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Abstract

I analyze new phenomena arising from embedding active materials inside of photonic
crystal structures. These structures strongly modify the photonic local density of
states (LDOS), leading to quantitative and qualitative changes in the behavior of ac-
tive materials. First, I show that the emission spectrum of pointlike sources inside an
"omniguide" is strongly modified by features resembling one-dimensional van Hove
singularities in the LDOS. The resulting overall enhancement of the LDOS causes
radiating dipoles to emit more rapidly than in vacuum (known as the Purcell effect).
Second, I study optically pumped lasing in three model systems: a Fabry-Perot cav-
ity, a line of defects in a two-dimensional square lattice of rods, and a cylindrical
photonic crystal. It is shown that high conversion efficiency can be achieved for large
regions of active material in the cavity, as well as for a single fluorescent atom in
a hollow-core cylindrical photonic crystal, suggesting designs for ultra-low-threshold
lasers and ultra-sensitive biological sensors. Third, I consider a photonic crystal-
based light-trapping scheme, capable of compensating for weak optical absorption
of crystalline silicon solar cells in the near infrared. For a 2 pm-thick cell, relative
efficiency enhancements as high as 35% are expected. Fourth, I explore a way to
achieve full ±900 electronically-controlled beam steering using a linear array of one-
dimensionally periodic elements containing electro-optic materials. Fifth, I consider
switching of a single signal photon by a single gating photon of a different frequency,
via a cross-phase modulation generated by electromagnetically-induced transparency
atoms embedded in photonic crystals. The exact solution shows that the strong cou-
pling regime is required for lossless two-photon quantum entanglement. Finally, I
demonstrate that the Purcell effect can be used to tailor the effective Kerr nonlinear
optical susceptibility. Using this effect for frequencies close to an atomic resonance
can substantially influence the resultant Kerr nonlinearity for light of all (even highly
detuned) frequencies. For example, in realistic physical systems, enhancement of the
Kerr coefficient by one to two orders of magnitude could be achieved.

Thesis Supervisor: John D. Joannopoulos
Title: Francis Wright Davis Professor of Physics
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Chapter 1

Introduction

1.1 Background and motivation

One of the primary drivers of solid state physics in the twentieth century was un-

derstanding the unique properties of semiconductors. It is now well-known that the

combination of an electronic bandgap, which causes a pure semiconductor to behave

as an insulator at room temperature, and doping, which allows one to add a con-

trolled amount of conductivity to a pure sample, leads to a great deal of freedom in

materials design, and enables many novel physical devices. The most important one

is, of course, the transistor, which led to the modern computer industry.

The physics of semiconductors, or any crystalline material, begins with Schridinger's

equation, which controls the quantum-mechanical behavior of each individual elec-

tron, combined with Bloch's theorem, which dictates the form of the electronic wave-

function in the crystal. It can be shown that electrons in these materials will form a

Bldch wave, which is a product of two terms, one being a function with the same peri-

odicity as the crystal lattice, and the other being a plane wave. The periodicity of the

potential means that these plane waves are only defined up to a so-called "reciprocal

lattice vector". One can then construct a region enclosing all the unique wavevectors

for a given lattice, which is referred to as a Brillouin zone. Generally, at the Brillouin

zone boundaries, two or more bands will intersect (due to symmetry), which can give

rise to an avoided crossing in the presence of a potential. In semiconductors, this



potential is strong enough to give rise to a complete bandgap, i.e., a range of electron

energies that are forbidden to exist within the infinite crystal.

The field of photonics was initiated by researchers who noticed a formal similarity

between the Schr6dinger equation:

2m
- 2 2(E- V)p, (1.1)

and Maxwell's equations, in a region with no free charges or currents (with a dielectric

function c(Y) = E + &E(Y)):

_v2 E [(W/c) 2 _ (-_2)(w/c)2) E, (1.2)

provided that 6c(!) is small [6, 7]. This demonstrates that one can view the propaga-

tion of an electric field through space in much the same way as a quantum-mechanical

wavefunction. Here, -S6(i)(w/c) 2 serves as an effective potential for the photons.

This result implies that one can transfer much of the existing understanding of elec-
tronic bandstructures over to photonic bandstructures. And furthermore, one can
imagine making photonic structures in analogy with various existing materials. In
particular, by analogy with semiconductors, one might imagine that a periodic struc-
ture (as in Fig. 1-1) with sufficient index contrast and the correct lattice structure

(e.g., face-centered cubic, or fcc), would give rise to a photonic bandgap (PBG) [1].

Figure 1-1: Illustration of periodicity in a photonic crystal in one, two, and three
dimensions (adapted from Ref. [1]).



However, it turns out that calculating photonic bandstructures creates unique

challenges not present in the calculation of electronic bandstructures. One initial

proposal for a 3D photonic bandgap structure [8], based on an fcc lattice with high

dielectric contrast, turns out not to have a true 3D PBG, but instead a pseudogap [9].

The simplest structure displaying a full PBG is instead a diamond structure [9]. The

procedure used for calculating the previous result, however, is relatively inefficient

for large systems. In 1993, a high performance O(N) method for calculating pho-

tonic bandstructures was introduced in order to reduce memory and calculation time

requirement by a factor of 104 [10].

In subsequent years, the advent of an efficient method for simulating photonic crys-

tals gave rise to many new results and applications, including: confinement of light

with low losses and small modal volume [11]; wavelength-scale bends that transmit

light without losses [12]; 2D periodic slabs capable of extracting light from LEDs [13]

as well as confining light in all directions [14]; suppression or enhancement of spon-

taneous emission [15]; channel-drop filters [16]; and omnidirectional reflectors [17].

In particular, omnidirectional reflectors are simply stacks of alternating high and

low dielectric materials (cf. the left-hand side of Fig. 1-1), with the property that they

reflect incoming light of all angles and polarizations [17]. In the past, that was thought

to be impossible because of the Brewster angle: a special angle, predicted by Fresnel's

equations, at which all TM-polarized radiation passes from one dielectric medium to

another. However, if both the high and low dielectric constants are sufficiently well

above the index of the material from which light is incident, then the Brewster angle

can be pushed outside of the light cone. This allows omnidirectional reflectivity, as

illustrated in Fig. 1-2.

Furthermore, these omnidirectional reflectors can be rolled into cylinders with a

hollow core, which are referred to as omniguides. As illustrated in Fig. 1-3, this

gives rise to modes that can be guided through air (for omnidirectionally reflected

frequencies) in a fashion very similar to a hollow metal waveguide [18, 19, 3]. However,

the advantage of the omniguide is that it can offer much lower losses than a metallic

waveguide could ever achieve in the visible spectrum, due to Ohmic losses from the



finite conductivity of the metal.
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Figure 1-2: Projected bandstructure (frequency vs. transverse wavector ky) for an
omnidirectional reflector with high = 13, and ow = 2 - omnidirectional reflection is
denoted by the yellow region; the Brewster angle B lies outside the light cone (adapted
from Ref. [2]).

Today, an open problem is characterizing the phenomena that can emerge when

"active materials" are placed in photonic crystals. In this thesis, active materials

are taken to be materials that actively emit or absorb light, materials with nonlinear

susceptibilities, and materials displaying electromagnetically induced transparency.

Since it has already been shown that photonic crystals are capable of strongly mod-

ifying the electromagnetic environment, one would expect many new physical phe-

nomena to occur. The degree to which the electromagnetic environment changes in

the presence of photonic crystals is quantified by the local density of states (LDOS),

which is defined by:

(r E (2
n,k

(1.3)

A
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Figure 1-3: Projected bandstructure for (a) an omniguide with a diameter of 6 periods
of the omnidirectional reflector, and (b) for a metallic waveguide with the same diam-
eter. Just like in the metallic waveguide, modes in the omniguide observe a quadratic
dispersion, for omnidirectionally reflected frequencies (adapted from Ref. [3]).
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where f dV E(r-) Eýn (r = 1 for each wavevector k and band n, whose dispersion

relation is given by wný. As is evident from its definition, the LDOS is influenced by

both the photonic bandstructure, given by Wný, as well as the field profiles E•n(r-) of

each of those bands. In the presence of defect structures, the field profiles for modes

with frequencies inside the photonic bandgap are strongly localized inside the defect

region, leading to huge increases in the local density of states. This is a powerful

effect that has the potential to cause not just a quantitative change in the strength

of existing material properties, but also qualitative changes, i.e., fundamentally new
phenomena. One example of the latter is the Purcell effect; other examples are ex-

plored later in this thesis. Some of these phenomena can only be properly understood

through the lens of quantum mechanics. Below, I present a brief summary of the cav-
ity quantum electrodynamics formalism that will be used in subsequent chapters,
along with a discussion of some of the intriguing phenomena already known in the
literature, such as the Purcell effect and electromagnetically-induced transparency.



1.2 Cavity quantum electrodynamics

1.2.1 Purcell effect

Cavity quantum electrodynamics (CQED) is quantum electrodynamics (QED) in

cavities with discrete electromagnetic modes. One example in which this formalism

applies is a two-level atom with a transition at the same frequency as the fundamental

electromagnetic mode of a cavity. The CQED Hamiltonian for this system can be

derived from the expression:

H = -- qiEi.'· = -d.-' , (1.4)

where d is its dipole moment, and E is the applied electromagnetic field. The latter

equality holds true insofar as the atom behaves like a dipole. This is a very good

approximation as long as the wavelength of the light is much longer than the size

of the atom, which is true for all wavelengths studied in this thesis, ranging from

ultraviolet through microwave wavelengths.

In the next step of the derivation, the electric field can be quantized according

to [20]:

E (rj = i [~LTd *(a,, - d(*,T t] ,(1.5)

where a is the photon annihilation operator, e is the dielectric constant of the medium

filling the cavity (the refractive index n = V2), w, is the frequency of mode u, and

dA is the mode function, normalized such that Vmode = 1/Iax Ma. One can then apply

time-dependent perturbation theory (Fermi's golden rule) to obtain the spontaneous

emission decay rate [20]:

87 , 8 Id - 5T(r-1T (,/2)2
h E (W - wA)2 + (y,/2) 2 '

where Q, is the quality factor of mode p of the cavity, while y, is its radiative width.

If one then divides by the decay rate in free space at the central frequency, given by



7r = 4nd2w3~/(3hc 3), one can obtain a spontaneous emission enhancement factor Fp

given by [20, 21]:

Fp= 4 Qr2Vmod"L (n (1.7)

where Vmode,, is the effective modal volume of mode p. This is also known as the

Purcell enhancement factor - named after the Purcell effect [22]. It predicts that high

quality factor cavities and small modal volumes can strongly enhance spontaneous

emission. Physically, high quality factor cavities contribute to spontaneous emission

because they cause the cavity to resonate more strongly at the resonant frequency

than it would in free space. Small modal volumes also enhance spontaneous emission

because the field is strongly localized on top of the dipole moment of the atom.

1.2.2 Jaynes-Cummings Hamiltonian

The dipole operator can also be quantized according to:

d-- id(o+ + o-), (1.8)

where u± are the creation and annihilation operators for the excitation. One can

then rewrite equation (1.4) with the help of equations (1.5) and (1.8) to obtain the

expression:

H = Ed-- [(ri)a,(a+  + a-) - 'Q*!(ja(a+ + -)] (1.9)

Applying the rotating-wave approximation, in which terms that oscillate rapidly and

have a vanishing average value are neglected, this expression can be simplified to:

H = J hg,(ata- + au+), (1.10)

known as the Jaynes-Cummings Hamiltonian, where at (a) is the raising (lowering)

operator for the cavity photon mode, a+ (a-) is the raising (lowering) operator for



the electronic excitation, and g, is the coupling strength for mode p, given by:

g, = d W" (1.11)
hfVmode,t

If one introduces loss into this system via the Hamiltonian H,,., = ihFata + ihnaz,

one obtains two physical regimes: weak coupling and strong coupling. Physically,

weak coupling just means that the eigenmodes of the system are similar to the nor-

mal atomic and photonic states, with a coupling that can be treated as a perturba-

tion. This is the regime in which the Purcell effect is significant, since spontaneous

emission can be thought of as a time-dependent perturbation of the excited atom

eigenstate. Strong coupling, on the other hand, corresponds to eigenmodes which

consist of superpositions of atomic and photonic modes. Mathematically, it occurs

when g > IF - n1/2. In this case, Rabi splitting will occur, in which one mode is split

from the other by a finite energy gap, given by twice the coupling strength. This

effect is analogous to band anti-crossing in the physics of bandstructures, and just as

in that case, can be derived from degenerate perturbation theory.

1.2.3 Electromagnetically-induced transparency

Electromagnetically-induced transparency (EIT) is a phenomenon whereby the opti-

cal properties of a medium experienced by a probe beam can be dramatically modified

by the introduction of a so-called "coupling" beam [4, 23]. EIT occurs in three-level

atomic systems, such as the one illustrated in Fig. 1-4. Here, there are two metastable

internal states, labeled 1) and 12), coupled to a common upper state 13), which has

a radiative decay rate F. In the absence of the coupling beam, the probe beam ob-

serves an absorption peak when tuned to the transition frequency w13 . On the other

hand, the presence of a coupling beam with frequency w12 can actually reduce the

on-resonance cross-section for the absorbing beam by many orders of magnitude [24].

The way in which this occurs is coherent population trapping into the so-called "dark

state", a superposition of I1) and 12) that are decoupled from the upper level [25].

This can be seen mathematically as follows [4]: if one then writes the EIT interaction



Hamiltonian as:

H I = (Ap + ir)a 33 + (Ap - Ac)U'22 + gpa U13 + gca to 23 + C.C. (1.12)

then this Hamiltonian can be written in the one-excitation manifold as:

0 0 gP
Hi = ct  0 Ap - A, c (1.13)

9gp 9c Ap + iF

where cf = , aa21 31  . Now consider the case where a two-photon resonance

exists, i.e., Ac = Ap. This gives rise to an eigenstate dt ( g -gp 0 ). Remark-

ably, this so-called "dark state" has zero amplitude in the highest atomic excitation,

which leads to the observed dramatic decrease in absorption of the probe beam in

a steady state. Nonetheless, this state has extremely high dispersion, which leads

to the unique combination of ultra-slow light propagation and low losses. This also

gives rise to remarkably high Kerr nonlinear coefficients, which are many orders of

magnitude larger than in ordinary materials. One of the many applications enabled

by this remarkable confluence of properties is presented in chapter 6.

Ap-A c

13>

gp

Figure 1-4: Level diagram for a 3-level EIT atom, with an upper level 13) which has
a spontaneous decay rate F and detuning An, and two lower levels 11) and 12) with
coupling strengths gp and g, to the upper level. Level 12) also has a detuning Ap - Ac
that vanishes upon two-photon resonance (adapted from Ref. [4]).



1.3 Overview of this work

Active materials can display a rich variety of physical phenomena, including sponta-

neous emission, stimulated emission, and the photovoltaic effect. These phenomena

are the basis of a wide variety of technologically important devices, e.g., optical sen-

sors, lasers, and photovoltaic cells. Over the next several chapters, the effects of

placing these active materials in photonic crystals are explored for a variety of appli-

cations.

Consider the problem of guiding light from a source to a receiver. Typically this

is solved using a waveguide. Specific devices of this type include optical amplifiers,

which utilize index-guiding, and hollow waveguide optical sensors, which confine light

with a metal or high-index material. However, both of these waveguiding approaches

exhibit low output efficiency, and additionally, may be limited by the core material

properties. With the index-guiding mechanism, isotropic emission from a randomly

oriented collection of dipoles leads to high radiation losses. In the case of metal, high

ohmic losses occur at IR and visible wavelengths. Alternatively, one could envision

trapping light using an omnidirectionally reflective mirror wrapped into a cylindrical

waveguide, which would combine low losses with collection at all angles. In chap-

ter 2, the behavior of pointlike electric dipole sources enclosed by such a waveguide is

analyzed. It is found that the emission spectrum of a source inside the waveguide is

strongly modified by features resembling 1D van Hove singularities in the local den-

sity of states. The resulting overall enhancement of the LDOS at certain frequencies

causes radiating dipoles to emit more rapidly than seen in vacuum (known as the

Purcell effect). The effect of varying the positions and orientations of electric dipole

sources is also studied.

Another open area of investigation lies in optimizing the design of optically-

pumped lasing systems. While analytical solutions can be found for very simple

designs, such solutions do not necessarily apply to photonic-crystal based lasers. Ob-

taining precise values for lasing thresholds and conversion efficiencies requires a nu-

merical approach. In chapter 3, a detailed numerical scheme is presented in order



to model the interaction of light with active dielectric media embedded in photonic

crystals. Optically pumped lasing is studied in three model systems: a Fabry-Perot

cavity, a line of defects in a 2D square lattice of rods, and a cylindrical photonic

crystal. Field profiles and conversion efficiencies are calculated for these systems. It

is shown that high conversion efficiency can be achieved for large regions of active ma-

terial in the cavity, as well as for a single fluorescent atom in a hollow-core cylindrical

photonic crystal, suggesting designs for ultra-low-threshold lasers and ultra-sensitive

fluorescent sensors.

A different, but important, problem is how one can maximize the performance

of crystalline silicon (c-Si) based solar cells, which often suffer from imperfect light

trapping and low efficiencies. Most photovoltaic cells available today are made from

either c-Si or related materials, such as nanocrystalline silicon (nc-Si). However, these

crystals have an indirect bandgap, which gives rise to weak absorption of light in the

near infrared, a range of wavelengths which contains over a third of usable solar

photons. Thus, a c-Si solar cell with a plain wafer geometry substantially less than 1

mm thick (e.g., 100 pm) will fail to absorb a significant number of photons that could

otherwise be used to generate power in the cell, giving rise to low efficiencies. At

the same time, the expense of c-Si for a 300 ,um-thick wafer with a correspondingly

long diffusion length drives up costs significantly. As a result, efficient light trapping

schemes that can achieve high levels of absorption for thin films of silicon are needed.

In chapter 4, a photonic crystal-based light-trapping scheme capable of compensating

for this problem is proposed and analyzed. The simulations predict that for a 2 hum-

thick slab of c-Si or nc-Si, overall power generation can be enhanced by 24.3% for a

distributed Bragg reflector with a 1D grating, and 25.3% for a 2D triangular photonic

crystal, made of air holes in silicon.

Another important class of active materials are nonlinear materials, such as Pock-

els or Kerr media. Optical nonlinearities have fascinated physicists for many decades

because of the variety of intriguing phenomena that they display, such as frequency

mixing, supercontinuum generation, and optical solitons. Moreover, they enable

numerous important applications such as higher-harmonic generation, electro-optic



phased arrays, integrated all-optical signal processing, and all-optical quantum infor-

mation processing. Designing such devices to operate effectively with low powers is

a fundamental challenge, because a unique combination of large nonlinearities and

low losses is required. In the next three chapters, several different approaches to

enhancing nonlinearities are discussed, along with some resulting applications.

Many common electro-optic nonlinear materials can be used for high speed sig-

nal modulation. However, the strength of nonlinearity exhibited is too low for many

applications. One example is an optical phased array, in which the phase and ampli-

tude of light across a wavefront must be dynamically controlled over a large range.

In chapter 5, 1D photonic crystal devices are developed to enhance the small index

shift associated with the electro-optic effect. It is shown that if one surrounds the

electro-optic material with a cavity of quality factor Q, the maximum phase sensi-

tivity is increased by Q compared to a bare slab of material. Such devices can be

placed into linear arrays in order to enable applications such as anamorphic lensing,

array generation, aberration correction, and beam steering. In particular, the pres-

ence of photonic crystals enable high-speed full ±900 beam steering with a single

stage (rather than multiple stages which gradually increase the angle of the light at

each step).

One special class of materials discussed earlier, known as EIT materials, exhibit

nonlinear coefficients up to 12 orders of magnitude larger than those observed in

common materials. As a result, one can envision inducing strong interactions between

two very weak signals of different frequencies by placing a 4-level EIT atom in a high-

Q cavity, so that a very small signal at a specific atomic transition frequency could

shift another resonant frequency of the system by a measurable amount. This effect

has already been demonstrated to work semi-classically for fields with magnitudes as

small as those expected for a single photon. In chapter 6, this approach is studied for a

design consisting of a PhC waveguide and a PhC microcavity containing a four-level

EIT atom using an analytical model based on waveguide-cavity QED. It is solved

exactly and analyzed using experimentally accessible parameters. It is demonstrated

to be capable of switching of a single signal photon by a single gating photon of a



different frequency, via a cross-phase modulation. It is found that the strong coupling

regime is required for lossless two photon quantum entanglement.

Finally, in chapter 7, I demonstrate that the effective nonlinear optical susceptibil-

ity can be tailored in a novel way: through the Purcell effect. While this is a general

physical principle that applies to a wide variety of nonlinearities, I specifically investi-

gate the Kerr nonlinearity, since it is present in most materials. For definiteness, I use

a generic two-level model for Kerr nonlinearities. I show theoretically that using the

Purcell effect for frequencies close to an atomic resonance can substantially influence

the resultant Kerr nonlinearity for light of all (even highly detuned) frequencies. For

example, in realistic physical systems, enhancement of the Kerr coefficient by one to

two orders of magnitude could be achieved.



Chapter 2

Properties of radiating pointlike

sources in cylindrical

omnidirectionally- reflecting

waveguides

2.1 Introduction

A variety of technologically significant devices rely on guiding light from a source

placed inside a waveguide. These include optical amplifiers, which utilize index-

guiding, and hollow waveguide optical sensors, which confine light with metal or high-

index material. While the guiding mechanisms in these two devices are different, both

exhibit low output efficiency and may be limited by the core material properties. With

the index-guiding mechanism, isotropic emission from a randomly oriented collection

of dipoles leads to high radiation losses. In the case of metal, high ohmic losses occur

at IR and visible wavelengths [26, 27, 28].

Rather than using lossy metallic structures, one could also envision using a highly

reflective dielectric mirror to confine light. In this paper I study the performance of a

structure consisting of a uniform index core, possibly air, surrounded by a dielectric



mirror cladding, known as an omniguide. I find that this structure not only minimizes

the losses due to radiation and absorption, but due to the Purcell effect, also achieves

an output power that exceeds that of the source in vacuum at some frequencies.

It has been known for some time that a finite slab of stratified dielectric media

will reflect certain frequencies of light better than others. One could easily predict

multiple slabs of dielectric could enhance this effect for a target frequency. However,

solving any but the simplest of cases is a formidable problem using the method of

multiple reflections [29]. Nonetheless, the development of the transfer matrix method

by multiple authors in the 1940's and 1950's led to the theoretical prediction of highly

efficient dielectric mirrors [30, 31, 32]. This approach was then extended to the cylin-

drical case by Yeh and Yariv in 1978 [33]. Although the theory developed by Yeh and

Yariv is of general applicability, emphasis was placed on obtaining Bragg reflections

for a specific frequency and conserved wavevector, which could be obtained using a

relatively small dielectric contrast. In early papers, for example, Cho, Yariv, and

Yeh conducted experiments on Bragg waveguides with a reflecting layer of indices

nl = 3.43 and n2 = 3.35 [34]; Yeh considered a slightly higher contrast of nl = 2.89

and n2 = 3.38 in a theoretical paper [35]. However, other studies indicated that 10

layers of a low dielectric-contrast cladding (with nl = 1.485 and n2 = 1.45) for a

hollow-core structure, even with a radius of tens of wavelengths, can result in losses

in excess of 1 dB per mm [36]. The benefits of using a high-contrast periodic dielectric

fiber (nl = 4.0 and n2 = 2.4) with metal on the outside was also studied theoreti-

cally [37], but to the best of my knowledge, not implemented experimentally. As a

result, most studies of these Bragg fibers continued to focus on low-contrast dielec-

tric claddings through the mid-90s, despite their limitations [38]. Interest in these

structures was renewed, however, upon the theoretical discovery and experimental

fabrication of omnidirectional mirrors - one-dimensionally periodic dielectric struc-

tures that reflect light from all incident angles and polarizations [17]. The concept

of omnidirectional reflectivity can readily be extended to a system with cylindrical

symmetry [18, 19, 39]. Recently, these structures have been fabricated in fiber form

and used to demonstrate low-loss transmission of high-intensity IR light [40, 41].



The behavior of pointlike light sources in an omniguide is an interesting problem

for two reasons: spontaneous emission may be modified, and coupling to index-guided

modes may occur. Spontaneous emission will take place in the photon modes avail-

able to the emitter. All the electromagnetic modes of free space are not necessarily

available in the presence of materials. For example, it has been shown theoretically

and experimentally that a pointlike light source between two conducting plates will

experience strongly suppressed emission below the cutoff frequency [42, 43]. Also,

it has been shown experimentally [44] that a metallodielectric photonic crystal sup-

presses spontaneous emission at frequencies within the bandgap, giving rise to emis-

sion concentrated within a relatively narrow frequency range. In this work, the hollow

cylindrical core mimics a line defect in a 3D photonic crystal structure. I operate at

frequencies within the gap, where most photon modes are suppressed except for those

associated with the hollow-core defect. Spontaneous emission into these hollow-core

modes would be predicted to be strongly enhanced. The second issue regards coupling

to index-guided modes. A monochromatic pointlike light source in a hollow waveg-

uide can couple to modes at a given frequency with any axial wavevector, i.e., values

both above and below the light line. The modes below the light line are evanescent

and would not cause losses in equilibrium if the waveguide were made of a perfect

conductor; however, in a hollow waveguide with dielectric cladding, fields that are

evanescent inside the hollow core can couple to propagating modes in the dielectric

cladding. These index guided modes can be lossy if the high-index material is ab-

sorptive, if the material outside the dielectric cladding has an index higher than the

hollow core, or if there are any bends or kinks in the dielectric cladding.

The behaviors of pointlike light sources in artificial opals and 2D triangular lattices

of rods have been predicted through the calculation of the local density of states at

several points within the systems [45]. Also, the Green's function of a point source

in an optical waveguide has been calculated in two dimensions [46]. However, the

behavior of light sources in 1D periodic hollow omniguide structures has yet to be

explored in great detail.

Some recent experimental work on a ring of pointlike sources inside an omniguide
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Figure 2-1: Experimental measurement of the flux spectrum for spontaneously emit-
ted light collected in the core and cladding regions of an omniguide fiber (adapted
from Ref. [5]).

has shown that hollow omniguides can guide spontaneously emitted light [5]. Fig. 2-1
shows the flux spectrum observed for spontaneously emitted light collected in the core
and cladding regions of the end of the waveguide. The core and cladding transmis-
sions are of similar magnitude. However, note that the transmission is more sharply
peaked, most likely corresponding to a particular set of guided modes within the om-
nidirectional bandgap region. The cladding guides light based on index-guiding, and
thus is less sensitive to wavelength. This data confirms the importance of cladding
modes, and raises the possibility that emission is modified in the presence of omnigu-
ide fiber.

This chapter predicts the behavior of light sources in hollow omniguide structures
through the following approach. First, a realistic model of an omniguide fiber, suit-
able for simulation, is developed. Initial results for a single dipole at the center of the
omniguide, which indicate a substantial modification of the rate of spontaneous emis-
sion in vacuum, are then presented. They are explained in terms of the local density
of states of the 1D omniguide system. Additional results for dipoles with different
radial positions and orientations are then given. Finally, the problem of a dipole at
the inner surface coupling to index-guided modes in the cladding is discussed.

____



2.2 Simulation

The computational set-up is illustrated to scale in Fig. 2-3. Following Ref. [18], the

high-index tellurium (Te) layers (n = 4.6) have a thickness one-half that of the low-

index polystyrene (PS) layers (n = 1.6); the thickness of one Te/PS bilayer is defined

as a. The inner radius of the hollow core, ri, defined as the distance from the center

of the cylinder to the first layer of dielectric material, is chosen to be 2.144a. For

a realistic set of materials such as titania and silica, one might require 20 bilayers;

for computational ease, three layers of tellurium and polystyrene, materials used for

experiments in infrared in Ref. [17], are substituted. Therefore, the outer radius,

ro, defined as the distance from the center of the cylinder to the outer air region, is

5.144a.

A single dipole source is placed at one end of the waveguide within the hollow core

region. In the limit of an infinite number of layers of an omnidirectionally reflecting

mirror, all of the emitted light should presumably couple into lossless propagating

modes. The actual number of layers required for relatively high reflection is illustrated

in Fig. 2-2.

For this system, Maxwell's equations are solved in a finite difference time-domain

simulation, based on the work of Yee [47], using perfectly-matched layer absorbing

boundary conditions [48]. A constant-frequency AC current modulated by a Gaussian

envelope serves as the electric dipole source. The key quantity of interest is the total

flux emerging from the far end of the waveguide, which is measured in the simulation

as the integrated Poynting flux through a square plane covering the hollow core region.

2.3 Results and discussion

While there are many possibilities for the placement and orientation of even a simple

dipole current source, I start off with it placed at one end of the waveguide in the

center of the hollow region. There are still many choices for the orientation of the

dipole; I choose a dipole pointing along the axial direction, z, since in vacuum, it
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Figure 2-2: Illustration of the -20 dB transmission ranges (i.e., for which at least
99% of light is reflected) for three different material pairs at two different numbers of
layers (listed as the number of high-index and low-index layers, respectively).
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Figure 2-3: Waveguide used in simulations, consisting of 3 bilayers of tellurium (n =
4.6) and polystyrene (n = 1.6). The core is hollow and made of air (the inner radius -
the distance from the center to the innermost cladding layer - is given by ri = 2.144a;
the outer radius - the distance from the center to the outermost cladding layer - is
given by ro = 5.144a).

would lose most of its power in the transverse directions, leaving very little at a small

flux plane far away in the z direction. The introduction of a cylindrical dielectric

mirror changes this result dramatically, however. In Fig. 2-4, the initial dipole pulse

encounters the reflective wall and couples into the TM0 1 mode, which propagates

down the hollow part of the waveguide and leaves the far end. Figure 2-5 quantifies

the effect of the presence of the waveguide, by measuring the frequency spectrum

of the flux in arbitrary units (defined as F(w) = fsurfce S(w) - fi dA, where S(w) =

½Re{E(w) x H(w)*}, and E(w) = f eiwtE(t) dt, etc.) and comparing it to the flux

observed for a hollow glass waveguide and the total flux emitted by a dipole in vacuum.

Clearly, the performance of a hollow glass tube (n = 2.6), which relies upon in-

dex guiding, is several orders of magnitude below the ideal of 50% transmission of

the total flux emitted in vacuum. The hollow cylindrical waveguide, on the other

hand, has enhanced performance vis-a-vis the vacuum case within a narrow range

of frequencies above cutoff. This behavior is a result of the Purcell effect. Purcell

found that boundary conditions on the electromagnetic field around a dipole emitter

can substantially alter the emission rate [22]. In the case of a resonant cavity with a

single resonant mode of quality factor Q, it has been shown [42] that the spontaneous

rate of emission at the resonant frequency will be enhanced by a factor of Q. One

can also make the more detailed calculation by first noting that the frequency near

cutoff is given by w2 = W + c 2kz/n2 , where wc is the cutoff frequency, and kz is the

component of the wavevector pointing along the long axis, which yields the following

expression for the density of states within the cavity [42]: gc(w) = d = ~.cAg W2 -wc



Figure 2-4: Snapshots of the distribution of electrical power in the waveguide for a
single dipole at the center of the hollow core. Times are given here and in other
figures relative to the time of peak emission, Ts, in units of the period of the central
frequency, T,.
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Figure 2-5: Flux spectrum for a dipole at the center of the hollow core, plus data for
a hollow glass fiber (n = 2.6), and the total flux of the dipole in vacuum.
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Clearly this formula can be generalized to accommodate multiple modes with these

types of singularities characteristic of one-dimensional periodicity (van Hove-type sin-

gularities). To obtain a detailed comparison with time-domain simulations, however,

the density of states, given formally by g(w) = Zn,k 6(w - wnk), was calculated nu-

merically. The technique used involved a linear extrapolation of the eigenfrequencies

calculated at a mesh of k-points, as described by Gilat and Raubenheimer [49]. The

global density of states calculation is difficult to interpret, since in addition to several

peaks from the resonant modes, there are many others from nearly degenerate index-

guided modes. In order to isolate the important features of this density of states

calculation, I look at the photonic local density of states, which is defined here as

gL(w, r) = En,k E (r) lEnk (r)12 6(w - Wnk), where the fields are normalized such that

f dr c (r) IEk (r) 2 = 1, for all n and k, which implies that the global density of states

can be recovered by integrating over all space, i.e., g(w) = f dr gL(w, r).

The results obtained both at the center of the hollow cavity, and at a distance

1.2 times the lattice spacing away from the center, are shown in Fig. 2-6. In this

case, the greatly decreased density of states within the bandgap below cutoff, and the

enhanced density of states associated with the hollow core resonant modes, leads to

enhanced emission just above cutoff for modes to which the dipole can couple.

This behavior shows that a cylindrically symmetric, omnidirectionally reflective

coating can create an environment in which dipole emitters can efficiently couple into

low-loss resonant modes in the hollow core. In Fig. 2-7, a different pulse is used

to show the behavior near cutoff in more detail. While the total integrated power

f F(w) dw is greater for the dipole in the waveguide than in vacuum, that is not

physically unreasonable since the conserved quantity in my simulations is simply the

current, while power is given by the current acting against the local field, which

may be selectively enhanced at certain frequencies and positions in the presence of a

dielectric.

Next, I consider the behavior of a dipole close to the inner surface of the hollow

tube (at p = 2a, with ri = 2.144a). The flux spectrum for dipoles oriented in the p,

0 and z directions (see Fig. 2-3) are shown in Fig. 2-8. In Figs. 2-9 through 2-11, the
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Figure 2-6: Local density of states for the hollow cylindrical waveguide. Note the
presence of sharp 1/vw -we-type singularities, as predicted.
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Figure 2-7: Flux spectrum for a dipole at the center of the hollow core, as in figure 2-5,
but zoomed in on the region near cutoff.
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Figure 2-8: Flux spectrum for dipoles on the inner surface of the hollow core, oriented
in the p, 0, and z directions, normalized by the flux of a dipole in vacuum.

redistribution of electric power as a function of time is shown for these same three

orientations. Performance varies dramatically with the orientation of the dipole. The

presence of a sharp rise in the transmission at a certain frequency can be interpreted

as a cutoff corresponding to a hollow core guided mode. The lack of such a cutoff

can generally be interpreted as a sign that any transmission would come through an

index guiding mechanism. Thus, I surmise that a dipole oriented along p will couple

much more efficiently to the hollow core guided modes than the dipoles pointing along

0 or z. This interpretation is supported by the snapshots of the power distribution

in Figs. 2-9 -2-11. Furthermore, a circular flow of energy is observed for the dipole

oriented along z, as illustrated in Fig. 2-12.

Also, the behavior of a dipole intermediate between the inner surface and center

of the hollow tube in the transverse direction (at p = 1.2a, with ri = 2.144a) is
considered. In contrast with the previous results for a dipole situated adjacent to the



Figure 2-9: Snapshots of the distribution of electrical power in the waveguide for a
single dipole source on the inner surface pointing in the p direction.

45



Figure 2-10: Snapshots of the distribution of electrical power in the waveguide for a
single dipole source on the inner surface pointing in the 0 direction.



Figure 2-11: Snapshots of the distribution of electrical power in the waveguide for a
single dipole source on the inner surface pointing in the z direction.
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Figure 2-12: Snapshots of the distribution of electrical power in a cross section of the
waveguide away from the source which is located near the wall (p = 2a, ri = 2.144a),
and pointing along z.
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Figure 2-13: Flux spectrum for a dipole roughly halfway between the center and inner
wall of the hollow core, i.e., at p = 1.2a (ri = 2.144a), normalized by the flux of a
dipole in vacuum.

inner surface (see Fig. 2-8), the dipoles oriented along 0 and z in this middle position

are able to couple to the hollow core guided modes, as suggested by the presence of

cutoffs in the flux spectra shown in Fig. 2-13. This is also illustrated more explicitly

in Figs. 2-14 through 2-16, where all three orientations are shown coupling into these

modes, in contrast with Figs. 2-9 through 2-11.

Evidently dipole sources near the inner core radius can have strong coupling to
modes which exist in the dielectric cladding. This is consistent with the finding that
the local density of states of an omnidirectional reflector is not zero, or even small,
but instead characteristic of a waveguide [50]. In other words, they are index-guided
modes. However, empirically, it is observed that the coupling of dipoles to these modes
is decreased if they are at a distance of order A/4 away from the inner surface. This
analysis suggests that a low-index coating may prevent coupling to the problematic



Figure 2-14: Snapshots of the distribution of electrical power in the waveguide for a
single dipole source near the inner surface (p = 1.2a, ri = 2.144a) pointing in the p
direction.



Figure 2-15: Snapshots of the distribution of electrical power in the waveguide for a
single dipole source near the inner surface (p = 1.2a, ri = 2.144a) pointing in the 0
direction.
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Figure 2-16: Snapshots of the distribution of electrical power in the waveguide for a
single dipole source near the inner surface (p = 1.2a, ri = 2.144a) pointing in the z
direction.
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index-guided modes. It may immediately be noted that as the index of the inner

coating approaches unity, the performance should be the same as the case illustrated

in Figs. 2-13 and 2-14 through 2-16, since the inner coating would just act like an

extension of the hollow core. However, the yield of a hollow tube with a "low-index"

(n = 1.3) coating which extends from p = 1.2a to p = 2.144a was also tested, and

the result, as well as a comparison to the n = 1 case, is given in Fig. 2-17. It is found

that if one couples to the appropriate modes which have frequencies within the range

of omnidirectional reflection, efficiencies comparable to the previous case of a dipole

away from the surface, essentially suspended in air, can be achieved. The propagation

of this mode is illustrated in figure 2-18.
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Figure 2-17: Flux spectrum for dipoles oriented along z situated on the inner wall of
a medium-sized cell with an inner coating of low-index material (n = 1.3) extending
from p = 1.2a to p = 2.144a.
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Figure 2-18: Snapshots of the distribution of electrical power in the waveguide for a
single dipole source, oriented along z, on the inner surface of a cell with a coating of
low-index material (n = 1.3) extending from p = 1.2a to p = 2.144a.

Next, I calculate the dispersion of modes localized to the core. The dispersion of a

wave packet with a relatively narrow range of frequencies is proportional to d2kz/dw2

evaluated at the central frequency [51]. In terms of units useful for interpreting

numerical calculations, the spatial separation accrued per unit frequency difference

between waves per unit distance travelled along the waveguide, the dispersion is given

by D = (dw/dkz) (d2kz/dw2). It can be shown that for small kz, which dominates

the spontaneous emission spectrum, the dispersion is approximately proportional to

the core index. This comes about from two competing effects. First, a lower group

velocity decreases the spatial separation between nearby modes. However, a flatter

band means there will be a greater spread of axial wavevectors. Since distance along

the waveguide and frequency spread are held constant in the two simulations, the

overall effect is an increase in the separation between modes in a system with a

low-index coating, as can be observed by comparing figures 2-4 and 2-18.



Finally, I discuss one potential application: a detector for fluorescent molecules.

One could design the omniguide to be transparent at excitation frequencies, and

reflective at emission frequencies. Then, ideally, the spontaneously emitted radiation

could only couple to hollow-core guided modes, which would propagate to the end of

the waveguide with low losses. The important design considerations are as follows:

making sure the fluorescent molecules do not couple to index-guided modes, choosing

the core radius to control the available guided core modes, and choosing the number of

layers to keep losses over the length of the omniguide acceptably low. The fluorescent

molecules can be kept from coupling to index-guided modes by introducing a low-index

coating, as discussed above. For an index-guided cladding mode near the light line,

the damping factor over a distance x is given by exp [-2 nn - (x/A)] , where nh

is the refractive index of the high-index cladding layer and nc is the refractive index

of the low-index coating. For nh = 4.6, n, = 1.2, x = A/4, this factor is 0.1%, which

shows that a thin coating is more than sufficient for high-contrast materials.

The considerations involved in choosing the appropriate hollow omniguide geom-

etry are covered in some detail in Ref. [19]. Applications of these principles to the

detector application are briefly covered here. First, I consider the problem of choosing

the appropriate mode. There are primarily TE and TM-like modes, which have an

angular momentum m and index n. All properties of the TE modes can be calculated

from Hz = J,(wp/c)eim1 subject to the boundary condition 90 = 0 (where R is
p=R

the core radius). Similarly, TM modes have a scalar Ez which vanishes at p = R. It

has been shown that TEon mode losses scale as 1/R 3 , and all other mode losses scale

as 1/R. However, there are 5 modes with equal or lower cutoff frequencies as the TEol

mode, including several doubly-degenerate modes. For simplicity, one may wish to

restrict the fluorescent molecule to only couple to one mode. In this case, I choose the

TMol mode, which has a cutoff frequency of w = 0.383/(ri/a), where ri is the inner

core radius. Only the TE 11 mode has a lower cutoff frequency (w = 0.293/(ri/a)),

though an emitter placed at the center can only couple to m = 0 modes (such as

TM01o) due to the physical requirement that the fields be single-valued. Alternatively,

one could choose the ri to be small, for instance, ri = 2a, so that the TE 11 mode



cutoff would be below the range of omnidirectional reflection, which would leave only

the TMol mode at the end of the omniguide. The last issue concerns choosing the

appropriate number of cladding layers. The loss of a given mode for a given core ra-

dius and given number of layers can easily be calculated. For instance, a TMol mode

has a loss of 26 dB / cm for a radius of 6a and 4 bilayers of tellurium / polystyrene.

If the target loss is 1 dB or less with a length of 1 cm of omniguide, the fact that TM

losses decrease by a factor of 5 with each bilayer means that 6 cladding bilayers are

needed.

2.4 Conclusion

In conclusion, I have shown that the radiation of electric dipole sources couples

strongly to low-loss hollow-core guided modes of 1D periodic hollow omniguide struc-

tures. Furthermore, the rate of emission of these sources is controlled by the local

density of states at its location and orientation. For states away from the inner sur-

face, there are 1D van Hove singularities at the guided mode cutoff frequencies, just

as in a metallic waveguide. This gives rise to spontaneous emission concentrated at

frequencies just above cutoff, a substantial departure from the vacuum case. Strong

modification of spontaneous emission has been already observed experimentally [44]

for a metallodielectric photonic crystal. There is a potential problem for detection

applications that sources near the inner surface can couple into guided modes in the

dielectric cladding layers. Fortunately, this undesirable behavior can be reduced sub-

stantially through the introduction of a low-index coating on the inner surface of the

hollow core.



Chapter 3

Active materials embedded in

photonic crystals and coupled to

electromagnetic radiation

3.1 Introduction

The interaction of light with active materials can give rise to a rich variety of phys-

ical phenomena, such as material dispersion [52], plasmons [53], polaritons [54], and

spontaneous and stimulated emission [55]. These phenomena are the basis of a wide

variety of technologically important devices, such as fiber optics [52], lasers [52], and

photovoltaic cells [56]. They can all be understood with the semi-classical physical

model of harmonic oscillators coupled to electromagnetic fields. However, while sim-

ple analytical expressions can be written down, precise solutions for realistic systems

require a numerical solution. The most detailed model of four-level atomic systems

tracks fields and occupation numbers at each point of the computational cell, tak-

ing into account energy exchange between atoms and fields, electronic pumping, and

non-radiative decays [55].

This chapter aims to apply a detailed computational model to the problem of

lasing. The basics of optical lasing have been understood theoretically since 1958: an



atomic system is put in a resonant cavity and excited to a population inverted state,

which then leads to stimulated emission of coherent photons [57]. Quantities such as

lasing threshold and efficiency can be calculated approximately using simple analyti-

cal expressions. However, exact calculations of efficiency or non-equilibrium dynamics

are still considered to be challenging. Many groups in the past have employed ap-

proximations to simplify their calculations, e.g., using a current source [58], a fixed

conductivity [59], or randomly distributed dipole sources [60, 61]. In an attempt

to achieve more realistic simulations, it has been shown that 2-level Maxwell-Bloch

equations can be solved using iterative predictor-corrector FDTD methods to demon-

strate saturation and self-induced transparency [62, 63]. This approach has also been

applied to objects with 1D periodicity which may act as couplers, modulators, and

switches [64], and has been extended to 3-level atoms using pseudospin equations [65].

In another line of research, researchers have now begun to study random laser systems

by directly simulating semiclassical atoms interacting with electromagnetic fields.

This work began with simulations of 4-level atoms in ID that demonstrated lasing is

indeed possible in random systems [66, 67, 68]. More recent work demonstrates that

random arrangements of 2D rods can also give rise to random lasing [69, 70]. A much

more thorough review of recent work in random lasing, both theory and experiment,

can be found in Ref. [71]. Along slightly different lines, using 2-level Maxwell-Bloch

equations, it has been shown that electrically-pumped atoms inside a 2D high-index

cavity can give rise to lasing [72]. On a related note, Ref. [73] has developed a sim-

ulation scheme for 4-level 2-electron atomic systems which demonstrate a different

lasing threshold than observed for the semiclassical lasing equations in Ref. [55].

Nonetheless, all of these calculations have been done in ID or 2D systems. And to

the best of my knowledge, have not been applied to photonic crystals with periodicity

in more than one direction. In this chapter, this type of approach is extended to 3D

systems, and results are obtained for photonic crystal systems of each dimensionality.

This chapter begins with a discussion of the computational approach and verification

of the code with an analytically soluble problem. This code is then applied to a

Fabry-Perot cavity with atomic material in the defect region. Next, a 2D problem



is considered, a photonic crystal consisting of a square lattice of rods with a line of

defects. Finally, a 3D problem is considered, a cylindrical photonic crystal with a

region of atomic material.

3.2 Theory
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Figure 3-1: Relationships between energy levels in the four-level atomic system used
in this chapter. Straight lines correspond to radiative transitions; dashed lines corre-
spond to non-radiative transitions.

The theoretical approach is as follows. The electric fields and occupation numbers

Nj for a four-level atomic system (j = 0, 1, 2, 3) are modeled semi-classically, with all

quantities being tracked at every point in the computational cell (following Ref. [55]).

Maxwell's equations are given by V x E = -(1/c)aH/&t and V x H = 47rj/c +

(1/c)OD/lt with the constitutive relation D = epE + 4 -Ei=1,2 Pi, where Ep is the

dielectric function of the passive medium (i.e., in the absence of active materials),

and where Pi is the ith electronic polarization density of the active material. This

polarization density behaves as a harmonic oscillator driven by the product of the

external field and the population inversion, and is given by:

d2 P i  dPi
dt2 + dt + wP, = aiANi E, (3.1)

where Fi is the nonradiative decay width for Pi, ai is the coupling strength of Pi to

the external electric field, and AN1 = N 1 - N 2 and AN2 = No - N 3 are the population

~I

0



inversions that drive the polarizations. The occupation numbers vary according to

the following equations:

dN3  1 dP 2  N3- E - (3.2)
dt hw2 dt T3 2

dN 2  1 dP 1  N3  N2= - E -. (3.3)
dt hw dt 732  72 1

dN1  1 dP 1  N 2  N1= - - I E - - - +  
(3.4)

dt hw dt 72 1  71 0

dNo 1 dP 2  N1S = -h - E - (3.5)
dt hw2  dt T10

Terms such as (E-dPi/dt)/hwi represent the conversion between atomic potential

energy and field energy at a certain rate. A population inversion will drive the polar-

ization field r/2 radians out of phase with the external electric field, which converts

atomic potential energy into field energy - the semiclassical version of stimulated

emission. Other terms such as N2/T 21 are non-radiative decays between adjacent lev-

els; this energy is considered to be lost. The interactions between the energy levels

are illustrated in Fig. 3-1. Decay rates play an important role in determining the

efficiency of any optical pumping process. In this chapter, efficiency is defined as the

ratio of the number of optical transitions at the emitting frequency to the number of

optical transitions at the absorbing frequency, i.e.,

hw2 f0 dt [E aP1S= o at (3.6)= w, fo0 dt [E -a]

This quantity effectively measures the competition between radiative and non-

radiative decay processes, and approaches one in the limit where the stimulated emis-

sion rate is much greater than the non-radiative decay rate. As a result, 77 will

generally go up with incoming beam power, as well as with an increase in the lifetime

of the metastable state 721. This relationship, which includes lasing threshold-type

behavior, is quantified later in this chapter.

In order to solve the behavior of active materials in electromagnetic fields numer-

ically, the finite-difference time domain (FDTD) technique [47] is utilized, using an



approach similar to the one outlined in Ref. [67]. Both time and space are discretized

into steps small compared to the characteristic periods and wavelengths of the prob-

lem, and at each point the electric, magnetic, and polarization fields are initialized

to zero, while the atomic fields are initialized to their ground states. The following

steps are taken to evolve the fields in time. First, the polarizations are integrated

through one time step using equation (3.1) (tracking the two values at each point

needed for any second order ODE). Next, the electric fields are integrated accord-

ing to the Maxwell-Ampere law (which includes subtracting the polarizations from

the electric field). Finally, the atomic occupations Nj are integrated according to

equations (3.2-3.5), and the magnetic fields are integrated according to Faraday's law

(these last two steps can be done in either order). The cycle repeats for each time

step until all the electric, magnetic, and polarization fields have decayed to negligible

magnitudes.

In this work, stimulated emission at frequency wl is desired, which requires a

population inversion between the two intermediate levels separated by energy hwl .

Photonic crystals can enhance such stimulated emission when the absorption and

emission frequencies and widths are chosen so that an excitation frequency above

the photonic bandgap drives atomic material present in a defect region to emit into

a resonant mode inside the bandgap. For generality, I choose to model the active

material as an adjustable four-level atomic system. The field amplitudes, coupling

strengths and decay rates are chosen to ensure that a substantial fraction of atoms

absorb fields of frequency w2, and then produce a population inversion, thereby am-

plifying fields of frequency wi. The decay times T3 2 and T10 are chosen to be quite

small, e.g., 200 time steps, just large enough to achieve a smooth decay curve for the

upper level. The decay time 721 is chosen to be several orders of magnitude larger

than the other decay times, T3 2 and 710, to simulate a metastable state. Clearly, the

conversion between the excitation and emission frequencies will be most efficient for

the largest values of 721. Furthermore, the decay widths should be chosen so that the

width associated with the higher frequency absorbing transition, F2 , is relatively large

to maximize absorption, and so that the width associated with the lower frequency



emission transition, FI, is relatively small, in order to match the quality factor of the

resonant mode in the photonic crystal. The choice of coupling strengths Oi and field

amplitudes are closely related. The appropriate values can be calculated through the

following approach. First, note that in a steady state, Pi(w) = ~ ~  /E(w). As a

result, the on-resonance response to a continuous wave (cw) source in the time-domain

will be Pi(t) = i E(t)G(t), where G(t) is a turn-on function that rises from 0 to

1 as one approaches the steady state, with the approximation of constant ANi. The

total radiative population transfer from the ground state to the metastable excited

state can then be estimated from equation (3.2) to be N2  2AN2 f dt [E(t)]2 G(t)

for a cw source (assuming the population transferred to level 3 quickly drops down

to level 2 and then stays there). For a pulsed source with a finite spectral width,

but a duration greater than the turn-on time (which should be a few periods), I can

simplify my expression by setting G(t) = 1, and then transform to the frequency

domain using Parseval's theorem. I then keep all frequencies close to the resonant

frequency (within ±1F2/2), and discard the rest, which yields:

2AN2  Jpw2+ 2/2 2 r2N2
N 2  I E(w) 2 dw I2, (3.7)

N2 2F2 Jw2-F 2/2 h 2 2 (3.7)

where 12 is an intensity integral whose numerical value is given later for each sim-

ulation with a pulsed source. Equation (3.7) can readily be used to calculate the

field amplitudes needed to achieve a given level of population inversion in the limit

that AN 2 is approximately constant. Now, I seek to calculate the criteria for lasing.

I assume a resonant mode of a high-Q cavity with frequency wI is initially excited

at time 0 with a small amplitude. The associated polarization field is expected to

have the form P1 = Poe-iwlteat, where a is a growth rate that is assumed to be

small relative to the frequency w. Then I can substitute into equation (3.1) to find

that, to the lowest order in a, 2a + Fe = (al,/ 1) |ANI(0)E/P1I, where the ANI(0)

is the initial population inversion, and Fe = rI + 2-72 1 is the total loss rate for a

pulsed excitation, while AN1 (0) --+ AN1 and Fe = F1 for a continuous wave pulse.

In order to achieve exponential growth of the mode, it must then be the case that



(o1/wi) ANi(O)EIP1 I > Fe. If the system reaches the regime where the electric field

is driven by the polarization field, i.e., E = -47rP 1 , then I obtain the condition for

sustainable growth, IANi(o)I > wlIr/47rau.

3.3 Simulations

3.3.1 Two-level atomic system

The first simulation checks the agreement of the code with an analytical model for

the upper level occupation. It can be shown that for a two-level atomic system

stimulated by an external plane wave cw source with a finite rate of non-radiative

decay, the steady-state upper level occupation N 2 should behave as:

N2 (3.8)

where IEI is the amplitude of the external plane wave cw source, w is the frequency

of the source and the atomic resonance, F is the width of the atomic resonance, T is

the rate of non-radiative decay, and o is the coupling strength.

A series of simulations are then performed in which a slab of the two-level atomic

material is subjected to a cw source of frequency w = 0.25(27rc/a) (where a is the

period of a photonic crystal), and allowed to equilibrate. This is done for two cases:

an atomic slab surrounded by vacuum, and an atomic slab enclosed in a Fabry-Perot

cavity with 3 quarter-wave thick layers of polystyrene (n = 1.6) and indium phosphide

(n = 2.97). The cavity is designed to exhibit a resonance at the cw source frequency.

The steady state upper occupation number is then measured for a series of different

values of the incident field amplitude. As can be seen in Fig. 3-2, the simulation

nicely reproduces the analytical prediction for both cases. There are two regimes

for both curves in this figure. For low field amplitudes (JIE <« vp/hwF/(T7)), the

occupation grows quadratically with field amplitude (i.e., N2 M (To/(2hwF)) IE2),

which corresponds to the physical picture that the atoms absorb a fixed fraction of the



incident light, as would be seen in a non-atomic material with a constant conductivity.

On the other hand, for large field amplitudes (IEI >> hw/(To)), the occupation

saturates to the maximum value of one-half (corresponding to equal occupations of

the upper and lower levels). In this simulation, I choose hwF/rl-r = 0.8 and find

that the curve of Fig. 3-2 precisely follows the analytical prediction of equation (3.8).

The saturation occurs significantly earlier for the Fabry-Perot cavity because of the

substantial resonant enhancement of electric field magnitudes, which also enhances

polarization field magnitudes and the energy transfer rate. This phenomenon can

also be viewed as an effective increase in the coupling strength of the polarization

to the external field. For this calculation, a cavity with Q = 38 shows an effective

coupling enhancement factor of 24. Higher quality factors should lead to even greater

enhancements of the effective coupling.

3.3.2 Four-level atomic system

In this section, I consider a series of simulations in which a slab of four-level atomic

material surrounded by vacuum is subjected to a cw source and allowed to equili-

brate. The intensity of the cw source is varied, and then the power absorbed at

the cw source frequency w2 is measured and compared to the power emitted at the

target emission frequency wl. For the absorption frequency, I use w2 = 0.4(2wc/a),

c 2 = 0.001(27rc/a)2, and F2 = 0.01(2wc/a); for the emission frequency, I use w1 =

0.2(27c/a), a1 = 0.02(27rc/a)2, and F1 = 0.001. For the decay parameters, I use

732 = 2.5(a/c), 7-21 = 62.5(a/c), and T10 = 2.5(a/c). The results for power emitted

versus power absorbed are plotted in Fig. 3-3. According to section 3.2, I expect

the threshold to be crossed when JAN1I > (wu1F/la ) IP1/EI e 0.0132/47, since

IP1/EI = 1.32/4r in my calculation. For the first point above threshold, where

Pi = 0.00304 and P,,t = 0.000149, AN1 = 0.0157/4w, which is just above the criti-

cal value required for lasing. This demonstrates that lasing can occur in this system,

and that I am able to accurately predict the onset of lasing behavior. However, I

am obliged to include the caveat that in a cavity, the rate of spontaneous emission

will be modified in a way that is not included in the framework of my calculations.
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Figure 3-2: Fractional occupation of the upper level of a two-level atomic system as
a function of field amplitude, with and without a cavity. The symbols are simulation
data, and the smooth curve represents a fit to equation (3.8). Two regimes are seen:
at low field amplitudes, occupation goes up linearly with field intensity, and at high
field amplitudes, occupation saturates at one-half. Saturation occurs more quickly
with a cavity due to the enhancement of stimulated emission.

Therefore, while I observe that lasing occurs in the rest of the systems in the numer-

ical part of this chapter for sufficient power levels, I note that the threshold could be

slightly higher than I calculate with this calculational scheme (but still substantially

lower than in vacuum). In any case, despite this limitation, I am confident that lasing

should still occur for sufficient power, and therefore the results in the subsequent sec-

tions should be considered essentially valid. Also, note that the efficiency 7r associated

with these processes will be given by the ratio of actual Pot to the theoretical limit

(wl/w 2)Pin, and will approach unity for values well above threshold.
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Figure 3-3: Graph of power emitted at w = wl vs. power absorbed at w = W2
(both measures of power are in the same units). The dotted line corresponds to the
maximum conversion efficiency for the values of wi used in this calculation. Notice a
sharp rise in emission around Pin, 0.003, which corresponds to the lasing threshold
for this system.

3.3.3 Four-level atomic system in a Fabry-Perot cavity

Having verified that the code behaves properly, now consider a slightly more complex

ID system, as illustrated in Figs. 3-4 and 3-5. It consists of a Fabry-Perot etalon,

made of four and a half bilayers of the high contrast dielectric materials tellurium

(n = 4.8) and polystyrene (n = 1.6), enclosing a cavity of length 2.5a containing

four-level atomic material described by equations (3.2)-(3.5). A Gaussian plane-

wave source with central frequency w = 0.4(27rc/a) is used to optically pump atoms

contained inside the defect cavity that absorb at the same frequency w = 0.4(27rc/a),
with width F = 0.001(27rc/a), and re-emit at the resonant frequency w = 0.2(2rc/a),
with width F = 0.001(27rc/a). This traps light, thus encouraging stimulated emission.
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Figure 3-4: Conversion of light from the optical pumping frequency (w = 0.4(2i7c/a))
to the stimulated emission frequency (w = 0.2(27rc/a)) in a Fabry-Perot cavity, illus-
trated in (a). The pump pulse is shown in (b) and the stimulated emission is shown
in (c). Green represents high dielectric tellurium, yellow representing lower dielectric
polystyrene; blue and red signify positive and negative electric fields, respectively.

Also, the parameter values o 2 = 0.0008 and I2 = 2.77 (at the edge of the material

near the source) lead to a population transfer of about 69%; furthermore, or = 0.001,

which is large enough to create sustainable radiative transfer, and 721 is set to an

extremely large time, which makes non-radiative decay negligible (Fe = IF) and leads

to an extremely high conversion efficiency 7l = 0.9986. Evidence for this process

is given by Fig. 3-5, which shows intensity as a function of position and frequency.

The upper band, centered around w = 0.4(27rc/a), corresponds to the optical pump

frequency, which clearly is transmitted through the dielectric structure with relatively

low reflection. The lower band, centered around w = 0.2(27rc/a), which only exists in



the middle of the active cavity, represents the electronic coupling to the fundamental

mode of the cavity. In the absence of this electronic coupling, no such band occurs,

as shown on the right-hand side of Fig. 3-5. In general, multimode lasing could occur

in an active material, but all of the calculations in this chapter are designed to have

non-degenerate resonant modes with a mode spacing significantly greater than the

width of the population-inverted atomic transition. The field patterns associated with

optical pumping and stimulated emission are shown in Fig. 3-4.
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Figure 3-5: Visualization of E(x, w) in ID Fabry-Perot cavities (a) with active ma-
terial and (b) without active material. The low-frequency band in (a) demonstrates
that active materials can induce frequency conversion.

3.3.4 Dielectric rods in a 2D lattice

The next simulation is of a 2D system, a square lattice of dielectric rods possessing

a line of defect rods. The parameters used were based on those of Ref. [1], with

E = 8.9 and r = 0.2a for the normal rods, and e = 17.1 and r = 0.25a for the

defect rods. The purely dielectric system, illustrated in Fig. 3-6, was tested, and

was shown to yield a transmission peak about a frequency of w = 0.346(27rc/a), as

shown in Fig. 3-7. Introduction of active material in the dielectric rods having an
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Figure 3-6: Square lattice of dielectric columns, with r = 0.2a and e = 8.9. A row of
defect columns in the middle have an r = 0.25a, c = 17.1.
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Figure 3-7: Transmission for active and passive versions of the geometry shown in
Fig. 3-6. Notice the sharp enhancement of the defect mode peak in the gap to above
100%, the signature of a gain medium.

absorption frequency w = 0.5(27rc/a) and width F = 0.01(27c/a), along with an
emission frequency w = 0.346(2-rc/a) and width r = 0.0006(27rc/a), changed the
transmission spectrum as one would expect - the frequencies around w = 0.5(27rc/a)
being depleted and the frequencies around the defect mode at w = 0.346(27rc/a)
being strongly enhanced. In fact, the transmission percentage for the defect mode
goes above 100%, the signature of a gain medium. The comparison between the two

- active rods
-- passive rods -

I I
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Figure 3-8: Snapshot of the "7r-like" defect mode centered about w = 0.346(27rc/a).

cases is shown in Fig. 3-7. The parameter values a2 = 0.2 and I2 = 0.01979 (on the

right edge of the central defect rod) lead to a population transfer of about 40%; also,
o1 = 0.2, which is large enough to create sustainable radiative transfer, and 72 1 is set

to an extremely large time, which makes non-radiative decay negligible (Fe = F1 ). As

a result, the efficiency of the conversion is given by r = 0.986 for the parameter values

used. An illustration of the defect mode is given in Fig. 3-8. The main defect mode,
centered about w = 0.346(27rc/a), evidently has one nodal line, said to be "ir-like" [1].

Interestingly enough, one might expect this mode to couple poorly to the atoms on

the defect rods due to the nodal plane, but a substantial transmission enhancement

of over 300% is observed.

3.3.5 Cylindrical photonic crystal in 3D

The third simulation is of a cylindrical photonic crystal, a multilayer dielectric struc-

ture that is rolled into a cylinder, with a cross-section such as the one in Fig. 3-9. In

this chapter, an external plane-wave source on the left side of the structure is used

to excite an atomic material inside the otherwise hollow core. The targeted mode is

the so-called TM01 mode, which has a non-zero Ez and HO. Further properties of the
modes of cylindrical photonic crystals are discussed in Ref. [19].

Another direct illustration of optically pumped lasing is shown in Figs. 3-10 and 3-
11. Here, a cylindrical photonic crystal with two bilayers of tellurium and polystyrene

i
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Figure 3-9: Two slices of a cylindrical photonic crystal, a multilayer dielectric struc-
ture with continuous symmetry along z. Here, a core of radius 2a is surrounded by
two bilayers of dielectric, with eow = 2.56 and Chigh = 23.04. Subfigure (a) depicts
a cross-section perpendicular to the z-axis, and subfigure (b) shows a cross-section
through the center of the core along the z-axis.

and an inner radius ri = 2a is pumped with a broad Gaussian source centered around

w = 0.4(27rc/a). The short cylinder of active material in the center absorbs the

incoming radiation with w = 0.4(27rc/a) and F = 0.002(27c/a)), then re-emits near

the predicted TMol cutoff frequency w = 0.1914(27rc/a) (for ri = 2a), with width

F = 0.0004(27rc/a).

That this conversion takes place can be checked visually: it is evident from the

before and after snapshots in Fig. 3-11 that the wavenumber decreases substantially

in the horizontal direction. Combining that observation with the rest of the informa-

tion about this mode implies that the latter snapshot corresponds to a much lower

frequency mode.

This expectation can also be checked numerically. In Fig. 3-12, transmission

through the photonic crystal is shown for two cases: one with active material and one
without. Clearly an enormous enhancement of the transmission, orders of magnitude



above 100%, occurs with the introduction of the active material. This can only be

due to optical pumping. A smaller but still noticeable drop in the transmission of

some of the energy near w = 0.4(2wc/a) lends support to this conclusion. The peak in

transmission occurs at w = 0.188(2-rc/a), fairly close to the expected peak frequency

w = 0.1914(27rc/a). The shift in the resonant frequency in the presence of the active

material can be attributed to the so-called pulling effect. The real part of the gain

polarization corresponds to a small shift in the dielectric constant, which in turn shifts

the resonance. The strength of the pulling effect is thus proportional to the coefficient

converting electric field into polarization, which is on the order of ý = ui/(wiFi). The

reason that the pulling effect was not observed previously is that ( = 5 in the 1D

case, and ( = 964 in the 2D case, in both cases giving rise to shifts which fall below

the frequency spacing. However, ( = 6531 in this 3D calculation, giving rise to

a substantially larger shift which in turn gives rise to fairly off-resonance coupling,

broadening the emission substantially beyond the natural width, and lowering the

efficiency. The parameter values o2 = 0.05 and I2 = 0.0117 (on the right side of the

inner cavity, r = 1.25a) lead to a population transfer of about 36%; also, ai = 0.5,

which is large enough to create sustainable radiative transfer, and 721 is set to an

extremely large time, which makes non-radiative decay negligible (Fe = FI). In the

end, the efficiency of this conversion process is rq = 0.828. Tuning the emission

frequencies to the shifted values and adjusting the widths accordingly would allow

the efficiency to approach the theoretical maximum. Furthermore, note that the shift

in the effective index of the core material may alter the Fabry-Perot resonances and

thus shift the position of the transmission peaks observed in Fig. 3-12. However,

it is also possible that numerical errors that occur during the propagation of the

fields by the atomic code may have given rise to some of the differences between

the active and passive core transmission spectra, especially away from the resonant

frequencies of w1 = 0.1914(2wc/a) and w2 = 0.4(2w7c/a). This points to the possibility

that a prediction-correction approach to the field propagation, as discussed, e.g., in

Refs. [62, 74], may be warranted for regimes of stronger polarizabilities ý.

Finally, consider the case of a small cluster of atoms placed at the exact center of
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Figure 3-10: Conversion of light at an optical pump frequency into a stimulated
emission frequency via the TMol resonant mode of a cylindrical photonic crystal
with 2 bilayers, viewed perpendicular to the z-axis. The incoming wave in (a) has
w 0.4(27rc/a), and the outgoing wave in (b) has w - 0.19(27rc/a).

Figure 3-11: Conversion
emission frequency, as in
core along the z-axis.

of light at an optical pump frequency into a stimulated
Fig. 3-10, but in a cross-section through the center of the

the cylindrical photonic crystal. The cluster radius is taken to be much smaller than

an optical wavelength so the atomic system can be modeled as a single point in space

on the scale of the simulation. This system is studied by comparing the calculation for

an empty cylindrical core to one which has an atomic cluster inside. In this calcula-

tion, the excitation frequency is w = 0.2857(27rc/a), with width F = 0.01(27c/a); the
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Figure 3-12: Transmission for a cylindrical photonic crystal structure with and
without active material at the core. Notice the slight decrease in transmission at
w f 0.4(27rc/a) and the sharp increase in transmission about w ; 0.186(27c/a) for
the active material.

emission frequency is w = 0.1939(27c/a), with width F = 0.0002(2-rc/a). The cluster

is optically pumped by an extremely broad Gaussian source with central frequency

w = 0.264(2wc/a). This arrangement allows for depopulation of the ground state of
the central cluster followed by emission into a TMol mode of non-negligible magni-

tude. The differential field profile after excitation followed by stimulated emission is
shown in Fig. 3-13. As expected, the TM0o mode is the one observed. The conversion
efficiency of this process was found to be extremely high (,q > 0.999). This suggests
that the scheme for biological sensing proposed in chapter 2 would be capable of de-
tecting a tiny cluster of atoms. If one were to move it away from the center, coupling
to the same mode would still be expected (except at the nodes). The final amplitude
of the fluorescent mode for atomic clusters on or off center should be the same in
the absence of other processes besides stimulated emission (neglecting modal decay).
However, the threshold may be increased due to the decrease in the local density of
states (which goes as the zeroth order Bessel function squared for this problem).



Figure 3-13: Snapshot of the TMol mode which is excited by a small cluster of atoms
at the center of the cylindrical photonic crystal.

3.4 Conclusion

An extension to the well-established FDTD method for simulating Maxwell's equa-

tions in macroscopic dielectric media has been developed to include active materials

modeled by four-level atoms. The code was verified to display the saturation and

threshold effects expected for atomic materials, in agreement with analytical results.

This method is used to simulate optically pumped lasers in one, two and three di-

mensions, as well as the biological sensor design proposed in chapter 2 . It is found

that the key criteria for efficient conversion of energy are the delivery of the right

amount of field energy to create a population inversion of order unity, as predicted by

equation (3.7), and the presence of a small amount of energy at the resonant emis-

sion frequency, along with a low enough loss rate Fe and a high enough coupling al,

such that the induced population inversion |ANI(0)] > wIFe/47ra . One additional

measure that can increase the efficiency is concentrating atomic emitters in the re-

gions of the defect that should have the highest field intensity in the defect mode.

Simulations of the cylindrical photonic crystal system support this assertion, which is

why the radius of the active material was set to be only 1.4a in a cylindrical photonic

crystal with ri = 2a, and is also the reason why the active material is chosen to only



fill the middle half of the cavity in a 1D Fabry-Perot etalon defect cavity of size 2.5a.

Finally, careful choice of coupling strengths and linewidths is critical for efficient con-

version; any real world system would have very fixed values of these parameters which

could put an important limitation on conversion efficiency. These simulations should

facilitate the design of ultra-low threshold lasers and single fluorescent molecule de-

tectors. Future work should incorporate changes in the rate of spontaneous emission

associated with presence of a cavity and allow for accurate calculation of the lasing

threshold.



Chapter 4

Improving solar cell efficiencies

with photonic crystals

4.1 Introduction

One of the foremost challenges in designing silicon photovoltaic cells is devising an

efficient light-trapping scheme. Crystalline silicon (c-Si) and nanocrystalline silicon

(nc-Si) have an indirect bandgap, which gives rise to weak absorption of light in the

near infrared (near-IR), with an absorption length that increases from over 10 pm for

A =800 nm to over 1 mm for A =1108 nm [75]. However, that range of wavelengths

contains 36.2% of solar photons with energies above the bandgap of c-Si [76]. Thus,

a c-Si solar cell with a plain wafer geometry substantially less than 1 mm thick (e.g.,

100 pm) will fail to absorb a significant number of photons that could otherwise

be used to generate power in the cell. At the same time, the expense of c-Si for

a 300 pm-thick wafer with a correspondingly long diffusion length drives up costs

and limits potential supply significantly. As a result, efficient light trapping schemes

that can achieve high levels of absorption for thin films of silicon are needed. In this

chapter, two distinctive approaches to light-trapping are discussed: geometrical and

wave optics. The wave optics approach can be implemented using either gratings or

photonic crystals.

The vast majority of light-trapping schemes used in solar cells today are based
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Figure 4-1: Illustration of conventional solar cell light trapping. Note that the front-
surface texturing increases the effective path length via refraction into an oblique
angle.

on geometrical optics. This approach, illustrated in Fig. 4-1, consists of two key

elements. The first element of the design is a metallic back reflector, which ensures

that incoming light takes two passes through the cell. In the second element of the

design, front-surface texturing is used to further increase the average path length of

the light, through refraction into oblique angles. In the ideal case, texturing of this

type will yield a Lambertian surface, which randomly scatters light into a uniform

distribution of forward angles. Combining perfect random scattering with a lossless

reflector in the back theoretically enhances the effective path length by a factor of

4n 2, corresponding to a value of about 50 for c-Si, and 30 for TiO2 [77]. If one

patterns the front surface of c-Si with an inverted pyramid structure, for example

by etching (100)-oriented c-Si wafers with KOH to form (1ll)-oriented pyramids,

normally incident light will now be refracted into large angles inside the c-Si. For the



best type of random distribution of pyramids, the predicted performance comes close

to the ideal Lambertian scattering case [78]. However, no actual scattering surface is

perfectly Lambertian in nature - the extent to which it replicates the ideal is typically

called the "Lambertian fraction" A, and is typically 55% or less [79]. Furthermore,

it has been found that the fill factor (a measure of efficiency) is generally decreased

by surface texturing [80, 81]. In one case, the fill factor falls from 75% to 70%, for

a relative drop of 6.7% [81]: this can potentially erase most of the gains associated

with improved light trapping.

The light-trapping approach illustrated in this chapter uses wave optics, which

has been shown to be capable, in principle, of outperforming all geometrical optics

approaches for a certain range of wavelengths [82, 83]. This is because, in contrast to

geometric optics approaches (such as the ones discussed above) that treat all wave-

lengths of light equally, wave optics approaches can be targeted to enhance absorption

only in the range where it can be most beneficial. To date, there has been some work

considering wave optics approaches to light-trapping. Some groups have used grat-

ings to enhance the effective path length via diffraction [84, 85, 86, 87, 88, 89, 90].

However, approaches using metal gratings, while increasing absorption, have not been

shown to increase power generation efficiency [87]. On the other hand, dielectric grat-

ings have shown promising results in the direction of efficiency improvements [89, 90].

In order to move further away from usage of metal back-reflectors, some recent work

has combined a distributed Bragg reflector (DBR) with a grating [91, 92].

In this chapter, three approaches to light trapping based on full-wave optics are

examined: metallic gratings, dielectric gratings, and photonic crystals. Photonic

crystals are the ideal choice because they offer complete control over the propagation

of light. One of the key concepts associated with a photonic crystal is the so-called

photonic band gap, a range of wavelengths which are reflected for any incident angle

and polarization. Closely associated with the photonic band gap is the phenomenon

of slow light. One can understand both phenomena by the following: in a periodic

medium, waves must oscillate in a specific form, dictated by Bloch's theorem. When

the energy of the medium oscillates with the same period as the lattice, the waves



can concentrate their energy in the low-energy region or in the high-energy region,

which gives rise to two different energies for the same spatial period. The energies in

between those two limits form the bandgap, a range of energies that cannot propagate

in the bulk. As a result, photons with the forbidden energies that enter the photonic

material are reflected. The reason why slow light also occurs in these systems is

that the photonic bandgap induces an anti-crossing that flattens the photonic bands,

giving rise to slow group velocities.

There are three ways in which photonic crystals can improve light-trapping effi-

ciency. First, they can be designed to reflect a range of wavelengths with arbitrarily

low losses for all incident angles and polarizations [1]. Second, they can be designed

to diffract incoming beams into highly oblique angles. This diffraction takes advan-

tage of the increased density of states associated with a high-index medium. With

the proper choice of periodicity, this effect can be targeted to the key near-IR region

of the solar spectrum. Third, the photon density of states inside the photonic crys-

tal can be selectively enhanced in order to improve absorption efficiency [82]. These

modes can be coupled to from outside the photonic crystal via superprism-type ef-

fects [93]. All of these effects can be thought of as increasing the effective path length

of photons in the near-IR, which increases the dwell time and increases the probability

of absorption. Note that these approaches are especially advantageous for thin cells

40 pm or less in thickness, which are not amendable to coarse texturing approaches

that introduce features 5-10 pm in depth. The features discussed in this chapter can

work for even very thin cells of only a few microns. Thin cells offer the advantage

of lower materials usage as well as lower bulk recombination losses and potentially

higher open-circuit voltages [94].

4.2 Numerical methods

The light-trapping properties of the structures discussed in this chapter were studied

using a transfer matrix method known as the S-matrix method [95]. The structure is

broken up into slices with uniform symmetry in the z-direction, boundary conditions



are imposed at one end, and fields are propagated throughout the structure. Light

trapping is calculated by modeling the c-Si regions with a complex dielectric constant

that depends on wavelength, as in Ref. [75]. The c-Si region is treated as if it were

only intrinsic, i.e., the doping of the p- and n-doped regions can be considered to

have a negligible impact on the optical properties of the device. Aside from that

issue, in principle, this calculation of the optical properties is exact apart from dis-

cretization errors, which can be reduced systematically by increasing the resolution

of the structure. Verification was performed for several simulations using the finite-

difference time domain method [47] with perfectly-matched boundary layers [96]. In

general, the results were in good agreement, but the FDTD method was much slower

for the same resolution, so it was not used for most calculations.

In order to calculate power generation efficiency from this model, it is assumed

that each absorbed photon with energy greater than the bandgap energy generates an

electron-hole pair, and both carriers reach the electrical contacts. This corresponds

to the statement that the diffusion length LD is much greater than the distance

traveled by each carrier (i.e., LD > d). Power generation efficiency is given by

rq = J [V(max)] V(max)/Pinc = (JcVoc/Pinc) x FF, where Pinc is the solar irradiance,

V(max) and J [V(max)] are the voltage and current density at the maximum power

point, respectively, the product of which equals the open-circuit voltage Vo, times the

short-circuit current density J., times the fill factor FF. Following Refs. [97, 98],

the above quantities can be calculated as follows: first, the current density J as a

function of the voltage V is given by the sum of the photon-induced current minus

the intrinsic current generated by radiative recombination, i.e.

, ,  eA dIA] e(n 2 + 1)E2kT eV - Eg
J(V) = dA A(A) - 42hc2 exp\ kT(4.1)fo he dA 4x2h3C2 kT )

where d represents the light intensity experienced by the solar cell per unit wave-

length (given by the ASTM AM1.5 solar spectrum [76]), A(A) is the absorption cal-

culated above, Eg is the bandgap energy, kT is the thermal energy at the operat-

ing temperature T, n is the average refractive index of the semiconductor, and the



n2 + 1 prefactor is derived by assuming an absorbing semiconductor substrate (as in

Ref. [98]). Next, the open circuit voltage is calculated by setting J = 0. Finally, the

fill factor is found by setting the derivative d(JV)/dV = 0 and solving for V(max)

and J [V(max)].

In order to understand the basic properties of the photonic crystal lattices used

in this chapter, the eigenmodes of Maxwell's equations with periodic boundary con-

ditions, also known as a photonic bandstructure, were computed by preconditioned

conjugate-gradient minimization of the block Rayleigh quotient in a planewave basis,

using a freely available software package [99].

4.3 Results and discussion

4.3.1 Metallic designs

Consider the performance of several metal-based c-Si solar cells which all have a

thickness d = 2 pm, with light incident normally from above the cell, and electric

field polarization in the plane. The first solar cell design consists of an anti-reflection

coating made of silicon nitride (n - 1.91) on top of a slab of c-Si (placed on top of

a c-Si substrate). Its power generation efficiency ql is calculated to be 9.07%. The

second design, shown in Fig. 4-2(a), uses an anti-reflection coating plus a perfect

metallic reflector to force light to pass twice through the material. The spectrally

reflected mode is denoted by r. This design leads to a greatly improved efficiency of

13.77%. The third design, shown in Fig. 4-2(b), uses a perfect metallic reflector with

a grating optimized for light trapping. Spectrally reflected modes are denoted by ro,

while diffracted modes are denoted by rz, r2, etc.

In order to understand how to optimize a grating, it is necessary to consider

its underlying physics. The absorption spectrum for generic 1D and 2D gratings

are depicted in Fig. 4-3, and compared to the spectrum for the systems relying on

simple spectral reflection. One can construct a simple analytical model to explain

the diffractive light-trapping mechanism. If a bulk region of thickness d is considered,
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Figure 4-2: Illustration of two metallic solar cell designs: (a) a simple design with
a perfect metal backing, which displays only spectral reflection; (b) a metal with a
periodic grating on the back. Crystalline silicon is in green, metal in grey, and air is
transparent.

then all resonances should pick up a round-trip phase change which is a multiple of 27,

which yields the condition k1 = rm/d, where m is an integer, and the frequency of

the diffracted mode is given by w = (c/n)[G2+ (7rm/d)2] 1/2. If the only source of loss is

the material, then the quality factor is given by Q = n/2k. Near the diffraction limit,
this model predicts that the mode spacing is given by 6wm+l = cir2 (2m + 1)/(2nGd2).

This corresponds to a linear increase with the mode number, which means that peaks

will have increasingly large spacing. This in turn implies that the most benefit from

diffraction will occur right near the diffraction limit. Comparison between this simple

analytical model for the mode spacings and quality factors with the results in Fig. 4-

3 shows excellent agreement. Note that one could alternatively have used a second

order diffraction grating instead, as in Ref. [88]. However, it was found that the

performance of the second order gratings is similar to first order gratings for the

periods examined in this chapter.
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Figure 4-3: Absorption versus frequency of a 2 pim-thick layer of c-Si, with several
different metal reflectors on bottom: one which is planar, one with 1D etching, and
two with 2D "checkerboard" etching patterns and slightly different ratios of the x-
and y-periods. All gratings have a square etch with a fill factor of one-half in each
direction.

In grating optimization, the first parameter that must be determined is the period

of the grating p. Following previous work (e.g., Refs. [85, 86, 87]), it is chosen so that

first order diffraction will occur in the near-IR. Through optimization, its value is

determined to be 255 nm, which leads to diffraction of wavelengths of 920 nm and

below in c-Si. In either case, the exact optimal periodicity will depend slightly on the

thickness of the active region, and will be shifted to longer wavelengths for thicker cells

(since they will already be absorbing shorter wavelengths well). Furthermore, there

are a variety of other parameters to be considered, such as profile shape, incident

angle and polarization, profile, duty cycle, and etch depth [100]. The rectangular

(square-wave) profile is chosen because it is a simple structure that has been shown

to perform better than a symmetric triangular pattern [89]. The etching profile is
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Figure 4-4: Absorption vs. wavelength for three 2 pm-thick Si cell designs: no back
reflector, perfect metal back reflector, and perfect metal grating with 2D periodicity.

chosen to be a symmetric square wave, for simplicity. The duty cycle f, i.e., the

fraction of dielectric that is raised over each period, is chosen to be exactly one-

half for the reason that the largest Fourier components (responsible for coupling to

diffraction) will occur at that value. Finally, in choosing the etch depth, one has to

consider at least two interference effects: one is between light bouncing off the top of

the etch pattern versus the bottom of the etch pattern, which gives rise to a phase

difference of 60 = 2 khit, and one between light passing through the top of the etch

pattern and light passing through the bottom of the etch pattern, which gives rise to

a phase difference of 36 = 2 (khi - klo)t; these lead to two different predictions for

the etch depth. It is found that the best etch depth is 67 nm. In the ideal case of

no absorption from reflection or surface plasmons, the following remarkable results

are obtained: for a 1D periodic grating, the efficiency is found to be 17.86%; for a

2D periodic "checkerboard" grating (where the periods are equal in each direction),



the efficiency is given by 18.69% (efficiency are quoted to four significant figures for

comparison purposes). The corresponding absorption spectra are shown in Fig. 4-4.

However, it is well-known that there are two sources of loss in a real metallic grating -

first, the natural absorption of the metal upon reflection, as well as surface plasmons.

These losses are too great to allow increased power generation efficiency in an actual

device. That consideration has driven recent interest in all-dielectric structures.

4.3.2 Dielectric designs
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Figure 4-5: Illustration of three solar cell designs: (a) a simple design with a dis-
tributed Bragg reflector (DBR), which displays only spectral reflection; (b) a DBR
plus a periodically etched grating, displaying spectral reflection and diffraction; and
(c) a photonic crystal consisting of a triangular lattice of air holes, displaying simul-
taneous reflection and diffraction from the photonic crystal layer. The crystalline
silicon is in green, and the low dielectric is in yellow; the air is transparent.

DBR-based designs

Now consider the performance of three dielectric-based solar cell structures made of

2 pm of c-Si. The first design, shown in Fig. 4-5(a), consists of an anti-reflection

coating on top and a distributed Bragg reflector (DBR) in the bottom. In creating a

DBR design that reflects strongly in the near-IR, the materials are chosen to be c-Si

(n e 3.5) and SiO 2 (n = 1.5) because they represent a low cost and readily available
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method of making an omnidirectional reflector [101]. Given the target wavelength

range and materials, a period a = 150 nm is chosen. Using 10 bilayers of c-Si and

SiO 2 yields high reflectivity (over 99%) over most of the critical wavelengths that

are difficult to absorb in silicon. The overall efficiency is found to be 12.44%, which

compares reasonably well to the perfect metal reflector efficiency of 13.77%, and may

be larger in practice due to the much greater losses of a realistic metallic reflector.

The second dielectric design, shown in Fig. 4-5(b), based on the one studied in

Refs. [91, 92] consists of an anti-reflection coating, a DBR on the bottom, and a

periodic grating in the back of the top low-index SiO 2 layer of the DBR. It should

be noted that the introduction of the grating into the omnidirectional reflector can,
in principle, cause coupling into propagating modes in the reflector, thus eliminating

perfect omnidirectional reflectivity.
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Figure 4-6: Illustration of the average enhancement created by a 1D grating with
period 1.375a and etch depth 0.46a, for c-Si wafers with thicknesses ranging from 4
pm up to 32 pm.

The results for c-Si wafers with thicknesses varying from 4 pm to 32 pm, and



# bilayers efficiency r (%)
1 12.48
2 14.60
3 15.25
4 15.41
5 15.45
6 15.46
7 15.47
8 15.47

Table 4.1: Efficiency of the solar cell design in Fig. 4-5(b) (with a 1D periodic etch)
as a function of the number of DBR bilayers.

backed with a DBR etched with a 1D grating with period 1.375a and etch depth

0.46a are shown in Fig. 4-6 (after smoothing over individual closely-spaced peaks

as depicted in Fig. 4-3). In analyzing these results, it is observed that the overall

absorption goes up with thickness, as expected, due to the greater number of modes

supported by the bulk semiconductor region. However, the relative enhancement of

light trapping is greater for thinner films, because they have lower baseline absorption.

For a 4 pm-thick c-Si region, the greatest absorption enhancement of about a factor

of 7 occurs over the wavelength range 1040 to 1060 nm. This result is consistent

with the observation that the density of peaks is greatest near the diffraction limit,

as illustrated in Fig. 4-3.

However, when I optimize the parameters for a 2 1pm-thick sample of c-Si, I find

that the parameters are similar to what was seen before for a metallic structure of

equal thickness, specifically, a DBR period a = 160 nm, an etching period of 255 nm,

and etch depth of 60 nm. The efficiency as a function of the number of bilayers is

given in table 4.1.

Photonic crystal-based designs

The third design, illustrated in Fig. 4-5(c), consists of an anti-reflection coating in

the front, and a photonic crystal in the back, made of a four-layer-deep 2D triangular

lattice of air holes, with an air-hole radius of r = 0.375a. Aside from the diffracted

modes, which are labeled in the same fashion as those in the grating, additional modes



which penetrate into the photonic crystal before reflection or loss out the backside are

denoted along the path r'. Thus, this design effectively has more silicon that can be

used for absorption (since it is not surrounded by an insulator). On an experimental

note, electron-hole recombination could be prevented through oxidation of the air-

silicon interfaces, which would create a thin layer of silica for passivation. It would

also be possible to use hydrogen gas for passivation, or to fill the holes entirely with

a passivating material.

In order to understand the general properties of photonic crystal lattices placed

in solar cells, I shall first consider the properties of a simple square lattice of air

holes: first, calculating the bandstructure, then calculating the detailed absorption

spectrum. The bandstructure of the TE modes of the photonic crystal used in this

problem is shown in Fig. 4-7. Around w = 0.225, a flat band is observed, which

implies slow light propagation and enhanced absorption.
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Figure 4-7: Bandstructure for tranverse electric (TE) modes in a photonic crystal
consisting of an infinite 2D square lattice of air holes in c-Si with period 1.375a and
radius r = 0.55a.
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Figure 4-8: Absorption versus frequency at normal incidence for a photonic crystal
consisting of 3 layers of a 2D lattice of air holes with r = 0.55a and period 1.375a.

An absorption spectrum is calculated for three geometries: a source inside the c-Si

with no photonic crystal, a source inside the c-Si with a photonic crystal consisting

of a 2D lattice of air holes, and a source outside the c-Si with the same photonic

crystal. Fig. 4-8 is for normal incidence, and Fig. 4-9 is for TE modes at oblique

incidence. Note that a large enhancement is observed at the diffraction limit w =

0.288(27rc/a), as would be expected for the results obtained with the grating geometry.

Furthermore, some narrow peaks in the absorption are observed, which correspond to

resonant photonic crystal modes (superprism-type effects) - for example, at normal

incidence, one peak is observed around w = 0.225(2irc/a) in Fig. 4-8, as predicted by

the bandstructure in Fig. 4-7. More peaks are observed at oblique incidence around

w = 0.18(2wc/a), 0.245(2wc/a), and 0.255(27rc/a) in Fig. 4-9, which correspond to

frequencies at which coupling takes place to photonic crystal modes, as can be seen

from Fig. 4-7. The greater number of peaks observed at oblique incidence can be



explained by the fact that coupling to certain modes is forbidden in directions of high

symmetry, such as normal incidence.
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Figure 4-9: Absorption versus frequency for TE modes at oblique incidence for a
photonic crystal consisting of 3 layers of a 2D lattice of air holes with r = 0.55a and
period 1.375a.

However, when I optimize the parameters for a 2 pm-thick sample of c-Si, two

findings are made: first, that a triangular lattice offers a performance superior to the

square hole structure, and second, that the lattice parameters will be changed from
those used above. The optimal lattice period a is found to be 305 nm, corresponding

to a layer thickness of 264 nm. The air holes in the bulk have radius r = 0.375a,
while the front layer has a slightly flattened, nearly rectangular structure with a fill
factor of 0.5 and a thickness of 145 nm, in order to maximize diffraction events. The
efficiency as a function of the number of rows for the optimized structure are given
in table 4.2.
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# rows efficiency qj (o)
1 14.08
2 14.90
3 15.32
4 15.50
5 15.59
6 15.70
7 15.73
8 15.74

Table 4.2: Efficiency of the solar cell design in Fig.
of air holes) as a function of the number of layers

4-5(c) (with a 2D triangular lattice
of air holes.

Comparison of DBR with photonic crystal based designs
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Figure 4-10:
cell designs:
finally, a 2D
six complete

Absorption vs. wavelength at normal incidence for four 2 pm-thick Si
no back reflector, plain DBR, a DBR plus a 1D-periodic grating, and
photonic crystal of air holes in silicon. The last two designs consist of
layers. The photonic crystal-based design yields the highest efficiency.

The absorption spectra at normal incidence of four different 2 pm-thick c-Si solar



cells are shown in Fig. 4-10. Note that the narrow peaks seen in Fig. 4-3 are smoothed

out with a moving average that preserves the area under the curve. The designs

and their overall power generation efficiencies are as follows: a simple anti-reflection

coating (no back reflector), with an overall efficiency of 9.07%; an AR coating plus

10 bilayers of DBR, with an overall efficiency of 12.44%; an AR plus 6 bilayers of

DBR with optimized 1D etching, with an overall efficiency of 15.46%; and finally, an

AR plus 6 layers of photonic crystal air holes in a triangular lattice, with an overall

efficiency of 15.59%. The photonic crystal design offers the best performance overall,

due to two factors: first, the grating causes a small amount of light to be scattered into

modes that are no longer reflected by the DBR, and the photonic crystal provides an

extra region of silicon to absorb light - in the DBR design, the c-Si in the distributed

Bragg reflector is surrounded by insulator and thus cannot contribute to current

generation.

4.4 Conclusion

In conclusion, two light-trapping schemes in silicon have been studied: geometrical

and wave optics. It is found that in principle, wave optics can vastly outperform

geometrical optics for a certain range of wavelengths. Fortunately, only a relatively

small range of wavelengths, from 600 - 900 nm, requires enhancement in thin films

of c-Si. Within wave optics, it is found that photonic crystals offer the best perfor-

mance because of their ability to reflect, diffract and allow partial penetration of light

simultaneously within a single photonic lattice, without causing scattering losses, as

in a DBR with a grating.



Chapter 5

Enhanced beam steering via

photonic crystals

5.1 Introduction

Optical phased arrays, which dynamically control the phase and amplitude of light

across a wavefront, are important for many applications [102, 103]. Some examples

include anamorphic lensing, array generation, aberration correction, and beam steer-

ing [102, 103, 104]. Some of the latest technology uses a liquid crystal system to steer

one polarization at an angle of approximately 100 [105]. As a result, achieving large

angle beam steering has required multiple stages which gradually increase the angle

of the light at each step [103, 105]. Furthermore, many common systems can only be

modulated at rates of 1 GHz or less [102].

In this chapter, the performance of a beam steering array based on photonic

crystal elements is analyzed. Such a system could steer light at any forward angle

with a single stage, and be switched at high speeds. It could be made polarization

insensitive [106] (as compared to the liquid crystal device) and would be a common

aperture device (i.e., obey time-reversal invariance). The concept is to create a large

phase contrast between elements by using photonic crystals to enhance the small

index shift associated with the electro-optic effect. It is shown that if one surrounds

the electro-optic material with a cavity of quality factor Q, the maximum phase



sensitivity is increased by Q compared to a bare slab of material. The total phase

shift associated with the presence of one resonance is 7, and for m resonances, is

m7. Therefore, 2 resonances are sufficient for a four-element device, which works

conceptually as suggested in Fig. 5-1.
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I

Device
1 1r I W

TIT '- x

Figure 5-1: Concept for a large-angle beam steering device. The phase is modulated
periodically to give rise to Bragg diffraction at certain angles.

5.2 Changing the phase of a beam of light

Consider the problem of changing the phase of a beam of light. There are several

physical effects that can be used to achieve this goal. The first is changing the path

length of the light through microelectromechanical (MEMS) devices. They generally

switch at rates of 1 kHz or less (although some systems in the lab have approached

rates of 1 MHz) [102]. Another approach to changing the phase is modulating the

index of the material through which it passes. The phase change for a plane wave

with frequency w passing through a material of thickness d with index modulation

An is AO = Anwd/c (where c is the speed of light). This index change can be

accomplished by acousto-optic devices. They can switch at speeds up to 1 GHz, but
offer less index contrast (and worse performance) at higher switching rates. Electro-

optic devices, based on applying a DC field to achieve a certain index change, offer the



highest potential switching rate. They are generally based on either the Pockels effect

(first order in field strength) and the Kerr effect (second order in field strength) [107].

There are many different electro-optic materials of each class. The best materials

couple a high nonlinear index change with a low nonlinear absorption coefficient: the

electro-optic figure of merit is given by the ratio of these two quantities. However,

typically there is a limit to the performance of electro-optic materials for a given

frequency range. Furthermore, there are limits to how much of an index change can

be induced by an applied voltage before electrical breakdown occurs.

When the level of index modulation for a given device is found to be insufficient

to achieve a desired phase shift directly, another approach is required for improving

performance. In the structural approach, one introduces a structure that slows down

light, in order to enhance the phase change that can be achieved with a given amount

of nonlinear material subject to a fixed maximum voltage [108, 109]. Physically,

this can be pictured as light bouncing back and forth multiple times, picking up a

small phase shift on each pass. As a result of this picture, the maximum phase shift

enhancement is proportional to the number of bounces, and therefore, the quality

factor Q. More formally, one can write the phase q associated with a collection of

resonances with central frequencies wi and widths Fi as [110]:

Cot 2 =(w - ) (5.1)

The linearity of the cotangent function near resonance yields a phase derivative

d¢/dnl,=,,j = 2/ri = 2Q/wi, which proves the maximum enhancement is proportional

to Q. Going completely across one resonance by integrating over all frequencies yields

a ir phase shift. Combining multiple resonances can allow for arbitrarily large phase

shifts.

The simplest embodiment of this principle is a 1D photonic crystal with two

resonant cavities, as shown in Fig. 5-2. This will give rise to low transmission within

the bandgap except close to the two resonant frequencies. For two well-separated

peaks, the adjacent peak phase difference will be given by 7. One can then exploit
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Figure 5-2: Schematic of a 1D photonic crystal, with two microcavities, 2.5 exterior
bilayers and only one half interior bilayer of high dielectric. A transparent electrode,
an insulator layer, and a nonlinear material layer are the 3 components of each mi-
crocavity.

this property by taking the following approach. First, choose the nonlinear material

index and thickness such that the lower cavity resonant frequency coincides with

the desired operating frequency. Then apply a voltage sufficient to shift the higher
frequency peak down to the operating frequency. Now, the phase of the output will
be 7r out of phase with what was observed previously. The thickness of the device
proposed in Fig. 5-2 is about 8.2a when using high and low indices of nhi = 2.4 and
now = 1.6, respectively. Converting to physical distances yields device thicknesses of
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12.3 cm at 5 GHz, and 1.23 m at 500 MHz. The thicknesses could be reduced by at

least 32% through the use of very high index contrast materials. Furthermore, note

that the fractional bandwidth of the phase shifting effect will be inversely proportional

to the quality factor of the cavity. Therefore, if a bandwidth of about 3% of the

central frequency is required, this could be achieved using a relatively low quality

factor Q < 33.

Using a high and low dielectric of indices nl = 2.4 and n2 = 1.6 and period a

with 2.5 exterior bilayers and only a half interior bilayer yields two resonant peaks

within the bandgap at normal incidence, centered around w = 0.25(2wc/a), with a

quality factor Q - 40, which corresponds to a bandwidth of approximately 2.5% of

the central frequency. Choosing the microcavities to have equal thicknesses of 1.5a

and indices of nc = 1.178 and n, = 1.6324 yields the result shown in Fig. 5-3: two

different resonances overlapping at the same frequency. According to equation (5.1),

the peaks of the two resonances should differ in phase by 7. This prediction is checked

in Fig. 5-4, which shows that the fields as a function of time for the two microcavity

index values are very close to being 7 out of phase with one another.

By comparison, the phase change associated with a layer of nonlinear material

with thickness 1.5a and equal index change is only 0.3417r, about a third of the phase

change seen for this device.

Note that the parameters used in this discussion are just an example, and one

can use this design with any frequency where dielectric media can be treated macro-

scopically, ranging from radio frequencies to ultraviolet light. The most important

materials choice is the non-linear material, which should be chosen to have a large

figure of merit.

Furthermore, any bandwidth that's not extremely broad (i.e., less than 10% of

mid-range frequency) could conceivably be used in this device with proper choice

of dielectric materials. There is, however, a tradeoff between bandwidth and index

contrast: the smaller the bandwidth needed, the lower the index contrast needed,

and vice-versa. As a consequence, one can achieve a 7 phase shift for monochromatic

light with an arbitrarily small index contrast given a sufficiently high quality factor
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Figure 5-3: Transmission as a function of frequency for two values of the index of the
microcavity, n, = 1.178 and n, = 1.6324, chosen to shift two different resonances to
the same central frequency w = 0.25(2wc/a).
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cavity.

5.3 Designing a beamsteering device

The introduction of a 7/2 phase shift between each element, each of which has a

transverse size of p/ 4 , gives rise to a periodic array of periodicity p that will diffract

light at an angle specified by the Bragg diffraction formula, sin 0 = A/p.

In Fig. 5-5, four specific index values are found that can achieve precisely the

required phase shift between each element, to wit: n =2.1195, 2.1317, 2.2851, and

2.3022.
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Figure 5-5: Transmission versus frequency for a single device with four different
electrooptic material refractive indices. These indices (shown in the legend) are chosen
such that all the half-maxima coincide, thus yielding a phase shift of 7/2 between
each device.

The proposed design for the four-element periodic device is shown in Fig. 5-6. The

operation of this device is simulated for continuous wave operation at the wavelength
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Figure 5-6: Ten periods of a photonic crystal beamsteering device employing four
steps per period.

A = 4a. The lateral periodicity p is then chosen to be p = 4.8a, so that steering

will occur at the angle 0 = sin-'(A/p) - 56'. Of course, when the device is turned

off (i.e., each nonlinear element has an applied voltage of zero), no beamsteering is

expected to occur. As shown in Fig. 5-7, all the light is either transmitted forward

with no deflection, or reflected backwards, since the phase is the same through each

device. However, when the voltages are turned on, the forward beam is seen to be

steered at an angle of 520, fairly close to the theoretical prediction of 56', as shown

in Fig. 5-8,. Most of the difference probably comes from the finite length of time over

which the simulation is run, since the beam gradually shifts to the correct angle as

the fields build up in the microcavities. Furthermore, note that the beam width is

substantially unaffected, which is necessary for any real applications.

It should be noted that the design presented in this chapter has a couple of key

drawbacks. The first is that only 50% of the incoming light is steered in the desired

direction, due to the basic approach of using resonances shifted by a phase of 7r/2,
which requires operating at half-maximum. The alternative approach of using the

peaks of two resonances would not break ay (left-right) symmetry, and would thus

result in two diffracted beams in the forward direction. Thus in practice, both ap-

proaches would only yield 50% steering of the power in a particular direction. The

second drawback to this design is that contacting on small scales would be required,
since each element measures exactly p/ 4 across. For operation at A = 1.55pm, this

would require the width of each element to be 0.3A = 465 nm.
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Figure 5-7: Illustration of the photonic beamsteering device with all nonlinear ele-
ments turned off: no beamsteering takes place.

5.4 Conclusion

In conclusion, I have designed a system for achieving large-angle beam steering in

a single stage using electro-optic materials. This system has the advantage of being

able to exploit small changes in index to steer light to any forward angle desired with

the proper design. It also can operate at very high bandwidths compared to previous

systems.

Some of the most interesting future work will consist in experiments: choosing ma-

terials, fabricating a structure and characterizing it in the laboratory. In conjunction

with that, future theoretical work should include full 3D modeling of the experimen-
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Figure 5-8: Illustration of the photonic beamsteering device with the nonlinear ele-
ments turned on: beamsteering at a well-controlled 520 angle takes place.

tal systems, and extending the work to include multiple wavelengths. Being able to

bend light by a constant amount from any incident angle or polarization would also

be a potential direction that could be pursued theoretically.
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Chapter 6

Single-photon all-optical switching

using waveguide-cavity QED

6.1 Introduction

Several emerging technologies, such as integrated all-optical signal processing and

all-optical quantum information processing, require strong and rapid interactions be-

tween two distinct optical signals [111]. Achieving this goal is a fundamental challenge

because it requires a unique combination of large nonlinearities and low losses. The

weak nonlinearities found in conventional media mean that large powers are required

for switching. However, nonlinearities up to 12 orders of magnitude larger than those

observed in common materials [112] with low losses can be achieved using EIT ma-

terials [24, 112, 113]. One can then envision inducing strong interactions between

two very weak signals of different frequencies by placing a 4-level EIT atom in a

high-quality factor (high-Q) cavity, so that a very small signal at a specific atomic

transition frequency could shift another resonant frequency of the system by a mea-

surable amount [114]. This approach differs from several optical switching schemes

for small numbers of photons that have previously been discussed in the literature.

One of the pioneering papers in this area used a single three-level atom with a V-

level structure in an optical cavity to induce a cross-phase modulation of 160 be-

tween two photons [115]. EIT offers even further opportunities in terms of larger
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nonlinearities and greater tunability, which has directed much subsequent work in

this direction. EIT materials have been predicted to cause a photon blockade effect,

where the state of a cavity can be switched by the self-phase modulation of a single

photon [116, 117, 118] or several photons [119, 120]. This effect has recently been

observed experimentally [121]. Ref. [122] predicts that ensembles of EIT atoms can

be modulated to create quantum entangled states for a small number of photons. An

alternative method is discussed in Ref. [123], whereby a laser beam can control the

relative populations of a two-state system embedded in a PhC, which switches its

transmission properties at low power levels.

Ref. [114] semi-classically demonstrates the strong interaction of very low inten-

sity fields which can be mediated by EIT materials. This work extends that idea to

the quantum regime, by writing down the waveguide-cavity QED Hamiltonian for a

system consisting of one or a few 4-level EIT atoms strongly coupled to a photonic

crystal (PhC) cavity mode, which in turn is coupled to a PhC waveguide, and solving

it exactly. Furthermore, an approach to calculating the relevant parameters from

first principles is demonstrated. It should be experimentally feasible, with EIT hav-

ing already been demonstrated in a Pr doped Y2SiO 5 crystal [124, 125]. Note that

compared to EIT systems such as Na BEC's displaying narrow bandwidths (e.g., 2

MHz [112]), switching can occur over much larger bandwidths even for single photon

power levels (e.g., 2 GHz, using the parameters from Ref. [126]) because the PhC

cavity compensates for weaker nonlinearities, as demonstrated in this chapter. Fur-

thermore, this approach utilizes PhC's, which offer confinement of light to high qual-

ity factor microcavities with low modal volumes, which facilitates strong coupling

between light and matter. The emergence of new phenomena associated with the

quantization of the probe and gate fields (e.g., Rabi-splitting) is discussed. Finally, it

is shown that switching behavior can be achieved with single probe and gate photons,

and the physical parameters needed to achieve such operations are calculated.
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Figure 6-1: Schematic illustration of the system investigated. A waveguide is coupled
to a cavity with an EIT atom at its center. In the upper left-hand corner, an FDTD
simulation that can be used to calculate the model parameters is shown.

6.2 Theoretical model

Consider the following design, illustrated in Fig. 6.2. There is a cavity which supports

two resonant modes, one with a resonant frequency WRES and the other with a control

frequency wCON, enclosing a single four-level EIT atom with coupling strengths gij and

atomic transition frequencies wij, where i and j refer to the initial and final atomic

states, respectively. The EIT dark state is created by adding a classical coupling field

to the cavity with frequency w23 and Rabi frequency 2QS - all other quantities are

treated quantum mechanically. In general, any number of coupling schemes between

the cavity and one or more waveguides could be utilized. However, in this chapter,

the wRES cavity mode is side-coupled to an adjacent single-mode waveguide with a

radiative linewidth F, = wREs/2Qw = Vw/vg, where Q~ is the quality factor of

the wRES cavity mode, V, is the coupling strength and v9 is the group velocity in

the waveguide - its dispersion relation w(k) is assumed to be approximately linear

near the wRES resonance. For relatively strong cavity-waveguide couplings, radiative

couplings out of the system are much smaller and may be neglected. Also, the wCON

resonance is designed to have a much smaller decay rate F,,coN = wo/2Q,,,N. This can

be achieved by starting with two dipole modes, one with an even symmetry coupled

strongly to the waveguide, and one with an odd symmetry exactly decoupled from
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the waveguide. A slight shift in the cavity position can then create a slight coupling

that nonetheless creates a substantial disparity in quality factors, i.e., Qco' > Q",

(see, e.g., Refs. [1, 127]). Alternatively, one could use two cavities to create even

and odd modes with substantially different quality factors [128]. In the absence of

an atom, these design produces a Lorentzian lineshape for the reflection (because of

the side-coupling), centered around wRES [129]. A photonic crystal implementation

of this is shown in the upper left-hand corner of Fig. 6.2 - a triangular lattice of

air holes in silicon with radius 0.48a that has a complete 2D photonic bandgap. A

similar geometry has been used for quantum dots in photonic crystal microcavities,

as in Ref. [126]. That experimental system exhibits a critical photon number mo =

3F/2g 2 = 0.55 and critical atom number No = 2F,r3/g2 = 4.2. Ideally both of

these numbers would be less than one for quantum information processing [130]; it

should be possible to achieve this goal with improvements in the quality factor Q or

the modal volume Vmode, or by placing several atomic or quantum dot systems in the

same microcavity. Note that it could also be possible to achieve similar behavior with

other physical systems, such as high-finesse Fabry-Perot optical microcavities [131],

or ultrahigh-Q toroidal microresonators [132].

Combining Ref. [117]'s Hamiltonian for an EIT atom in a cavity and Ref. [133]'s

Hamiltonian for a waveguide interacting with a cavity yields:

H/h = Z wkatkak + WRESata + ,CONbtb + V,(at + ak)(at + a) + w21 "22

k k

+ (w13 - ir3) 33 + (w14 - 4) 44 + Q( 32 + 23) COS (W23t)

+ g13(at+13 + au 31) + 924 (bt 24 + bU42) (6.1)

where ak are the annihilation operators for waveguide states of wavevector k and

frequency wk, a and b are the annihilation operators for cavity photon states of fre-

quencies WRES and wcoN, respectively (which are considered in this chapter to be singly

occupied), uij are the projection operators that take the atomic state from j to i, F3

is the nonradiative decay rate of the third level, F4 is the nonradiative decay rate

of the fourth level, Aws1 = w13- WRES -iF 3 is the complex detuning of the 1--3
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transition from WRES, and A&24 = 24 - WcoN - iF4 is the complex detuning of the

2--4 transition from wcoN. In this chapter, the cavity resonance is designed to match

the 1-3 transition, i.e., WRES = w13, so that A&13 = iF3. Also, although AC24 is

predominantly real, in general there is an imaginary part corresponding to absorp-

tion losses in the fourth level. However when the detuning greatly exceeds the decay

rate of the upper level, this contribution may be neglected. Losses from the second

atomic level are also neglected, since typically it is a metastable state close to the

first atomic level in energy. Finally, although in general the two cavity modes should

have at least slightly different frequencies, wCON is set equal to WRES for simplicity.

The Hamiltonian in equation (6.1) can then be rewritten in real space and sepa-

rated into a diagonal part:

Ho/h = RES dx [a(x)aR() + at(x)aL(x) (6.2)

+ WRES (ata + btb + U33 + 044) + W21 ( 22 + U44)

where aL and aR refer to left and right moving waveguide photons, respectively, as

well as an interaction part:

H/lh = dx [a(x)(-ivgx - wRES ) + a(X)(ivg - E)aL( (6.3)

+ V,,6(x)(at(x)a + aR(x)at + atL(x)a + aL(x)at)] + 23 + 32 )

+g 13(ato1 3 + a13 1) - iF3o 33 + ACD24O44 + 924(bU 42 + btU24)

via the interaction picture (using the rotating-wave approximation [23]), where the

total system Hamiltonian is given by H = Ho + H1 . The eigenstate for the system

can be written as:

,k) = {Jdx rkRL(x)a(x)] + ekat (6.4)

+ fk31 k 21 +pk O41b 10, 0, 1)ph 1tom
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where:

/kR(X) = eikz [0(-Z) + to(x)1 (6.5)

k,L(x) = reik (x)

ek is the probability amplitude of the cavity photon at wRES, and fk, hk, and Pk

are the occupations of the 3rd, 2nd, and 4 th atomic levels, respectively. t and r

are the waveguide transmission and reflection amplitudes, respectively. All of these

parameters are determined when the eigenequation is solved below. 10, 0, 1)phe 1)atom

is an eigenstate consisting of a direct product of a photonic state (phc) and an atomic

state (atom). The photonic state consists of zero photons in the waveguide, zero

photons in the cavity at WRES, and one photon in the cavity at WcoN, respectively.

The atomic state consists of a single atom in its ground state. Note that 10k) is

written in terms of an annihilation operator b in order to simplify the notation, which

would otherwise require bt operators in all but one term.

Applying the Hamiltonian, equation (6.3), to the time-independent eigenvalue

equation H ?/)k) = hEk 10k), where Ek = W - WRES, and solving for the reflection

coefficient yields r( (Ek)2 = FI/(I - iF,) 2,where:

2

k 913 (6.6)
k E - i (.ek-g_3 4/(Ck-/A24)

6.3 Results and discussion

The parameters g13, V, (or FF), vg, and Qc of equation (6.3) can be determined

from a numerical solution to Maxwell's equations (e.g., via [134]) as follows. First,

the cavity mode is excited by a source, and the modal volume of the cavity is found

from the field patterns by Vmode = (mode d3xC JE 2) /c Emax 2 . One can then apply the

formula g13 = VTe 2f 13/mcVmode [20], where e is the elementary electric charge, e is the

dielectric constant of the medium in which the atomic system is embedded, m is the

free electron mass, and f13 is the oscillator strength for the 11) - 13) transition (1/2
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in Na [112]). The linewidth ~, can be calculated by examining the decay rate of the

field in the cavity mode. The waveguide group velocity is given by v = d(k)
dkW=WRES

Finally, the Rabi frequency Q, can be estimated from quantum mechanics by first

determining the vacuum Rabi splitting for the 2--+3 atomic transition g23, and then

multiplying by Vi, where n is the number of w2 3 photons.

First, consider the case of a 2-level atomic system (i.e., Q = 0, g24 = 0), with a

waveguide coupling r, and a non-radiative decay rate F3. For a fixed atom-photon

coupling g13 and zero non-radiative absorption, the single resonant mode at ek = 0

experiences a Rabi splitting into two orthogonal linear superpositions of the cavity

and atom modes at k = ±g913 . As long as one remains in the strong coupling regime

g13 > F3/2, the absorption for all frequencies increases nearly linearly with F3.

However, in the opposite regime of weak coupling (g13 < F3/2), the normal modes

of the system are mostly photonic (lossless) or mostly atomic (very lossy). This

phenomenon eliminates the Rabi splitting and gives rise to a reflection nearly indis-

tinguishable from a system without an atom for sufficiently large 173.

Now, consider a 3-level atomic system without losses. Compared to the 2-level

system, a third mode, corresponding to the dark state of the EIT atom, will emerge at

Ek = 0 between the previously observed Rabi-split peaks. The dark eigenstate is given

by 10)dark = [at - (g1 3 /QC) 2 1] 0 O, 0) phc ) Il)atom. The width of the central peak is

expected to scale as (Ac/913)2 for small QR/g13 [122]. If one substitutes the expression

given in Ref. [20] for g93, one obtains the classical results found in Refs. [112, 114].

Meanwhile, the width of the side peaks is set by ~, and remains roughly constant as

one tunes the parameters of the system.

In Fig. 6.3, g13 /Q, = 2 while g 13 is varied. It is shown that as g13 is decreased,

the central resonance width stays constant, while the distance between the central

and Rabi-split peaks becomes smaller. For use in applications, it therefore seems

optimal to have a large Rabi splitting, corresponding to the very strong coupling

limit, which can also be viewed as corresponding to critical photon and atom numbers

much less than one. The experimental values for a system with a single quantum

dot emitting a single photon observed in Ref. [126] correspond to a regime where
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Figure 6-2: Waveguide reflection for a lossless 3-level EIT atom for the four labelled
values of the atomic coupling strength g13 , in GHz. The radiation rate F, = 21.5
GHz and the ratio g13/QC = 2 are fixed. Larger 913 produces larger peak separations
(the blue curve shows Rabi peaks outside of the plot), favorable for switching.

g13 ? rw - specifically, they find that for operation at A = 1.182 pm, g13 = 20.5 GHz

and Fw = 21.5 GHz; note that PhC microcavities are optimal for simultaneously

decreasing ,w and increasing g13.

Now, consider a 4-level system with a control photon present. Two possible effects

can be induced by the control photon. When the control frequency WCON is close to

the electronic transition frequency w24 , an Autler-Townes doublet is observed; upon

detuning, an AC-Stark shift will be induced in this system instead [114, 117]. The

latter effect has been suggested as a switching mechanism in Refs. [114, 135, 136].

This can be shown by using equation (6.6) to calculate the poles of the EIT term in

the reflection, i.e., set Ek-g924 / (k- - 24) = 0, which yields Ek = ±g24 for no detuning,

and Ek x -g4 4/Aw 24 for a large detuning, matching the semi-classical result found in

Ref. [114].

Single-photon switching is obtained when the reflection peak is shifted by an
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Figure 6-3: Waveguide reflection (blue) and absorption (red) in the absence (solid)
and presence (dashed) of an control photon, demonstrating nonlinear single-photon
switching (F, = 21.5 GHz, g13 = 20.5 GHz, Qc = 2 GHz, F3 = 30 GHz, g24 = 8 GHz,
and A&24 = 30 GHz).

amount greater than its width, via the presence or absence of one control photon. In

order to achieve this goal, one can take two different approaches. First, in the regime

where g13 % F,, as in Ref. [126], one can introduce an absorption via F3 - 0, and thus

absorb the majority of light not coupled to the dark state. In Fig. 6.3, the reflection

and absorption are plotted for an optimized value of F3 = 30 GHz, both before and

after switching. As shown, reflections at the Rabi-split frequencies are decreased

substantially (to about 40%), while full reflection is still observed at the central, EIT-

narrowed peak. Furthermore, in the presence of a single detuned control photon, it is

possible to switch the peak reflection frequency by an amount greater than the EIT-

narrowed central peak width. A second, lossless approach, appropriate if producing

a large nonradiative decay F3 or small •c is difficult in a single-atom device, is to

enhance the ratio g13/1F. This goal can be achieved by either decreasing F, or Vmod.,
or by increasing the number of atoms from one to N. The first example of switching by
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Figure 6-4: Waveguide reflection with (dashed) and without (solid) a control photon,
demonstrating lossless switching, where a higher quality factor has made the resonant
peaks narrow enough to be shifted by more than their full width at half maximum
by a single photon (Fr = 3 GHz, g13 = 20.5 GHz, Q, = 30 GHz, r3 = 0, g24 = 30
GHz and AC24 = 20 GHz).

decreasing the waveguide coupling is shown in Fig. 6-4, where the waveguide coupling

width Fw is decreased by about a factor of 7 to FI = 3 GHz. Now the peaks are

narrow enough that a single photon of frequency wCON can shift the peak by more

than the full width at half-maximum. The second example of switching, by increasing

the number of atoms is illustrated in Fig. 6-5. In general, it is clear that increasing

the number of atoms collectively oscillating will improve the coupling strength; in the

special case where each atom has equal coupling to the field, the N-atom treatment

in Ref. [137] shows that the coupling constant g13 - g' 3 = g13V / . Furthermore, one

can generalize the arguments of Ref. [137] to a four-level system of N atoms to show

that the other coupling constants g24 and Q, will scale in an identical fashion (i.e.,

924 2* /4 = g24 v/N, Q -- *Q = Qv/-N). This collective Rabi oscillation separates

the Rabi-split peaks much further from the central peak. Fig. 6-5 shows switching

exploiting this phenomenon based on parameters from Ref. [126] and using N = 49.

The advantage of this lossless switching scheme is that one obtains a substantially
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Figure 6-5: Waveguide reflection with (dashed) and without (solid) a control photon,
demonstrating lossless switching, where multiple (49) EIT atoms have been used to
push the Rabi-split peaks farther away in the presence of negligible loss (F, = 21.5
GHz, g13 = 143.5 GHz, Qc = 210 GHz, F3 = 0, g24 = 210 GHz and A&024 = 20 GHz).

greater tuning range and contrast (the difference between the peaks and the troughs)

than with the lossy (F3 = 0) scheme.

In conclusion, the reflection peak of a waveguide-cavity system can be switched

in and out of resonance by a single gating photon, assuming realistic experimental

parameters. Thus, one photon can be used to gate another photon of a different

frequency, via a Kerr cross-phase modulation. This approach is distinct from the

photon blockade system where self-phase modulation is responsible for the switching

behavior. Under proper circumstances, this can give rise to two-photon entangled

states. The integration of microcavities and waveguides in the same photonic crystal

means that the entanglement could be preserved, in principle, throughout the system,

which could be of use for quantum information processing [130].
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Chapter 7

Tailoring optical nonlinearities via

the Purcell effect

7.1 Introduction

Optical nonlinearities have fascinated physicists for many decades because of the va-

riety of intriguing phenomena that they display, such as frequency mixing, supercon-

tinuum generation, and optical solitons [107, 138]. Moreover, they enable numerous

important applications such as higher-harmonic generation and optical signal process-

ing [51, 107, 139]. On a different note, the Purcell effect has given rise to an entire

field based on studying how complex dielectric environments can strongly enhance

or suppress spontaneous emission from a dipole source [21, 22, 42, 140, 141]. In this

chapter, I demonstrate that the Purcell effect can also be used to tailor the effective

nonlinear optical susceptibility. While this is a general physical principle that applies

to a wide variety of nonlinearities, I specifically investigate the Kerr nonlinearity,

which is present in most materials, modeled here as resulting from the presence of

two-level systems. I show theoretically that using the Purcell effect for frequencies

close to an atomic resonance can substantially influence the resultant Kerr nonlinear-

ity for light of all (even highly detuned) frequencies. For example, in realistic physical

systems, enhancement of the Kerr coefficient by one to two orders of magnitude could

be achieved.
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In hindsight, the modification of nonlinearities through the Purcell effect could

be expected intuitively: optical nonlinearities are caused by atomic resonances, so

varying their strengths should influence the strengths of nonlinearities as well. Nev-

ertheless, to the best of my knowledge, this interesting phenomenon has not thus

far been described in the literature. Moreover, it displays some unexpected proper-

ties. For example, while increasing spontaneous emission strengthens the resonance

by enhancing the interaction with the optical field, it actually makes the optical non-

linearity weaker. Furthermore, phase damping (e.g., through elastic scattering of

phonons), which is detrimental to most optical processes, plays an essential role in

this scheme, because in its absence, these effects disappear.

7.2 Theoretical model

A simple, generic model displaying Kerr nonlinearity is a two-level system. Its sus-

ceptibility has been calculated to all orders in both perturbative and steady state

limits [107]. However, this derivation is based on a phenomenological model of decay

observed in a homogeneous medium, and does not necessarily apply to systems in

which the density of states is strongly modified, such as a cavity or a photonic crystal

bandgap. Following an approach similar to Ref. [142], the validity of this expression

can be established from a more fundamental point of view. Start by considering a

collection of N two-level systems per unit volume in a photonic crystal cavity, whose

levels are labeled a and b. The corresponding Hamiltonian is given by the sum of

the self-energy and interaction terms (Ho and V(t), respectively). Using the electric

dipole approximation, one obtains:

H = Ho + V(t) = h [WaUaa + Wbabb + £2(t)Cab + Q*(t)ba•], (7.1)

where aij = c4cj is the operator that transforms the fermionic state j to the fermionic

state i, Q(t) = -ft. (t)/h is the Rabi amplitude of the applied field as a function of

time, and the scalar dipole moment p is defined in terms of its projection along the
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applied field E(t). In general, if this system is weakly coupled to the environmental

degrees of freedom, then the timescale for the observable dynamics of the system is

less than the timescale of the "memory" of the environment. In this case, informa-

tion sent into the environment is irretrievably lost - this is known as the Markovian

approximation [143]. The dynamics of this system can then be modeled by the Lind-

bladian £, which is a superoperator defined by p = £ [p]. In general, one obtains the

following master equation from the Lindbladian:

1 = -(i/h) [H, p] + L,pL - LtLp - IpLL (7.2)

Using the only two quantum jump operators that are allowed in this system on phys-

ical grounds - L, ab/V/_T and L2  U abbMV-e [143] - one can obtain the following

dynamical equations:

dP - (iwba + T1)Pba + iQ(t)(pbb - Paa) (7.3)
dt

d(pbb- Paa) (Pbb- Paa) + 1 2i ()b (t)a (7.4)=T- 2i [2(t)pb - @*(t)pba], (7.4)dt T1

where wba Wb - a,, T1 is the rate of population loss of the upper level, and

T2 = (1/2)T' 1 + Yphas is the rate of polarization loss for the off-diagonal matrix

elements. The prediction of exponential decay via spontaneous emission is known

as the Wigner-Weisskopf approximation [144]. Although it has been shown that the

atomic population can display unusual oscillatory behavior in the immediate vicinity

of the photonic band edge [145, 146], theoretical [142] and experimental considera-

tions [147, 148] show that this approximation is fine for resonant frequencies well inside

the photonic bandgap. In the rest of this chapter, this is assumed to be the case. Next,

one can make the rotating wave approximation for Eqs. (7.3) and (7.4), and then

solve for the steady state. If the polarization is defined by P = Np(Pba + Pab) = XE,

where X is the total susceptibility to all orders, one obtains the following well-known
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expression for the susceptibility [107, 142]:

Np 2 (w - Wba - i/T2)T22/hX = (7.5)
1 + (w - wba) 2T22 + (4/h 2)j21E|E2T1T 2

In general, equation (7.5) may be expanded in powers of the electric field squared.

Of particular interest is the Kerr susceptibility, also in Ref. [107]:

S4 T1 T2(AT2 - i)(3) = Np (7.6)
S3 h3 (1 + A2T2)2'

where A=w - Wba is the detuning of the incoming wave from the electronic resonance

frequency. For large detunings AT2  1, one obtains the approximation that:

Re4X(3) (1--) 3 1T 2  (7.7)

Of course, there are many types of materials to which a simple model of nonin-

teracting two-level systems does not apply. However, it has been shown that some

semiconductors such as InSb (a III-V direct bandgap material) can be treated as a

collection of independent two-level systems with energies given by the conduction and

valence bands, and yield reasonable agreement with experiment [149]. If the parame-

ter A is defined in terms of the bandgap energy such that A wG - w, then one can

look at the regime AT 2 > 1 studied above, and obtain the following equation:

1 (eP 4 (2mr ' 3/2 T1

30orh Aw A) T2

where P is a matrix element discussed in Ref. [149], we is the direct bandgap energy

of the system, and mr is the reduced effective mass of the exciton. This equation

displays the same scaling with lifetimes as Eq. (7.7), so the considerations that follow

should also apply for such semiconductors.

Now, consider the effects of changing the spontaneous emission properties for

systems modeled by Eqs. (7.7) or (7.8). When spontaneous emission is suppressed,

as in the photonic bandgap of a photonic crystal, T1 will become large while T2 remains
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finite, thus enhancing X(3) by up to one or more orders of magnitude (for materials

with the correct properties). For large detunings (where AT 2,vac > 1), I expect that

X(3) will scale as T1/T 2. The enhancement of the real part of X(3) is defined to be

_ ,, Re Xce / Re Xo , where X3ucenl is the nonlinear susceptibility in the presence of

the Purcell effect, while Xo~ is the nonlinear susceptibility in a homogeneous medium.

Since T -1' = Frad + ~r, the maximum enhancement is predicted to be roughly:

Ti,purcellT2,vac nr + yphase 1
rad + £nr (79)

r(] F (7.9)
T1,homT2,purcell nr + Frad) phase nr

where Frad is the radiative decay rate in vacuum. Since the Purcell effect increases

the amplitude of X(l) , one might also expect it to increase the amplitude of X(3);

however, according to Eq. (7.9), the opposite is true. This can be understood by

noting that Purcell enhancement decreases the allowed virtual lifetime, and thus,

the likelihood of nonlinear processes to occur [110]. Moreover, since the Purcell

factor [22] is calculated by only considering the photon modes [21], one would not

necessarily expect phase damping effects to play a role, in marked contrast with

Eq. (7.9). This result comes about because X(3) comes directly from the polarization

of the medium, which exhibits a significant T2 dependence. Thus, the absence of phase

damping effects causes any enhancement effects to disappear. On the other hand, the

presence of large phase damping effects makes T2 effectively constant, which means

that suppression of spontaneous emission (caused by the absence of photonic states

at appropriate energies [42]) can enhance Kerr nonlinearities by one or more orders of

magnitude, while enhancement of spontaneous emission via the Purcell effect [21, 141]

can suppress these nonlinearities. For the case where Purcell enhancement takes place,

T1 decreases while T2 may not change as rapidly, due to the constant contribution

of phase damping effects. This applies in the regime where T1 > Tqlse. Otherwise,

if T1 is sufficiently small, then T2 will scale in the same way, and X(3 ) will remain

approximately constant for large detunings, where AT 2 > 1. This opens up the

possibility of suppressing nonlinearities in photonic crystals (to a certain degree).

For processes such as four-wave mixing or cross phase modulation, X(3) will generally
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involve a detuning term and will differ from Eq. (7.6). It is also interesting to note that

this enhancement scheme will generally not increase non-linear losses, which are a very

important consideration in all-optical signal processing. If the nonlinear switching

figure of merit ( is defined by ( = Re X(3)/(A Imx(3)) [150], then purce1/(vacuum =

T2,purcell/T2,vacuum > 1, for all cases of suppressed spontaneous emission.

7.3 2D photonic crystal example

The general principal described thus far should apply for any medium where the local

density of states is substantially modified. In what follows, I show how this effect

would manifest itself in one such exemplary system: a photonic crystal. This example

serves as an illustration as to how strong nonlinearity suppression / enhancement

effects could be achieved in realistic physical systems. It consists of a 2D triangular

lattice of air holes in a high-dielectric medium (c = 13), with a two-level system

placed in the middle, as in Fig. 7-1.

Note that the vast majority of photonic crystal literature is generally focused on

modification of dispersion relations at the frequency of the light that is sent in as a

probe. By contrast, in the current work, it is only essential to modify the dispersion

relation for the frequencies close to the atomic resonances; the dispersion at the

frequency of the light sent in as a probe can remain quite ordinary.

First, consider the magnitude of the enhancement or suppression of spontaneous

emission in this system. Clearly, since there are several periods of high contrast dielec-

tric, two effects are to be expected. First, there will be a substantial but incomplete

suppression of emission inside the bandgap. Second, there will be an enhancement

of spontaneous emission outside the bandgap (since the density of states is shifted

to the frequencies surrounding the bandgap). For an atom polarized in the direction

out of the 2D plane, only the TM polarization need be considered. The results are

plotted in Fig. 7-2.

A GaAs-A1GaAs single quantum well can lie in the interesting regime discussed

above, where the radiative loss rate Frad dominates the non-radiative loss rate Fnr
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Figure 7-1: A 2D triangular lattice of air holes in dielectric, (c = 13). On top of the
dielectric structure in grey, the Ez field is plotted, with positive values in red, and
negative values in blue. A small region of nonlinear material is placed exactly in the
center of the structure. This material may be, for example, either two-level atoms,
quantum wells, or some semiconductors such as InSb.

0.4
frequency

0.5 0.6
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Figure 7-2: Relative enhancement of the TM local density of states for Fig. 7-1,
as measured in the time-domain simulation rate of emission, F, normalized by the
emission rate in vacuum, Io
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Figure 7-3: Contour plot of Kerr enhancement q7 - Re Xu,,cen / Re Xhom as a function
of probe (wph) and electronic transition (Weiec) frequencies, for a single quantum well
of GaAs-AlGaAs, (a) at T = 200 K, with 0.lyphase = 10rr = Frad, and (b) at T = 225
K, with 0.1Ophase = Fnr = rad.

as well as the overall loss rate of the quantum well, for certain temperatures [151].

Equation (7.8) implies that one can see substantial enhancement of the Kerr coefficient
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in that regime.

At a temperature of about 200 K, Fnr ^ 0.1Frad [151]. Although experimental mea-

surements for yphase are unavailable to the present author, the presence of a substantial

phonon bath at that temperature leads one to expect a fairly large value, which may

be conservatively estimated by 10Frad. These results are displayed in Fig. 7-3(a). Note

that enhancement is primarily observed inside the photonic bandgap (cf. Fig. 7-2). I

observe an enhancement in the real part of the Kerr coefficient up to a factor of 12,

close to the predicted maximum enhancement factor of 10.48 in the regime of large

detunings (AT2  1).

Also, at a temperature of about 225 K, rn, r Frad [151], and again I take phase =

10orad. These results are displayed in Fig. 7-3(b). In this case, I observe an enhance-

ment up to a factor of 2.5, close to the predicted maximum enhancement factor of

1.91 in the regime of large detunings (AT2 > 1).

Finally, note that close to room temperature (285 K), the system in Ref. [151]

displays F,, 10Frad, which is predicted to yield a maximum enhancement factor of

1.06. Since this number is fairly negligible, it illustrates that this approach has little

impact when non-radiative losses dominate the decay of the electronic system.

In conclusion, I have shown that the Purcell effect can be used to tailor optical

nonlinearities. This principle manifests itself in an exemplary two-level system em-

bedded in a photonic crystal; for realistic physical parameters, enhancement of Kerr

nonlinearities by more than an order of magnitude is predicted. The described phe-

nomena is caused by modifications of the local density of states near the resonant

frequency. Thus, this treatment can easily be applied to analyze the Kerr nonlineari-

ties of two-level systems in almost any geometrical structure in which the Purcell effect

is substantial (e.g., photonic crystal fibers [152], optical cavities). It also presents a

reliable model for a variety of materials, such as quantum dots, atoms, and certain

semiconductors. Future investigations will involve extending the formalism in this

chapter to other material systems.
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7.4 Numerical methods

I obtain the enhancement of spontaneous emission by performing two time-domain

simulations in Meep [153], a finite difference time-domain code which solves Maxwell's

equations exactly with no approximations, apart from discretization (which can be

systematically reduced) [134]. First, I calculate the spontaneous emission of a dipole

placed in the middle of the photonic crystal structure illustrated in Fig. 7-1, then

divide by the spontaneous emission rate observed in vacuum. The resulting values

of T1 and T2 are calculated numerically, and used as inputs in the calculation of the

enhancement factor 71 of Eq. (7.9), plotted in Fig. 7-3.
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Chapter 8

Conclusion

Although the behaviors of materials such as linear dielectrics, dispersive materials,

and metals placed in photonic crystals have been studied in great depth, the study

of active materials in photonic crystals is just beginning to emerge. It has been

shown here that there are a wide variety of phenomena enabled by the introduction

of photonic crystals into active material systems. This comes about through strong

modification of the photonic local density of states (LDOS). For example, an increase

in the LDOS that leads to enhancement of spontaneous emission is referred to as the

Purcell effect. The LDOS is influenced by both the photonic bandstructure and field

profiles. In the presence of defect structures, the field profiles for modes with fre-

quencies inside the photonic bandgap are strongly localized inside the defect region,

leading to huge increases in the local density of states. This can lead to substantial

enhancement of the following effects: spontaneous emission (chapter 2), stimulated

emission, which lowers lasing thresholds (chapter 3), photovoltaic electron-hole gen-

eration (chapter 4), and phase sensitivity (chapter 5). These effects are not confined

to the semi-classical regimes, either; in the quantum regime, single-photon switch-

ing can be enabled through the enhancement of the LDOS (chapter 6). Physically,

the enhancement of the LDOS makes the system strongly coupled, which creates the

possibility of intriguing quantum effects such as entanglement. Finally, an interesting

result from chapter 7 is that suppression of the LDOS can actually enhance certain

quantities, such as the coefficient of Kerr nonlinearity. Clearly, the effect of embed-
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ding these active materials in photonic structures is far from trivial, and has created

a rich new area for exploration which lies at the intersection of traditional photonic

crystal literature with literature on the Purcell effect. Photonic crystals' unique abil-

ity to tailor the LDOS has been shown to lead to many exciting new phenomena and

applications.

Furthermore, there are still a number of materials as well as systems that are

open for investigation. Many of these materials and systems could be studied using

tools that have recently been developed (possibly with slight modifications). So it

looks like the future for active materials in photonic structures is bright. Here, I list

a couple of areas that may be of near-term interest for further investigation:

Combining multiple light-trapping approaches

As illustrated in chapters 2 and 4, photonic crystals have the potential to enhance

light-trapping effects by manipulating the photon density of states. An open ques-

tion is whether these effects can be combined with existing or future light trapping

approaches. Two ideas readily present themselves. First one can improve on anti-

reflection coatings by considering that reflection on the front and back surfaces is

required to create a destructive interference that couples the most light into the cell.

Furthermore, this effect must be sustained over a very wide bandwidth (correspond-

ing to 3w/wmid, - 0.5). In principle, this optimization should be compatible with

the waveguiding effect being induced by the photonic crystals on the backside, but

this must be tested; the necessary tools have already been developed. Second, one

would like to combine the photonic-crystal light-trapping approach with geometrical

optics-based approaches in order to achieve even higher efficiencies. Insofar as a real

textured surface fails to scatter light, photonic crystals should be able to fill in the

gaps for light trapping.

Enhanced light trapping in novel systems

The light trapping effects discussed in this thesis may also apply to any number of

detection systems that possess an optical components. This is particularly true when
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the optical radiation one wants to detect is emitted in a random direction, because

optical fibers are poorly suited for omnidirectional light guidance. However, this can

be true to a certain extent any time that the quantum efficiency is below 100%. Some

important detection systems not treated in this thesis are neutron and gamma-ray

detection systems (which typically rely on scintillating materials that emit at optical

wavelengths), and high quantum efficiency single photon detectors (for use in deep-

space astronomy, quantum computing, and other high-fidelity applications).

Novel optical switching approaches

There are a wealth of optical switching schemes in the literature, which fundamentally

come from atomic and molecular physics that create certain energy level structures.

In discussions of cavity QED, it was shown that cavities in general, and particularly

photonic crystal microcavities and other structures, can strongly affect optical transi-

tions of these systems. This lets one imagine taking any number of optical switching

schemes, and improving them. One that comes to mind is the J-aggregate, which

offers a uniquely high optical density of states due to a combination of a quasi-1D

electronic bandstructures, small dipole size, and short-range coherence (which makes

several dipoles act as one). They offer the possibility of creating cheap, low-power

optical switches.
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