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Abstract

This thesis describes experiments with superfluid spin mixtures of ultracold fermionic 6 Li
atoms. The properties of the strongly interacting gas are studied in the crossover regime
between Bose-Einstein condensation (BEC) of two-body bound molecules and a Bardeen-
Cooper-Schrieffer (BCS) superfluid of pairs bound by many-body interactions. We obtain
the homogeneous phase diagram of the two-component gas with resonant interactions. As
a function of temperature and spin polarization the phase diagram shows first and second
order phase transitions that merge at a tricritical point. At zero temperature a first order
phase transition from a superfluid with equal spin populations to a mixed normal phase
is observed at a critical spin polarization known as the Chandrasekhar-Clogston limit of
superfluidity.

Pairing correlations in the superfluid and normal phase are studied with radio-frequency
(rf) spectroscopy. A signature of strong correlations is observed above the critical tempera-
ture but also at spin polarizations where superfluidity is quenched even at zero temperature.
Significant limitations for the interpretation of these experiments due to final state inter-
actions are overcome by the creation of new superfluid spin mixtures. The asymmetric rf
dissociation spectra of the new mixture allow us to determine the spectroscopic pair size in
the crossover regime. The size of the resonantly interacting pairs is found to be on the order
of, but smaller than the interparticle spacing. Rf spectra of the majority component in an
imbalanced system show a signature of thermally excited quasiparticles and by comparison
to the minority spectra reveal changes in the nature of the binding as a function of spin
polarization.
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Chapter 1

Introduction

1.1 Ultracold Fermi gases and the BEC-BCS crossover

The first superfluids of bosons and fermions were both realized in the laboratory of Heike

Kamerlingh Onnes at the University of Leiden in the Netherlands. A century ago, in 1908

Onnes created the coldest temperatures on earth thus far and cooled liquified 4He below

the A-point at 2.2 K into - what was later shown to be - the superfluid phase. Three years
later, by using 4He as a coolant, Onnes observed superconductivity in mercury, when he

found that at temperatures below 4.2 K the resistivity of the metal essentially dropped to
zero. At this time the concepts of quantum theory just started to emerge and the notion of
"bosons" (4He) and "fermions" (the electrons in the mercury) had not yet been conceived.

A century later, and again in systems cooled to the coldest temperatures on earth - now
about a million times colder then in Onnes' laboratory in 1908 - the regimes of bosonic and
fermionic superfluidity can be smoothly connected in experiments with ultracold atomic
gases.

In between lay the introduction of Bose-Einstein statistics in 1924/25 and the formu-
lation of Fermi-Dirac statistics in 1926 which was first applied to electrons in a metal by
Arnold Sommerfeld in 1927. In 1939/40 Fierz and Pauli introduced the spin statistics
theorem that says that bosons have integer and fermions have half integer spin. While
superfluidity of bosons was connected early (London, 1938) with Bose-Einstein statistics
and the phenomenon of Bose-Einstein condensation (BEC), superconductivity (i.e. super-
fluidity of charged fermions) remained puzzling for decades until in 1957 Bardeen, Cooper
and Schrieffer (BCS) developed a full theory for the superconducting state. The discovery
of the proton (Rutherford, 1918) and the neutron (Chadwick, 1932) which, together with
the the electron (Thomson, 1897), are the fermionic building blocks of atoms, allowed the
classification of atoms as "bosons" and "fermions": if the combined number of electron,
protons, and neutrons is even, atoms have integer spin and are bosons, if total number of
atomic constituents is odd, an atom has half-integer spin and is a fermion. Bose-Einstein
condensation of bosonic atoms in ultracold atomic gases was observed in 1995 and the first



quantum degenerate Fermi gas of fermionic atoms was created in 1999.

It is interesting to note that usually the "bosons" made the first appearance: Superflu-

idity of 4He was realized before superconductivity of electrons in a metal and superfluidity

of 3He, Bose-Einstein statistics was formulated before Fermi-Dirac statistics, superfluidity

of bosons was understood before superconductivity of electrons, and ultracold Bose gases

were created before ultracold Fermi gases. The additional complexity involved in studying

fermions both theoretically and experimentally and particularly in the context of superflu-

idity lies in their quantum statistics: while undistinguishable bosons can occupy the same

quantum state, undistinguishable fermions must occupy orthogonal states.

Given the very different statistics bosons and fermions obey, how can the regimes of

bosonic and fermionic superfluidity be related? As a tightly bound pair of two fermions

has integer spin and can thus can be regarded as a boson, the idea of a connection between

fermionic superfluidity and the formation of fermions pairs seems quite natural. However,

due to the Coulomb repulsion between electrons it appeared impossible that electrons could

form a tightly bound pair in a metal. In 1950 it was realized that there actually is a

small, effectively attractive interaction between the electrons in superconductors mediated

by lattice vibrations. Six years later Cooper found that for any small attractive interaction

a bound state of fermions can form as a many body effect. While the idea of pair formation

proved to be correct, the fermion pairs in the BCS superfluid are far from tightly bound:

they are correlated in momentum space and they do not obey Bose-Einstein statistics.

The BCS superfluid is not a Bose-Einstein condensate of fermion pairs. However, it was

realized later that Bose-Einstein condensates of tightly bound fermion pairs can actually be

described as a limit of the BCS state. This observation is the basis of BCS-BEC crossover

theories, conceived and developed by Popov, Keldysh, Eagles [1], Legget [2], Nozibres and

Schmitt-Rink [3], which smoothly connect the BCS limit of superfluid, many-body bound

fermion pairs to the BEC limit of superfluid, two-body bound molecules.

This crossover between the well known limits of Bose-Einstein condensation and BCS

superfluidity can be realized and explored in ultracold atomic gases and the studies of

fermionic superfluidity in this regime are the subject of this thesis.

1.1.1 High temperature superfluidity

Fermionic superfluidity has been observed over a huge range of temperatures from more

than 100 K in high-temperature superconductors, in the 1 K range for conventional su-

perconductors, in the mK range for 3 He, down to 20 nK in ultracold quantum gases (as

described in chapter 4 of this thesis). However, the absolute temperature scales are deceiv-

ing as fermionic superfluidity is a many-body effect and therefore depends on the density

n of the surrounding fermions. An appropriate temperature scale for a comparison of the

critical temperatures To across various systems is the Fermi temperature TF which is pro-

portional to the Fermi energy kBTF = EF cx n2/ 3 (kB is Boltzmann's constant). With
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Figure 1-1: Critical temperature in the BEC-BCS crossover as a function of the interaction

parameter 1/kFa.

this scaling Tc/TF is as low as 10-8 for metallic lithium at ambient pressure, in the range

of 10- 4 to 10- 5 for conventional superconductors, 5 x 10- 4 for 3 He, and 10-2 for high-Tc

superconductors.

Figure 1-1 shows the critical temperature for an ultracold Fermi gas in the BEC-BCS

crossover. Here the strength of the coupling is measured by the dimensionless quantity

1/kFa, where kF is the Fermi wavenumber and a the experimentally tunable s-wave scat-

tering length. In the BCS limit Tc decays exponentially with the coupling or interaction

strength: Tc - TFe kFa, the regime where most fermionic superfluids including high Tc

superconductors have been observed. On the BEC side, the large critical temperature for

BEC of two-body bound molecules is approached. In between, for -1 < 1/kFa < 1, lies the

crossover where fermionic superfluidity in ultracold atomic Fermi gases has been realized [4].

Here the critical temperature is as high as Tc/TF ; 0.2. Scaled to the density of electrons

in a metal, this critical temperature corresponds to superconductivity far above room tem-

perature (and the melting point of the metal, too). The crossover therefore permits the

study of fermionic superfluidity in a new regime - and the strongly interacting Fermi gas at

20 nK forms in fact a high-temperature superfluid.

1.1.2 The Fermion pairs

The instability of fermions with weak attractive interactions towards pair formation in a

filled Fermi sea gives rise to fermionic superfluidity in the BCS limit. It is the character

of these pairs that changes smoothly but -comparing the BEC and BCS limits - quite

dramatically in the BCS to BEC crossover. One of the important quantities characterizing

the pairs and with significant influence on the properties of the superfluid is the pair size

relative to the interparticle spacing, illustrated in Fig. 1-2. In the BEC limit the fermion

pairs are bound dimers, stable in isolation and small compared to the interparticle spacing.
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Figure 1-2: Fermion pairs in the BEC-BCS crossover.

In contrast, the pairs on the BCS side are significantly larger than the interparticle spacing
and unstable in vacuum. In the crossover regime the size of fermion pairs in on the order
of the interparticle spacing. The main chapters of this thesis focus either on the fermion
pairs directly with rf spectroscopy experiments, or on interesting macroscopic consequences
of the pairing phenomenon: by imbalancing the populations in the two strongly interacting
spin states of gas superfluidity can be quenched which gives rise to an interesting and rich
phase diagram.

1.1.3 Universality

At unitarity, where the scattering length a far exceeds the interparticle spacing and the
interaction strength 1/kFa reaches zero (in the limit of a approaching infinity, see sec-
tion 3.4) the only relevant length and energy scales in the fermion system are the inverse
Fermi wavenumber kF and the Fermi energy EF. In this regime the physics is expected to
be universal [5] and not to depend on the specific properties of the fermions used in the
experiment. For example the fermion pair size at unitarity should be a universal constant
times 1/kF (which is proportional to the interparticle spacing nl/3), and the interaction
energy a universal fraction of EF. For this reason some of the experiments with ultracold
gases could be relevant to understand properties of neutron starts and even the quark gluon
plasma of the early universe although the density and temperature scales involved are vastly
different.

1.2 Overview of the experiments in the BEC I lab at MIT

This section gives a short summary of the experiments that were carried out by my col-
leagues and me with the BEC 1 machine in the group of Wolfgang Ketterle at MIT 1.

The BEC 1 experiment has a long history and some of its parts date back to the years

'A general overview of the developments in the field are given in recent review papers cite.

T
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well before 1995 when BEC in 23Na was observed. The ultra high vacuum of the main

chamber has been maintained continuously since 1996. Of course, many upgrades have

been introduced since then, including a double species oven to accommodate both 23Na and
6Li , the laser system for 6Li, a new magnetic trap, etc.

1.2.1 From strong interactions to fermion pair condensation

When I joined the BEC I lab as an undergraduate student in 2001 the first quantum

degenerate cloud of 6Li had been observed and the group was on the way to access a regime of

strong interactions via Feshbach resonances. We soon saw first signs of the s-wave Feshbach

resonance, which was used in most of the later experiments, via magnetic fields dependent

losses [6]. At this time we were puzzled that these losses occurred mainly at fields closer to

700 G than to 800 G where the resonance was predicted. When I returned as a graduate

student in 2003 an rf spectroscopy experiment was in progress, which studied mean field

shifts in the gas as it entered the strongly interacting regime [7]. Again something "strange"
seemed to be going on at fields around and above 700 G, where the mean field shifts became
small and the mixture unstable. In the summer of 2003 we learned that some of these

features were due to molecule formation and that surprisingly stable molecules started to
form at fields above 750 G with lifetimes that could be sufficient for evaporative cooling into
the quantum degenerate regime [8, 9, 10, 11]. Bose-Einstein condensation (BEC) of these
molecules 2 was accomplished soon thereafter, in the fall of 2003 [12, 13, 14]. The "smoking
gun" for condensation, a bimodal density distribution, could, however, not be observed in
the regime of universal interactions close to the center of the Feshbach resonance and on the
BCS side. Early in 2004 the JILA group introduced a rapid magnetic field ramp technique
that transformed the increasingly fragile fermion pairs at unitarity and on the BCS side
into more tightly bound and stabile molecules. This enabled the observation of fermion pair
condensation in the whole BEC-BCS crossover at JILA and later at MIT [15, 16].

1.2.2 High temperature superfluidity

The observation of fermion pair condensation reinforced the quest to observe superfluidity
in the system. Due to the strong interactions this turned out to be a challenging task since
the behavior of the gas in the normal phase was in most instances qualitatively similar to
the one associated with superfluids. In spring 2005 we observed vortex lattices in a rotating
cloud in the entire crossover regime which demonstrated phase coherence and superfluidity
of the strongly interacting system [4]. This was the starting point for most experiments
discussed in this thesis.

With the new system at hand we could now set out to explore its macroscopic and
microscopic properties. On the macroscopic scale we studied the stability of the superfluid

2The term "molecule" might not be appropriate since in the regime where BEC was observed many-body
interactions are already important.



with regard to changes in a number of experimental parameters. In one of the first ex-
periments we observed for how long superfluidity survived the expansion of the gas using
vortices as "markers" for the superfluid region in the cloud [17]. Since the density of the
system was reduced adiabatically during expansion this experiment addressed the stability
of the superfluid as a function of the interaction strength (at finite temperature).

1.2.3 Macroscopic properties of the superfluid: Population imbalanced

mixtures

In a second experiment we looked at the stability of the superfluid with regard to an
imbalance in the populations of the two spin states from which it is formed. The questions
raised by this experiment stimulated a whole series of further studies. The initial, quite
playful experimental approach was to turn the knob on the Agilent frequency generator

used to control the populations in the spin mixture and then to check whether vortices

could be observed. This allowed us to establish superfluidity in imbalanced mixtures and

to characterize the breakdown of superfluidity at the so-called Chandrasekhar-Clogston

limit [18].

We soon realized that in an imbalanced mixture the superfluid phase transition could

be observed directly in expansion without any magnetic field sweeps3 : a bimodal density

distribution emerged in the minority component as a function of temperature [19]. With

these observations new questions about the origin of the bimodal structure and the nature

of the superfluid and normal phases in imbalanced mixtures emerged. The data indicated

that superfluidity at zero temperature required equal densities, leading to phase separation

between the normal mixture and the superfluid. To confirm this hypothesis we had to

observe phase boundaries in the trapped cloud with high spatial resolution. This was

accomplished by a phase contrast imaging technique which allowed us to observe the phase

transition directly in the trap [20]. Subsequently we refined this method by taking two phase

contrast images of the same sample in rapid succession. Since we found the local density

approximation to be valid, these two images gave immediate access to the local physics at a

full range of densities and spin imbalances. The non-interacting ideal Fermi gas of the pure

majority component in the spatial wings served as a reliable, ideal gas thermometer. The

result was the homogeneous phase diagram of a resonantly interacting imbalanced Fermi

gas, with first and second order phase transitions merging at a tricritical point [21].

Already in the first paper about population imbalanced Fermi gases we studied how the

critical imbalance evolves with varying interaction strength. Due to the Chandrasekhar-

Clogston limit there is no continuous crossover between different superfluid regimes as the

interactions are changed. Instead, there will be at least one, but possibly a series of phase

transitions involving exotic superfluids, between the limits of a Bose-Fermi mixture on the

3The observation of vortices at unitarity still required a magnetic field sweep to enhance the vortex
contrast



BEC side and the (ultimately) normal gas in the BCS limit. With the newly developed

techniques for the analysis of in trap density distributions we recently explored the phase

diagram as a function of interaction strength and identified the Bose-Fermi mixture in the

BEC limit.

1.2.4 Microscopic properties of the superfluid: Exploring pairing corre-
lations with rf spectroscopy

In another set of experiments we studied the microscopic physics of the fermion pairs in

the superfluid with radio-frequency (rf) spectroscopy. After the creation of molecular con-

densates the Innsbruck group had applied rf spectroscopy to a resonantly interacting Fermi

gas and observed pairing correlations at low temperatures [22]. Since no clear experimental

signature of the superfluid phase transitions was observed, we first started out to correlate

the rf spectra with the indicators for superfluidity. This confirmed that pairing set in at

a temperature larger than the superfluid transition temperature. Since we were already

working with imbalanced systems we also took rf spectra above and below the critical im-

balance and found that they did not show any differences. Our conclusion was that the

rf spectra do not reveal the onset of superfluidity within the experimental resolution but

provide evidence for pairing in a regime where the critical temperature is zero [23].

While performing this experiment we realized that we could spatially resolve what parts

of the trapped cloud were resonant at a given radio-frequency. Focusing on an equal mixture

and building on our experience from spatially resolving features in imbalanced clouds, we

were now able to obtain "local" rf spectra, i.e. rf spectra at a given density [24]. All previous

spectra were averaged over the density distribution of atoms in the trap and therefore more
difficult to interpret. The spatially resolved spectrum, however, had a very narrow linewidth
which appeared to be at odds with the expectations for both the BEC and BCS limits. This
seemed to indicate that so-called final state interactions severely affected the rf spectra: The
rf transfers atoms in one state of the initial two state spin mixture (I T), I 1)) to a third state

13). If this state interacts strongly with atoms in the initial state the rf spectrum does not
simply reflect the pairing correlations of the initial state but the possibly complex interplay
of interactions in the initial and final state. To make progress we needed an efficient handle
on the final state interactions while preserving the initial state of interest.

The solution emerged from a seemingly unrelated observation. The rf experiments were
associated with rapid atom losses after the rf pulse was applied. The losses appeared to
involve the collision of three atoms, each of them in a different state IT), 11) and 13). However,
this observation implied that all three two-state spin mixtures were likely to be stable! This
started us to think about changing the final state interactions by exploring new strongly
interacting spin mixtures. Indeed, a suitable mixture with negligible final state interactions
could be created and the observed rf spectra at unitarity were dramatically different from
the ones reported in the previous experiments. The essential features of the rf spectra could



now be understood within a simple model and we were able to determine the fermion pair

size at unitarity. The pairs turned out to be smaller than the interparticle spacing and are

the smallest observed in fermionic superfluids.

With both the knowledge of the homogeneous phase diagram for imbalanced mixtures

and an ideal system for obtaining spatially resolved rf spectra, we were then able to sys-

tematically study the pairing correlations in the superfluid, polarized superfluid, and mixed

normal phase of an imbalanced mixture. This lead to the observation of local double peak

structure in the rf spectra of the majority component - the first clear signature of quasipar-

ticles in the superfluid.

Some of the experiments mentioned above are the subject of this thesis which is outlined

in the following section.

1.3 Outline of the thesis

The main focus of this thesis are experiments with imbalanced spin mixtures and experi-

ments probing the microscopic nature of the fermion pairs with rf spectroscopy. A few ear-

lier publications with a somewhat different background (p-wave resonances [25], timescales

related to fermion pair condensation [26] as well as the expansion of a superfluid Fermi

gas [17]) will also be briefly discussed. Since a number of recent review papers are now

available most of the general background will be summarized in short and primarily to

establish a common language. We then proceed to discuss the new results in detail.

The thesis is organized as follows: Chapter 2 gives a a brief introduction of BEC-BCS

crossover theory. In chapter 3 the new techniques and systems developed for the experiments

presented in this thesis will be discussed. Chapter 4 introduces the superfluid 6Li system

as the starting point for the experiments. In chapter 5 the experiments leading to the

observation of the phase diagram for population imbalanced mixtures will be presented.

The rf spectroscopy experiments studying the fermion pairs are the subject of Chapter 6.

Publications directly related to this thesis are included in the appendices A to H.



Chapter 2

BEC-BCS crossover in ultracold

atomic Fermi gases

2.1 BEC-BCS crossover

This section gives a brief summary of BEC-BCS crossover theory. The purpose is to establish

the notation and to illustrate a few concepts relevant to this thesis. For extensive and

detailed reviews of the topics discussed in this chapter please see references [27, 28, 29].

The discussion presented here is based on ref. [28].

The many-body Hamiltonian for a two state mixture of interacting fermions in the

BEC-BCS crossover is:

-kCt ck + Ck+TCk+Ck++t jCk-Tt (2.1)
k,a k,kl',q

Here ck, and ck, are creation and annihilation operators of a fermion with momentum k ,

mass m and spin a = (T, j) obeying the commutation relations

[ct, c' ,kCk, Cki, t t, + C a (2.2)

[Cka, Ck'a']+ = 0 (2.3)

ck, cko,]+ = 0 (2.4)

9 is the volume of the system and the coupling "constant" Vo is given in terms of the
s-wave scattering length a (for a 5 function potential V(r) = Vo5(r) and ignoring higher

order corrections):

4xrh2a
Vo = 4 (2.5)

The first term of the Hamiltonian corresponds to the kinetic energy of the particles and
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Figure 2-1: Chemical potential y and gap A in the BEC-BCS crossover. In the BCS limit:
wzt EF > A and A a .e - 2kFia. In the BEC limit: M = - + and > A. The
first term in 1 is the binding energy per particle in a molecule, the second one reflects density
dependent molecule-molecule interactions (which the theory does not predict correctly [30]).
A o EF has no special significance in the BEC limit, however, A2 /j/ is proportional to

the molecular mean field 4rh2tnam

Ek = h2 k2 /2m. The second term describes the a dependent correlation energy of the in-

teracting fermion system and includes density fluctuations, i.e. interactions between pairs

at finite momentum q $ 0. By neglecting these density fluctuations - which is a strong

approximation for ultracold gases - one obtains the BCS Hamiltonian:

H = ekc +cckC+ c kTCkJcCkT (2.6)
k,a k,k

The exact solution1 to this Hamiltonian is the BCS wave function:

I~lBcs) = I1(uk + vkcTC-kl ) 10) (2.7)
k

with

2 12 = - 1-k 2 Ek)
U = 1+

(2.8)

Ek and (k depend on the gap A and the chemical potential i which vary in the BEC-BCS

1The BCS wavefunction is an exact solution in the sense that it provides the correct thermodynamic
quantities. There is an ongoing discussion how it is related to the the exact wavefunction for the ground

state of the BCS Hamiltonian [cite Richardson, cite Ortiz].



crossover as shown in Fig. 2-12:

ýk = Ck--/ (2.9)

The uk and vk give the probability amplitude for a pair state cTck 0) to be empty or fully

occupied, respectively and u2 + V2 = 1). Several functions involving combinations of uk and

vk (like u2, v2, ukvk and vk/uk) have special significance in the crossover and are important

for the description of the fermion pairs as discussed in the following sections. Figure 2-2
shows their k dependence for five different interactions strengths.

2.2 Quasiparticle excitations

The BCS state describes a wavefunction of pairs. In some experiments, however, excited
states with unpaired fermions will be accessed. Such unpaired fermions also emerge as finite
temperature excitations. They are referred to as quasiparticles and their creation operators
are given by:

Tr = Ukek - Ukl-kl (2.10)
+7kj = Ukct_-k + VkCkt (2.11)

The BCS ground state can be regarded as the quasiparticle vacuum

Ykt ITBCS) = 7 -kl I'BCS) = 0 (2.12)

with excitations

kt IBCS) = ct (1( + v) ( 1 + V t c 10)
L k

= T I( 1 + vcct- 1110) (2.13)
l0k

(2.14)

where a pair (k T,-k 1) is removed and a single fermion in k T added.
The energy cost for adding a quasiparticle relative to the chemical potential has two

contributions: the kinetic energy Gk = Ek - y required to add a particle with momentum
k and the loss in pairing energy of the BCS state which can be shown to be Ek - k [28].

2A and / have to be determined simultaneously from the gap equation A = - Uk V- k =

and from the number equation for the total particle density N/I = 2f d k v 2•'7rY u
k
•
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Figure 2-2: Vk and Uk in the BEC-BCS crossover. Plotted are u2 , v2 , ukVk and Vk/Uk for

four different interaction strengths. v2 oc n and u 2 = 1 - v2. In the BEC limit Uk ` 1
and Vk -+ 0 for k -+ 0 whereas in the BCS limit Uk -4 0 and vk -* 1 for k < kF.
UkIVk = ('BCS c4tc-kt JT'tBCS) is the two-point correlation function, or the "Cooper pair"
wave-function in k space. In the BCS limit this function is sharply peaked around the
Fermi momentum kF whereas in the BEC limit momentum states from k = 0 to k >
kF contribute to the wavefunction with monotonously decreasing weight. The BCS pair
wavefunction suggest another form for the pair wavefunction in k-space: vk/Uk. This is
(up to a normalization factor) the k-dependent pre-factor of the pair creation operators
cktCk i in the BCS state. The identification of vk/Uk as the pair wavefunction is based
on the interpretation of the BCS state as N/2 identical particles. The function vk/Uk is
similar to UkVk in the BEC limit. In the BCS limit, however, vk/uk carries more weight at
low momentum components and sharply falls off to zero around kF. The function vk/Uk

is relevant in rf spectroscopy experiments. The plots are based on the following values for
Ai and A: 1) 1/kFa = 2, IL -. -4EF and A - 1.9EF; 2) 1/kFa = 1 t -0.8EF and

A M 1.3EF; 3) 1/kFa = 0 IL P 0.6EF and A , 0.7EF; 4) 1/kFa = -1 /p ; 0.95EF and
A , 0.2EF; 5) 1/kFa = -2 ;i 0.997EF and A ; 0.046EF.
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Figure 2-3: Spatial pair wavefunctions OE (from the mathematically exact solution of the
BCS Hamiltonian), Op and OBcs for three different interaction strengths (here 77 = 1/kFa
and r is measured in units of 1/kF). Reprinted from ref. [31].

The total energy cost is therefore Ek, with a minimal value either given by the gap A for

Gk = , > 0 or if u < 0 on the BEC side by Vp 2 +A 2 for k = 0 .

2.3 Fermion pair wavefunction

The formation of fermion pairs is a prerequisite for fermionic superfluidity and many prop-

erties of the superfluid are related to the stability of these pairs. This becomes especially

apparent in the BEC-BCS crossover where the pairs change from tightly bound molecules

to large and many-body bound Coper pairs.

The molecules in the BEC limit can be described straightforwardly in terms of a pair

wavefunction 0m,(r) cx e-r/b/r, where b is the size of the molecule. The situation is more

complex in the BCS limit, where there are several potential "candidates" for the pair wave-

function. In Fig. 2-2 the k-dependence of two of them (vkUk and vk/Uk) is plotted for

different interactions strengths. The first function is the two-point correlation function

('I'BcsIt T-Lk IBCS) = UkVk which is peaked at kF indicating that most of the correla-
tions are maintained by the pairs on the Fermi surface. The second one is based on the
BCS wavefunction, suggesting vk/uk as the wavefunction of the N/2 equal pairs. A third
one are the wavefunctions obtained from the mathematically exact solution of the BCS
Hamiltonian which describe N/2 different pairs [31].
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The spatial wavefunctions can be obtained as the Fourier transform of UkVk and Uk/vk:

(r) d uk ikr if d ekr (2.15)
(2r)3 2 (2")3 Ek

/BCS(r) d3 k vk eikr f d3k A eikr (2.16)
(2,r) 3 Uk f(27r)3 Ek (k

The spatial wavefunctions are plotted for three different values of kFa in Fig. 2-3. All

wavefunctions decay exponentially as a function of distance everywhere in the crossover

and become identical in the BEC limit. Since UkVk as well as vk/Uk show sharp features in

the BCS limit at the Fermi wavenumber kF (a peak and an edge, respectively) their Fourier

transforms on the BCS side show a modulation around 1/kF.
It depends on the experiment which pair wavefunction appears most naturally. In rf

spectroscopy experiments, that will be discussed in the next section, the rf excitation affects

fermions at all k and therefore the wavefunction vk/Uk appears naturally in the description.

The two-point correlation function based on ukVk is best used to describe excitations at the

Fermi surface.

2.4 Rf excitation of fermion pairs

Rf spectroscopy is a powerful tool to study the microscopic properties of the fermion pairs

in the BEC-BCS crossover. Important quantities that can - at least in principle - be

obtained by this technique are the binding energy of the pairs, the pair size and possibly a

characteristic temperature for pair formation.

In the rf spectroscopy experiments atoms in one state of the two state (T, 1) mixture

(here chosen to be IT)) are transferred into an unoccupied third state 13) (see Fig. 2-4). If

the mixture is non interacting the rf transition occurs at an excitation energy hw,f equal

to the atomic hyperfine energy hWhf as it would be the case in absence of atoms in state

I.) (see also Fig, 2-4 a).
In the following we assume that the initial state is interacting and described by the

crossover wavefunction. The rf excitation can then "break" a pair resulting in a quasiparticle

in the initial state plus a free particle in state 13). Since the momentum of the rf photon

is negligible the rf excitation only changes the internal state of the atom and preserves its

momentum. To transfer an atom from state It) to state 13) the rf photon must provide

the kinetic energy of the transferred particle Ek as well as the energy Ek - p required for

creating the quasiparticle in addition to hWhf (Fig. 2-4 b):

hwrf = Whf + Ek + Ek - A (2.17)

It is convenient to express all energies relative to the bare hyperfine energy and therefore
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Figure 2-4: Schematic illustration of rf spectroscopy. Rf spectroscopy in fermions requires

a three level system since so called clock shifts are absent both in coherent [7] as well as

incoherent [32] two state fermionic spin mixtures. a, in the absence of interactions the rf

is resonant with the bare "atomic" transition at hwf. b) If the initial state is interacting

the frequency response changes. c) In the discussion in the text we neglect "final state

interactions". Such interactions can have a significant impact on the rf spectrum. Final

state interactions will be discussed in detail in chapter 6

we define w =_ wf - Whf so that

hw = Ek + k (2.18)

The minimum or threshold energy required for an rf excitation Eth - hwth is given by

hwth = hw(k = 0) = p2 + A 2 --p. In the BEC limit Eth approaches the molecular binding

energy 21pI = h2 /ma 2 and in the BCS limit Eth --> A 2/2EF which is the condensation

(binding) energy of a fermion pair.

Here we have assumed that atoms in the final state 13) do not interact with atoms in the

initial states. In their most dramatic form such interactions can suppress pair dissociation

but instead lead to so-called bound-bound transitions between pairs (as schematically illus-

trated in Fig. 2-4 c). The effect of such interactions will be discussed in detail in chapter 6).

The rf operator is given by:

HRF ck3ckT + h.c. (2.19)

k

where only the first part contributes since state 13) is initially empty. It is convenient to

express ckT via quasiparticle creation and annihilation operators as ckT = UkYkT + Vkt kj'

With that we have

HRFI'IBCS) oc •-•Ck3(uk'kT + VkYt kI) jTBCS) (2.20)
k

- VkCk3~7 kjI IBCS) (2.21)
k
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Figure 2-5: Rf spectra in the BEC and BCS limit.

The complete rf spectrum can be obtained with Fermi's Golden Rule [28] and is pro-
portional to

2
I(w) O P(Ek) 2Ek=E(W) (2.22)

Uk

Here p(e) o is the density of states and vk/uk is proportional to the fermion pair
wavefunction in the BCS state (see Fig. 2-2). Both p(k) and v/u have to be evaluated
at the photon energy which can be obtained from 2.18 as

e(w) = w h ( + hwth + 2p)
2w

With that we find
v nA2

Uk

and

(w) WO - -Wth W/J + Wth + 21p/h (2.23)I(w) 5c (2.23)

The rf spectra in the BEC and BCS limits are very similar (see Fig. 2-5): the spectral
response rises steeply around Wth and falls off as w- 3/ 2 for large w. The second factor in
the nominator reduces to f§ in the BEC limit for molecular dissociation and approaches

w + 2EF/h in the BCS limit, where the Fermi energy enters as a new energy scale.
Compared to the BEC limit this leads to a smaller ratio between spectral linewidth and
threshold energy. The dissociation lineshape in the BEC limit is given by:

Im W - Wth (2.24)

This lineshape is, in fact, quite generic. By introducing an additional frequency offset wo
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Figure 2-6: Generic rf lineshape. Simulated rf dissociation lineshape in the BCS limit for
A < EF (black solid line) with a fit based on ,,en (dashed red). E = hw is given in units
of Eth-

we can define:

Igen = CORSt. 2 (2.25)

Figure 2-6 shows that a simulated rf spectrum in the BCS limit is well fit by Igen. This

implies that in the presence of uncalibrated shifts to the pair dissociation threshhold it is
virtually impossible to distinguish experimentally between BEC and BCS pair dissociation
lineshapes. In the experiments the onset of rf spectrum may be indeed be subject to possibly
small, but unknown shifts due to Hartree terms [33, 7].



Chapter 3

The Experiment: Atoms,
apparatus and techniques

This chapter gives a brief overview over the experiment and experimental techniques. Our

experiments are carried out in a gas of ultracold 6Li atoms. The experimental setup and

most techniques have been discussed in a number of previous publications and PhD theses.

We will often refer to the Varenna notes [281 which provide a detailed review of this work.

Below we will focus on some newer developments, specifically the creation of two new

superfluid spin mixtures in 6Li and spatially resolved imaging techniques.

3.1 6Li
6Li consists of three protons, three neutrons and three electrons and is therefore a fermion.

The hyperfine structure of the 6 Li ground state is shown in fig. 3-1. All experiments dis-

cussed here are carried out in two state mixtures of atoms in the three lowest 6 Li hyperfine

states which are labeled in the order of increasing energy as 11), 12) and 13).

3.2 Equipment

The major equipment involved in the preparation of a strongly interacting 6Li gas in our

experiments involves:

* an ultrahigh vacuum system

* a double species oven creating a combined 2 3Na and 6Li atomic beam [34, 35]

* the laser systems for 23Na and 6 Li providing the photons for laser cooling and imaging

the atoms [36, 37]

* a high current coil assembly (magnetic trap) for trapping the atoms and for generating

external magnetic fields up to 1000 G [36, 38]
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Figure 3-1: Hyperfine structure of the 6Li ground state. The hyperfine splitting at zero
field between the F = 3/2 and F = 1/2 levels is 228 MHz (F is the total - nuclear plus
electron - spin and a good quantum number at low field, ms (ml) are the projections of the
electron (nuclear) spin on the z-axis and a good quantum numbers at high fields). During
sympathetic cooling with 23Na in the magnetic trap 6Li is in the stretched state 16). The
experiments described in this thesis are carried out in two state spin mixtures of the three
lowest hyperfine states (shown in red). At fields larger than 300 G the typical splitting
between these states is 80 MHz.
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Figure 3-2: Singlet and triplet potentials for two scattering atoms depending on the spin
configuration of the valance electrons. If the atoms scatter, for example, in the triplet poten-
tial (the "open channel") they cannot access the continuum states of the singlet potential
(the "closed channel"). A Feshbach resonance arises when a bound state in the singlet
potential is tuned into resonance with the scattering atoms via an external magnetic field.

* a 1064 nm infrared laser for creating the optical trap in which the various spin mixture

are realized and the experiments are carried out [39].

Detailed descriptions of these components and associated equipment are given in the

above references. Further references and information can also be found in [40].

3.3 Preparation of ultracold 6Li fermions

After pre-cooling in a magneto optical trap (MOT) 6Li is sympathetically cooled with

bosonic 23Na in a magnetic trap resulting in a pure sample of typically 30 -106 quantum

degenerate 6Li atoms at a temperature of T/TF = 0.3. The sympathetic cooling with
23Na is necessary since the collisions required for rethermalization would "freeze out" in

a pure, spin polarized gas of 6 Li atoms at temperatures below 6 mK. In this regime p-

wave collisions are energetically suppressed and s-wave collisions are forbidden for identical

fermions. A detailed summary of the cooling procedure and optical trapping together with

further references are given in [41, 39, 28].

3.4 Creation of superfluid spin mixtures

3.4.1 Inducing strong interactions: Feshbach resonances

The observation of fermionic superfluidity in ultracold Fermi gases and the exploration of

the BEC-BCS crossover are based on the ability to tune the interaction strength 1/kFa.

The inverse Fermi wavenumber 1/kF under typical experimental conditions is on the order

of 10000ao, and typical scattering lengths do not exceed 100ao. These conditions do not
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Figure 3-3: Feshbach resonance in 6Li for the lowest two hyperfine states (1) and (2) in the

s-wave channel. Shown in red (solid) is the binding energy of the bound molecular state

in the singlet potential as it approaches the zero energy threshold at B 12 = 834 G. The

continuum of scattering states is shaded in grey. The blue dashed line shows the s-wave

scattering length as a function of the magnetic field. The scattering length is positive on

the "BEC side", where the bound molecular state exists in the potential, negative on the

"BCS side" and diverges "at "resonance" (834 G). Apart from the broad resonance at 834

G the (1,2) mixture exhibits a narrow s-wave resonance at 543 G (thick dashed line).

permit the observation of superfluidity at experimentally attainable temperatures nor do

they provide a sufficient tuning range for the interactions to observe crossover physics. The

crossover regime can be accessed experimentally via Feshbach scattering resonances that

allow the adjustment of the s-wave scattering length as a function of an externally applied

magnetic field B. Feshbach resonances emerge when a molecular bound state in the "closed

channel" of the interatomic potential is brought into resonance with atoms colliding in the

"open channel" (see Fig. 3-2). The energy of the bound state relative to the energy of the

scattering atoms can be controlled by an externally applied magnetic field B.

Figure 3-3 shows the B 12 = 834 G Feshbach resonance in 6Li. At fields below B12 the

binding energy of weakest bound state in the singlet potential 1, approaches the resonances

as h2/ma 2 where a is the s-wave scattering length. This bound molecular state is strongly

coupled to the continuum of scattering states shifting the resonance from the uncoupled

threshhold at 543 G by about 300 G to 834 G. Such a huge shift is unusual as is the large

background scattering length of -2100ao at high fields. Both is due to an virtual state in

iThe quantum numbers are X'E + , v = 38. This state has two total nuclear spin projections I = 0 and

I = 2. Here we refer to the state with I = 2. The I = 0 state gives rise to a second resonance close to 543

G.



the 6 Li triplet potential just in the continuum of scattering states. At fields above the B 12 ,
where a is negative, no bound molecular state exists.

The Feshbach resonance gives rise to the dispersive shape of the s-wave scattering length

(shown in Fig. 3-3), and therefore allows the tuning of the interaction parameter 1/kFa

over a large range from negative to positive values. For 1/kFa > - 1 the superfluid

phase transition can be reached at experimentally accessible temperatures. All experiments

discussed in this thesis were performed in the vicinity of "broad" Feshbach resonances,
where the effective range of the interaction potential is small compared to the inverse Fermi

wavevector. In this regime the specifics of the molecular state in the closed channel do not

affect the physics and at unitarity the inverse Fermi wavenumber is the only relevant length

scale. See ref.[28] for an extensive discussion of Feshbach resonance and the relevant energy

scales.

Feshbach resonances appear to be the ideal "tool" to manipulate atoms and access strong

interactions. However, when Feshbach resonances were first observed in bosonic 23Na [42]

they were found to be associated with rapid and strong losses [43]. In contrast to bosons,
fermion pairs were found to be stable in the vicinity of the Feshbach resonance which is

a direct consequence of the Pauli principle [30]. Only this stability made the experiments

described in the following chapters of the thesis possible.

3.4.2 Feshbach resonances in 6Li

In the three two state mixtures of the three lowest hyperfine states in 6Li four s-wave [6, 7,

10, 44] and three p-wave [45, 25] resonances have been observed at magnetic fields between

0 and 1000 G. One additional p-wave resonance is predicted at 225 G [46]. Table 3.1 gives

the resonance locations and widths. Most experiments in 6Li have been carried out in the

vicinity of the broad (1,2) resonance at 834 G. Recently we have also created superfluids

in the (1,3) and (2,3) spin combinations around the (1,3) and (2,3) Feshbach resonances

respectively (see figure 3-4 and chapter ??). The preparation of the superfluid spin mixtures

for all three cases will be discussed in the next section.

3.4.3 Three superfluid mixtures

6Li is sympathetically cooled in the stretched state 16). The cloud is then transferred into

an optical trap. A low magnetic bias field is applied and the atoms are transferred into

state (1) via an adiabatic Landau-Zener sweep across the single photon 16) -- j1) hyperfine

transition at 228 MHz (further details are given in [28]). The optically trapped sample in

state I1) is the starting point for creating the various superfluid spin mixtures.



Width [G]
(1, 1)
(1,2)
(2,2)
(1,3)
(1,2)
(1,3)
(2,3)
(1,2)

159.1
185.1
214.9
225

543.3
690
811
834

< 0.4
< 0.2
< 0.4

0.4
120
220
300

Table 3.1: Feshbach resonances in the lowest three hyperfine states of 6Li . The resonances
are sorted in the order of increasing magnetic field. The first three p-wave resonances were
reported in [45, 25]. The fourth p-wave resonance has been predicted [46] but has not yet
been observed. The three lowest s-wave resonances have a huge width and all three of
them have now been used to create fermionic superfluids (see chapter ??). The width and
position of these resonances has been reported in [44].

0
0

a,o

a,MCU,

600 700 800 900 1000 1100
Magnetic field [G]

Figure 3-4: Broad s-wave Feshbach resonances in 6Li (calculation by A. Simoni [46] based
on the data in ref. [44]). Except for our most recent rf spectroscopy experiments all studies
in the strongly interacting regime with 6Li were carried out in vicinity of the (1,2) Feshbach
resonance at 834 G (solid black line). However, also around the (1,3) resonance at 690 G
(dashed blue) and the (2,3) resonance at 811 G stable fermionic superfluids in the respective
spin mixtures can be created.
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(1,2) Mixture

To produce the superfluid in the (1,2) system the magnetic field is ramped to values in the
vicinity of the (1,2) Feshbach resonance at 834 G. At this field a non-adiabatic Landau-
Zener sweep around the I1) to 12) transition frequency of about 80 MHz is applied, creating
an equal mixture of atoms in state 1) and 12). The mixture is then evaporatively cooled
by lowering the trap depth of the optical trap in several seconds to about 1 sK.

(2,3) Mixture

The preparation of a (2,3) superfluid follows essentially the same procedure as described
for the (1,2) mixture. The only difference is that instead of applying a Landau Zener
transfer that creates an equal (1,2) mixture, the atoms are adiabatically transferred into

state 12) followed by a second non-adiabatic sweep that creates an equal (2,3) mixture.

(1,3) Mixture

The (1,3) mixture is prepared around 568 G, where both a12 and a13 are small. First an

equal (1,2) mixture is created with a non-adiabatic Landau-Zener rf sweep. The atoms in

state 12) are then transferred into state 13) with an adiabatic Landau-Zener sweep, yielding

an equal (1,3) mixture. To access the strongly interacting regime the magnetic field is

adjusted in about 100 ms to fields close to the (1,3) Feshbach resonance at 690 G where the

system is evaporatively cooled into the superfluid phase.

3.4.4 Population imbalance

The probability for transferring atoms via a Landau-Zener sweep from state Ia) to Ib) is
given by:

Pla)-lb) = 1 - exp(-2x1r--)

If D > f02 the rf sweep is adiabatic and the transferred fraction from [a) to Ib) approaches

100%. A smaller transfer can be accomplished by performing a non-adiabatic sweep and

choosing appropriate values for either c by adjusting the sweep time or DR by adjusting

the rf power. The Landau-Zener sweep is a coherent process. The initial state after the

transfer is therefore a coherent superposition and not yet the desired incoherent mixture

of distinguishable atoms in state Ia) and Ib). Decoherence, however, occurs within about

ten milliseconds after the sweep due to the motion of the atoms in the externally applied

inhomogeneous magnetic field.
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Figure 3-5: s-wave scattering length at fields below 600 G in 6 Li (calculation by A. Si-
moni [46] based on the data in ref. [44]): a13 (dashed blue), a23 (dotted red) as well as a12
(black solid). The zero crossings of the scattering length are at magnetic fields of about: 527
G (a12 = 0), 568 G (a13 = 0), and 588 G (a23 = 0). The minima of the scattering length are
at about 320 G (where a12 = -290ao and a13 = -895ao) and 363 G (where a23 = -476ao).
The narrow s-wave resonance in the (1,2) mixture at 543 G is also indicated.

3.4.5 Stability

All three mixtures show lifetimes at unitarity that exceed 10 seconds. This is surprising

since one would expect that close to a Feshbach resonance where interactions of the atoms at

short distances are enhanced, inelastic collisions are facilitated as well. The potentially bad,

inelastic two-body collisions are dipolar- and spin relaxation. Dipolar relaxation involves

the transfer of angular momentum from the relative motion of the atoms to the electrons

and nuclei. Spin relaxation occurs when angular momentum is exchanged between electrons

and nuclei without affecting the relative motion of the atoms.

Both processes are forbidden for fermions if the internal state of two the outgoing atoms

is identical. In this case anti-symmetrization requires an odd (ex. p-wave) outgoing spatial

wave, whereas the incoming spatial wavefunction is s-wave. Inelastic spin relaxation pro-

cesses are therefore excluded. Also dipolar relaxation is not allowed since this process can

only connect spatial waves of the same parity.

The (1,2) mixture with only one possible exothermic relaxation process (1, 2) -- (1, 1)

must therefore be stable. For the (1,3) and (2,3) mixtures the allowed exothermic collisions

are (1, 3) -- (1, 2), (2, 3) --+ (1, 3), and (2, 3) -- (1,2). For all processes spin relaxation is not

possible since the z-projection of the total angular momentum is not conserved. However,
dipolar relaxation is allowed with an outgoing d-wave in the final state. Since the initial



state is s-wave, the released energy in the relaxation process occurring at small distances

must be sufficient to overcome the d-wave barrier. We can estimate the height of this barrier
as

Ca 6hi2V(rmax)= +  (3.1)
rmax 2irmax

with rmax = . Here C6 k 1393 a.u. (1 a.u.= 9.57344 x 1026 J rm6) is the coefficient

of the 6Li van-der-Waals potential and A = mLi/2. We find V(rmax) z 600 MHz which is

large compared to the 80 MHz Zeeman splitting between the hyperfine levels. This might

compensate for any collisional enhancement of dipolar relaxation close to the Feshbach

resonance. The observed lifetimes are consistent with typical dipolar relaxation rates on

the order of 10-15 cm - 3 - 1 .

3.4.6 Comparison of the mixtures

What is the "mixture of choice" for experiments? Since all three s-wave resonances are

broad, universality requires that at unitarity the mixtures show exactly the same behavior.

For most experiments it is therefore not important which mixture is chosen. Until our

realization of the two new superfluid mixtures, all experiments in 6Li have been carried out

in the (1,2) system.

Even at unitarity, however, the choice of the mixtures matters in experiments involving

a third state. This is the case in rf spectroscopy experiments where one drives rf transition

from the initial mixture to a third state. Here it is desirable that the final state interacts

only weakly with the initial one. The (1,3) mixture (with 12) as the final state) fulfills this

requirement but not for the (1,2) and (2,3) systems (with 13) and I1) as the final states,

respectively). The (1,3) mixture is indeed the right choice for rf spectroscopy experiments

(see chapter 6).

One noticeable difference between the three large s-wave resonances is their width which

differs by almost a factor of three between the (1,3) and (1,2) resonances. The smaller width

of the (1,3) resonance together with its location at lower magnetic fields might be of some

advantage if one would like to access the more weakly interacting regime on the BCS side

at lower externally applied magnetic fields (at 1000 G a13 = -2560ao, which is comparable

to a12 = -2580ao) at 1500 G).

At fields below the broad s-wave resonances the (1,3) mixture is also very interesting

(see figure 3-5). At 320 G the s-wave scattering length a13 = -895a 0 which should allow

for efficient evaporation. In optical traps providing tight radial confinement with trap

frequencies in the kHz range values of kFa13 : -1 might be within experimental reach. This

could be sufficient to enter the superfluid regime at experimentally attainable temperatures.

By increasing the magnetic field one can change the interactions from attractive to repulsive

which is interesting for the observation of antiferromagnetism in an optical lattice.

Apart from the two-state mixtures, a one-state "mixture" of atoms in state 11) and



a three-state mixture of atoms in states 11), 12), and 13) show some promise. In a pure
sample of I1) atoms the p-wave resonance close to the 160 G could be used to form p-wave
molecules. Since only fermions in the ground state are involved, these molecules might be
reasonably stable and there could be an opportunity to create a superfluidity with p-wave
pairing. Very recently the creation p-wave molecules at the three lowest p-wave resonances
in 6Li has been reported together with measurements of their elastic and inelastic collision
rates [47].

The ternary mixture shows lifetimes exceeding 30 ms within a broad range of magnetic
fields and for strong interactions. If this mixture proves to be sufficiently stable [48] future
work could focus pairing competition in multi-component Fermi gases and spinor Fermi
superfluids (with analogies to quark matter) [49, 50, 51, 52, 53].

3.5 The harmonic trap as a feature: Spatially resolved 3D
density distributions in imbalanced mixtures

The ability to reconstruct the three dimensional (3D) density distribution of the trapped
atomic gas was crucial for many of the experiments discussed in this thesis. Usually, the
harmonic confinement of the atoms leads to experimentally determined quantities that are
averaged over the density distribution of atoms in the trap. For the purpose of obtaining
quantities at a given density a box potential appears to be more suitable.

If it is possible, however, to obtain spatially resolved 3D densities the trap actually
actually becomes a great feature (under the assumption that the local density approximation
is valid). This is the case in our system, where a single harmonically confinement sample
allows us to observe the behavior of the gas for whole range of local densities and spin
polarizations. In imbalanced mixtures the harmonic confinement also provides an ideal gas
thermometer by spatially separating the non-interacting wings of the majority component
from the strongly interacting mixed system.

Complete information about the 3D density n(x, y, z) can be obtained from images of
the atoms. We assume that the imaging light Eo propagates into the y direction entering
and existing the cloud at the same x and z coordinates. The transmitted light Et will
be attenuated and phase shifted according to: Et = tEoeio, where t is the transmission
coefficient and 0 is the phase shift.

In most experiments we were interested in situations where the two components of
the gas IT) and 11) had different density distributions nT(x,y,z) and nl(x,y,z) (caused
for example by a global population imbalance, or a radio-frequency pulse that selectively
removed atoms in one component). To obtain both nT or n4 several problems needed to be
addressed.

Both t and 0 do not directly depend on n but on the column density n,(x, z) =
f n(x, y, z)dy due to line-of-sight integration along the y direction. Therefore the 3D density



distributions need to be reconstructed form n, using the so-called inverse Abel transforma-
tion as detailed below.

In order to obtain information about both nT and ni, two images of the cloud need to
be taken separately. In principle this could be done by using light resonant with atoms in

state IT) and 11) for the first and second image, respectively. Resonant light, however, will

be absorbed which leads to heating of the cloud and therefore a potentially blurred second

image. Signal to noise considerations make absorption imaging even more undesirable. The

imaging signal has to be particularly sensitive to the difference nT - ni since abrupt features

in this quantity clearly indicate changes in the behavior of the system and possibly phase

transitions. As absorption images only contain information about nt or n, separately, they

do not provide this sensitivity. Especially if nT and n1 are both large and fluctuating this

will lead to large fluctuations in nT - nl. The solution was to use phase contrast imaging,
a dispersive imaging method sensitive to the phase shift 4 of the transmitted light.

3.5.1 Phase contrast imaging

For phase contrast imaging off-resonant light at large detunings 6 > 1 is used, with 6

measured in units of the natural linewidth of 6 Li ('Li = 6 MHz). In this limit absorption
2

can be neglected, t ; 1 and 4 = -ncao/J where ao = •A 2 is the resonant cross section2

Since 0 is linear in n, we would like the recorded intensity on the CCD camera to be linear

in 4 as well.

Any dispersive imaging method requires that the scattered and phase shifted light is

separated from the transmitted light. The simplest solution is to block the unscattered light

in the Fourier plane of the imaging system where it comes to a focus. The recorded intensity

is then proportional to IEoei ' - Eo02 oc 1 + €2/2 for <« 1, which depends quadratically

on q. The situation can be modified by not blocking, but instead just phase shifting the

unscattered light. For a phase shift of ±+r/2, one finds for the intensity in the limit 4 < 1,

IEoe'i + Eo(e •i r/2 - 1)12 Oc 1 + 24, which shows the desired linear dependency on 4 and

therefore n,.

Let v be the probe frequency of the imaging beam and vo and vo the optical resonance

frequency for the atoms in state IT) and state 11) respectively. The optical signal is therefore

proportional to:

nc,T + nflC

Choosing v = V/2 -~ + v)/2 as shown in figure 3-6, the optical signal directly

reflects the density difference ncl = nc,T - nc,l. With this choice for the imaging frequency

atoms in state IT) cause exactly the opposite phase shift from atoms in state II) and any

common mode signal cancels out. In principle this can be verified in an equal mixture,

2Valid for a two level atom in the rotating wave approximation.
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Figure 3-6: Phase contrast imaging of the density difference of two spin states. a) Schematics

of the imaging setup. b) Phase contrast images of a spin polarized sample in state 11) (left),

12) (right), or an equal mixture (center). The phase shift of the light for the two spin states

has the opposite sign and cancels for an equal mixture.

where no phase contrast signal should be observed. In practice, the imaging frequency VO is

determined experimentally by canceling the phase contrast signal for an equal mixture. We

find that vo usually deviates from v1/2 by about 1 to 2 MHz probably due to imperfections

in the imaging setup.

For the second phase contrast image the imaging frequency is detuned from vo by one

or two natural linewidths. The image then reflects the weighted density difference nc2 =

alnc,T - ainc,&. To determine the coefficients aT and as we use highly imbalanced clouds

with atoms in state IT) and 11) as the majority component, respectively. (Describe in more

detail.) An example of the two phase contrast images, together with cuts through the

column densities ncl(O, z) and nc2(0, z) are shown in fig. 3-7 (a-c). The column densities

nc,T and nc,J can now be determined from ncl and nc2 as nc,T = (aincl - nc2)/(aj - aT) and

nc,4 = (aTnci -fnc2)/(al -aT). In the next step the 3D densities ny and nj are reconstructed

from nc,T and nc,•.

3.5.2 Inverse Abel transformation

The inverse Abel transform can be applied to obtain a 3D density distribution from line-of-

sight integrated images for systems with cylindrical symmetry3 . The details of the trapping

potential used in our experiments are given below. In short, the trap is cigar shaped and the

two transverse trapping frequencies are equal to better than 2%. The criterium of cylindrical

symmetry is therefore met to a sufficiently high degree. The inverse Abel transformation is

given by:
3 The inverse Abel transformation is a special case of the so-called inverse Radon transformation, which

does not require cylindrical symmetry, but the knowledge of line-of-sight integrated distributions for an

infinite number of angles. The cylindrical symmetry reduces this requirement to one distribution obtained

from line-of-sight integration along an axis perpendicular to the symmetry axes.
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Figure 3-7: Double phase contrast imaging: density difference a) and weighted density
difference b) of an imbalanced cloud. (c) Column density difference (black) and weighted
column density difference (red) along the dashed lines of the phase contrast images. d) and
e): radially and axially intergrated column density difference. The profiles show a flat top
distribution indicating that the local density approximation is valid.
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As one would expect, the transformation depends on the derivative of column density
nc, which causes the inverse Abel transformation to be very sensitive to noise. An excellent
signal to noise ratio for nc is therefore required. Any "kinks" in the density profiles will
cause jumps in the density distribution after the transformation. Averaging the column
density profiles along elliptical equipotential lines A2 x2 + Z2 

- r2 , where A is the aspect
ratio of the trapping potential, helps to reduce noise. The averaging has to be performed
with carefully chosen restrictions to avoid washing out sharp features caused, for example,
by phase boundaries [21].

3.5.3 Trapping potential

Here we describe the trapping configuration for typical experimental conditions after prepa-
ration of the strongly interacting sample, i.e. at magnetically applied bias fields in the range
of 700 to 900 G and after evaporation in the optical trap. We specifically state the param-
eters relevant for the experiments based on in situ imaging. The trapping potential is
cigar shaped, with an aspect ratio A - 6. The confinement of the atoms is only to first
order harmonic and due to a combined optical and magnetic potential. The optical trap
is generated by a 1064 nm gaussian laser beam with a waist w of about 125 pm, creating
a trapping potential Vo(p, z) = Uoe - (2p2/w 2), with p = P + y 2 . The magnetic potential

• -400 -200 0 200 400
4)Axial (z) position (jm)

3 .3

0



provides essentially all of the axial confinement along with some weak radial anti-trapping:

Vm(p, z) = '(-2 + z 2 ). The combined potential is then by

2( 2p2 2 P2
V(p,z) = Uoexp + Z2) (3.2)

yielding a trap depth of

U W 2 w 1 2 In 1 +2Wr (3.3)

Here wr is the radial trapping frequency in the central harmonic region of the potential.

Typical values of wr, wz and U are: wr - 27r x 130 Hz, wz - 27r x 23 Hz and 2 tiK

respectively. Typical Fermi energies are on the order of 1 AiK. Therefore U - EF and the

anharmonicities of the trapping potential in the radial direction (for p - w) affect the spatial

wings of the trapped cloud. While the overall confinement is predominantly harmonic, the

effects of anharmonicities must still be considered when information is obtained from the

spatial wings of the cloud. An important example concerns the temperature determination

from the non-interacting wings of the majority cloud in an imbalanced gas.

3.5.4 LDA and doubly integrated density difference profiles

As we have pointed out above, spatially resolved imaging techniques turn the harmonic

confinement of the atoms into a feature since the images provide a "cut" through the

physics in the cloud at various densities. An important requirement, however, is that the

local density approximation (LDA) is valid, i.e. that all relevant quantities at a given point

(p, z) in the trapping potential (here assumed to be axially symmetric as in the experiment)

depend only on the local value of V(p, z). It turns out that imbalanced clouds actually

provide a way to check the validity of the LDA for their description. As we will discuss

later in this thesis the superfluid core in an imbalanced mixture has equal densities in

the zero temperature limit (at the expense of a larger density imbalance in the normal

outer regions of the cloud). Here we will show that this leads to a characteristic "flat top"

distribution of doubly integrated density difference profiles in an imbalanced mixture if the
confinement is harmonic and the LDA applies.

In an axial symmetric harmonic trap, equipotential shells are given by ellipses A2p2 + 2 
--

c; here A = wr/wz is the aspect ratio, p2 = x 2 + y2 as above, and c is a constant. If the local
density approximation is valid, the densities on the elliptical shells are constant and depend
only on the value of c. The doubly intergrated density difference profile with An = nT - ni
is then given by:

Andbl(z) = pAn(A2p2 + z 2)dbdp = j An(a)da (3.4)
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Figure 3-8: Effect of anharmonicities on the in situ temperature determination. The tem-
perature of the cloud was determined for various angles 0 of the averaging sector. For larger
values of 0, spatial wings at larger values of p contribute and the radial anharmonicities
become increasingly important in the averaged profile. This results in a broadening of the
spatial wings and consequently higher value of the fitted temperature. The red line shows
the results of a simulation using the same parameters as the experiment (A = 6.15, TFo = 1
pK and the trap depth U/kB = 2 pK.

The density difference (n T - nl) is zero in the balanced superfluid core up to a certain
critical A2p2 + z ac2 > z 2 . So for z < ac we have:

Andb(Z < ac) 7= r An(a)da = const (3.5)

Figure 3-7 d) and e) indeed show the flat top distribution of the doubly integrated den-
sity difference profiles, demonstrating that the LDA and harmonic confinement are good
approximations for our system.

3.5.5 Temperature determination

The absolute temperature of strongly interacting Fermi gases is difficult to determine since
the exact relation between the density distribution of the atoms and the temperature of the
system is not known. A comparison with theory is limited to the assumptions underlying
the theoretical description and their accuracy.

For a balanced mixture in the strongly interacting regime the temperature has been
determined as the derivative of entropy with energy [54] which resulted in temperatures
averaged over a certain range. Furthermore some assumptions and approximations had to
be made with regard to the energy and entropy measurements [54].

To obtain the local temperatures in the trapped, imbalanced cloud we therefore have to
rely on a different temperature calibration. Usually, when there is the need to characterize
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E 
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Figure 3-9: In situ temperature determination. The relative temperature T' = T/TFo is
determined from the outer region (r > RI) of the averaged column density difference profile
(black line) fitted to a finite temperature Fermi-Dirac distribution in a harmonic trap (red
line). The radius of the minority cloud R1 was determined from a fit of the wing profile of the
minority component (black dashed line) to a zero temperature Thomas-Fermi distribution
(red dashed line). a, T' = 0.03(1) and 6 = 44(4)% b, T' = 0.08(1) and 6 = 46(4)%.

a system with unknown properties, it is helpful to bring it in contact with a simpler, well
understand system for calibration. In imbalanced mixtures such a situation arises naturally
since the spatial wings of the majority cloud (where the minority density has dropped to
zero) constitute a non-interacting ideal Fermi gas in equilibrium with the interacting cloud.
In other words the majority wings can serve as an ideal gas thermometer, an idea that was
first applied in ref. [19]. In this experiment, however, the temperature was determined by
a fit to the wings of the expanded majority cloud after release from the trap. For small
imbalances this lead to an overestimate of the temperature (of not more than 20%) due to
the collisional dynamics during expansion.

For an in situ temperature calibration expansion dynamics poses of course no a problem,
instead the trap anharmonicities have to be taken into account. To obtain the low noise
profiles required for an accurate temperature calibration, the column density profiles are
averaged along lines of constant (A2p2 + Z2). For a full average, the trap anharmonicities
which affect the wings of the majority cloud, lead to a systematic overestimate of the
temperature. This systematic shift can be controlled by restricting the averaging range to
small angles where only small values of p contribute and the trap asymmetry only has a
negligible influence (see Fig. 3-8).

As shown in Fig. 3-9 the temperature of the system can then be obtained from a fit to
the outer wing of the majority cloud, i.e. to the region r > R1 where the density of the
minority has dropped to zero. Here Rj, the radius of the minority cloud, is determined
from a zero-temperature Thomas-Fermi fit to the wing profile of the minority component4 .

4See ref. [28] for an extensive discussion on the quantitative analysis of density distributions

2101



The fit to the majority cloud yields the relative temperature

kBT
T' - T/TFo = ~ r2n)2/3 (3.6)

where kBTFo the Fermi energy of a non-interacting, zero temperature, harmonically trapped

Fermi gas with central density no and the same density distribution in the outer wings as

the majority cloud. The local temperature Tlocal(r) can then be defined with the density of

the majority cloud nt(r):

2

- T kBT T ( no
TFT (r) (67r2nt()) - (3.7)

loal2m~r n(6r2)3 TFo nT (r)



Chapter 4

Creating and exploring a high

temperature superfluid of ultracold
6Li atoms

This chapter gives a brief summary of the experiments that lead to the observation of high

temperature superfluidity. See ref. [28] for an extensive review.

4.1 Fermion pair condensation

An important step on the way to superfluid Fermi gases was the creation of the conceptu-

ally simplest fermion pairs: the weakly bound "molecules" on the BEC side of the Feshbach

resonance [55, 8, 9, 10]. The stability of these molecules came as a surprise since Feshbach

associated molecules from bosonic atoms were too short lived to reach thermal equilib-

rium in the quantum degenerate regime [56, 57, 58]. The molecules created from fermionic

atoms, however, were protected from decay into lower lying states by Fermi statistics [30]

and showed lifetimes which exceeded 10 s in the (1,2) mixture of 6Li. With such favorable

lifetimes direct evaporation from a two component (1,2) mixture into a Bose-Einstein con-

densate of weakly bound fermion pairs proved possible (Fig. 4-1) [13, 14]. In 40K molecular

lifetimes were considerably shorter (100 ms) and the observation of BEC relied on a sweep

across the Feshbach resonance [12].

The observation of fermion pair condensation in the entire BEC-BCS crossover was

achieved a few month later (see figure 4-2) [15, 16]. Close to resonance and on the BCS

side bimodal density profiles could not be observed in situ. Here the chemical potential

I becomes comparable to kBTC and the condensate does not spatially separate from the

thermal cloud. The solution was a rapid non-adiabatic magnetic field sweep across the

Feshbach resonance towards lower magnetic fields shortly after the optical trapping potential

is turned off. This sweep transfers the many-body bound fermion pairs into stable molecules



Figure 4-1: Phase transition: Fermion pair condensation on the BEC side at 770 G. As the

temperature is lowered a bimodal density distribution emerges in a gas of weakly bound
6 Li2 molecules, the hallmark of Bose-Einstein condensation.

A,

Figure 4-2: Phase transition: Fermion pair condensation at unitarity. The observation of

bimodal density distribution in the strongly interacting regime required a rapid magnetic

field ramp to the BEC side of the Feshbach resonance. Fermion pair condensates could

then be observed as a peak of condensed, zero momentum pairs surrounded by a cloud of

thermal molecules.

while preserving their center of mass momentum. The interaction energy of the pairs is

lowered by up to 2 orders of magnitude as the molecular scattering length between the

pairs is drastically reduced. After further expansion the momentum distribution of the

pairs before the sweep can be observed: the condensed, zero momentum pairs are now

clearly separated from the thermal finite momentum pairs.

With the "rapid ramp" technique the "phase diagram" of fermion pair condensation in

the BEC-BCS crossover shown in Fig. 4-3 was obtained. Note that the rapid ramp method

is an excellent qualitative indicator for the onset of fermion pair condensation but very

difficult to interpret quantitatively due to the complicated dynamics during the magnetic

field sweep. For example the relation between the observed condensate fraction and the

original one is not well understood [59, 60, 61, 62].

The rapid ramp methods gives rise to an important concern: could the observed pair

condensates be created during the rapid ramp and not result from a pair condensate in the
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Figure 4-3: "Phase diagram" of fermion pair condensation. Condensates are observed in the
entire crossover regime. The highest condensate fractions are obtained close to resonance.
The decreasing condensate fraction on the BCS side is due to the decreasing interaction
strength in this regime. The sharp decay of the condensate on the BEC side is caused by
heating owing to vibrational relaxation of the molecules.

initial state? While the experiments provided some evidence that such concerns were not

justified we decided to explicitly study the relevant timescales [26].

4.1.1 Timescales

The condensates detected after the rapid ramp can be expected to reflect condensation of

the original fermion pairs if the ramp is fast compared to the many-body physics leading

to the formation of a fermion pair condensate. The formation dynamics of the condensate

can be studied by observing the relaxation of the system in response to a fast change in

the interaction strength. By periodically changing the interactions via a magnetic field

modulation on the BCS side of the Feshbach resonance and monitoring how the measured

condensate fraction adjusted to this perturbation the relaxation time of the fermion pair
condensate could be determined [26]. Figure 4-4 shows the delayed response of the fermion
pair condensate to the magnetic field modulation. The relaxation time is more than an
order of magnitude larger than the time required to cross the Feshbach resonance with the
rapid ramp.

In later experiments we have actually seen direct signs of the phase transition at unitarity
in high resolution images of expanding clouds of an equal mixture [28]. The column density
profiles showed small deviations from an ideal Thomas-Fermi profile close to the critical
temperature. However, these very faint features could have hardly been interpreted as
signatures of pair condensation without the dramatic changes revealed by the rapid ramp
method or the observation of superfluidity via vortex lattices which is the subject of the

__
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Figure 4-4: Relaxation of a fermion pair condensate. Shown is the response of the conden-
sate fraction to a modulation of the external magnetic field on the BCS side of the Feshbach
resonance. The higher the magnetic field the smaller is the interaction strength and the
smaller is the expected steady state condensate fraction (see Fig. 4-3). The response of the
fermion pair condensate to a modulation of the magnetic field (and therefore the interaction
strength) is delayed by about 500 Ms. This is about 130 times the unitarity limited collision
time hER1 and large compared to the 10 ps long magnetic field ramp through the Feshbach
resonance.

following sections.

4.2 High temperature superfluidity

The observation of fermion pair condensation did not demonstrate superfluidity in ultracold

Fermi gases. Although in three dimensions superfluidity and condensation usually occur

together, the observation of long range phase coherence and superfluid flow are necessary

to establish superfluidity. For example the formation of a quasi condensates can occur in

systems that have not yet reached full three dimensional equilibrium and therefore do not

exhibit superfluidity.

A number experiments showed features that were consistent with superfluidity but did

not provide sufficient prove as the strongly interacting normal phase often showed at least

a qualitatively similar behavior. Examples are superfluid hydrodynamics (probed in expan-

sion [63] and via collective oscillations [64, 65]), pair formation [22], or a measurement of

the heat capacity of the gas [66]. An experiment that is directly sensitive to the emergence

of a macroscopic wavefunction (and therefore long range phase coherence and superfluid

flow) is to rotate the gas. Since the flow field of a superfluid is rotation free the superfluid

can contain angular momentum only in the form of quantized vortices. The observation of

ordered and stable vortex lattices in a rotating gas is therefore a "smoking gun" for super-

fluidity. Note that classical vortices can spontaneously form in the normal phase. However,

in this case the vortices are not an equilibrium property of the system, they are not quan-



Figure 4-5: Schematics: process of vortex creation. Angular momentum is imparted onto

the gas with the help of two rotating stirring beams (in green), that create an repulsive

potential for the atoms. The atoms are confined in an optical dipole trap (in pink) with

additional axial confinement provided by the magnetic field generated by the circular coils

shown in blue. The stirring beams excite a surface mode of the superfluid that decays via the

formation of vortices. The vortices penetrate into the superfluid and arrange themselves

in a triangular Abrikosov lattice, a process that takes several 100 ms after the stirrer is

turned off. The vortex cores are too small to be imaged in situ. Therefore the optical trap

is switched off and the gas is allowed to expand before imaging. The expansion serves as

a (non-linear) magnifying glass for the vortices. To enhance the vortex contrast and to

stabilize the fermion pairs during expansion the magnetic field is usually switched to lower

fields after the optical trap is turned off.
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Figure 4-6: Observation of vortex lattices in a rotating superfluid in the BEC-BCS crossover.

tized and they decay due to finite viscosity. In rotating atomic Bose-Einstein condensate
as well as rotating superfluid 4He and 3He the observation of vortex lattices was regarded
as unambiguous proof of superfluidity.

Rotating the ultracold fermion gas in the optical trap and observing the vortices required
a considerable effort the details of which are documented in Martin Zwierlein's PhD the-
sis [39] and in [28]. The experimental procedure is illustrated and summarized in Fig. 4-5.
Figure 4-6 shows the vortex lattices observed in the BEC-BCS crossover. This established
phase coherence and superfluidity for strongly interacting gases of fermions and for molec-
ular gases of weakly bound molecules.

The observation of vortices at resonance and on the BCS side was not possible in situ. In
a narrow window on the BEC side stirring, equilibration and expansion could be performed
at the same magnetic field. In general, however, the final step of the process - the expansion
of the vortex lattice - had at least in part to take place on the BEC side: On resonance
and further in the strongly interacting regime on BCS side (where kFa < -1) the size of
the vortices is essentially given by 1/kF which is on the order of 0.2 pm for typical values
of kF. This size is smaller than the resolution one could reasonably hope to achieve with
imaging light resonant with the 6Li atoms at a wavelength of 0.67 pm. During expansion at
a stationary magnetic field the vortex size will at best increase as the condensate radius [28].
In addition the vortex contrast on resonance and on the BCS side is reduced as EF/A due
to quantum depletion which leads to a finite density of non-coherent atoms inside the vortex
cores. During expansion on the BCS side the fraction of atoms inside the core will even
increase further. Finally superfluidity will cease if the density of the system drops below a
critical value during expansion (for finite temperature and interaction strength).

These problems can all be solved with a sweep to the BEC side where the superfluid is
stabilized, the size of the vortices relative to the condensate radius increases and quantum
depletion is drastically reduced. The only requirement is that the condensate density at the
time of the magnetic field sweep is still sufficiently high for the condensate to adjust to the



change of interaction strength.
Since the observation of vortex lattices in the crossover relies in part on a magnetic

field sweep the concern that the system became superfluid during the sweep and the vortex

lattices formed afterwards has to be considered. However, the time required for vortices to

crystalize in a regular vortex lattice is several 100 ms land more than an order of magnitude

larger than the duration of the sweep and the remaining expansion on the BEC side of about
10 ms. The equilibrated, triangular vortex lattices observed in the experiments cannot have
formed in this short time frame and in particular not in a cloud expanding at the speed of
sound.

As mentioned above, superfluidity can break down during expansion on the BCS side
of the resonance: as the density decreases in expansion T/Tc increases and superfluidity
will eventually be lost. We have studied the stability of the expanding fermionic superfluid
on resonance and the BCS side as a function of density and interaction strength. This
experiment is the subject of the next section.

4.3 Superfluid expansion of a rotating Fermi gas

From preceding discussion the ultimate fate of an expanding superfluid on the BCS side
at finite temperature is known: the gas will turn normal. But how long can superfluidity
survive the expansion and at what densities or interaction strengths will superfluidity break
down?

These questions can be addressed quite elegantly by releasing the gas from the trap
and delaying the sweep to the BEC side for a variable BCS expansion time tBCS. If the
superfluid turns normal during the BCS expansion the vortex core will fill in quickly and
disappear. Therefore the vortices can be used as "markers" for the superfluid regions in the
expanding cloud [17].

Figure 4-7 shows the expansion of the superfluid gas for a fixed total, but variable BCS
expansion time at 910 and 960 G. The presence of vortices indicates that the superfluid
initially survives the expansion. Vortices are lost first in the lower density wings of the
cloud and finally in the central region. The total BCS expansion time until superfluidity is
lost depends on the initial interaction strength. The "healthier" the system starts out, (i.e.
the larger the initial kFlal) the longer the superfluid survives the expansion. Figure 4-8
demonstrates that superfluidity is lost at a critical kFa ,' -0.8 independently of the initial
interactions strength or the magnetic field.

The most plausible explanation for the breakdown of superfluidity is that the cloud turns
normal during expansion. As the cloud expands T/TF stays constant while T/TC increases.
We can estimate the critical kFa by equating 1 = ~ ) 1.76(T) (
with A = 217/ 3EFe-r/2kFlal which is valid in the BCS limit for kFIlal < 1. For our lowest

1This is independent of temperature and interaction strength and holds for atomic BECs as well.
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Figure 4-7: Superfluid expansion of the rotating gas. Shown are absorption images for

different expansion times on the BCS-side of the Feshbach resonance at 910 G (0.0, 1.0,
2.0, 3.0, 3.5, 4.0, and 4.5 ms) and 960 G (0.0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3 ms), before the

magnetic field was ramped to the BEC-side for further expansion. The total expansion time

remained constant. The vortices served as markers for the superfluid parts of the cloud.

Superfluidity survived the expansion for several milliseconds and was gradually lost from

the low density edges of the cloud towards its center. The field of view of each image is 1.2

mm x 1.2 mm.
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Figure 4-8: Central interaction strength kFa during superfluid expansion. The triangles

indicate the initial kFa of the trapped superfluids which decreases as lal decreases for higher

magnetic fields. During expansion vortices survived up to a critical interaction strength of

kFa = -0.8 + / - 0.1 (squares) almost independent of of the magnetic field (or scattering

length a). Filled circles correspond to partially superfluid, open circles to normal clouds.

The observed number of vortices is color coded.



Figure 4-9: Expansion at unitarity. Shown are absorption images after a fixed total time-of-

flight, but for different expansion times on resonance (2, 2.5, 3, 3.5, 4, 5, and 6 ms) before

the magnetic field was swept to the BEC-side for further expansion. While the gas remains

superfluid the vortex contrast is lost gradually across the whole cloud from about 15% to

3% after 2 and 5 ms of expansion on resonance respectively. Vortices could still be detected

at densities as low as 1.2 x 1011 cm - 3 in the wings of the expanded cloud. At this point the

cloud size had increased by more than a factor of four and the peak density had dropped

by a factor of 17 compared to in traps values. The field of view of each image is 1.2 mm

x1.2 mm.

estimated temperatures of 0.05TF this gives kFa = -0.9 close to the observed value.

Also the increasing size of the fermion pairs for decreasing density could in principle

lead to the observed loss of superfluidity. If the size of the pairs exceeds the interparticle

spacing the sweep methods which relies on the efficient transfer of correlated fermion pairs

into molecules might fail. We will consider these issues when we discuss our determination

of the fermion pair size in the strongly interacting regime. Note, however, that the loss of

vortices in the cloud due to an increasing pair size would likely be more gradual and not

lead to the sharp boundaries between superfluid and normal regions seen in the experiment

(see Fig. 4-7).

Could superfluidity be quenched due to rapid rotation? When the size of the vortex cores

becomes comparable to the separation between the vortices, superfluid flow is expected to

break down as superconductivity in type II superconductors at the critical field Hc2. Since

the size of the vortex cores depends exponentially on kFa the effects of rotation might not

be negligible. However, in ref. [67] it is found that the superfluid should be stable in the

strongly interacting regime at all rotation frequencies.

So far we have focused on the breakdown of superfluidity on the BCS side. At resonance

Tc/TF = const. and therefore the gas should remain superfluid during expansion. Indeed

Fig. 4-9 shows that vortices are not lost after the gas is released from the trap. However, the

vortex contrast decreases uniformly across the cloud with increasing resonant expansion.

The low densities the gas reaches during expansion could prevent the vortex cores to adjust

quickly enough to the high contrast and larger size they would have in equilibrium on the

BEC side after the sweep.

In this experiment we have observed vortices at densities as low as 1.2 x 1011 cm - 3 ,

demonstrating fermionic superfluidity in a system 100 million times more dilute than air

and at a temperature of less than 20 nK. At the other extreme fermionic superfluidity in

neutron stars is expected to occur at temperatures of 10 billion K and densities nearly 20



orders of magnitude higher than in air. Even higher temperatures and densities exist in the

quark gluon plasma of the early universe. Although this state of matter is not a superfluid,
recent experiments demonstrated that it shows very small viscosity similar to normal but

strongly interacting ultracold Fermi gases [63, 68]. It is amazing to see that systems under

such extremely conditions share universal properties.



Chapter 5

Superfluidity and phase separation

in strongly interacting Fermi gases

with density imbalance

5.1 Introduction

The creation of high-temperature superfluid in fermionic gases allows the study fermionic

superfluidity in an entirely new regime. An interesting way to get insight into the new

system is to study its stability against a change of parameters that can ultimately quench

superfluidity. In the previous chapter we have looked at the stability of the superfluid

many-body state as a function of the interaction strength. An even more powerful ap-

proach is to break a symmetry of the superfluid state and to observe the response of the

system. In ultracold Fermi gas this can be easily achieved by creating an imbalance in the

number of atoms in the two hyperfine states that form the superfluid. The first experi-

ments with strongly interacting imbalanced Fermi gases established superfluidity in these

system [18] and lead to the direct observation of the superfluid phase transition at uni-

tarity [19]. Furthermore the so-called Chandrasekhar-Clogston limit of superfluidity which
gives the critical population imbalance for a first order quantum phase transition from the
superfluid to the normal phase was established [18]. These experiments were based on data
obtained from the gas after expansion. A more detailed characterization of the superfluid
and normal phases was carried out by observing the trapped gas in situ with the methods
described in chapter 3 [20]. This lead to the determination of the homogenous phase dia-
gram of a strongly interacting Fermi gas at unitarity as a function of temperature and spin
polarization [21]. The phase diagram proved to be very rich with first and second order
phase transitions that merge at a tricritical point. In the last part of the chapter we will
discuss imbalanced Fermi gases in the BEC-BCS crossover.
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Figure 5-1: Superfluidity in imbalanced Fermi gases. The presence of vortex lattices in
the rotating gas demonstrates the stability of the superfluid against substantial imbalances
in the strongly interacting regime. Superfluidity breaks down at a population imbalance

Nc N of about 75%. This is known as the Chandrasekhar-Clogston (CC) limit of
superfluidity. For the 812 G (853) data lN was from left to right 100%, 90%, 80%, 62%,
28%, 18%, 10% and 0% (100%, 74%, 58%, 48%, 32%, 16%, 7% and 0%).

5.2 Superfluidity and direct observation of the superfluid
phase transition in imbalanced Fermi gases

5.2.1 Breakdown of superfluidity: The Clogston-Chandrasekhar (CC)
limit

The standard BCS theory describes fermionic superfluidity in a two component fermion
mixture with the same mass, chemical potentials and particle numbers and the Fermi ener-
gies of the two components are equal. Although pairing costs kinetic energy there is a gain
in potential energy of (1/2)pFl 2 (where F p(EF)/ = 2m3/2hich makes
the formation of superfluid pairs favorable even for arbitrarily small attractive interactions.
The creation of an imbalance in the spin populations (NT > NJ) leads to different Fermi
energies of the two components. Since in the imbalanced system the Fermi energies are then
not at "eye level" there is in an additional energy cost for the formation of superfluid pairs.
In a simple T = 0 model one can assume that superfluidity requires equal densities. The
imbalanced system may then form an equal density superfluid in one part of the volume
and a normal mixture at a local imbalance that is larger than the global one in the other
part of the volume. This requires the superfluid to expel majority atoms which costs ki-
netic energy. If this energy cost exceeds the superfluid stabilization energy superfluidity is
quenched. This is known as the Chandrasekhar-Clogston (CC) limit of superfluidity [69, 70].



Assuming that = -N < 1 one can show [28] that the CC limit is reached at a critical
N= +Nl

density difference An = NT- of

An p =PF (5.1)

It is convenient to define the parameter h proportional to the chemical potential dif-

ference between the two components h = -•. For definiteness we assume A < EF,

EF = = + and h < p. With that we have1:

EF= 2mt= 2
An = 12 ) [(1+h) (1 h)] (5.2)

, hpF (5.3)

In terms of h the CC limit is therefore reached when

h, : A (5.4)

Similarly one finds for the critical population imbalance

3AN,c -- (5.5)2 I
The above discussion assumed a homogenous system. However, the gases we are study-

ing are trapped in a harmonic potential and therefore the densities nt (r), n1 (r), the chemical

potentials /I (r), ~l(r) and the gap A(r) vary spatially. Note that in chapter 3 we have

demonstrated that the local density approximation is valid for our system.

In the following we will use global as well as local quantities. Most importantly the

population imbalance 6N is a global quantity since it is based on the total number of

minority and majority atoms in the trap. We will refer to the local population imbalance
as the "spin polarization":

o(r) = nT(r) - n (r) (56)n r(r))= (5.6)nr(r) + n (r)

5.2.2 The experiment: Superfluidity and the CC limit at unitarity

Superfluidity in population imbalanced Fermi gases was established with the same methods

as in equal mixtures by rotating the gas and observing vortex lattices [18] (see figure 5-

1). Vortices are always found within the parts of the cloud that also show the presence of

a fermion pair condensate. In very small fermion pair condensates no vortices have been

observed as it is difficult to nucleate them in small condensates surrounded by large thermal

clouds. We therefore conclude that the presence of a fermion pair condensate shows that the
system is superfluid and assume that fermion pair condensation is a more sensitive indicator

1With n = ()~) andpjT =h+A and yl =h-ji



for the onset of superfluidity than vortices. Careful measurements of the emergence of
fermion pair condensation as a function of imbalance and temperature [19] demonstrated a
critical population imbalance at unitarity of 6N,c = 74(5)% for an harmonically trapped gas.

This value agrees with results from more recent quantum Monte-Carlo calculations [71].

5.2.3 Bimodal density profiles: Direct observation of the superfluid phase

transition at unitarity

As we have mentioned in the previous chapter the density profiles of a balanced mixture at

unitarity show only very subtle signs of the superfluid phase transition (see Fig. 5-2 a-c).

Bimodal density distributions, the hallmark of BEC for weakly interacting Bose gases, were

only revealed after a rapid ramp to the BEC side of the Feshbach resonance that suddenly

reduced the chemical potential of the condensate relative to the thermal cloud [15, 16].

In imbalanced mixtures this situation changes dramatically: At low temperatures the

minority component develops a dense central core inside a thermal cloud which is directly

visible at unitarity and the BCS side (Fig. 5-2 e-f). Rapid ramp experiments confirm that

the emergence of bimodal density profiles on resonance coincides with the superfluid phase

transition. The density profiles of the minority component therefore reveal the superfluid

phase transition without the quantitatively poorly understood magnetic field sweeps [19].

What phenomenon leads to the emergence of a bimodal density distribution in the mi-

nority cloud? To gain insight into this question we studied the normal to superfluid phase

transition as a function of population imbalance at the lowest temperatures. Figure 5-3

correlates the emergence of bimodal density profiles, i.e. the onset of superfluidity, with

an estimate of the central densities of minority and majority component 2 . The data sug-

gest that superfluidity indeed sets in when the densities of minority and majority become

equal. The densities profiles also show that the superfluid core is surrounded by a mixed,

imbalanced normal gas. Only in the wings of the cloud is a pure gas of majority atoms

observed.

One explanation for the bimodal density distribution of the minority component is

phase separation: the superfluid of equal densities (T = 0) spatially separates from the

mixed normal component giving rise to a first order phase transition and a discontinuity

in the density profile of the minority cloud. We have actually used this phase separation

scenario, first suggested by XXX in 2004 [72], when motivating the CC limit.

The characterization of the superfluid and normal phases including the determination

of phase boundaries requires the knowledge of the in situ density profiles of both majority

and minority components. A detailed description of the experimental techniques required

to obtain these profiles including phase contrast imaging and the important aspects of

temperature calibration has been given in chapter 3. In the following we will focus on the

2Since the column density profiles were obtained after expansion a precise reconstruction of the central

densities in the trapped cloud was not possible
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Figure 5-2: Direct observation of the superfluid phase transition at unitarity in the minority

component of an imbalanced mixture. When a balanced gas is cooled through Tc the

density profiles do not change significantly (a-c). In contrast, the minority component of

an imbalanced mixture clearly shows a bimodal density distribution below Tc (d-f). The

density profiles of the majority component (shown in blue) are considerably less affected by

the onset of superfluidity. Only a careful analysis of the density profiles for the balanced

gas and the majority component in the imbalanced case reveals small changes as a function

of temperature which can be attributed to the superfluid phase transition. See refs. [19]

and [28] for details.
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Figure 5-3: Emergence of bimodal density distributions: a consequence of phase separation?
As the population imbalance decreases the CC limit is approached and at 6, the minority
cloud becomes bimodal (b). The onset of bimodality/superfluidity is measured by the
fraction outside of a Thomas-Fermi profile fitted to the wings of the cloud. At the critical
imbalance Jc this quantity suddenly increases (a). The inset in (a) gives an estimate of
the central densities of the minority and majority clouds. As the imbalances decreases the
minority density increases until it reaches the almost constant majority density at 6c. This
observation provides evidence for a phase separation scenario where a superfluid of equal
densities (at T = 0) is spatially separated from a normal mixed cloud of unequal densities.
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the density profiles to answer the new questions raised by the experiments:

* Does superfluidity at zero temperature require equal densities?

* Is there phase separation between a balanced superfluid and the mixed normal phase
at T=0?

* What is the phase diagram of the system at finite temperature?

5.3 Probing the nature of the superfluid: The homogeneous

phase diagram

5.3.1 Density profiles in a harmonic trap

Due to the confinement of the gas in an optical trap which provides an approximately

harmonic trapping potential V(r) the chemical potentials of minority (1) and majority (T)

component vary spatially as

/~T(r) = PTO - V(r) (5.7)

(r) = p0o - V(r) (5.8)

Here PTo and pto are the global chemical potentials. The total chemical potential t(r) and

the chemical potential difference h are given by

(r) = Tr)+ (r) (5.9)

h - /T(r) - ,(r) = ITO -• = const (5.10)
2 2

The ratios rl(r) = pl(r)/P1 (r) and h/•(r) vary spatially over the trapped sample and

provide a cut through the homogenous phase diagram (since the local density approximation

is valid).

In a harmonic trapping potential V(r) cx r2 (Fig. 5-4 a) the chemical potentials of

majority and minority components can be expressed as:

AT (r) = Ro 1 2- (5.11)

=P(r) = To r- (5.12)

Here R 1 and RT mark the radii where the densities of minority and majority component
become zero respectively and i0 =- p10//TO = R2 /R

Figure 5-4 b) schematically shows the density distributions of majority and minority

components in a harmonic trapping potential. We assume that the phase separation sce-
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nario between a balanced superfluid and a partially polarized normal gas yields a correct

description of the system at T=O. The experiments described in the following sections will

show that the observed density profiles indeed have a similar structure.

In the center of the cloud (region I) one expects the balanced (ni = nT) superfluid (at
T=0). At finite temperature this region can have a small polarization due to thermally
excited quasiparticles. According to equation 5.4 with a spatially varying A(r) the CC

limit is reached when h, ; A(Rc). At r = Rc the minority density suddenly jumps to lower

densities, indicating a sharp boundary between the superfluid and the partially polarized
normal phase. This is a consequence of phase separation which is associated with a first
order phase transition [72]. At radii R4 < r < R T the gas is fully polarized: only majority
atoms are present. This part of the cloud can serve as an ideal gas thermometer and also
yields an absolute density calibration.

The jump in the density of the minority cloud at r = Re corresponds to a sudden change
in the local polarization o. The maximum polarization of the stable superfluid is given by
a, and the minimum polarization of the stable normal gas by ac. For as < a < a, the gas

is unstable. Of particular interest for the comparison between theory and experiments are
the value of the critical polarization ac0 at T=0 (the CC limit) and the polarization and
temperature where a8 = oc, which corresponds to a tricritical point in the phase diagram.

5.3.2 Central density difference and superfluidity: finite vs zero temper-
ature

In a first experiment we obtained phase contrast images that (after 3D reconstruction)
showed the density difference nT (r) - n, (r) [20]. The in situ phase contrast images directly
reveal how the superfluid core emerges inside the trapped Fermi gas as the temperature
decreases (Fig. 5-5). While the rapid ramp and vortex experiments described in the previ-
ous chapter were required to independently establish that this is signature of the superfluid
phase transition it is very satisfying to finally observe the onset of superfluidity so dramat-
ically without further "ado".

From images like the ones in Fig. 5-5 the three dimensional central density difference
ny (0) - nj (0) was reconstructed and then correlated with the independently measured onset
of fermion pair condensation (see Fig. 5-6). This demonstrated that in the T = 0 limit the
superfluid is balanced (see Fig. 5-6) while at finite temperature the superfluid is polarized
(the yellow shaded region in Fig. 5-6 b)). If T > 0 the superfluid can tolerate a certain
access of majority atoms in the form of quasiparticle excitations.

Importantly, the central density difference shows a very different behavior at T - T,, 6 <
6, compared to T < Tc, 6 , 6c. In the first limit the onset of condensation occurs at a
finite central density difference which smoothly decreases to zero (Fig. 5-6 b)). This is a
signature of a second order phase transition. The onset of superfluidity around the critical
imbalance, however, is associated with a rapid drop of the central density difference to zero,
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Figure 5-5: In situ observation of the superfluid phase transition: Emergence of phase
separation at unitarity. Shown are phase contrast images of the density difference nT - ni
(6 N = 56%). As the temperature (final trap depths for evaporation) decreases a superfluid
core forms inside the cloud. The field of view for each image is 160 pm x 940 pm.

a discontinuous feature typical for first order phase transitions. A phase diagram of the
imbalanced superfluid at unitarity is therefore expected to show both first and second order
phase transitions. Since the experiment described here was only sensitive to n T (r) - n (r) we
could not yet extract quantities like p(r) and o(r) which are required to fully characterize
the phase diagram.

5.3.3 Analysis of in situ density profiles

To map out the phase diagram of an imbalanced superfluid at unitarity nT and nl have
to be known separately. According to the discussion in section 5.3.1 the first order phase
transition may then be characterized by determining a,(T/TFT) and ac(T/TFT) from the
jump in nl at the phase boundary between the mixed normal and the superfluid phase.
Here we define T/TFT - T'ocal(Rc), see section 3.5.5.

This was achieved in an improved experiment where a second phase contrast image,
yielding a weighted density difference anT (r) - fn i (r), was taken shortly after the first
image with a = 8 = 1 (see chapter 3). From the two images the three dimensional densities
nT(r) and n1 (r) as well as the spin polarization a(r) were obtained. Figure 5-7 shows nt(r)
and n (r) at T' = 0.03. In the density profiles the three regions from the schematic profile
of figure 5-4 can be clearly identified: the balanced superfluid in the center (I) a mixed
normal region (II) and the wings of the cloud where only majority atoms are present (III).
At the interface of region I and II the minority density changes abruptly, the signature of
the first order phase transition. The corresponding spin polarization a(r) is displayed in
Fig. 5-8 i). From a(r), ac and as were determined as oc = o(Rc), as = a(Rc - 0.05RT).
Here Rc is given by the kink in the column density difference profile (Fig. 5-8 a-c)). The
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Figure 5-6: First order vs second order phase transition: Correlation of the central density

difference with the formation of a fermion pair condensate. (a) At low temperatures the

onset of fermion pair condensation (red triangles) as a function of the population imbalance

is associated with a sharp drop in the central density difference (filled circles), indicating a

first order phase transition. (b) As a function of temperature three regimes can be identified:

i) An imbalanced normal (N) state at high temperatures. ii) For intermediate temperatures

fermion pair condensation emerges at a finite central density difference (n (0) - n4 (0) > 0)

which gradually drops to zero as the temperature decreases with decreasing trap depth. In

this regime the superfluid is polarized (PS). iii) A balanced superfluid (S) at the lowest

temperatures. The smooth decrease in the central density difference as superfluidity sets in

(see the yellow shaded region in the figure) is typical for a second order phase transition.
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Figure 5-7: n T (red, upper trace in region II and III) and nj (blue, lower trace in region
II and III) at the lowest temperature (T' = 0.03). The dashed line is a zero temperature
Thomas-Fermi fit to the non-interacting wings of the majority component. The three regions
indicated in the schematic profile of Fig. 5-4 can be clearly identified.

definition of as prevents a, and as to become equal at high temperature and is therefore
a lower bound for the maximum polarization of the superfluid. By determining a, and ac
as a function of temperature (see Fig. 5-8 i-1) the phase boundary between the superfluid
and normal phase can be traced at low temperature until acc ao, where the jump in a
disappears. From the previous experiment we already know that at higher temperatures the
superfluid phase transition is second order without sharp features in the density profiles.
In this regime we have used the rapid ramp method to determine the onset of superfluidity
and then evaluated the central density difference for the same parameters. The combined
data give the critical lines in the homogeneous phase diagram of an imbalanced Fermi gas
at unitarity shown in Fig. 5-9.

5.3.4 The phase diagram

The phase diagram is quite rich: the thermodynamically unstable region for a, < a < ac
gives rise to the first order phase transition observed in the density profiles. At higher
temperatures the superfluid to normal transition is second order. The first and second
order critical lines meet at a tricritical point. The phase diagram shows two further points of
interest the critical temperature Tco at zero imbalance and the critical spin polarization 0co
at zero temperature. In the absence of a theory for the critical line between the superfluid
and normal phases, we have applied a linear fit to the data points. This extrapolation
suggest that (atc, Ttc/TFT) - (0.2,0.07), aco - 0.36 and Tco • 0.15 (the constraint on Tco

" 

'
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Figure 5-8: Temperature dependence of nc,, n, nc,j, n n and a(r). Shown are the density
profiles for four different temperatures T' given by: 0.03(1) (a,e,i); 0.05(2) (b,f,j); 0.07(1)
(c,g,k); 0.10(1) (d,h,l). T' was determined as discussed in section 3.5.5. As the temper-
ature increases the jump in a(r) decreases until it vanishes in i). Note that beyond the
analysis presented in this section, the density profiles allow the determination of the zero-

temperature equation of state in a polarized Fermi gas [73].
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Figure 5-9: Homogeneous phase diagram at unitarity. The filled black (grey) circles give
the experimentally determined values for a, (ao) and trace the phase boundary of the
thermodynamically unstable region as < a < a,. The critical line at temperatures above
Ttc (black square) was determined by the onset of fermion pair condensation. Note that
for small population imbalances a reliable fit to the non-interacting wings of the majority
cloud for temperature calibration was not possible and therefore no further data yielding
a stronger constraint for Tco could be obtained. The phase diagram also shows several
theoretical (and one experimental) predictions for Tc, 0 and aco: a) ref. [74]; b) ref. [54], the
original data have been scaled by a/ with ( = 0.42 from ref.[75]; c) ref. [76]; d) ref. [77]; e)
ref. [71]; f) The location of the tricritical point in the diagram has recently been obtained
theoretically in ref. [78] and is found to be (at, Ttc/TFT) = (0.24,0.06) in good agreement
with our experimental determination.
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is not very strong as the in situ temperature calibration could not be performed for small

populations imbalances).
The values for both To and aco have been the subject of long standing debates. With

regard to T, a number of approaches [74, 77, 76] (including two Quantum Monte Carlo

calculations) and one measurement [54] obtained different results within a range of 0.15 to
0.23 of local T/TF. Our extrapolation seems to favor rather the lower critical temperatures.

The critical ac0 has been discussed controversially for more than two years. While all

our previous observations [18, 19, 20] and Monte Carlo calculations [71] were consistent with

a low aco < 0.4, a number of theoretical studies obtained values for a, exceeding 0.9 [75,
79, 80, 81, 82, 83]. Furthermore experiments of the Rice group [84, 85] were considered to

be consistent with a large aco > 0.9.
The results presented here clearly confirm a ac,o < 0.4 and rule out considerable higher

values. This is a dramatic consequence of the strong interactions already in the normal phase
which stabilize an imbalanced normal two-state mixture relative to the balanced superfluid
one. The importance of these interactions is a qualitative feature of strongly interacting
Fermi gases and theories that obtained high values for the CC limit did not capture this
physics appropriately. For example Bogliubov-de Gennes theory includes interactions only
in the form of pairing correlations in the superfluid phase. The stability of the mixed
normal phase at T=0 at unitarity has first been demonstrated theoretically in ref. [86]
based on very general arguments and was further supported in ref. [87] and by Monte Carlo
calculations [71, 88, 89].

The interpretation of the experiments at Rice is still an open issue. While surface
tension and finite size effects [90, 91] seem to play an important role in these experiments3 ,
they cannot explain an apparently higher Clogston limit but should rather lead to a further
reduction compared to the value established in our experiments. Further experiments are
necessary to gain a better understanding of these effects and their relation to superfluidity.

So far we have considered the critical line separating the superfluid from the normal
phase. However, there is another interesting point in the phase diagram which is the crossing
of the critical line a, with the a axis at T = 0. If this crossing occurs at a finite value of a
the superfluid can tolerate a finite polarization even at T = 0. While the data do not permit
an accurate extrapolation to zero temperature there is another way to address this question.
As illustrated in figure 5-10, the answer is simply determined by the relative magnitude of A
and he. If hc > A excess fermions would have a lower energy in the superfluid as polarized
quasiparticle than in the mixed normal phase and the superfluid at T = 0 should show a
finite polarization. From the in situ profiles we find that h, ; 0. 95y [21]. Since ti < A at
unitarity as shown in [76, 75, 92] this implies h, < A and therefore we can conclude that
the superfluid at T = 0 is unpolarized and balanced.

3The experiments were carried out in very elongated traps and with comparatively low atom numbers.
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Figure 5-10: A vs h at T=O. Only if A < h, can the superfluid be polarized at zero
temperature. The experiment provides evidence that this is not the case and the superfluid
is balanced.

5.4 Changing the interactions: From a Bose-Fermi mixture
to exotic superfluids?

In the previous sections we considered the imbalanced gas with universal interactions at
unitarity. Imbalanced mixtures on the BEC and BCS side of the resonance are, however, of
great interest in themselves and here we will give an overview of our experiments studying
these systems [18, 19, 20, 93]. With the phase diagram at unitarity in mind, an important
goal of experiments in imbalanced mixtures is to obtain the three dimensional phase diagram
of strongly interacting fermions as a function of temperature, imbalance, and interaction
strength (see Fig. 5-11).

In the BEC limit the imbalanced system is a weakly interacting Bose-Fermi mixture of
bosonic dimers and unpaired fermions. This mixture can be described within mean field
theory using a Bose-Fermion scattering length abf to capture the atom-dimer interactions
and a Bose-Bose scattering aBB for the dimer-dimer interactions. The value of abf has
been predicted more than fifty years ago in the context of neutron-deuteron scattering to
be abf = 1.18a [94], but has not been experimentally confirmed since then. The Bose-Bose
scattering length abb = 0.6a has been obtained about five years ago [30] and studies in
balanced Fermi gases were found to be consistent with this value [95, 96].

As the interactions increase towards unitarity an interesting situation emerges: close to
resonance, fermion pairs - that are weakly bound and stable bosonic molecules in isolation -
cannot undergo Bose-Einstein condensation if they are imbedded in a Fermi sea of majority
atoms at a sufficiently high spin polarization. This is just a consequence of the CC limit that
increases from zero in the BCS limit to Oco - 0.4 at unitarity and eventually reaches 1 at
a critical point on the BEC side. In the following we will determine this critical interaction
strength.
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Figure 5-11: Schematic illustration of a three dimensional, homogeneous phase diagram of
a strongly interacting Fermi gas with spin imbalance as a function of polarization, temper-
ature and interaction strength. The normal (N, green), superfluid (SF, blue) and unstable
(U,white) regions in the phase diagram are color coded. In the previous section we have
determined the tricritical point at unitarity (red circle) and the critical spin polarization
(blue circle) [21]. The yellow circle marks the critical point on the BEC side, where the
normal mixed phase disappears and fermion pairs will start to condensate at T=0 irrespec-
tive of the spin polarization of the sample (see section 5.4.1). The phase diagram does not
show possible states of exotic superfluids discussed in the text.

In the BCS limit the imbalanced gas will ultimately become normal. There are, however,
several suggestions for exotic superfluid phases like the breached pair or Sarma state [97, 98],
the Fulde-Ferrel-Larkin-Ovchninikov (FFLO) state [99, 100, 101, 102] or a state with a
deformed Fermi surface [103] that can stabilize the superfluid close to the CC limit on the
BCS side. So far none of this phases have been observed in ultracold Fermi gases.

5.4.1 The CC limit as a function of interaction strength

Figure 5-12 shows that the CC limit occurs at increasingly high imbalances as the interac-
tions become stronger from the BCS to the BEC side [18, 19, 20]. To precisely determine
how the critical imbalance approaches unity on the BEC side we will again take full advan-
tage of spatially reconstructed density profiles which are displayed in Fig. 5-13.

At 834 G we observe the density profiles and spin polarizations as discussed in the pre-
vious section. In the center of the cloud (r < R,) is the balanced superfluid, at intermediate
radii (R, < r < R1) we find the mixed normal region and for R1 < r < RT the minority
density is zero. As in the previous experiments the non-interacting wings of the majority
cloud for r > R1 provide an absolute temperature and density calibration. The extend of
the mixed normal region (shaded in blue) is largest on the BCS side and decreases with in-
creasing interaction strength and critical spin polarization. It disappears when R4 becomes
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Figure 5-12: CC limit in the crossover determined via the onset of fermion pair condensation
and correlated with the central density difference in the cloud. Note that the x-axis refers
to the global population imbalance 6N and not the spin polarization a. At unitarity the
CC limit occurs at gNc 0.75 and ac t 0.4.

equal to Rc at a critical interaction strength 1/(kFTa)c. For larger interaction strength

no mixed normal region exists, implying that all minority atoms are fully paired and that

these pairs can undergo Bose-Einstein condensation independently of the spin polarization

of the sample. Therefore one may argue that at this point the pairs fulfill the minimum

requirement to be called "bosonic" and that the two spin state fermion mixture can now

be justifiably called a "Bose-Fermi" mixture, though still strongly affected by interactions.

In the regime where R1 approaches Rc it becomes increasingly difficult to determine

ac directly from the density profiles with high precision (see Fig. 5-14 a). Another good

measure for the extend of the normal mixed phase is the ratio n of the chemical potential

of the majority component at R1 and R,:

K=T(RI) 
D - D2S (R) (5.13)

The smaller the value of K, the larger is the normal mixed region and K approaches unity

when R1 = Re. The linear extrapolation of r to unity yields the critical interactions strength

1/(kF,Ta)c = 0.71(5).

The density profiles of the spin mixture reveal even more details about the system. On

the BEC side above the critical interaction strength 1/(kFTa)c both the Bose-Bose and

Bose-Fermi scattering lengths can be extracted [93]. The observed values of abf = 1.23(3)a
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Figure 5-13: Density profiles and spin polarization (n,,T, nc,l, nT, nl a) of a trapped Fermi
mixture as a function of interaction strength (green: majority, blue: minority, black: dif-
ference). The black dotted line is a zero-temperature Thomas-Fermi distribution fit to the
wings of the majority component (r > R1). RT, R1 (dashed dot lines), and Rc (dashed lines)
are the radii of the majority, the minority cloud, and the superfluid core, respectively. The
critical polarizations ac at the phase boundary r = Rc are indicated by the right arrows.
The values for RT (in pm), Rc/R T, and RI/RT were respectively: for (a,f,k), 381, 0.33,
0.33; for (b,g,l), 380, 0.33, 0.33; for (c,h,m), 362, 0.35, 0.59; for (d,i,n), 371, 0.44, 0.72; for
(e,j,o), 367, 0.41, 0.76. T/TFo < 0.05 and TFo , 1.0 /iK.
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Figure 5-14: Phase diagram of the partially polarized normal phase in the crossover regime.
(a) The critical polarization oc as a function of the interaction strength 1/kFTa at the phase
boundary. (b) K as a function of the interaction strength. The critical 1/(kFTa)c for ac = 1
(red square) is found by linear extrapolation of x to unity. The red solid line is a guide to
the eye for the critical line that exponentially connects (1/(kFTa)c = 0.71, ac = 1) and the
critical value on resonance (1/kFTa = 0, ac0 = 0.36) (as determined experimentally [21]),
indicated by the red open circle.

and abb = 0.55(1)a are close to the theoretical predictions [94, 30]. The Bose-Bose scattering

length actually starts to increase (from its exact value of 0.6) in the vicinity of the critical

interaction strength. Interestingly, if beyond mean field effects via the Lee, Huang and

Yang (LHY) correction [104] are included in the model 4, the value of abb remains constant

up to 1/(kF,ta)c, implying that mean field theory plus the LHY correction yields a good

description even of strongly interacting Bose-Fermi mixtures. With the determination of

abf a prediction made in the context of neutron-deuteron scattering fifty years ago, has now

be tested with ultracold atoms. This stresses again the universality of interacting fermion

systems and shows the power of the tools provided by atomic physics to study them.

4The effects of the LHY correction which reduces the compressibility of the Bose gas has previously been
observed in strongly interacting Fermi gases via an upshift of the radial compression mode frequency [105].



Chapter 6

Pairing correlations of fermions in

the superfluid and the normal

phase

In the previous chapters we have discussed the superfluid properties and the phase diagram

of strongly interacting Fermi gases with (and without) population imbalance. This has

provided us with insights into the properties of the strongly interacting gas on a macroscopic

scale. We now proceed to address the underlying physics at a microscopic level by studying

the fermion pairs.

Pair formation is the prerequisite for condensation and superfluidity in fermionic super-

fluids. The fermion pairs play a central role in BEC-BCS crossover [1, 2, 3] and show a very

different behavior in both limits with important ramifications for the superfluid systems.

In the BEC limit the fermion pairs are tightly bound molecules, small compared to the

interparticle spacing and stable in isolation. The molecules start forming around tempera-

tures T* well above the critical temperature Tc for Bose-Einstein condensation. In the BCS

limit the fermion pairs are weakly bound, large compared to the interparticle spacing and

unstable in isolation. Here the pairs form only once the system undergoes the superfluid

phase transition.

With the realization of a crossover superfluid fermionic pairing can be studied in a new

regime. In particular at resonance the high temperature superfluid is expected to show
universal behavior with the only relevant energy and length scales given by EF and 1/kF,
respectively. The comparison between BEC and BCS limits points to some of the interesting

questions about the resonantly interacting pairs: Do pre-formed pairs exist at temperatures

T* > Tc? What is the pair size compared to the interparticle spacing? Further questions
concern imbalanced systems: do fermion pairs also exist at imbalances 6 > 6c i.e. in a
regime where Tc = 0 or is the phase transition as a function of spin polarization associated
with "Pauli Pair Breaking" [106, 107, 108]? To summarize these questions we would like to



understand where in the phase diagram of fig. 5-9 fermion pairs are present and to investigate

their nature. The "tool" employed for these studies is radio-frequency (rf) spectroscopy.

Rf techniques provide access to the hyperfine structure of atoms and are widely used

in atomic physics from precision spectroscopy in atomic clocks to evaporative cooling in

ultracold atomic gases or as an output coupler for atom lasers [109, 110]. As discussed in

chapter 2 signatures of pairing correlations in rf spectroscopy experiments are a character-

istic pair dissociation lineshape and shifts of the rf transition line with regard to the bare

atomic line. Such interaction shifts are often referred to as "clock shifts" since they are

the dominant source of systematic errors for atomic clocks. While being a vice for precise

clocks, these shifts are a great feature to study and understand correlations in interacting

systems.

In this chapter we will follow the progress made in rf spectroscopy experiments of

strongly interacting fermions over the past years and will address a number of the fun-

damental questions with regard to pairing as we go along. In the course of the experiments

we realized, however, that so-called final state interactions severely affected the rf spectra

obtained in the standard (1,2) mixture. The results of these experiments have therefore to

be interpreted with caution. We then realized a new superfluid spin mixture where final

state interactions are negligible. This was decisive for finally being able to easily interpret

the observed rf spectra in terms of pair dissociation and to determine the size of the fermion

pairs at unitarity. In ongoing experiments imbalanced mixtures were studied enabling the

spectroscopic observation of quasiparticles.

6.1 The Innsbruck experiment: A signature of pairing in the

crossover

The first rf spectroscopy experiments with ultracold fermions have been carried out at

JILA [33] and MIT [7] even before molecules and fermion pair condensation were observed.

These experiments demonstrated the effects of attractive and repulsive interactions in the

gas by studying mean field shifts. Shortly afterwards the JILA group published rf dissoci-

ation spectra of the newly created weakly bound molecules [55].

A first signature of pairing in the many-body regime was observed by the Innsbruck

group [22] in 2004. We will discuss the Innsbruck results in some detail to motivate the

questions we have addressed in our subsequent experiments. In the Innsbruck experiment

the initial state is a (1,2) mixture of 6 Li atoms and the rf is tuned around the 12) to

13) transition. The spectra are obtained by monitoring losses in state 12) after the rf is

applied.

Let us first consider the rf spectra for weakly interacting molecules on the BEC side of

the Feshbach resonance shown in Fig.6-1. At high temperatures (fig.6-la) only unbound

atoms are present and the spectrum shows no shift from the bare atomic transition line (i.e.
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Figure 6-1: Rf spectra on the BEC side of the 834 G Feshbach resonance reported by
the Innsbruck group [22]. The three spectra were obtained for different temperatures. At
high temperatures no molecules have formed only the "atomic" peal is visible. As the
temperature is lowered molecules start forming and a molecular peak emerges. The peak
is located at higher radio frequencies due to the additional energy required to break the
molecule. At the lowest temperatures all atoms are paired into molecules and the molecular
peak is the only remaining feature in the spectrum. The gap between the atomic peak and
the onset of the asymmetric molecular peak corresponds to the molecular binding energy.
Reprinted from [22].
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Figure 6-2: Rf spectra close to unitarity at 837 G reported by the Innsbruck group [22].
Again the spectra were obtained at different temperatures and show the emergence of a
double peak structure similar the molecular spectra on the BEC side. Note that the pairing
peak is fairly symmetric in contrast to the molecular dissociation peak in the spectra of
fig 6-1. Reprinted from [22].



the 12) to 13) transition in the absence of atoms in state II) ). As the temperature is lowered
(1,2) molecules start forming and a second, asymmetric peak emerges in the spectrum at
higher frequencies (fig.6-1b). At the lowest temperatures all atoms form molecules and
the molecular or "pairing" peak is the only remaining feature in the spectrum (fig.6-1c).
The molecular dissociation spectrum spectrum is characterized by the sharp increase of the
signal at a threshold value and a slow decay at high energy, the typical features of molecular

dissociation spectra that were discussed in chapter 2.

The spectra obtained in the Innsbruck group close to unitarity are shown in figure 6-2.

As a function of temperature they display a similar behavior as the molecular spectra in the

BEC limit: at high temperatures the system responds at the atomic transitions frequency,
as the temperature is lowered a pairing peak emerges and at the lowest temperatures only

this peak remains in the spectrum. There are, however, certain differences: the onset of

the pairing peak occurs at the frequencies of the atomic transition and the pairing peak

appears to be fairly symmetric. Furthermore the shift of the rf peak at unitarity was found

to be proportional to the Fermi energy.

The emergence of a double-peak structure in the rf spectra and the shifted spectral

response at the lowest temperature made a strong case for the formation of fermion pairs at

unitarity. The Innsbruck rf spectra were also regarded as a key indication for superfluidity

in the strongly interacting regime (before superfluidity was established via the observation

of vortex lattices [4] about a year later).

We were motivated to revisit rf spectroscopy of strongly interacting fermions in part by

questions the Innsbruck experiment had left open and also by new questions that emerged

from the creation of imbalanced mixtures:

* Rf spectroscopy, pair formation and the superfluid phase transition. Since no signature

for the superfluid phase transition was observed in the experiment [22] the connection

between the observed rf spectra, pair formation and superfluidity remained unclear.

- Do the rf spectra indicate the normal to superfluid phase transition?

- Do pre-formed pairs exist in the normal phase above T,?

* Efects of the trapping geometry. At unitarity fermion pairs form due to many body

interactions and consequently the response of the system to the rf pulse is density

dependent. Since the experiments are carried out in a harmonic trapping geometry

the observed spectra show the response averaged over the density distribution of

trapped cloud.

- In the BEC limit molecules and unbound atoms coexist locally. Is the double

peak structure at unitarity an artifact of the trapping geometry or does it imply

the local coexistence of fermion pairs and unbound atoms?



- Does inhomogeneous broadening prevent a clear observation of a gap between

the atomic line and the onset of the pairing peak?

* Effect of final state interactions and interpretation of the spectral lineshape. The early
MIT experiment [7] demonstrated the absence of mean field shifts in the (1,2) mixture

at magnetic fields beyond 700 G and temperatures on the order of TF. This was
attributed to the fact that all interactions between atoms in states (1) , 12) , and 13) are
simultaneously unitarity limited1 . However, this also implies strong interactions in the
final state which any detailed interpretation of the spectra needs to take into account.

- The pairing peak at unitarity is fairly symmetric in contrast to the pair dissocia-
tion spectra expected in the BEC and BCS limits. Is this a consequence of final
state interactions?

* Pairing correlations at imbalances above the CC-limit The CC-limit is also referred
to as the "Pauli pair breaking" limit [106, 107, 108].

- Is the CC limit associated with pair dissociation?

- Does rf spectroscopy reveal the normal to superfluid phase transition as a func-
tion of imbalance at very low temperatures?

* Majority versus minority spectra The correlation between the spectra of minority and
majority components can give important information about the nature of the pairs.

- Are the pair dissociation spectra of minority and majority component the same
or are they different? How does this depend on the phase of the system?

- Will the majority spectrum show "local" double peaks i.e. two peaks at a given
density? In other words can rf spectroscopy distinguish between paired and
unpaired majority atoms at a finite spin polarization?

This collection of questions indicates that the research in this area both experimentally
and theoretically is a major frontier. Issues as fundamental as what should be called a
"pair" in the many-body regime are still under debate. In the following we will describe
our experiments that were designed to address some of these questions.

The two experiments we will discuss first [23, 20] have been carried out in the standard
(1,2) mixture of 6Li as was the Innsbruck experiment. However, as already mentioned above
we have demonstrated in later studies [111] that final state interactions severely affected
all rf spectra obtained from this mixture in the strongly interacting regime [22, 23, 24].
Since the experiments in the (1,2) mixture have motivated the later experiments we will

1The exact range of magnetic fields where the interactions are unitarity limited depends on the densities
involved. For the typical densities in the center of the trapped gas at 834 G 1/kFaij 5 1 where ij refers to
state |i) and Ij).
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Figure 6-3: Rf spectra of the minority component in a highly imbalanced superfluid (SN ~
0.9), well above CC limit of superfluidity. As the temperature is lowered a "pairing peak"
develops in the absence of superfluidity. Note that in most cases losses in state 12) were
monitored as a function of the rf. The rf spectra therefore show dips where the response of
the system is strongest. In the Innsbruck experiment a different normalization was chosen
and the strongest response appears as a peak. The spectra were taken for the following
parameters: A) 6 = 0.87, EF = h x 260 kHz, TITF = 1.9; B) 6 = 0.94, EF = h x 360 kHz,
T/TF = 1.0; C) 6 = 0.94, EF = h x 360 kHz, T/TF = 0.9; D) 6 = 0.93, EF = h x 340 kHz,
T/TF = 0.5.

nevertheless discuss them in some detail. But the reader should be cautioned up front

that any quantitative interpretation of the rf spectra obtained in the (1,2) mixture close to

unitarity is difficult.

6.2 Rf spectroscopy and the superfluid phase transition

To study the relation between the signature of pairing in the rf spectra (in the (1,2) mixture)

and the superfluid phase transition we set out to

* Obtain rf spectra in the normal phase of an imbalanced gas above the CC limit.

* Correlate the rf spectra at lower imbalances with the onset of superfluidity via the

observation of fermion pair condensation as a function of temperature and imbalance

These experiments probe for the presence of pre-formed pairs at temperatures T > Tc >

0, as well as pairing correlations in a regime where Tc = 0 (at imbalances above 6,). The

n,
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experiments were carried out by preparing imbalanced Fermi gases at unitarity (833 G) and
applying the rf to the minority component [23].

Minority rf spectra for four different temperatures at an imbalance of 6N - 0.9, i.e. well

above the CC-limit, are displayed in Fig. 6-3. The spectra exhibit the same behavior as the

ones obtained for an equal mixture in the Innsbruck experiment (fig. 6-2): As the tempera-
ture is lowered a shifted pairing peak emerges in the rf spectrum. Based on the assumptions

made in the interpretation of the Innsbruck data this demonstrates the formation of fermion

pairs in a regime where pairing is not a precursor to superfluidity at lower temperatures.

Furthermore the experiment shows that the emergence of a pairing peak in the rf spectrum
at unitarity is not necessarily related to superfluidity but yet another consequence of the
strong interactions in the normal phase.

To correlate the rf spectra with the onset of superfluidity we repeated the experiments for
smaller imbalances where the superfluid phase transition can be observed both as a function
of temperature and population imbalance. The corresponding rf spectra are given in Fig. 6-
4. Already above Tc as well as above 6N,c the spectra show full pairing in the normal phase
and there is now indication for the onset of superfluidity within the experimental resolution.
The spectra demonstrate the presence of pre-formed pairs above Tc i.e. a T* > Tc as well
as pairing above the critical population imbalance 6N,c where Tc = 0.

These conclusions have to be scrutinized again in the light of the more recent experi-
ments which are not subject to strong final state interactions and will be discussed below.
Important questions concern a more detailed understanding of the signature of "pairs" in
the rf spectrum versus other forms of "pairing". In this context it will be important to study
the majority rf spectra both in the polarized superfluid and in the normal phase. This will
allow us to spectroscopically distinguish unbound majority atoms (which are quasiparticles
in the superfluid phase) from paired majority atoms.

It has been suggested that a single minority atom embedded in a Fermi sea of majority
atoms with resonant interactions, can be described as a "polaron" [86, 71, 87] with an
interaction energy on the order of -0.6EF. This implies that somewhere in the phase
diagram "pairs" turn into "polarons" for increasing imbalance. A spectroscopic signature
of this change in the nature of the pairs might help a to improve our understanding of the
relation between pairing and superfluidity.

These ideas show that it may be possible to observe a signature of the superfluid phase
transition in the rf spectra. An experiment to observe such a signature must likely be
performed at temperatures well below the tricritical point. This is the regime where the
phase transition is first order and the minority component shows a sizable jump in density
at the phase boundary. Reaching these temperatures consistently in the several hundred
subsequent runs of the experiment required to obtain a high resolution rf spectrum will,
however, pose a considerable challenge.



0 00O

S ,

-. p.

20 0 20 4

Radio-frequency offset [kHz] Radio-frequency offset [kHz]

Figure 6-4: RF spectra of the minority component obtained while crossing the phase tran-

sition by reducing either the population imbalance (A-C) or temperature (D-F). The rf

spectra do not reveal the phase transition within the experimental resolution. The onset of

superfluidity is indirectly observed by fermion pair condensation. The spectra were taken

for the following parameters A-C: A) 6N = 0.87, EF = h x 27 kHz, T/TF = 0.08; B)

bN = 0.73, EF = h x 27 kHz, TITF = 0.10; C) 6 N = 0.00, EF = h x 23 kHz, T'/TF = 0.10.

D-F: D) •N = 0.37, EF = h x 38 kHz, T/TF = 0.18; E) 6
N = 0.32, EF = h x 38 kHz,

T/TF = 0.14; F) 5N = 0.29, EF = h x 35 kHz, T/TF = 0.09.
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Figure 6-5: Spatially resolved rf spectroscopy in an equal (1,2) mixture at unitarity. The

rf is resonant with the 12) to 13) transition thus creating a local "imbalance" in the (1,2)

mixture which can be precisely detected in situ with the phase contrast imaging technique

described in chapter 3. a) Response of the cloud to different radio frequencies: the lower

density wings become excited at smaller frequencies than the high density parts in the center

of the cloud. b) Absorption image of an equal mixture without rf excitation indicating the

size of the cloud (see also the dashed line in a). c) Inhomogeneous rf spectrum obtained by

integrating the response in the phase contrast images.

6.3 Spatially resolved rf spectroscopy

The rf spectra obtained in the previous section suffered from the problem that they were not

"spatially resolved" i.e. they sampled the response of the minority atoms across the varying

density of the majority component. On may argue that at high population imbalances this

should not be such a serious problem as the density of the majority atoms changes only

very little across the small minority cloud. In general, however, a quantitative comparison

between the rf spectra and theory is straightforward only if one can spatially resolve where

in the trap atoms are transferred as a function of the applied rf frequency. This is especially

important if the trapped gas is in different (superfluid/normal) phases depending on the

local densities in the trap.

We have been able to spatially resolve the response of an equal, superfluid mixture as

a function of the applied rf (see Fig. 6-5) [24]. After 3D image reconstruction one obtains

the rf signal at a given density of the system. In Fig. 6-6 the inhomogeneous signal and

the response at the center of the trapped cloud are compared. The homogenous spectrum

shows a clear gap from the zero offset and contributes only to the the high frequency part

of the inhomogenous spectrum.

The two rf spectroscopy experiments we have discussed in this and the preceding sec-
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Figure 6-6: Homogenous rf spectrum from the center of the trapped cloud (black circles) and
the inhomogenous spectrum from the integrated response (red triangles). The spectra are
normalized to the same maximum amplitude. Compared to the inhomogenous spectrum,
the central spectrum shows a reduction in width by about a factor of two and a clear gap
with regard to the zero frequency offset.

tion [23, 24], have renewed theoretical interest in the interpretation of the rf spectra and

their relation to fermionic pairing in the normal and superfluid phases. Final state interac-

tions have been explicitly considered in references [112, 113, 114, 115] and rf spectroscopy

in imbalanced mixtures in references [112, 116, 117, ?, 118, 119, 120].

6.4 Final state interactions and new superfluid spin mixtures

The potentially dramatic effect of final state interactions on the rf spectra obtained in

the (1,2) mixture becomes apparent when one compares the observed spatially resolved

spectrum with the theoretical expectations for both the BEC and BCS limits (see Fig. 6-7).

While the calculated rf spectra in both limits show a lineshape typical for pair dissociation

spectra, the experimentally obtained spectrum at unitarity does not: it is symmetric and

narrow. Since the physics in the BEC-BCS crossover is expected to evolve smoothly from

one limit to the other this is a surprising observation. Furthermore the properties of the

initial state at unitarity should be universal and therefore independent of the specific system

used in the experiment. Final state interactions, however, are non-universal and could very

well cause this unexpected behavior.

Final state interactions arise when atoms transferred from state Ib) (in an initial (a,b)

mixture) to a third state Ic) interact with atoms in the initial state. In rf spectroscopy

experiments with fermionic atoms only interactions of atoms in state Ic) with atoms in

state la) can contribute [7, 32]. A conceptually very simple and dramatic effect of final

state interactions arises when (using a molecular picture for simplicity) the rf does not

dissociate an (a,b) molecule but transfers it to another (a,c) molecule. If the wave function

of the (a,b) and (a,c) molecules are very similar, the Franck-Condon overlap for such a

transition is very high and pair dissociation is suppressed. The lineshape of such "bound-
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Figure 6-7: The problem: the rf spectrum of the (1,2) mixture at resonance is symmetric
and narrow, while the spectra expected in both the BEC and BCS limits show a highly
asymmetric pair dissociation lineshape. The frequency axis of the experimental spectrum
has been scaled by the full width at half maximum since the spectral onset can be subject
to shifts due to Hartree terms (see also section 6.5).

Rf transition

12) --+3)
12) --+1)
1) -- 12)
3) --+12)

af[ao]
a13 , -3300
a13 , -3560
a23 m +1140
a12 - +1450

Table 6.1: Final state scattering lengths for magnetic field insensitive rf transitions at
unitarity for the (1,2), (2,3) and (1,3) mixtures. For a typical value of kF ; 3000ao in our
experiments the final state for the (1,2) and (2,3) mixtures is strongly interacting. This is
not the case for the (1,3) mixture where the two possible final scattering lengths are more
than a factor of two smaller and positive. This mixture is therefore an ideal candidate for
rf spectroscopy experiments.

bound" transition is symmetric and narrow in contrast to the asymmetric lineshape for pair
dissociation or "bound-free" transitions.

6.4.1 Effect of final state interactions

In principle there are several ways to change the final state interactions without affecting
the initial state. At unitarity the final state interaction strength can be reduced by low-
ering the density and therefore kFaf, while the initial state remains resonantly interacting
(1/kFai ; 0). Decreasing the density by a large factor while maintaining the same low
temperature T/TF is, however, experimentally difficult. Alternatively one might attempt
to spectroscopically access a different final state. However, the induced transition must be
magnetic field insensitive to obtain the required spectral resolution in the kHz regime. The
(1,2) mixture in 6 Li does not provide other rf transitions that fulfill this requirement. In-
stead we created resonantly interacting superfluids in new combinations of initial hyperfine
states: (1,3) and (2,3) by utilizing the broad Feshbach exhibited by these mixtures at 691

Mixture

(1,2)
(2,3)
(1,3)
(1,3)

Bo[G]
834
811
691
691

BCS-limit

-- --

m-- nu
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Figure 6-8: The solution: Rf spectroscopy of the (1,3) superfluid at unitarity. With neg-

ligible final state effects the rf spectrum displays the expected asymmetric lineshape. The

frequency axis of the experimental spectrum has been scaled by the full width at half maxi-

mum since the spectral onset can be subject to shifts due to Hartree terms (see also section

6.5).

G and 811 G respectively. Table 6.1 summarizes the location of the Feshbach resonances

together with the allowed magnetic field insensitive rf transitions and final state scattering

lengths. Details about the experimental realization of these mixtures and related informa-

tion are given in chapter 3. The comparison of the final state scattering lengths between the

three mixtures clearly shows that the (1,3) mixture is the ideal candidate for rf spectroscopy

experiments. Indeed, the rf spectra obtained with a (1,3) mixture at unitarity show the

typical pair dissociation lineshape one would expect from a simple crossover picture (see

Fig. 6-8).

A direct comparison between the rf spectra obtained at unitarity in the (1,2) and the

(1,3) mixture reveals the dramatic effect of finite state interactions which suppress the

asymmetric "tails" of the (1,2) rf spectrum and shift the spectral peak. We will discuss

possible explanations for the strong effects of these interactions on the rf spectra in the

context of further experiments later in this chapter.

6.4.2 (1,3) spectroscopy: 11) to 12) versus 13) to 12) transition.

As has been indicated in table 6.1 the (1,3) mixture has two magnetic field insensitive

rf transitions, associated with positive final state scattering lengths (that differ by about

30%). Fig. 6-10 shows the rf spectra at unitarity for these two transitions. Apart from the

asymmetric "bound-free" transition to higher energies all spectra show a second "bound-

bound" transition from fermion pairs in the initial state to more deeply bound (1,2) or

(2,3) molecules for the 13) to 12) and 11) to 12) transitions respectively. Note that the

bound-free spectra are very similar for both 13) to 12) and I1) to 12) transitions. The bound-

bound spectra, however, show different shifts indicating that the final (2,3) molecule is more

strongly bound than the (1,2) molecule. This is a consequence of the smaller width of the
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Figure 6-9: Dramatic effect of final state interactions: direct comparison of spatially resolved

rf spectra obtained at unitarity from the (1,2) mixture (open triangles) [24] and from the

(1,3) mixture (solid circles). The frequency axis is normalized by the local Fermi energies.

While the (1,3) spectrum shows the expected asymmetric lineshape, the (1,2) spectrum is

symmetric, narrow, and shifted to lower energies. All spectra in the strongly interacting

regime reported in references [22, 23, 24] were subject to these significant distortions.
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Figure 6-10: Spectroscopy on the two magnetic field insensitive rf transitions in the (1,3)

mixture at unitarity. The insets in (a) and (b) schematically indicate the two rf transitions

employed in the experiment. Since state 13) has a higher energy than state 12), the dissoci-

ation energy for the 13) to 12) transition is always less than the transition frequency for the

atomic resonance Eo/h and therefore the 13) to 12) dissociation spectra appear at negative

energies compared to E 0 .
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(2,3) Feshbach resonance at 811 G [44] compared to the width of the (1,2) resonance at 834
G (see Tab. 3.1 and Fig. 3-4).

The spectra also show directly that final state interactions can only weakly affect the
dissociation spectrum: the distance between the bound-bound and bound-free transitions
in the spectra is large compared to the linewidth of the dissociation spectrum. As discussed
in detail in ref. [111] this implies that the Franck-Condon overlap between the (1,3) pair in
the initial and the (1,2) or (3,2) pairs in final state is small and the bound-bound transition
does not have a significant spectral weight [121, 115].

Rf spectra obtained from the (1,3) mixture are therefore the ideal starting point for
experiments to probe the microscopic structure of the superfluid fermion pairs. Using the

(1,3) mixture we can go ahead and record spatially resolved rf dissociation spectra (like the

ones shown in Fig. 6-10) that can be directly compared to theory.

6.5 Determination of the fermion pair size in a resonantly
interacting superfluid

The fermion pair size at unitarity (measured in units of 1/kF) is one of the fundamental,

non-trivial and universal parameters characterizing the superfluid system. In contrast to

other important universal parameters at unitarity like the critical temperature Tc/TF, the

Clogston limit of superfluidity J,, or the ratio of Ip/EF - which are more closely related

to the macroscopic properties of the superfluid gas - the pair size directly describes its

microscopic "building blocks".

Interestingly, small fermion pair sizes have been linked to high critical temperatures by

the Uemura plot for a wide class of fermionic superfluids [122]. Since the critical temperature

Tc/TF in a balanced, resonantly interacting Fermi gas is an order of magnitude larger than

for any other known fermionic superfluid (including high-temperature superconductors), it

is of fundamental interest to determine the fermion pair size in this new system and to

compare it to the pair size in other fermionic superfluids.

In the following we will show that both the width and the onset of the rf dissociation

spectrum are directly and simply related to pair size in the entire BEC-BCS crossover. We

have discussed rf spectroscopy and the rf lineshape in chapter 2 and we will repeatedly refer

to these results in the discussion below.

6.5.1 Fermion pair size and rf spectroscopy

A characteristic size of the fermion pairs in the crossover can be defined via the two-particle

correlation length jpair given by:

pair (6.1)
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Figure 6-11: Evolution of the fermion pair size in the BEC-BCS crossover [123, 124, 31, 28].

(w (solid blue), 6th (dashed red) and Gpair (dotted black) are displayed as a function of the

interaction parameter 1/kFa. The inset shows the ratios w/ýpair (solid blue) and 6th/Gpair

(dashed red).

where ¢ is the pair wavefunction.

The weakly interacting molecules in the BEC limit are described by a wavefunction

0rm(r) proportional to e-r/b/r, and have a binding binding energy Eb = h2/mb2 [28]. For

0m, equation 6.1 yields a pair size of wpair = b//-2. Both the onset energy Eth and the full

width at half maximum E, of the rf spectrum (see chapter 2) are proportional to Eb and

we find Eb = Eth ý 1.89 x E, oc 1/b2 . The pair size can therefore be directly obtained both

from the width and the onset of the rf spectrum as:

h2
't2h = 2mEth (6.2)

2mEth

• = _x 2m (6.3)2 mE,

where we choose -y = 1.89 so that pair = 6th = ýw in the BEC limit.

In the BCS limit Eth = which is the binding or condensation energy of the N/2

pairs in the superfluid. The fermion pair size is related to Eth and Ew via E, ; 1.27 x Eth =

1.27 x A2 c 1/ 2 where rc =2m is the Pippard coherence length which is often associated

with the fermion pair size2 . We find th = 2pair and 6w ; 2.44 x 6pair. So up to factors on

the order of unity Eth and Ew are directly related to the fermion pair size both in the BEC

and BCS limits. Figure 6-11 displays 6th, 6w and 6pair as a function of interaction strength.

2 The value of ýpar depends on the choice of the pair wavefunction 0; Here we chose Op and then

,pair = r/(2v'),c.
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Figure 6-12: Rf dissociation spectra in the crossover. Below, at and above resonance the
spectrum shows the typical asymmetric lineshape of a pair dissociation spectrum. The
signal is proportional to the three dimensional local response at the center of the cloud. (a)
670 G (BEC side), eF = h x 24 kHz, T/TF , 0.2, 1/kFai = 0.4; (b) 691 G (resonance),
EF = h x 21 kHz, T/TF=0.1, 1/kFai - 0; (c) 710 G (BCS side), EF = h x 20 kHz, T/TF=0.1,
1/kFai = -0.3.

Although pair changes by orders of magnitude from the BEC to the BCS limit 6th and 6"
show the same behavior and deviate from each other by not more than 22%. This illustrates
that the pair size can be reliably determined from the rf dissociation spectrum throughout
the whole BEC-BCS crossover.

Figure 6-12 shows the rf dissociation spectra obtained in the BEC-BCS crossover with
the (1,3) superfluid. Three dimensional image reconstruction was applied to obtain the
local spectrum at the center of the cloud. As expected, both Eth and E, decrease with
decreasing interaction strength 1/kFai. In chapter 2 we have seen that the rf lineshape is
expected to show only small changes in the crossover regime. Indeed, when the frequency
axes for the spectra in Fig. 6-12 are scaled by Eth and the spectra are shifted to show the
same onset all spectra overlap as shown in Fig. 6-13. This confirms experimentally the
"universal" lineshape of the rf dissociation spectrum. The fit to the spectra in Fig. 6-12
used the simple dissociation lineshape Igeneric.

As discussed above the pair size can in principle be obtained from both Eth and E,.
However, since the whole spectrum may be subject to shifts from Hartree terms [33, 7], we
focus in the following only on the width of the spectrum. At unitarity we determine the full
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Figure 6-13: Universal rf lineshape in the crossover. Same spectra as in Fig. 6-12 but with
the frequency axis scaled by the threshold energy Eth and shifted so that the spectral onsets
overlaps with the BEC side spectrum. BEC side: black circles; Resonance: red triangles;
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Figure 6-14: Density effects at unitarity for the (1,3) mixture at 691 G. The figure shows
the spectral response in the center (open circles, same spectrum as in Fig. 6-12b) as well as
the lower density wings (filled triangles) of the cloud. In this regime the cloud might have
turned normal.

width at half maximum to be E. = 0. 3 6 (6 )eF corresponding to a spectroscopic pair size of

Cw = 2.3(2)/kF. Here EF is the local Fermi energy and kF = V~/ic)F/h. The fermion pairs
are smaller than the interparticle spacing given by 1 = n1/3 = (37r 2)1/3/kF ,, 3.1/kF (n is
the total density) and are in units of 1/kF the smallest observed in fermionic superfluids.
In high-temperature superconductors the pair size ( at optimal doping is in the range of 5
to 10/kF 1122]. The high temperature superfluid therefore confirms the relation between
small pair size and high transitions temperatures found in many fermionic superfluids.

The strong narrowing of the spectrum in Fig. 6-12 (a) to (c) demonstrates that the
fermion pair size increases from strong to weak coupling. The decreasing width corresponds
to a twofold increase in the spectroscopic pair size from &w = 1.4(1)/kF at 670 G to Cw =
2.8(3)/kF at 710 G where the extent of the pairs becomes comparable to the interparticle
spacing. A change of the absolute pair size with density at unitarity can in principle be
observed by comparing the spectral width in the center and the outer region of the cloud.

A



As the density decreases the spectrum shifts to lower energies (see Fig. 6-14). However, the

spectral onset also becomes increasingly softer and the asymmetry of the pair dissociation

peak less pronounced, possibly due to atomic diffusion during the excitation pulse. This

prevents a reliable determination of the pair size in the spatial wings where the density is

changing rapidly and the system may already be in the normal phase.

We have shown here that the (1,3) rf spectra contain detailed information about the

microscopic properties of the fermion pairs at unitarity and in the crossover. In future

experiments the microscopic structure of the pairs can now be studied both in the superfluid

and normal phase as a function of interaction strength, temperature and spin imbalance.

In the next section we will discuss rf spectra of the majority and minority component in an

imbalanced Fermi gas at unitarity.

6.6 Observation of quasiparticles in a polarized superfluid

In section 6.2 we discussed the first rf spectroscopy experiment with imbalanced mixtures

reported in [23]. The experiment was carried out in the (1,2) mixture and without spatial

resolution. The spectra were therefore subject to strong final state effects and only rf spectra

of the minority component could be obtained at a satisfactory signal to noise ratio.

At this point, however, we are in the position to take full advantage of rf spectroscopy

in the (1,3) mixture [111], spatially resolved techniques [24] and our knowledge of the phase

diagram for imbalanced mixtures [211. By spectroscopically probing both the majority and

the minority components it is also possible to directly correlate the spectral response of

majority and minority atoms. Note, that the (1,3) mixture permits two rf transitions (from

I1) to 12) and from 13) to 12), see figure 6-10) so that majority and minority spectra can be

obtained from identically prepared samples.

The data obtained in this experiment are very rich and we will only provide a small

"taste" of what the full analysis may yield [125]. Figure 6-15 shows three majority and

minority spectra obtained at a temperature of about 0.05 T/TF for three different spin

polarizations as indicated in the phase diagram. The most impressive feature is the clear

double peak structure in the majority cloud observed for intermediate imbalances in the

vicinity of the first order normal to superfluid phase transition (Fig. 6-15 b). The spectral

peak at high frequencies overlaps with the pair dissociation peak of the minority spectrum.

At the second, lower frequency peak in the majority spectrum the minority component

shows no spectral response. This feature in the spectrum is therefore due to unbound

majority atoms, i.e. thermally excited quasiparticles.

This "double peak structure" is the first direct signature of quasiparticles in superfluid

Fermi gases. The observation of quasiparticles is facilitated in imbalanced systems since

the imbalance helps to "inject" a significant population of quasiparticles into the superfluid

at low temperatures. While double peak structures have also been found in previous rf
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Figure 6-15: Quasiparticle peak in the rf spectrum of the majority component of an im-

balanced mixture at unitarity. The majority (filled red circles) and minority (open black

circles) rf spectra were obtained for three sets of parameters as indicated in the phase dia-

gram. (a) In the balanced case both components show the rf dissociation spectra discussed

in previous sections. (b) At higher spin polarizations, in the vicinity of the first order nor-

mal to superfluid phase transition, the majority spectrum has two peaks. The asymmetric

pair dissociation peak at higher frequencies overlaps with the corresponding peak in the mi-

nority spectrum. The second peak at lower frequencies has no counterpart in the minority

cloud and stems from "unbound" majority atoms, i.e. thermally exited quasiparticles. (c)

At high imbalances above the CC limit of superfluidity the majority spectrum is dominated

by the peak close to zero offset, but it shares the asymmetric high-frequency "tail" with the

minority component. Importantly, the peak of the minority atoms now has contributions

that exceed the signal in the majority component at the same rf frequencies, possibly indi-

cating a state where the pairing correlations become more polaron like. The frequency axis

of the rf spectra is normalized by the local Fermi energy EF.
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spectroscopy experiments (see figures 6-2, 6-3 and references [22, 23]), these rf spectra were

not spatially resolved and the two peaks may have originated from different locations inside

the trap. In this experiment, however, the double peaks imply the local coexistence of pairs

and quasiparticles.

Surprisingly, the quasiparticle peak appears on the same, positive side of the frequency

axis as the pair dissociation peak. By removing a quasiparticle from the superfluid, energy

is gained and therefore one would expect the quasiparticle peak to be located at negative

frequencies. However, this description does not take Hartree terms in both the initial and

final states into account, which can lead to shifts of the spectrum relative to the zero

frequency offset.

At the imbalances considered so far, the pair dissociation peak of minority and majority

components overlap. This changes at higher imbalances: in Fig. 6-15 c) we observe that at

frequencies close to the peak in the minority cloud, the majority atoms shows a significantly

weaker response. The majority spectrum is dominated by a peak close to zero frequency and

only at high frequencies, in the small, asymmetric wings of the spectrum, the signal from

both majority and minority components are well overlapped. The fact that the spectral

weight in the minority peak is not anymore "balanced" by the spectral weight of the majority

spectrum at the same frequencies could indicate the development of a more "polaronic" type

of pairing.

A more detailed analysis of the data will show whether the rf spectra reveal a signature

of the normal to superfluid phase transition and may also yield a better characterization of

the "pair" to "polaron" transition.

6.7 Final state interactions revisited

The advances reported in the previous two sections could not have been obtained with rf

spectra from the (1,2) mixture due to the dramatic effects caused by final state interactions.

In this section we will try to better understand why these interactions had such a significant

impact.

Figure 6-16 displays three rf spectra from the Innsbruck group taken on the BEC side

of the (1,2) Feshbach resonance at 661, 695 and 764 G [121]. At 661 G the spectrum is

dominated by a "bound-bound" peak from (1,2) to (1,3) molecules due to a high Franck-

Condon overlap between these molecular states. The second spectrum was obtained at 695

G just on the BCS side of the (1,3) resonance. Here the final state is strongly interacting but

no final bound molecular state is accessible. Accordingly the rf transition is predominantly

bound-free, i.e. the (1,2) pair is dissociated by the rf pulse. Compared to regular dissociation

spectra the lineshape shows modifications owing to the strongly interacting final state. As

the (1,2) resonance is approached for higher magnetic fields la I decreases and the final state

interactions therefore are expected to become weaker. The third rf spectrum in figure 6-
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Figure 6-16: a) Rf dissociation spectra in the (1,2) mixture on the BEC side of the (1,2)

Feshbach resonance. The figure has been adopted (with some modifications) from ref. [121],

the data were obtained by the Innsbruck group. b) Plot of a12 (red) and a13 (blue) as a

function of the magnetic field between 630 and 900 G. The dashed lines mark the resonance

positions. In the shaded region both the (1,2) and (1,3) mixtures are strongly interacting

for typical values of kF. The arrows indicate where the rf spectra shown in a) have been

obtained.

16 was observed at 764 G, where the initial (1,2) mixture enters the strongly interacting

regime (ai - 4500ao). Interestingly, this rf spectrum is comparable, even in terms of

the frequency scale, to the rf dissociation spectra we recorded in the BEC-BCS crossover

of the (1,3) mixture (Fig. 6-12.) With the knowledge from the (1,3) system one would

therefore conclude that the (1,2) rf spectra should actually not change significantly from

764 G towards unitarity, especially since final state interactions in terms of lafl continue

to decrease further. However, quite to the contrary, the observed (1,2) spectra are subject

to the significant distortions discussed above (see Fig. 6-9). This indicates that a better

understanding of the interplay between the interactions in the final and in the initial state

is required.

The explanation for the strong impact of final effects must be related to the fact that

at 750 G and higher fields the interactions in the initial state enter the strongly interacting

regime and therefore become comparable to the ones in final state (see the shaded region

in Fig. 6-16 b). For identical interactions in the initial and final state rf spectroscopy

measures a delta function at zero frequency offset. If the interactions in the initial and

final state are similar but different, one would expect a bound-bound peak with a certain

offset from zero frequency to dominate the spectrum and strongly suppressed bound-free

contribution to emerge. This scenario is consistent with the narrow and symmetric lineshape

(characteristic for bound-bound transitions) observed in the (1,2) mixture at unitarity. Of

course, the sign of a in initial and final state is different, but there is evidence that in the

strongly interacting regime certain interactions are largely independent of the sign of the

I
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scattering length [126, 127, 128, 7].

The (1,3) mixture allows us to check these ideas experimentally. Figure 6-17 shows (1,3)

rf spectra as the final state interactions change from weak to strong with increasing magnetic

field. The initial state stays in the strongly interacting regime, but may turn normal around

kFai - 1. Compared to the (1,2) mixture the role of initial and final state are exchanged so

that the initial state is always strongly interacting while the final state enters this regime

at fields around 750 G. Here and at higher fields the bound-free transitions strongly looses

in spectral weight until it cannot be resolved ay more at 833 G, where only the narrow and

symmetric bound-bound peak remains. This demonstrates the dominance of bound-bound

transitions in a regime where I1/(kfai) - 1/(kFaf)I < 1.5. The spectra from the (1,3)

mixture therefore provide further evidence for the dominance of bound-bound transitions

in the (1,2) mixture close to unitarity.

In a recent paper bound-bound and bound-free transition have been studied theoretically

in the strongly interacting regime [115]. It was found that the spectrum of the superfluid at

resonance shows bound-bound peaks for positive but also for negative values of 1/kFaf. The

theoretical treatment in ref. [115] is in qualitative agreement with our observations in the

(1,3) mixture but underestimates the region where bound-bound transitions are dominant

by about a factor of two. We infer from ref. [115] that for a system in the unitarity limit it is

much more difficult to spectrally resolve bound-bound and bound-free transitions if a1 < 0.

When one approaches resonance for the (1,2) system from the BEC side the bound-free

spectrum narrows and smoothly turns into a bound-bound dominated one.

We conclude that the (1,2) to (1,3) rf spectra in the vicinity of 833 G reported in

ref [22, 23, 24] can therefore not be simply interpreted in terms of a pair dissociation

process and a pairing gap [22, 129, 130, 131, 24, 23] and are likely to be dominated by

bound-bound transitions.



a
1/kFai = 0.4
1/kFaf = 3.3

1/kFai = -0.3
1/kFaf = 2.0

+600 +400 +200 0
Rf offset (kHz)

h 10000

5000

0

-5000

-10000

1/k'Fa i = -0.7
1/k'Faf = 1.1

1/k'Fai = -1.2
l/k'Faf a 0

+600 +400 +200

Rf offset (kHz)

700 800

Magnetic field [G]

Figure 6-17: Effect of final state interactions on rf spectroscopy: bound-bound and bound-

free spectra in the BEC-BCS crossover of the (1,3) mixture. While the initial (1,3) state

is strongly interacting at all fields the final state interactions change from weakly (a-c) to

strongly interacting (d-f). See also the diagram in h. At the higher magnetic fields for

1/kFai j -1 the initial state may have turned normal. (a-c) Same bound-free spectra and

parameters as in Fig. 6-12. The bound-bound peaks have been fit by a Gaussian. The rela-

tive weight of the bound-bound and bound-free peaks were not determined experimentally.

(d-f) All peaks have been fit by a Gaussian. (d) 750 G, EF = h x 22 kHz, T/TF=O.09; (e)

780 G, EF = h x 23 kHz, T/TF=0.09; (f) 833 G, EF = h x 20 kHz, T/TF=0.06.
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Chapter 7

Conclusion and Outlook

The past five years were a fantastic time to do experiments with ultracold fermionic atoms.

Looking back to the early beginnings of learning about Feshbach resonances and molecule

formation, which are problems that mostly concerned "atomic physics", it becomes apparent

at what amazing rate the field has matured. The current experiments locally probe strongly

interacting fermions in regimes that are very difficult to realize in other systems and start

to study many-body problems of fundamental importance to various areas in physics.

The best part, however, is that in many ways one may still regard the field to be at a

beginning. This becomes apparent when one compiles a list of just a few ideas for future

experiments that are currently pursued:

* p-wave Superfluidity. All ultracold atom experiments so far have studied superflu-

idity with s-wave pairing. However p-wave Feshbach resonances have been observed

and p-wave molecules have been created. In the future it might be possible to stabi-

lize these molecules sufficiently to cool them into the superfluid state with anisotropic

interactions.

* Simulating condensed matter physics Hamiltonians with fermionic atoms.

All experiments described in this thesis studied interacting fermionic atoms in a har-

monic trap. Superimposing an optical lattice allows one to explore a whole array

of new phenomena closely related to condensed matter physics. A challenging goal

for future experiments is to study fermions with repulsive interactions and to realize

antiferromagnetic order in a lattice at half filling. This could be the first step towards

observing d-wave superfluidity at even lower filling. Such experiments will be able to

directly address some of the important open questions in condensed matter physics.

* Two species fermion-fermion mixtures and molecular BECs with dipolar

interactions. Two species mixtures of fermions have recently been created and may

allow studies of mass imbalanced fermionic superfluids. Furthermore, it could be pos-

sible to form heteronuclear bosonic molecules from two fermionic atoms by Feshbach
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association and then transfer them into the molecular ground state. This could lead
to the creation of molecular Bose-Einstein condensates with long range dipolar inter-
actions which are of interest not only in the context of many-body physics but also
with regard to quantum computation schemes.

* Bose-Fermi mixtures and Boson mediated pairing. As in Fermi-Fermi mixtures

also Bose-Fermi mixtures can be the starting point for the creation of heteronuclear
ground state molecules with the difference that these molecules will be fermionic.
Furthermore, if strongly interacting Bose-Fermi mixtures are sufficiently stable, it
might be possible to observe boson-mediated fermionic pairing and superfluidity. In
three-dimensional optical lattices at half filling and with weak and repulsive Bose-
Fermi interactions the formation of a supersolid phase might be observable.

* Ternary mixtures of fermions The experiments with different spin mixtures in 6 Li

indicate that even a ternary mixtures might prove to be sufficiently stable at least for

a certain range of interactions. Such a system would allow a wide range of studies
from pairing competition in multicomponent Fermi gases, to the observation of color

superfluidity (analogous to a color superconducting phase in QCD) in combination

with optical lattices.

Some of these ideas will likely become reality in the very near future. More than ten

years after the discovery of Bose-Einstein condensation the field of ultracold atoms is still
progressing at an amazing rate and in various new directions. The possibilities for future
experiments based on the combination of new "tools" and techniques with different fermionic
mixtures are numerous. There are exciting years ahead of us.



Appendix A

Feshbach resonances in fermionic
6Li

This appendix contains a reprint of Ref. [25]: C. H. Schunck, M. W. Zwierlein, C. A.
Stan, S. M. F. Raupach, W. Ketterle, A. Simoni, E. Tiesinga, C. J. Williams, and P. S.

Julienne Feshbach resonances in fermionic 6 Li, Phys. Rev. A 71, 045601 (2005).
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Feshbach resonances in 6Li were experimentally studied and theoretically analyzed. In addition to two
previously known s-wave resonances, three p-wave resonances were found. Four of these resonances are
narrow and yield a precise value of the singlet scattering length. The position of the broad s-wave resonance
near 83 mT is mostly sensitive to the triplet potential. It was previously determined in a molecule-dissociation
experiment for which we, here, discuss systematic shifts.

DOI: 10.1 103/PhysRevA.71.045601

Interactions in ultracold atomic gases can be magnetically
tuned using Feshbach resonances [1]. A Feshbach resonance
occurs when the energy of two colliding atoms is nearly
degenerate to the energy of a bound molecular state. Tunable
interactions have been used to explore novel phenomena in
collisional and many-body physics. Recently, Feshbach reso-
nances have been used to control pairing processes in ultra-
cold fermionic gases. This led to the achievement of Bose-
Einstein condensation (BEC) of molecules in 40K [2] and 6Li
[3-5] and to the first studies of the BEC-BCS crossover, the
continuous transition of fermion pairs from weakly bound
molecules to long-range Cooper pairs [5-11].

Most experiments in 6Li have been carried out in the vi-
cinity of the s-wave Feshbach resonance near 830 G
[5,7-11] (1 G= 10- 4 T). The quantitative interpretation of
these experiments and the characterization of the BEC-BCS
crossover require a precise knowledge of the resonance lo-
cation. However, its determination is not trivial since the
resonance width is extremely large and the line shape is
strongly affected by many-body effects. In our previous work
we determined the position of this resonance by the onset of
molecule dissociation to be 822±3 G [8].

In this paper we report on a detailed study of Feshbach
resonances in the two lowest hyperfine states of 6Li with the
goal of accurately characterizing the interaction potential of
two 6Li atoms. In addition to two previously known s-wave
resonances, we find three p-wave resonances [12]. The posi-
tions of the p-wave resonances together with the location of
the narrow s-wave resonance near 543 G are used for a pre-
cise determination of the singlet s-wave scattering length.
These results, however, do not constrain the position of the
broad resonance, which also depends on the triplet scattering
length. An improved measurement of its location is presented
and the magnitude and the origin of possible systematic er-
rors are discussed.

The experimental setup has been described in Ref. [13].
Up to 4 X 107 quantum degenerate 6Li atoms in the IF,mF)
=13/2,3/2) state were obtained in a magnetic trap by sym-
pathetic cooling with 23Na. The 6Li atoms were then trans-
ferred into an optical dipole trap (ODT) formed by a focused

PACS number(s): 03.75.Ss, 32.80.Pj, 34.50.Pi

1064-nm laser beam with a maximum power of 9 W. In the
optical trap a single radio-frequency sweep transferred the
atoms to state I1) (IF,mF)= 1/2,1/2) at low field). A subse-
quent Landau-Zener sweep at an externally applied magnetic
field of 565 G could then be used to either prepare the entire
sample in state 12) (11/2,-1/2) at low field) or create an
equal mixture of atoms in states II) and 12). Except for the
measurement of the broad s-wave Feshbach resonance, all
resonances were observed by monitoring magnetic-field-
dependent atom losses. Atom numbers were obtained from
absorption images taken at zero field. The externally applied
field was calibrated by driving microwave transitions from
state 12) to state 15) (13/2,1/2) at low field) at several mag-
netic fields close to resonance positions and from state 12) to
state 13) (13/2,-3/2) at low field) at high magnetic fields
around 800 G.

For spin-polarized samples either in state I1) or 12) s-wave
scattering is forbidden by symmetry; therefore, the observed
resonances occur in the p-wave channel. The same molecular
state that is responsible for these two resonances also causes
a p-wave resonance in the 11 )+ 12) mixture. The three p-wave
resonances were observed in clouds with typical tempera-
tures T-6 pK and T/TF-0.5-1.5, where TF is the Fermi
temperature. Radial and axial trap frequencies were typically
W,=2r x 1.0 kHz and a=21r X 6.9 Hz.

The position of the p-wave resonance in the collision of a
pair of state I1) atoms was determined by first ramping the
magnetic field to approximately 5 G below the resonance.
Using an additional power supply to precisely change the
magnetic field within a 10 G range, the field was then
switched in 1 ms to a test value Bet. Here the atoms were
kept for 200 ms before the field and the optical trap were
switched off. Finally, atom number versus Bt,,st was recorded.
Resonantly enhanced losses due to inelastic three-body de-
cay led to a Lorentzian shaped feature as shown in Fig. 1(a).
Resonance positions and widths are summarized in Table I.

The same technique was used to determine the 11)+12)
and 12)+ 12) p-wave resonances. The resonance line shapes
are asymmetric (see Fig. 1), possibly due to threshold effects
[14,15]. The splitting of a p-wave resonance due to spin-spin
interactions [16] is for these resonances more than one order

1050-2947/2005/71 (4)/045601(4)/$23.00 045601-1 C2005 The American Physical Society
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FIG. 1. p-wave resonances for I1)+1) (a), 11)+12) (b), and 12)
+12) (c) collisions. Dashed lines are Lorentzian fits to the data. The
results are summarized in Table I.

TABLE I. Position of the Feshbach resonances. Given are the
experimentally and theoretically determined resonance locations
Bexpt and Btheory, respectively, and the measured resonance width.
The uncertainties for the experimental data in the first four rows are
dominated by magnetic field drifts between the measurement of the
resonance and the field calibration for which we find an upper
bound of 80 mG. For the 1)+j 1) resonance an additional drift was
monitored. The statistical error of determining the line center and
the estimated uncertainty due to asymmetric line shapes are negli-
gible. The quoted linewidths are not corrected for source depletion
due to atom loss. We estimate that this effect reduces the linewidths
by 25%--40%. For the broad s-wave resonance (fifth row) only a
range is given. See the text for a discussion.

States Wave Bexpt [G] Btheory [G] Width [G]

11)+I1) p 159.14±0.14 159.15(4) 0.4

11)+12) p 185.0910.08 185.15(4) 0.2

12)+12) p 214.94+0.08 214.90(4) 0.4
11)+12) s 543.28+0.08 543.27(5) 0.4

11)+12) s 822...834

of magnitude smaller than the width and could not be dis-
cerned with our sensitivity.

The position of the s-wave resonance near 543 G in the
11)+ 12) mixture was determined as presented above in clouds
with typical temperatures of 6 uK, but in a slightly deeper
optical trap and with an extended holdtime of 2900 ms at
B,,t. The result of a fit to the Lorentzian lineshape is given in
Table I. This s-wave resonance was first reported in [17] and
calculated in [18].

To determine the position of the broad s-wave Feshbach
resonance near 830 G a different method was required. The
resonance was identified as the onset of molecular dissocia-
tion [6,8,19]. Molecules were first created on the repulsive
(BEC) side of the Feshbach resonance and then dissociated
into atoms when the magnetic field crossed the resonance.
However, this method is subject to systematic shifts in the
resonance position that depend on the molecular density and
the speed of magnetic field ramps. To control the density-
dependent shift, the molecular density was varied by using
different parameters for the optical dipole trap and by per-
forming the dissociation at different times of flight.

The starting point of the experiment was an almost pure
6Li 2 molecular BEC that was prepared at a magnetic field of
about 780 G in the optical trap as described in Ref. [8]. The
data shown in Fig. 2 were obtained by releasing the mol-
ecules from the optical trap at 780 G [20]. After 2 ms the
field was ramped to a test value Btest in 14 ms. In these first
16 ms time of flight the peak molecular density dropped by
three orders of magnitude to nmol= 5 x 109 cm-3 . The mag-
netic field was held at Best for another 5 ms before it was
ramped down. The critical field ramp, which can alter the
resonance position, is the initial phase of the magnetic field
ramp down in which the molecules are still in the resonance
region. Here, fast ramps can dissociate weakly bound mol-
ecules. However, we could only use a limited time of flight
while maintaining a good signal-to-noise ratio. Therefore the
field was ramped down in two steps: at an initial rate of
100 G/ms for 2 ms to leave the resonance region, followed
by an exponential decay with time constant 30 G/pus which
brought the field to zero in 3 ms. To better control the effects
of the field ramp, the experiment was repeated for different
initial switch off speeds. Finally, the sample was imaged
with light which was resonant only with unbound atoms; the
possible molecular transitions are far detuned from the
atomic transition at zero field. By monitoring the atom num-
ber as a function of Btst the onset of molecule dissociation
was observed. The data in Fig. 2 show the onset at 821 ± 1 G.
The slow approach of the atomic signal to unity reflects the
time constant of dissociation and the possible reconversion
of atoms into molecules during the magnetic field switch off.
In our analysis only the onset of the atomic signal was evalu-
ated.

We now consider the two sources of systematic errors
mentioned above in more detail. Few-body collisions might
dissociate molecules when their size, which near resonance
is on the order of the scattering length between the constitu-
ent atoms [21], becomes comparable to the mean distance
between the molecules, a - nmol . The scattering length near
resonance is parametrized by a=abg[1+AB/(B-B0]
M abgAB/(B -Bo), where abg is the negative background scat-
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FIG. 2. Determination of the position of the broad s-wave

Feshbach resonance. (a) Onset of dissociation of molecules into
atoms at 82111 G. (b) The resonance position was obtained by
fitting two lines to the data points near the threshold, one horizontal
through the points showing no atomic signal and a second line
following the initial rise in atom number. The intersection of the
two lines gives the resonance position; the estimated uncertainty of
this point is :-1 G.

tering length, B0 is the resonance position, and AB is the
resonance width. So molecule dissociation will become im-
portant at a magnetic field B for which abgAB/(B-Bo)
-n3ol. For the broad resonance, this density-dependent,
few-body effect is expected to shift the observed resonance
position to lower magnetic fields.

The second systematic error is a density-independent,
single-molecule effect. Switching off the magnetic field be-
comes nonadiabatic close to resonance and destroys very
weakly bound molecules [22]. If a molecule with binding
energy iw==i 2/(ma 2) is forced to change its size faster than
its oscillation frequency (i.e., if a/a> co), the molecule may
dissociate. With the magnetic field dependence of a given
above, the rate ila- B/(B-Bo) becomes comparable to wc
- (B-Bo)2 at a magnetic field that is shifted from the reso-
nance location Bo by AB=B-Bo-Bh" 3. This expression
gives the scaling of the ramp-induced systematic error with
the ramp speed B.

To find the order of magnitude of these shifts we have
determined the resonance locations for three different ramp
rates at constant density and for three different densities at
constant ramp rate.

At a molecular density of nmol= 1.5 X 1010 the resonance
positions were measured at initial ramp speeds of 30 G/ps

045601-3

(fastest possible switch off), 100 G/ms (fastest externally
controlled ramp), and 12.5 G/ms (controlled ramp). For the
fastest switch off the onset of dissociation occurs at
793±7 G, for the other two controlled ramps at 822±3 G.
Assuming that no density shifts affect these data, one can
extrapolate to zero ramp speed based on the (B-Bo)CB B"
dependence. In this way we find a resonance position of
825±3 G.

For a fixed initial ramp speed of 100 G/ms the resonance
locations were determined at densities of 5 x 109 cm-3, 1.5
x 1010 cm-3 , and 1.2 X 1012 cm- 3 to be 821±1 G, 822±3 G,
and 800±8 G, respectively. Here one can use the (B-Bo)
ocn 1/3 dependence to extrapolate to a resonance position of
825±3 G, neglecting effects due to nonadiabatic magnetic
field ramps.

Both systematic effects shift the maximum magnetic field
value at which the molecules are stable to lower magnetic
fields. In a simple picture, one would expect the total shift to
be the larger of the two. However, if they are similar, as in
our case, they may add or combine in a more complicated
way. We have measured the threshold position at low density
and slow ramp rates to be 822±3 G and determined two
shifts of 3+3 G. Therefore, we expect the position of the
Feshbach resonance to be between 822 and 834 G. A more
accurate extrapolation requires measuring the dissociation
threshold for more ramp speeds and densities. However,
technical limitations in varying magnetic field ramp speeds
and an unfavorable signal-to-noise ratio at lower densities
precluded this.

All Feshbach resonances discussed in this paper are due
to the v=38 vibrational state of the singlet potential with
total electronic spin S equal to zero. The p-wave resonances
have a total nuclear spin I= 1, while the 543 G and broad
s-wave resonances have 1=2 and I=0, respectively.

The resonance locations are compared with results of
scattering coupled-channel calculations. We locate the reso-
nance from the maximum of the elastic cross section as a
function of magnetic field. The collision energy is fixed at
E=kBT, where kB is the Boltzmann constant and T is the
experimental temperature. Our collision model, described in
detail in Ref. [18], treats the singlet and triplet scattering
lengths as adjustable parameters. The triplet state has a total
electron spin equal to one. It turns out that all narrow reso-
nances, which could be accurately located, are insensitive to
the triplet scattering length. Only s- and p-waves are in-
cluded in the calculation. Fitting the singlet scattering length
as to the field locations given in the first four rows of Table
I yields a very accurate value of as=4 5.159 1(16)ao, where
ao=0.052 917 7 nm. With this value, the resonance positions
given in the third column of Table I were calculated at a
collision energy equal to kBT. The agreement with the ex-
perimental values is excellent. The location of the s-wave
resonance is also in very good agreement with the determi-
nation of Ref. [23], 543.26(10) G.

Our theoretical uncertainties do not include contributions
due to a thermal average. Moreover, there can be a discrep-
ancy between the field values at which the observed three-
body loss rate and the theoretical two-body elastic cross sec-
tion are maximal. Experimental observations on 40K [14] are
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not conclusive about the magnitude of this shift, although
they suggest it is well within the linewidth of the observed
loss features. As an estimate of our possible systematic error,
a shift in the resonance position &(G) will give rise to a shift
from our best as of (-0.03658)ao.

The broad resonance is caused by a hyperfine-induced
mixing between a singlet vibrational level and an almost-
bound virtual state of the triplet potential, a situation ana-
lyzed in [24,25]. It is the virtual state that gives rise to the
large and negative triplet scattering length aT of 6Li. Mixing
occurs for magnetic field values above 500 G. In fact, in
absence of the hyperfine mixing, the resonance would occur
around 550 G. The coupling shifts the resonance by a few
hundred gauss. For typical Feshbach resonances, these shifts
are no more than a few gauss. A consequence of the large

shift is that the resonance location depends critically on the
less well known triplet potential.

In conclusion, we have found three p-wave Feshbach
resonances in 6Li. Together with the narrow s-wave reso-
nance they give a precise value of the singlet scattering
length. The position of the broad resonance could not be
constrained using the refined singlet potential. The determi-
nation of the position of the broad resonance via molecule
dissociation is subject to systematic errors, which shift the
onset of dissociation to lower magnetic fields.

The MIT research is supported by NSF, ONR, ARO, and
NASA. S.R. acknowledges financial support from the Dr.
Jiirgen Ulderup Foundation.

[1] E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, Phys. Rev. A 47,
4114 (1993); W. C. Stwalley, Phys. Rev. Lett. 37, 1628
(1976); S. Inouye et al., Nature (London) 392, 151 (1998); P.
Courteille et al., Phys. Rev. Lett. 81, 69 (1998).

[2] M. Greiner, C. A. Regal, and D. S. Jin, Nature (London) 426,
537 (2003).

[3] S. Jochim et al., Science 302, 2101 (2003).
[4] M. W. Zwierlein et al., Phys. Rev. Lett. 91, 250401 (2003).
[5] T. Bourdel et al., Phys. Rev. Lett. 93, 050401 (2004).
[6] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,

040403 (2004).
[7] M. Bartenstein et al., Phys. Rev. Lett. 92, 120401 (2004).
[8] M. W. Zwierlein et al., Phys. Rev. Lett. 92, 120403 (2004).
[9] J. Kinast et al., Phys. Rev. Lett. 92, 150402 (2004).

[10] M. Bartenstein et al., Phys. Rev. Lett. 92, 203201 (2004).
[11] C. Chin et al., Science 305, 1128 (2004).
[12] We presented most of the results of the present paper at the

KITP workshop in Santa Barbara, 2004. Similar results were
independently obtained in Paris [15].

[13] Z. Hadzibabic et al., Phys. Rev. Lett. 91, 160401 (2003).
[14] C. A. Regal et al., Phys. Rev. Lett. 90, 053201 (2003).
[15] J. Zhang et al., Phys. Rev. A 70, 030702(R) (2004).
[16] C. Ticknor et al., Phys. Rev. A 69, 042712 (2004).
[17] K. Dieckmann et al., Phys. Rev. Lett. 89, 203201 (2002).
[18] K. M. O'Hara et al., Phys. Rev. A 66, 041401(R) (2002).
[19] T. Mukaiyama et al., Phys. Rev. Lett. 92, 180402 (2004).
[20] The ODT power was 36 mW, yielding trap frequencies of (ar

=2'rx 690 Hz radially and wo=2rX 12.5 Hz axially. The
axial frequency is mostly due to magnetic field curvature.

[21] T. Kohler et al., Phys. Rev. Lett. 91, 230401 (2003).
[22] J. Cubizolles et al., Phys. Rev. Lett. 91, 240401 (2003).
[23] K. E. Strecker, G. B. Partridge, and R. G. Hulet, Phys. Rev.

Lett. 91, 080406 (2003).
[24] B. Marcelis et al., Phys. Rev. A 70, 012701 (2004).
[25] E. G. M.v. Kempen, B. Marcelis, and S. J. J. M. F. Kokkel-

mans, Phys. Rev. A 70, 050701(R) (2004).

045601-4

BRIEF REPORTS



Appendix B

Formation Dynamics of a Fermion

Pair Condensate

This appendix contains a reprint of Ref. [26]: M. W. Zwierlein, C. H. Schunck, C. A. Stan,
S. M. F. Raupach, and W. Ketterle, Formation Dynamics of a Fermion Pair Condensate,
Phys. Rev. Lett. 94, 180401 (2005).

107



PRL 94, 180401 (2005) PHYSICAL REVIEW LETTERS

Formation Dynamics of a Fermion Pair Condensate
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The dynamics of pair condensate formation in a strongly interacting Fermi gas close to a Feshbach
resonance was studied. We employed a phase-shift method in which the delayed response of the many-
body system to a modulation of the interaction strength was recorded. The observable was the fraction of
condensed molecules in the cloud after a rapid magnetic field ramp across the Feshbach resonance. The
measured response time was slow compared to the rapid ramp, which provides final proof that the
molecular condensates reflect the presence of fermion pair condensates before the ramp.

DOI: 10.1103/PhysRevLett.94.180401

Atomic Fermi gases close to a Feshbach resonance [1]
offer the unique possibility of studying many-body phe-
nomena in a strongly interacting system with tunable in-
teractions. Recently a major focus has been on condensates
of pairs of fermionic atoms [2-8]. By changing the mag-
netic field, the interaction strength between atoms in two
spin states can be varied. That way, condensates of either
tightly bound molecules or of extended pairs of fermions
can be created, whose size can become comparable or even
larger than the interparticle spacing. The description of this
so-called BEC-BCS crossover [9] is an active frontier in
many-body physics with still controversial interpretations
[10-131.

The control of interactions via magnetic fields does not
only give access to very different physical regimes, it also
allows one to apply a time-varying interaction strength
[14,15] and to study the dynamics of a many-body system
in novel ways. This was used in recent experiments in
which molecular condensates were observed after a rapid
field ramp from the BCS to the Bose-Einstein condensate
(BEC) side of the Feshbach resonance [6,7]. It was argued
that if the ramp time was faster than the formation time of a
molecular condensate, its presence after the sweep neces-
sarily reflected a preexisting condensate of fermion pairs.
However, without access to that formation time, secondary
evidence was gathered, namely, the invariance of the con-
densate fraction under variations of the sweep rate [61 or of
the density immediately before the ramp [7]. This excluded
simple models of the molecular condensate formation
during the ramp, but left room for more sophisticated
many-body effects. In particular, the time to cross the
Feshbach resonance in these experiments was not faster
than the unitarity limited collision time oc liE~', and there-
fore dynamics during the sweep could not be ruled out.

Here we present an experimental study of the formation
dynamics of a fermion pair condensate on the BCS side of
the Feshbach resonance [16]. We employ a novel phase-
shift method, which records the delayed response of the
many-body system to a modulation of the magnetic field
that changes periodically its interaction strength. The ob-

PACS numbers: 03.75.Ss, 05.30.Fk

servable is again the molecular condensate fraction after a
rapid sweep to the BEC side of the Feshbach resonance. Its
sensitivity to changes in the scattering length on the BCS
side [6,7] arises through the dependence of the critical tem-
perature for pair condensation on the interaction strength.
By showing that the delayed response time of the molecu-
lar condensate fraction is long compared to the sweep
times used in the present and previous experiments, we in-
fer that the observed condensates could not have been cre-
ated during the rapid transfer and thus must originate from
preexisting fermion pair condensates. However, we do find
evidence that condensed pairs are more likely to be trans-
ferred into molecules than thermal pairs. Therefore, in con-
trast to assumptions made in previous work [6,7], the mo-
lecular condensate fraction after the ramp may not equal
the fraction of condensed atom pairs above resonance.

The experimental setup was the same as in our previous
work [7]. A degenerate cloud of 6Li, sympathetically
cooled with 23Na, was loaded into an optical dipole trap
to access a broad Feshbach resonance at 834 G [17,18]
between the two lowest hyperfine states of 6Li, labeled 11)
and 12). An equal mixture of these states was evaporatively
cooled at 770 G using an exponential ramp-down of the
optical trap to 15 mW. This resulted in an essentially pure
Bose-Einstein condensate of 3 x 106 molecules. An upper
limit for the temperature of the gas is L < 0.2, with the
Fermi temperature TF given by the zero-temperature, ideal
gas relation TF = hw(3N)1 /3 , w/27r is the geometric mean
of the trapping frequencies, and N is the total atom number.
Next, the trap was recompressed to 25 mW (trap frequen-
cies: , = vy = 580 Hz, •z = 12.1 Hzv/0.2+ B with the
magnetic field B in kG) and the magnetic field was adia-
batically increased in 500 ms to 1000 G, the starting point
for the following experiments. Here, in the wings of the
Feshbach resonance, the scattering length a was still suffi-
ciently large and negative for the gas to be in the strongly
interacting regime, with kFlal = 1.6 at a Fermi energy of
EF = 2.0 uzK and a Fermi wave number kF = 1/2700ao.
The temperature at this point could therefore not be reli-
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ably determined, but is expected to be significantly lower

than the one on the BEC side due to adiabatic cooling [19].

Subsequently, the magnetic field and thus the interaction

strength in the gas were modulated at frequencies in the

range of 100-500 Hz, and an amplitude of about 50 G [20].

At a variable time t after the start of the modulation, the

fraction of condensed fermion pairs was recorded by time-

of-flight analysis.
To identify fermionic condensates across the resonance

region, we proceeded as in [6,7]. Immediately after the

release of the cloud from the optical potential, the magnetic

field was switched to zero field (initial ramp rate

30 G/.s), where further expansion of the cloud took

place. This rapid ramp out of the resonance region trans-

formed large fermion pairs into deeply bound molecules

with high efficiency [21]. Figure 1 details the imaging

procedure used to determine molecular condensate frac-

tions and the number of unpaired atoms in each state after

the ramp. In our previous work, we showed that the con-

densate fractions had a peak around the Feshbach reso-

nance and fell off on either side [7]. Here, this dependence

was exploited to observe the delayed response of the

system to the magnetic field modulation on the BCS side.

Figure 2 shows the main result of this Letter: The

condensate fraction in the molecular clouds after the rapid

Time of Flight

Stern-
Gerlach

Aanrsreinn

Molecules
Atoms in II> and 12>

AIomS Thermal and Atoms
State 11> rnnriana•A Unlt•t•1ia Qtfta 19,

FIG. 1. Imaging of molecular condensates. The rapid ramp to
zero field after release from the trap created a cloud containing
both molecules and unpaired atoms. A Stern-Gerlach field
gradient separated atoms (magnetic moment ± ALB for states

I1) and 12), respectively) from molecules, which are purely
singlet at zero field. At the end of 5 ms of ballistic expansion,
the molecules were dissociated in a fast ramp (in 3 ms to
-1200 G) across the Feshbach resonance. After another 2 ms
expansion again at zero field, an absorption image of the sepa-
rated clouds was taken. Condensate fractions were determined
from the molecular cloud, and the numbers in each component
were recorded. An absorption image is shown on the bottom, the
field of view is 3 mm X 1 mm.

ramp did not follow the magnetic field modulation instan-

taneously, but lagged behind. At a Fermi energy of EF =

2 AK, the peak condensate fraction was delayed by TR =

(500 + 100) /is with respect to the magnetic field's closest

approach to resonance [22]. This time scale was indepen-

dent of the modulation frequency [compare Figs. 2 and

4(a), below]. This also rules out that our results are affected

by the excitation of collective modes. 7R equals 130 times

the unitarity limited collision time, iE 'I = 3.8 As. The

rapid magnetic field ramp utilized here and in [7] traversed

the Feshbach resonance in less than 10 A.s, which is much

smaller than 7R.
This delay time can be interpreted as the relaxation time

of the fermionic condensate. In a normal Fermi gas of N

particles at temperatures much smaller than the Fermi

temperature TF, relaxation occurs through collisions be-

tween the thermally excited particles close to the Fermi

surface, whose number scales as Nth = N~. The number

of available scattering states again being proportional to

kJ, the relaxation time will be 71R = h . In general, if
EF  

(k T) "

the Fermi surface is smeared out over an energy width AE,

the relaxation time is = h E . This formula with AE = A

should apply also to the superfluid state [23] when the gap

parameter A is rapidly changed to a much smaller value.

Generally, one would expect AE to be the larger of A and

kBT. Using 7R = 500 ps, we obtain the estimate AE =

0.1 EF which may set an upper bound for both temperature

and pairing gaps.
A decay is superimposed to the periodic modulation of

the condensate fraction. It could be caused by heating due

to the nonadiabaticity of the process. Another source of

heating could be the excitation of the cloud via the small

accompanying variation of the magnetic field curvature.

0 2 4 6 8 10
Time [ms]

I
21
t

12 14 16

FIG. 2. Measurement of the relaxation time of fermionic pair
condensates. Shown is the delayed response of the observed
condensate fraction (data points and thick line to guide the eye)
to a 250 Hz magnetic field modulation (thin line) on the BCS
side of the Feshbach resonance at 834 G. The condensates were
detected as described in Fig. 1. Three measurements per point
were taken in random order, the size of the data points reflecting
the standard deviation. The vertical lines indicate the points of
maximum condensate fraction, which are delayed with respect to
the times at which the magnetic field is closest to resonance.
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Despite the decay of the condensate fraction, the relaxation
time was constant for subsequent cycles of modulation,
within the (limited) accuracy of our measurement.

In a compressed trap of p = 150 mW, at a 1.8 times
higher Fermi energy of 3.6 AK, the measured delay time
was 7R = (230 + 100) As. BCS theory predicts that the
relaxation time should scale with density like TR oc
EF1 el/(kFlal), giving rR = 200 pAs for this experiment per-
formed around 900 G. However, we regard this agreement
with observation as fortuitous since BCS theory cannot be
rigorously applied, and finite temperature effects may con-
tribute to the relaxation.

We now discuss further observations regarding the effi-
ciency of converting atoms into molecules. Since the re-
laxation time introduces some hysteresis, we observe the
same condensate fraction at two different magnetic field
values. Therefore, in contrast to equilibrium experiments
[6,7], we can distinguish the dependence of the conversion
efficiency on condensate fraction and magnetic field.

Figure 3 shows that the total number of detected atoms
(in both the atom and the molecule channels) was modu-
lated by the magnetic field. We assume that this instanta-
neous response reflects the two-body physics during the
magnetic field sweep. In a simple two-state Landau-Zener
model, the initial magnetic field and the sweep rate deter-
mine what fraction of the atoms appears as bound mole-
cules. However, the total number of bound or unbound
atoms should be constant in contrast to our observations.
This is evidence for the presence of other molecular states
(e.g., lower lying vibrational states) which are populated
during the magnetic field sweep, and the population is
larger for initial magnetic fields closer to the Feshbach
resonance. Note that the determination of the condensate
fraction is immune against those "disappeared" mole-
cules, since the two-body physics does not depend on the
center-of-mass motion of the atom pair.

We now look at the molecular fraction which we define
as 1 - Natom,,/NIN, where Natom is the number of atoms

0 1 2 3 4 5
Time [ms]

FIG. 3. Total number of detected atoms (
molecules) after the rapid ramp (same data
modulated in phase with the magnetic fie
close to resonance, more atoms are "miss
ramp.

observed after the sweep and Ntota the total number of
atoms before the sweep (this definition includes the dis-
appeared molecules) [24]. If the molecule fraction would
follow the instantaneous magnetic field, it would again
reflect the two-body physics during the sweep. Instead,
we observe a delayed response in perfect correlation with
the condensate fraction (Fig. 4). Since the delay time
reflects the many-body physics of condensate formation,
this is clear evidence that the molecule conversion effi-
ciency depends on the initial many-body state.

One consistent explanation of these findings is that
fermion pairs in the condensate are more completely trans-
ferred into tightly bound molecules than thermal pairs.
With this assumption, we extrapolated the fitted line in
Fig. 4(b) to a zero condensate fraction to obtain the transfer
efficiency from thermal atom pairs into molecules (includ-
ing the missing fraction) as pth = 75% [21]. Extrapolating
towards the other limit, we do not expect any unpaired
atoms after the ramp already for a condensate fraction of
80% [25], suggesting a transfer efficiency for condensed
fermion pairs into molecules of po = 100%. This effect
would lead to an overestimate of the fermionic condensate
fraction before the sweep. Small condensate fractions
could be overestimated by as much as P"11 = 33%. The
largest absolute error occurs for an initial pair condensate

1.0

0.9.

0.7, b)

0.71
00 0.2 0.4 0.6

Molecular Condensate Fraction

FIG. 4. Correlation between the observed condensate fraction
and the molecular fraction. Shown are (a) the condensate frac-

6 7 B tion vs time during a 500 Hz field modulation (circles), the
fraction of molecules (triangles) and the magnetic field. Unlike

unbound atoms and the total detected signal (Fig. 3), the molecular fraction is
set as in Fig. 4). It is modulated not in phase with the magnetic field, but in complete
Id. For initial fields correlation with the condensate fraction. (b) The molecular
ing" after the rapid fraction vs the condensate fraction, together with a fitted line

through the data.
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fraction of P - 46% and would be about 7% in our
case.

This effect can have several possible origins: One is that
the atomic separation in a condensed atom pair is smaller
than that of two uncondensed atoms. Also, the presence of
a large pair condensate increases the density of the cloud
[26]. Finally, if there are incoherent processes involved
during the rapid ramp, bosonic stimulation into the mo-
lecular condensate could play a role.

In conclusion, we have determined the intrinsic time
scale for the growth of a fermion pair condensate by
observing the delayed response of the system to a change
in its interaction strength. For our trap parameters, the
response was delayed by - 500 ;zs. This time is far longer
than the time spent within the resonance region during the
conversion of fermion pairs into molecules. This provides
final proof that the observed molecular condensates origi-
nated from condensates of pairs of fermions above the
resonance. Regarding the two-body physics of the rapid
transfer, we found that there is a missing fraction of
particles after the ramp, presumably transferred into un-
observed molecular states. We found evidence that con-
densed fermion pairs are more efficiently transformed into
molecules than thermal pairs during the rapid ramp. Thus,
the observed molecular condensate fractions tend to over-
estimate the initial fermion pair condensate fraction.

This work was supported by the NSF, ONR, ARO, and
NASA. We thank Michele Saba for the critical reading of
the manuscript. S. Raupach is grateful to the Dr. Jiirgen
Ulderup foundation for financial support.
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Direct observation of the superfluid phase
transition in ultracold Fermi gases
Martin W. Zwierlein', Christian H. Schunck1 , Andre Schirotzek' & Wolfgang Ketterle'

Phase transitions are dramatic phenomena: water freezes into ice,

atomic spins spontaneously align in a magnet, and liquid helium
becomes superfluid. Sometimes, such a drastic change in beha-
viour is accompanied by a visible change in appearance. The

hallmark of Bose-Einstein condensation and superfluidity in

trapped, weakly interacting Bose gases is the sudden formation
of a dense central core inside a thermal cloud'-7 . However, in

strongly interacting gases-such as the recently observed fermio-

nic superfluids--there is no longer a clear separation between the
superfluid and the normal parts of the cloud. The detection of

fermion pair condensates has required magnetic field sweeps -'"
into the weakly interacting regime, and the quantitative description
of these sweeps presents a major theoretical challenge. Here we
report the direct observation of the superfluid phase transition in a

strongly interacting gas of 6Li fermions, through sudden changes in
the shape of the clouds-in complete analogy to the case of weakly
interacting Bose gases. By preparing unequal mixtures of the two
spin components involved in the pairing' ", we greatly enhance the
contrast between the superfluid core and the normal component.
Furthermore, the distribution of non-interacting excess atoms
serves as a direct and reliable thermometer. Even in the normal

state, strong interactions significantly deform the density profile
of the majority spin component. We show that it is these inter-
actions that drive the normal-to-superfluid transition at the
critical population imbalance of 70 ± 5 per cent (ref. 12).

The dramatic signature of Bose-Einstein condensation in weakly

interacting gases in atom traps derives from a natural hierarchy of
energy scales: the critical temperature for condensation, Tc oc n 2/3 at
particle density n, is much larger than the chemical potential

(divided by the Boltzmann constant kB) of a pure condensate,
1A oc na, which measures the interaction strength between particles
(a is the scattering length). Hence, for weak (repulsive) interactions
(a > 0, na3 

<t 1), the condensate is clearly distinguished from the
cloud of uncondensed particles through its smaller size and higher
density. However, as the interactions are increased, for example by
tuning a using a Feshbach resonance, this hierarchy of energy scales
breaks down, as s can now become comparable to ksTc. In Fermi
gases with weak attractive interaction (a < 0, nas•3 -c 1), the
chemical potential is given by the Fermi energy EF and will even

far exceed the superfluid transition temperature kBTc oc Ere-r/2kPlal

(where kF oc n 1-'is the Fermi wave vector). Both the normal and the
condensed cloud will here be of the same size and shape, dependent
only on EF and the trapping potential.

The phase transition from the normal to the superfluid state,
although dramatic in its consequences, is thus not revealed by a
major change in the appearance of the gas. Indeed, in strongly
interacting Fermi gases no deviation from a normal cloud's shape
has so far been detected, either in the unitary regime, where a
diverges, or on the attractive Bardeen-Cooper-Schrieffer (BCS)
side of a Feshbach resonance. Theoretical works predicted small

'kinks'4- " or other slight deviations' 7 in the density profiles of the

gas in the superfluid regime, but after line-of-sight integration these

effects have so far been too small to be observable. Condensates could

only be observed via rapid magnetic field ramps to the Bose-Einstein
condensate (BEC) side (a > 0) of the Feshbach resonance, per-

formed during expansion"9 '. lThis suddenly reduced the condensate's

chemical potential, and let the thermal fraction grow beyond the

condensate size. A similar ramp was used to detect vortices on

resonance and on the BCS side in the demonstration of fermionic

superfluidity
8 . However, these magnetic field ramps are difficult to

model theoretically, and a satisfactory quantitative comparison of,

for example, the condensate fraction with experiments has not been

accomplished'" 2"

In this work we demonstrate that the normal-to-superfluid phase

transition in a strongly interacting Fermi gas can be directly observed
in absorption profiles, without the need for any magnetic field ramps.

As in the case of weakly interacting BECs, preparation, expansion and

detection of the sample all take place at the same, fixed magnetic field
and scattering length. As for BECs, the phase transition is observed as

a sudden change in the shape of the cloud during time-of-flight
expansion, when the trap depth is decreased below a critical value. To
clearly distinguish the superfluid from the normal component, we
break the number symmetry between spin-up (majority atom
number, Nt ) and spin-down (minority atom number, NI) and

produce an unequal mixture of fermions (imbalance parameter
6 = (NI - NI)/(N1 + N1)). Standard BCS superfluidity requires
equal densities of the two spin components. Hence, when cooled
below the phase transition the cloud should show a sudden onset of a
superfluid region of equal densities. Indeed, below a critical tem-
perature, we observe how the density distribution of the minority
component becomes bimodal.

Breaking the symmetry in atom numbers thus produces a direct
and striking signature of the superfluid phase transition2 2 24 . A
similar situation has been encountered in Bose-Einstein conden-
sation, where breaking the symmetry of a spherical trap resulted in
dramatic anisotropic expansion of the condensate, now a hallmark of
the BEC phase transition.

Figure 1 shows column density profiles of the two imbalanced spin
states for different points along the evaporation path corresponding
to different temperatures, and for three magnetic fields that corre-
spond to the BEC side, exact resonance and the BCS side of the
resonance. For large final trap depths (upper panels in Fig. 1), the
smaller cloud has the expected shape of a normal, non-superfluid gas:
it is very well fitted using a single, finite temperature Thomas-Fermi-
profile (with central optical density, radius and the fugacity as
independent fit-parameters). However, below a critical trap depth,
a second, denser feature appears in the centre of the minority
component (lower panels in Fig. 1). This onset of bimodality occurs
very suddenly as the trap depth is lowered, as can be seen from Fig. 2:
Around the critical point, the atom number (Fig. 2a) and population

'Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139, USA.
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imbalance (Fig. 2b) are practically constant, and the temperature
(Fig. 2c) varies in a smooth linear way with the trap depth. In contrast,
below the critical trap depth, the shape of the smaller cloud starts to
deviate drastically from the Thomas-Fermi distribution of a normal
gas, as quantified in Fig. 2d. This sudden increase in the standard
deviation of a fit to a single-component fitting function is a standard
way of identifying the BEC phase transition in a model-independent
way2.

Figure 2e displays the fact that below the critical trap depth a new,
third radius is required to describe the two clouds. As we will see below,
the appearance of this central feature coincides with the appearance of
the fermion pair condensate in experiments involving the magnetic field
ramp technique " "- '2 . It is this condensate that contains the superfluid
vortices in refs 8 and 12. We are thus naturally led to interpret the central
core as the condensate of fermion pairs, and the outer wings as the
normal, uncondensed part of the cloud. This constitutes, to our
knowledge, the first direct observation of the normal-to-superfluid
phase transition in resonantly interacting Fermi gases on resonance and
on the BCS side (that is, without a magnetic field sweep that so far
cannot be quantitatively accounted for).

Already at high temperatures, above the phase transition, the
larger cloud's profile is strongly deformed in the presence of the
smaller cloud, a direct signature of interaction. Indeed, on resonance
the cloud size of the minority component is significantly smaller than
that of a non-interacting sample with the same number of atoms (see
Fig. 2e). At the phase transition, the outer radii of the clouds do not
change abruptly. This demonstrates that interactions, not super-
fluidity, are the main mechanism behind the reduced cloud size of an
interacting Fermi gas.

On the BEC side, the condensate is clearly visible in the larger cloud.

a)

BEC side2
a

0
10 R0 R1

0
0.0 0.5 1.0

3-

On resonance, however, the condensate is not easily discernible in the
larger component's profiles at the scale of Fig. 1. Nevertheless, we
have found a very faint but reproducible trace of the condensate
when analysing the curvature of these column density profiles (see
Supplementary Fig. S ). On resonance and on the BCS side, the onset
of bimodality in the smaller cloud can be clearly observed for
imbalances larger than -20% (but below a certain critical imbalance,
see below), for which the condensate is small compared to the
minority cloud size. With increasing magnetic field on the BCS
side (that is, with decreasing interaction strength), the bimodality
becomes less pronounced and is not clearly discerned beyond 853 G
(interaction parameter 1/kF a < -0.15).

Thermometry of strongly interacting Fermi gases has always been a
major difficulty in experiments on strongly interacting fermions2 5. A
thermometer can only be reliable if the working substance is not
affected by the sample to be measured. In equal mixtures of fermions,
the two overlapping atomic clouds are strongly interacting through-
out. Temperatures determined from a non-interacting Thomas-
Fermi fit to these clouds need calibration based on approximate
theoretical calculations"2 . In addition, as will be reported elsewhere,
we find that those fits do not describe the profiles of a partially
superfluid Fermi gas as well as they do in the normal state, in
agreement with theory 4 "'7. In the case of imbalanced mixtures, the
wings of the larger component, where the spin-down species are
absent, are non-interacting and thus serve as a direct thermometer
(see Fig. 2c). For an imbalance of 6 = 75 t 3% we determine the
critical temperature for the phase transition on the BEC side at 1/k,
a = 0.46 to be T/T F= 0.18(3) (kTF = hw(3(Nt +N 1))1/3

hA2k/2m is the Fermi energy of a non-interacting, equal mixture
with the same total number of fermions N T+ NI, wl/2r is the

BCS side
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Figure 1 I Direct observation of the phase transition in a strongly
interacting two-state mixture of fermions with Imbalanced spin
populations. Top (a-c) and bottom (d-f) rows show the normal and the
superfluid state, respectively. Panels a and d were obtained in the BEC
regime (at B = 781 G), b and e on resonance (834 G), and c and f on the BCS
side of the Feshbach resonance (853 G). The profiles represent the azimuthal
average of the column density after 10 ms (BEC side) or 11 ms (on resonance
and BCS side) of expansion. The appearance of a dense central feature in the
smaller component marks the onset of condensation. The condensate causes
a dear depletion in the difference profiles (bottom of each panel). Both in
the normal and in the superfluid state, interactions between the two spin

states are manifest in the strong deformation of the larger component. The
dotted lines show Thomas-Fermi fits to the wings of the column density.
The radii R T and RI mark the Fermi radius of a ballistically expanding,
non-interacting cloud with atom number Nt, NI. The trap depth U (in iK),
the atom numbers, the population imbalance 6 (in %), the interaction
parameter 1/kF a, the temperature T (in nK) and the reduced temperature
T/TF were respectively: a, 4.8, 1.8 X 107 and 2.6 X 106, 75, 0.42, 350, 0.20;
b, 3.2, 1.8 x 107 and 4.2 x 106, 63, 0 (resonance), 260, 0.15; c, 2.5, 1.5 X 107
and 4.5 x 106, 52, -0.13, 190, 0.12; d, 0.8, 6.5 x 106 and 1.5 x 106, 62, 0.67,
50, :0.05; e, 1.1, 1.5 x 107 and 3.8 x 106, 60%, 0 (resonance), 70, 0.06; f, 1.2,
1.3 X 107 and 4.4 X 106, 50, -0.15, 100, 0.08. a.u., arbitrary units.
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geometric mean of the trapping frequencies, and ni is the mass of 6 Li).
This corresponds to T/Tc.± = 0.55(9) when comparing the tempera-

ture to the critical temperature Tc; for Bose condensation in a non-

interacting gas with N, bosons. The reduction in the critical tempera-

ture is a direct consequence of strong repulsive interactions between the

molecules. On resonance, at 6 = 59 + 3%, we find TITp = 0.12(2),
and on the BCS side (lI/k a = -0.14) for 6 = 53 ± 3% we obtain TI

TI: = 0.11(2). These are, to our knowledge, the first directly measured
and reliable temperatures for the superfluid transition in strongly
interacting Fermi gases. They may serve as a checkpoint for theor-
etical models.

BEC side
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We note that the critical temperature will in general depend on the
population imbalance. For example, for large enough imbalance on
resonance or on the BCS side, no condensate will form even at zero
temperature", as we discuss below. Here, the critical temperature for
superfluidity will be zero.

An important qualitative difference distinguishes the BEC side
from resonance at the lowest temperatures. On the BEC side, the gas
consists of only two parts-the superfluid core surrounded by a fully
polarized degenerate Fermi gas of the excess species. On resonance
and on the BCS side, however, there exists a third region, a normal
state in which both species are mixed. Several recent theories describe

Resonance BCS side
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Figure 2 i Characterization of the phase transition. a-e, The data
characterize the evolution of the fermion mixture as the cloud is
evaporatively cooled by lowering the trap depth. The chosen magnetic fields
are identical to those in Fig. 1. Data obtained from the majority (minority)
cloud are shown as diamonds (circles). a, The atom number, b, the
population imbalance between the two spin states; and c, the temperature of
the spin mixture as determined from the non-interacting wings of the
larger cloud's profile. d, A finite temperature Fermi-Dirac (for resonance
and the BCS side) or gaussian (for the BEC side) distribution is fitted to
the minority cloud; the phase transition is marked by a sudden increase in
X2 as the condensate starts to appear. e, Outer radii of the majority and
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minority cloud (for the minority cloud on the BEC side, thermal cloud
radius; all other cases, Thomas-Fermi radius) as well as the condensate
radius (open circles), defined as the position of the 'kink' in the minority
profile (see Fig. 1). The majority (minority and condensate) cloud size is
normalized by the Fermi radius Rt (RI) of a non-interacting cloud with Nt
(N1) atoms, and adjusted for ballistic (hydrodynamic) expansion. Note
that the imbalance decreases during evaporation because the larger
majority cloud incurs stronger evaporative losses. For the data, three
(BEC and resonance) to five (BCS) independent measurements were
averaged.
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density profiles ofimbalanced Fermi mixtures2• 32 . Mean-field theories
that neglect interactions in the normal cloud and between the normal
and condensed cloud are only in qualitative agreement with our
results. Descriptions that exclude the mixed region or find super-
fluidity on resonance at all population imbalances are ruled out by
our observations.

To elucidate the origin of the dear separation between condensate
and normal components, we varied the population imbalance at our
coldest temperatures and on resonance. Figure 3b shows several
resulting profiles after 11 ms expansion from the trap. For large
imbalances, 6 > 70%, the minority cloud is not bimodal and well fitted
by a (unconstrained) Thomas-Fermi profile. At a critical imbalance
of 6 - 70%, the condensate appears and then grows further as
the imbalance is reduced (for the cloud radii, see Supplementary
Fig. S2).

To characterize the appearance of the condensate for imbalances
around 6 = 70%, a Thomas-Fermi profile is fitted to the wings of the
minority cloud. The fraction of atoms not contained in this fit is a
measure of the condensate fraction (see Fig. 3). We find a critical
imbalance of 6, = 70(5)% above which the condensate disappears.
This agrees with our previous work'2 , where we employed a rapid
ramp method to the BEC side to extract the condensate fraction. We

Population Imbalance (%)

Figure 3 1 Quantum phase transition to superfluidity for decreasing
population Imbalance. a, Main panel, the 'condensate fraction' of excess
minority atoms, not contained in the Thomas-Fermi fit, versus population
imbalance on resonance. b, Column density profiles of majority (blue) and
minority (red) clouds, azimuthally averaged, for varying population
imbalance. The condensate is dearly visible in the minority component as
the dense central feature on top of the normal background (finite-
temperature Thomas-Fermi fit, dotted lines). Below the critical imbalance
6, = 70%, the condensate starts to form. The inset in a shows the central
densities of the larger (black diamonds) and smaller (grey circles) cloud in
the normal state above 6~. This demonstrates that here the central densities
are unequal, suppressing superfluidity. The densities were calculated from
the central optical density and the fitted size of the douds, assuming local
density approximation and adjusting for ballistic (hydrodynamic)
expansion of the outer radii of majority (minority) clouds. The data points
for the condensate fraction show the average of several independent
measurements.

observed the quantum phase transition from the superfluid to the
normal state as a critical population imbalance of 6, = 70% was
exceeded. This strongly suggests that the bimodality observed here
directly in the minority component, and the bimodality observed in
molecular clouds after a magnetic field sweep, are signatures of the
same phase transition.

The transition at 6, is known as the Clogston limit of super-
fluidity' 2'", and occurs when the chemical potential difference 8A
becomes larger than a constant times the (local) superfluid gap A(r)
(see Supplementary Information). Here we present a simple picture
for the character of this phase transition in a harmonic trap.
Thomas-Fermi fits for the normal clouds beyond 6, allow a simple
estimate of the central three-dimensional density of the gas (with an
estimated accuracy of 20% for the relative density difference), shown
in the inset of Fig. 3. For large imbalances, we find that the three-
dimensional densities differ significantly, as is expected for two
weakly interacting Fermi clouds. As the imbalance is reduced towards
the critical 6,, the central densities approach each other and become
approximately equal around 6c,. This is a direct consequence of strong
interactions in the normal state. In a non-interacting Fermi mixture
with an imbalance of 6 , the central densities would differ by a factor
of 2.4.

This observation now offers an intriguing insight into the nature of
a fermionic superfluid on resonance or on the BCS side. Already in
the normal state above Tc or beyond 6 = 6,, interactions between
the two spin states are strong. Indeed, this is directly seen in the
deformation of the majority cloud due to the presence of the
minority species (see Figs 1, 3). However, here these interactions
are not strong enough to let the central densities of the two clouds
become comparable. At the critical imbalance the Clogston criterion
8i = cA(r = 0) is fulfilled in the centre of the trap (here, c is a
constant that equals J2 in the BCS limit"'). For smaller imbalance, a
central superfluid region can form: the condensate. Its borders are
defined by 8t• < cA(r). The simple density estimate in Fig. 3 suggests
that in this region, the two clouds will have equal densities, although
more refined techniques to measure small density differences have to
be developed to finally settle this question. Outside the superfluid
region there is still a normal state with unequal densities of minority
and majority components. The discontinuity in the clouds' densities
at the normal-to-superfluid phase boundary gives rise to the visible
kink in the column density profiles. Such a density discontinuity is
characteristic of a first-order phase transition.

Interestingly, most of the 'work' needed to build the superfluid
state has already been done in the normal component by decreasing
the density difference. Consequently, the critical population differ-
ence needed to form the superfluid is largely determined by the
interactions in the normal gas.

In conclusion, we have observed the normal-to-superfluid phase
transition through the direct observation of condensation in an
imbalanced Fermi mixture-on the BEC side, on the BCS side, and
right on the Feshbach resonance. Unequal mixtures offer a direct
method of thermometry by analysing the non-interacting wings of
the majority species. Strong interactions are already visible in the
normal cloud as marked deformations of the majority profile. It is
these interactions in the normal gas that squeeze the two components
and eventually, at the critical imbalance, let them reach almost equal
densities in the centre, aiding the formation of the superfluid. Our
method of direct detection of the condensate is a powerful new tool
to characterize the superfluid phase transition. At the current level of
precision, the appearance of a condensate after magnetic field sweeps
and the direct observation of the central dense core occur together, and
indicate the normal-to-superfluid phase transition. An intriguing
question is whether further phases are possible, including a more
exotic superfluid state with unequal densities. Several theories predict
that the Fulde-Ferrell-Larkin-Ovchinnikov state, a superfluid state
with oscillating order parameter, should be present for imbalanced spin
populations2 ".2 cas.
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METHODS
Experimental procedure. Our experimental setup is described in previous

publications
52 . A spin-polarized cloud of Li fermions is cooled to degeneracy

using a combination of laser cooling and sympathetic cooling with sodium

atoms in a magnetic trap. After transfer into an optical trap, a variable spin

mixture of the lowest two hyperfine states, labelled I T ) and I 1 ), is prepared at a

magnetic bias field of 875 G. Interactions between the two spin states can be

freely tuned via a 300-G-wide Feshbach resonance located at Bo = 834 G. At

fields below Bo, two-body physics supports a stable molecular bound state (BEC

side), while at higher fields (BCS side), no such bound state exists for two isolated

atoms. Our trap combines a magnetic saddle potential with a weakly focused (waist

w - 120 pm) infrared laser beam (wavelength A = 1,064nm), leading to a

harmonic axial confinement with oscillation frequency of v. = 22.8(0.2) Hz and

a gaussian radial potential with variable trapping frequency v, in the central

harmonic region. The trap depth U is related to P, and v, by:

I I (2_2 ( p2 (2(Pr + PZ2/2) :

The initial degeneracy of the spin mixture is about TITI - 0.3. The strongly

interacting gas is further cooled by decreasing the laser power of the optical trap

over several seconds and evaporating the most energetic particles. During the

first few seconds, the magnetic field is adiabatically ramped to a chosen final

field in the resonance region where the last stage of the evaporation (shown in

Fig. 2) takes place. For detection, the optical trap is switched off and the gas

expands in the remaining magnetic saddle-point potential. After a variable

time-of-flight, an absorption image of atoms either in state I T ) or I 1 ) is taken

along the axial direction of the trap (the direction of the optical trapping

beam). The cloud's radial symmetry allows for azimuthal averaging of the

resulting column densities, leading to low-noise profiles"2.

For preparing clouds at the coldest temperatures (as shown in Fig. 3) with

varying population imbalance, the spin mixture is evaporated down to a trap
depth of 1 lLK over several seconds on resonance, after which the trap depth is

increased again to 1.4 aK for more harmonic confinement (trap frequencies:
v, = 115(10) Hz and v, = 22.8(0.2) Hz). The temperature of the gas is determined
to be TITF, S 0.06 for all 6 > 15%, and appears to smoothly rise to T/TF, = 0.11

for an equal mixture, although thermometry in the interacting wings is

problematic. The total atom number was 1.5 x 107 and constant to within
15% for all values of 6.
Errors. The error in the critical temperature Tc-./T for the phase transition is
dominated by the uncertainty in the atom number entering the determination of

TF, which we estimate to be 30% (ref. 12). For TF we use the harmonic

approximation for the radially gaussian trapping potential, with the measured
trapping frequencies reflecting the average curvature of the gaussian potential.
The phase transition is observed above U= 2 tK, where anharmonicities
contribute only 3% to the error in Tp. Note that anharmonicities do not affect
the temperature measurement performed on the majority wings: ballistic
expansion of non-interacting atoms reveals their momentum distribution,
regardless of the shape of the trap.
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Supplementary Figure 1: (Color online) Signatures of the condensate on resonance in the spatial
profiles. The curvature of the observed column density is encoded in shades of gray with white
(black) corresponding to positive (negative) curvature. The outer radii of the two components and
the condensate radius are shown as an overlay in the lower panel. As a direct consequence of
strong interactions, the minority component causes a pronounced bulge in the majority density
that is reflected in the rapid variation of the profile's curvature. The condensate is clearly visible in
the minority component (6 > 0), but also leaves a faint trace in the majority component (6 < 0).
The image was composed out of 216 individual azimuthally averaged column density profiles,
smoothed to reduce technical noise. Data close to the cloud's center suffer from larger noise due
to the lower number of averaged points. The central feature of about 50pm width is an artefact of
smoothing in this region of increased noise.
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Supplementary Figure 2: Outer radii of the two cloud profiles and condensate radius versus
population imbalance. Data obtained from the majority (minority) cloud are shown as diamonds
(circles). The outer radii of the clouds (black) are determined from Thomas-Fermi fits to the pro-
files' wings, where the results of a zero-temperature and a finite temperature fit were averaged. For
the minority cloud, the representative error bars indicate the difference between these two results.
The position of the "bulge" in the majority profile (white diamonds) naturally follows the outer
minority radius. The condensate radius is defined as the position of the "kink" in the minority
profiles. It was obtained by a) fitting an increasing portion of the minority wings until a significant
increase in X2 was observed (grey circles), and b) the position of the minimum in the profile's
derivative (white circles). All sizes are scaled by the Fermi-radius of a non-interacting equal mix-
ture. The minority radii were adjusted for the observed hydrodynamic expansion (expansion factor
11.0). The non-interacting wings of the majority cloud expand ballistically (expansion factor 9.7),
as long as they are found a factor 11/9.7 = 1.13 further out than the minority radius. For small
imbalances (6 < 20%), also the majority wing's expansion will be affected by collisions. The grey
diamonds give the majority cloud's outer radius if hydrodynamic expansion is assumed.
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Supplementary Methods

Hydrodynamic vs. ballistic expansion

A non-interacting cloud of atoms simply expands ballistically from a trap. However, strongly
interacting equal Fermi mixtures, above and below the phase transition, are collisionally dense and
therefore expand according to hydrodynamic scaling laws 1-3. These scaling laws only depend on
the equation of state of the gas, c oc nor, with -7 = 1 for the BEC-side, -y = 2/3 for resonance
(a direct consequence of unitarity) and -y = 2/3 for the BCS-side, away from resonance. In
an unequal spin mixture of fermions, the expansion does not follow a simple scaling law. The
minority cloud is always in contact with majority atoms and thus strongly interacting throughout
the expansion, which is therefore hydrodynamic. The excess atoms in the wings of the larger
cloud are non-interacting and will expand ballistically, as we have checked experimentally. The
absorption images after expansion are taken along the axial direction of the trap (the direction of
the optical trapping beam). In order to compare the expanded cloud sizes to the in-trap Fermi radii
of non-interacting clouds (see Fig. 2 and Fig. S2 below) we scale the majority cloud with the
ballistic factor for the radial direction

cosh (27ruvit//) + (uv 7/IV)2 sinh2 (27rvzt/4),

where t is the expansion time and vz/l/ gives the radial anti-trapping curvature of the magnetic
saddle-point potential. The scaling factor for the hydrodynamic expansion of an equal mixture is
given by the solution to a differential equation 2,3. A priori, the minority cloud in unequal mixtures
could expand with a different scaling, since the equation of state now depends on two densities.
However, by imaging the cloud in trap and at different times during expansion, we found that
the minority cloud's expansion is very well described by the scaling law for an equal mixture.
In particular, the aspect ratio of the minority cloud did not change as a function of population
imbalance (within our experimental error of 5%), and was equal to that of a balanced mixture.

For the data on resonance in Figs. 3, S and S2, which were obtained after 11 ms expansion
out of a trap with radial (axial) frequency of 'r = 113(10) Hz (v, = 22.8(0.2) Hz), the ballistic
(hydrodynamic) expansion factor for the radial direction is 9.7 (11.0).

Supplementary Discussion

Signature of the condensate

Fig. S demonstrates that on resonance, the condensate is visible not only in the minority compo-
nent, but also in the larger cloud as a small change in the profile's curvature. In the condensate
region, the majority profile is slightly depleted when compared to the shape of a normal Fermi
cloud. This effect is still significant on the BCS-side (see Fig. 1): Although here, the condensate

is less visible in the smaller component than on resonance, the larger cloud's central depletion still
produces a clear dip in the difference profile.



Radii in the unequal Fermi mixture

Fig. S2 shows the outer radii of the majority and minority cloud, together with the condensate
radius (on resonance, for the deepest evaporation compatible with constant total atom number ver-
sus imbalance). As was the case for the phase transition at finite temperature, the outer cloud sizes
change smoothly with imbalance. No drastic change is seen at the critical population imbalance.
The radii are obtained by fitting the profiles' wings to the Thomas-Fermi expression for the radial
column density n(r):

Li2 (_X 1r2/R2)
n(r) = no U \Li2 (-A)

with the central column density no, the fugacity A and the Thomas-Fermi radius R as the free
parameters. Li2(x) is the Dilogarithm. The zero-temperature expression reduces to n(r) = no(1 -
r2/R2)2

Lower and upper bounds for the critical chemical potential difference at 6,

For the clouds at the critical imbalance Je, we now want to extract a lower and upper bound for
the difference in chemical potentials 6p, of the majority and minority component. This difference
allows us to conclude that BCS-type superfluidity with imbalanced densities is not possible.

The chemical potential difference 6 = - 2h = (IT" - IL) measures the energy cost, relative
to I = (gr + pl)/2, to add a particle to the cloud of excess fermions. A, the pairing gap, is the
energy cost for this additional majority particle to enter the superfluid. Both the critical temperature
T0 and the critical chemical potential difference 6iic provide a measure of the superfluid gap:
The superfluid can be either destroyed by raising the temperature or by increasing the population
imbalance. If he = 6J,/2 < A, excess atoms will always stay outside the superfluid, in the phase
separated normal state. For he > A, excess atoms can enter the superfluid for he > h > A.
Hence, superfluidity with unequal densities, if allowed via he > A, would be favored at large
population imbalance, contrary to the interpretation in 4, where such a state was proposed for small
population imbalance. A recent Monte-Carlo calculation 5 for the Clogston limit on resonance
gives h, = 1.00(5)A = 0.50(5)EF and can thus not decide on the question of superfluidity with
imbalanced densities.

We can attempt to extract the chemical potential from the cloud sizes RT,N - taking into
account hydrodynamic expansion for the minority cloud and ballistic expansion for the excess
fermions. For the majority cloud, we find I',T = 1/2mwR 2 = 1.21(6)EF. For the minority
cloud, we find 1/2rmw,2R = 0.39(10)EF. Throughout the smaller cloud, minority atoms are
always strongly attracted by majority atoms. This strong attractive interaction likely reduces their
chemical potential from the above upper limit. The difference of the chemical potentials 61L = 2he
is thus given by he = (pc,T - ,c,4)/2 > 0. 4 1(6)EF = 0.51,u, our lower bound. Another condition
on he concerns whether the normal state can be mixed, he < p, (minority and majority atoms in
the same spatial region) or whether the normal state is always completely polarized he > Iu. Our
observation of the mixed region in Fig. 1 immediately results in he < 1, the upper bound.



On resonance, A = 1.16A in BCS-theory, while a recent Monte-Carlo study 5 obtains
A = 1.2p. If A > i holds true, our finding of the upper bound on h, would imply h, < A
and hence would exclude a superfluid with unequal spin densities (at least on the basis of BCS-
theory, see 6 for a recent suggestion which goes beyond BCS).
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Superfluid Expansion of a Rotating Fermi Gas
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We study the expansion of a rotating, superfluid Fermi gas. The presence and absence of vortices in the
rotating gas are used to distinguish the superfluid and normal parts of the expanding cloud. We find that
the superfluid pairs survive during the expansion until the density decreases below a critical value. Our
observation of superfluid flow in the expanding gas at 1/kra = 0 extends the range where fermionic
superfluidity has been studied to densities of 1.2 x 1011 cm- 3, about an order of magnitude lower than
any previous study.

DOI: 10.1 103/PhysRevLett.98.050404

Ultracold atomic gases have been used to create novel
quantum many-body systems ranging from Bose-Einstein
condensates and Mott insulators in optical lattices to high-
temperature superfluids of strongly interacting fermions.
These systems offer a high degree of control over physical
parameters including interaction strength and density.
Many important features in these gases have a spatial scale
too small to be resolved while the gas is trapped. A
standard technique to reveal this physics is to switch off
the confining potential and release the gas. A noninteract-
ing gas expands ballistically and the expansion reveals its
momentum distribution. The expansion dynamics of an
interacting gas is modified by the effect of collisions.
This can result in classical hydrodynamic flow and in this
case the expansion serves as a (not necessarily linear)
magnifying glass for the trapped state. In contrast to clas-
sical hydrodynamics, superfluid hydrodynamic flow does
not rely on collisions. When a weakly interacting Bose-
Einstein condensate (BEC) is released from an anisotropic
trapping potential, superfluid hydrodynamics leads to an
inversion of the aspect ratio, often regarded as a hallmark
of Bose-Einstein condensation [1].

The expansion dynamics of strongly interacting Fermi
gases have been the subject of a long-standing debate. For
a weakly interacting ultracold Fermi gas anisotropic ex-
pansion has been proposed as a probe for superfluidity,
analogous to the case of weakly interacting BECs [2].
Anisotropic expansion has been experimentally observed
in strongly interacting Fermi gases [3-51. In this case,
however, the inversion of the aspect ratio can occur due
to collisions between the expanding atoms even if they
were initially at zero temperature [6,7]. So far experiments
have not been able to discriminate between superfluid and
collisional hydrodynamics in expansion and indeed one
would expect both effects to contribute: In the BCS regime,
the superfluid transition temperature Tc depends exponen-
tially on the density. Starting at T < Tc, the superfluid gas
expands according to superfluid hydrodynamics. As the
density drops, T approaches Tc and superfluidity cannot
be maintained. From this point on, the gas should expand
according to collisional hydrodynamics or enter a regime

PACS numbers: 03.75.Ss, 03.75.Hh, 03.75.Kk, 03.75.Lm

intermediate between collisional hydrodynamic and colli-
sionless expansion.

In this Letter we study the expansion of a superfluid
Fermi gas, in the regime where pairing is purely a many-
body effect. We have observed superfluid flow even after
5 ms of expansion, when the cloud size had increased by
more than a factor of 4 and the peak density had dropped
by a factor of 17 compared to the in-trap values.

Superfluidity in Fermi gases has previously been estab-
lished through the observation of vortex lattices [8,9]. To
detect vortices in a rotating fermion-pair condensate the
pairs are transferred into stable molecules by sweeping an
external magnetic field across a Feshbach resonance
shortly after the gas is released from the trap. Vortices
can be observed only when the gas is still a superfluid at
the moment of the magnetic field sweep [10]. At the final
magnetic field (on the BEC side of the Feshbach reso-
nance) the interactions are much weaker. Therefore the
vortex core has higher contrast and is larger than near
resonance. If the gas is no longer superfluid at the time
of the field ramp, we expect the vortex core to fill in quickly
and disappear. The observed vortex cores therefore serve as
markers for the regions which are superfluid at the time of
the magnetic field ramp.

Our experimental setup has been described earlier
[11,12]. 6Li fermion-pair condensates containing 5 X 106
fermions were created in an optical dipole trap at a mag-
netic field of 812 G. This is on the BEC side of a Feshbach
resonance at B0 = 834 G. At magnetic fields below
(above) B0, on the BEC (BCS) side, the scattering length
a is positive (negative) and a nearby molecular bound state
exists (does not exist). The radial and axial trapping fre-
quencies were w, = 27 X 120 Hz and wa =27 X
23 Hz, respectively. To observe vortices as a probe of
superfluid flow, the gas was set in rotation: two blue-
detuned laser beams were rotated symmetrically around
the cloud for 1 s at an angular frequency of 2fr x 80 Hz
[8]. We allowed 500 ms of equilibration before the mag-
netic field was ramped (in 500 ms) to several probe fields
on the BCS side of the resonance. Finally, we studied the
expansion of the rotating superfluid: The gas was released

© 2007 The American Physical Society050404-10031-9007/07/98(5)/050404(4)
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910 C

960 0

FIG. 1. Superfluid expansion of a strongly interacting rotating Fermi gas. Shown are absorption images for different expansion times

on the BCS side of the Feshbach resonance at 910 G (0.0, 1.0, 2.0, 3.0, 3.5, 4.0, and 4.5 ms) and 960 G (0.0, 0.5, 1.0, 1.5, 2.0, 2.5, and

3 ms), before the magnetic field was ramped to the BEC side for further expansion. The vortices served as markers for the superfluid

parts of the cloud. Superfluidity survived the expansion for several milliseconds and was gradually lost from the low density edges of

the cloud towards its center. Compared to 910 G (a = -7200ao), superfluidity decayed faster at 960 G (a = -5000ao) due to the

reduced interaction strength. The total expansion time remained constant [14]. The field of view of each image is 1.2 mm X 1.2 mm.

from the optical trap and expanded at the probe field for a

variable "BCS-expansion" time tBcs, that was increased in

500 /s steps. To transfer the remaining fermion pairs into

stable molecules the magnetic field was then lowered in

400 gs to 680 G [13]. Here, the cloud was given several

milliseconds of "BEC expansion." For absorption imaging

the magnetic field was raised to 730 G in 500 /s before the

last 2 ms of time of flight. For most of the data the total

time of flight was chosen to be 11 ms [14]. An absorption

image of the gas was obtained separately at tBcs to deter-

mine the peak density and the peak Fermi momenta kF
before the magnetic field sweep.

Figure 1 shows absorption images taken as outlined

above for seven different BCS-expansion times at both

910 and 960 G. The presence of vortices proves that

superfluid fermion pairs survived in the expanding gas.

As the density of the gas dropped during the BCS expan-

sion the vortices were gradually lost from the low density

edges of the cloud towards its center. After 4.5 ms time of

flight at 910 G and 3 ms at 960 G all of the vortices had

decayed. If we regard the number of vortices as an indica-

tor of the superfluid fraction of the gas, we can draw the
"phase diagram" of Fig. 2. Here the number of vortices is

shown as a function of the inverse scattering length 1/a

and the inverse peak Fermi momentum ll/kF. As ll/kF

increases at a given magnetic field, corresponding to the

decrease in density during time of flight, vortices are lost.

The reduction in the number of vortices for decreasing lal
reflects the decrease of the superfluid fraction for smaller

attractive interactions at a given temperature. In addition,
the increase in the normal fraction leads to higher damping

of the remaining vortex number [8]. Most importantly,

however, we see that vortices are lost earlier in time of

flight as the interactions are reduced.
At all magnetic fields the peak interaction strength at the

point where all vortices were lost is about constant, kFa -
-0.8 (Fig. 3). As shown in Fig. 1 the loss of vortices

occurred gradually and the surviving vortices were located

within a circle of decreasing radius. We assume that the

critical value of kFa for which superfluidity was lost, was

first reached at the edge of the cloud and subsequently

further inward. However, we were not able to confirm this

Magnetic Field [G]
865 880 900 920 940 960

1/12500 1/7500
1/lal [1/aol

1/5000

FIG. 2 (color online). "Phase diagram" of an expanding,
rotating Fermi gas: At a given magnetic field the number of
vortices served as a measure for the size of the superfluid region
in the gas. The number of vortices is plotted versus l/kF and
/lal. The contour plot was created from a total of 53 data

points. In this diagram lines of constant kFa correspond to
hyperbolas. The vortices decayed when the density (increasing
1/kF) or the scattering length (increasing I/tat) was reduced.
For weaker interactions, at smaller scattering lengths lal, vorti-

ces were lost already at higher densities. The four data points

shown mark the breakdown of superfluidity and are the same as
the squares in Fig. 3.
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FIG. 3 (color online). The peak interaction strength during
superfluid expansion. Starting at a peak kFa in the optical trap
(triangles) vortices survived up to a critical peak kFa of -0.8 ±
0.1 (squares), almost independent of the magnetic field (scatter-
ing length). Solid circles correspond to partially superfluid, open
circles to normal clouds. The observed number of vortices is
color coded. The critical kFa was obtained for each magnetic
field separately by taking the average of the peak kr of the last
partially superfluid and the first completely normal cloud. The
error in kra is about 10% and dominated by the systematic error
in the atom number.

picture quantitatively without a model that describes how
the shape of the cloud and the bimodality develop during
and after the magnetic field sweep.

It is remarkable that the observation of superfluidity and
fermion-pair condensation for trapped gases has also been
limited to values of klial larger than I on the BCS side
[8,12,15]. This suggests that the underlying reason for this
limitation is the same for a trapped and an expanding gas.
One obvious scenario for the decay of the vortex lattice
during expansion is the breakdown of superfluidity due to
finite temperature when a critical interaction strength is
reached. As the density decreases, Tc/TF drops while
T/TF remains constant (since the phase space density n X
T - 3/ 2 is invariant during expansion). Therefore Tc even-
tually becomes smaller than T everywhere in the cloud.
The critical interaction strength can be estimated by equat-
ing I - T/Tc = (T/TF)(TFI/Tc) = 1.76(T/TF)(EF/A).
Here A = (2/e)7/3 EF exp(-- r/2kFal) is the pairing gap
in the BCS limit (valid for kFlaI s 1) [16], where the peak
Fermi energy EF = h2k2/2m and kF are density depen-
dent. For an estimate of our lowest temperatures of
T/TF = 0.05 [17] this gives kFa = -0.9 close to the
observed value. This finite-temperature scenario implies
that the superfluid state evolves adiabatically during ex-
pansion, which is plausible: Even when the critical kFa is
reached, the pair binding energy changes at a slower rate,
,A/A, than the rate at which the pairs can respond to this
change, A/h [18]. For weakly interacting BECs, the decay
of vortex lattices at finite temperature was studied theo-
retically [19], and similar structures are found.

In analogy to the critical magnetic field Hc2 in type-II
superconductors, superfluidity can also break down in
response to rapid rotation [20,21]. However, Ref. [21]
predicts that superfluidity is stable in the strongly interact-

ing regime (kFlal > 1.029) at all rotation frequencies up to
the trap frequency. Since our estimated rotation frequen-
cies are much smaller [22] we believe that the observed
breakdown of superfluidity at kFial = 0.8 is mainly due to
finite temperature, and only weakly affected by rotation.
This is consistent with the observation that vortices dis-
appear in rotating clouds at approximately the same kFa at
which fermion-pair condensates disappeared in experi-
ments with nonrotating clouds.

Another explanation for the loss of vortices is a failure of
the transfer of correlated fermion pairs into molecules
since the size of the fermion pairs increases with decreas-
ing density. When the fermion-pair size becomes larger
than the interparticle spacing, molecules might be formed
out of uncorrelated nearest neighbors rather than out of
correlated pairs. The magnetic field sweep then destroys
the coherent many-body wave function.

Vortices [8,9] and bimodal density distributions [12,15]
are indicators for superfluidity and pair condensation, re-
spectively. If a fermion-pair condensate is transferred to
the BEC side before its interaction energy has been con-
verted into kinetic energy, it continues to expand with the
drastically reduced mean-field energy of a molecular BEC
at 680 G. This results in a clear separation of condensate
and thermal cloud after further BEC expansion. If the
transfer of fermion pairs into molecules is delayed after
releasing the gas from the trap, the fermion-pair conden-
sate initially expands just like the normal part of the cloud.
This eventually leads to a loss of bimodality in the density
profiles after the transfer. We can now study how the two
indicators, vortices and bimodality, are related in this
experiment. For short BCS expansion tacs our data showed
bimodality as well as vortices. However, bimodality was
gradually lost and could not be discerned after longer BCS

2-
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BCS-expansion time tBCS at 885 G [ms]

FIG. 4 (color online). Disappearance of bimodality. Zero tem-
perature Thomas-Fermi profiles (dotted) were fit to density
profiles (solid) obtained after BCS expansion at 885 G and
subsequent BEC expansion at 680 G. The X2 of the fit was
monitored as a function of the BCS-expansion time tscs. A high
X2 indicates a bimodal density distribution. Vortices were still
observed after 5 ms of expansion (indicated by the dashed line in
the figure) while bimodality had already disappeared (for X2

values smaller than 0.01 bimodality cannot be discerned). Hence,
the absence of bimodality does not imply an absence of super-
fluidity.
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FIG. 5. Loss of vortex contrast on resonance at 834 G. Shown are absorption images after a fixed total time of flight, but for different

expansion times on resonance (2, 25, 3, 3.5, 4, 5, and 6 ms) before the magnetic field was swept to the BEC side for further expansion.

A gradual loss of the vortex contrast from about 15% (after 2 ms of expansion on resonance) to 3% (after 5 ms) was observed across the

whole cloud. The field of view of each image is 1.2 mm x 1.2 mm.

expansion although vortices were still visible (see Fig. 4

for details). The absence of bimodality therefore does not

indicate a breakdown of superfluidity.
So far we have studied the expanding gas on the BCS

side of the Feshbach resonance. On the BEC side and on

resonance, Tc is proportional to TF so that T/Tc is con-

stant during expansion. Therefore, one would not expect to

observe a breakdown of superfluidity. Figure 5 shows

absorption images obtained after initial expansion of the

cloud on resonance at 834 G. In contrast to the situation on

the BCS side of the resonance no vortices were lost.

Instead, the vortex contrast decreased uniformly across

the cloud for longer expansion times. Vortices have been

detected at total densities as low as 1.2 x 10"1 cm - 3 in the

wings of the expanded cloud. Here the critical temperature

Tc of approximately 0.2 TF [23,24] was below 20 nK (kB TF

is the local Fermi energy). We believe that the decrease in

vortex contrast is due to the low density of the gas after

long expansion on resonance: after the magnetic field

sweep the vortex cores cannot adjust quickly enough to

the high contrast and large size they would have in equi-

librium on the BEC side. This reduction of contrast limited

our study of the breakdown of superfluidity to magnetic

fields above 880 G.
In conclusion, we have shown that superfluid pairs can

survive during the expansion of a strongly interacting

Fermi gas. This is the first observation of nonequilibrium

superfluid flow in such systems. It has allowed us to

observe fermionic superfluidity at total densities as low

as 1.2 x 101" cm - 3 . Our results show that future experi-

ments with expanding, superfluid Fermi gases can be car-

ried out in situ, i.e., without magnetic field sweeps to the

BEC side. An intriguing question is whether fermion pairs

expanding from two clouds can coherently interfere.
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Pairing Without Superfluidity:
The Ground State of an Imbalanced
Fermi Mixture
C. H. Schunck,* Y. Shin, A. Schirotzek, M. W. Zwierlein,t W. Ketterle

We used radio-frequency spectroscopy to study pairing in the normal and superfluid phases of a
strongly interacting Fermi gas with imbalanced spin populations. At high spin imbalances, the
system does not become superfluid even at zero temperature. In this normal phase, full pairing of
the minority atoms was observed. Hence, mismatched Fermi surfaces do not prevent pairing but
can quench the superfluid state, thus realizing a system of fermion pairs that do not condense even
at the lowest temperature.

tations in nature; it occurs in such diverse
systems as superconducting materials,

liquid 31ile, neutron stars, and ultracold quantum
gases. At its heart lies the formation of fermion
pairs. Although the Pauli principle forbids
identical fermions to occupy the same quantum
state, pairs of fennions can condense and thus
become superfluid. Superconductivity, the flow of
electrical current without resistance, is a manifes-
tation of fermionic superfluidity in a condensed-
matter system. Superconductors are characterized
by a temperature T* where electrons start to pair
and a critical temperature T, for the onset of
superconductivity. In conventional supercon-
ductors, understood within the framework of
Bardeen-Cooper-Schrieffer (BCS) theory, fermi-
on pairs form and condense simultaneously
(i.e., T* = Tc). In high-temperature supercon-
ductors, strongly correlated electrons exist in
the normal phase, that is, T* > T.. The
interactions that mediate pairing and ultimately
lead to superconductivity in these complex
systems are still subject to debate (1). Another
strongly interacting but comparatively simple
fermion system is an ultracold gas of neutral
fermionic atoms. High-temperature superfluidity
was recently observed in these gases (2),
opening a new approach to explore the highly
correlated normal phase of strongly interacting
fermions and its relation to the onset of
superfluidity.

Ultracold atomic Fermi mixtures of two spin
states close to a Feshbach resonance constitute a
highly controllable model system for strongly
interacting fermions. By resonantly changing
the interaction strength between the fermionic
atoms, the crossover from BCS superfluidity of

Department of Physics, MIT-Harvard Center for Ultracold
Atoms, and Research Laboratory of Electronics, Massachu-
setts Institute of Technology, Cambridge, MA 02139, USA.

*To whom correspondence should be addressed. E-mail:
chs@mit.edu
tPresent address: Institut fuir Physik, AG Quantum,
Staudinger Weg 7, 55128 Mainz, Germany.

loosely bound pairs to Bose-Einstein condensa-
tion (BEC) of tightly bound molecules can be
explored. BEC-BCS crossover theory at finite
temperature contains pairing in the normal phase
below a temperature T* > T, (1, 3-5). Evidence
for pairing above T. in ultracold Fermi gases was
found in (6, 7) via radio-frequency (rf) spec-
troscopy. Here, we use rf spectroscopy to study
primarily the normal state of an imbalanced spin
mixture. An imbalance in the spin populations of
the two-state Fermi system leads to a qualitative
change of the phase diagram: Above a certain
interaction-dependent population imbalance, the
transition to the superfluid state is suppressed
even at zero temperature. This is known as the
Chandrasekhar-Clogston (CC) or Pauli para-
magnetic limit of superfluidity (8, 9). In several
works, the CC limit is assumed to imply pair
dissociation and is referred to as "Pauli pair
breaking" (10-12), that is, T* and T, are as-
sumed to vanish simultaneously. The CC limit
has been observed and characterized in ultracold
atomic gases (13).

We report on the observation of a gap in a
single-particle excitation spectrum (representing
a spin response function) of a highly imbalanced
sample. This implies that the system is in a
correlated state and that the minority component
is paired. Pairing of fermions is thus not
necessarily a precursor to superfluidity: T* is
finite even when T, vanishes. The CC limit of
superfluidity, at least for strong interactions, is
not associated with breaking of fermion pairs
but only with the quenching of the superfluid
state. Another and probably very different sys-
tem with finite T* and vanishing T, has been
discussed in strongly underdoped cuprates (1).

The rf spectra presented in this work were
also correlated with an indirect signature for su-
perfluidity by determining pair condensate
fractions (14, 15). We conclude that rf spectra
cannot distinguish, at present experimental reso-
lution, between normal and superfluid states.

In our experiment, a strongly interacting,
imbalanced spin mixture of 6Li fermions in the

two lowest hyperfine states, labeled II1) and 12)
(corresponding to the IF = 1/2, mF = 1/2) and
IF = '/2, mF = -1/2) states at low magnetic
field) was created in an optical dipole trap at
833 G, the center of the 11)-12) Feshbach reso-
nance [see (15, 16) for details]. On resonance,
all interactions in the 11)-12) mixture are
universal, as the Fermi energy EF and the
inverse Fermi wavenumber 1/kF are the only
relevant energy and length scales. The im-
balance 8 of the mixture was controlled as re-
ported in (13, 17), where 6 = (Nt - N2Y(N1 + N2)
and NI and N2 are the atom numbers in states
II) and 12), respectively. Here, EF, kF, and the
Fermi temperature TF are given for a non-
interacting Fermi gas with the same atom
number as the majority component. To access
a broader range of temperatures, we used two
optical traps with different waists, characterized
by the axial and radial trapping frequencies oa
and o~ (as given in the figure captions of the rf
spectra).

The interactions were spectroscopically probed
in a three-level system (18). A 2-ms rf pulse
resonant with the transition from state 12) (the
minority component) to a third state, labeled 13)
(IF = /2, mF = -3/2) at low field) was applied.
Immediately after the rf pulse, the optical trap
was switched off and the cloud was allowed to
expand for absorption imaging. Two absorp-
tion images of atoms in states 12) and I1) were
taken successively, and the atom number fraction
N2/(NI + N2) was obtained as a function of the
applied rf. The rf spectra at the highest imbalances
were taken with a population transfer smaller
than 3% of the total number of atoms. The data
points in all spectra are the average of three
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Fig. 1. The temperature-imbalance diagram
shows where the rf spectra presented in Fig. 2
(black circles), Fig. 4, A to C (blue diamonds), and
Fig. 4, D to F (red triangles) were taken. All spec-
tra were obtained on resonance at 833 G. The
arrows indicate the order in which the spectra are
displayed in the figures. The shaded region in-
dicates the superfluid phase. The spectra corre-
sponding to the open circles and triangles are
similar to the spectra of Fig. 2, A to C, and are
shown in (19). Except for the data close to zero
imbalance, for which the interacting temperature
rT is given, temperatures have been determined
from the noninteracting wings of the majority
cloud (25).
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I REPORTS
independent measurements. Temperature was
adjusted by evaporation to different depths of
the optical trap, followed by recompression.
Spectra presented as a data set were taken with
the same final trap depth. Figure 1 provides an
overview of the imbalances and temperatures
at which the rf spectra were obtained. Specific
details are given in the figure captions and in
(19). All radio frequencies were referenced to
the 12)-13) resonance recorded in the absence of
atoms in state I!).

The rf spectroscopy measures a single-
particle spin excitation spectrum for the minority
component of the mixture (20--23). To under-
stand the expected rf spectra, one can use a
simplified description of the gas as a mixture of
free atoms and molecule-like pairs, which is
strictly valid only in the BEC limit. Transferring
an unbound atom from state 12) into state 13)
requires an energy AE23. As the 11)-13) mixture
is also strongly interacting because of a 11)-13)
Feshbach resonance located at 690 G (18), we

Fig. 2. Radio-frequency A
spectroscopy of the mi-
nority component in an
imbalanced (8 - 0.9), .

strongly interacting mix- ) i
ture of fermionic atoms a
above the CC limit of su- Eperfluidity. As the tem- o
perature is lowered, full <

gairino develons in the
absence of superfluidity.
(A) An asymmetric and
broad peak centered at
the position of the atom-
ic line is observed. The
asymmetry and the large
width might be caused by
the prsence of pairing cor-
relations already at T/TF =
I... ror thins spectrum
only, heating was applied c0
and the atom number in .
state 13) was recorded g
(19). (B and C) The pair- G0
ing peak emerges. (D) At
T/TF = 0.5, the pairing
peak remains and the
minority atoms are at-
most ruuy paireao see r
also Fig. 4A). As a guide 2
to the eye, a double-peak 0
line consisting of a Lo-
rentzian fit to the atomic
peak and a Gaussian fit
to the pairing peak is
included. Spectra were
taken for the followingc
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parameters (see also -40 0 40 80 120
the solid black circles Radio-frequency offset [kHz]
in Fig. 1): (A) 8 = 0.87,
EF = h x 260 kHz, T/TF = 1.9; (B) 8 = 0.94, EF = h x 360 kHz, T/TF = 1.0; (0 8 = 0.94, EF = h x 360
kHz, T/TF = 0.9; (D) 8 = 0.93, EF = h x 340 kHz, T/TF = 0.5. The trapping frequencies were (or = 2n x
3.5 kHz and coa = 2n x 77 Hz.

Fig. 3. Radio-frequency spectrum of the
minority component obtained at a mag-
netic field of 937 G (1/kFal = -0.18)
and imbalance 8 = 0.88, demonstrating
strong pairing above the CC limit on the
BCS side of the Feshbach resonance (a0 is
the s-wave scattering length in the l1)-12)
mixture). The rf spectrum was taken for the
parameters EF = h x 280 kHz and T/TF =
0.3. The trapping frequencies were cr =
2n x 2.9 kHz and (a = 2x x 64 Hz.
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first assume, as in (6, 7), that mean-field shifts
(i.e., shifts corresponding to Hartree terms) are
absent in the rf spectrum. Then AE23 and the
width of the atomic 12)-13) transition are
independent of the density of atoms in state

1). However, if an atom in state 12) is paired
with an atom in state 1), the rf photon must
provide the binding energy EB required to break
the pair in addition to AE23. Therefore, if pairing
is present in the system, a second peak emerges
in the minority rf spectrum that is separated
from the atomic line and associated with pairing
(6, 7). In a Fermi cloud, pairing is strong only
near the Fermi surface. Because the rf photons
can excite atoms in the whole Fermi sea, the
observed spectral gap Av may have to be
interpreted as a pair-binding energy averaged
over the Fermi sea. Indeed, in the BCS limit one
has hAv oc A2/EI; where h is Planck's constant
and A is the BCS pairing gap (23). Under these
working assumptions, we interpret the emer-
gence of a gap in the spectrum as a pairing
effect.

The presence of pairing in the normal phase
has been observed in the rf spectra for a highly
imbalanced mixture, with 6 - 0.9, on resonance
at 833 G (Fig. 2) and on the BCS side at 937
G (Fig. 3). At high temperature, only the
atomic peak was present, and as the tem-
perature was lowered, a second peak-the pair-
ing peak--emerged and separated from the
atomic peak. At sufficiently low temperatures,
essentially only the pairing peak remained. This
behavior is qualitatively similar to what has been
observed in an equal mixture (6). The spectral
gap Av (i.e., the shift of the pairing peak relative
to the atomic line) increases as the temperature is
lowered. At the lowest temperature of 0.08T/TF
(Fig. 4A), we measured a shift of 0.38EF.

All the spectra in Figs. 2 and 3 were obtained
at high imbalances above the CC limit of
superfluidity. Here the system cannot undergo a
phase transition to the superfluid state even at
zero temperature. For a trapped gas on
resonance the CC limit is reached at a critical
imbalance of S,,,xp = 0.74 + 0.05 (13, 17), in
agreement with a calculated value of 8,they =
0.77 (24). On the BCS side of the Feshbach
resonance, at an interaction strength of I/kFa 2 

=

-0.18, the critical imbalance is ., = 0.6 - 0.1,
as previously measured around this interaction
strength (13).

Because we observed full pairing in the
normal phase of the strongly interacting gas, one
might not expect the rf spectra to reveal the on-
set of superfluidity. We recorded rf spectra cov-
ering the phase transition from the normal to the
supertluid state by varying imbalance (Fig. 4, A
to C) as well as temperature (Fig. 4, D to F). In
both cases, no signature of the phase transition
was resolved, although both the emergence of
fermion pair condensates and sudden changes
in the density profiles (13, 17) showed the phase
transition. In our previous work (2, 13), these
indirect indicators of superfluidity were cor-
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related with the presence of quantized vortices

(i.e., superfluid flow).
Figure 4, A to C, illustrates that working

with high imbalances has the advantage of re-

ducing line-broadening effects that arise from

averaging over the inhomogeneous density dis-

tribution of the sample. The narrowest line was

observed at the highest imbalance (Fig. 4A),

where the minority is considerably smaller than

the majority cloud. The homogeneous linewidth

should reflect the wave function of a single fermi-

on pair. The observed narrow linewidth indicates

localization in momentum space well below the

Fermi momentum kF, and hence a pair size on

the order of the interparticle spacing.
We now examine the assumptions underly-

ing our interpretation of the peaks in the rf

spectra. In particular, we address the question of

whether our observations can distinguish between

pairing correlations and mean-field ef•ects. In-

deed, mean-field-like shifts were observed, for

example, in the rf spectrum of Fig. 2C where

the atomic line shows a shift of 0.03E to higher

A
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C
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Fig. 4. Radio-frequency spectra of the minority component obtained while
crossing the phase transition by reducing imbalance (A to C) and tem-
perature (D to F). The rf spectra do not reveal the phase transition. The onset
of superfluidity is indirectly observed by fermion pair condensation. The
condensate fractions are zero in (A) and (B) and 35 ± 2% in (Q. The onset
of superfluidity as a function of temperature occurs between (D) and (F), with
condensate fractions of 0% in (D), 3 ± 2% in (E), and 17 ± 3% in (F). The
insets in (A) to (F) show the column density profile (red) of the minority
cloud after a rapid magnetic field ramp to the BEC side and further ex-
pansion (19); the blue dashed line is a Gaussian fit to the thermal
background. The additional insets in (D) to (F) show phase-contrast

energy. Although the 11)-13) interactions are in

the unitary regime for a typical value of kea 13 ;

-3.3 (varying, for example, from -3 to -3.6

across the minority cloud in Fig. 2C), they may

not have fully converged to their value at

unitarity and thus may have caused the ob-

served shifts (a13 is the s-wave scattering length

in the 11)-13) mixture). However, all shifts of the

atomic line are small relative to the size of the

spectral gap of up to 0.38EF and are only seen

in the presence of the pairing peak (fig. S3

displays all observed shifts of atomic and

pairing peaks versus temperature). Although
the shifts of the atomic line are small at all tem-

peratures, the shifts associated with the pairing

peak start rising below T/TF - 1, accompanied

by a decrease in the weight of the atomic line. In

the intermediate temperature range, where the rf

spectra show a double-peak structure, the pair-

ing peak should originate primarily from the

higher-density region in the center of the cloud,

and the atomic peak should originate from the

low-density wings. Therefore, if one were to

REPORTS

normalize the data according to the local density

of majority atoms, the data points for the atom

peaks would shift up in T/TI, by a factor of be-

tween 1.5 and 5, the smaller factor reflecting the

cases of large imbalance, where the minority

cloud is considerably smaller than the majority

cloud. As a result, near T/TF(lac) = 0.5, we have

observed both atomic peaks and pairing peaks,
which is an indication for the local coexistence

of unpaired and paired minority atoms. Howev-

er, in this possible coexistence region, either the

peak separation is small or one peak has very

small weight. Therefore, more work is needed to

study the possibility of coexistence. An alter-

native interpretation assumes single local peaks

and a sudden onset of peak shifts below T/TF - 1.

This appears to be incompatible with a local

mean-field approximation as well: The mean

field in the unitarity limit should saturate when

T approaches TF and not vary strongly for T <

TF because the relative momentum of two

particles in this regime is dominated by the

Fermi momentum and not by the thermal

-20 0 20 40
Radio-frequency offset [kHz]

images for a trapped cloud, obtained at imbalances of the opposite sign.
Spectra were taken for the following parameters in (A) to (C) (see also the
blue diamonds in Fig. 1): (A) 5 = 0.87, EF = h x 27 kHz, T/TF = 0.08; (B) 8 =
0.73, EF = h x 27 kHz, T/TF = 0.10; (C) 8 = 0.00, EF = h x 23 kHz, T/TF =
0.10. The trapping frequencies were wr = 21c x 143 Hz and ca = 2n x 23 Hz.
For the spectrum in (C) we quote the temperature 7 obtained from a fit to
the interacting Fermi gas (19). Spectra were taken for the following
parameters in (D) to (F) (see also the solid red triangles in Fig. 1): (D) 8 =
0.37, EF = h x 38 kHz, T/TF = 0.18; (E) 8 = 0.32, EF = h x 38 kHz, T/TF =
0.14; (F) 8 = 0.29, EF = h x 35 kHz, T/TF = 0.09. The trapping frequencies
were mr = 2n x 192 Hz and wa = 2in x 23 Hz.
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momentum. Furthermore, a sudden onset of
interactions would likely affect the density
distribution of the minority atoms. However,
the minority clouds observed in expansion are
well fit by a single Thomas-Fermi profile (25).

The BEC-side picture of a mixture of single
atoms and molecules seems to extend into the
resonance region, in the sense that fermion pairs
form high above the superfluid transition tem-
perature and possibly coexist locally with un-
paired atoms. However, the fermion pairs on
resonance behave differently from "real" mole-
cules: Their binding energy increases with lower
temperature and higher atomic density. Most
important, fermion pairs above the CC limit do
not condense at low temperature as bosonic
molecules would do at any imbalance. Although
some extensions of BCS mean-field theories to
the imbalanced case do not predict pairing at
imbalances 8 above the CC limit (26), a survival
of Cooper pairs "far from the transition region"
has been predicted (27) for a superconducting
system that is driven into the normal, paramag-
netic phase by Zeeman splitting.

The observed spectral gaps appear to be
insensitive to the density of the minority atoms
(Fig. 4, A to C). At very high imbalances, one
should indeed approach the limit of one mi-
nority atom immersed in a fully polarized Fermi
sea. In (24, 28, 29) the ground-state energy for
this scenario has been calculated to be about
-0.6Es for example, by using a modified Cooper-
pair wave function ansatz (28). These calcula-
tions do not provide an excitation spectrum and
do not distinguish between pairing (correlation)
energies and mean-field (Hartree) terms. There-
fore, the theoretical result cannot be directly
compared to our spectroscopic measurement of
hAv = -0.38E, at T/TF = 0.08.

Whether superfluidity can occur for large
imbalances and low atom numbers in highly

elongated geometries remains a subject of de-
bate (30). In light of our findings, it may be
important to clearly distinguish between the
effects of pairing and of superfluidity. It has also
been suggested that the presence of an atomic
peak next to the pairing peak in the minority
cloud at zero temperature and high imbalance
could provide evidence for exotic forms of
superfluidity, such as the Fulde-Ferrel-Larkin-
Ovchinnikov state (31). However, for the param-
eters studied here, the atomic peak is seen to
disappear as the temperature is reduced (Figs. 2
and 4A).

Working with imbalanced Fermi gases, we
were able to study and characterize pairing in a
situation where no superfluidity occurs even at
zero temperature. The spectral gap Av appears
to be only weakly dependent on the imbalance.
This finding suggests that near unitarity, certain
pairing correlations in the superfluid state are
similar to those in a dilute cloud of minority
atoms immersed into the Fermi sea of the ma-
jority. Moreover, it implies that the energetics
that drive the normal-to-superfluid phase transi-
tion involve more than the observed pairing
energy. Further studies of the strongly correlated
normal state might yield new insights into the
microscopic physics of the superfluid state.
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The Process of Tholin Formation in
Titan's Upper Atmosphere
]. H. Waite ]r.,l* D. T. Young,1 T. E. Cravens, z A. ]. Coates, 3 F. ]. Crary,1 B. Magee, z* ]. Westlake4

Titan's lower atmosphere has long been known to harbor organic aerosols (tholins) presumed
to have been formed from simple molecules, such as methane and nitrogen (CH4 and N2). Up to
now, it has been assumed that tholins were formed at altitudes of several hundred kilometers by
processes as yet unobserved. Using measurements from a combination of mass/charge and energy/
charge spectrometers on the Cassini spacecraft, we have obtained evidence for tholin formation at
high altitudes (-1000 kilometers) in Titan's atmosphere. The observed chemical mix strongly
implies a series of chemical reactions and physical processes that lead from simple molecules
(CH4 and N2) to larger, more complex molecules (80 to 350 daltons) to negatively charged massive
molecules (-8000 daltons), which we identify as tholins. That the process involves massive
negatively charged molecules and aerosols is completely unexpected.

Methane and nitrogen in Titan's atmo-sphere are supplied with free energyfrom solar ultraviolet (UV) radiationand energetic particles in Saturn's magnetosphere.

These circumstances make Titan, a prolific source
of complex organic compounds, unparalleled in
the solar system. HIydrocarbon chemistry is
further enhanced by the escape of hydrogen from

the exosphere, which accelerates the conversion
of methane to unsaturated hydrocarbon-nitrile
species by circumventing the buildup of molecu-
lar hydrogen, thus promoting unsaturated
hydrocarbon formation (1, 2). Sagan and Khare
(3) have suggested that the penultimate result
of the formation of these large compounds is
the generation of hydrocarbon-nitrile aerosols
(tholins) thought to populate haze layers in Titan's
stratosphere (4, 5). Similar organic chemistry
occurs during soot formation in Earth's tropo-
sphere (6-8) and may have taken place in the
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Experimental details

1. Determination of the atomic reference line: For the data taken at the center of the

(1) - 12) Feshbach resonance the resonance frequency of the 12) - 13) transition in the

absence of atoms in state I1) was determined to be 81.700 MHz ± 1 kHz, corresponding

to a magnetic field of about 833 G. The FWHM of a Lorentzian fit to the resonance

peak was less than 1 kHz. These values reflect day to day fluctuations and correspond

to a magnetic field stability better than 0.2 G. The resonance frequency of the 12) - |3)

transition on the BCS-side of the Feshbach resonance (Fig. 3) was 81.187 MHz ± 1 kHz

(corresponding to a magnetic field of 936.5 G), determined in the absence of atoms in

state 1i).

2. Rf pulse: For all data a rf pulse of 2 ms was applied. This pulse duration is optimized in

terms of precision and minimizing a dynamic response of the system during the rf pulse.

For each spectrum the rf power was adjusted to give an adequate signal-to-noise ratio.

3. Determination of the atom number fraction in state 12): To obtain the atom number

fraction N2/(Ni + N2) two absorption images, one of the minority component in state 12)

and the other of the majority component in state I1), were taken successively. The time-

of-flight before the first absorption image as well as the delay time between the absorption



images were adjusted depending on the imbalance 6 of the mixture, final temperature and

the trapping frequency of the optical dipole trap. The time-of-flight before the absorption

image of the minority varied between 200 ps and 8 ms, the delay time between the images

was in the range of 500 ps and 2 ms.

4. Imaging atoms transferred to state 13); Fig. 2A: For the rf spectrum in Fig. 2A, T/TF

was increased by shortly switching off the optical dipole trap and allowing for subse-

quent equilibration before the rf pulse. The number of atoms transferred to state 13) was

recorded for a better signal-to-noise ratio . The absorption image had to be taken within

200 ps after applying the rf pulse. After longer time-of-flight atoms in state 13) decayed

through collisions. This precluded imaging atoms in state 13) at lower temperatures where

longer time-of-flights were required before absorption imaging to avoid saturation.

5. Weight of the atomic peak as function of imbalance: The population imbalance af-

fects the weight of the atomic peak in rf spectra obtained at the same T/TF (compare

Fig. 2D, SIC and S2B). As the imbalance decreases, the weight of the atomic peak in-

creases. This is likely due to the higher relative temperature compared to the local binding

energy in the the lower density region of the majority could. That effect will result in a

higher fraction of unpaired atoms at small imbalances.

6. Temperature determination: Except for equal and nearly equal mixtures (6 < 20%),

temperatures were determined from the non-interacting wings of the majority cloud after

expansion (S3). In ref. (S3) it was found that for imbalances 6 > 20% the non-interacting

wings of the majority cloud expand ballistically and are not affected by the hydrodynamic

expansion of the interacting component. For equal or nearly equal mixtures the tempera-

ture T' was determined from a finite-temperature Thomas-Fermi fit to the whole density

profile of the majority cloud.



7. Clogston-Chandrasekhar limit: The experimental value quoted of 6 c,exp = 0.74(5) on

resonance was obtained with the following probes for superfluidity: vortices and con-

densate fractions (S2), bimodal density distributions of the minority cloud in time-of-

flight (S3). We would like to emphasize, that the previous experimental determination of

the critical imbalance included a measurement of its temperature dependence, which was

found to be weak at low temperatures (S2).

8. Condensate fractions: Condensate fractions were obtained as previously described in

ref. (SI) and (S2). The samples were prepared as in the rf experiment, but the rf pulse

was not applied. Instead the gas was released from the trap and the magnetic field was

switched in 200 /is to 690 G, where the cloud expanded for several ms. Then the mag-

netic field was ramped in 1 ms to 720 G for absorption imaging. Condensate fractions

were determined from bimodal fits to the minority component. Condensates were only

observed when condensate fractions are explicitly stated (Fig. 4 of the letter).
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Fig. S1. Rf spectra of the minority component on resonance at 833 G. The spectra correspond to

the open triangles shown in Fig. 1 of the letter and were obtained for the following parameters:

A) 6 = 0.55, EF = h x 230 kHz, T/T, = 0.9; The trapping frequencies for A were •, =

27r x 3.4 kHz and w, = 27r x 76 Hz. B) 6 = 0.57, EF = h x 230 kHz, T/TF = 0.5; C)

6 = 0.57, EF = h x 220 kHz, T/TF = 0.25. The trapping frequencies for B and C were

w, = 27r x 2.9 kHz and wa = 27r x 64 Hz.
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Fig. S2. Rf spectra of the minority component on resonance at 833 G. Since the majority com-

ponent of the nearly equal mixture also suffered significant losses after the rf pulse (probably

due to inelastic collisions), we report here the un-normalized atom number in state 12) as a func-

tion of the applied radio frequency. The spectra correspond to the open circles shown in Fig. I

of the letter and were obtained for the following parameters: A) 6 = 0.07, EF = h x 210 kHz,

T'/TF = 0.67; B) 6 = 0.07, EF = h x 180 kHz, T'/TF = 0.34. The trapping frequencies were

w, = 21r x 2.9 kHz and wa = 27r x 64 Hz.
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We present spatially resolved radio-frequency spectroscopy of a trapped Fermi gas with resonant
interactions and observe a spectral gap at low temperatures. The spatial distribution of the spectral
response of the trapped gas is obtained using in situ phase-contrast imaging and 3D image reconstruction.
At the lowest temperature, the homogeneous rf spectrum shows an asymmetric excitation line shape with a
peak at 0.4 8(4)eF with respect to the free atomic line, where EF is the local Fermi energy.

DOI: 10.1 103/PhysRevLett.99.090403

Ultracold Fermi gases near a Feshbach resonance pro-
vide new insight into fermionic superfluidity, allowing the
study of the crossover from Bardeen-Cooper-Schrieffer
(BCS) superfluids of Cooper pairs to Bose-Einstein con-
densates (BECs) of dimer molecules. Many aspects of the
BCS-BEC crossover, including superfluidity [1], have been
experimentally investigated [2]. The properties of Fermi
gases on resonance at unitarity, where the scattering length
between the fermionic atoms diverges and the system
shows universal behavior [3], are of great importance to
understand the crossover physics. Measurements of the
critical temperature [4], the interaction energy [5], and
collective excitations [6] have presented stringent quanti-
tative test to the theoretical description of strongly inter-
acting Fermi gases.

Radio-frequency (rf) spectroscopy has been a successful
method to probe the strongly interacting Fermi gas. It
allows us to measure an excitation spectrum by inducing
transitions to different hyperfine spin states. This method
on Fermi gases has led to the observation of unitarity
limited interactions [7,8], molecule formation on the
BEC side of the Feshbach resonance [9], as well as pairing
in the crossover regime [10,11]. rf spectroscopy provides
valuable information on the nature of the pairs. Since an rf
photon can dissociate bound molecules or fermion pairs
into the free atom continuum, the binding energy of the
pairs or the excitation gap can be determined. Furthermore
the excitation line shape is related to the wave function of
the pairs; e.g., larger pairs have narrower lines. However,
currently all experimental measurements on the excitation
spectrum in strongly interacting Fermi gases [10,12] have
been performed with samples confined in a harmonic
trapping potential so that the spectral line shape is broad-
ened due to the inhomogeneous density distribution of the
trapped samples, preventing a more stringent comparison
with theoretical predictions [13-16].

In this Letter, we demonstrate spatially resolved rf spec-
troscopy of a trapped, spin-balanced Fermi gas at unitarity
at very low temperature. The spatial distribution of the rf-

PACS numbers: 03.75.Ss, 03.75.Hh, 32.30.Bv

induced excited region in the trapped gas was recorded
with in situ phase-contrast imaging [17] and the local rf
spectra were compiled after 3D image reconstruction. In
contrast to the inhomogeneous rf spectrum, the homoge-
neous local rf spectrum shows a clear spectral gap with an
asymmetric line shape. We observe that the peak of the
spectrum shifts by 0.48(4)eF to higher energy and that the
spectral gap is 0. 30 (8)fr with respect to the free atomic
reference line, where EF is the local Fermi energy. This
new spectroscopic method overcomes the line broadening
problem for inhomogeneous samples and provides homo-
geneous rf spectra of a resonantly interacting Fermi gas
revealing the microscopic physics of fermion pairs.

We prepared a degenerate Fermi gas of spin-polarized
6Li atoms in an optical trap, using laser cooling and
sympathetic cooling with 23Na atoms, as described in
Ref. [18]. An equal mixture of the two lowest hyperfine
states I1) and 12) (corresponding to the IF = 1/2, mF =
1/2) and IF = 1/2, mF = - 1/2) states at low magnetic
field) was created at a magnetic field B = 885 G. A broad
Feshbach resonance located at B0 = 834 G strongly en-
hanced the interactions between the two states. The final
evaporative cooling by lowering the trap depth and all
spectroscopic measurements were performed at B =
833 G. The total atom number was N, = 1.0 ± 0.1 x 107

and the radial (axial) trap frequency was f,r = 129 Hz
(f, = 23 Hz). The Fermi energy (temperature) of a non-
interacting equal mixture with the same total atom
number is EF = h(f2ft)'/3(3N,) 1/3 = h X 22.3 kHz
(TF = EF/kB = 1.07 /.K), where h is Planck's constant
and kB is Boltzmann's constant. The ratio of the sample
temperature T to TF of - 0.06 was determined by fitting a
finite temperature Thomas-Fermi (TF) distribution to the
whole cloud after expansion [4].

rf spectroscopy was performed by driving atoms in state
12) to the next lowest hyperfine state 13) (corresponding to
IF = 3/2, mF = -3/2) at low field) that was initially
empty. After applying an rf pulse of I ms, we directly
measured the in situ distribution of the density difference

0031-9007/07/99(9)/090403(4) 090403-1 © 2007 The American Physical Society
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nd a nl - n2 in the excited sample, using a phase-contrast
imaging technique [17], where nl and n2 are the densities
of atoms in the states 1) and 12), respectively. The fre-
quency of the imaging beam was set to make the net phase
shift in the sample proportional to the density difference

nd, which was done by zeroing the optical signal in an
equal mixture without applying an rf pulse [17]. Since the

initial atom densities in states I1) and 12) are equal, the

density difference nd represents the atom number depletion

in state 12), i.e., the spectral response I [19].
The total spectral response, obtained by integrating over

the phase-contrast images, reproduces earlier results
[10,11]. The phase-contrast images now reveal the nature

of the observed line shape (Fig. 1). The spectral response
strongly depends on position. The inner region of the

cloud, which is at higher density, shows a higher resonance
frequency. The integrated inhomogeneous spectrum peaks

at the rf offset A vi - 10 kHz [20]. The spatially resolved
images reveal that at this frequency, no excitations occur in
the center of the cloud, but rather in a spatial shell. The rf
offset A is measured with respect to the resonance fre-

quency of the 12) - 13) transition in the absence of atoms in

state I1) [21].

z
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FIG. 1 (color online). Radio-frequency (rf) spectroscopy of a
Fermi gas with in situ phase-contrast imaging. (a) After applying
an rf pulse, the spatial distribution of the density difference
between state Il) and 12) is recorded with the phase-contrast
imaging technique [17]. The density depletion reflects the spin
excitation induced by the rf pulse. The dashed line indicates the
size of the trapped sample. (b) An absorption image of an equal
mixture without applying an rf pulse. The field of view for each
image is 205 p.m x 680 p.m. (c) rf spectrum of the inhomoge-
neous sample is obtained by integrating the signal in the phase-
contrast images. The red (or gray) line is a Gaussian fit to the
spectrum.

Local rf spectra I(r, Av) are compiled from the recon-
structed 3D radial profiles of the density difference. A

phase-contrast image contains the 2D distribution of the

column density difference integrated along the imaging
line, nd.2D(X, Z) f nd(i)dy. The excited regions have an

elliptical shape with the same aspect ratio as the trap, A =

fz/f,, showing the validity of the local density approxi-
mation. Therefore, we can use elliptically averaged profiles
of the column density difference, nd,2D(r), to improve the

signal-to-noise ratio, where the ellipse for averaging is

defined as x2 + A2z2 = r2 for a given radial position r.

The 3D radial profile nd(r) is calculated using the inverse
Abel transformation of nd,2D(r) [22] and gives the spectral

intensity via I(r, Av) c nd(r; A V). The spatial resolution
of our imaging system is about 1.4 pm.

With this technique, we obtain homogeneous rf spectra
as a function of the 3D radial position, shown in Fig. 2.

These spectra are the main result of this paper and we now
discuss their features and implications for our system. The
local homogeneous rf spectra show a spectral gap. The
peak of the spectrum is shifted away from the atomic
reference line by much more than its line width. Such a

gap is not observed in the inhomogeneous rf spectrum
[Fig. l(c)] where the Gaussian wings overlap with the

position of the free atomic line. Furthermore, the local rf
spectrum reveals an asymmetric line shape of the excita-
tion spectrum. For the central region, the peak is located at
A vp - 15 kHz and the spectral gap, defined as the mini-

mum energy offset for excitation, is hA vg = h x 10 kHz.

The spectral peak position A Vp in the local rf spectra

shows a parabolic dependence on the radial position
[Fig. 2(a)]. This can be explained by unitarity, which
demands that all energetic quantities scale with the Fermi
energy. At unitarity, the only relevant energy scale in the

system is the Fermi energy SF - h2(61r2n)2/3/2m [3,23],
where n is the atom density in one spin state and m is the
atomic mass. All energetic quantities such as the chemical
potential A and the pairing gap energy A are proportional
to SF, i.e., AL = 6e and A = r7eF with the universal
parameters f and 77. Therefore, the excitation spectrum
might also scale with the Fermi energy. In an external
harmonic potential V(r) c r2, the local Fermi energy
eF(r) = A(r)/f= (Mo - V(r))/l= EF0(1 - r2/R 2), where
p0o is the global chemical potential, EF0 is the local
Fermi energy at the center, R is the radius of the trapped
sample, and en = po/6 = V(R)/l. The spectral peak
position A vp(r) thus simply reflects the parabolic radial

dependence of the local Fermi energy SF(r).

The local Fermi energy at the center is determined from
eFO = (R/RTF)-2EF, where RTF is the radial Thomas-
Fermi radius for a noninteracting Fermi gas with the
same atom number. We obtain RTF = 67.3 + 1.1 pm for
the measured total atom number and trap frequencies. The
radius of the trapped sample was measured to be R =
56.6 ± 1.8 Apm, using absorption images like in Fig. l(b)
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FIG. 2 (color online). Spatially resolved rf spectroscopy of a
trapped Fermi gas. (a) The spectral intensity I(r, A v) was
obtained from the reconstructed 3D profiles of the density
difference. See text for the description of the reconstruction
method. Local rf spectra are shown for (b) r = 0 Am,
(c) r = 24 Atm, and (d) r = 40 /m, whose positions are marked
by vertical dashed lines in (a). Each spectrum is obtained by
spatially averaging over 2.5 /m. RTF is the radial Thomas-Fermi
radius for a noninteracting Fermi gas with the same atom
number. The peak position Av,(r) in the local rf spectra is

determined from the moderately smoothed spectra and marked
by the black line in (a). The determination of A , is limited to

frl < 48 Am due to the signal-to-noise ratio. The yellow (or
light gray) line is a parabolic fit to Av,(r). The radius deter-
mined by extrapolating the fit to zero rf offset is R, = 53.6 Am
indicated by the white down arrow. The black up arrow indicates
the radius of the trapped sample, R = 56.6 pm, measured
independently from absorption images like Fig. l(b).
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and fitting the nonsaturated outer wing profile to a zero-

temperature TF distribution, giving eF0 = h X 31.5 -

2.5 kHz. We estimate the universal parameter f =

(R/RTF)4 = 0.50 + 0.07, which is in good agreement

with previous measurements [4,5,24-28] and quantum
Monte Carlo calculations [29-31] (• = 1 + fl in some
references).

The local spectrum at the center of our sample shows the

spectral peak at hAv, = 0.4 8(4 )F0o and the spectral gap

of hA 9' = 0.30(8)eFo. We can determine a radius Rp such

that Av,(Rp) = 0, extrapolating the parabolic curve fit of

A l, to zero rf offset [Fig. 2(a)]. R, = 53.6 Am is slightly
smaller than the measured radius R, which we attribute to
finite temperature effects. Previous studies of rf spectros-
copy of Fermi gases [10,11] demonstrated that the spectral
peak shifts to higher energy at lower temperature, which is
interpreted as the increase of the pairing gap energy. In the

outer region of lower density, the local T/TF becomes

higher, consequently reducing hApl,/F. The observation

of Rp being close to R implies that our experiment is very

close to the zero-temperature limit. From the relation

T/TF(r) oc (1 - r2/R 2) - 1, we can estimate T/TF(Rp)

15T/TF(O). If we assume that the pairing gap energy starts
emerging at T/TF - 0.6 [14], we might infer the local
T/TF < 0.05 at the center, close to our estimated tempera-
ture. Although hA vp/eF is almost constant over the whole

sample, the line width increases in the outer region.
The conventional picture of rf spectroscopy of a strongly

interacting Fermi gas is a photodissociation process: the
initial 11) - 12) bound state, which can be molecules or
fermion pairs, breaks into free particles in state I1) and 13).
In a BCS superfluid, the free particle in state I1) is regarded
as a quasiparticle, so after the spin transition the whole
system can be described as the excited BCS state with one
quasiparticle and one free particle in state 13). Since an rf
photon changes the spin state while imparting negligible
momentum, rf spectroscopy measures a single-particle
spin excitation spectrum. With the assumption of no inter-
actions between state 11) and 13), the rf photon energy
offset would be hA, = -I.L + E k + h2k2/2m, where

the first term accounts for removing one atom in state
12), the second term E-k is the energy cost for generating
one quasiparticle excitation with momentum -k, and the
last term is the kinetic energy of the atom in state 13) with
momentum k.

The homogeneous rf spectra measured in our experi-
ment allow a direct comparison with theoretical predic-
tions. However, a comprehensive theoretical interpretation
of the rf spectrum including the effects of II) - 13) inter-
actions is not available yet. The mean-field (Hartree) en-
ergies due to 11) - 12) and I1) - 13) interactions have been
empirically assumed to have the same unitarity limited
value because of the proximity of a 11) - 13) Feshbach
resonance at B = 690 G [10,13]. The recent experiments
with imbalanced mixtures and higher densities showed
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some deviations from this assumption [11]. The line shape
of the rf spectrum should be affected by I1) - 13) inter-
actions, e.g., when a1 3 = a 12 (aij is the s-wave scattering
length for two atoms in state Ii) and Ij)), the rf spectrum
will be the same as the free atomic spectrum regardless of
the initial many-body state of a 11)-12) mixture.

A localized spin excitation, induced by an rf pulse,
eventually diffuses over the sample. This ultimately limits
the pulse duration and therefore the spatial resolution.
Using phase-contrast imaging, we monitored the evolution
of the spatial structure in the excited sample with various
delay times after applying an rf pulse. The shell structure
was well preserved even after 5 ms and only some broad-
ening was observed, showing that during the I-ms pulse
the dynamic evolution of the density difference profiles is
not significant.

We found that atoms in state 13) rapidly decayed in the
sample, although the total atom number difference be-
tween state I1) and 12) did not change over time. At the
center of the sample, where the total atom density is about
8 X 1012 cm -3 , the lifetime of atoms in state 13) was
measured to be less than 0.4 ms. Since a 11)-13) mixture
and a 12)-13) mixture are stable at B = 833 G [32], the
decay should be associated with exoergic molecule forma-
tion via three-body collisions involving one atom from
each spin state. We observed that the loss of one atom in
state 13) was accompanied by loss of one atom in state I1)
and one atom in state 12), supporting the three-body loss
mechanism [33].

Our new technique of spatially resolved rf spectroscopy
should be able to address several important questions also
at finite temperature. One question is whether the observed
double peak structure [10,11] of an atomic line and a
pairing peak is purely inhomogeneous, or whether it is
possible to have local coexistence of paired and unpaired
atoms. This is of course possible on the BEC side of the
Feshbach resonance where in a certain temperature range,
bound molecules and thermally dissociated free atoms
locally coexist, but it is an open question, how this picture
will change in the BEC-BCS crossover.

In conclusion, we present spatially resolved rf spectros-
copy of a trapped Fermi gas, using an in situ phase-contrast
imaging technique. The homogeneous rf spectra of a Fermi
gas at unitarity provide a benchmark for a complete theo-
retical description, which should reveal microscopic de-
tails of the paired states.

We thank M. Zwierlein and R. Grimm for stimulating
discussions and T. Pasquini for critical reading of the
manuscript. This work was supported by the NSF and
ONR.

Note added.--Recently, Punk and Zwerger t34], and
Baym et al. [35] showed that the average shift of the rf
spectrum is proportional to JIS/a 1 3 near the resonance.
We could not clearly distinguish the EF dependence of the
average shift in our data.
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Phase diagram of a two-component Fermi gas with
resonant interactions
Yong-il Shin', Christian H. Schunck', Andre Schirotzek' & Wolfgang Ketterle'

The pairing of fermions lies at the heart of superconductivity and
superfluidity. The stability of these pairs determines the robust-
ness of the superfluid state, and the quest for superconductors
with high critical temperature equates to a search for systems with
strong pairing mechanisms. Ultracold atomic Fermi gases present
a highly controllable model system for studying strongly interact-
ing fermions'. Tunable interactions (through Feshbach collisional
resonances) and the control of population or mass imbalance
among the spin components provide unique opportunities to
investigate the stability of pairingS--and possibly to search for
exotic forms of superfluidity',6 . A major controversy has sur-
rounded the stability of superfluidity against an imbalance
between the two spin components when the fermions interact
resonantly (that is, at unitarity). Here we present the phase dia-
gram of a spin-polarized Fermi gas of 6Li atoms at unitarity,
experimentally mapping out the superfluid phases versus temper-
ature and density imbalance. Using tomographic techniques, we
reveal spatial discontinuities in the spin polarization; this is the
signature of a first-order superfluid-to-normal phase transition,
and disappears at a tricritical point where the nature of the phase
transition changes from first-order to second-order. At zero tem-
perature, there is a quantum phase transition from a fully paired
superfluid to a partially polarized normal gas. These observations
and the implementation of an in situ ideal gas thermometer pro-
vide quantitative tests of theoretical calculations on the stability of
resonant superfluidity.

When the two spin components resonantly interact, the behaviour
of the system becomes independent of the nature of the interactions.
This case of unitarity has become a benchmark for experimental and
theoretical studies over the last few years. However, there is an
ongoing debate about the stability of resonant superfluidity, reflected
in major discrepancies in predicted transition temperatures for the
balanced spin mixture7- , and an even more dramatic discrepancy
for the critical imbalance of the two spin components, called the
Chandrasekhar-Clogston limit of superfluidity2 '3 . Recent quantum
Monte Carlo calculations predicted that superfluidity would be
quenched by a density imbalance around 40% (ref. 10), whereas
other studies predicted a critical imbalance above 90% (refs 11-
16). Our earlier work"7- suggested the lower limit but other experi-
ments '2' were interpreted to be consistent with the absence of the
Chandrasekhar-Clogston limit. This huge discrepancy reveals that
even qualitative aspects, such as the role of interactions in the normal
phase, are still controversial. The lack of reliable thermometry for
strongly interacting systems limits the full interpretations of experi-
mental results.

Here we resolve this long-standing debate by presenting the phase
diagram of a spin-polarized Fermi gas at unitarity. We observe that
the normal-to-superfluid phase transition changes its nature. At low
temperature, the phase transition occurs with a jump in the spin

polarization as the imbalance increases, which we interpret as a
first-order phase transition. The local spin polarization or local den-
sity imbalance is defined as a = (nT - ng)/(nt + ni), where T and I
refer to the two spin components with densities n1,~. At high tem-
perature, the phase transition is smooth and therefore of second
order. The two regimes are connected by a tricritical point4' 22 and
we estimate its position to be (aT,, Ttc/ITF) (0.2, 0.07), where
kBTFt =h2 (6•2nT)2/s/2m is the Fermi energy of the majority com-
ponent of density nt (kB is the Boltzmann constant, Af is the Planck
constant divided by 2n and m is the atomic mass of 6Li). Our low-
temperature results confirm a zero-temperature quantum phase
transition at a critical polarization ua ~ 36%.

This work required the introduction of several techniques. A
tomographic reconstruction of local Fermi temperatures and spin
polarization allowed us to obtain the phase diagram for the homo-
geneous system, no longer affected by the inhomogeneous density of
the trapped samples. Furthermore, absolute temperatures were
obtained using in situ thermometry applied to the non-interacting
fully polarized Fermi gas in the outer part of the trapped samples,
an ideal thermometer with exactly known thermal properties.
Unlike previous work"',3, this is a direct measurement without any
approximations.

Our experiments are carried out in a trapping potential V(r). The
local chemical potential of each spin component is given as
p, • (r)= pto,o0 - V(r), where pto,1o are the global chemical potentials.
When lo O#•o, owing to imbalanced populations, the chemical
potential ratio q(r)= ,u1/pt varies spatially over the trapped sample
and so, under the local density approximation, the trapped inhomo-
geneous sample is represented by a line in the phase diagrams of the
homogeneous system. Figure 1 illustrates the spatial structure of a
strongly interacting Fermi mixture in a harmonic trap. In the inner
region, where I is closer to unity, a superfluid with zero (or small)
spin polarization will form at zero (or low) temperatures, having a
sharp phase boundary against the partially polarized normal gas in
the outer region. The spin polarization shows a discontinuity at the
boundary of the superfluid core at r = Rc, a signature of the phase
separation ofa superfluid and a normal gas24. The critical polariza-
tion ac = lim a(r) represents the minimum spin polarization for a

stable normal gas; a,= lim a(r) represents the maximum spin
r-* RC:

polarization for a stable superfluid gas. At higher temperatures, the
discontinuity in the density imbalance disappears. The main result of
this paper is the observation and quantitative analysis of such density
profiles. Because we have no experimental evidence, we are not dis-
cussing the exotic partially polarized phases2" which could exist only
in the transition layer between the superfluid core and the normal
outer region.

We prepared a variable spin mixture of the two lowest hyperfine
states of 6Li atoms, labelled It) and I1), at a magnetic field of 833 G. A
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broad Feshbach resonance at 834 G enhances the interactions
between the two spin states. Our sample was confined in a three-
dimensional harmonic trap with cylindrical symmetry. The in situ

density distributions of the majority (spin T) and minority (spin 1)
components were determined using a phase-contrast imaging tech-

nique" (Fig. 2). We obtained the low-noise profiles ii by averaging
the column density distribution along the equipotential line and
determined the three-dimensional density profiles n(r) using the
inverse Abel transformation of the column densities ii(r) (see
Methods Summary). Most of our measurements were performed at
a total population imbalance of 6 50%, where 3 = (N1 - NI)/
(Ny + N1 ) refers to the total numbers of atoms in the sample, N,
and NL of the spin T and I components, respectively.

Figure 3 displays the radial profiles of the densities n1,1(r) and the
corresponding spin polarization a(r) for various temperatures. The
discontinuity in the spin polarization, clearly shown at very low
temperatures, demonstrates the phase separation of the inner super-
fluid of low polarization and the outer normal gas of high polariza-
tion. At low temperature, the core radius R, is determined as the kink
(and/or peak) position in the column density difference profile. At
high temperature (but still in the superfluid regime), the discontinu-
ity in a(r) disappears. At our lowest temperature, the radii of the
minority cloud and the core region were measured as R, = 0.73(1)R t

and R, = 0.430(3)RI (at & = 44(4)%), respectively, and these values
agree with recent theoretical calculations"',5 within the experimental
uncertainties due to the determination of 6. Here, R, is the radius of
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the majority cloud, and the uncertainty of the final digit is indicated
by parentheses.

We determined temperature from the in situ majority wing pro-
files. The outer part of the majority component, forming a non-
interacting Fermi gas, fulfils the definition of an ideal thermometer,
namely a substance with exactly understood properties in contact
with the target sample. This new in situ method avoids the modifica-
tion of the ideal gas profile caused by the collision with the inner core
during ballistic expansion (ref. 18, see Supplementary Information).
The outer part of the averaged column density difference profile
(r > R1) was fitted to a finite temperature Fermi-Dirac distribution
in a harmonic trap (Fig. 4) and the relative temperature T'= T/TFo
was determined, where kB TF0 = h2(6n 2 no) 2/ 3/2m is the Fermi energy
of the non-interacting Fermi gas, which has the same density distri-
bution in the outer region as the majority cloud (no is the central
density of the non-interacting Fermi gas at zero temperature). We
verified that anharmonicity of the trapping potential does not affect
the fitted temperature (see Methods).

The critical lines of the phase diagram of a homogeneous spin-
polarized Fermi gas were obtained by determining the local temper-
ature and spin polarization at the phase boundary. The local relative
temperature T",,.1 = T/TF1 was derived from the local density nt (R&)
according to T'(R) = T/ TFO x (no / n (Rc))2/3. Because we observe no
jump in the majority density within our resolution, Ttr is well-
defined at the boundary. The critical polarizations a, and a, were
measured as a, = a(R&-) and a, = a(R& - 0.05RI) (this criterion for a,
was more robust than a fitting procedure, but excludes the possibility
that a, will be equal to ac at high temperature. Therefore, the mea-
sured a, should be regarded as a lower bound for the polarization of

a b
a b

01

0
0 R1 Rt

Re R4 RT

Radial position, r

Figure 1 I Schematic of spatial structure of a strongly interacting Fermi gas
in a harmonic trap. a, A two-component (spin t and 1) Fermi mixture is
confined in an external potential V(r) oc r2 with the chemical potential 1t o,.o
of each spin component (68y is the shift for the spin I component owing to
interactions). b, Density distributions of the majority component nt (r) (red
line) and the minority component nI(r) (blue line). c, Spin polarization
a(r) = (nr - nl)/(n" + nt). At zero temperature, the sample has a three-layer
radial structure: (1), the core region (0 < r < R,) of a fully paired superfluid
with nT = ni; (II), the intermediate region (R, < r < R1) of a partially
polarized normal gas; and (III), the outer region (R < r < RT) of a fully
polarized normal gas. The critical polarization a, (or a,) is defined as the
minimum (or maximum) spin polarization of the normal (or superfluid)
region. The non-interacting case is shown in the insets. The insets have the
same axes as the main figure.
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Figure 2 1 Double In situ phase-contrast imaging of a trapped Fermi
mixture. Two phase-contrast images of one sample were taken using
different probe frequencies of the imaging beam, measuring the density
difference ndl = nl - n (a) and the weighted density difference nd2 = 0.76
n, - 1.43n, (b), respectively. The images show the two-dimensional
distribution of the column density difference, hid,2(x,z)- f ndl.2(r)dy,
owing to the line-of-sight integration. The field of view for each image is
150 pm X 820 pm. c, The distributions of the column density difference fidl
(black line) and 1daz (red line) along the central line (the dashed lines in a and
b). The profiles of the integrated linear density difference,
lhad. =- f hdl(X,Z)dA (d) and fndl,x = . hdl(X,Z)dz (e), show the identical flat-

top feature except scaling. The aspect ratio of the trapping potential was
2 = 6.15, the majority atom number was N, = 5.9(5) X 106, the population
imbalance was & = 44(4)%, and the relative temperature was
T' = T/To = 0.03(1) (see text for definitions).
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the superfluid at the boundary). The discontinuity in the spin polar-
ization profile implies that there is a thermodynamically unstable
window, as < a < ac, leading to a first-order superfluid-to-normal
phase transition. As the temperature increases, the unstable region
reduces with decreasing a, and increasing a,. For high temperature
when the bimodal feature in the spin polarization profile disappears,
we recorded the condensate fraction as an indicator of superfluidity,
using the rapid field-ramp technique"7. As the temperature decreases,
the condensate fraction gradually increases with a finite central
polarization". Such smooth variations of the density profile and
condensate fraction across the phase transition are characteristic of
a second-order phase transition.

The phase diagram is characterized by three distinct points: the
critical temperature T,0 for a balanced mixture, the critical polariza-
tion ac of a normal gas at zero temperature, and the tricritical point
(a,,, T,) at which the nature of the phase transition changes. Owing
to the lack of a predicted functional form for the phase transition
line in the a-T plane, we apply a linear fit to the measured critical
points, suggesting TOo/TFT " 0.15, aco - 0.36 and (atc, Tl/ TFt) -
(0.20, 0.07). The value for Oco agrees well with the prediction (from
the quantum Monte Carlo calculation) of 0.39 (ref. 10). The extra-
polation of the phase diagram to a = 0 is tentative, because the in situ
thermometry could not be applied to small population imbalances
owing to the narrowness of the non-interacting outer region.

The Chandrasekhar-Clogston limit reflects the energetic competi-
tion between a superfluid state and a partially polarized normal state,
and occurs at a critical value of 2he for the chemical potential differ-
ence bp =p T - pl. In Bardeen-Cooper-Schrieffer theory, which is
valid for weak interactions, h,= d/v/2 (ref. 3). Here, A is the pairing
gap. With the assumption of no interactions in a normal gas,
quantum Monte Carlo studies predict hc = 1.00(5)A = 1.2p at uni-
tarity", where p=,+(j +1)/2. The condition p1c= ,-he<0O
requires n1 = 0 for a non-interacting normal gas, implying the
absence of a partially polarized normal phase and consequently
ao0 = 100%. Mean-field approaches"2-', which cannot treat the
interactions in the normal phase accurately, also predict a high crit-
ical imbalance 0co > 90%. Strong interactions in the normal phase,
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Figure 3 Density profiles of trapped Fermi

mixtures with Imbalanced populations The to

row (a-d) shows the averaged column density
profiles for various temperatures (red, majority;
blue, minority; black, difference). The majority
radius R- was determined from the outer region
(r > RI, where R1 is the radius of the minority
cloud) of the majority profiles using a fit to a
zero-temperature Thomas-Fermi distribution
(black dotted lines). The column densities are
normalized by the central value of the fitted
Thomas-Fermi distribution. The middle row
(e-h) and the bottom row (i-i) show the
reconstructed three-dimensional profiles and the
spin polarization profiles a(r) corresponding to
the profiles in a-d. The core radius R, was
determined as the peak (and/or kink) position in
the column density difference (only for
a-c), indicated by the vertical dashed lines. The
two spin polarizations a, at r = Rc and a, at
r = Rc - 0.05R. are marked by the right and left
arrows, respectively. The values for T' , a,, RcI/R,
RT (in ýtm), N1, 6 (in %) and . were, respectively:
for a, e and i, 0.03(1), 0.34, 0.43, 385,
5.9(5) X 106, 44(4), 6.15; for b, f and j, 0.05(2),
0.24,0.39,416,1.0(1) X 107,48(4),6.5;forc,g and
k, 0.07(1), 0.21, 0.29, 443, 1.2(2) X 10', 54(4), 6.5;
for d, h and I, 0.10(1), not determined, not
determined (rr ,= o = 0.15 and condensate

0.4 0.6 fraction = 2(1)%), 398, 5.3(4) X 106, 54(4), 7.7.

er, have been observed through the compressed shape of
nority cloud" and the shift in the radio frequency excitation
un26. The data in Fig. 5 clearly establish a zero-temperature
rasekhar-Clogston limit for aco in the range 30% to 40%. By
ng the in situ density profiles25

,2
7, we obtained hc=0.95/p (see

ds). Since theory clearly predicts p < A at unitarity9 ", we
c < d. If h, were larger than A, polarized quasi-particles
have negative energies and would already form at zero tem-
re. Therefore, up to our observed value of he, the fully paired

Radial position (pm)

Figure 4 1 Temperature determination using In situ density profiles. The
relative temperature T7 = T/TFo (see text for definition) was determined
from the outer region (r > R 1) of the averaged column density difference
profile (black line) fitted to a finite temperature Fermi-Dirac distribution
(red line). The radius of the minority cloud R1 was determined from a fit of
the wing profile of the minority component (black dashed line) to a zero-
temperature Thomas-Fermi distribution (red dashed line). a, T' = 0.03(1)
and 6 = 44(4)%. b, T' = 0.08(1) and 6 = 46(4)%.
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superfluid state is stable, and a polarized superfluid exists only at
finite temperature.

The interface between two immiscible fluids involves a surface
energy, leading to at least a small violation of the local density
approximation. However, the observed sharp interface along an
equipotential line and the flat-top structure of the linear density
difference profiles (Fig. 2d and e) imply that corrections to the local
density approximation are smaller than the resolution of our experi-
ment. These observations are inconsistent with the interpretations
given for the experimental results reported in refs 20 and 21, where it
has been shown that highly elongated small samples are deformed by
surface tension2829. The scaling of those surface effects to our para-
meters predicted a deviation of the aspect ratio of the superfluid core
of about 15% from the trap aspect ratio2 9, whereas our data gives an
upper bound of 2%. We note that surface tension would add energy
in the phase-separated superfluid regime and would shift the
Chandrasekhar-Clogston limit to smaller values. Refs 20 and 21
concluded that the Chandrasekhar-Clogston limit should be
6co > 95%, which is ruled out by our observations. We are not aware
of any suggested effect that can reconcile the data of refs 20 and 21
with our phase diagram for a resonant superfluid. To identify this

0.2,

0.1

a 0.1
a

finite size effect and to understand fully the nature of the normal
state26, more work on imbalanced Fermi gases is needed.

In conclusion, we have established the phase diagram of a homo-
geneous spin-polarized Fermi gas with resonant interactions in the
o-T plane. This includes the identification of a tricritical point at
which the critical lines for first-order and second-order phase transi-
tions meet, and the final confirmation of a zero-temperature
quantum phase transition--the Chandrasekhar-Clogston limit of
superfluidity--for a gas at unitarity. So far, predicted exotic super-
fluid states such as the breached-pair state in a stronger coupling
regime (Bose-Einstein condensate side)" and the Fulde-Ferrell-
Larkin-Ovchinnikov state in a weaker coupling regime (Bardeen-
Cooper-Schrieffer side)5 '6 2,'" 30, have not been observed, but the
novel methods of tomography and thermometry will be important
tools in the search for those states.

METHODS SUMMARY
The experimental procedure has been described in our previous publica-
tions"7 -"9 .A degenerate Fermi gas of 6Li atoms was first prepared in an optical
trap, using laser cooling and sympathetic cooling with 2"Na atoms. A variable
spin mixture of the two lowest hyperfine states IT) and I1) (corresponding to the
IF= 1/2, mp = 1/2) and IF= 1/2, mn = - 1/2) states at low magnetic field) was
created at a magnetic field B = 885 G. The final evaporative cooling was achieved
by lowering the trap depth and all measurements were performed at B = 833 G.
The temperature of the cloud was controlled by the lowest value of the trap depth
in the evaporative cooling process. The oscillation frequency in the axial dir-
ection was f, = 23 Hz. The two transverse oscillation frequencies f, are equal to
within less than 2%. Two phase-contrast images of the same sample were taken
consecutively with different probe frequencies, v, and v2 (Fig. 2). The time
interval between the two images was 10 ps, and the pulse duration of each probe
beam was 15 ps. Because the probe beam was off-resonant, no heating effect of
the first pulse was observed in the second image. The trapped sample was
observed to have an elliptical shell structure of the same aspect ratio A = f,/f,
as the trapping potential over our entire temperature range, and we obtained the
low-noise profiles Ri by averaging the column density distribution along the
equipotential line defined as ).2x2 + z2 = r2 for a given radial position r. The
region for averaging was restricted depending on the type of analysis.
Deviations from the trap aspect ratio were only found for the outer thermal
wings. Details of the phase-contrast imaging technique and the data analysis are
given in Methods and Supplementary Information.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.

Received 19 September; accepted 8 November 2007.
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Figure 5 I The e-T phase diagram for a homogeneous spin-polarized Fermi
gas with resonant interactions. The critical polarizations ac (black solid
circles and square) and a, (grey solid circles) are displayed along the local
ITrTF at the phase boundary. The yellow area (a, < a < ac) represents a

thermodynamically unstable region, leading to the phase separation. Above
the tricritical point, the phase transition in the centre of the cloud was
observed by the onset of pair condensation. For this, a cloud was
evaporatively cooled, until it crossed the phase transition on a trajectory
almost perpendicular to the phase transition line (see Supplementary
Information). The critical spin polarization and temperature were obtained
by interpolating between points without and with small condensates (black
solid square). The linear fit to the ac values is shown as a guide to the eye for
the normal-to-superfluid phase transition line. Each data point consists of
five independent measurements and error bars indicate standard deviation.
The blue open symbols show theoretical predictions for the critical
temperature of a homogeneous equal mixture7 -9 and the critical polarization
at zero temperature'0 . The blue solid square is the measured critical
temperature of ref. 23, multiplied by Vi with ý = 0.42 (ref. 11) to obtain
local T/TF at the centre. Finite temperature correction may increase the
effective value of ý.

Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold Fermi gases. Preprint
at (http://arxiv.org/abs/0706.3360) (2007).
Chandrasekhar, B. S. A note on the maximum critical field of high-field
superconductors. Appl. Phys. Lett. 1, 7-8 (1962).
Clogston, A. M. Upper limit for the critical field in hard superconductors. Phys. Rev.
Lett. 9, 266-267 (1962).
Sarma, G. On the influence of a uniform exchange field acting on the spins of the
conduction electrons in a superconductor. J. Phys. Chem. Solids 20, 1029-1032
(1963).
Fulde, P. & Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys.
Rev. 135, A550-A563 (1964).
Larkin, A. I. & Ovchinnikov, Y. N. Inhomogeneous state of superconductors. Sov.
Phys. JETP 20, 762-769 (1965).
Bulgac, A., Drut, J. E. & Magierski, P. Spin 1/2 fermions in the unitary regime: a
superfluid of a new type. Phys. Rev. Lett. 96, 090404 (2006).
Burovski, E., Prokofev, N., Svistunov, B. & Troyer, M. Critical temperature and
thermodynamics of attractive fermions at unitarity. Phys. Rev. Lett. 96,160402
(2006).
Haussmann, R., Rantner, W., Cerrito, S. & Zwerger, W. Thermodynamics of the
BCS-BEC crossover. Phys. Rev. A. 75, 023610 (2007).
Lobo, C., Recati, A., Giorgini, S. & Stringari, S. Normal state of a polarized Fermi gas
at unitarity. Phys. Rev. Lett. 97, 200403 (2006).
Carlson, J. & Reddy, S. Asymmetric two-component fermion systems in strong
coupling. Phys. Rev. Lett. 95, 060401 (2005).
Sheehy, D. E. & Radzihovsky, L. BEC-BCS Crossover in "magnetized" Feshbach-
resonantly paired superfluids. Phys. Rev. Lett. 96, 060401 (2006).
Yi, W. & Duan, L.-M. Phase diagram of a polarized Fermi gas across a Feshbach
resonance in a potential trap. Phys. Rev. A 74, 013610 (2006).
Gubbels, K. B., Romans, M. W. & Stoof, H. T. Sarma phase in trapped unbalanced
Fermi gases. Phys. Rev. Lett. 97, 210402 (2006).

@2008 Nature Publishing Group

0.0-

0.0
•t



NATURE| Vol 45117 February 2008

15. Chien, C.-C., Chen, Q., He, Y. & Levin, K. Superfluid phase diagrams of trapped
Fermi gases with population imbalance. Phys. Rev. Lett. 98, 110404 (2007).

16. Parish, M. M., Marchetti, F. M., Lamacraft, A. & Simons, B. D. Finite-temperature
phase diagram of a polarized Fermi condensate. Nature Phys. 3, 124-128 (2007).

17. Zwierlein, M. W., Schirotzek, A., Schunck, C. H. & Ketterle, W. Fermionic
superfluidity with imbalanced spin populations. Science 311, 492-496 (2006).

18. Zwierlein, M. W., Schunck, C. H., Schirotzek, A. & Ketterle, W. Direct Observation
of the superfluid phase transition in ultracold Fermi gases. Nature 442, 54-58
(2006).

19. Shin, Y., Zwierlein, M. W., Schunck, C. H., Schirotzek, A. & Ketterle, W.
Observation of phase separation in a strongly interacting imbalanced Fermi gas.
Phys. Rev. Lett. 97, 030401 (2006).

20. Partridge, G. B., Li, W., Karmar, R. I., Liao, Y. & Hulet, R. G. Pairing and phase
separation in a polarized Fermi gas. Science 311, 503-505 (2006).

21. Partridge, G. B., Li, W., Karmar, R. I., Liao, Y. & Hulet, R. G. Deformation of a trapped
Fermi gas with unequal spin populations. Phys. Rev. Lett. 97, 190407 (2006).

22. Griffiths, R. B. Thermodynamics near the two-fluid critical mixing point in He"-
He

4. Phys. Rev. Lett. 24, 715-717 (1970).
23. Luo, L., Clancy, B., Joseph, J., Kinast, J. & Thomas, J. E. Measurement of the

entropy and critical temperature of a strongly interacting Fermi gas. Phys. Rev.
Lett. 98, 080402 (2007).

24. Bedaque, P. F., Caldas, H. & Rupak, G. Phase separation in asymmetrical fermion
superfluids. Phys. Rev. Lett. 91, 247002 (2003).

Bulgac, A. & Forbes, M. M. Zero-temperature thermodynamics of asymmetric
Fermi gases at unitarity. Phys. Rev. A 75, 031605(R) (2007).
Schunck, C. H., Shin, Y., Schirotzek, A., Zwierlein, M. W. & Ketterle, W. Pairing
without superfluidity: the ground state of an imbalanced Fermi mixture. Science
316, 867-870 (2007).
Chevy, F. Universal phase diagram of a strongly interacting Fermi gas with
unbalanced spin populations. Phys. Rev. A 74, 063628 (2006).
De Silva, T. N. & Mueller, E. J. Surface tension in unitary Fermi gases with
population imbalance. Phys. Rev. Lett. 97, 070402 (2006).
Haque, M. & Stoof, H. T. C. Trapped fermionic clouds distorted from the trap
shape due to many-body effects. Phys. Rev. Lett. 98, 260406 (2006).
Machida, K., Mizushima, T. & Ichioka, M. Generic phase diagram of
fermion superfluids with population imbalance. Phys. Rev. Lett. 97, 120407
(2006).

Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.

Acknowledgements We thank M. W. Zwierlein and A. Keshet for a critical reading
of the manuscript. This work was supported by NSF, ONR, MURI and DARPA.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. Correspondence and requests for materials should be
addressed to Y.S (yishin@mit.edu).

@2008 Nature Publishing Group

LETTERS



dol:10.1o038/nature6473

METHODS
Phase-contrast imaging. The optical signal in the phase-contrast imaging is
proportional to the net phase shift of the imaging beam passing through a
Fermi mixture, that is, it is proportional to nt /(v - v,) - nl /(v - v,), where v is
the probe frequency of the imaging beam, and VT and v1

0 are the resonance
frequencies of the optical transition for the states IT) and 14), respectively. When
the probe beam is tuned to the middle of the two transitions, that is, to
v = = (V1 + vo)/2, the optical signal reflects the density difference nd = n, - n.
In our experiment, two phase-contrast images of the same sample were taken
consecutively with different probe frequencies, v, and v2 (Fig. 2). The two images
record the density difference nd, = nt - n1 and the weighted density difference
nd2 = =7nl - an1l. The first probe frequency v, was determined by zeroing the
optical signal with an equal mixture and aT.l was determined by the signal ratio
between the first and the second image for a highly imbalanced Fermi mixture
with 161 >95% (an almost fully polarized gas). Finally, we obtained
nl = (Minda - nd2)/(aM - al) and n1 = (atn,7 l - nd2)/(al - aT). The difference
between v, and v2 was chosen to lie between 8 and 13 MHz.
Data analysis. Low-noise profiles were obtained by averaging the column den-
sity distribution of phase-contrast images along elliptical equipotential lines
(A 2 + z2 = r'). For the measurement of the critical spin polarization, the aver-
aging region was restricted to |xI < 12 pm to preserve the sharp features at the
phase boundary. The diffraction limit for our imaging system was about 2 pm.
For the determination of local quantities in the profiles, we averaged over ±5 pm
around a given position. For temperature determination, the averaging region
was restricted to an axial sector of ±60' to avoid corrections due to transverse
anharmonicities (see below), The relative temperature 7' is determined as
7n= T/To =(-w61i(--O)- 1/3, where C is the fugacity obtained from the fit

(Li,(z)= E z/lk' is the polylogarithmic function of order s).

Anharmonicity of the trapping potential. For the determination of tempera-
tures from the spatial in situ profiles it was necessary to address the anharmo-
nicity of the trapping potential. Our trap is generated by a weakly focused (beam
waist w - 125 pm) infrared gaussian laser beam (wavelength 1,064 nm) near the
saddle point of a magnetic potential. The total trapping potential is given as

2p2•\ m(2f)2 
Pf 2

V(p,z)= Usexp 2p) + m(2tf ) 
2  +2

where p2 = x2 +y2. We note that gravity has been compensated by a magnetic
field gradient. The axial confinement comes mainly from the magnetic potential

with oscillation frequency of Jf = 23 Hz. The transverse magnetic potential is
anti-trapping and limits the trap depth according to:

1 )2W [1  ff 2f +f,)
U= -n(2nfI,)

2 
2 -

4 2f f
where f, is the transverse oscillation frequency in the central harmonic region.
When the trap depth is comparable to the Fermi energy of a sample, the trans-
verse anharmonicity will affect the shape of the cloud. Although in our experi-
ments the inner core and the outer cloud had the same aspect ratio as the
trapping potential, anharmonicities were not negligible in the spatial wings used
to determine the temperature.

This issue was addressed by adjusting the angular averaging region
(Supplementary Fig. 3). Because the trapping potential is only anharmonic for
large p, we could reduce the effect by decreasing the angle of the averaging sector
around the axial z-direction. Both the experimental data and an exact simulation
for an ideal Fermi gas show that the fitted temperature remains almost constant
up to a certain angle and then increases when the averaging sector includes more
of the transverse outer region. In our temperature determination, we chose the
averaging sector to be + 60', which was large enough to create low-noise profiles,
but kept the effect of the anharmonicities to below 10%. The one-dimensional fit
to angularly averaged profiles was computationally more efficient than a two-
dimensional fit to a selected region of the image. In a two-dimensional fit, one
could also include anharmonic terms in the fitting function.
Critical chemical potential ratio /,. In a harmonic trap, the chemical potential
of the majority and minority components are given as Ai (r) = t0o(l - r2/R ) and
p1 (r) = y10('10 - r2 /R2), respectively. At unitarity, the global chemical potential
of a fully paired superfluid in the core is given as po = ý er = hi2(6rmno)2/1 /2m
where n, = nt,l(r= 0) is the central density. The thermodynamic equilibrium
requires PA = (to + p lo)/2, where Uto = h2(6r2 

no)2/3 /2m. From

MPo/to0 = ý(n,,/no)
213, we obtain the chemical potential ratio as:

qo - IR 2/R (1,) /  -1
g(r)= =2 $-- 1I - rR/R I - r21 2

In our coldest sample ( = 44%), the normalized central density and the
radius for the phase boundary were measured to be no/no = 1.72(4) and
R/R I = 0.430(3), respectively, yielding the critical chemical potential ratio
Re= i(R) -0.03 with = 0.42 (ref. 11). The critical difference is
hc/p = (1 --•)/(1 + •c)ý0.95.

@2008 Nature Publishing Group
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Supplementary Figure 1: (Color online) Trajectory of the center of a cloud in the phase

diagram during the cooling process. Above the tricritical point, the normal-to-superfluid

phase transition was observed by the onset of pair condensation in the evaporative cooling

process. The local spin polarization and temperature at the center of the cloud was measured

(black solid (open) circles with (without) condensate fraction), and the critical point was

obtained by linearly interpolating with the condensate fraction. The dashed-dot line shows a

guide line for the trajectory of the cloud center. The population imbalance of the sample was

8 = 55%. A non-interacting mixture with this imbalance has a spin polarization a 30% at

the center at zero temperature.
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Supplementary Figure 2: (Color online) Expansion of a population-imbalanced Fermi
mixture. The absorption images of (a, d) the majority and (b, e) minority components were
taken along (a, b) the axial z and (d, e) transverse y directions after expansion. (c) The
azimuthally averaged column density profiles of the majority (red) and the minority (blue)
cloud are obtained from (a) and (b), respectively. The excess majority atoms in the outer
region interact with the core during expansion. The contour lines of the outer part of the
majority cloud (color inset) are not elliptical and have the shape of a horse-track. This shows
that the minority cloud pushes the outer majority atoms in the transverse direction, which is
also indicated by the hump of the majority profile at the edge of the minority cloud. The
population imbalance was 6 8 55%
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Supplementary Figure 3: (Color online) The temperature of the cloud was determined for
various angles 0 of the averaging sector. For a large angle, the large-x region is included in
the averaged profile, resulting in a broadening of the spatial wings and consequently higher
value of the fitted temperature. The red line shows the results of a simulation using the same
parameters as the experiment (X = f/f = 6.15, TFO = 1 tK and the trap depth U/ kB = 2 gpK).

www.nature.com/nature



Supplementary Discussion

Thermometry of ultracold Fermi gases
In our previous work"' 2, temperatures have been determined by fitting the spatial wings of the
majority component after expansion. However, we found that one can neglect collisions with
the minority atoms in the core only for large population imbalances. In a simplified picture,
one can regard collisions with the inner core as collisions with a moving wall, which moves
outward radially and inward axially (due to the magnetic trapping potential). This results in
different average kinetic energies (transversely and axially) of the free majority atoms in the
outer region. Figure S2 shows the density distribution of the majority and minority
components after expansion. Although the temperature has been overestimated by only 20%
for typical experimental conditions (8 = 60%) in refs 1,2, we do not regard this technique as
well-calibrated absolute thermometry.

One other concept for thermometry determines temperature as the derivative of entropy
with energy. So far, this concept could be implemented only for balanced fermion mixtures
with certain approximations, and due to the need of determining a derivative, could only be
used to obtain temperatures averaged over a certain range 3.

Polarized superfluid at finite temperature
When the two spin components have a chemical potential difference 2h, the BCS-type

superfluid has two branches of quasiparticles with excitation energies ý(6k -_ )2 +A2 ± h

where Ek = h 2k2 / 2m. At finite temperature, the superfluid is polarized due to the large

thermal population of the lower branch compared to the upper branch. An interesting
situation arises when h becomes larger than A, i.e. the lower branch has negative energy
quasiparticles, implying that even at zero temperature the superfluid state would have a finite
polarization. Our experiments show hc < A at very low temperature, suggesting that a
polarized superfluid state exists only at finite temperature. The breached-pair state with hc >
A at zero temperature has been predicted in a stronger coupling regime (on the BEC side of
the Feshbach resonance). Since A gradually decreases with higher temperature, it might be
possible to have hc > A at finite temperature, at least in the weakly-interacting BCS limit
where A smoothly approaches zero at a second order phase transition point. One interesting
problem is identifying this gapless region of h > A in the phase diagram for various coupling
regimes.
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Determination of the fermion pair size in a resonantly interacting superfluid

Christian H. Schunck, Yong-il Shin, Andr6 Schirotzek, and Wolfgang Ketterle
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,

MIT, Cambridge, MA 02139
(Dated: February 4, 2008)

Fermionic superfluidity requires the formation of pairs. The actual size of these fermion pairs varies
by orders of magnitude from the femtometer scale in neutron stars and nuclei to the micrometer range
in conventional superconductors. Many properties of the superfluid depend on the pair size relative
to the interparticle spacing. This is expressed in BCS-BEC crossover theories [1-3], describing
the crossover from a Bardeen-Cooper-Schrieffer (BCS) type superfluid of loosely bound and large
Cooper pairs to Bose-Einstein condensation (BEC) of tightly bound molecules. Such a crossover
superfluid has been realized in ultracold atomic gases where high temperature superfluidity has been
observed [4, 5]. The microscopic properties of the fermion pairs can be probed with radio-frequency
(rf) spectroscopy. Previous work [6-8j was difficult to interpret due to strong and not well understood
final state interactions. Here we realize a new superfluid spin mixture where such interactions have
negligible influence and present fermion-pair dissociation spectra that reveal the underlying pairing
correlations. This allows us to determine the spectroscopic pair size in the resonantly interacting gas
to be 2.3(2)/kF (kF is the Fermi wave number). The fermions pairs are therefore smaller than the
interparticle spacing and the smallest pairs observed in fermionic superfluids. This finding highlights
the importance of small fermion pairs for superfluidity at high critical temperatures [9]. We have
also identified transitions from fermion pairs into bound molecular states and into many-body bound
states in the case of strong final state interactions.

The properties of pairs are revealed in a dissociation
spectrum, where pair dissociation is monitored as a func-
tion of the applied energy E. The spectrum has a sharp
onset at the pair's binding energy Eb, where the frag-
ments have zero kinetic energy, and then spreads out to
higher energy. Since a rf photon has negligible momen-
tum, the allowed momenta for the fragments reflect the
Fourier transform b(k) of the pair wavefunction O(r),
which has a width on the order of 1/ý where ( is the
pair size. Thus the pair size can be estimated from the
spectral line width E,, as (2 - h2 /mtE,, (m is the mass
of the particles and h is Planck's constant h divided by

27r).

The conceptually simplest pairs in the BCS-BEC
crossover are the weakly bound molecules in the BEC
limit, which are described by a spatial wavefunc-
tion 0,#(r) oc e-r/b/r with a binding energy Eb =
h2/Tmb2 . When the molecules are dissociated into non-
interacting free particles, the spectral response is Im o
E-Eb/E2 , showing a highly asymmetric line shape

with a steep rise at the molecular binding energy Eb and
a long "tail" to higher energies (Fig. la) [5, 10].

This general behavior of the dissociation spectrum

holds also in the BCS limit where pairing is a many-body
effect [5, 11]. The rf dissociation process discussed below,
in the limit of negligible final state interactions, can be
considered as breaking a Cooper pair into one quasipar-
ticle and one free particle. The rf spectrum in the BCS

limit has an onset at A 2 /2EF and the same dependence
of E -3 /2 at high energy as in the BEC limit (Fig. Ib; here

EF is the Fermi energy and A is the gap) [12]. Since the

rf excitation takes place throughout the whole Fermi sea

it is most natural to interpret the BCS state as N/2 pairs

with condensation energy A 2 /2EF where N is the total
number of fermions [5].

A spectroscopic pair size can be defined both from
the onset and the width of the rf spectrum as Jt =
h2 /2mEth and (2 = y x h2 /2mE,. Here Eth is the
onset/threshold energy, E, is the full width at half max-
imum, and y = 1.89 is a numerical constant chosen for
convenience (see caption of Fig. 1). The pair sizes (th
and ý, which can be directly obtained from the rf spec-
trum capture the evolution of the pair size from the BCS
limit to the BEC limit (see Fig. Ic).

Since the rf spectra show a similar behavior in both
limiting cases of the BEC-BCS crossover, one would ex-
pect comparable spectra within the crossover regime.
Surprisingly, the rf spectra obtained in previous rf exper-
iments did not fit into this picture: the lineshape did not
show any pronounced asymmetry and the linewidth was
narrow [6-8] (see also Fig. 7). These experiments could
therefore not be simply interpreted in terms of pairing
energy and pair size. We will show that this is caused by
strong final state interactions and transitions to bound
states.

In the previous and our new experiments, the fermion
pairs consist of two atoms in different hyperfine states
[a) and [b). The rf transfers atoms in state 1b) to an ini-
tially unoccupied third state Ic). In addition to "pair dis-
sociation", also referred to as a "bound-free" transition
and characterized by the asymmetric lineshape discussed
above, rf spectroscopy can induce a second kind of tran-
sition to another bound state, i.e. the transfer of a pair
(a,b) to a pair (a,c) (also referred to as a "bound-bound"
transition). The latter spectra have a narrow and sym-
metric lineshape.
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FIG. I: Line shape of the pair dissociation spectrum in the
BEC (a) and BCS limit (b) and the evolution of the fermion
pair size in the BEC-BCS crossover (5, 11, 20]. (a) and
(b): Simulated rf dissociation spectra in the BEC and BCS
limits. The momentum k of the free particles after disso-
ciation is indicated in the top axes, where h2 k2/m = Eb.
Apart from an offset, the spectra in the BEC and BCS lim-
its show almost indistinguishable lineshapes. The molecular
dissociation lineshape Im with an additional offset parameter
can therefore serve as a generic, model independent fit func-
tion for pair dissociation spectra (see Methods and Fig. 6).
(c) The fermion pair sizes (w (solid blue) and (th (dashed
red) are displayed as a function of the interaction parame-
ter 1/kFa (a is the s-wave scattering length). Also shown is
the two-particle correlation length Gpair (dotted black) given
by ,pair = V(0jr 2 1¢)/(l7)0, where 0(r) = (V1P£(r)1 r (o)t1).
Here , is the generalized BCS wavefunction and a and 3 refer
to the two components [2]. In the BEC limit, the value for the
molecular size is ,m = b/V/ = (pai,. We chose 7-y = 1.89 in
the definition of w, so that (m = (th = $w. In the BCS limit,
ýpcir = 7r/(2v2)tc where c = ti2kF/(7rmA

) is the Pippard
coherence length and we have Gth = 29pir, . = 2.44ýp.ir.
The inset shows the ratios (,/Gir (solid blue) and &th/ýpir
(dashed red). Although ýpari changes by orders of magnitude,
Gth and w show the same behavior as op deviating from
each other by not more than 22 %. This illustrates that the
pair size can be reliably determined from the rf dissociation
spectrum throughout the whole BEC-BCS crossover.
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Final state effects arise when the dissociated atom in
state jc) interacts with atoms in state ja). The interac-
tion strength is measured by the dimensionless parameter
kFa. Here a is the s-wave scattering length and we use
ai (a!) for the initial (a,b) (final (a,c)) interactions. As
discussed in detail below, final state interactions severely
affect the rf dissociation spectra when IksFa I > 1 [13-
151. To overcome this problem, one has to change the
interactions in the final state without changing those in
the initial one. Our solution is the realization of a new
high temperature superfluid in 6 Li using a different com-
bination of hyperfine states for which rf excitation with
reduced final state interactions is possible (see Methods).
As a result, we were able to resolve the bound-bound and
bound-free contributions to the rf spectrum, and to de-
termine the size of fermion pairs from the asymmetric
fermion pair dissociation spectra.

We have taken advantage of the fact that any two state
mixture (1,2), (1,3), and (2,3) of the three lowest hyper-
fine states of 6 Li (labeled in the order of increasing hyper-
fine energy as |1), 12) and 13)) exhibits a broad Feshbach
resonance [16, 17]. So far, all experiments with strongly
interacting fermions in 6Li have been carried out in the
vicinity of the (1,2) Feshbach resonance located at about
B1 2 ~- 834 G. Surprisingly, inelastic collisions including
allowed dipolar relaxation are not enhanced by the (1,3)
and (2,3) Feshbach resonances. We observe that at both
the (1,3) and (2,3) Feshbach resonances superfluids can
be created as well (see Methods). This doubles the num-
ber of high temperature superfluids available for experi-
mental studies.

The newly created (1,3) superfluid is the best choice for
rf spectroscopy experiments since the final state scatter-
ing length a1 at the (1,3) resonance position B1 B ~ 691
G is small and positive (0 < kFaf < 1 for typical values
of kF). Therefore the accessible final states are either
a molecule of a well defined binding energy or two free,
only weakly interacting atoms. The actual final state in-
teractions depend on whether one drives the rf transitions
from 11) to 12) or from 13) to 12) allowing the comparison
between spectra taken from the same sample but with dif-
ferent af (see Methods and Supplementary Information).
After preparing the (1,3) superfluid a rf pulse resonant
with the 13) to 12) transition is applied. Then either
the losses in state 13) or the atoms transferred to state
12) are monitored (see Methods). All spectra are plotted
versus frequency or energy relative to the atomic reso-
nance, i.e. relative to the energy E 0 required to transfer
an atom from 13) to 12) in the absence of atoms in state
I1).

The main result of this paper are the spectra observed
in the (1,3) BEC-BCS crossover between 670 and 710
G (Fig. 2). The spectra have the asymmetric lineshape
characteristic for pair dissociation and are indeed well
fit by a generic pair dissociation lineshape (see Fig. 1
and Methods). If the frequency axis is scaled by E,
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FIG. 2: Rf dissociation spectra in the BEC-BCS crossover. Below, at, and above resonance, the spectrum shows the typical
asymmetric lineshape of a pair dissociation spectrum. The signal is proportional to the three dimensional local response at
the center of the cloud (see Methods). Since state 13) has a higher energy than state 12) (see the schematic inset in (a)), the
dissociation energy is always less than the transition frequency for the atomic resonance Eo/h and therefore the dissociation
spectra appear at negative energies compared to Eo. The inverted frequency axis ensures that the dissociation spectrum is
always on the right (or "positive") side of the origin. The magnetic field (in G), the local Fermi energy pF (in kHz), the
temperature T in units of the Fermi temperature T/TF and the interaction strength 1/kFai are (a), 670, h x 24, a 0.2, 0.4;
(b), 691, h x 21, 0.1, - 0; (c), 710, h x 20, 0.1, -0.3.

and the spectra are shifted to show the same onset all
three spectra overlap as shown in Fig. 3a. At the level
of our experimental resolution the dissociation lineshape
is therefore not sensitive to a change in interactions. As
illustrated in Fig. 1, the pair size can in principle be
obtained from both Eth and E,. However, since the
whole spectrum may be subject to shifts from Hartree
terms [16, 18], we focus in the following only on the width
of the spectrum.

At unitarity we determine the full width at half max-
imum to be E. = 0.36(6)eF corresponding to a spec-
troscopic pair size of 1, = 2.3(2)/kF (here eF is the lo-
cal Fermi energy and kF = /2/•-E/h). The pairs are
therefore smaller than the interparticle spacing I given
by I = nl/3 = (37r 2) 1/3 /kF - 3.1/kr (where n the total
density) and in units of 1/kF the smallest reported so far
for fermionic superfluids. In high-temperature supercon-
ductors the reported values for 4 at optimal doping are
in the range of 5 to 10/kf [9].

In the simple BEC-BCS crossover model the ratio
(4ir,/4w varies from 1 to 1/2.4. The fact that w, is
smaller than I suggests the use of the molecular ratio,
i.e. =- ,i, = ,w = 2.3/kF. Before we compare
with theoretical predictions we note that various defi-
nitions of the pair size differ by factors on the order
of unity [19]. With this in mind, we find that our ob-
served 4 is larger than a predicted pair size of about 1/kf
based on a functional integral formulation of the BEC-
BCS crossover [20]. Small fermion pair sizes have been
explicitly linked to high critical temperatures via the re-
lation Tc/TF r- 0.4 /(kFýpir) which applies for weak cou-
pling [9]. Inserting the observed t this relation yields an
estimate of TV/TF r 0.2 which is in the range of the pre-
dicted values between 0.15 to 0.23 (here TF is the local
Fermi temperature) [21]. If we use the asymptotic BCS

relation A = h = 1 1 CF, valid at weak cou-

pling, and our observed 4 at unitarity we find A s 0.3 e.r
smaller than the value of 0.5EF predicted by Monte Carlo
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FIG. 3: Comparison of lineshapes and density effects. (a)
Same spectra as in Fig. 2 but with the frequency axis scaled
by E, and shifted so that the spectral onsets overlap with
the BEC side spectrum: BEC side (black circles), resonance
(red triangles), and BCS side (blue squares). (b) Density
effects at unitarity for the (1,3) mixture at 691 G. The figure
shows the tomographically reconstructed spectral response in
the center (open circles, same spectrum as in Fig. 2b) as well
as the lower density wings (filled triangles) of the cloud. In
this regime the cloud might have turned normal.

simulations [22].

The strong narrowing of the spectral line in Fig. 2 (a)
to (c) demonstrates that the fermion pair size increases
from strong to weak coupling. The decreasing width cor-
responds to a twofold increase in the spectroscopic pair
size from (, = 1.4(1)/kF at 670 G to (w = 2.8(3)/kF at
710 G where the extent of the pairs becomes comparable
to the interparticle spacing. A change of the absolute
pair size with density at unitarity can in principle be ob-
served by comparing the spectral width in the center and
the outer region of the cloud. As the density decreases
the spectrum shifts to lower energies (see Fig. 3b). How-
ever, the sharp spectral onset also becomes increasingly
softer and the asymmetry of the pair dissociation peak
less pronounced, possibly due to atomic diffusion during
the excitation pulse. This prevents a reliable determina-
tion of the pair size in the spatial wings where the density
is changing rapidly.

We now consider the effect of final state interactions
in more detail. First we would like to point out that
the increase in af by about a factor of two from 670 G
to 710 G has not affected the lineshape of the spectra in
Fig. 3a within the experimental resolution. This suggests
that final state effects are small for these spectra. Addi-
tional information is obtained from the previously intro-
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FIG. 4: Effect of final state interactions on rf spectroscopy:
bound-bound (BB) and bound-free (BF) spectra in the BEC-
BCS crossover of the (1,3) mixture (only the BF spectra in
(a-c) were tomographically reconstructed). While the initial
(1,3) state is strongly interacting at all fields the final state in-
teractions change from weak (a-c) to strong (d-f). See ref. [17]
for a plot of the Feshbach resonances. At the higher magnetic
fields for 1/krat z -1 the initial state may have turned nor-
mal. (a-c), Same BF spectra and parameters as in Fig. 2. The
relative weight of the BB and BF peaks could not be deter-
mined experimentally (see Methods).(d), 750 G, EF = h x 22
kHz, T/TF=0.09; (e), 780 G, EF = h x 23 kHz, T/TF=0.09;
(f), 833 G, EF = h x 20 kHz, T/Tr=0.06.
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duced bound-bound (BB) transitions which are outside
the range plotted in Fig. 2. On the BEC side of the reso-
nance the (1,3) molecule can be transferred also to a more
deeply bound (1,2) molecule (see Fig. 4a). The BB peak
is still present at unitarity and also on the BCS side at
710 G (Fig. 4b and c) and results from the transition of a
many-body bound fermion pair to a (1,2) molecule. The
strong overlap of the pair wavefunction and the molecule
in the final state is another indication for the "molecular"
character of the fermions pairs in the strongly interacting
regime.

The spectra start to change significantly at higher
fields. As the magnetic field is increased the (1,3) mixture
remains in the unitarity limited regime with the interac-
tion strength approaching 1/1kFail : 1 at B 12 = 833 G.
The final state interactions, however, change from weak
to strong causing the pair dissociation peak to decrease in
weight and the BB peak to become dominant (Fig. 4d-f).
This single peak apparently corresponds to a BB transi-
tion from many-body bound (1,3) pairs to a highly cor-
related final state of an atom in state 12) interacting with
the paired atoms in state I1).

A narrow BB peak is predicted both in the molecu-
lar (two-body) and many-body case, when initial and
final state interactions are identical or similar. The spec-
tra in Fig. 4 show that BB transitions dominate when

1/(kFai) - 1/(kpaf)I < 1.5. In our opinion a recent
theoretical treatment [23] agrees qualitatively with these
results but underestimates the region where BB transi-
tions are dominant by about a factor of two. Our obser-
vations allow a reinterpretation of the rf spectra obtained
from the (1,2) superfluid with resonant interactions [6-8]
(see the Supplementary Information for an extended dis-
cussion). The spectra have been taken in a regime where

I1/(kFai) - 1/(kFaLf)j 1 where strong BB transitions
are expected. Together with the very narrow and sym-
metric lineshape (see Fig. 7), this suggests that the (1,2)

to (1,3) rf spectra at 833 G are dominated by such BB

transitions and cannot be simply interpreted in terms of

a pair dissociation process and a pairing gap [6-8, 24-26].

In conclusion we have determined the pair size of res-

onantly interacting fermions using new superfluid spin

mixtures in 6 Li. The (1,3) mixture is ideally suited for

rf spectroscopy since final state interactions do not sig-

nificantly affect the spectra. Our measurements are the

first to clearly reveal the microscopic structure of the

fermion pairs in the strongly interacting regime. The

small fermion pair size and high critical temperatures

observed in our system show a relation similar to the

one suggested by the Uemura plot for a wide class of

fermionic superfluids [9]. Our results also explain why
the rapid ramp method used to observe fermion pair con-

densation in the crossover has been successful [27, 28].

The small pair size facilitated the efficient transfer of

the many-body bound fermion pairs into more strongly

bound molecules while preserving the momentum distri-

bution of the pairs.
This work opens ample opportunities for future re-

search. The microscopic structure of the pairs can now
be studied both in the superfluid and normal phase as
a function of interaction strength, temperature and spin
imbalance between the two components [7]. Increased
spectral resolution may reveal interesting deviations of
the spectral shape from the generic lineshape discussed
here. Furthermore, the predicted universality of a reso-
nantly interacting Fermi mixture can now be tested in 6 Li
for three different systems. The lifetimes of all three two-
state combinations of the three lowest hyperfine states in
6Li are on the order of 10 s in the strongly interacting
regime. The three-body decay rates, however, decrease
by more than an order of magnitude between 690 and
830 G for a ternary mixture, which may reflect inter-
esting three-body physics. The lifetime of 30 ms at 691
G might be sufficient for studies involving all three hy-
perfine states [29] with the potential for experiments on
pairing competition in multi-component Fermi gases and
spinor Fermi superfluids.
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Methods Summary
Creation of the (1,3) superfluid. As described pre-

viously [5] a spin polarized sample of ultracold 6 Li in
state I1) is obtained in an an optical dipole trap after
sympathetic cooling with 23 Na in a magnetic trap. The
equal (1,3) mixture is prepared at 568 G, close to the zero
crossing of a13. Here a non-adiabatic Landau-Zener rf
sweep, creating an equal (1,2) mixture, is followed by an
adiabatic Landau-Zener sweep that transfers the atoms

in state 12) to state 13) . To induce strong interactions
the magnetic field is adjusted in 100 ms to 730 G and
then ramped to values between 660 and 833 G. After

evaporative cooling in the optical trap, superfluidity is
indirectly established via the observation of fermion pair

condensates [27, 28]. Under comparable conditions quan-

tized vortex lattices, a direct proof for superfluidity, have
been observed in the rotating (1,2) mixture of 6Li [4].

EF = h(V2Vax)1/3(3N) 1/ 3 with radial (axial) trapping
frequencies vr = 140 (vax = 22) Hz and kI' = F 2mE/h.
The temperature was determined from the shape of the

expanded cloud.
Recording the (1,3) rf spectra. The rf dissociation

spectra at 670, 691 and 710 G spectra have been obtained

by applying a 200 ps long rf pulse to the (1,3) mixture

monitoring the atoms transferred into state 12). Three-

dimensional image reconstruction via the inverse Abel

transformation was used to obtain local rf dissociation
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g-

- action st l stateremains resonantly interacting. It is, however, experi-

mentally difficult to decrease the density by a large fac-

I1) tor and maintain the same low temperature T/TF. One

might also try to spectroscopically access a different final

state. However, in 6Li there are no other allowed mag-

I _netic field insensitive transitions. Magnetic field insensi-

+600 +400 +200 0 -200 tivity is crucial to obtain the required spectral resolution

in the kHz regime.
Since other mixtures of hyperfine states in 6 Li also ex-

hibit broad Feshbach resonances we attempted to create

resonantly interacting superfluids in new combinations of

initial hyperfine states: (1,3) and (2,3). The lifetimes of

these spin mixtures at resonance exceed 10 s implying in-

elastic collision rates smaller than 10-14 cm- 3 s-1. While

-600 -400 -200 0 200 for the (2,3) supertiuid the tnal state interactions are also

Rfoffset (kHz) large and negative, the final state scattering lengths at

B 13 are either a23 ;- 1140 ao and a12 m 1450 ao (depend-

pectra at unitarity for the (1,3) mixture at 691 ing on the rf transition employed) and therefore consid-

)ectra the number of atoms transferred to state erably smaller and positive.

recorded. In the (1,3) mixture rf transitions to Creation of the (2,3) superfluid. To prepare a

te 12) are possible from both states 1) and 13). (2,3) superfluid we follow essentially the same procedure

ttes can therefore be either bound (2,3) or (1,2) ( )
spectively or a dissociated free atom in state 12). as previously described for the (1,2) mixture [4, 5]. The

ie bound-free (BF) spectra are very similar for only difference is that instead of applying a Landau-Zener

2) (a) and 11) to 12) (b) transitions. The bound- transfer that creates an equal (1,2) mixture a complete

spectra, however, show different shifts indicating transfer into state 12) is followed by a second sweep cre-

1 (2,3) molecule is more strongly bound than the ating an equal (2,3) mixture. The final magnetic field at

le. This is a consequence of the smaller width of the center of the (2,3) resonance is B 23 M 811 G. As in

hbach resonance at 811 G [17] compared to the the other spin mixtures we observe fermion pair conden-

(1,2) resonance at 834 G. (a) [3) to 12) transition;
,T/TF=0.1 (b) II) to 12) transition; cF = 22 kHz, sation after evaporation in the optical trap.

Recording the (1,3) spectra: stability of the

mixture after the rf pulse Recording the atoms trans-

ferred to state 12) is advantageous because there is no

background without rf pulse, but it requires that their

The pulse length was chosen to be shorter lifetime with respect to three-body recombination is suf-

than 1/4 trapping period to minimize atomic diffusion

during the excitation pulse. The rf power was adjusted

to transfer less than 10% of the total number of atoms. A

further reduction of the rf power only affected the signal

to noise ratio but not the spectral width. All BB spectra

and the spectra at fields at and above 750 G are not

spatially resolved and were obtained with about 1 ms

long rf pulses.

Full methods

Creation of new superfluid spin mixtures for rf

spectroscopy. For the well established (1,2) mixture,

only the 12) to 13) transition has been used for rf spec-

troscopy. The final state s-wave scattering length a 13 at

B 12 is large and negative leading to strong final state in-

teractions with 1/kFaf < -1 (as13 -3300 ao, ao the

Bohr radius and aij the magnetic field dependent scat-

tering length between atoms in states li) and Ij)). The

strength of the final state interactions can in principle

be changed in several ways without affecting the initial

state. The density could be lowered to reduce the inter-

ficiently long.
For fields below - 710 G, we found that the lifetime

of the 12) atoms after the rf pulse was short when they

formed a molecule with an I1) atom as the result of a BB

transition. Therefore, in some cases, the BB part of the

spectra was recorded by observing atom number loss in

the initial state. After BF (bound-free) excitation, the

lifetime of atoms in state 12) was 30 ms (determined at

691 G) sufficiently long to observe the atoms directly.

As a result of the different decay times and recording

methods the relative signal strength between the BB and

BF parts of the spectrum could not be determined.

At fields above , 750 G, we found similar and strong

losses after both BF and BB excitations. Therefore all

data were taken by monitoring losses in the initial state

13) and the spectra reflect the relative strength between

BB and BF transitions.
Fitting the (1,3) spectra The fit to the (1,3) rf

dissociation spectra in Figures 2, 3, 4(a-c), 5, and 7

uses a generic, model independent pair dissociation line-

shape based on I, with an additional parameter Eoffset:

C
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b

FIG. 5: Rf s
G. For all si
12) has been
the final sta
The final sta
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spectra [8].
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FIG. 6: Generic pair dissociation lineshape. A simulated rf
dissociation spectrum in the BCS limit (black solid line) [5]
is fit with Igeneric (red dashed line) which is the molecular
lineshape Im with an additional offset parameter Eo•,et (see
Methods).

Igeneric(E) x V(E - Eth/(E - Eoffset) 2 . This lineshape
provides an excellent fit to simulated rf dissociation spec-
tra both in the BEC and BCS limits [5] (see Fig 6). Also
the experimentally obtained spectra are well fit by Igeneric
(Fig. 2). In some of the spectra deviations appear close to
threshold where the onset is smoother than given by the
fit. The smooth onset could have been caused by residual
atomic diffusion during the excitation pulse which was
significantly shorter than a quarter trapping period. The
generic fit function contains no corrections for final state
interactions. In the BEC limit (where Eoffset = 0 and
Eth = Eb) such corrections can be included by a multi-
plicative factor of 1/(E+h2 /(maa) -Eth) [30]. When ap-
plied to the dissociation spectra in the crossover this cor-
rection factor changes the fit only by a negligible amount.
All BB and BF spectra in Fig. 4(d-f) have been fit by a
Gaussian.

(1,3) mixture: 13) to 12) vs [1) to [2) transition
The (1,3) superfluid gives us the opportunity to record
two different (magnetic field insensitive) rf spectra: from
state 13) to state 12) (the transition used for all the spec-

tra shown in the paper) and from state [1) to state 12).

This allows us to compare rf spectra of the same system
but for somewhat different final state interactions. The

final state scattering lengths at B 1 3 are a23 ; 1140 ao
for the [1) to 12) transition and a 12 : 1450 ao for the [3)

to 12) transition. Figure 5 shows the spectra at 691 G.
Note that the fermion pair size obtained from the spec-

tra agrees for both rf transitions within the experimental

uncertainty.

Supplementary Information
Final state interactions in the rf spectroscopy

experiments with the (1,2) and (1,3) mixtures.

Figure 7 shows the dramatic effect of final state inter-

actions in the (1,2) mixture at unitarity. The narrow

and symmetric lineshape observed in the (1,2) to (1,3) rf
spectrum suggests that this spectral peak is dominated

0 2 4 6

FIG. 7: Comparison of the rf spectra of the (1,2) and (1,3)
superfluids at unitarity, showing dramatic final state effects
for the (1,2) mixture. Open circles: same rf dissociation data
as in Fig. 5b. Solid diamonds: rf spectra at unitarity for the
(1,2) mixture at 833 G from ref. [8]. The frequency axis is
normalized by the local Fermi energies. In the (1,2) mixture
final state effects lead to a strong suppression of the asym-
metric "tails" of the rf spectrum and a shift of the peak to
lower energies.

by a bound-bound (BB) transition from (1,2) pairs to a
(1,3) correlated state.

In the molecular case final state interactions can be
included in an analytical model [30]. The final states
for dissociation are two atoms with momentum hk in an
s-wave scattering state with scattering length af. For
a large and positive ai ; b and an increasing af (0 <
af < ai ; b) the dissociation spectrum looses in weight
and narrows as (1 - af/ai)/(1 + k2af ) until it disappears
when a 1 /a, approaches one. At this point the spectrum
consists of a delta function for the BB transition between
molecular states of equal size.

A very similar behavior of the BB and bound-free (BF)
parts of the spectrum is expected for a superfluid with
resonant interactions [23]: for laj. j[ail >> 1/kF the spec-
trum is reduced to a delta function. Here, the initial state
is a fermion pair condensate described by the BEC-BCS
crossover wavefunction [5, 23]. In contrast to the molec-
ular case, the spectrum of the superfluid at resonance
shows a BB peak even for negative values of 1/kFaf,
i.e. in a regime where binding is only due to many-body
effects [23]. The spectra in Fig. 4 show that BB tran-
sitions dominate when I1/(kFa,) - 1/(kpFaf)l < 1.5 (a
region that is about a factor of two larger than obtained
in ref. [23]). We also infer from ]23] that it is much more
difficult to spectrally resolve BB and BF transitions for
a system in the unitarity limit if af < 0. When one ap-
proaches resonance for the (1,2) system from the BEC
side the BF spectrum narrows and smoothly turns into
a BB dominated spectrum.

Compared to the (1,2) superfluid, af in the (1,3) sys-
tem is up to three times smaller and positive. This leads,
both in the molecular model (due to the quadratic depen-

dence on kFaf) and in the resonant case [23], to a dra-

matic change in the dissociation spectrum towards the



limit of negligible final state interactions. Fits to the (1,3)
dissociation spectrum both with and without a correc-
tion factor for final state interactions (see Methods) [30]
show negligible differences, indicating the small influence
of final state interactions. In fact the (1,3) spectra in
Fig. 4(a-c) show the absence of final state corrections
without any detailed analysis. The splitting between BB
and BF parts given by h2 /ma2 is considerably larger than
the width of the BF spectrum (which is approximately
h2/mb2 ). Therefore the condition a, < b is fulfilled im-
plying the absence of strong final state corrections to the
dissociation spectrum.
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