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Abstract. Low spectral resolution and extensive peak overlap are the common challenges that preclude quanti-
tative analysis of nuclear magnetic resonance (NMR) data with the established peak integration method. While
numerous model-based approaches overcome these obstacles and enable quantification, they intrinsically rely
on rigid assumptions about functional forms for peaks, which are often insufficient to account for all unfore-
seen imperfections in experimental data. Indeed, even in spectra with well-separated peaks whose integration is
possible, model-based methods often achieve suboptimal results, which in turn raises the question of their va-
lidity for more challenging datasets. We address this problem with a simple model adjustment procedure, which
draws its inspiration directly from the peak integration approach that is almost invariant to lineshape deviations.
Specifically, we assume that the number of mixture components along with their ideal spectral responses are
known; we then aim to recover all useful signals left in the residual after model fitting and use it to adjust the
intensity estimates of modelled peaks. We propose an alternative objective function, which we found particularly
effective for correcting imperfect phasing of the data – a critical step in the processing pipeline. Application of
our method to the analysis of experimental data shows the accuracy improvement of 20 %–40 % compared to the
simple least-squares model fitting.

1 Introduction

Proposed 30 years ago (Miller and Greene, 1989; Bretthorst,
1990; Chylla and Markley, 1995), model-based approaches
for quantitative nuclear magnetic resonance (NMR) data
analysis (qNMR) are getting wider acceptance as an effective
alternative to the established peak integration (Kriesten et al.,
2008; Krishnamurthy et al., 2017; Kern et al., 2018). Based
on the idea that an experimental spectrum can be represented
as a collection of parametric lineshapes, e.g. Lorentzians
with certain positions, widths, and heights, they offer a prin-
cipled mechanism to resolve overlapping peaks and are less
susceptible to noise (Matviychuk et al., 2017). By adjust-
ing its parameters, the model is fitted to match experimen-

tal data, which eventually determines the sought concentra-
tions of chemical species in the analysed sample. The reduc-
tion of a spectrum to a frequency–intensity table of peaks
(Krishnamurthy, 2013) allows for easier automation of post-
processing tasks and simplifies the analysis of large arrayed
datasets (Kriesten et al., 2008; Alsmeyer et al., 2004). Fi-
nally, quantum mechanical formulations minimize the num-
ber of free model parameters and are inherently invariant
with respect to the spectrometer field strength (Kuprov et al.,
2007; Tiainen et al., 2014; Dashti et al., 2017); they enable
the analysis of highly complex low-resolution spectra ac-
quired on medium-field benchtop instruments and are found
to be successful in modern practical applications (Matviy-
chuk et al., 2019).
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There have been proposed numerous model-based ap-
proaches to the problem of qNMR formulated either in the
time (Vanhamme et al., 2001; Krishnamurthy, 2013; Rubtsov
and Griffin, 2007) or the frequency domain (Mierisová and
Ala-Korpela, 2001; Poullet et al., 2008). Notably, the latter
typically depend upon phase and baseline correction of the
spectra before fitting signal models to them (Cobas et al.,
2008; Kriesten et al., 2008). In contrast, time-domain meth-
ods that work with the free induction decay (FID) signal are
often regarded as being able to lift this requirement (Krishna-
murthy, 2013). However, we note that when the model fitting
is performed in the least-squares sense – as done most com-
monly – both variants of the problem formulations are equiv-
alent and result in the same solution. Thus, even though ex-
plicit data preprocessing steps can often be obviated by time-
domain methods, they inevitably include the phasing param-
eters in a certain form, either as angles of complex-valued
intensity estimates for separate resonances (Krishnamurthy,
2013; Rubtsov and Griffin, 2007; Kung et al., 1983) or as in-
dependently optimized parameters of a linear phasing model
(Matviychuk et al., 2017). On the other hand, the phasing
parameters can also be estimated from the complex-valued
frequency domain data (Sokolenko et al., 2019). Similarly,
the baseline effects that are often observed over wide spec-
tral ranges appear in the leading time points of the original
FID signal. Hence, these distortions also need to be taken
into account in the time-domain analysis, either by masking
or weighting the early time samples.

Despite numerous advantages, model-based qNMR is of-
ten found to be suboptimal in seemingly easy cases: when
peaks in the spectrum are well resolved, and the signal-
to-noise ratio (SNR) is sufficiently high, the peak integra-
tion after careful phase and baseline correction typically
achieves higher quantification accuracy, as we observe later
in Sect. 4.1. This can be explained by the high sensitiv-
ity of most model-based qNMR algorithms to any unfore-
seen distortions in the experimental data, such as imperfec-
tions of peak shapes and their deviations from the assumed
ideal Lorentzians. Indeed, model misspecification leads to
inability to faithfully represent the data, which biases the
estimates of concentrations along with the associated un-
certainties (White, 1981, 1982; Grünwald and van Ommen,
2017); this produces misleading results, becoming one of the
major points of criticism of model-based qNMR. To over-
come this obstacle, several generalizations of the peak line-
shape function have been proposed over time, most notably
the Voigt lineshape (Humlíček, 1982; Marshall et al., 1997;
Bruce et al., 2000) and other combinations of Lorentzian and
Gaussian terms (Kriesten et al., 2008; Schoenberger et al.,
2016). Nevertheless, peak shape deviations in experimental
spectra can often be very hard to model explicitly within
the parametric framework, as they typically reflect multi-
ple independent physical processes, such as diffusion, mag-
netic field inhomogeneity, higher-order coupling effects, etc.
Reference deconvolution methods (Morris et al., 1997; Metz

et al., 2000; Osorio-Garcia et al., 2011) offer an effective
mechanism to eliminate complex distortion patterns common
for all peaks in the spectrum, e.g. arising due to the lack of
shimming. However, they can not easily address possible dif-
ferences in shapes of separate peaks, for example as a result
of small long-range couplings, whose effects become even
more noticeable at lower magnetic field strengths.

Alternatively, CRAFT (Krishnamurthy, 2013), the popu-
lar time-domain method based on the iterative Bayesian ma-
chinery of Bretthorst (1990), successfully approximates even
non-ideal peak shapes in the spectrum by constructing the
model FID as a complex sum of as many exponentially de-
caying sinusoids as needed. A similar approach is taken by
indirect hard modelling, but directly in the frequency do-
main (Kriesten et al., 2008). These methods produce a con-
venient representation of a spectrum as a frequency–intensity
table. However, if peaks of separate species overlap, there is
no clear physical basis for separating the contributions from
each species to a given peak. This raises a challenging prob-
lem of assigning the fitted peaks to compute the concentra-
tions of the chemical species, which often is the main goal
of the analysis. Instead, in our method we assume that the
chemical species present in the mixture are known. This is
often the case in many industrial applications concerned with
routine analysis of similar samples, e.g. for quality control or
reaction monitoring (Dalitz et al., 2012; Mitchell et al., 2014;
Kern et al., 2018). The ideal signature spectra of the analysed
species are available, and we aim to adjust them to faithfully
reflect the analysed data.

Since model-based qNMR is the only viable option for the
analysis of complicated spectra with multiple overlapping
peaks, it is of utmost importance to develop accurate algo-
rithms that are robust to possible model misspecifications.
The main goal of this work is to bridge the performance
gap between the peak integration and model-based qNMR
by combining the strength of both approaches. Specifically,
after fitting a model to the data, we observe that the resid-
ual – instead of being purely noise – often contains non-
stochastic elements pertinent to the useful NMR signals. We
propose to explicitly incorporate this unaccounted remain-
der into the model-based analysis, as would have been done
with peak integration. On the other hand, neither of the ex-
isting phase and baseline correction methods takes into ac-
count prior information about the studied system, which is
conveniently employed in our approach in the form of an ad-
justable model. As a result, our alternative optimization pro-
cedure achieves better baseline and phase correction than the
usual least-squares model fitting and improves model-based
quantification of both well-resolved and overlapped data.

In the next section, we briefly review the main idea of
model-based qNMR and introduce the notation for the prob-
lem of estimating the concentrations of components in a mix-
ture. We then proceed by studying the weaknesses of the tra-
ditional least-squares model fitting and propose our alterna-
tive optimization criterion. Section 3 describes the setup for
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our simulations and laboratory experiments; their results are
presented in Sect. 4.

2 Theory

This section provides a theoretical background for our
method. First we review the general principle of qNMR:
given a mixture of known chemical species, we are set to es-
timate their unknown relative concentrations (mole fractions)
using the NMR data. In model-based qNMR, an ideal model
that represents the studied mixture is fitted to the experimen-
tal data, and its found optimal parameters – specifically the
intensities of model components – determine the estimates of
concentrations of chemical species. Here we discuss the con-
sequences of model misspecification and propose our model
adjustment method to improve the accuracy of quantification.

2.1 Overview and the main idea of model-based qNMR

We choose to formulate our method in the frequency do-
main using real-valued spectra. Even though discarding the
imaginary counterpart of complex-valued data entails reduc-
tion of SNR by a factor of 2, this will allow us to develop
an adjustment algorithm for our model-fitting method in-
spired by the peak integration, which traditionally operates
with real-valued spectra. Thus, an experimental spectrum
is obtained using the discrete Fourier transform of the ac-
quired FID followed by the usual first-order phase correc-
tion with parameters ϕ0 and ϕ1. It is formally represented as
an n× 1 column vector y = Re

[
F
(
yT
)
e−i(ϕ0+ϕ1f )], where

f =
[
−

1
21t ≤ f ≤

1
21t

]
is the vector of frequency values

corresponding to the particular sampling (dwell) time of the
FID, 1t .

Next we define a model matrix Z whose columns contain
signature spectra for all K analysed chemical species eval-
uated on the same frequency grid f . Here we assume that
the analysed components are known and K is fixed; model
fitting with an adjustable number of components was previ-
ously explored in Rubtsov and Griffin (2007). If the experi-
mental data contain any unexplained components (observed
as unfitted peaks in the residual spectrum), the model matrix
needs to be extended to include these peaks before applying
the proposed adjustment method. A typical signature model
is a combination of P elemental peaks with different chemi-
cal shifts, widths, and intensities bp:

zk (f )=
P∑
p=1

bpup
(
f |fp,αp

)
. (1)

Here up
(
f |fp,αp

)
defines an ideal Lorentzian peak with

central frequency fp and full width at half maximum αp
π

(both expressed in Hz) evaluated at the frequency f ,

up
(
f |fp,αp

)
=

αp
1t[

2π
(
f − fp

)]2
+α2

p

. (2)

We note that fp = B0δp−f0, where B0 and f0 are the oper-
ating frequency of the spectrometer in MHz and the spectral
offset respectively, which are used to convert the frequency
units of the chemical shift δp from ppm to Hz; αp is the
decay rate of the corresponding FID signal in the time do-
main. Chemical shifts and widths, at least for certain peaks,
can vary independently and usually reflect the specifics of
experimental conditions. For example, the chemical shift of
the proton in a hydroxyl group is famously related to the pH
value of the sample. On the other hand, relative intensities bp
of peaks pertaining to the same chemical necessarily remain
constant, as they are defined by the atomic composition of
the molecule. In the present work, we use the quantum me-
chanical approach for modelling the signatures of chemical
species (Matviychuk et al., 2019). It allows us to minimize
the number of free parameters and produce relevant model
spectra at any field strength of the spectrometer. Finally, to
account for a possibly imperfect baseline in the experimental
data, we augment the model matrix Z with several basis vec-
tors of the form f l−1 for l = 1, . . .,L, which serves to model
any polynomial baseline of degree up to L (we use L= 1 in
all our experiments in Sect. 4 to correct for the constant offset
in the spectra).

With this notation, the complete model spectrum is ex-
pressed as x = Zc, where c is a vector of component inten-
sities. The main idea of the model-based quantification is to
find a model x that is as close to the measured data as pos-
sible; the corresponding vector of intensities c is used to es-
timate the concentrations. To formalize this idea, we define
the residual spectrum r = y− x and note that r implicitly
depends on the set of model parameters – chemical shifts,
peak widths, as well as the phasing values – which we de-
note collectively as θ . The model fitting is typically done in
the least-squares sense by minimizing the Euclidean norm of
the residual:

min
θ,c
‖r‖2. (3)

It is well known that, given the model matrix associated with
the optimal set of model parameters Ẑ, the vector of intensi-
ties can be estimated in closed form:

ĉ =
[
ẐTẐ

]−1ẐTy, (4)

where Ẑ is obtained as a result of unconstrained minimiza-
tion of the non-linear variable projection functional L=∥∥(I−ZTZ

)
y
∥∥2.

It can be shown that the criterion of Eq. (3) stems from
the assumption that the measured signal is generated as an
instance of the model affected by isotropic Gaussian noise,
y = Zc+n. This plausible assumption is supported by the
principle of maximum entropy and the central limit theorem,
which made the least-squares minimization – along with the
existence of a simple solution – the most popular setting for
the model fitting problem. However, as with any mathemat-
ical model of the physical world, this approach has certain
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limitations. We discuss them in more detail in the following
subsection.

2.2 Model misspecification

The optimality conditions of the least-squares fit only hold
if the assumed signal model is capable of describing the ex-
perimental data given some set of parameters. Unfortunately,
the most common assumption that underlies model-based
qNMR – that an FID decays mono-exponentially producing
spectral peaks with simple shapes – often does not hold in
practice. Such effects as diffusion and the magnetic field in-
homogeneity cause the resulting peak shapes to deviate from
the ideal Lorentzians, to which a model of Eq. (1) can no
longer be perfectly fit. In turn, this leads to incorrect esti-
mates of the intensities of the components c and erroneous
(biased) quantification results (White, 1981; Deegan, 1976).
This stimulated the development of more complex signal
models that account for second- and higher-order effects in
the FID, such as Voigt (Marshall et al., 1997), generalized
Lorentzian–Gaussian (Kriesten et al., 2008; Alsmeyer et al.,
2004; Schoenberger et al., 2016), or flexible custom line-
shapes in numerous spectral deconvolution methods (Cobas
and Sýkora, 2009). These approaches were found to be very
successful in cases when different peaks in the spectrum,
even if they overlap, can be attributed to separate resonances
with similar distortions, as often seen in high-resolution data
acquired with a high-field instrument. Unfortunately, at the
medium-field strengths of benchtop instruments, these ap-
proaches become less effective. Higher-order coupling be-
tween neighbouring and distant protons often causes differ-
ent 1H peaks to show different asymmetric distortions due
to separation of transition resonances (Kuprov et al., 2007).
Quantum mechanical models were found to be useful for de-
scribing such data, but also can not guarantee the perfect fit
of complex spectra (Tiainen et al., 2014; Matviychuk et al.,
2019).

In this work, instead of trying to refine the peak shape
model, which can complicate the analysis and often bears the
risk of overfitting, we propose to alter the optimization cri-
terion in order to completely remove any unaccounted sig-
nal from the residual. As an illustrative example, in Fig. 1,
we consider a spectrum of thiamine in D2O acquired on a
high-field spectrometer. The high spectral resolution and low
level of noise in this dataset make it possible to achieve very
accurate quantification results with conventional peak inte-
gration. Surprisingly, this appears to be a difficult case for
a simple model-based method. Figure 2a demonstrates the
least-squares fit of Lorentzian peaks to the measured data ob-
tained by minimizing Eq. (3) with respect to the positions and
widths of all peaks and the phasing parameters. Close exam-
ination of the fit reveals significant deviations between the
experimental and fitted peak shapes. To compensate for the
model misspecification, the least-squares fitting distorts the
phasing of the spectrum and introduces a notable offset in

Figure 1. Examples of spectra of thiamine acquired with high-
field (a) and medium-field (b) spectrometers.

the baseline. Even though these imperfections are relatively
small, less than 1 % of the average peak height, they are com-
parable to the level of random noise and can affect quantifi-
cation. Furthermore, the mismatch between the model and
the data can be easily observed in the residual spectrum: in-
stead of being purely random Gaussian, as postulated in the
model assumptions, it is dominated by large spikes where
the model peaks do not fit the data perfectly. The resulting
magnitude range of the residual is approximately 100 times
higher than the actual noise floor and is at least 20 % of the
average peak height. Thus, even though the found model sat-
isfies the requirements of the optimization criterion, it can not
completely explain and account for the measured spectrum.
Finally, we note that in this, and many other examples, more
flexible peak models (e.g. Lorentzian–Gaussian) still do not
eliminate the misspecification error completely.

This observation motivates our proposed approach and
distinguishes it from other model-based quantification al-
gorithms: instead of relying on the top–down fitting of a
supposedly ideal model, we employ a bottom–up view and
aim to find a model spectrum, which after subtraction from
the experimental data would lead exclusively to noise in the
residual. We achieve this heuristic goal by explicitly apply-
ing a denoising algorithm to the residual spectrum and then
redistribute the remainder among the model signatures. We
present our solution in the following subsection.

2.3 Outline of the proposed adjustment algorithm

The above example demonstrates that the conventional least-
squares minimization criterion, while being convenient to
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Figure 2. (a) An example of a least-squares model fit to a spectrum
of thiamine acquired on a 400 MHz spectrometer. (b) A close-up
view of the spectrum. Note that in order to fit Lorentzian peaks to
the experimental data, the minimization of Eq. (3) distorts the phas-
ing and forces a constant residual offset in the baseline. (c) The
residual spectrum after fit; instead of containing only random noise,
the residual is dominated by large spikes caused by imperfect fit of
the lineshapes.

use, may become inadequate when the assumed model can
not accurately represent the data. The additional useful sig-
nal present in the residual, which was missed by the fitted
model, needs to be taken into account when estimating com-
ponent intensities c, especially if absolute quantification is of
primary interest.

To develop our solution, we start with the least-squares
model fit as described above and represent the residual spec-
trum r as a sum of three distinct components: a signal re-
maining solely due to the imperfect model fit that could po-
tentially be accounted for with more flexible signal models,
a slow changing residual baseline that arises to compensate
for the imperfect fit of the peaks, and the random noise:

r = y− Ẑ̂c = rm+ rb+ rn. (5)

Our strategy is to isolate the first term in the above decom-
position, rm, and incorporate it directly into the fitted model,
adjusting the corresponding component intensities ĉ.

We draw the inspiration for our method from the conven-
tional peak integration procedure and note that if the spec-
trum y is perfectly phased, its total area under the curve can
be found as the sum of all fitted models and the misfit term
of the residual, I =

∑
i, k

(
Ẑi, k̂ck + [rm]i

)
, where the index i

runs over all points in the spectrum. In practical applications,
where integrals of individual mixture components are of pri-
mary interest, the summation is carried out over each column
of the signature model matrix Z separately, and thus the re-
mainder rm needs to be distributed among them, which in
turn alters the vector of intensities accordingly. Specifically,

we define the resulting component intensities after adjust-
ment as

c̃k =
1∑
iẐi, k

n∑
i=1

(
Ẑi, k̂ck +Wi, k[rm]i

)
, (6)

for each k = 1, . . .,K , where W is an n×K matrix of row-
normalized non-negative weights,

∑
kWi, k = 1, that deter-

mine the allocation rule of the residual among the K com-
ponents at each point in the spectrum i = 1, . . .,n. Note that
if the model is fitted perfectly, and rm = 0, the normaliza-
tion 1∑

i Ẑi, k
in the adjustment rule of Eq. (6) preserves the

original intensities, c̃ = ĉ. In our experiments in Sect. 4, we
found it particularly effective to assume that the misfit error
of each component is proportional to its value at frequency i;
then the allocation matrix is defined as

Wi, k =
Ẑi, k̂ck∑
kẐi, k̂ck

. (7)

With the assumption that Eq. (6) is capable of recovering
the true model intensities, the model adjustment problem re-
duces to the isolation of the misfit term rm in Eq. (5). For
this, we start by explicitly removing the random noise from
the residual spectrum, which can be accomplished with any
suitable 1D denoising algorithm. We found that soft thresh-
olding of wavelet coefficients is particularly effective for this
purpose (Donoho, 1995): it removes the stochastic deviations
but preserves the spiky features of the residual that are due
to model misspecification. In our examples in Sect. 4, we
use symlets with eight vanishing moments and set univer-
sal thresholds proportional to the level-dependent estimates
of noise on each wavelet decomposition level. The resulting
signal after denoising, r ′ =D (r), is assumed to be purely
deterministic. We emphasize however that a multitude of de-
noising approaches exist and other methods (as well as dif-
ferent wavelet parameters) can be more suitable for a spe-
cific dataset. Furthermore, the denoising step in our method
is not strictly necessary since the contribution of zero-mean
random distortions asymptotically cancels out when the area
under the residual is computed (as in the usual peak inte-
gration). However, we found it useful to include here to re-
duce the resulting uncertainty, especially when the number
of points in the spectrum is not sufficiently high.

Next, we proceed by smoothing the denoised residual
to extract its slowly-changing component, rb = S (D (r)),
which encompasses the error introduced by an incomplete
baseline correction. While any type of low-pass filtering can
be used for this purpose, it is known that median filters –
i.e. replacing each point in a signal with the sample median
of its wm neighbours – are especially suitable for removing
sharp spike artifacts (Tukey, 1977; Mallows, 1979). To sum-
marize, we define rm =D (r)−S (D (r)); however, we note
that the representation of a residual according to Eq. (5) is in-
herently an ill-posed problem that does not have a single uni-
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versal solution; other decomposition strategies can be more
effective for different spectra.

As in peak integration, it is paramount in our method that
the analysed spectrum y is perfectly phased before adjust-
ing the models. Fortunately, Eq. (5) provides a convenient
way for accurate phase correction, which – unlike most other
methods – takes into account information supplied in the
form of signature models. We note that the recovered base-
line rb = S (D (r)) implicitly depends on all model parame-
ters and observe that it is particularly sensitive to the linear
phasing values, ϕ0 and ϕ1. We demonstrate this with a series
of simulations. For this, we generate a spectrum of a single
Lorentzian peak with a slightly disturbed phase (see Fig. 3);
this can, for example, correspond to a residual error after
the usual phase correction procedure. We fit this peak with a
zero-phase signature model by minimizing Eq. (3) only with
respect to the chemical shift and peak width, thus intention-
ally keeping the phase error in the fit. As shown in Fig. 4,
the least-squares fit of an imperfectly phased peak leads to
erroneous estimates of its position and width. Consequently,
phase error of approximately 0.4 rad is able to cause an error
in the peak intensity estimate of about 5 %. Thus, it is im-
portant to eliminate any phasing imperfections if the desired
accuracy of quantification lies below 5 %.

Although there is no random noise added to the spectrum
in the above example, the phasing error manifests itself in the
residual in Fig. 3. Notably, the asymmetry of an imperfectly
phased peak induces positive and negative tails in the resid-
ual; this effect is greatly emphasized by median filtering,
which creates a sharp transition in rb. Naturally, we desire
to recover as smooth a residual baseline as possible, and thus
penalizing such sharp edges is an especially effective strat-
egy for fine-tuning of the phasing parameters. In this work,
we found that the same criterion of Eq. (3) but now applied
only to the extracted residual baseline works most effectively
for this purpose; i.e. to adjust the phasing, we minimize

min
ϕ0,ϕ1

‖rb‖2. (8)

Furthermore, multistage median filtering with increasing
window widths wm tends to improve the smoothing results,
which agrees with recent works (Arias-Castro and Donoho,
2009). Intuitively, wm = 0 corresponds to no smoothing, and
the problem of Eq. (8) reduces to the original least-squares
formulation of model fitting (Eq. 3), except for the removed
noise. On the other hand, very broad filters with a filter
size comparable to the total spectral width tend to produce
smooth results; in turn, this makes them ineffective for the
above optimization, whose goal is to remove sharp edges by
adjusting the phase. Notably, in our simulations, the mini-
mum is attained at the true value of the phasing parameter
ϕ0 using median filters at least 8 times wider than the width
of the peak (see Fig. 5). Thus, we propose to solve the prob-
lem of Eq. (8) iteratively: given an average peak width in
the spectrum, full width at half maximum (FWHM), we start

Figure 3. A simulated example of fitting an imperfectly phased
peak using a zero-phase model with adjustable position and width.
A phasing error of 0.25 rad shown here causes incorrect estima-
tion of the chemical shift and creates sharp spikes in the residual
spectrum r = y− x (b). The baseline remaining after the fit, rb,
is found by smoothing r using median filters with window width
wm defined relative to the peak width at half maximum (FWHM),
wm = k ·FWHM (c).

Figure 4. Relative errors in estimated model parameters fitted to an
imperfectly phased peak as functions of the phasing error. From left
to right: error in the chemical shift (expressed relative to the peak
width at half maximum) (a), error in the peak width (b), and error
in the intensity (c) relative to their respective true values. The red
vertical lines indicate the phasing error of 0.25 rad corresponding to
the plots in Fig. 3.

with a median filter of size at least wm > 10 ·FWHM, mini-
mize Eq. (8) with respect to the phasing parameters, and then
increase wm to recover a smooth residual baseline rb at the
final optimization stage.
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Figure 5. The phase-adjustment cost function, ‖rb‖2, plotted
against the phasing error. Different curves correspond to median
filters of different width, wm = k ·FWHM. The red vertical line in-
dicates the true phasing offset in the simulations.

We apply the same method to adjust both phasing parame-
ters in the experimental data of thiamine in D2O. Figure 6
displays the values of the cost function in Eq. (8) plotted
with respect to the deviation in the phasing parameters ϕ0
and ϕ1 from their current values. We note that the phasing of
the spectrum after the usual least-squares fit with Eq. (3) is
suboptimal in the sense of our criterion based on the smooth-
ness of the baseline. The proposed adjustment reduces the
fitting cost (note the lower minima after adjustment, espe-
cially for ϕ0) and significantly improves the phasing of the
resulting spectrum as shown in Fig. 7. Furthermore, Fig. 8
displays the residual baseline before and after minimizing
Eq. (8) computed using median filters of two different sizes.
Note the conspicuous sharp transition present in rb after the
least-squares fit that is due to imperfect phasing. The pro-
posed phase adjustment reduces peak-to-peak deviations in
the residual baseline rb by more than 4 times, and further
filtering with a wider window produces an almost flat base-
line, which does not exceed the natural level of noise, as de-
sired. This recovered baseline is now safely removed from
the phased spectrum without affecting the areas under the
peaks.

Unlike the least-squares criterion of Eq. (3), smoothing the
residual baseline with Eq. (8) does not directly penalize the
misfit between the model and the data; in general it leads
to a slightly higher mean-squared error between x and y.
However, it allows us to isolate the remaining unaccounted
signal rm in the residual from the baseline and noise, which
would have been naturally included in peak integration, and
to distribute it among the model components. This eventually
results in more accurate estimation of their intensities, with
minimal additional computational effort, as we demonstrate
in Sect. 4.

We find the above settings to be suitable for all datasets we
have tested, though in practice it is highly likely that for some

Figure 6. Phase adjustment of the experimental spectrum of thi-
amine. The norm of the residual baseline ‖rb‖ as a function of de-
viation in the parameters of the linear phasing model from their
current values (0.0 on the horizontal axes), ϕ0 (a) and ϕ1 (b) be-
fore and after their adjustment. The optimal phasing parameters es-
timated with the initial least-squares fit using Eq. (3) (blue lines)
are suboptimal in the sense of the adjustment criterion of Eq. (8). A
median filter of size wm ≈ 100 ·FWHM is used in this example.

Figure 7. The spectrum of thiamine after phase adjustment accord-
ing to the proposed rule (cf. Fig. 2).

samples the user would need to tune these parameters them-
selves (i.e. settings of the denoising algorithm and the width
of the median filter). As such, in its default setup the algo-
rithm is capable of automatic processing of typical high-field
and benchtop spectra; however, there exists the possibility of
a more interactive processing approach if needed.

3 Materials and methods

3.1 Sample preparation and data acquisition

For the first part of our experiments, we prepare a sample
of 0.5M thiamine dissolved in D2O. Thiamine hydrochlo-
ride was purchased from Sigma-Aldrich and has a purity of
99.0 % by weight specified by the manufacturer. The mea-
surements were performed on a 400 MHz Agilent 400MR
spectrometer equipped with a OneNMR probe. We acquired
16 384 time points with a dwell time of 156 µs and a pulse
angle of 45◦ with a single scan. This results in an average
SNR of approximately 2000 for the peaks of thiamine.

For the second set of experiments, we prepare 22 sam-
ples of organic mixtures in varying relative concentrations.
Methanol and ethanol were purchased from Merck KGaA
and have purity specified by the manufacturer of 99.8 % and
99.9 % by weight respectively. Methyl acetate and ethyl ac-
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Figure 8. The residual signals before (a) and after (b) adjusting the
phase parameters using a median filter with sizemw ≈ 100·FWHM.
(c) The result of applying a wider filter with mw ≈ 400 ·FWHM.

etate were purchased from Sigma-Aldrich; the purity of both
species is 99.8 % by weight.

We use a Mettler Toledo AX205 balance with an instru-
ment accuracy of 0.1 mg (provided in the calibration proto-
col of the manufacturer). By means of the accuracy of the
laboratory balance and error propagation, the uncertainty of
the gravimetrically determined mole fraction was estimated
to be 1.29× 10−5 mol mol−1.

In this experiment, the data were acquired on a high-
field NMR spectrometer with a 9.4 T vertical superconduct-
ing magnet (Ascend 400, console: Avance 3 HD 400, Bruker
Biospin, Rheinstetten, Germany), which correspond to a pro-
ton Larmor frequency of 400.13 MHz equipped with a stan-
dard probe (BBFO, Bruker Biospin, Rheinstetten, Germany).
We use proton NMR experiments and a simple one-pulse se-
quence with a pulse angle of 30◦ and 13C inverse gated de-
coupling. For each sample, we collect 20 028 points with a
dwell time of 250 µs and repeat the acquisition with 16 scans
and a relaxation delay of 30 s. The instrument was tuned and
shimmed individually for each sample. For processing, the
datasets were extended to 216 points by zero-filling. The SNR
in these datasets was estimated to be 100−104 depending on
the specific peak considered.

Additionally, the same samples were measured with two
medium-field benchtop spectrometers, Magritek Spinsolve
(for the thiamine sample) and Magritek Spinsolve-Carbon
(for the organic mixtures). These spectrometers operate at
a 1H frequency of 43.13 and 42.63 MHz respectively. In 1H
experiments, we collected 215 time points with a dwell time
DW= 200 µs. The experiments were run with single scans
and the pulse angle of 90◦. While collecting the data, both
Spinsolve instruments were periodically recalibrated using

the standard shimming protocol to ensure the best field ho-
mogeneity.

3.2 Data processing and quantification

Peak integration and quantitative global spectrum deconvo-
lution (qGSD) analysis were carried out with the Mnova
software (version 14.0.1, Mestrelab Research, Santiago de
Compostela, Spain). In each case, automatic phase (global,
whitening) and baseline (Whittaker smoother or polynomial
fit of the third degree) corrections were applied followed by
visual inspection and manual adjustment where necessary.
Integration boundaries for each peak are chosen based on
their FWHM and are set to at least 50×FWHM. Quantitative
GSD was run with manual range selection and five improve-
ment cycles.

The least-squares fitting and the proposed adjustment al-
gorithm were implemented in custom software written in
Python 3.5.

For each sample s, we report the results of quantifica-
tion with all methods in terms of the root mean square er-
ror (RMSEs) in mole fractions computed with respect to the
values obtained gravimetrically, xgrav

s,k :

RMSEs =

√√√√ 1
K

K∑
k=1

(
xest
s,k − x

grav
s, k

)2
,

where xest
s,k is the mole fraction of the kth species estimated

in the sth sample and expressed in mol mol−1. The aver-
age RMSE is computed over all S samples, RMSEavg =
1
S

∑S
s=1RMSEs .

4 Results and discussion

In this section, we apply the proposed adjustment procedure
for model-based quantification to two sets of samples. First,
we study the performance of our algorithm using a sample
of thiamine in D2O and compare the relative ratios of its
peaks with the known ground truth. In the second example,
we analyse a set of organic mixtures prepared gravimetri-
cally. In both cases, we look at data acquired with a high-field
spectrometer as well as a medium-field benchtop instrument.

4.1 A sample of thiamine in D2O

For the first series of experiments, we prepare a sample
of 0.5 M thiamine dissolved in D2O, which we referred to
previously in Sect. 2. We choose this compound for its very
characteristic 1H NMR spectrum: it exhibits a pair of well-
separated peaks at 5.45 and 7.9 ppm, a pair of partially over-
lapping peaks at 2.42 and 2.52 ppm, and a pair of triplets at
3.07 and 3.77 ppm (see Fig. 1). This allows us to test vari-
ous aspects of our model, including the quantum mechanical
formulation of coupled spin systems (see Matviychuk et al.,
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Figure 9. The results of quantitative analysis of thiamine spec-
tra acquired on high-field (a) and medium-field (b) spectrometers.
The plots show absolute errors in ratios of peak intensities esti-
mated with five different methods: the traditional peak integration,
global spectral deconvolution (GSD) and its quantitative modifica-
tion (qGSD), least-squares model fitting (LS), and the proposed ad-
justment algorithm applied to the LS fit. In each group, the bars
correspond to the peaks of thiamine ordered from left to right ac-
cording to their chemical shift. Note that the adjustment method
improves the accuracy of model-based quantification for all peaks
in both cases.

2019, for more detail). Since the true ratios of peak inten-
sities are known and fixed, by estimating them separately –
as if the peaks belonged to several chemical species in un-
known concentrations – we can unequivocally compare dif-
ferent qNMR methods in terms of their accuracy. In these
examples, we refer to and estimate the intensity of the three
peaks that comprise each triplet collectively.

We consider a spectrum acquired with a high-field spec-
trometer and also analyse the same sample with a bench-
top system. In the former case, the conventional peak in-
tegration readily achieves errors in relative mole fractions
as low as 0.001 (see Fig. 9). Furthermore, qGSD performs
excellently in this example and shows significant improve-
ment compared to the standard GSD algorithm (Cobas et al.,
2008; Cobas and Sýkora, 2009). The ratios of peak intensi-
ties estimated with the least-squares model fitting (LS) are
also more accurate than the GSD results. However, due to in-
evitable lineshape misspecifications, the LS method can not
outperform the peak integration of well-separated peaks in a
low-noise spectrum as well as qGSD, which relies on a so-
phisticated deconvolution of each peak individually. On the
other hand, the proposed adjustment algorithm significantly
improves the LS results and brings the root mean squared er-
ror (RMSE) to the level achieved with peak integration (see
Fig. 10).

Figure 10. Root mean square error (RMSE) of estimating peak ra-
tios in spectra of thiamine computed by averaging the results in
Fig. 9. The peak integration and the qGSD algorithm are very ef-
fective for the analysis of well-resolved high-field data. The pro-
posed adjustment method improves the LS quantification results
even when peak overlap is present, such as in the medium-field
spectra.

It is instructive to look at the possible improvement of
the least-squares fitting results with more representative line-
shape models. Specifically, we include second- and third-
order terms in the real and complex-valued decay model of
FID as done in Matviychuk et al. (2017), which contribute
additional weighting parameters to be fitted; we observe
that the second-order FIDs correspond to linear combina-
tions of Lorentzian and Gaussian lines in the spectrum, while
complex-valued polynomial decay models allow us to ad-
dress peak asymmetry. Furthermore, we consider a custom-
written version of the reference deconvolution method (Metz
et al., 2000), in which we estimate the convolution kernel
given a Lorentzian model fitted to the experimental data as
described above. This method has the highest potential to
represent various lineshape deviations, but nevertheless is re-
stricted by using the same convolution kernel for all peaks.
The quantification results in these cases are summarized in
Fig. 11 in terms of the RMSEs in peak ratios as well as the
values of the fitting objective of Eq. (3). As expected, more
complex signal models allow us to fit the experimental data
better and reduce the norm of the residual r . However, bet-
ter LS fit does not always entail lower quantification errors,
which signifies possible overfitting. On the other hand, the
proposed phase adjustment by minimizing ‖rb‖ leads to a
slight increase in the total residual norm ‖r‖, but the follow-
ing distribution of rm among the reference signals according
to Eq. (5) significantly reduces the quantification error.

Analysis of the same sample acquired on a benchtop spec-
trometer is a more challenging task for the established meth-
ods. Partially overlapping methyl peaks at 2.5 ppm make it
difficult to define ranges for their integration. On the other
hand, GSD methods, which lack information about the un-
derlying molecular system, often tend to define a third broad
peak that overlaps with these two main resonances to com-
pensate for lineshape broadening near the baseline. Although
this produces a plausible fit overall, the spurious extra peak
does not have any physical meaning and is difficult to ac-
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Figure 11. Results of LS fitting of high-field (a) and medium-
field (b) data using models that take into account higher-order line-
shape distortions. From left to right: first-order Lorenzian, second-
order symmetric model (weighted combination of Lorentzian and
Gaussian lineshapes), and third-order symmetric and asymmetric
peak models. In the reference deconvolution approach, a single ker-
nel is estimated for all peaks based on the difference between the
experimental spectrum and a fitted Lorentzian model. For the pro-
posed method, the results are reported after the phase adjustment
(Eq. 8) and the final distribution of the residual (Eq. 6) on the right-
hand side of the figure. The RMSE in peak ratios are indicated with
blue bars and referenced to the right vertical axis; the norms of the
residual after the least-squares fitting are plotted with orange lines
and are expressed in arbitrary units. Note that lower norms of the
residual achieved by fitting more flexible models to the data do not
always entail reduced quantification errors, whereas the proposed
adjustment method achieves this goal more efficiently, especially
for high-field (400 MHz) data.

count for in the final quantification results (we attribute its
area to the closest resonance in our analysis). The distortions
in lineshape of the triplets at 3–4 ppm are caused by higher-
order coupling effects rather than a magnetic field inhomo-
geneity, and thus modelling them with a quantum mechanical
approach is especially effective here. Even though the RMSE
of the LS model fit is more than 2 times lower than that of
peak integration and qGSD, the proposed adjustment method
allows us to further reduce it by almost 40 %. The remaining
error is mostly due to one of the overlapping methyl peaks,
whose intensity estimate is particularly sensitive to small de-
viations in phasing parameters. As in the high-field example,
Fig. 11b shows the quantification accuracy achieved with al-
ternative lineshape models. The proposed phase adjustment
method with the distribution of the residual has lower quan-
tification error than the reference deconvolution approach
and does not require fitting of any additional lineshape pa-
rameters, unlike the higher-order peak models.

Figure 12. Examples of spectra of a mixture of four organic com-
pounds acquired on high-field (a) and medium-field (b) spectrom-
eters. In this sample, the mole fractions of all four components are
approximately equal. Numbers next to the peaks indicate their as-
signment to specific 1H atoms in the studied molecules.

4.2 A set of organic mixtures

Next, we study a set of 22 mixtures of methanol, ethanol,
methyl acetate, and ethyl acetate prepared gravimetrically
in varying relative concentrations ranging from 0.02 to
0.95 mol mol−1 for each component; as before, we mea-
sure their spectra with high-field and medium-field benchtop
spectrometers (see Fig. 12). Using these datasets, we esti-
mate the mole fractions of each chemical species in the mix-
tures and compare them with the gravimetric values. To de-
fine the models for all chemical species, we use their com-
plete quantum mechanical formulations and find the corre-
sponding chemical shifts and J couplings using the high-field
data (Matviychuk et al., 2019). We use these parameters to
initialize corresponding models at the lower field strength of
the benchtop instrument and then refine them by minimizing
Eq. (3).

For comparison, we apply the qGSD algorithm to the high-
field datasets: specifically, we include all non-overlapping
peaks in our analysis and also peaks of protons in the ac-
etate groups (see the two overlapping peaks at 2.0 ppm in
Fig. 12). Where possible, we also take into account the peaks
of protons in the hydroxyl groups. On the other hand, se-
vere peak overlap in the benchtop spectra precludes their
accurate assignment and deconvolution, which makes this
dataset extremely challenging to analyse with the traditional
methods; therefore, methods based on fitting of quantum me-
chanical models are especially useful in this example. The
RMSE results of quantification of eight representative sam-
ples along with the average values across all 22 samples are
shown in Fig. 13; detailed results of the complete analysis
of this dataset can be found in the Supplement. With the
high-field data, the least-squares model achieves an accu-
racy of quantification similar to or slightly better than the
qGSD algorithm, and the proposed adjustment procedure re-
duces the average error in mole fractions by almost 50 %.
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Figure 13. Root mean square errors in estimated mole fractions
with respect to gravimetric values in selected representative samples
from the set of organic mixtures. The proposed adjustment almost
always improves the LS estimates and brings the accuracy of bench-
top results to the level comparable with qGSD analysis of high-field
data. The average errors are computed over all 22 samples.

As expected, the analysis of the benchtop data results in
slightly higher errors in mole fractions – with a RMSE of
up to 0.04 mol mol−1 for certain samples, which neverthe-
less is acceptable in many practical applications. However,
the average error across all samples, RMSEavg, is compara-
ble to that achieved by the model-based methods (qGSD and
LS) with the high-field dataset, and the proposed model ad-
justment further reduces it by 25 % on average. Finally, we
note that occasionally – especially with the benchtop data –
the adjustment of the LS fit results in slightly higher quan-
tification errors (e.g. see the results for the seventh sample in
Fig. 13). The increase in the error is likely due to an imperfect
mechanism of distributing the residual among the overlap-
ping signature models. The assumption that the error is pro-
portional to the component intensity as postulated in Eq. (7)
may appear insufficient in these cases; the development of
more accurate allocation rules is a topic of ongoing work.
However, the increase is usually less than 0.005 parts in mole
fractions, and if the entire dataset is considered the average
error is reduced, as already noted.

Even though the above examples contain a relatively low
number of components, they are representative of systems
commonly encountered in industrial settings (Dalitz et al.,
2012; Mitchell et al., 2014; Kern et al., 2018). Other works,
notably Krishnamurthy (2013) and Anjum et al. (2018),
have demonstrated the possibility of applying modelling ap-
proaches to systems with large numbers of components, and
thus we expect our method to scale similarly well. Further-
more, it has been shown that significant peak overlap can
be tolerated in ideal artificial examples (Matviychuk et al.,
2017), and thorough investigation of these effects in real-
world systems is the topic of ongoing research.

5 Conclusions

We proposed an effective and computationally simple mech-
anism to improve the accuracy of model-based quantifica-
tion in NMR data analysis. The proposed adjustment proce-

dure aims to account for all useful signals left in the residual
spectrum after the usual least-squares fit, which can signify a
case of model misspecification – a problem notoriously diffi-
cult to avoid in most model-based qNMR methods. Our alter-
native optimization criterion explicitly relies on the denois-
ing of the residual spectrum and smoothing the remaining
baseline and is particularly effective in correcting phasing
errors. The results of analysis of experimental datasets ob-
tained with high- and medium-field spectrometers indicate
the accuracy improvement by 20 %–40 % compared to the
usual least-squares model fit. While our examples are repre-
sentative of spectra often encountered in industrial applica-
tions, the heuristic nature of our approach precludes a for-
mal accuracy guarantee in different experimental conditions,
and its use should be accompanied by empirical validation.
This paper considers model fitting approaches only in the fre-
quency domain; it is not clear whether similar improvements
would be obtained for time-domain methods.
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Supplement. The supplement related to this article is available
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