq. (3.13) with specific values for the numerical coefficients

an. Given that string theory should reduce to a field theory in the low energy limit,

and that here we are essentially isolating an effective theory for the nearly-massless

thermal scalar, it is natural to conjecture that Eq. (3.13) can be written as

Fsing = log f dCdo* e-m' *- gg2 4( ) 2

= - log(/ - fiH) - 2g--- + 10 + - (3.16)

with € is a c-number. Equation Eq. (3.2.3) determines an to all orders uniquely and



implies the following effective potential for the thermal scalar

V -m * A4g•(0*) 2 + .... (3.17)

In the past chapter we showed that the effective action Eq. (3.17) and Eq. (3.2.3) arises

from the critical behavior of Yang-Mills theories near the Hagedorn temperature.

The discussion in this chapter has used only fundamental properties of string theory

amplitudes, and we expect it to apply also to string theory on AdS background.

Using AdS/CFT the field theory calculation would serve as a proof of Eq. (3.2.3) for

string theories in an asymptotic AdS spacetime. Furthermore, since the factors a, in

Eq. (3.12) and Eq. (3.13) depend only on the mathematical structure of the moduli

space of Riemann surfaces and not on the specific string theory, the Yang-Mills theory

results serve as an indirect proof of Eq. (3.2.3).

It is clear from equation Eq. (3.2.3) that Hagedorn divergences at each genus order

in Eq. (3.13) simply signal breakdown of the asymptotic expansion in gs due to that ¢

becomes massless. The mo -- 0 limit is apparently smooth in the re-summed integral

expression Eq. (3.2.3). When A4 is positive, i.e. when the transition is second order,

the integral Eq. (3.2.3) is finite and non-perturbatively defined. For negative (or

zero) A4, i.e. when the transition is first order, the integral Eq. (2.67) is not defined

non-perturbatively and higher order terms in the effective potential are needed. In

either cases the mo -- 0 limit is well-defined.

Eq. (3.2.3) implies that a, -~ n! for n large. This is in contrast with the (2n)!

growth of the asymptotic behavior for the full free energy. Here we are only looking at

contributions from boundaries of moduli space, which accounts for the slower growth.

Here we have been focusing on the lowest spacetime mode4 of the thermal scalar,

which gives the most divergent contribution to the free energy. This explains the

finite-dimensional integral in Eq. (3.2.3). From general covariance it seems natural

4Recall that we assume that the Laplacian of the spacetime manifold has a mass gap.



to generalize Eq. (3.17) to include derivatives

S = ddxv/ (19012 02m * A4g 8 ") . (3.18)

where ddx integrates over the spatial directions5 .

Let us now consider the generalization of the above double scaling argument to

extract higher orders terms in Eq. (3.17). From equation Eq. (2.60) the leading

contribution of a generic degenerate surface to the free energy can be written in the

form
g829-2 En,k v(n,2k)(2n+2k-2)

J =s (3.19)
(P - PH)L ( _ ,3H) n,k kV(n, 2 k) (3.19)

where in writing down Eq. (3.19) we have assumed that all propagators in a degenerate

diagram carry winding numbers6 +1 and that each vertex contains an even number of

insertions m = 2k, k = 2, 3, - , due to winding number conservation. Now consider

the double scaling limit

= finite, g, - 0 (3.20)

under which Eq. (3.19) is proportional to gK with K given by

cc 00

K = • V(n,2k)(2n + 2k - 2 - ka) . (3.21)
n=O k=2

For a < 1, we always have K > 0 for any choice of V(n,2k). At a = 1, we get K = 0

for diagrams with V(0,4) =- 0 only while K > 0 for all other diagrams. In the double

scaling limit Eq. (3.20) only the contributions of diagrams with K = 0 survive. These

are the most divergent contributions we isolated in Eq. (3.13) and lead to the effective

action Eq. (3.17). Now let us set by hand A4 = 0, then in Eq. (3.21), V(0,4) = 0. The

5Note that for an AdS with a small negative cosmological constant, Eq. (3.18) applies to regions
in the interior of the spacetime, since in AdS gtt component of the metric is nontrivial and the
thermal scalar always has a large mass near the boundary.

6If there is a propagator carrying a winding number other than ±1, we can treat the two vertices
connected by this propagator as a single effective vertex. Keeping doing this we obtain a degenerate
diagram whose propagators only carry winding numbers ±1.



most divergent contributions in the remaining diagrams are isolated by taking a = 4

at which K = 0 for diagrams with V,'6 4 0 only and K > 0 for all the rest. In other

words now the most divergent contributions to the free energy can be written as

C192 Cn92n
F = -log(/ - PH) + ( / 8--+) 

+ 3n +'" (3.22)
(0 - H) ( - OH)

which implies the effective potential

V = m 2 * + A6( *) +... (3.23)

where A6 is related to the genus-0 six-point function of the vertex operators for the

thermal scalar on the world-sheet. Now restoring A4 and combining Eq. (2.67) and

Eq. (3.23) we would conclude that the effective potential can be written as

V = mrn 2 * + A4(¢*)2 + A6 ( 3*)
3 + ... (3.24)

The same procedure can then be repeated to the next order by first setting A4 and A6

to zero and then extracting the most divergent terms in the remaining diagrams. One

can continue this to arbitrary orders in (¢4 *)f and we find the effective potential7

00

S= mj* + Ak2kk-20 *)k +... (3.25)
k=2

The A2k term is obtained by setting all vertices with m < 2k to zero and performing
2(1-1) i E 32

the scaling 3 - /H , i.e. a = 2(1 - ) in Eq. (3.20).

Finally let us consider how to define various A6, Ag, -. from string amplitudes.

Recall that A4 can be obtained from Eq. (3.11) and Eq. (3.14). Naively one might

want to define A2k for k = 3, 4,... by the tree-level amplitudes of k winding 1 and

k winding -1 modes. However, from factorization argument, these amplitudes are

7Note that the procedure is not well adapted to re-sum divergences due to vertices with genus

n > 1. From Eq. (3.21), to have K = 0 for n = 1, we need a = 2, in which case all genus 1 vertices

with arbitrary number of insertions contribute equally. To have K = 0 for n > 1, we need a > 2,

then from Eq. (3.21), diagrams with large k become more dominant regardless of the value of n.



divergent at m0 = 0. The divergences come from diagrams containing lower order

vertices A2k' with k' < k and q in the internal propagators, which can be found from

standard Feynman diagrams for the action m * + -Ek,2 2ks2k-2 . A2k is

thus given by the sphere amplitude of k winding 1 and k winding -1 modes with the

divergent parts subtracted.

3.3 Comparison with the gauge theory expansion

and comments

As we mentioned above our discussion should also apply to type IIB string theory in

AdS5 x S5 or other string theories in asymptotic AdS spacetime. In an AdS space-

time with curvature radius R much bigger than the string and Planck lengths, there

is a first order Hawking-Page transition at temperature THP 1 much below the

Hagedorn temperature TH -L at which the thermal string gas in AdS becomes

perturbatively unstable [37]. The discussion of the last section describes what hap-

pens if one stays in the superheated thermal AdS phase above the Hawking-Page

temperature all the way to the Hagedorn temperature. From the critical behavior at

the Hagedorn temperature one can then map out the potential for the thermal scalar.

Hawking and Page's semi-classical discussion applies to IIB string theory in AdS

with a cosmological constant small compared to the string scale and to the Planck

scale, which corresponds to Kf = 4 super-Yang-Mills theory on S3 at strong 't Hooft

coupling [51]. At zero and weak 't Hooft coupling, which is dual to a small AdS,

thermodynamics of AN = 4 SYM theory on S3 has been discussed in [72, 4]. In the

free theory limit the Hagedorn and Hawking-Page temperatures coincide. At weak

coupling it is not yet clear whether the transition is of first or second order [4].

To summarize, in this chapter we extracted the Hagedorn divergences to all string

loop orders and showed that they can be re-summed. The re-summed amplitudes have

the form of an integral over the potential Eq. (3.1) for the thermal scalar and smooth

the divergences. We presented arguments both from a world-sheet approach and from



Yang-Mills theories using AdS/CFT. In the double scaling limits Eq. (3.20), world-

sheets with arbitrary number of thermal scalar insertions become equally important,

which is consistent with the expectation that the thermal scalar will condense and

the spacetime background will shift.

The fact that one can obtain the thermal scalar potential to arbitrary higher

orders by analyzing the local divergences in the thermal string phase is interesting.

The potential would enable one to find other possible phases of the theory. The results

also give an unambiguous prescription for computing the potential for the thermal

scalar near the Hagedorn temperature from string amplitudes. The relation we found

between vortex diagrams in Yang-Mills theory at finite temperature and degenerate

limits of world-sheet Riemann surfaces is rather intriguing and worth investigating

further.



Chapter 4

Viscosity bound and causality

violation

4.1 Outline

The AdS/CFT correspondence [51, 34, 79, 801 has yielded many important insights

into the dynamics of strongly coupled gauge theories. Among numerous results ob-

tained so far, one of the most striking is the universality of the ratio of the shear

viscosity ri to the entropy density s [61, 46, 17, 45]

q - 1 (4.1)
s 4ir

for all gauge theories with an Einstein gravity dual in the limit N -- oo and A - oo.

Here, N is the number of colors and A is the 't Hooft coupling. It was further

conjectured in [45] that Eq. (4.1) is a universal lower bound (the KSS bound) for all

materials. So far, all known substances including water and liquid helium satisfy the

bound. The systems coming closest to the bound include the quark-gluon plasma

created at RHIC' [77, 65, 71, 64, 27] and certain cold atomic gases in the unitarity

limit (see e.g. [68]).

7I/s for pure gluon QCD slightly above the deconfinement temperature has also been calculated
on the lattice recently [53] and is about 30% larger than Eq. (4.1). See also [66].



Now, as stated above, the ratio Eq. (4.1) was obtained for a class of gauge

theories whose holographic duals are dictated by classical Einstein gravity (coupled

to matter). More generally, string theory (or any quantum theory of gravity) contains

higher derivative corrections from stringy or quantum effects, inclusion of which will

modify the ratio. In terms of gauge theories, such modifications correspond to 1/A or

1/N corrections. As a concrete example, let us take Af = 4 super-Yang-Mills theory,

whose dual corresponds to type IIB string theory on AdS5 x S5 . The leading order

correction in 1/A arises from stringy corrections to the low-energy effective action of

type IIB supergravity, schematically of the form c' 3R 4. The correction to 7r/s due

to such a term was calculated in [18, 9]. It was found that the correction is positive,

consistent with the conjectured bound.

In this chapter, instead of limiting ourselves to specific known string theory cor-

rections, we explore the modification of q/s due to generic higher derivative terms

in the holographic gravity dual. The reason is partly pragmatic: other than in a

few maximally supersymmetric circumstances, very little is known about forms of

higher derivative corrections generated in string theory. Given the vastness of the

string landscape [26], one expects that generic corrections do occur. Restricting to

the gravity sector in AdS 5 , the leading order higher derivative corrections can be

written as2

I=i dex g (R - 2A + L2 1(&R2 + a2R1 Rtu + 3RtWPpRuwpa)) . (4.2)

where A = -6 and for now we assume that ai - << 1. Other terms with

additional derivatives or factors of R are naturally suppressed by higher powers of

L. String loop (quantum) corrections can also generate such terms, but they are

suppressed by powers of g, and we will consistently neglect them by taking g, --+ 0

limit.3 To lowest order in ai the correction to i/s will be a linear combination of ai's,

and the viscosity bound is then violated for one side of the half plane. Specifically,

20ur conventions are those of [20].
3Note that to calculate g8 corrections, all the light fields must be taken into account. In addition,

the calculation of rl/s could be more subtle once we begin to include quantum effects.



we will find

= 1 (1 - 8a3) + O(a') (4.3)s 47r

and hence the bound is violated for a 3 > 0. Note that the above expression is

independent of al and a2. This can be inferred from a field redefinition argument

(see section 4.2.3).

How do we interpret these violations? Possible scenarios are:

1. The bound can be violated. For example, this scenario would be realized if one

explicitly finds a well-defined string theory on AdS 5 which generates a stringy

correction with a3 > 0.

2. The bound is correct (for example, if one can prove it using a field theoretical

method), and a bulk gravity theory with a3 > 0 cannot have a well-defined

boundary CFT dual.

(a) The bulk theory is manifestly inconsistent as an effective theory. For ex-

ample, it could violate bulk causality or unitarity.

(b) It is impossible to generate such a low-energy effective classical action from

a consistent quantum theory of gravity. In modern language we say that

the theory lies in the swampland of string theory.

Any of these alternatives, if realized, is interesting. Needless to say, possibility 1

would be interesting. While there is clear evidence that for QCD 7r/s is bounded from

above, recent analyses of 77/s from RHIC data [65, 71, 64, 27] are important steps

toward being able to bound it from below. This further motivates to investigate the

universality of the KSS bound in holographic models.

Possibility 2(a) should help clarify the physical origin of the bound by correlat-

ing bulk pathologies and the violation of the bound. Possibility 2(b) could provide

powerful tools for constraining possible higher derivative corrections in the string

landscape. Note that while there are some nice no-go theorems which rule out classes

of non-gravitational effective field theories [1] (also see [2]), the generalization of the



arguments of [1] to gravitational theories is subtle and difficult. Thus, constraints

from AdS/CFT based on the consistency of the boundary theory would be valuable.

In investigating the scenarios above, Gauss-Bonnet gravity will provide a useful

model. Gauss-Bonnet gravity, defined by the classical action of the form [82]

I= 1 J d5x R - 2A + B L2(R2 - 4R1,R~" + RupoR vPa)  (4.4)

has many nice properties that are absent for theories with more general ratios of the

ai's. For example, expanding around flat Minkowski space, the metric fluctuations

have exactly the same quadratic kinetic terms as those in Einstein gravity. All higher

derivative terms cancel [82]. Similarly, expanding around the AdS black brane geom-

etry, which will be the main focus of the paper, there are also only second derivatives

on the metric fluctuations. Thus small metric fluctuations can be quantized for finite

values of the parameter AGB 4 Furthermore, crucial for our investigation is its remark-

able feature of solvability: sets of exact solutions to the classical equation of motion

have been obtained [11, 19] and the exact form of the Gibbons-Hawking surface term

is known [55].

Given these nice features of Gauss-Bonnet gravity, we will venture outside the

regime of the perturbatively-corrected Einstein gravity and study the theory with

finite values of AGB. To physically motivate this, one could envision that somewhere

in the string landscape AGB is large but all the other higher derivative corrections are

small. One of the main results of the paper is a value of 77/s for the CFT dual of

Gauss-Bonnet gravity, non-perturbative in AGB: 5

=' [1 - 4AGB]. (4.5)s 4,7r

We emphasize that this is not just a linearly-corrected value. In particular, the

viscosity bound is badly violated as AGB - 1. As we will discuss shortly, AGB is

4 Generic theories in Eq. (4.2) contain four derivatives and a consistent quantization is not possible
other than treating higher derivative terms as perturbations.

5We have also computed the value of 77/s for Gauss-Bonnet gravity for any spacetime dimension
D and the expression is given in Eq. (4.45).



bounded above by 1 for the theory to have a boundary CFT, and 7/s never decreases

beyond 16- without violating causality.

Given the result Eq. (4.5) for Gauss-Bonnet, if the possibility 2(a) were correct,

we would expect that pathologies would become easier to discern in the limit where

77/s is small. We will investigate this line of thought in section 4.6.

The plan of the chapter is as follows. In section 4.2, we review various properties

of two-point correlation functions and outline the real-time AdS/CFT calculation

of the shear viscosity. In section 4.3 we review the black brane geometry and the

thermodynamic properties of this background. We then explicitly calculate the shear

viscosity for Gauss-Bonnet theory in section 4.4 and section 4.5. In section 4.6,

we seek possible pathologies associated with theories violating the viscosity bound.

Various appendices are also part of this chapter. In appendix B we consider the black

brane solution of Eq. (4.2) and we calculate its thermodynamic properties without

doing the field redefinition. We also present an alternative calculation of the entropy

density using a compact formula obtained by Wald [78]. In appendix D we present a

calculation of the shear viscosity without doing the field redefinition, using the three

methods outlined in section 4.2.

Parts of this chapter have been published in [15] and [16].

4.2 Shear viscosity in R2 theories: preliminaries

4.2.1 Two-Point correlation functions and viscosity

Let us begin by collecting various properties of two-point correlation functions, fol-

lowing [62, 63, 47] (see also [70]). Consider retarded two-point correlation functions

of the stress energy tensor T,~ of a CFT in 3 + 1-dimensional Minkowski space at a

finite temperature T

GU,afl(w, q = -i dtd~e'e"t- '9(t)([T, 1v(t, Y), Tko(O, 0)]). (4.6)



They describe linear responses of the system to small disturbances. It turns out that

various components of Eq. (4.6) can be expressed in terms of three independent

scalar functions. For example, if we take spatial momentum to be q'= (0, 0, q), then

1 1 W2  2 w4
G 12,12 = -G3(w, q), G13 ,13 - 32 2 G(w, q), G33,33 = 2 _ 2)2 G2(, ),2 2 2w - q2

(4.7)
and so on. At q' = 0 all three function G1,2,3 (w, 0) are equal to one another as a

consequence of rotational symmetry.

When w, Ijq < T one expects the CFT plasma to be described by hydrodynamics.

The scalar functions G1,2,3 encode the hydrodynamic behavior of shear, sound, and

transverse modes, respectively. More explicitly, they have the following properties:

* G1 has a simple diffusion pole at w = -iDq 2, where

D = 7 -= l7 (4.8)
e+P Ts

with E and s being the energy and entropy density, and P the pressure of the

gauge theory plasma.

* G2 has a simple pole at w = ±cq - ir,q 2, where c, is the speed of sound and

r, is the sound damping constant, given by (for conformal theories)

2rl 11F = c2 (4.9)
3T s

* rq can also be obtained from G1,2,3 at zero spatial momentum by the Kubo

formula, e.g.,

= lim -ImG 1 2,12(w, 0) (4.10)
w--O W

Equations (4.8)-(4.10) provide three independent ways of extracting nq/s. In the

next subsection, we outline how to obtain retarded two-point functions within the

framework of the real-time AdS/CFT correspondence.



4.2.2 AdS/CFT calculation of shear viscosity: outline

The stress tensor correlators for a boundary CFT described by Eq. (4.2) or Eq. (4.4),

can be computed from gravity as follows. One first finds a black brane solution

(i.e. a black hole whose horizon is R3 ) to the equations of motion of Eq. (4.2) or

Eq. (4.4). Such a solution describes the boundary theory on R3'1 at a temperature

T, which can be identified with the Hawking temperature of the black brane. The

entropy and energy density of the boundary theory are given by the corresponding

quantities of the black brane. The fluctuations of the boundary theory stress tensor

are described in the gravity language by small metric fluctuations h,, around the

black brane solution. In particular, after taking into account various symmetries

and gauge degrees of freedom, the metric fluctuations can be combined into three

independent scalar fields 0a, a = 1, 2, 3, which are dual to the three functions Ga of

the boundary theory.

To find Ga, one could first work out the bulk two-point retarded function for 0a

and then take both points to the boundary of the black brane geometry. In practice

it is often more convenient to use the prescription proposed in [69], which can be

derived from the real-time AdS/CFT correspondence [38]. Let us briefly review it

here:

1. Solve the linearized equation of motion for ka(r; k) with the following boundary

conditions:

(a) Impose the infalling boundary condition at the horizon. In other words,

modes with time-like momenta should be falling into the horizon and modes

with spacelike momenta should be regular.

(b) Take r to be the radial direction of the black brane geometry with the

boundary at r = oo. Require

a(r; k)l,= 1 = Ja(k), k = (w,q) (4.11)

where E --+ 0 imposes an infrared cutoff near the infinity of the spacetime



and Ja(k) is an infinitesimal boundary source for the bulk field 0a(r; k).

2. Plug in the above solution into the action, expanded to quadratic order in

0a(r; k). It will reduce to pure surface contribution. The prescription instructs

us to pick up only the contribution from the boundary at r = 1. The resulting

action can be written as

1 d4k I (4.12)
S = ('k 4 Ja(-k)Fa(k, r) Ja(k) (4.12)

Finally the retarded function Ga(k) in momentum space for the boundary field

dual to 0, is given by

Ga(k) = lim Fa(k, r) (4.13)

Using the Kubo formula Eq. (4.10), we can get the shear viscosity by studying a

mode C3 with q' = 0 in the low-frequency limit w -+ 0. We will do so in the next

section.

Alternatively, we can solve the linearized equations of motion in the shear and

sound channels; using Eq. (4.8) or Eq. (4.9), we can then read off the viscosity and

the sound velocity from the pole structure of the retarded two-point functions. In

section 4.5 we will apply this procedure to calculate rl/s.

The above prescriptions for computing retarded functions in AdS/CFT work well

if the bulk scalar field has only two derivatives as in Gauss-Bonnet case Eq. (4.4).

If the bulk action contains more than two derivatives, complications could arise even

if one treats the higher derivative parts as perturbations. For example, one needs to

add Gibbons-Hawking surface terms to ensure a well-defined variational problem. A

systematic prescription for doing so is, however, not available at the moment beyond

the linear order. Thus there are potential ambiguities in implementing Eq. (4.13)."

Clearly these are important questions which should be explored more systematically.

At the R2 level, as we describe below in section 4.2.3, all of our calculations can be

reduced to the Gauss-Bonnet case in which these potential complications do not arise.

6In [18], such additional terms do not appear to affect the calculation at the order under discussion
there.



4.2.3 Field redefinitions in R2 theories

We now show that to linear order in ai, 7l/s for Eq. (4.2) is independent of al and

a 2. It is well known that to linear order in ai, one can make a field redefinition to

remove the R 2 and R,,,R" term in Eq. (4.2). More explicitly, in Eq. (4.2) set a 3 = 0

and take
L2

g,9 = i9, + a2L 2 3- (a2 + 2al) j,R, (4.14)

where R denotes the Ricci scalar for 9,, and so on. Then Eq. (4.2) becomes

1 I1+K -
I= 1 V ((1 + CK)R - 2A) + O(a 2)= 16rGN (R - 2A) + O(a 2)I= 167rGN -16NGN

(4.15)

with
2AL2

K =2AL (5a, + a2), A= A (4.16)
3 1+ I+K

It follows from Eq. (4.14) that a background solution g(o) to Eq. (4.2) (with a3 = 0)

is related to a solution j(O) to Eq. (4.15) by

d -2 2
d = A do, A = 1 (4.17)

The scaling in Eq. (4.17) does not change the background Hawking temperature.

The diffusion pole Eq. (4.8)) calculated using Eq. (4.15) around g(O) then gives

the standard result D = 1 [62]. Thus we conclude that 71/s = 1 for Eq. (4.2)

with a 3 = 0. Then to linear order in ai, 71/s can only depend on a3. To find this

dependence, it is convenient to work with the Gauss-Bonnet theory Eq. (4.4). Gauss-

Bonnet gravity is not only much simpler than Eq. (4.2) with generic a 3 $ 0, but also

contains only second derivative terms in the equations of motion for h,,, making the

extraction of boundary correlators unambiguous.



4.3 Black brane geometry and thermodynamics

Exact solutions and thermodynamic properties of black objects in Gauss-Bonnet grav-

ity Eq. (4.4) were discussed in [19]. Here we summarize some features relevant for

our discussion below. The black brane solution can be written as

ds2 = _f(r)N dt2 + dr2 + - dx) , (4.18)
i=1r)

where
r2  1 ( r

f (r) 1 - 1 - 4AGB 4  (4.19)

In Eq. (4.18), N# is an arbitrary constant which specifies the speed of light of the

boundary theory. Note that as r -- 00,

f(r) ,  with a2  ( 1 +I 1 - 4AGB . (4.20)

It is straightforward to see that the AdS curvature scale of these geometries is aL.7 If

we choose No = a, then the boundary speed of light is unity. However, we will leave it

unspecified in the following. We assume that AGB < !. Beyond this point, Eq. (4.4)

does not admit a vacuum AdS solution, and cannot have a boundary CFT dual. In

passing, we note that while the curvature singularity occurs at r = 0 for AGB > 0, it
1

shifts to r = r+ (1 -4G) for AGB < 0.

The horizon is located at r = r+ and the Hawking temperature, entropy density,

and energy density of the black brane are 8

1 1 d 1 r+
T(r+) = [ d V-rtt•Ir=r+ = N- I (4.21)

27r Jrg-r dr 7r L2'

To get the free energy F[T] of the macroscopic configuration Eq. (4.18), we note

7Here we note that the Gauss-Bonnet theory also admits another background with the curvature
scale i L where 12  _ (1 - 4AGB). Even though this remains an asymptotically AdS solution
for AGB > 0, we do not consider it here because this background is unstable and contains ghosts
[11].

8Note that for planar black branes in Gauss-Bonnet theory, the area law for entropy still holds
[41]. This is not the case for more general higher-derivative-corrected black objects.



the following correspondence in the classical limit:

e-F[T] = Z[T] = e-I[T] (4.22)

Here, I[T] is the Euclidean action of the configuration with temperature T. Eval-

uating the Euclideanized bulk action for Gauss-Bonnet gravity Eq. (4.4) with the

background metric Eq. (4.18), we find

1
Ibulk[T(+)] - -

167GN

XJ rmax
xa r

1

dr-~ "dtE 3i [R -2A

V3  No r4 rmax
167rGN T AGBL 5 [ r 4

+ CGB(R 2 - 4RLVRI" + Rn,pOaR/P")] =

(12AGB - 5 + 5/1- 4AGB) - 4 AGB + 2 GB

We regulate this result by subtracting the Euclidean action of the AGB-modified pure

AdS space (obtained by setting r+ = 0 in Eq. (4.18))

-1 1 rr4ax
GT B [ rmaxV3 -- x 4 ,12AGB161rGN T' L5 AGB [ r4 -5+ 5 1 - 4AGB)]

(4.23)

with T'(T) chosen so that the geometries at r = rmax agree [80]. Quantitatively,

(1 - /1 - 4AGB) (1- 1 - 4AGB + 4AGB r4+
Imax

Then the free energy is,

F[T] = T(Iulk[T] - I [T'(T)]) - - V3 (rLT) 3
4GN

The entropy density is then given by

d
dT

1
s[T] =

V3
F[T]) 1 1

(irLT)3 14 GN N3

If we fix the boundary theory temperature T and the speed of light to be unity

I 2rnax2

T' 2AGBL2

2 1
rmax

L2 2 AGB

(T) 1
44 N03' (4.24)

14GN4GN
+3

L
(4.25)

I

Ibupke [T'(T(r+))]



(taking No = a), the entropy is a monotonically increasing function of AGB, reaching

a maximum at AGB = 1 and going to zero as AGB - -00.

In appendix B,we will calculate the entropy density using Wald's entropy formula

(for a recent work on the relation between these two approaches for calculating the

entropy in AdS spaces, see [28]).

4.4 Shear viscosity for Gauss-Bonnet gravity in

the scalar channel

In this section we compute the shear viscosity for Gauss-Bonnet gravity Eq. (4.4) non-

perturbatively in AGB. Here, we follow the outline presented in the previous section,

with the Kubo formula Eq. (4.10) in mind. In section 4.5, we extract 71/s from the

shear channel Eq. (4.8)) and the sound channel Eq. (4.9) (perturbatively in A•B).

There we also find that the sound velocity remains at the conformal value c2 = as it

should. In the paper [15], a fourth method to calculate the shear-viscosity using the

membrane paradigm [46] was also presented. All four methods give the same result.

4.4.1 Action and equation of motion for the scalar channel

To compute the shear viscosity, we now study small metric fluctuations = h12

around the black brane background of the form

dS2 •• = -()Ndt + + d + 20(t, , r)xidx 2' . (4.26)

We will take € to be independent of xl and x2 and write

(t, 5, r) = (2 r; k) eiwt+i• 3, k = (w, 0,0, q), (r; -k) = *(r; k) . (4.27)



For notational convenience, let us introduce

r L2 L2 2 2( 4AGB
z = w= -w, q -q, f=- f= 1 - 1 - 4AGB+ 4r+ r + r+ r+ 2 AGB

(4.28)

Then, at quadratic order, the action for q can be written as

J dkldk2 ) ith
S= (2r)2 S(k, k2) with

S(ki = 0, Ik2 = 0)= -C dz r)2 (K( ,O) 2 - K 2¢2 + a~(K3 ¢2)) (4.29)
2 (2ir)2

where

C = 16rGN L K 2 f(Z -AGBtzf ), K 2 = K •1 2 - 2z ( AGBOIf),

(4.30)

and q2 should be understood as a shorthand notation for q(z; k)q(z, -k). Here, S

is the sum of the bulk action Eq. (4.4) and the associated Gibbons-Hawking surface

term [55]. The explicit expression for K3 will not be important for our subsequent

discussion.

The equation of motion following from Eq. (4.29) is'

K0" + K0'' + K20 = 0 , (4.31)

where primes indicate partial derivatives with respect to z. Using the equation of

motion, the action Eq. (4.29) reduces to the surface contributions as advertised in

section 4.2.2,

1 dwdq
S(k = 0,k 2 = 0) = - C dd (KO'¢ + K 3 0 2) Isurface . (4.32)

2 J (2-) 2

The prescription described in section 4.2.2 instructs us to pick up the contribution

from the boundary at z --+ oo. Here, the term proportional to K3 will give rise to a

9An easy way to get the quadratic action Eq. (4.29) is to first obtain the linearized equation of
motion and then read off K and K 2 from it.



real divergent contact term, which are discarded.

4.4.2 Low-frequency expansion and the viscosity

General solutions to the equation of motion Eq. (4.31) can be written as

¢(z; k) = ai.(k)¢in(z; k) + aout(k)ot t(z; k) , (4.33)

where €in and 0,t satisfy infalling and outgoing boundary conditions at the horizon,

respectively. They are complex conjugates of each other, and we normalize them by

requiring them to approach 1 as z -+ oo. Then, the prescription of section 4.2.2

corresponds to setting

aout(k) = 0,

where J(k) is an infinitesimal boundary source for

More explicitly, as z --, 1, various functions

behavior

K 2  _ 2

K2 - + O((z - 1)-') + 0(42),K 16N1(z - 1)2

It follows that near the horizon z = 1, equation

q= 0)

(4.34)

the bulk field q.

in Eq. (4.31) have the following

K' 1K-= z-1 +0(1).K z - 1 (4.35)

Eq. (4.31) can be solved by (for

(4.36)

with the infalling boundary condition corresponding to the negative sign. To solve

Eq. (4.31) in the small frequency limit, it is convenient to write

i,(z; k) = e N~ q 1 4 ~ gi(z) + -O(2 2) (4.37)

where we require gi (z) to be non-singular at the horizon z = 1. We show in Ap-

ain(k) = J(k) ,

O(z) (Z - 1)+ ,- (z-1 iW4-



pendix C that gi is a non-singular function with the large z expansion

4 AGB a2

g(z) = 4AGBZ + O(Z-8 ) . (4.38),r1 - 4AGB Z

Therefore, with our boundary conditions Eq. (4.34), we find

(z; k)=J(k) [1+ a2 1 - 4 AGB 2 + O(z-) + 0(C2,2)] (4.39)

Plugging Eq. (4.39) into Eq. (4.32) and using the expressions for C and K in

Eq. (4.30), the prescription described in section 4.2.2 gives

ImG12,12(w, ) = w) (1 - 4AGB) + O(w2). (4.40)

Then, the Kubo formula Eq. (4.10) yields

17 1G (1 - 4AGB) (4.41)r 16rGN \L

Finally, taking the ratio of Eq. (4.41) and Eq. (4.25) we find that

S= 1 (1 - 4AGB) (4.42)
s 41r

This is non-perturbative in AGB. Especially, the linear correction is the only non-

vanishing term.'1

We now conclude this section with various remarks:

1. Based on the field redefinition argument presented in section 4.2.3, one finds

from Eq. (4.42) that for Eq. (4.2),

= 1 (1 - 8a3) + (a2) (4.43)
s 4,7r

We have also performed an independent calculation of rl/s (without using field

redefinitions) for Eq. (4.2) using all three methods outlined in section 4.2.1 and

'O1t would be interesting to find an explanation for vanishing of higher order corrections.



confirmed Eq. (4.43). This calculation is summarized in appendix D.

2. The ratio r7/s dips below the viscosity bound for AGB > 0 in Gauss-Bonnet

gravity and for a3 > 0 in Eq. (4.2). In particular, the shear viscosity approaches

zero as AGB --+ for Gauss-Bonnet.

3. Fixing the temperature T and the boundary speed of light to be unity, as we

take AGB -- -00, 77 (--GB) 0 - 00. In contrast the entropy density decreases

as s ~ (-AGB)- -4 0.

4. The shear viscosity of the boundary conformal field theory is associated with

absorption of transverse modes by the black brane in the bulk. This is a nat-

ural picture since the shear viscosity measures the dissipation rate of those

fluctuations: the quicker the black brane absorbs them, the higher the dissipa-

tion rate will be. For example, as AGB -- --O, rl/s approaches infinity; this

describes a situation where every bit of the black brane horizon devours the

transverse fluctuations very quickly. In this limit the curvature singularity at

z = ( 41 A- approaches the horizon and the tidal force near the horizon

becomes strong. On the other hand, as AGB -+ , 77/S --+ 0 and the black brane

very slowly absorbs transverse modes.

5. The calculation leading to Eq. (4.42) can be generalized to general D spacetime

dimensions and one finds for D > 4 + 111

7 I 1 - 2 AGB (4.45)
s 47 (D - 3)

Here again AGB is bounded above by 1. Thus for D > 4 + 1, 77 never approaches

zero within Gauss-Bonnet theory. For D = 3 + 1 or 2 + 1, in which case the

Gauss-Bonnet term is topological, there is no correction to 77/s.

1 1For general dimensions we use the convention

1 dD g [R - 2A +O GBL2 (R2 - 4Rj, ,R "" + RvpcR"vP)] (4.44)

with A = -(D-1)(D-2) and AGB = (D - 3)(D - 4)aGB.



4.5 r//s for Gauss-Bonnet gravity in the shear and

sound channels

In this section we present the calculation of the shear viscosity in the shear and

sound channels, for Gauss-Bonnet gravity. This calculation is perturbative in AGB,

and follows the techniques developed in [47].

As we outlined is section 4.2.2 we can combine the metric fluctuations into three

independent scalar fields. In particular, if we consider a perturbation of the back-

ground metric of the form h,~ = h,,(r)e-itl+iq 3, with 1i, v = t, r, xl,x 2, 3, we can

label various kinds of perturbations according to their transformations under the

symmetry group of rotations in the 1 - 2 plane. There are three types of decoupled

excitations corresponding to spin 2 (scalar channel), spin 1 (shear channel) and spin 0

(sound channel). We presented in the section 4.4 the calculation in the scalar channel.

Here we consider the other two channels.

4.5.1 Shear channel

The shear channel excitations involve ht•, h,, and h3a with a = 1, 2. Choosing the

radial gauge hr = 0, the shear channel equations can be reduced to a single equation

for Z(r) = qg11htl +wgi'h 31 . At first order in AGB, Z(r) satisfies the equation (below

we use the notation introduced in Eq. (4.28))

0 = ( + --Z'() 5z4 - 1 4q2 +z - + (-z 4 + 1) + z4
z z4 - 1 24 4

+ (z( 2(-z4 + 1) + z4 +D2
N(+Z(z) (z4 -1) ) +

8(2q4(Z4 _ 1)2 + 4q2z4 ý2 - 3z8 4 )

+ Z(z) 2 +z3) 2•N 9 1  (4.46)
Z4(z4 -1)



Following a similar analysis to that at the beginning of section 4.4.2, we find that the

solution to Eq. (4.46) which satisfies an infalling boundary condition at the horizon

z = 1 can be written as

Z(z) = 1 - -) g9(z) (4.47)

where g is regular at z = 1. The exponent is fixed by an expansion in the near horizon

limit. In order to find the hydrodynamical poles, it is enough to find g(z) for small

values of C& and 4, which we will assume are of the same order. For this purpose, we

introduce a scaled quantity W = and expand g(z) as a power series of q. The

solution can be readily found to be

iq( ( W 2 _ )+ 1 ) ]
g(z) = 1 + - 1 +GB 3(W2 - 1) - + 0(42, B) . (4.48)

We thus find near infinity Z(z) can be expanded in 1/z as

Z(z) A + Bz - 4 + O(z-), z -+ 00 (4.49)

where

A= 1+ + 3i--AGB (W2 - 1) + O(42)

iN2 q2 3iAGBW=1+ (1 - 3AGB)- + • (4.50)

W i~ .W .AGBQ 2 ()B= + i-q + s I - 3 + O(q24W 4 W (2 4

Carrying out the procedure Eq. (4.11)-Eq. (4.13) one finds that

GR(k) oc . (4.52)

In particular one can show that the poles of GR(k) solely arise from zeros of A.



The Dirichlet boundary condition corresponding to A = 0 determines the hydro-

dynamical pole as12,

w = -iDq2 + O(q3), D = N (1 - 3AGB) (4.53)
47rT

Note that in the relation Eq. (4.8)) between the diffusion constant D and ~l/s, the

boundary speed of light c has been set to unity (otherwise the right hand side should

be multiplied by c2). Choosing N2 = a2 e 1 - AGB (see (Eq. (4.20)) so that the

boundary speed of light is unity, we find that

S= (1 - 4AGB) + O(A2B) . (4.54)s 4xr

4.5.2 Sound channel

The sound channel excitations involve ht, ht3, h33, hll + h22, hrr hr, hr3. Choosing

the radial gauge hpr = 0, the sound channel equations can be reduced to a single

equation for the variable [47]

Z,(r) -g3 ht3 + 2g 33h 33 - (g22h22 + h911 ) 1 - 2 r +2 q2 (4.55)
Wk W2 r911 W2 g911l

At first order in AGB, the equation for Z,(z) can be written as

S+ 3 (1 - 5z4) (9 - 16z4 + 15z8)
0 = Z,'(z) + Z.(z) 7 ++ (4.56)z(-1 + Z4)(-3 z2 4 + 2(-1 + 3z4))

-3 4 + 22 2Z6(34 - 2) - 2 ( 4 _ 1)(2z2(-1 + 3z4) -16)
+"Z (z) - + -2 +

z2(-1 + z4)2(-3 z4+( 1+ 3Z4))

4(2GB Z() (7 z' + 61?C2 Z4(Z4 - 11) + 4(-11 + 66z4 -27Z8))z (-3 z4 + 4J(-1+ 3z4))2  +

Z, ( z ) z5(-4 6)
+ (z) z10(17 + 15z 4) _ c18 14+

z6(-1 + z4)(-3 2 z4 + 1 ( + 3z4))2  N4 N 6

+ 44(q 2(7 + Z4 )(z - 3z 5 )2 + 32(4 - 23z 4 + 15z 8))-

12We now need to assume w , O(q2).



- 4 - 4(-180 + 132z 4  42(-0 + 9z4(3 z4)))

Again the solution satisfying the in-falling boundary condition at the horizon z = 1

can be written as

Z(z) = (I i ) - s(z)
z4 (4.57)

Defining as above the quantity W = , and expanding s(z) in q, we find that

3W 2 z4 _ (1 + z 4) -3 + 2z4 + z 8

(3W 2 - 2)z 4
- GB z 8 (3W 2 - 2)

[ W(z4 _- ) ( 1 (3(3W 2 - 5)z 4 -7)
+ iq + AGBW - 4(3W2 2)

1z4 (3W2 -2) z 4 4z4 (3W2 -2)

The leading asymptotic behavior close to the boundary at infinity is

Z,(z) = A, + B z - 4 + O(z-8),

with

As oc q2(1 +
2

AGB) - q2WxrT
15
4GB4

3w 2  i9 AGB W 3

N2 4rT N•2

Again, the hydrodynamical pole is found by setting As = 0, leading to

Wsound = +csq - iFsq2

A1 GB
2

c 2 N2(1 +-2
FS = (1 - 3AGB)3 4xT

(4.60)

(4.61)

(4.62)

By choosing the boundary speed of light to be unity, i.e. Ný = a • (1 - GB), we

thus find that c, = 1 and from Eq. (4.9)

(1 - 4AGB) + O(AGB) .47r

(4.59)

+ 0(q2) (4.58)

1)
(4.63)



in agreement with the results obtained from the scalar and shear channel.

4.6 Causality in bulk and on boundary

4.6.1 Graviton cone tipping

As a consequence of higher derivative terms in the gravity action, graviton wave pack-

ets in general do not propagate on the light-cone of a given background geometry. For

example, when AGB 4 0, the equation Eq. (4.31) for the propagation of a transverse

graviton differs from that of a minimally coupled massless scalar field propagating in

the same background geometry Eq. (4.18).

The equation of motion Eq. (4.31) can be written as

gff7V,#VL = 0 (4.64)

where V, is a covariant derivative with respect to the effective geometry Iff= = 29 eff

given by

eff dxdxv = f(r) N (-dt2 + dx) + drdr2
gf (r)

(4.65)

Here, Q2 = Kz(1 - AGBf') and

N2 f (z) 1 - AGBf"(z) 1 - Af"(z)
c( z2 1 _ -c A '() Cb 1 '(z)66)

z z
can be interpreted as the local "speed of graviton" on a constant r-hypersurface.

c~(z) = 2 introduced in the second equality in Eq. (4.66) is the local speed
of light as defined by the background metric Eq. (4.18). Thus the graviton cone

in general does not coincide with the standard null cone or light cone defined by

background metric. 13

13Note that
cg 1 - AGBf" 1- 4AGB + 12a-

- 1- - = -4A1G+4A~a - (4.67)

and in particular the ratio is greater than 1 for AGB > 0. Note that bulk causality and the existence
of a well posed Cauchy problem do not crucially depend on reference metric light-cones and such



1.00
LOW~

4.0q ;

4 6

/ .. _ 1 ~ *4 6 10I\ \I

Figure 4-1: c2(z) (vertical axis) as a function of z (horizontal axis) for AGB = 0.08 (left
panel) and AGB = 0.1 (right panel). For AGB < 10, c; is a monotonically increasing
function of z. When AGB > 1-, as one decreases z from infinity, c2 increases from 1
to a maximum value at some z > 1 and then decreases to 0 as z -> 1 (horizon).

In the non-gravitational boundary theory there is an invariant notion of light-cone

and causality. At a heuristic level, a graviton wave packet moving at speed c,(z) in

the bulk should translate into disturbances of the stress tensor propagating with the

same velocity in the boundary theory. It is thus instructive to compare c, and cb

with the boundary speed of light, which we now set to unity by taking Nl = a (a was

defined in Eq. (4.20)). At the boundary (z = oo) one finds that cg(z) = cb(z) = 1.

In the bulk, the background local speed of light cb is always smaller than 1, which is

related to the redshift of the black hole geometry. The local speed of graviton cg(z),

however, can be greater than 1 for certain range of z if AGB is sufficiently large. To

see this, we can examine the behavior of c near z = co,

bl 1 +/1 - 4 AGB - 2 0AGBc(Z)-1 = + O(z-8), z - 00, b (AGB)
z, 2(1 - 4AGB)

(4.68)
bl (AGB) becomes positive and thus c increases above 1 if AGB > J. For such a AGB,

as we decrease z from infinity, cg will increase from 1 to a maximum at some value

of z and then decrease to zero at the horizon. See Fig. 4-1 for the plot of c2(z) as a

function z for two values of AGB. When AGB = one finds that the next order term

tipping is not a definitive sign of causality problems. Also note that For AGB < --, there exists a

region outside the horizon where c < 0. This is rather peculiar since there appears to be more than
one time direction in the effective geometry. Since this is not correlated with the viscosity bound,
we shall not explore it further in this paper.

,996
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O699



in Eq. (4.68) is negative and thus c2 does not go above 1. Also note that AGB - ,

bl(AGB) goes to plus infinity.14 Thus heuristically, in the boundary theory there is

a potential for superluminal propagation of disturbances of the stress tensor. In the

next sections, we will show that this indeed happens.

We now briefly comment on the status of the null energy condition in Gauss-

Bonnet gravity. The easiest condition to check is the null energy condition on the

AGc-corrected black brane spacetime: R,,0l'" > 0 for all null vectors 1". Somewhat

surprisingly we find that it is satisfied when the viscosity bound is violated (AGB > 0),

and violated when the viscosity bound is satisfied (AGB < 0). However for gravita-

tional theories with higher curvature terms this apparent violation is not a compelling

signal of problems.

4.6.2 Causality violation and the KSS bound

In this section, we will argue that when AGB > -- , the theory violates causality

and is inconsistent. Thus, for (3+1)-dimensional CFT duals of (4+1)-dimensional

Gauss-Bonnet gravity, consistency of the theory requires

S> 11 . (4.69)
s - 25 41

This provides a concrete example in which a lower bound on rj/s and the consistency

of the theory are correlated. The 36% difference from the KSS bound is mysterious,

and we discuss two obvious possibilities below.

From standard geometrical optics arguments [54], in the large momentum limit, a

localized wave packet of a graviton should follow a null geodesic xJ (s) in the effective

graviton geometry Eq. (4.65). More explicitly, write the wave function

(t, r) = (2 )2 (r; , q)e-iwt+iqX3

in Eq. (4.64) in the form ¢ = ei6 (tr,'3)Oen(t, r, x3 ) where E is a rapidly varying phase

14In fact coefficients of all higher order terms in 1/z expansion become divergent in this limit.
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Figure 4-2: Left: c2(z) as a function of z for XGB = 0.245. c has a maximum c2
ai to = 1 2 increases g,max

at Zma x . As AGB is increased from AGB = to AGB = ,m increases from 1
to 3. c;(z) also serves as the classical potential for the 1-d system Eq. (4.72). The
horizontal line indicates the trajectory of a classical particle. Right: U(y) (defined in
Eq. (4.80)) as a function of y for AGB = 0.245.

and e,, denotes a slowly varying envelope function. Inserting into Eq. (4.64), we find

at leading order 15
dx • dx&g"dsx dsx eff= 0 (4.70)

z- z- = (4.70)

with the identification dx" 9 k- k = g/IV ,V . Given translational symmetries in

the t and x3 directions, we can interpret w and q as conserved integrals of motion

along the geodesic,

dt fN (4.71)ds -•s \ ds g

Assuming q / 0 and rescaling the affine parameter as 9 = qs/Nl, we get from

Eq. (4.70) and Eq. (4.71)

(dr\ 2  
2 2

2 -C•, . (4.72)q

This describes a one-dimensional particle of energy c 2 moving in a potential given by

c . As is clear from Fig. 4-2, geodesics starting from the boundary can bounce back

to the boundary, with a turning point rturn((a) given by

2 = C(rturn) (4.73)
15Any (non-singular) conformal factor multiplying g•ff will not matter for null geodesics since we

can reparametrize affine parameters to get rid of it.



In contrast, for AGB <  9g, cg(z) is a monotonically increasing function of z and there

is no bouncing geodesic. For a null bouncing geodesic starting and ending at the

boundary, we then have

At(a) = 2 dr = dr, (4.74)

S a 2 c2 (4.75)

Ax3(a) = 2 3--dr = dr, (4.75)
Irtur(a) r No rturn(c) f a - C

where dots indicate derivatives with respect to 9.

In the boundary CFT we have local operators which create bulk disturbances at

infinity that propagate on graviton geodesics sufficiently deep inside the bulk (r <

w) [60]. In particular, we expect causality violation in the boundary CFT if there

exists a bouncing graviton geodesic with x > 1 '6. Now, as rturn rmax (aAt(a)

cg,m9x), a geodesic hovers near rmax for a long time, propagating with a speed cg,max

in x3-direction. Indeed, the integrals in Eq. (4.74) and Eq. (4.75) are dominated by

contributions near rma. In such a limit, the ratio of the integrand in Ax 3(a) to that

in At(a) near rmax is cg,max. Thus, -- cg,max > 1, violating causality.

We will now show explicitly that the superluminal graviton propagation described

above corresponds to superluminal propagation of metastable quasi-particles1 7 in the

boundary CFT with -A identified as the group velocity of the quasi-particles. For

this purpose, we rewrite the full wave equation Eq. (4.64) in a Schrodinger form

-aO,2  + V(y)4 = D0 (4.76)

16To be precise this only indicates the presence of a pole outside the boundary CFT light-cone in
the time-ordered two-point function. To be complete, we need to show that the retarded two-point
function does not vanish outside the light-cone.

17Quasi-particles in the boundary CFT correspond to poles in the retarded Green function which
are sufficiently close to the real axis in the complex w-plane. Such poles in turn correspond to
solutions of the equation of motion Eq. (4.64) which are normalizable near the AdS boundary and
in-falling at the horizon [69].
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Figure 4-3: V(z) as a function of z for AGB = 0.2499 and 4 = 500.

with 7P and y defined by

dy 1 KVd- = VN)(z)' = B, B = , (4.77)
dz N f (z) f

and

(y) = 2c(z) + , V(y) = (B" + B . (4.78)

In the above primes denote derivatives with respect to z. Note that y(z) is a mono-

tonically increasing function of z with y -- 0 as z - co (boundary) and y - -oo

as z -- 1 (horizon). c~ (z) is given by Eq. (4.66). V1 is a monotonically increasing

function of y (for AGB > 0) with Vi(y = -oo) = 0 and V1 - y-2 as y -+ 0.

Since cg is monotonically decreasing for r > rm,,, for large enough 4, V(y) devel-

ops a well and admits metastable states (see Fig. 4-3). The wave functions of such

metastable states are normalizable at the AdS boundary and have an in-falling tail

at the horizon, corresponding to quasi-particles in the boundary CFT

Now consider the limit 4 -- oo. Since V1 is independent of 4, the dominant

contribution to the potential is given by q"2c(z) except for a tiny region y

Thus in this limit, we can simply replace V1 (y) by V1 (y) = 0 for all y < 0 and

V1(0) = +cc. Equation (4.76) can then be written as

1
- 2 2 U(y) , - -- * 0 (4.79)

q



where a was introduced in Eq. (4.72) and (see Fig. 4-2)

U(y) = (y) y (4.80)
+oo y = 0

In the A -- 0 limit, we can apply the WKB approximation. The leading WKB wave

function eie(t,r,x3) is just the rapidly varying phase of the geometric optics approxima-

tion. The real part of a 2 satisfies the Bohr-Sommerfeld quantization. condition (with

n some integer)

Sdy a2 - y) = (n - )r (4.81)

The above equation determines w as a function of q for each given n. Taking the

derivative with respect to q on both sides of Eq. (4.81), we find that the group

velocity of the quasi-particles is given by

d = Ax 3(a) (4.82)
dq At(a)

where At(a) and Ax 3(a) are given by Eq. (4.74) and Eq. (4.75) respectively. Thus

as argued in the paragraph below Eq. (4.75), vg approaches cg,max > 1 as a -- cg,,m~,

violating causality. In this limit the WKB wave function is strongly peaked near

rmax, reflecting the long time the geodesic spends there. One can also estimate the

imaginary part of a 2 (or w), which has the form e- h(a)4 with h(a) given by the

standard WKB formula. Thus in the 4 -- oo limit the quasi-particles become stable.

Presumably local boundary operators that couple primarily to the long-lived quasi-

particles can be constructed by following [60].

4.7 Summary

To summarize, we have argued that signals in the boundary theory propagate outside

the light-cone. In a boosted frame disturbances will propagate backward in time.

Since the boundary theory is non-gravitational, these are unambiguous signals of



causality violation and hence inconsistency.

Here we observe causality violation in the high momentum limit by looking at

metastable states near the top of the potential. This is in agreement with the ex-

pectation that causality should be tied to the local, short-distance behavior of the

theory. Also, a sharp transition from causal to acausal behavior as a function of AGB

is possible because of the limiting procedure 4 -+ oo needed in our argument. A more

rigorous derivation of these phenomena using the full spectral function obtained from

the Schrodinger operator would be desirable.

We argued that, for a (4+1)-dimensional Gauss-Bonnet gravity, causality requires

AGB - . Thus, consistency of this theory requires,

6 > ( .1(4.83)

This still leaves rooms for a violation of the KSS bound. We see two possibilities.

First, it could be that Gauss-Bonnet theory with AGB < -- is consistent and

appears as a classical limit of a consistent theory of quantum gravity, somewhere in

the string landscape. Maybe this is how nature works and the KSS bound can be

violated, at least by 36%.

Alternatively, it could be that there is a more subtle inconsistency in the theory

within the window of 0 < AGB • . These issues deserve further investigation.
1-00



Appendix A

Proof of Eq. (2.41)

In this appendix we prove equation Eq. (2.41). In the next subsection we discuss some

elementary aspects of U(N) group integrals. We then proceed to evaluate Eq. (2.10).

Equation Eq. (2.41) is proved in the end.

A.1 Group integrals over U(N)

Consider the following integral over the unitary group U(N)

k a
I = dU (TrUI (TrU-cj)d

i=1 j=1

(A.1)

where aj, bi, cq, di are positive integers and

D = Zaibi = EZcjd.
i=1 j=1

(A.2)

VN is the volume of U(N).

Products of traces of U can be expanded in terms of characters of irreducible

representations of U(N), which are in one to one correspondence with irreducible



representations of the symmetric group (see for example [22]),

kJJ(TrUw')i = Z XA(ai, b1)xA(U) (A.3)
i=1 A

where A labels the irreducible representations of the symmetric group SD. X,(ai, bi)

is the character of the conjugacy class I of SD given by the set {(ai, bi)} in the rep-

resentation A. X.(U) is the character of U in the irreducible representation of U(N)

labeled by A. Now by using the orthogonality property for characters we can write:

I= X (ai, bi)Xx,(ci,di) - J dUxA\(U)xy (Ut)

= ~: xx(ai, bi)x\(ci, di) (A.4)

The evaluation of Eq. (A.4) can be divided into the following two cases:

1. If D < N, then the sum over A can be evaluated giving [22]

k

I = ~{(ai,bi)},{(ci,di)} I XA(ai, bi ) 2 = 6{(ai,bi)},{(ci,di)} aibi! (A.5)
Ai=l

where the completeness of characters of the symmetric group SDo enforces the

sets { (a , bi) } and { (ci, di) } to define the same conjugacy class in SD, i.e., to be

the same apart from reordering. This means that the integral is zero for D < N

unless for any factor of Tr[Ua]b in the integrand there is a corresponding factor

of Tr[U-a]b.

2. If D > N one needs to restrict the sum over the irreducible representations A to

the representations where xA(U) / 0, that we will indicate formally as A < N.

In this case the result is more complicated and we do not have a closed form

expression. For the case in which the sets {(ai, bi)} and {(ci, di)} are equal up

1Recall that two elements of SD are conjugate if and only if they consist of the same number of
disjoint cycles of the same lengths. Denote the number of cycles of length ai by bi then a conjugacy
class in SD is given by a set of k couples {(ai, bi)} i = 1, ..k such that EZ=1aibi = D.



to reordering one has

k

I = x(ai, bi)2 < ] aibib! (A.6)
A<N i=1

A.2 Partition function integrals

We now consider the evaluation of the free theory partition function Eq. (2.10). To

warm up let us consider the following integral

w JdUezlTrnU t = JdU~ (zTUTrUt)
pVN VN P=o0

N

p--O

-=- + O(zN) . (A.7)1 - zl

For 0 < z1 < 1 the corrections to the N = oo result are of order O(zfN ) and are

therefore exponentially suppressed in N. In the more general case Eq. (2.10) (with

V,(i3) = z,) one can proceed exactly as above, writing

Zo= J dUe O(u) = dU exp (z TrUnTrUtn)

= - dU z !n (TrUnTrU-n)p"

VN n1 pn! nP"

=I - C(-N) (A.8)
n=1 Zn

where C(N) is given by

C(N)= z1 )- dU p nP(TrUnTr)U-
=1 =0 n=1 n >N

< z11 E-n D(N) (A.9)
n=1 Pn=O Cn nPn>N



Note the the subscript in the above equation indicates that one should only sum over

those Pn which satisfy En nps > N. D(N) can be estimated as follows. Consider the

expansion
00 1 00

1I1 - = an (z, z, ... )tn (A.10)
n=l n=o

where an are polynomials in the zi with positive coefficients. Note that

00

D(N)= E an(Zz2, .Z (A.11)
n=N+1

Define
1 1 1

z, = max(zz , z, ..., zj,...) (A.12)

Below TH, we have z, < 1. Then we have 0 < an(zl, z2, ...) < an(z, z,, z, ...) = bz

where the bn's are the coefficients of the series of 1 1- I_ = E'o bnzn. This

series has radius of convergence equal to 1 because the function has no singularities

for Iz,* < 1. It then follows that for a given E > 0 there exists an M(E) such that

for n > M(e) it is true that bn < (1 + E)". Then for E < _1 -1 and N > M(E) the

following holds:

C(N) < D(N) < E ((1 + )z) = ((1 + ))N + l  (A.13)
n=N+ 1 - (1 + E)z,

and therefore the corrections are exponentially small since (1 + E)z, < 1.

To summarize we find that

Zo = 1 dU exp (Z TrUnTrUtn 1- - Ke- (A.14)

where c = - log(z*) > 0 and K > 0.

100



A.3 Correlation functions

Correlation functions Eq. (2.16)

k s k a

( (TrUa)b (TrUc)dj) ej (dUe U) a)b  -c(TrJ)d (A.15)
i=1 j=1 U i=1 j=

where ai, bi, cb, di are positive integers of order O(No) can now be calculated easily

using the technique above. Correlation functions of the form (,n(TrUa~r" rU-a-)bn )

are obtained by taking derivatives on Zo Eq. (A.14) with respect to n

1 dbnZo (A.16)( a(TrUanTrUan)bn= l bn dbn (A.16)
n n

If in Eq. (A.15) the {(a2, bi)} are not matched with {(ci, d)} up to reordering, due

to A.5, the correlation function is zero up to nonperturbative corrections which are

of order (z*)N. For example, (TrUaTrUaTrU-2 a)u is zero at any finite order in I

expansion unless a is zero.

The above results can be summarized by the following: the integrals can be eval-

uated by treating each TrU" as an independent integration variable. More explicitly,

replacing
1 1

-TrU n -• , - T rU - U = -, 0 = 1 (A.17)
N N

then

(kTrUS-LTrUs2 .. TrUSF)U

11 1n n

= foo 1I d$dq¢* ¢1 ,, --. -S, exp (-N 2 N = . (l +1

+nonperturbative in N. (A.18)
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Appendix B

Thermodynamic properties of

solution

B.1 Thermodynamic properties of Eq. (4.2)

It can be verified that a stationary point for Eq. (4.2) with A = -6/L 2 is given by

1 r2dS2 = (p(r) + h(r))dt2 + (p(r) + Ldx,

with p(r) = -( +  = - T, and

h(r) = 36 a + ~a + 3 + 2a3
(27 27 54) r 6

The location of the horizon is now

1
Rh = rh( - (5 1 ±+ a2 + 2a 3))3

with r4 = m2b2 .

The Hawking temperature can be calculated to be

1 Rh 1 +(20a + 42 -
TH = n4r r(f(r) + h(r))1 h Ln•-(1 + (20a,- 4a2-7rr 3
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using the usual arguments. The temperature in the bulk and the boundary agree in

coordinates where no = 1 - R(10a + 2a2 + a 3 ).

B.2 Wald entropy formula

Instead of the procedure described in section 4.3, one could use the formula Wald

derived for the entropy (see, for example, [28]). Given the action Eq. (4.2), the

formula for the entropy is

S Wald = 4r Horizon d3x x

x (1 + L2 (2al + a 2 + 2a 3)R - L2(a 2 + 4a3)hij•ij + 2a3L2hijhklRikj) , (B.5)

where the hij is the induced metric on the horizon and the Rieman and Ricci tensor

are evaluated using the metric Eq. (B.1) with al, a 2, a 3 = 0. From Eq. (B.5) the

entropy density is

s = (1 - 8(5a, + a2 - a3))
4GN b3

A particular case is the Gauss-Bonnet term (a, = 1; a 2 = -4; a3 = 1), for which

the first and second coefficients vanish, and the contribution of hijhklRikjl is zero. We

recover therefore that adding the Gauss-Bonnet term at leading order in al, a2, a 3

gives no correction to the entropy if the horizon is a flat manifold ([19]).
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Appendix C

Derivation of (4.38)

In this appendix we give some details for obtaining gi(z) in equation (4.38). Plugging

(4.37) into the equation of motion (4.31) one finds a fairly complicated ODE for gl (z).

But, by changing variable a few times, it reduces to a simpler one. Namely, defining

~1 = =-7u = /1- 4AGB + 4 GB- v1= 1- u,
z4'

(C.1)

we get

(1 - v)(&v(vOvgl + 1)) + 2(vOvgl + 1) = 0 . (C.2)

Here, we note that -ln(v) is a (singular) solution, as one can also show from more

abstract reasoning. In fact, this led to our choice of change of variable. Now, we will

solve this equation. Defining

hi (u) = (u - 1)O g + 1, (C.3)

we have

uOuhl = 2hl, (C.4)

which leads to

hi = clu 2 (C.5)
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where cl is an integration constant. Thus we find that

c=u2 -c1
u,gI - -=u+1 choosing c= 1. (C.6)u-1

Note in order for gl(u) to be nonsingular at the horizon u = 1, we need to choose

cl = 1 as we have done above. Thus we have

1g = u + 2 +U C2  (C.7)2

We will choose the integration constant c2 so that gl - 0 as z -- c0. This then leads

to (4.38).
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Appendix D

Calculation of r/s without field

redefinition

This appendix is organized as follows: first we'll write down the equations for a

perturbation on the background Eq. (B.1), using the action Eq. (4.2) and then we'll

perform a calculation of 77/s using the three methods outlined in the text, without

doing the field redefinition Eq. (4.14).

D.1 The equations

From the action,

= d (R - 2A + L 2 (aiR2 + a2R,,R " + a 3 R`P,,p) , (D.1)

the equations of motion at linear level in ai, i = 1,2, 3 are

R - Rg~ + Ag + a, (- R2g, + 2RR, + 2V2Rg, - 2VVR +

+ O2 - R •RRA pg,. + 2RRA +V 2RW - VpVIRp - VPVR.p + VPVaRpU~9 p) +

+ a3  -4VPV`R~ p + 2 Rp P'Rvp - gPVRP P R = 0. (D.2)2"l- ~VJI
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This expression can be simplified using the following identities,

VPV"R, = V2R
2

1
VPVBR,Lp,, = VP(-VpR,, + V,RpV) = -V2RI + 1VVR + RAAR - RA,,pRpA

2

VPV,Rp + VPVvRp, = V,VR + 2RA,RX - 2RAp,,pRp.

Using the identities above, Eq. (D.2) can be written as

1 1
R V - ~ Rg,, + Ag,•, + V 2Rg,,(2al + -a 2 )+2 2
+ VIVnR(-2ai - a2 - 2a 3) + V2 R(a 2 + 4a3)+

+ RR\ ,(-4a3) + RAp,RAP(2a 2 + 4a 3) - 2•g, (ajR2

+ 2alRR,v + 2a 3RA, paoRvpa\ = 0

In the case of the Gauss-Bonnet term, with al =

simplifies to be

+ a2R"YRvRA+ ± 3RPOP-Rpa)+

(D.3)

= a 3, a 2 = - 2 AGB, Eq. (D.3)

R,, - R + Ag+ [-2AGBR~ R ,A - GB (R 2 - 4RP"'Rv+

+ RPR,,) + AGBRR - 2AGBRAvppRP + AGBR p upaR ] = 0 (D.4)

As described in chapter 4, if one considers perturbation dependent only on (t, r, x 3),

there are three decoupled modes propagating on the black brane background, corre-

sponding to shear, scalar and sound channel. In the following sections we use all three

of these channels to calculate rl/s.

D.1.1 Kubo formula and the scalar channel

The Kubo formula relates shear viscosity over entropy density ratio to correlation

functions of the stress energy tensor at finite temperature. Since the correlation

function is calculated at zero spatial momentum, using any channel will give the same

result, as explained above. In particular one could use the scalar channel. Expanding
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now the action Eq. (D.1), and collecting all terms quadratic in the perturbation, we

obtain an effective action 12. In order to be consistent with the previous notation

we can change variable to z and Fourier transform in t and '. The structure of the

effective action for 0,(z) = g'htr will be:

1 f dwd 3k 01
2 [ 16 rGN (27r)4 dz(AO"(z) -,(z) + Bo',(z)w '(z)+

+ CO'(z)_-,(z) + Do.(z)~-,(z) + E "(z){",(z) + F¢"(z)' .l(z)). (D.5)

In order to have a well defined variational principle, one has to add boundary terms in

the action. The details are explained in [18], of which we are following the notation.

Changing coordinates to z = r/Rh, and introducing dimensionless variables, w =

wL2 /(nRh), k = qL 2 /(Rh), the equations of motion are

AO" + C~', + 2Dq5 - (2B',w + Cw + F"•,)' + (aq, + 2Eq" + Fobw)" = 0, (D.6)

or explicitly

1 - 5z 4  kI2 + (-k 2 + w2)z4

0"(z) + z(1 ) q'(z) + (1 4)2 (z) + J = 0 (D.7)

where J is linear in the ai. J can be expressed as J = J40""(z) + J3 ."(z) + J 2 0"(z)+

Jl¢'(z) + +Jo0(z), where the Ji are,

1
J4  2(1 )( ( + 4a3)

J2 = 0
-1

1= z( 1  z42 2((5 + z4(-1 - 45z4 + 105z8 + 2w 2(z2 + z 6)))a 2+

+ 4(2 + z4(5 - 48z4 + 105Z8 + 2w 2(z2 + z6))) 3) - 4(z 2(-1 + Z4)2(a 2 + 4a 3))k2

1

Jo = 3(-1 + z (15a2 + 48a3 - 3w2z (a& + 4a3) + z4(40a, + 98a 2 + 376a3)-
- z8(40al + 161a2 + 616a 3))+

k2

3z4(-1 + _4)2((-3(5a2 + 2a3) + 6w2z(a2+ 4a3) - 2z4(10a 1 + 23a 2+ 112a~)+
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(z2 + 4a 3)k4

+ zs(20a 1 + 157a 2 + 614a3)) - (a2+ 43)k (D.8)
z2(-1 + Z4)

We impose the Ansatz ¢ = (z - l)icl+c2(aQla2'3)f(z), and we solve perturbatively

in the ai. The exponent is fixed expanding Eq. (D.7) close to the boundary z = 1 in

the following way. We set ai = 0, expand around z = 1 and determine cl = ±E, and

recursive relations between derivatives of f at z = 1. For example, when k = 0, one

obtains f'(1) = -(w-)f[1] and f"() = ) w(480i+8 30iw-w 3  Reintrducing
8(w+2i) 64(W2 +6iw-8) Reintroducing

now the ai and expanding again at z = 1, we can fix the exponent. It can be verified

with little effort that the exponent at linear order in the perturbation is independent

of k at linear order in ai. The final result, when ai 5 0, k = 0 is (in terms of w)

( 1 - 4R (1- (+2-a)) 3iwL 2 
a3

)(r) = 41 - ) -Z 1 - 4  O(2) (D.9)

This solution satisfies the equations Eq. (D.2) up to order w with incoming boundary

conditions at the horizon and normalized to 1 at the boundary z - oc. Note that the

exponent can be written compactly in terms of the Hawking temperature as -i .

Now that we have the solution we can use Eq. (D.9) to evaluate the action on shell.

The Minkowski AdS/CFT prescription tells us that if Ion-shell = 1G d4k/(21r)4 h

then GX,wy(w , 0) = limr0, 2.F. When varying the action,

62 - l= / dwd (l dz[EOM]6_, + (B160 + B2 )O

the boundary terms are

S= -(A' )' + 2B, + C -2(E )' + - 2(Eo)' - (F ')'

B2 = A¢• + F¢, + 2E€", (D.10)

The boundary term proportional to 61' can be canceled at linear order in e by a
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Gibbons-Hawking term of the form

S F E
K: = -w _ - ¢€_ + E(pljO'' + Po0w¢ -),2 (D.11)

where pl and po are defined as the coefficients of 0' and ¢ respectively in Eq. (D.7).

The bulk action, Eq. (D.5) can be re-written as

= 1 iG dwd3I12[01 =167GN (2r)4
1 /

dz a -B+0 (dz
1 [EOM]O-2

where ([18])

F F'
+Eq - E4/j"- + 22-OW 2 (D.12)

so that the on-shell action, after addition of the Gibbons-Hawking term, reduces to

.F (27)4( + B). (D.13)

Plugging in, one calculates

R3

lim 2.7: = CT + iw- ( 1z.-.-LO
- 8(5al + a2))

CT contains all contact and momentum independent terms that according to [18]

must be discarded. Using Kubo's formula, this gives a value of the shear viscosity

1 R3
S= 1 L (1 - 8(5a, + a 2)).= 16rGN L3

In the case of the Gauss-Bonnet term, with ac = CGB, a2 = - 4CGB, a 3 = CGB, the

terms proportional to E in Eq. (D.12) vanish, and the value of the shear viscosity is

7GB 1 (1 - 4AGB)167rGN L3 (D.14)
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This gives a ratio of viscosity over entropy density equal to

S-= 1 (1 - 8a3). (D.15)s 41r

For the Gauss-Bonnet term, we obtain the usual result:

= 1 ( 1 - 4AGB) (D.16)s 47r

D.1.2 Shear channel

In the shear channel Eq. (D.2) become a set of three coupled differential equations for

the variables Ao(t, r, x3) and Az(t, r, x3) (we set hir = 0 with a gauge transformation).

Following [62] and [9] we Fourier transform in the time and x3 direction, and we

consider the gauge invariant quantity Z(r) = qAo(r) + wA 3 = -iFtz. The equation

in the h3r direction must be used as a constraint to decouple this equation.

Changing coordinates to z = r/Rh, and introducing dimensionless variables, w =

wL 2/(noRh), k = qL 2/(Rh), the equation for the perturbation becomes,

w2 4(1 - 5z4) + 5k2(_1 + Z4)2 w 2z4 - k2(z 4 4 1)
Z"(z) (z4  1)(-w 2z4 + k2(1 + 4)) (-1 + 4)2

(D.17)

where J = JoZ(z) + J1 Z'(z) + J2 Z"(z) + J3Z"'(z) + J4Z""(z) is proportional to ai

and is given by

(-1 + z4)(a2 + 4a3)
J4 = Z2

2(-w 2z 4(1 + 7z4) + k2(3 - 10z 4 + 7z 8))(a 2 + 4a 3)
z3(-w 2z4 + k2(-1 + z4))

J2 = 0
2 [6k4 + 4

3z 5(-1 + z4)2(w2z4 - k2(_ + 4))2 [6k6 (-1 + z)( 2 + 4a)-

- 3w 4z8 [(5 - z4 + 2w 2z 6 - 45z + 2w 2 z10 +

+ 105z12)a2 + 4(2 + 5z4 + 2w2z6 - 48z 8 + 2w2z0  + 105z 2) ) 3]-
- 3k4(-1 + 4)2 [(15 + 75z4 - 2w2z6 - 195z + 6w2z10 + 105z 12)a2+
+ 4(17 + 71z 4 - 2w 2z 6 - 193z8 + 6w 2z 1o + 105zl2)3+]+
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+ 2k 2w2z4 (-1 + z4)[198a 2 + 4z8 (5a 1 - 89a 2 - 361a3) + 816a3+

+ 3w2z 6(a2 + 4a3) + 9w2 z10 (2 + 4a3)+
+ 315z 2 (a2 + 4a3) - z4(20a, + 253a 2 + 1016a 3)]]1
Jo = x

= 3z 4(-1 + z4)3(w 2z 4 + k2(-1 + z4))
x [3k 6 2(-1 + 4)3 (a2 + 4a 3) + 3k 2w2z4(-1 + z4 )[-74a 2 - 298a3+

+ 3w2z 6( 2 + 4a3) - 4z4 (5a1 + 20a2 + 76a 3) + 2z8(10al + 53a 2 + 205a 3)]-
- k4(-1 + z4)2[9w 2z6 (a2 + 4a3)-

- 3(5a2 + 26a3) - 2z 4(10a, + 71a2 + 268a3) + z8(20a, + 157a2 + 614a 3)1+

+ w4z8[15a 2 + 48a 3 - 3w2 6 (2 + 4a3) + z4 (40a, + 98a2 + 376a 3)-
- z8(40al + 161a 2 + 616a3)]] (D.18)

Solution to this equation at first order in ai and for small k, fixed w/k is

/ [ k 1 2 (Z(z)= T14- -  1+ i4w (1 - 2a3 ( 3(1 - k2 )) + O(k

The exponent can be easily expressed in terms of the temperature, - + 1(5a, +

a 2 - a3) = -, and it's the same in all three channels.

The quasi-normal frequency is now obtained imposing Dirichlet boundary condi-

tion at infinity z - co. Neglecting the term of order w2, one obtains the condition

•k2

1 + i -(1 - 6a 3) = 0.4w

Reintroducing the original variables this is

w = -iq 2D = iq2 (1 - 6a 3).4Rh
In terms of temperature

1
D = (1 - 8a3)47rTH

so now eta over s is
rll 1' = - (1 - 8a 3)
S shear 47
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D.1.3 Sound channel

The procedure to deal with the sound channel is analogous to the shear channel,

apart from the fact that the algebra in this situation is much more complicated. In

this case we can look for solution with w and q of the same order. We can therefore

follow the procedure of extracting the quasi-normal frequency in [9]. Using the same

notation as in the shear channel (w = wL 2/(noRh), k = qL 2 /Rh), the equation is

(3w2z4(1 - 5z4) + k2(9 _ 16z 4 + 15z 8)
'(z)+ Z'(z) \ (-i + z4)(-3w2 4 + k2(-1+ 3z)) +

+ ( -) 3w 4zo10 + 2k2 w2 6(-2 + 3z4) - k2 (-1 + Z4)(-16 + k2z2(-1+ 3z ))+
2(z) (-1 + 4)2(-3w2Z4 + k2(-1 + 3z4))

+Jsound = 0 (D.19)

The expression for Jsound will be contained in the next subsection. Solution to the

equations of motion for small k and finite w/k is

2 

1 41

Z(z)=(1-1/z4 )ex [2k2 !3w2 [-3w2+k2 (1+ -F - 1 - +-))]+
(6(2k2 - 3W2)2•4) (1-4 [81 a3

+ 3k2w2 (3(-12 - 7iw)as + z (40a, + 8a2 + (-20 - 63iw)a 3)) +
+ 2k4 (12(3 + z4)a3 + iw(21as + z4(40a, + 8a + 37+a3))))], (D.20)

The exponent ex is the same as for the shear channel, ex = -. One obtains a

quasi-normal frequency equal to:

w = cq - iFsoundq2 =

q 10 2  1iL 2
q ( a + 2 + )] 2 iL - 6a 3] (D.21)

3 3 3 6R

In the case of a conformal invariant theory, the coefficient of iq2 in the dispersion

relation is Poond = D,,. This result is therefore compatible with a dual gauge theory

which is scale invariant and described by hydrodynamics,

3 n L2
D -Fsound = n (1 - 6a 3) (D.22)

2 4Rh
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After taking into account the value of no, it's easy to show that the speed of sound

in the gauge theory is

S = (D.23)

and the diffusion coefficient agrees with what calculated in the shear channel,

S - 1 (1 - 8a3). (D.24)
S sounLd S shear 4= r

D.1.4 Jsound

Writing Jsond = JoZa(z) + JIZ,(z) + J2Z.'(z) + J3Z."(z) + J4Z""(z), we obtain,

1
J4 = x

(3z2 (k2 + 3 (-k2 + 2) Z4) 2
x ((-1 + z4 ) (27w 4 8 (a2 + 4a3) - 18k2w 2z 4 (-1 + 3z 4) (a2 + 4a3)+

+ k4 (32al + (19 - 18z 4 + 27z8 ) a2 + 4 (11 - 18z 4 + 27z8 ) a 3)))
2

3 (3W2 5 + k2 (z - 3z5)) 3

x (-81w6z12 (1 + 74) (a2 + 4a3) + 27k2w4Z8 (5 - 20z4 + 63Z8) (a2 + 4a3)+
+ k6 (32 (7 + 12z4 - 3Z8) a + (133 + 30z4 + 420z8 - 702z12 + 567z16) a2+
+ 4 (77 - 66z 4 + 444z8 - 702z12 + 567z16) a3) -
- 3k4w2• 4 (-32 (-9 + z4) C1 + (105 + z4 (185 + 63z4 (-7 + 9Z4))) a2+
+ 4 (33 + z4 (193 + 63z 4 (-7 + 9z 4))) a 3 ))

J2 = O
2

3(-1 z+4 )2 (3W 2Z5 + k2 (z - 3z 5 ))5

x (-729w'0 z 20 ((5 + z 4 (-1 - 45z 4 + 105z 8 + 2w 2 (z 2 + Z6)))a2+

+ 4(2 + z4 (5 - 48z 4 + 105z8 + 2w 2 (z 2 + z6 )))a 3)-

- 54k4 w6 z12(8(42 + z4 (-49 + 4w 2 z2(-3 + 5z 4 ) + 15z 4(31 - 25z 4 + 3z 8)))al+

+ (843 + z4 (-3361 + 3z 4 (1550 + 2966z 4 - 6951z8 + 4725z12)+

+ w2 z 2 (-63 + 5z 4 (31 - 45z4 + 81z8))))a2+

+ 4(861 + z 4 (-3791 + 3z 4 (1472 + 3144z4 - 6999z8 +

+ 4725z 12) + w2 z2 (-39 + 5z 4 (23 - 45z 4 + 81z 8))))a3) + 18k 6 w4 z8 (8(-966+

+ z4(4295 + 16w 2z2 (5 - 17z 4 + 15zs) + z4 (-5396 + 45z 4 (122 - 62z 4 + 3z 8 ))))al+

+ (-4311 + z4 (21182 + 4w 2 2(95 + z4 (-392 + 15z 4 (40 - 36z 4 + 27z8))) + z4(-29333+
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+ 3z 4 (3340 + 3z 4 (6167 - 9426z 4 + 4725Z8 )))))a2 + 4(-2523 + z4 (13888 + 4w 2 z2 (55+

+ z4 (-256 + 15z 4 (32 - 36z 4 + 27z8 ))) + z4 (-22537 + 3z 4 (1348 + 3z 4 (6511 - 9420z 4 +

+ 4725z 8)))))a 3 ) - 3k 8w 2 z4 (16(1550+

+ z4 (-10175 + 8w 2 z2 (-17 + z4 (119 + 45z 4(-5 + 3z 4 )))+

+ 3z 4(9161 + z4 (-10214 + 15z 4 (464 + 3z4 (-57 + z4))))))a1 + (11755 + z4 (-78451+

+ 3z 4 (70625 + 9z4 (-7417 - 261z 4 + 10509z 8 - 11909z1 2 + 4725z16)) + 2w 2 z2 (-619+

+ z4(4633 + 45z 4(-238 + 3z4(86 - 57z 4 + 27z 8))))))a 2+
+ 4(5720 + z4 (-39869 + 3z 4 (37406+

+ 3z 4 (-11255 - 7132z 4 + 33453z8 - 35526z 12 + 14175z' 6)) + 2w 2 z2 (-347 + z4 (2729+

+ 45z 4 (-158 + 3z 4 (70 - 57z 4 + 27z 8)))))))) 3 ) - 2k1 2 (z - 4z5 + 3z 9 )2(32(-1 + 15z 4 )al -

- 19a2 - 44a3 + 3z4((89 + 27z 4 (-1 + z4))a2+

+ 4(49 + 27z 4 (-1 + Z4 ))4a3)) + kio(32(199+

± z 4 (1042 + 8w 2 z2 (-1 + 3z4 )(-5 + 46z 4 - 84z8 + 45Z12 ) - 3z4 (2841 + z4 (-7028+

+ 5z 4 (1489 - 846z 4 + 243z 8 )))))al+

+ 3781a2 + 86 2 4 a3 + z4 ((10888 + 4w 2 z2 (-1 + 3z4 )(-181+

+ z4 (1703 + 3z4 (-1220 + 3z 4 (376 - 207z 4 + 81z 8 ))))+

+ 3z 4 (-37464 + z4 (91280 + z4 (-73322+

+ 45z 4 (-328 + 3z 4(640 - 576z 4 + 189z 8))))))a2+

+ 4(3113 + 4w 2 z2 (-1 + 3z 4)(-101 + z4 (967+

+ 3z 4 (-772 + 888z 4 - 621z 8 + 243z 12 ))) + 3z 4 (-15995 + z4 (39379 + z4 (-21835+

+ 27z 4 (-1501 + 3413z 4 - 2853z8 + 945z 12 )))))a3)) + 81k 2 w8 z16 (-3(141Q 2 + 616a3)+

+ z4 (80(-1 + z4)2a1 + 1204a 2 + 4748a 3 + z2 (12w 2(-1 + 2z 4 + 9z 8 )(a2 + 4a3)+

+ z2 ((898 - 4484z 4 + 4725z8 )a2 + 4(1049 - 4579z 4 + 4725z 8 )a3)))))
1

Jo = x
3z 6 (-1 + z4 )3 (k2 + 3(-k 2 ± w2 )z4 )5

x (-k14z4 (-1 + z 4 )2 (-1 + 3z4 )3 (32ai+

+ (19 - 18z 4 + 27z 8 )a2 + 4(11 - 18z4 + 27z 8)a3)-

- 9k 6w4 z8 (8(11328 + z 4(12w 4 z 8(-3 + 5z 4 )-

- 8(4903 + z4 (-5392 + 15z 4 (142 - 24z4 + 9z 8 )))

+ w 2 z 2 (824 + z4 (-1891 + z4 (4940 + 3z 4 (-338 + 75z 4 (-20 + 9z4)))))))al+

+ (54048 + z 4 (3w 4z 8 (-163 + 815z4 - 1485z8 + 945z12 ) + 32(-7567 + z4 (13366+

+ 9z 4 (-1226 + 265z 4 + 129z 8 )))+

+ 4w 2 z2 (1406 + z4 (-5287 + z4 (5276+
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+ 3z 4 (7018 - 14190z 4 + 7155z8 ))))))a2 + 4(33048

+ z 4 (3w 4 z 8(-139 + 775z 4 - 1485z8 + 945z 12 ) + 8(-22415 + 49286z 4 - 49758z 8 +

+ 15543z1 2 + 3213z16 )+

+ w2 z2 (4261 - 19511z4 + 16414z8 + 82374z1 2 - 161955z 16 + 83025z 2 0)))a3)+

+ 243w1 2 z 2 6 (3w 2 z 6(a2 + 4a 3) - 3(5a2 + 16a3) - 2z 4 (20a1 + 49a2 + 188a3)+

+ z8 (40a, + 161a2 + 616a3)) + k12 2 (1 - 4z4 + 3z8)(4(472 + z4(3067+

+ 8w 2 z 2 (11 - 48z 4 + 45z8 ) + z 4 (-8815 + 9z 4(1414 - 654z4 - 105z8 + 45z12 ))))a1+

+ 1121a2 + 2554a 3 + z4 ((4934 + w 2 z2(-l + 3z 4 )(-227+

+ 609z 4 - 837z8 + 567z 12) + z4(-14405 + 27z 4 (652 + 277z4 - 958z 8+

+ 47z12)))a2 + 2(4004 + 2w 2 z2(-1 + 3z 4 )(-139 + 489z 4 - 837z8 + 567z12 )+

+ z4 (-12527 + 27z4 (480 + 861z 4 - 1804z8 + 921z12)))a 3 )) + 3k 8w 2z 4 (16(-8256+

+ z4 (12w 4 z8 (5 - 18z 4 + 15z 8 ) + 4(13925+

+ z 4(-33527 + 3z 4 (10882 - 15z 4 (250 - 9z4 + 3z 8 ))))+

+ 3w 2z2 (-584 + z4 (2526 + z 4 (-4975 + z4 (5834 + 9z4 (-172 - 200z 4 + 75z 8)))))))al-

- 96(682a2 + 1391a 3) + z4 ((9w 4 z8 (105 + z4 (-652 + 5z 4 (326 - 396z 4 + 189z 8)))+

+ 64(7321 + z4 (-19486 + 3z4 (7642 - 3885z 4 + 243z8 + 396z12)))+

+ 3w 2z 2 (-4847 + z4 (23182+

+ z4(-44805 + z4 (13060 + 9z 4 (12031 - 17410z 4 + 7125z8))))))a2+

+ 4(3w 4z8 (235 + 3z 4(-556 + 5z4 (310 - 396z4 + 189z 8 )))+

+ 8(32236 + z4 (-96433 + 3z 4(45560 + 9z 4 (-3477 + 708z 4 + 239z 8)))) +

+ 3w 2z2 (-2611 + z4 (14148 + z4 (-29175+

+ z4 (-2656 + 9z 4 (12119 - 16580z 4 + 6915z 8))))))a3))+

+ kio(-4(-6016+

+ z 4 (16w 4 z 8 (-1 + 3z 4)(23 - 66z 4 + 45z8 ) - 128(457 - 3102z 4 + 6798z s -

- 6225z1 2 + 2025z1 6) + w 2z2 (3600 + z4 (-42763 + z4 (133286 + 3z4 (-73003+

+ 3z 4 (21268 - 5253z 4 - 2970z8 + 945z 12)))))))a1 + 16(893a2 + 2020a3)-

- z 4((w 4 z 8(-1 + 3z 4)(1099 + 3z 4 (-1736 + 3z 4 (1198 + 81z4 (-16 + 7Z4))))+

+ 2w 2z 2 (3096 + z4 (-39661 + z4 (124022 + 3z 4 (-57817 + 3684z 4 +

+ 98559z8 - 111294z 12 + 38313z'1 )))) + 16(-6253 + 3z 4 (15821+

+ z4 (-36643 + z4(35939 + 45z 4 (-289 - 21z 4 + 27z ))))))a2+

+ 2(2w4 z 8 (-1 + 3z 4 )(731 + 3z 4 (-1384 + 3z4 (1118 + 81z 4 (-16 + 7z4))))+

+ 32(-2798 + 3z 4 (8001 + z4 (-20098 + z4(22423 + 9z 4 (-1214 + 99z 4 + 90z 8)))))+
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+ w2z2 (5493 + z4 (-77381 + z4(253045+

" 3z 4 (-107087 + 3z 4 (-27169 + 3z 4 (45035 - 47187z 4 + 16587z 8)))))))a 3))÷

+ 27k 4w 6z 12 (w 2 z6 (1376al - 1031a2 - 6010a3)+

+ 567w4 z 20 (a 2 + 4a 3 ) - 5088(2a 2 + 9a 3 ) + 960z 4 (a 1 + 55a 2 + 251 3 )-

- 90w 2 z18(9Oal + 365a2 + 1388a3) + 45w 2z 22 (100la + 479a2 + 1846a 3 )-

- 192z 8 (25a 1 + 413a 2 + 1932a 3 ) + 4w 2 z14 (331ai+

+ 2417a 2 + 9007a 3) + 2w 2 z1 0 (706a 1 + 2417a2 + 100120 3 ) - 18z 16(160al+

+ (-448 + 33w 4)a2 + 4(-316 + 33w 4)a3) + Z12(32(210 + w4)OI÷

+ w4 (163a2 + 620a 3) + 192(149a 2 + 797a 3))) - 81k 2 w8z 16 (240(13a 2 + 58a 3)±

+ z4 (20(-1 + z4)(16 + z4 (-16 + w2 z2 (-13 + 33z 4 )))a 1 - 16(445a2 + 2006a 3)+

+ z 2 (3w 4 z6 (-11 + 21z 4)(a2 + 4a3) + 16z 2 ((209 + 41z 4)a2 + 2(509 + 59z 4 )a3)+

+ 2w 2 ((204 + 131z 4 - 1538z8 + 1443z12 )a2+

+ (849 + 427z 4 - 5857z 8 + 5541z 12)a3))))) (D.25)
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